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Cooling of a particle by coupling to its own reflection
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We identify and explore a cooling force resulting from the retarded dipole interaction between
an illuminated particle and its reflection. For a one-dimensional example, we find cooling times of
milliseconds and limiting temperatures in the millikelvin range. The force, which may be considered
the prototype for cavity-mediated cooling, may also be enhanced by plasmon and cavity resonances
at the mirror.
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The revolution in atomic physics brought about by
the Doppler cooling of atoms [1] and ions [2], the
magneto-optical trap [3], and sub-Doppler cooling mech-
anisms [4, 5, 6], has prompted the proposal of further
schemes [7, 8, 9, 10, 11, 12, 13, 14] which might extend
the ultracold domain to a broader range of species. In
contrast to the initial reliance upon the scattering force
of resonant radiation, these more recent schemes have
largely been based upon the optical dipole force [15, 16]
that results when there is a spatially-varying interaction
with off-resonant illumination. Greatly developed as a
powerful and flexible means of tweezing atoms and mi-
croscopic particles [17], the dipole force is at heart con-
servative and incapable of cooling; when coupled to a
dissipative component or otherwise invested with a non-
Markovian character, however, it too can form the basis
of a cooling mechanism.

An interesting category of forces to have received much
recent interest is that in which an atom or ensemble is
both trapped by, but can also affect, the field within
an optical cavity, resulting in a cavity-mediated cooling
force [10, 11, 12, 13, 14]. As with the cooling of a parti-
cle as it moves through a polarization gradient [5], inten-
sity variation [6], speckle field [7] or bichromatic standing
wave [8], it is a retarded dependence of the atom-field in-
teraction upon the atom’s position which gives a dissipa-
tive, velocity-dependent component to the otherwise con-
servative trapping force. Whereas the retardation in the
latter cases results from non-adiabatic decay of atomic
state populations, however, in cavity-mediated cooling it
is caused by decay of the optical field to which the atom
is coupled.

Cavity-mediated cooling may be viewed as a combi-
nation of two effects: the retarded perturbation by a
trapped particle of the optical field in which it is trapped,
as described above; and the amplification of this effect by
a resonant optical cavity [18]. In this paper, we consider
the simplest case of the former, whereby the perturbed
field is returned to the atom by a single mirror. This op-
tical binding [19, 20] phenomenon may be interpreted as
the classical electrostatic interaction between the dipoles
induced in the particle and its reflection; or as tweezing of

FIG. 1: Retarded binding of a normally-illuminated particle,
moving with speed v, to its own reflection, depicted (a) in the
laboratory frame, in which the image lags behind; (b) in the
rest frame of particle, whereby the ‘wake’ trails behind.

the particle by light which the particle itself has focused,
as shown in Fig. 1. The finite time taken for light from
the particle to return via the mirror causes the reflected
image to trail behind the moving particle, thus provid-
ing a component of the binding force in the direction of
the particle velocity. When the sign of this component is
such as to oppose the particle motion, cooling ensues.

We analyse the binding between a moving particle and
its reflection using a similar approach to that previously
applied to the unretarded binding of two point-like par-
ticles [21]. We assume an unperturbed illuminating field
E0(rA) of wavelength λ, particle polarizability α, and
characterize the round-trip from the particle to its re-
flection via the mirror by a transit time τ and electric
field propagator ζ. The electric field E(rA) experienced
by the particle at position rA(t) and time t is then, to
lowest order in the velocity v and τ and for ζα, τ |v| ≪ 1,

E(rA) =

{

1 −
αζτ

1 − αζ
v · ∇

}

E0(rA)

1 − αζ
(1)

which corresponds to the result of [21] with the two par-
ticles degenerate, modified by the appearance of an ad-
ditional, velocity-dependent term. With some care over
the constraints during differentiation, the dipole force ex-
perienced by the particle may be obtained as in [21]. A
series expansion in terms of αζ reveals the leading terms
for a stationary particle to be the dipole force in the un-
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perturbed field, then the interaction between two dipoles
induced by the unperturbed field and, to the same order,
the dipole force upon the polarized particle due to the
field propagated from the induced polarization.

For a one-dimensional geometry, the incident illumina-
tion combines with its reflection to give the electric field
a spatial dependence E0 = E0 sin 2kx, where k = 2π/λ;
τ = 2x/c, and ζ = −i exp2ikx for propagation from a
sheet of dipoles a distance x in front of the mirror. With
a real susceptibility α, the force F = 1

2
Re(αE∇E∗) upon

the moving particle is therefore

F =
1

4
αE2

0k
[

sin 2kx + 2α
(

1−
v

c

)

sin2kx(4 cos2 kx − 1)

− 2αkτv sin 4kx
]

. (2)

The force thus comprises three terms. The first two are
the dipole force exerted upon the particle by the unper-
turbed field, and a Doppler-shifted optical binding force
between the particle and its reflection; the Doppler shift
is manifest here not through the change in frequency but
through the accompanying change in wavenumber of the
components whose superposition yields the field gradi-
ent. The third term, which depends upon the particle
velocity, the electric field propagator and the round-trip
retardation time, is the cooling force, which dominates
the velocity-dependent part of the second term when the
distance from the mirror is many wavelengths. The sec-
ond term is supplemented by a further term in (v/c) due
to the missing Lorentz component recently noted in [22].

The classical approach is highly instructive, for the
arbitrary form of τ and ζ allows the simple geometry of
Fig. 1 to be extended to more complex arrangements with
curved mirrors and resonant structures, as well as provid-
ing a link to the binding and damping of extended [23] or
highly polarizable particles and micromechanical struc-
tures [24]. In order to examine the dynamics of a particle
subjected to the cooling force, however, and to determine
the limiting temperature at which the cooling is balanced
by heating from off-resonant scattering, we here outline
a semi-classical approach [25].

We examine a one-dimensional geometry in which the
reflection of a laser-driven atom is imaged back onto it-
self in a configuration similar to that investigated experi-
mentally in [26], but we consider only a single transverse
electromagnetic mode corresponding, for example, to the
use of an optical fiber delay line instead of a free-space
arrangement. The model thus consists of a single two-
level atom coupled to the modes of the electromagnetic
field in the right half space, according to the Hamiltonian

H = h̄ωaσ+σ− +
p2

2m
+

∫

h̄ωa†(ω)a(ω)dω

−ih̄g

∫

sin
(

x
ω

c

)

[

σ+a(ω) − a†(ω)σ+
]

dω. (3)

The first line represents the internal atomic energy given
by the transition frequency ωa, the kinetic energy, and
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FIG. 2: (a) Spatial dependence of the lowest order friction
γ/m (solid line) for s = 0.1, σa/(πw2) = 0.1, x = 3 m. The
dashed line indicates the intensity of the pump wave (arbi-
trary units). (b) Stationary temperature in a tightly confined
harmonic trap versus trap position for x = 1 m (dotted),
x = 3 m (solid), and x = 10 m (dashed). Here x′ is the
position relative to the nearest field node.

the mode energies, respectively, and the second line is
the interaction energy between the atomic dipole and
the electromagnetic modes with a coupling coefficient g
which is assumed constant over the range of relevant fre-
quencies. The density operator ρ of the atom-field system
follows the master equation

dρ

dt
= −

i

h̄
[H, ρ] + Lρ (4)

where Lρ is a standard Liouville term corresponding to
spontaneous atomic decay into free space modes with rate
2Γ. For the following discussions we simplify Eqs. (3) and
(4) by adiabatic elimination of the atomic excited state.

As a first step, we derive an approximate analytical
solution for the friction force resulting from the Hamil-
tonian (3). To this end we treat the atomic momen-
tum p and position x as classical variables and derive the
Heisenberg equations of motion for the mode operators
a(ω). These are then approximated by complex numbers
with initial distribution a(ω) = Aδ(ω − ω0) and the sta-
tionary solution is found to lowest order in the atom-field
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coupling g. We thus obtain the friction force

Fv(x) = −γv (5)

with the friction coefficient

γ = πh̄k2τ |A|2
g4

∆2
sin(4kx) (6)

where ∆ = ω0 − ωa is the pump detuning, τ = 2x/c
is the propagation time of light from the atom to the
mirror and back, and we have assumed |∆| ≫ Γ. Using
2πg2 = 4Γσa/(πw2) [27], where σa = 3λ2/(2π) is the
atomic scattering cross section and w is the mode waist,
and introducing the atomic saturation s = g2|A|2/∆2,
we can rewrite γ as

γ = 2h̄k2Γτs
σa

πw2
sin(4kx). (7)

Figure 2(a) shows the variation of γ with atomic position
in the standing pump wave: regions of cooling (γ > 0)
alternate with regions of heating (γ < 0). In order to ob-
tain cooling of a particle by this mirror-induced friction
force it will therefore be necessary to trap the particle,
e.g. by a far-off resonant dipole trap, to within λ/8; be-
cause the mean kinetic energy of the trapped particle will
then be coupled to an equal but uncooled mean potential
energy, the cooling rate will be halved. For the chosen
parameters, the theory predicts cooling times ∼ (γ/m)−1

of the order of 3 ms at positions of maximum friction.
To estimate the steady-state temperature achievable

using this cooling scheme, we need an estimate of the
momentum diffusion coefficient. The leading order term
in the weak coupling limit assumed above is simply given
by the well-known result for diffusion in the standing
wave formed by the pump field [28], i.e.,

D = h̄2k2Γs

[

cos2(kx) +
2

5
sin2(kx)

]

(8)

where the factor 2/5 accounts for the spatial distribu-
tion of circularly polarized spontaneous emission. The
stationary temperature is hence given by

kBT =
D

γ
=

h̄

τ

πw2

2σa

cos2(kx) + 2

5
sin2(kx)

sin(4kx)

≈ h̄Γ
πw2

4σaΓτ
. (9)

The final expression of Eq. (9) holds at the position of
maximum friction. We see that the expected stationary
temperature is given to within a numerical factor by the
Doppler limit h̄Γ, scaled by the ratio of the cross-section
πw2 of the pump beam to that of the atom and with the
atom-mirror round-trip time τ replacing the atomic co-
herence time 1/Γ, but is independent of detuning, pump
intensity and atomic saturation. Figure 2(b) shows the
stationary temperature of an atom in a tightly confining
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FIG. 3: (a) Change of temperature versus time for initial
temperatures of 0.3 mK (solid curves) and 3.1 mK (dashed
curves). Simulation results are averaged over 104 Monte-Carlo
trajectories and fast oscillations with the trap frequency have
been filtered out, straight lines are linear fits. Parameters
are: mode diameter 1.4 µm, atomic saturation 0.073, trap
frequency νtrap = 1.5 MHz, and τ = 26.5 ns. (b) Rate of
temperature change versus initial temperature. Data points
are simulation results, lines are linear fits. Crosses and solid
line are for νtrap = 1.5 MHz, and τ = 26.5 ns, circles and
dashed line are for νtrap = 750 kHz, and τ = 53 ns.

harmonic trap versus trap position. For atomic rubidium
with the same parameters as in Fig. 2(a), we obtain tem-
peratures of the order of 1 mK. While this is higher than
the Doppler temperature of 140 µK, the independence
of detuning means that, for sufficiently off-resonant op-
eration (|∆| >

∼ 10Γ), mirror-mediated cooling will be the
dominant cooling effect.

We have confirmed the predictions of this simplified
analytical model by semiclassical Monte-Carlo simula-
tions of a rubidium atom coupled to a discretized set
of modes [29]. This model accurately describes quantum
fluctuations of photon numbers as well as of atomic mo-
mentum; it is valid for arbitrary coupling strength and
arbitrary atomic velocity, and an external harmonic trap
is easily incorporated. However, the numerical model
does not allow a single trajectory to be followed towards
a stationary state because of the relatively long cooling
times (of the order of ms as outlined above). Instead, we
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performed the simulations for atoms with various initial
kinetic energies and monitored the initial change of en-
ergy with time. Two examples are shown in Fig. 3(a).
For an initially cold sample at 0.3 mK, diffusion dom-
inates over friction and the temperature increases with
time. For a larger initial temperature of 3.1 mK, on the
other hand, friction dominates and a net cooling effect
is observed; and a sample with exactly the stationary
temperature remains unchanged over time. Figure 3(b)
summarizes the results for dT/dt obtained from simula-
tions with varying initial temperatures for two different
sets of parameters. A linear fit to the initial temperature,
consistent with a simple random walk model, predicts a
steady-state temperature of T = 0.61± 0.17 mK for trap
frequency νtrap = 1.5 MHz and delay time τ = 26.5 ns,
and T = 0.31± 0.10 mK for νtrap = 750 kHz and τ = 53
ns, where the errors result from the uncertainty of 104

Monte-Carlo trajectories for each set of parameters. For
trapped particles, our analytical expression (9) must be
modified to account for the period of order τ after each
turning point in the particle’s trajectory, during which
the newly-reversed motion is accelerated rather than di-
minished by the retarded cooling force. For the param-
eters of Fig. 3, this introduces a further factor of 0.64,
yielding temperatures of 0.58 mK and 0.30 mK, consis-
tent with our numerical results. There will be a further
small correction because the trajectories of the trapped
particles extend beyond the region of maximal cooling.

The geometry considered here resembles that in the
beautiful experiments of [26], and shares with cavity-
mediated cooling schemes the requirement for a tightly
focused image and hence achieves cooling only within a
small volume. Mirror-mediated cooling, however, per-
mits a number of possible enhancements. Firstly, the
mirror may be replaced by an external resonator, such as
an etalon or multilayer filter, which allows the same retar-
dation τ to be achieved with a greatly reduced mirror dis-
tance. Material or spatial resonances such as the plasmon
modes of a micro-structured mirror or antenna might
achieve this while also enhancing the strength of the scat-
tered field. As possible examples, we envisage micro-
scopic antennae [30] or hemispherical, plasmon-resonant
resonators [31, 32]. These can be produced as arrays so
that, like a cobbled street for a bicycle, the dissipative
effect is reproduced over an extended area.

Two related phenomena are associated with mirror-
mediated cooling geometries. Firstly, the Casimir-Polder
force is the effect of retardation upon the van der Waals
interaction of a vacuum-polarized particle with its reflec-
tion [33]: mirror-mediated cooling results instead from a
small component of the much larger laser-induced force.
Resistivity in the mirror meanwhile provides an alterna-
tive dissipative component that results in friction [34].

Although we have here analyzed the longitudinal cool-
ing of a 1-D geometry, we find that, in three dimensions,
transverse cooling is also possible. Higher order terms

can be significant, particularly for more macroscopic par-
ticles; and we expect that, as with cavity-mediated cool-
ing, collective effects will be significant for ensembles.
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