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We study quantum effects in hybrid atomic optomechanics in a system comprising acloud of atoms and
a mobile mirror mediated by a single-mode cavity. Tripartite nonlocality is observed in the atom-light-mirror
system, as demonstrated by the violation of the Mermin-Klyshko (MK) inequality. It has been shown [C. Genes,
et al., PRA 77, 050307 (R) (2008)] that tripartite entanglement is optimized when the cavity is resonant with the
anti-Stokes sideband of the driving laser and the atomic frequency matches the Stokes one. However, we show
that this is not the case for the nonlocality. The MK functionachievesminimawhen the atoms are resonant
with both the Stokes and anti-Stokes sidebands, and unexpectedly, we find violation of the MK inequality only
in a parameter region where entanglement is far from being maximum. A negative relation exists between
nonlocality and entanglement with consideration of the possibility of bipartite nonlocality in the violation of the
MK inequality. We also study the non-classicality of the mirror by post-selected measurements, e.g. Geiger-like
detection, on the cavity and/or the atoms. We show that with feasible parameters Geiger-like detection on the
atoms can effectively induce mechanical non-classicality.

PACS numbers:

The lack of observation of quantum effects at the macro-
scopic scale reinforces the conjecture that macroscopic ob-
jects are governed by classical physics, while the microscopic
world is ruled by quantum mechanics. However, quantum
mechanics intrinsically shows no limitation to describe large-
scale/massive systems [1]. Preparing macroscopic quantum
states is of vital importance for understanding fundamental
issues in quantum mechanics, such as decoherence and the
quantum-to-classical transition [2], collapse models of the
wave function [3], and so on. Optomechanics, addressing the
coupling of optical and mechanical degrees of freedom via
radiation pressure [4], provides an ideal platform to generate
and control quantum mesoscopic/macroscopic states of me-
chanical systems thanks to its intrinsic nonlinear light-matter
interactions.

Over the past few years, successful advances in nano- and
micro-mechanical engineering, in particular mechanical os-
cillators cooled into (or close to) their ground state [5, 6],
have made it possible to prepare mechanical quantum states.
Preparing quantum states either for the light mode or the
mechanical oscillator is a fascinating (though challenging)
goal in the field of optomechanics [7, 8]. Nonclassical me-
chanical states can be generated by the optomechanical non-
linearity intrinsic in the strong coupling regime [9, 10], by
injecting squeezed light into the cavity (the squeezing is
thus transferred from light to the mechanical degree of free-
dom) [11, 12], by post-selected measurements on the optical
field [13, 14], and so on.

Recently, it has been reported that hybrid atom-assisted op-
tomechanics shows advantages in many aspects [15]. To name
but a few, atoms induce an additional nonlinear effect, which
enhances the optomechanical interaction and, moreover, re-
sults in a squeezed state of the mechanical mode [16]; atoms
boost the cooling of the mechanical motion [17] and can be

utilized to prepare non-Gaussian mechanical states [18]; and
the strong coupling between an atom/atoms and a mechanical
oscillator allows to realize quantum control of the oscillator
via manipulating the atom/atoms [19]. It has also been shown
that a genuine tripartite entangled stationary state of an atom-
cavity-mirror system can be produced [20, 21]. Very recently,
nonlocality of an atom and a mechanical oscillator mediated
by a single-mode cavity has been studied [22].

Being incompatible with local realism, nonlocality is
demonstrated by the violation of Bell inequalities [23], and
witnesses a type of quantum correlations that is distinct from
entanglement and discord. It has been proven that apurebi-
partite/tripartite entangled state is nonlocal [24]. However, in
general, nonlocality and entanglement are different properties:
a system in an entangledmixedstate does not necessarily pos-
sess nonlocal correlations [25]. The relationship betweenboth
is much more subtle formixedstates and far from being clear
especially in multipartite cases [26]. It is thus of fundamental
importance to explore their relationship in such states, practi-
cably starting from a specific case, which is the main theme
of this paper. Multipartite nonlocality has been investigated
in continuous variable (CV) systems [27]. In such cases, it
is usually demonstrated by the violation of Bell-like inequal-
ities in phase space due to the systems’ infinite-dimensional
Hilbert spaces [28].

In this paper, we investigate tripartite nonlocality and en-
tanglement in a hybrid optomechanical system composed of
an atomic ensemble placed within an optomechanical cavity.
The system is subject to noise and dissipation, and its stateis
in general highly mixed. It therefore represents an ideal plat-
form for exploring the relationship between nonlocality and
entanglement in mixed states. It has been reported [20] that
robust genuine tripartite entanglement can be generated using
experimentally feasible parameters under the following condi-
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tions: (i) the cavity is resonant with the anti-Stokes sideband
of the driving laser (i.e. the mechanical cooling regime); (ii)
the atomic frequency matches the Stokes sideband; (iii) theef-
fective optomechanical/atom-light coupling is large compared
to cavity/atomic decay. Under these conditions, however, we
show that the value of Mermin-Klyshko (MK) function [29]
(from which the MK inequality is constructed whose violation
denotes tripartite nonlocality) shows a negative relationwith
the entanglement for a wide range of the cavity decay: the
MK value decreases for increasing entanglement. By relaxing
the optomechanical/atom-light coupling thus diminishing the
entanglement, we observed a violation of the MK inequality
demonstrating nonlocal correlations shared among the atom-
light-mirror system. Furthermore, we also show that the MK
function achievesminimawhen the atoms are resonant with
both the Stokes and anti-Stokes sidebands of the laser, while
the former is the condition under which the tripartite entan-
glement is maximized.

Another theme of this paper is to explore the impact of
the atomic ensemble on the non-classicality of the mechani-
cal mode. We show that by post-selected measurements, e.g.
Geiger-like detection, on the atomic state, a negative Wigner
function of the mirror is observed witnessing the quantum na-
ture of its motional state. Larger coupling strength of the sys-
tem leads to a more nonclassical mechanical state.

I. THE SYSTEM

We consider a pump laser at frequencyωl driving a Fabry-
Perot cavity with a light vibrating end mirror of massm and
mechanical frequencyωm. An ensemble ofN two-level atoms
with natural frequencyωa is placed inside the cavity. In a
unitary picture, without considering any dissipation and deco-
herence, the Hamiltonian of the system is

H=~ωcc
†c+

~

2
ωaSz +

~

2
ωm(q2 + p2)

− ~χc†cq+ ~g(S+c+ S−c†) + i~ε(c†e−iωl t − ceiωl t),
(1)

whereωc is the cavity frequency, andc (c†) the corresponding
optical annihilation (creation) operators.q and p are the di-
mensionless mechanical mode position-like and momentum-
like operators, andS± are the collective spin operators of
the ensemble of atoms defined asS±,z=

∑

i σ
±,z
i (i=1, 2, ...,N)

with Pauli matricesσ± andσz, which satisfy the commuta-
tion relations [S+,S−]=Sz and [Sz,S±] = ±2S±. χ and g
are the optomechanical and atom-cavity coupling given by
χ = (ωc/L)

√
~/mωm with L the cavity length, andg =

d
√
ωc/2~ǫ0V with d the dipole moment of the atomic tran-

sition, ǫ0 the vacuum permittivity andV the volume of the
cavity mode.ε is the coupling between the driving laser and
the cavity field, which is related to the pump powerP and the
cavity decayκ by ε =

√
2Pκ/~ωl.

The dynamics of this tripartite system is in principle com-
plicated. For simplifying the calculation, we adopt the treat-
ment employed in Ref. [20], by assuming the low atomic exci-
tation limit, i.e. atoms are initially set in the ground state, and

the excitation probability of a single atom is small. In sucha
case, the dynamics of the atomic polarization can be described
by the bosonic annihilation operatora = S−/

√
|〈Sz〉| and its

Hermitian conjugatea†, which satisfy the commutation rela-
tion [a, a†]=1. In a rotating frame at the pump frequencyωl ,
the dynamics of such a system can then be described by a set
of quantum Langevin equations as

q̇ = ωmp,

ṗ = −ωmq− γmp+ χc†c+ ξ,

ċ = −(κ + i∆c)c+ iχcq− igNa+ ε +
√

2κcin,

ȧ = −(γa + i∆a)a− igNc+
√

2γaain,

(2)

whereγm (γa) is the decay rate of the mechanical oscillator
(atoms), and∆c=ωc−ωl (∆a=ωa−ωl) is the cavity (atomic)
detuning with respect to the laser.gN=

√
Ng is the coupling

between the cavity and the collective atomic mode.{ξ, cin, ain}
are the noise operators of the system affecting the mirror, op-
tical and atomic field, respectively. The Langevin force oper-
atorξ, which accounts for the Brownian motion of the mirror,
is auto-correlated as [30]

〈ξ(t)ξ(t′)〉= γm

2πωm

∫

ωe−iω(t−t′)[coth(
~ω

2kBT
) + 1]dω, (3)

with kB the Boltzmann constant,T the temperature of the
phononic environment. For a large mechanical quality factor,
the above correlation function reduces to aδ function [31].
When the cavity and atomic modes are prepared in coher-
ent states, the only nonzero correlations ofcin and ain are
〈cin(t)c†in(t′)〉=〈ain(t)a†in(t′)〉=δ(t − t′) [32].

In what follows, to enhance the optomechanical coupling,
we assume the cavity is strongly pumped, i.e.|αs| ≫
1, where αs is the amplitude of the steady-state cavity
field, which can be acquired by solving the nonlinear equa-
tion αs[κ + i∆c − iχ2|αs|2/ωm + g2

N/(γa + i∆a)] = ε. In
that case, one can then approximate the quadrature op-
erators of the systemO=(q, p,X,Y, x, y) as Oi≃〈Oi〉+δOi,
with 〈Oi〉 the ‘large’ mean value of each operator and
δOi the corresponding ‘small’ fluctuation, where we in-
troducedX=(c†+c)/

√
2, Y=i(c†−c)/

√
2, andx=(a†+a)/

√
2,

y=i(a†−a)/
√

2 the position- and momentum-like operators of
the optical and atomic modes, respectively. In such a way, the
dynamics of the system takes a linear form that simplifies the
cumbersome calculation. The resulting dynamics of the fluc-
tuation operatorsδO=(δq, δp, δX, δY, δx, δy) is described by a
set of Langevin equations

δq̇ = ωmδp,

δṗ = −ωmδq− γmδp+ χef fδX + ξ,

δẊ = −κδX + ∆̃cδY+ gNδy+
√

2κXin,

δẎ = −κδY− ∆̃cδX + χef fδq− gNδx+
√

2κYin,

δẋ = −γaδx+ ∆aδy+ gNδY+
√

2γaxin,

δẏ = −γaδy− ∆aδx− gNδX +
√

2γayin,

(4)

with the effective optomechanical couplingχef f=
√

2χαs

(without losing generality, we have takenαs as real), the effec-
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tive cavity detuning̃∆c = ∆c − χ2
ef f/2ωm, and noise operators

Xin=(c†in+cin)/
√

2, Yin=i(c†in−cin)/
√

2, andxin=(a†in+ain)/
√

2,
yin=i(a†in−ain)/

√
2. Equations (4) can be solved directly in

the frequency domain by taking the Fourier transform of each
equation above. The correlation function of any pair of fluc-
tuation operators is then acquired as

Vi j =
1

4π2

"
dωdΩe−i(ω+Ω)tVi j (ω,Ω), (5)

where Vi j (ω,Ω) = 〈{vi(ω), v j(Ω)}〉/2 (i, j = 1, .., 6) is the
correlation function between elementsi and j of v(ω) =
(δq(ω), δp(ω), δX(ω), δY(ω), δx(ω), δy(ω)). All the elements
of Vi j (ω,Ω) constitute a 6× 6 covariance matrix (CM) of
the system in the frequency domain.Vi j (ω,Ω) contains a
delta functionδ(ω + Ω), which leads to the disappearance
of e−i(ω+Ω)t in Eq. (5) after the integrations. As thisδ func-
tion is a consequence of the stationarity of the noises [33],
the resulting time-independent CMσ with elements defined
in Eq. (5) describes the steady state of the system. Our hybrid
optomechanical system is fully determined by the CMσ. Be-
ing a physical state, this CM should satisfy the Heisenberg-
Robertson uncertainty principleσ + iΩ3/2 ≥ 0 [34] with
Ω3= ⊕3

j=1 iσy the so-called symplectic matrix andσy the y-
Pauli matrix. Note that, owing to the linearization of the dy-
namics and the fact that all noises are Gaussian, the dynamical
map of the system preserves the Gaussian nature of any input
state.

II. TRIPARTITE NONLOCALITY VERSUS TRIPARTITE
ENTANGLEMENT

In this Section, we devote ourselves to studying nonlo-
cal properties of our hybrid tripartite system and, moreover,
exploring the relationship between nonlocality and entangle-
ment, which are two central concepts in quantum physics. Up
to now, their relationship is far from being answered espe-
cially in multipartitemixedstates [26]. It should be pointed
out that the definition of tripartite/multipartite nonlocality is
still not clear and unified [26, 35]. Usually, it is defined asgen-
uine(or three-way) tripartite/multipartite nonlocality denoted
by the violation of Svetlichny inequality (SI) [36]. However,
there exists tripartite nonlocality (here we mean nonlocality
involving all three parties) that does not violate SI, i.e.,is not
necessarilygenuine: for example, in a three-particle system,
particle 1 is nonlocally correlated with the other two, while
particles 2 and 3 are locally correlated. In such a case, non-
local correlations could be signalled by the violation of other
weaker Bell-like inequalities, e.g. the MK inequality. The
‘drawback’ of the MK is that its violation admits states with
only two-particle nonlocal correlations present [37]. It is in
principle impossible to distinguish tripartite nonlocality from
bipartite ones in the violation of MK inequality. In what fol-
lows, we will focus on testing the MK inequality in our highly
mixed three-mode Gaussian state in view of the failure of vi-
olating the SI in such a state. It should be pointed out that
the violation of SI is rather demanding, with genuinely multi-
partite entangled states of theW form achieving values of the

Svetlichny function only slightly larger than 4 [37], and for
Gaussian states, violation of the SI seems impossible when
the purity falls below 0.86 [38].

Given the CM of the system, one can write its characteristic
functionζ(O) = exp(−OσOT) [39]. The Wigner function is
defined as the Fourier transform ofζ(O). For our zero-mean
three-mode Gausssian state, the Wigner function is given by

Wσ(O) =
exp(−Oσ

−1OT)

π3
√

det[σ]
, (6)

whereO denotes the phase-space variables associated with
the fluctuation operatorsδO. Nonlocality of CV systems
can be tested in the phase space by adopting the dis-
placed parity operatorΠ(λ) = D(λ)ΠD†(λ) to be measured
on each mode [40], with the Weyl displacement operator
D(λ)=exp(λb†−λ∗b) (λ ∈ C) and the parity operator

Π = (−1)n =
∞
∑

n=0

(|2n〉 〈2n| − |2n+ 1〉 〈2n+ 1|), (7)

wheren=b†b is the bosonic number operator and|n〉 the n-
excitation Fock state. The key of such a phase-space approach
is that the mean value of the displaced parity operator is con-
nected to the Wigner function, i.e.〈Π(λ)〉=(π/2)W(λ) [40].
Consequently, for our three-mode Gaussian system, the MK
function can be rewritten in the phase space as

M3 =
π3

8
[Wσ(O

′
1,O2,O3) +Wσ(O1,O

′
2,O3)

+Wσ(O1,O2,O
′
3) −Wσ(O′1,O

′
2,O

′
3)],

(8)

whereO1={q, p}, O2={X,Y} andO3={x, y} that fully describe
the mirror, cavity, and atoms subsystems, respectively, and
O′i embodies different values of the same quadrature oper-
ators of Oi . Any local realistic theory imposes the bound
|M3| ≤ 2. Bipartite and/or tripartite nonlocal correlations
among the system result in a violation of the MK inequal-
ity, i.e., |M3| > 2. In the following, we defineMmax

as the maximum ofM3 optimized over the full range of
{q, p,X,Y, x, y, q′, p′,X′,Y′, x′, y′}.

In order to study the relation between nonlocality and en-
tanglement in our mixed three-mode system, we introduce the
genuine tripartite entanglement, which can be quantified by
tripartite negativity [41], defined as

E3 = (E1|23 E2|13 E3|12)1/3, (9)

where Ei| jk is the one-vs-two-mode entanglement between
mode i and modesj + k (i, j, k = 1, 2, 3). When Ei| jk >
0 (∀ i, j, k = 1, 2, 3), i.e. all one-vs-two-mode bipartitions in
the system are inseparable, the tripartite negativityE3 > 0 im-
plies the existence of genuine tripartite entanglement shared
within the system [42]. To quantifyEi| jk, we employ the
logarithmic negativity [43], which is calculated asEi| jk =
max[0,− ln 2ν̃−], with ν̃− = min eig|iΩ3(Pi| jkσPi| jk)|, where
Pi| jk is the matrix that inverts the sign of momentum of mode
i. Similarly, one can obtain all the bipartite entanglementEi j

(i, j = 1, 2, 3).
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(a) (b) (c) (d)

FIG. 1: (a) Tripartite entanglementE3 and MK functionMmax versus cavity decayκ. Inset shows the steady-state couplingχef f as a function
of κ. Detuning is optimized forE3: ∆̃c=ωm and∆a= − ωm. Cavity length is taken asL=1 mm. (b) Tripartite nonlocality demonstrated by the
violation of the MK inequality (inset for the entanglementE3) versus cavity decayκ. Parameters are taken same values as in(a) but for a larger
cavity L=5 mm. (c) Tripartite entanglementE3 (red) and MK functionMmax (blue) versus atomic detuning∆a. The same conditions as in(b)
but for two cases of cavity decayκ/2π=106 Hz (solid),κ/2π=5 × 105 Hz (dashed).E3 takes a maximum at∆a= − ωm, whileMmax achieves
minimawhen∆a= ± ωm. (d) Bipartite entanglementEi j (blue) andEi| jk (green) as a function ofκ: E12, E1|23 (solid); E23, E2|13 (dashed);E13,
E3|12 (dotted). The same conditions as in(b).

The numerical results of the tripartite entanglement and
nonlocality are shown in Fig. 1, in which we employed the
following parameters [6, 44]: the mass of the mirrorm=10
ng, withωm/2π=107 Hz, γm/2π=100 Hz, and phononic tem-
peratureT = 0.1 mK; pump powerP=35 mW atλl=1064 nm,
and cavity lengthL=1 mm in Fig. 1(a), andL=5 mm in (b)
and (c). In the following, we set equal optomechanical and
atoms-light coupling,χef f = gN [45] (the strength ofgN can
be adjusted by changing the number of atoms), and equal cav-
ity and atomic decay,κ = γa. The tripartite entanglement can
only be present within a high-finesse cavity, and a largeχef f

(gN) compared to decayκ (γa). This could be achieved with
L=1 mm and large finesseF > 104. The entanglement is opti-
mized for∆̃c=ωm and∆a=−ωm [20], i.e. the cavity is resonant
with the anti-Stokes sideband of the laser, while the atoms are
resonant with the Stokes sideband.

In Fig. 1 (a), we plotMmax andE3 for a wide range of
cavity decayκ under the above conditions. As shown, a con-
siderable degree ofE3 emerges, and, moreover,E3 is robust
against the temperature surviving up toT = 15 K for cav-
ity finesseF=3 × 104. As κ becomes larger, the steady-state
couplingχef f increases remarkably (see the inset) resulting in
a risingE3 till to a saturated value. Surprisingly,Mmax de-
clines asE3 increases. For the whole range ofκ, we have
not witnessed any violation of the MK inequality. Given the
negative relation betweenMmax andE3, one would expect to
seeMmax>2 under conditions whereE3 is smaller. In what
follows, we will show this is indeed the case. By relaxing
the couplingχef f, realized by increasing the cavity length to
L=5 mm, we observed a weak violation of the MK inequal-
ity when κ takes small values (smallerκ will not satisfy the
conditon for CMσ being physical), as shown in Fig. 1(b).
In such a case,E3 can only achieve its maximum around 0.05
due to a much weakerχef f [about 0.17χef f of getting max-
imum E3 for L=1 mm in Fig. 1(a)]. Unlike the robustness
of entanglement towards the temperature, the nonlocality is
quite fragile:Mmax drops below 2 whenT rises up to 1 mK.
Such a feature has also been observed in the tripartite nonlo-
cality of the vibrational modes of trapped ions [46]. From an
experimental perspective, we see thatT∼0.1 mK can not be
reached with standard dilution refrigerators (which typically

reaches 10 mK and hardly below). However such temper-
atures could be reached by employing advanced techniques
such as adiabatic nuclear demagnetization refrigerators [47].
Alternatively, one could think of using GHz oscillators, for
which the nonlocality properties discussed here would be vis-
ible at higher temperatures.

This negative relation between nonlocality and entangle-
ment is confirmed by Fig. 1(c) that showsE3 andMmax as
a function of atomic detuning∆a, for L=5 mm, ∆̃c=ωm, and
two working points ofκ. Unambiguously,E3 reaches a peak
as∆a= − ωm, whileMmax gets twominimawhen∆a= ± ωm.
SinceMmax is not sensitive to∆a whenκ is small, in Fig. 1(b)
we used∆a= − ωm. Evidently, as∆a takes values away from
±ωm, a slight rise ofMmax would occur.

Since the violation of MK inequality admits bipartite non-
local correlations [37], we now prove the negative relationstill
holds even in this situation. Above all, it is necessary to spec-
ify unambiguously thepositive relationbetween nonlocality
and entanglement. Despite specific states studied, measures
of the entanglement and Bell inequalities adopted, theposi-
tive relation contains two apparent meanings (not necessar-
ily complete): (i) as the entanglement increases/decreases, the
nonlocality also increases/decreases, and vice versa; (ii) for
a multipartite nonlocal state with two of the bipartition en-
tanglementE1

A|B > E2
A|B (where A and B are subsystems re-

gardless of the number of particles/modes comprised in both),
E1

A|B is more likely thanE2
A|B to violate the Bell inequality, or

contributes more to the violation. Nowsuppose the positive
relation is validin our case, then the decreasing MK function
might result from one or more declining bipartite entangle-
mentEi j and/or Ei| jk, though the tripartite entanglementE3 is
increasing. To ascertain this, we show in Fig. 1(d) all bipar-
tite entanglementEi j andEi| jk at the range ofκ whenMmax>2
in Fig. 1 (b). It shows that only atoms-light entanglementE23

is slightly decreasing asκ grows. According to (i), onlyE23

could lead to the decreasingMmax, and then in view of (ii),
E23 should be larger than any other entanglement plotted in
Fig. 1 (d). This is clearly against the fact thatE23 is the min-
imal entanglement and has the least possibility to get the MK
inequality violated. Therefore, the previous assumption does
not hold and thus the nonlocality and entanglement show a
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(a) (b) (c)

FIG. 2: Wigner function of the mirror with Geiger-like detection (a)
on the cavity;(b) on the atomic state;(c) on both the cavity and
atoms. The parameters of the system take the same values as inFig. 1
(a) and forκ/2π=2.5×106 Hz (corresponding to finesseF = 3×104).

FIG. 3: Mechanical non-classicalityNw versus effective coupingχef f

with Geiger-like detection on the atomic state. The parameters take
the same values as in Fig. 1(a).

negative relation even if bipartite nonlocality is presentin the
violation of the MK inequality. The breaking of the positive
relation (i) has been reported in Refs. [48, 49].

From the above analyses, we remark that the emergence of
both tripartite entanglement and nonlocality within the sys-
tem requires a high-finesse cavity, a high mechanical Q fac-
tor, strong couplingχef f (gN) with relatively low decayκ (γa),
and the cavity is resonant with the anti-Stokes sideband. Dif-
ferently, the appearance of entanglement mainly depends on
the coupling strength, while nonlocality is mainly sensitive
to the value of the decay rate, as illustrated in Fig. 1(b),
Mmax > 2 can only exist at extra-low cavity and atomic de-
cay. This inconsistency could be the physical reason that leads
to the negative relation between both. It should be pointed
out that it is in principle hard to give ageneralconclusion on
the relationship between both in view of various measures or
Bell inequalities for the nonlocality, especially for multipartite
cases which display a more complex structure than the bipar-
tite cases [26]. Conclusions may vary significantly and even
become completely opposite depending on what kind of mea-
sures one adopts, specific states one studies, and whether the
system is in a pure or mixed state. To be specific, by adopt-
ing different measures, Valloneet al. [49] find entanglement
and nonlocality are inversely related for pure two-qubit/qutrit
states. On the contrary, Adessoet al. [38] show a good agree-
ment between both forpurethree-mode Gaussian states. Nev-
ertheless, in ourmixedthree-mode Gaussian states a negative
relation is observed. The relationship between both has been
rarely explored in multipartitemixedstates [26]. Our work, to
the best of our knowledge, for the first time provides a con-
crete demonstration of the negative relation between both in
such states.

III. NON-CLASSICALITY OF THE MIRROR

Having observed the tripartite quantum nonlocality and
entanglement in the system, we now turn to the study of
quantum effects in its subsystems. We focus on the non-
classicality of the motional state of the mechanical system,
owing to its significance in the fundamental research in quan-
tum physics [2, 3]. In what follows, non-classicality is indi-
cated by regions where the Wigner function attains negative
values [50]. Due to the linearization of the dynamics and
the Gaussian nature of the input states and the noises, the
state of the system is Gaussian at all times, and thus it will
not be possible to observe non-classicality simply by tracing
out the atomic and cavity subsystems from the joint state. As
shown in Ref. [13], conditional non-Gaussian measurements,
e.g. Geiger-like detection, on the cavity may induce a nega-
tive Wigner function of the mechanical state. We show in the
following that this is also the case for measurements on the
atomic mode.

We acquired the characteristic function of the sys-
tem ζ(O) previously. After the replacementsq =

Re[α], p=Im[α]; X=Re[β],Y=Im[β]; and x=Re[γ], y=Im[γ]
with amplitude{α, β, γ} ∈ C, the characteristic function is
rewritten asζ(α, β, γ). This gives us access to the density ma-
trix of the system [51]:

ρmca=
1
π3

"
d2αd2βd2γ ζ(α, β, γ)Dm(−α)Dc(−β)Da(−γ),

(10)
whereD j(µ) is the Weyl operator of modej = m, c, a [52].
Now we implement Geiger-like detection on the cavity and/or
the atomic mode. The latter can be carried out by using the
quantum jump detection scheme described in Ref. [53] and
employed, e.g., in Ref. [54]. This gives rise to the following
density matrix for the conditional mechanical state:

ρG
m = Trc,a

[

ΠG ρmca

]

/Trm,c,a

[

ΠG ρmca

]

, (11)

where operatorΠG=
∑∞

s=1 |s〉〈s| denotes Geiger-like detection
on the cavity/atomic mode (ΠG=

∑∞
n,m=1 |n〉〈n||m〉〈m| for si-

multaneous detecion on both the subsystems), and the denom-
inator is a normalization constant.

In Fig. 2, we present the Wigner distribution of the mirror
with Geiger-like detection performed on the system. It has
been demonstrated [13] that non-classicality of the mirrorcan
be induced by Geiger-like detection on the cavity field. Based
on the parameters adopted in our system, however, we did not
find the negativity of the Wigner function when performing
measurements on the cavity. On the contrary, detection on
the atoms induces effectively a negative Wigner function [cf.
Figs. 2(a) and(b)]. This is probably because, under the pa-
rameters, the atoms-mirror coupling or entanglement via the
cavity field is stronger than the mirror-light’s though there is
no direct interaction between them [20]. For measurements
simultaneously performed on both the cavity and the atomic
mode, the negativity induced by the detection on the atoms
vanishes due to the combined effects caused by the detection
on the cavity, as shown in Fig. 2(c). The non-classicality
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is robust against the temperature and the mechanical damp-
ing rate [13]: the negativity of Wigner function still survives
as the temperature/damping rate increases by three orders of
magnitude based on the parameters used in Fig. 2(b).

Finally, we show that this measurement-induced non-
classicality of the mechanical state is tightly connected with
the coupling strength of the system: larger coupling leads to
a more nonclassical conditional state, as shown in Fig. 3. We
have adopted quantityNw to quantify the non-classicality of
the state, which is defined as [50, 55]

Nw = −
∫

Φ

Wm(α)d2α, (12)

whereWm(α) is the Wigner function of the mirror andΦ is the
negative regions of the Wigner distribution in phase space.

IV. CONCLUSIONS

We have studied quantum effects in a hybrid optomechani-
cal system by looking at both the tripartite nonlocality andthe
non-classicality of the mechanical system. The MK inequality
is violated demonstrating nonlocal correlations shared among
the system. Counterintuitively, the nonlocality shows a nega-
tive relation with the tripartite entanglement, in that nonlocal-
ity declines as entanglement increases. The negative relation
still holds even if bipartite nonlocality is present in the vio-
lation of the MK inequality. Our work provides a concrete

demonstration in multipartite mixed states of the negativere-
lation between nonlocality and entanglement, and therefore
strengthens the link between these two fundamental concepts
in quantum physics.

We also studied non-classicality of the motional state of
the vibrating mirror. By implementing post-selected measure-
ments, e.g. Geiger-like detection, on the collective atomic
mode, a nonclassical mechanical state is generated indicated
by the appearance of a negative Wigner function. By en-
hancing the coupling strength of the system, the mechanical
non-classicality increases remarkably. This work predicts the
possibility for the experimental realization of nonlocal cor-
relations among atoms, light and a mesoscopic mirror and
also contributes to the ongoing attempts of preparing meso-
scopic/macroscopic quantum states.
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