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ABSTRACT

We present a scattering model which enables us to describe the mechanical force, including the velocity dependent
component, exerted by light on polarizable massive objects in a general one-dimensional optical system. We show
that the light field in an interferometer can be very sensitive to the velocity of a moving scatterer. We construct
a new efficient cooling scheme, ‘external cavity cooling’, in which the scatterer, that can be an atom or a moving
micromirror, is spatially separated from the cavity.
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1. INTRODUCTION

Opto-mechanics1 is a rapidly growing field covering numerous physical realizations in which the gross motion
of scatterers is manipulated by making use of the mechanical effects of light. The ponderomotive force exhibits
a velocity-dependent character which stems from the retardation in the electromagnetic field inherent in such
systems.2 For an appropriate choice of parameters, velocity-dependent terms in the force may lead to a viscous
damping of motion. Opto-mechanical cooling of this type is a very general mechanism, and might turn out to be
a necessary intermediate step to observe quantum effects on the mesoscopic scale, e.g., with micro-mechanical
mirrors.3

However, pure Doppler frequency shifting results in a velocity dependent force proportional to v/c, which is
negligibly small at room temperature and below. The well-known and very successful laser cooling of atoms, for
example, produces a significant cooling effect because it relies on a resonant enhancement with the Q-factor ω/γ
characteristic of an atomic transition (ω is the frequency of the radiation, γ is the linewidth of the transition).
In non-resonant scatterers, the sensitivity of the radiation force to the velocity can be enhanced similarly, by
coupling the moving object to a resonant optical element. This is the case, for example, in cavity cooling of
atoms4, 5 where the motional energy of the atom is dissipated through a coupled, lossy cavity mode having a
relatively large Q-factor (Q = ωC/κ; ωC is the mode resonance frequency and κ is its linewidth). This is also
the case in several recent opto-mechanical cooling experiments:3, 6–9 the thermal vibration of one of the micro-
mirrors making up a Fabry–Pérot-type resonator can be quenched through the radiation pressure of the light
field enclosed in the resonator.

The models used to describe the way light interacts with microscopic objects such as atoms and macroscopic
objects such as mirrors have been completely different. In the first case, theories are based on the assumption
that atoms are very weak scatterers in free space, negligibly perturbing the impinging bright laser beams. In the
other case, the influence of the moving massive component on the radiation field is so strong that it is considered
a (moving) boundary condition defining a single or a few modes of the field participating in the opto-mechanical
coupling.10, 11

We developed a new scattering theory for optomechanical systems that is able to describe the behavior of
both scenarios using a single, unified framework. The approach is a generalization of the well-known transfer
matrix method,12–14 which relates forward- and backward-going waves on both sides of an optical element, i.e.,
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the local relation between light field amplitudes at the two sides of a scatterer. The generalization consists in
the determination of the transfer matrix of moving scatterers. In this scattering model, atoms and mirrors differ
only in the value of the parameter describing their scattering strength. However, all the expressions derived from
the scattering model encompass both limiting cases of atoms and moving mirrors and arbitrary combinations
of them. The main virtue of this approach is that one can envisage and describe sophisticated interferometric
setups in which the strength of these viscous forces might be greatly enhanced. Indeed we show that the fields in
multiple-pass interferometers, such as the Fabry–Pérot cavity, exhibit great sensitivity not only to the presence
but also to the motion of any scattering object within the optical path.

In Section 2 of this paper, we consider the most general case of an interferometer comprising an arbitrary
configuration of generic ‘beam splitters’ and calculate the velocity-dependent radiation field and the light force
exerted on a moving scatterer. Then, in Section 3, we will consider the system composed of two mirrors; one
of them is fixed in space, whilst the other one is mobile.15 This is the generic scheme for radiation-pressure
cooling of moving mirrors.16–18 At the same time, in the limit of low reflection the moving mirror can equally
well represent a single atomic dipole interacting with its mirror image in front of a highly reflecting surface.19–21
The scattering model description of this example illustrates the use of the general expressions. In Section 4,
we find that a simple configuration, in which the scatterer interacts with an optical resonator from which it is
spatially separated, can enhance the optomechanical friction by several orders of magnitude with respect to the
mirror-mediated cooling scheme presented in the previous section.22 This simple geometry illustrates the role of
interference in damping the motion of a scatterer. A scatterer in front of a two-mirror resonator interacts with
both an incoming laser beam and its reflection from the resonator. This reflected field can be thought of as a
superposition of waves formed by multiple reflections between the mirrors of the cavity. With this scheme, which
we label ‘external cavity cooling’, one can benefit from the large finesse of the cavity even if the moving object
has a low reflectivity and construct a practically useful optical cooling method.

2. ONE-DIMENSIONAL SCATTERING MODEL

Figure 1. Schematic representation of the scatterer (beam splitter, BS) in one dimension. The scatterer combines the
incoming waves, B, C into the outgoing ones, A, D. Because the BS is moving, plane waves with different wave vectors
k are mixed. The model deals with the set of amplitudes A(k),B(k), etc. The BS is surrounded by a fictitious volume
with surface S and width δl, which is used to calculate the force acting on the BS from the Maxwell stress tensor.

Consider a point-like scatterer (or beamsplitter), BS, moving along the ‘x’ axis on the trajectory xBS(t).
Outside the scatterer, the electric field E can be expressed in terms of a discrete sum of left- and right-propagating
plane wave modes with different wave numbers, k, and hence different frequencies, ω = kc:

E =

{∑
k

[
A(k)e−ikx−iωt + B(k)eikx−iωt

]
+ c.c. if x < xBS(t)

∑
k

[
C(k)e−ikx−iωt + D(k)eikx−iωt

]
+ c.c. if x > xBS(t) ,

(1)

where A(k) and B(k) are the mode amplitudes on the left, while C(k) and D(k) are the amplitudes on the right
side of BS. In accordance, the magnetic field is

cB =

{∑
k

[
− A(k)e−ikx−iωt + B(k)eikx−iωt

]
+ c.c. if x < xBS(t)

∑
k

[
− C(k)e−ikx−iωt + D(k)eikx−iωt

]
+ c.c. if x > xBS(t) .

(2)



As depicted schematically in Fig. 1, the scatterer mixes these waves. Our first goal is the derivation of the
transfer matrix M connecting the field amplitudes on the right to those on the left side of a beamsplitter.

2.1 The scatterer
The transfer matrix is known12 for an immobile scatterer, v = 0,

(
C
D

)
= M0

(
A
B

)
, with M0 =

[
1 − iζ −iζ

iζ 1 + iζ

]
(3)

which expresses that the scatterer can be described by a single parameter, the polarizability ζ. It is connected
to the customarily used parameters of a BS, to the reflectivity and transmissivity, as

r =
iζ

1 − iζ
, t =

1
1 − iζ

. (4)

Moreover, the use of polarizability makes the description very general: it can be connected to a single atom with
linear polarizability α by ζ = πα

ε0λS where S is the effective beam cross section. For a two-level, unsaturated atom
with transition frequency ωA and linewidth Γ (HWHM), for example,

ζ =
σA

2S

Γ
ωA − ω − iΓ

, (5)

where σA = 3λ2

2π is the resonant radiative cross section of an atom. The two-level atom is an example for which
the polarizability is wavenumber-dependent, ζ = ζ(k). This can occur more generally with any BS.

2.2 Moving scatterer
The transfer matrix associated with a scatterer moving at a velocity v can be derived in three steps: (1) transform
the electromagnetic field into a frame moving with the instantaneous velocity v of the BS; (2) invoke then the
transfer matrix of an immobile scatterer; (3) and finally transform back to the laboratory frame. Of course,
the transfer matrix approach in this case applies if and only if the instantaneous velocity v can be considered
constant, that is, it varies slowly on the time scale needed for the field amplitudes to reach their steady-state. In
this case, an xBS and v dependent transfer matrix can be defined. The above three steps are written formally as

M̂ = L̂(−v)M0L̂(v) , (6)

where the Lorentz-boost transformation, mixing the magnetic and electric field vectors, can be taken in linear
order in v/c, which leads to15

L̂(v) =
[(

1 + v
c

)
P̂−v 0

0
(
1 − v

c

)
P̂v

]
. (7)

Obviously, L̂−1(v) = L̂(−v) to first order in v
c . Here we defined the Doppler-shift operator P̂v : f(k) "→

f
(
k + k v

c

)
, which acts in the space of the wave vectors rather than in the space of amplitudes. The corresponding

displacement in the wave vector space represents the Doppler effect: the moving BS couples counter-propagating
waves differing in frequency by an amount of 2ω v

c , i.e., C(k), is combined with the amplitudes A(k) and B
(
k −

2k v
c

)
. A similar statement holds for D(k). The transfer matrix in the laboratory frame can thus be conceived

as a 2-by-2 supermatrix acting also in the k-space.

Later we will use the expansion of the Doppler-shift operator to first order in v/c, which is

P̂v = 1 + v
c k0

∂
∂k , (8)

assuming that the populated modes in the whole system span a Doppler broadened, but narrow frequency range
around the central pumping frequency ck0. The forthcoming calculations involve then the differentiation with
respect to the variable k. This effect appears in two ways. First, the polarizability function can be dependent



on the wave vector k, which is generally called a dispersive medium. The transfer matrix of a moving scatterer
with polarizability ζ(k) is

MS =




1 − iζ − i v

c k0
∂ζ
∂k −iζ

[
1 − v

c

(
2 − k0

ζ
∂ζ
∂k − 2k0

∂
∂k

)]

iζ
[
1 + v

c

(
2 − k0

ζ
∂ζ
∂k − 2k0

∂
∂k

)]
1 + iζ − i v

c k0
∂ζ
∂k



 . (9)

Second, the free propagation in a distance d between two scatterers is described by the transfer matrix

Mp =
[
eikd 0
0 e−ikd

]
, (10)

These k-dependent exponential functions are responsible for the Doppler-shift in the phase which can yield
significant effects in interferometers.

2.3 The force acting on the scatterer
The force acting on the medium in the direction x derives from the surface integral of the xx component of the
Maxwell stress tensor T on the surface, S, of a fictitious volume V = S δl enclosing the medium, where S is the
mode area and δl the infinitesimal length of the volume along the ‘x’ axis (see Fig. 1). Then, this force is given
by

F =
∮

S
T xxnx dS = S

[
T xx(x → 0+) − T xx(x → 0−)

]
, (11)

where the BS is at xBS = 0, and nx = sgn(x) is the normal to S. From the definition of the Maxwell stress
tensor, it follows that15

T xx = −2ε0

[∣∣∣
∑

k

A(k)e−ikx−iωt
∣∣∣
2

+
∣∣∣
∑

k

B(k)eikx−iωt
∣∣∣
2
]

, (12)

for x < 0. Assuming a narrow bandwidth of populated modes around the central wavenumbers ±k0, the force
expression reduces to

F =
!ω
c

(∣∣A
∣∣2 +

∣∣B
∣∣2 −

∣∣C
∣∣2 −

∣∣D
∣∣2
)

, (13)

where A = [!ω/(2Sε0c)]−1/2
∑

k A(k) is the photo-current amplitude, and similarly for B, C and D, their
modulus square giving the number of photons crossing a unit surface per unit time. Although we considered first
the electric field composed of independent modes, in the force expression only the sums of the mode amplitudes
occur.

2.4 Transfer matrix of a composite system of scatterers
The main virtue of the transfer matrix approach is the possibility of cascading several consecutive scatterers. An
arbitrary one-dimensional configuration of optical elements can be treated by simply multiplying 2-by-2 matrices.
We will assume that only one of the scatterers is moving and we are interested in the force acting on this one.
Then the appropriate notation is summarized in Fig. 2. The transfer matrix M̂(k) of the entire system is given by
the product M̂(k) = M1(k) M̂S(k)M2(k), where the transfer matrices M̂S(k) and M1,2(k) stand for the scatterer
and for the general optical systems preceding and following the scatterer, respectively. We then calculate the
inverse of the transfer matrix M1(k), such that

(
Al

Bl

)
= M̂

(
Cr

Dr

)
and

(
A
B

)
= M−1

1

(
Al

Bl

)
, (14)

where we have omitted the k-dependence. We use the hat to indicate that the corresponding matrix contains
the Doppler shift operator P̂v. The elements of these matrices, which we denote by

M−1
1 ≡

[
θij

]
, i, j = 1, 2, and M̂ ≡

[
γ̂ α̂
δ̂ β̂

]
, (15)



!

Figure 2. (a) General one-dimensional configuration of optical elements with one scatterer moving. The scatterer S is
between two sets of generic immobile optical elements (we show a Bragg reflector, on the left, and a Fabry–Pérot-type
cavity, on the right, as an example). (b) External cavity cooling configuration, discussed in Section 4. (c) Mirror mediated
cooling configuration, discussed inSection 3.

can all be obtained in a straightforward manner using only 2-by-2 matrix multiplication for an arbitrary number
of scatterers, and hence can in principle be calculated analytically.

In order to make the mathematics more concise, we consider the case where we pump the system from only
one direction. Setting Cr(k) = 0 in Eq. (14), we obtain

Al(k) = α̂β̂−1Bl(k) . (16)

Because of the presence of β̂−1, this relation between the back-reflected and the incoming fields contains the
powers of the shift operator P̂v to all orders. However, both α̂ and β̂ can be expanded up to linear order in v/c,

α̂ = α0 + v
c

(
α(0)

1 + α(1)
1

∂
∂k

)
and β̂ = β0 + v

c

(
β(0)

1 + β(1)
1

∂
∂k

)
. (17)

The auxiliary functions α0,α
(0)
1 , . . . , are simply related to the matrix elements defined in Eq. (15) and to the

scattering strength parameter, or ‘polarizability’, ζ, following from the expressions of the previous subsection.
Thus β̂ can be inverted in closed form up to linear order in v/c,

β̂−1 =
1
β0

− v

c

(
β(0)

1

β2
0

+
β(1)

1

β0

∂

∂k

1
β0

)
, (18)

which yields then the amplitudes A(k). According to the force expression Eq. (13), the total field amplitudes
A =

∫
A(k) dk and B =

∫
B(k) dk are needed,

A = A0 + v
cA1 =

[(
θ11

α0

β0
+ θ12

)
+

v

c

(
θ11

α(0)
1 β0 − α0β

(0)
1

β2
0

− 1
β0

∂

∂k
θ11

α(1)
1 β0 − α0β

(1)
1

β0

)]
B0 , (19a)

B = B0 + v
cB1 =

(
θ21

α0

β0
+ θ22 +

v

c

{
θ21
β2

0

(
α(0)

1 β0 − α0β
(0)
1

)
− 1
β0

[
∂k
θ21
β0

(
α(1)

1 β0 − α0β
(1)
1

)]})
B0 (19b)

The amplitudes on the right side of the moving scatterer can be expressed, using the elements of M̂S, as

C = (1 − iζ)A − iζ
(
1 − 2 v

c

)
B ,

D = iζ
(
1 + 2 v

c

)
A + (1 + iζ)B ,

(20)

where we have used the explicit form of M̂S, and where we have defined C =
∫

C(k) dk and D =
∫

D(k) dk. In
Eqs. (20) we have also assumed that ζ is independent of k. Upon using these relations, we obtain an expression
for the force acting on the scatterer, from which we can extract the friction force:

F 1 = −4!k0
v

c

[
|ζ|2
(
|A0|2 − |B0|2

)
+
(
|ζ|2 + Im{ζ}

)
Re{A0A(

1}− 2 Im{ζ} Re{A0B(
0}

+
(
|ζ|2 − Im{ζ}

)
Re{B0B(

1} + Im{ζ} Re{A0B(
1} + Re

{(
|ζ|2 + i Re{ζ}

)
A1B(

0

}]
. (21)



All our assumptions—i.e., pumping at a single wavenumber, frequency independent polarizability (∂ζ/∂k = 0),
and Cr(k) = 0—are simplifying assumptions and can be relaxed.

3. MOBILE SCATTERER IN FRONT OF A PERFECT MIRROR
Consider the system in Fig. 3 where the scatterer, or ‘atom’, has a polarizability ζ uniform over the frequency
range of interest. Compared to the general scheme Fig. 2, there is nothing on the left side of the scatterer (M1

Figure 3. Schematic representation of the system composed of a fixed mirror and a moving scatterer in front of it. When
the scatterer has a large polarizability, |ζ| ! 1, this system corresponds to a Fabry-Pérot resonator with one of its mirror
moving. When |ζ| " 1, the system is equivalent with that of a laser-driven atom interacting with its mirror image dipole.

is the unit matrix), and on the right side the total transfer matrix M2 is composed of three elements. Letting
Ma, Mp and Mm be the transfer matrices for the atom, free propagation and mirror, respectively, we obtain the
relation: (

A(k)
B(k)

)
= MaMpMm

(
C(k)
D(k)

)
, where

Ma =
[

1 + iζ iζ
(
1 − 2 v

c

)
P̂2v

−iζ
(
1 + 2 v

c

)
P̂−2v 1 − iζ

]
, Mp =

[
eikd 0
0 e−ikd

]
, Mm =

1
t

[
t2 − r2 r
−r 1

]
.

The distance between the atom and the mirror is denoted by d. Note that the free propagation transfer matrix
Mp is non-uniform in the k-space, and therefore the Doppler-shift has an influence on the phase shift accumulated
between two scattering events.

It is worth introducing the reference point at a distance L = 2Nπ/k0 from the fixed mirror, where the integer
N is such that the moving atom’s position x is within a wavelength of this reference point. Then the atom–mirror
distance can be replaced by d = L− x, and k0L drops from all the trigonometric functions. We need the sum of
amplitudes, A =

∫
A(k) dk/B, defined relative to the incoming amplitude B =

∫
B(k)dk, which can be obtained

in a closed form

A =
1

1 − iζ

{
iζ + r

e−2ik0x

1 − iζ − riζe−2ik0x

− 2i
v

c
ζ

[
1 − r2e−4ik0x

(
1 − iζ − riζe−2ik0x

)2 − 2ik0(L − x)
r2(1 − iζ)e−4ik0x

(
1 − iζ − riζe−2ik0x

)3

]}
. (22)

The main virtue of our approach is clearly seen, in that we can smoothly move from ζ = 0, which indicates the
absence of the mobile scatterer, to |ζ| → ∞, which corresponds to a perfectly reflecting mirror, i.e., a moving
boundary condition.

Using the definitions A = |A|2 and B = |B|2, the force acting on the moving scatterer in front of a mirror can
be expressed as

F = −2!k0B
( [

|ζ|2
(
1 + 2 v

c

)
+ Im{ζ}

]
A + |ζ|2

(
1 − 2 v

c

)
− Im{ζ} + 2 Re{iζ(1 − iζ)A}

)
, (23)

where A has to be substituted from Eq. (22). The coefficient of the term linear in velocity, the ‘friction coefficient’,
is plotted in Fig. 4(a) as a function of the position x in a half-wavelength range for various values of ζ. When
varying the coupling strength from ζ = 0.01 to ζ = 1, the friction coefficient transforms between two characteristic
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Figure 4. Left: The position dependence of the linear coefficient of the velocity-dependent force acting on the mobile
scatterer in Fig. 3, for various scattering parameters ζ, evaluated by using Eq. (22) and Eq. (23) with k0L = 100. The
fixed mirror is assumed to be a perfect mirror. In order to fit all the curves into the same range, they are divided by the
factors indicated in the figure. Right: The maximum friction force, taken in optimized position in a wavelength range,
as a function of ζ (on a log-log scale) with k0L = 100. In the limit of small ζ, the force scales as ζ2 (cf. Eq. (24); dashed
line) whereas in the limit of large zeta it scales as ζ6 (cf. Eq. (26); dotted line).

regimes. For small coupling the linear velocity dependence tends to a simple sinusoidal function while, for large
coupling, the friction exhibits a pronounced resonance in a narrow range. This resonance arises from the increased
number of reflections between the mobile scatterer and the fixed mirror. It can be observed that the resonance
shifts towards k0x = π on increasing ζ. In the opposite limit of small ζ, the maximum friction is obtained
periodically at

(
n − 1

4

)
π/2 according to the sinusoidal function. The maximum friction force is plotted in

Fig. 4(b), showing the two limiting cases of ζ2 behavior, in the limit of small ζ, and ζ6 behavior, in the limit of
large ζ.

3.1 Atom in front of a mirror: small ζ limit
An atom pumped with a far off-resonance beam corresponds to a small and real ζ, accordingly, we can truncate
our expressions to second order in ζ. We also assume, for simplicity, that the fixed mirror is perfect; i.e., r = −1
and t = 0. Thus, the friction force simplifies to

F 1 = −16!k0Bζ2 v
c

[
sin2(2k0x) − k0(L − x) sin(4k0x)

]
, (24)

in full agreement with the result of a standard QED calculation.21 In the far field (x ' λ), the dominant friction
term in the preceding expression is the last term, which renders the sin(4k0x) position dependence shown in
Fig. 4(a) for ζ = 0.01.

3.2 Fabry-Perot resonator with moving mirror: large ζ limit
We will now consider the |ζ| → ∞ limit. We again assume that the fixed mirror of the resonator is perfect, with
r = −1, and that the moving mirror has a real polarizability. The incoming field from the right can then be
disregarded, i.e., C = 0.

Let us first calculate the field in the resonator for v = 0, which makes clear how to take the large ζ limit.
This field is

C′
0 = (1 − iζ)A0 − iζ = − e−2iϕ

1 − iζ + iζe−2iϕ
,

with ϕ = k0d, which has a maximum at ϕ0 obeying

tan(2ϕ0) = −1
ζ

.

In the limit of ζ → ∞, the resonance is Lorentzian:

C′
0 = − e−2iϕ

2i(1 − iζ)
[
(ϕ− ϕ0) − i 1

4ζ2

] , (25)



with a width of 1/(4ζ2). This is the limit in which the field between the two mirrors can be considered a
single-mode cavity field. After some algebra, the simplification of the force expression in Eq. (23) leads to the
velocity-dependent terms

F 1 = − 1
2

v
c !k2

0L
(ϕ− ϕ0)

ζ4

[(
1

4ζ2

)2
+ (ϕ− ϕ0)2

]3 B . (26)

On substituting the usual cavity QED parameters, κ = c/
(
4Lζ2

)
, ∆C = −c(ϕ − ϕ0)/L, η2/(2κ) = B, and the

optomechanical coupling constant G = c2k2
0/L2, the friction force renders

F 1 = −2v!GRe
{
a(0)(a(1)

}
= 4v

!η2G2κ∆C[
∆2

C + κ2
]3 ,

which is the one derived from the usual radiation pressure Hamiltonian in the theory of optomechanics.16–18

4. MOBILE SCATTERER IN FRONT OF A RESONATOR
Consider the system in Fig. 5 where the scatterer is placed near an optical resonator, which we refer to as
the ‘external cavity cooling’ configuration. We restrict ourselves to the special case of scatterers that can be
characterized by a real polarizability ζ; this is equivalent to assuming that no absorption takes place in the
scatterer. The polarizability is further assumed to be uniform over the frequency range of interest. Note that in

Figure 5. Schematic representation of the ‘external cavity cooling’ configuration. There are now two independent length
scales, Lc is the cavity length, and d is the distance between the atom and the near mirror of the cavity.

this scheme with a near mirror of complex transmissivity t, the limits of small and large |t| render the situation
where the cavity is replaced respectively by the near mirror only or the far mirror only. That is, the results of
the previous section can be reproduced in these limits. For intermediate t compared with the transmissivity of
the far mirror, T , the moving scatterer interacts with a field reflected back from the cavity and is subject to
the interference created by the multiple reflections between the two mirrors. Here, we consider in particular an
object having low reflectivity, around 50%, which corresponds to a polarizability ζ = 1 and is representative of
typical experimental conditions with micromirrors.6 This ensures that a high-finesse resonator cannot be formed
between the object and the near mirror, thereby guaranteeing a parameter range where the cavity formed between
the immobile mirrors dominates the interaction.

The spatial dependence of the friction force on the position of the scatterer exhibits two kinds of behavior
on two distinct length scales. On a long scale, the gross spatial variation of the friction amplitude is linear
in both Lc, the spacing between the two cavity mirrors, and d, the separation between the scatterer and the
near mirror. This is simply because of the linear increase of the retardation time of the reflected field with this
distance between the scatterer and the reflecting objects.

On a short scale corresponding to the optical wavelength λ0 = 2π/k0, there is an essential modulation on top
of the overall linear dependence of the friction force on both d and Lc. First, external cavity cooling follows the
same behavior as mirror mediated cooling (Section 3): there is a sin(4k0d) dependence. This implies that cooling
occurs in regions of the size of λ0/8. In case of a micro-mechanical mirror, where the vibrational amplitude is
naturally much less than the wavelength, the necessary confinement imposes no problem. Moreover, the simple
sinusoidal form of the force means that the external cavity cooling scheme is exempt from the stability problems
arising from the extreme sensitivity of the force on position that occurs when the moving mirror is inside the
cavity. In the following, we will frequently refer to what we call the ‘friction amplitude’, which we define as the
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Figure 6. The amplitude of the friction force acting on the scatterer, for various near-mirror transmissivities, is shown
as a function of the mirror separation in the cavity. The different curves represent different near-mirror transmissivities:
|t| = 0.45 (dashed–dotted curve), |t| = 0.20 (dotted), |t| = 0.10 (dashed), |t| = 0.05 (solid). (Scatterer polarizability
ζ = 1, scatterer–cavity separation d ≈ 400λ0, |T | = 0.01, λ0 = 780 nm.)

maximum of the friction force −F 1 as one varies the position of the mobile scatterer over a wavelength-scale
region.

As shown in Fig. 6, the fine tuning of the cavity length by varying Lc on the wavelength scale produces a
Lorentzian-like resonance of the friction amplitude. This resonance is intimately related to that in the intra-
cavity field intensity. If we denote the complex reflectivities of the near and far mirror by r and R, respectively,
one can show that the field inside the cavity is maximized when the cavity length is

Lc = m
λ0

2
− 1

2k0
arg
(
rR
)
,

with m being an integer, which is a close approximation to the positions of the peaks in Fig. 6. Moreover, the
width of each of the resonance peaks in this figure is approximately equal to the width of the respective peak in the
intra-cavity field intensity, which has a full-width at half-maximum given by

(
1 − |rR|

)
/
(
k0

√
|rR|
)
≡ λ0/(2F),

where F is the cavity finesse. The resonant enhancement of the friction force amplitude can be attributed to
a ‘distance-folding’ mechanism: the cavity effectively multiplies the retardation time by the number of round
trips in the cavity. Note also that, in this situation, the optical path length is determined predominantly by the
cavity length Lc, and is practically independent of d, even if d and Lc are of the same order of magnitude.

Since the total back-reflected field is composed of the interference of optical paths that have run different
numbers of round trips within the external cavity, the force is not simply determined by the finesse, which
measures the average number of round-trips. The complex dependence is investigated in Fig. 7, where the friction
amplitude is plotted as a function of the near mirror transmissivity |t| for a fixed far mirror transmissivity,
T = 1/(1 − 100i). We note that this non-ideal reflectivity of the far mirror could equivalently arise from
absorption, of ca. 0.01% with the given parameters, of the incident power by the mirror. The figure reveals that
the friction force depends not only upon the retardation but also upon the cavity reflectivity, which drops near
resonance in the well-known behavior of a Fabry–Pérot resonator. For each value of |t|, the cavity length Lc has
been adjusted to maximize the friction force, according to curves such as those in Fig. 6. The calculated result
follows the intra-cavity field (shown dashed) except where the cavity reflectivity drops near resonance (region
(b)), and in the extremes of regions (a) and (c), where the geometry is dominated by the near (|t| → 0) or far
(|t| → 1) mirrors, respectively. Fig. 7(b) shows the effect of the drop in reflectivity as the cavity is scanned
through resonance for similar mirror reflectivities. When this causes a dip in the friction amplitude peak, the
optimum values plotted in Fig. 7 occur to either side of the resonance, and the friction force in this region is
effectively limited by this interference effect. We note that the friction amplitude is not maximized at the point
of maximum intra-cavity field (t = T ) because more light is lost through the cavity for larger |t|.

In conclusion, with this example of ‘external cavity cooling’, we have proved that the light field in an inter-
ferometer is very sensitive to the motion of a scatterer, which leads to strongly enhanced friction force on the



106

107

108

109

1010

1011

10-6 10-5 10-4 10-3 10-2 10-1 100

100

101

102

103

104

105

Near mirror transmissivity, |t|

F
ri

ct
io

n
am

p
li
tu

d
e

(u
n
it

s
of

!k
0

v c
|B

0
|2 )

In
tr

a-
ca

vi
ty

p
h
ot

on
nu

m
b
er

(u
n
it

s
of

|B
0
|2 /

ε 0
)

(a) (c)(b)

0.00

0.50

1.00

-42.0 -40.0 -38.0 -36.0 -34.0 -32.0 -30.0 -28.0 -26.0 -24.0

0.00

0.50

1.00

Cavity detuning (units of cavity linewidth)

F
ri

ct
io

n
am

p
li
tu

d
e

(a
rb

.
u
n
it

s)

P
ow

er
re

fl
ec

ti
vi

ty

Figure 7. Left: Cavity enhancement of the friction force. The amplitude of the friction acting on a scatterer, with
polarizability ζ = 1.0 (50% reflectivity), interacting with a cavity tuned to achieve maximum friction, as we vary the
transmissivity, |t|, of the near mirror. We compare the friction produced by such a cavity (black solid line) to mirror
mediated cooling using the far mirror only (green dashed–dotted line) or the near mirror only (red dotted line), which
correspond to the two limits t = 1 and t = 0, respectively. The vertical arrow indicates the point at which the two cavity
mirrors have the same reflectivity. Also shown is the intra-cavity field (dashed blue line), acting as an aid to the eye.
|B|2 is the photon current of the incoming electric field. Right: In region (b) of the left panel, the friction coefficient
amplitude (solid curves) is attenuated due to the attenuation in the field reflected from the cavity (dashed). |T | = 0.01
in every plot; |t| is, from left to right, 6.7 × 10−3, 8.3 × 10−3, 1.0 × 10−2, 1.2 × 10−2, and 1.5 × 10−2. (Scatterer–cavity
separation d ≈ 400λ0, cavity length L ≈ 2000λ0, |T | = 0.01, λ0 = 780 nm, finesse at peak friction 5.0 × 104.)

particle. This new cooling scheme may prove practical and efficient, and can be applied with large geometrical
freedom on atoms as well as on micromirrors.
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