New jou r“al Of PhYSics Deutsche Physikalische Gesellschaft @ DPG I0P Institute of PhySiCS

The open access journal at the forefront of physics

PAPER « OPEN ACCESS

Dynamical symmetries and crossovers in a three-
spin system with collective dissipation

To cite this article: S Pigeon et al 2015 New J. Phys. 17 015010

View the article online for updates and enhancements.

Related content

- Fluctuating observation time ensembles in
the thermodynamics of trajectories
Adrian A Budini, Robert M Turner and
Juan P Garrahan

- Trajectory phases of a qguantum dot model
Sam Genway, James M Hickey, Juan P
Garrahan et al.

- Thermodynamics of trajectories and local
fluctuation theorems for harmonic quantum
networks

Simon Pigeon, Lorenzo Fusco, André
Xuereb et al.

Recent citations

- Thermodynamics of trajectories of open
guantum systems, step by step
Simon Pigeon and André Xuereb

- Connected correlations, fluctuations and
current of magnetization in the steady

state of boundary driven XXZ spin chains
B Bua and T Prosen

- Thermodynamics of trajectories and local
fluctuation theorems for harmonic quantum
networks

Simon Pigeon et al

This content was downloaded from IP address 193.188.46.56 on 31/01/2018 at 10:38


https://doi.org/10.1088/1367-2630/17/1/015010
http://iopscience.iop.org/article/10.1088/1742-5468/2014/03/P03012
http://iopscience.iop.org/article/10.1088/1742-5468/2014/03/P03012
http://iopscience.iop.org/article/10.1088/1751-8113/47/50/505001
http://iopscience.iop.org/article/10.1088/1367-2630/18/1/013009
http://iopscience.iop.org/article/10.1088/1367-2630/18/1/013009
http://iopscience.iop.org/article/10.1088/1367-2630/18/1/013009
http://iopscience.iop.org/1742-5468/2016/6/063203
http://iopscience.iop.org/1742-5468/2016/6/063203
http://iopscience.iop.org/1742-5468/2016/2/023102
http://iopscience.iop.org/1742-5468/2016/2/023102
http://iopscience.iop.org/1742-5468/2016/2/023102
http://iopscience.iop.org/1367-2630/18/1/013009
http://iopscience.iop.org/1367-2630/18/1/013009
http://iopscience.iop.org/1367-2630/18/1/013009

I0OP Publishing

@ CrossMark

OPENACCESS

RECEIVED
12 September 2014

ACCEPTED FOR PUBLICATION
9 December 2014

PUBLISHED
20 January 2015

Content from this work
may be used under the
terms of the Creative
Commons Attribution 3.0
licence.

Any further distribution of
this work must maintain
attribution to the author
(s) and the title of the
work, journal citation and
DOL

NewJ. Phys. 17 (2015) 015010 doi:10.1088/1367-2630/17/1/015010

H eutsche Physikalische Gesellschal Published in partnership
New journal Of PhYSlCS st M(I)DPG with: Deutsche Physikalische
IOP Institute of Physics | Gesellschaft and the Institute

The open access journal at the forefront of physics _
of Physics

PAPER

Dynamical symmetries and crossovers in a three-spin system with
collective dissipation

S Pigeon', A Xuereb'’, I Lesanovsky’, ] P Garrahan’, G De Chiara' and M Paternostro'

! Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen’s University Belfast, Belfast
BT7 INN, UK

> Department of Physics, University of Malta, Msida MSD2080, Malta

* School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK

E-mail: s.pigeon@qub.ac.uk

Keywords: open quantum system, large deviation theory, spin system

Abstract

We consider the non-equilibrium dynamics of a simple system consisting of interacting spin-1/2 par-
ticles subjected to a collective damping. The model is close to situations that can be engineered in
hybrid electro/opto-mechanical settings. Making use of large-deviation theory, we find a Gallavotti—
Cohen symmetry in the dynamics of the system as well as evidence for the coexistence of two dynami-
cal phases with different activity levels. We show that additional damping processes smooth out this
behavior. Our analytical results are backed up by Monte Carlo simulations that reveal the nature of the
trajectories contributing to the different dynamical phases.

Understanding and controlling the dynamical behavior of quantum systems has seen flourishing interest [ 1-3]
propelled by theoretical and experimental progress that has made it possible to observe and manipulate such
systems with unprecedented accuracy. Much attention has also been devoted recently to the notion of dynamical
phase transitions in such systems, relating them to the nonanalyticity of, e.g., the Loschmidt echo [4] or the
logarithm of a biased partition function in large-deviation (LD) theory [5], which has a natural interpretation in
terms of the statistics of rare trajectories observed in experiments. The study of the dynamics of quantum systems
through LD methods [6—8] emerged recently both as an extension of the theory as applied to classical systems [9—
12] and as a dynamical complement to the standard analysis of equilibrium phase transitions in many-body
systems [ 13]. Here, nonanalyticities in the LD free-energy function of a system, extracted from the equations
governing its dynamical behavior, are identified in the literature with dynamical phase transition points [6].

Following [6], in this paper we are interested in studying the statistical properties of rare quantum-jump
trajectories [ 14] of a system that interacts with a heat bath driving the system out of equilibrium. We consider the
dynamical LD properties of a simple three-spin quantum open model, which departs from those recently
studied in two respects: first, dissipation is due to nonclassical bilinear jump operators; and second, we consider
a current-like dynamical order parameter. The two central results in this paper are (a) the observation of
intermittency between dynamical phases of distinct activity, itself a consequence of the reducibility of the
dynamics in an appropriate limit due to the collective jump operators; and (b) the existence of a Gallavotti-
Cohen symmetry in LD functions associated with the time-asymmetric order parameter, analogous to that
found in driven classical systems [ 15], which gives rise to a fluctuation theorem [16] relating to the quantum
jump rate. Our system therefore provides a minimal but extendible model that uncovers the effects of thermal
baths and the nontrivial interplay between local and global decay channels [17] on the non-equilibrium
dynamics of a quantum system.

We start with three spins-1/2, which welabel j = 1, 2, 3, placed at the vertices of an equilateral triangle
(see figure 1), interacting via an Ising-type interaction, and in a uniform magnetic field. Suppose that spin 1 is
in a harmonic trap, allowing it to move on an axis parallel to the line joining the two other spins, whereas
spins 2 and 3 are held tightly pinned. Since the spin—spin interaction depends on the distance between each
pair of spins, the motion of spin 1 will modulate the interactions between them. By damping the harmonic
motion, we effectively couple the collective spin degree of freedom to this environment. Consequently, the
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Figure 1. The system we consider. Three spins are arranged on the vertices of an equilateral triangle. Spin 1 is coupled to a harmonic
oscillator, represented by the springs, allowing it to move in the horizontal direction. The motion of spin 1 modulates the spin—spin
interaction strengths and mediates an interaction between a collective spin degree of freedom and the mechanical bath.

thermal environment will act as a driving force on the spin system. More precisely, the thermal bath will drive
the global degree of freedom of the spin chain. This mechanism can be generalised to other systems with similar
symmetry properties with respect to the motion of a particular component. We explore the trajectories of this
collective degree of freedom, finding evidence of coexisting dynamical phases and nontrivial dynamical
symmetries. It is worth pointing out that individual spins can be coupled to the motion of a harmonic oscillator
through the use of trapped ions [ 18], by embedding solid-state qubits into mechanically compliant structures
[19], in nanomechanical resonator arrays [20], on graphene layers [21], or on diamond surfaces [22].
Furthermore, this system lends itself well to being extended by adding more spins, thereby changing the
symmetries of the model.

We will first derive the master equation for the spin system by adiabatically eliminating the motion of spin 1.
The resulting reduced dynamics will be investigated first by means of the quantum version of LD theory,
following [6]. This procedure gives access to the statistics of the trajectories of the system, painting a clear picture
of its dynamical behavior. Following this, we complement these analytical insights through the use of quantum-
jump Monte Carlo simulations [23] that give access to a transparent physical interpretation of the processes
occurring. The Hamiltonian describing the three-spin system interacting with a harmonic oscillator as described
above can be written H = H; + Hyy + Hy_p with

3

3
Hy=a)6i+ ) 6i6{ - BY 6}, (1)
i=1

8) i=1

being the spin-chain Hamiltonian under uniform magnetic fields @ and B < a, Hy, = o, b'b the harmonic
oscillator Hamiltonian, and

famz_g@ﬁ+@@(3_&3 2)

the interaction Hamiltonian between the spin chain and the harmonic oscillator; (i, j) denotes a sum over
nearest neighbours. F;_, follows from observing that the interaction between any pair of spins depends on the
distance between them. In the geometry illustrated in figure 1, when spin 1 moves in a direction parallel to the
line joining spins 2 and 3, the distance between particles 1 and 2 decreases (increases) by the same amount that

the distance between spins 1 and 3 increases (decreases). Upon identifying x = b" + basthe dimensionless
position operator for spin 1, we arrive at the given form for the interaction Hamiltonian. Different geometries or
numbers of spins can also give rise to similar Hamiltonians and effects as the ones we discuss below.

We now move into the interaction picture with respect to Hy = H, + H,, settingbA — b e and
6] — 6le7 ™" + e, where 6i =6/ + i&Yj is the spin—flip operator for the jth spin, and the tilde distinguishes
interaction-picture operators from Schrédinger-picture ones. Assuming that w,, = 2B and performing a
rotating-wave approximation allows us to consider only the time-independent terms in the interaction-picture
interaction Hamiltonian H;_,, resultingin H,_,, ~ —g (b &, + b’ 6_), where the collective operators
6. = 61 (62 — ). Assuming that|a g |b sets the longest time-scale of the dynamics, we can adiabatically
eliminate the harmonic-oscillator degree of freedom [23]. To do so, we follow the projection operator technique
described in detail, e.g., in [24] and the supplemental information for [25]. We write a master equation, valid up
to second order in g, that governs the evolution of the reduced interaction-picture density matrix 5 (t) for the

spin-only system as
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ap = f At Trp| PaLscme™ Lo P}, (3)
0
where Prp = pQps, with g the stationary solution of the harmonic oscillator, Try, {+} denotes the trace over
the motional degree of freedom, £,_,* = —i [Hy_p, *],and
Do = 5 (m1)(20 5 = {60} ) + Sa( 268" - {815, -} @

is the Lindblad-form dissipator associated with a damped harmonic oscillator connected with a damping rate x
to athermal bath whose average number of excitations is7i [23, 26]. The resulting master equation for the spin-
system density matrix reads

op =(n+1)r Zjl[ﬁ] +al i)T[p], (5)
withI” = g%/k. Wealso have
D[] =26+ 6, — {&:6.,+}, (6)

with D; [+] that is obtained from D [+] by exchanging &_ and &,. Moving out of the interaction picture, we
obtain a master equation for the reduced spin density matrix in the Schrédinger picture simply written as
0,p = W [p] with the corresponding super-operator W [+] defined as

W) = =i[ Hy +| + I (7 + 1)Dy[] + I Dy [+], (7)

where Dy | := eits Dy, et We similarly define 6.. by transforming .. and shall drop the label t when it can be
understood from the context. By tracing out the motion of the damped harmonic oscillator, we have obtained an
effective damping acting on a collective degree of freedom of the spin system through the jump operators 6.
This collective damping is the source of the interesting behavior we shall explore in the following.

As afirst step in exploring the LD behavior of our system, we associate a counting process related to the flow
of excitations into or out of the system with the collective jump operators ... There are two counting processes
K associated with 6,.. K, counts excitations emitted into the bath and K _ excitations absorbed from it. We then
define an overall counting process K, which counts the net number of excitations emitted into the bath due to the
collective spin flips K:= K; — K_ (in contrast to the total activity given by K, + K_ [6]). Next, we can unravel
the master equation of the reduced density matrix by projecting it onto a particular number of jump events, i.e.,
0,p% = PXW [p], where PXis a projector over trajectories with K net jump events, and
P (t) =Tr {pX (1)} = Tr {PXp (t)} represents the probability of observing such a trajectory [14]. The moment-
generating function associated with this probability px(#) can be written [6]:

Z(t,9) = e Fpe () =Tr{pm}. (8)
K=0

withp (¢) = Z‘;’:O e~*KpX (t) the Laplace transform of the density matrix with respect to the net excitation
exchanges K between the system and the bath; we call s the ‘bias parameter.”’ The Laplace-transformed density
matrix evolves according to the modified master equation d;p, = (W + V) [p ], where

Wil =r[(a+1)(er=1)6- 6 +a(e = 1), 6| (9)

In the long-time limit, LD theory applies and we can write Z (£, s) — ¢'”*), where 0 (s) represents the system’s
dynamical free energy [6, 27]. Consequently, we have 6 (s) = lim,_, , In ( Tr {p} ) / t*.0 (s) is also given by the
eigenvalue of W,:= W + V), with the largest real part [6] (which can be shown to be real [28]).

Derivatives of this dynamical free energy with respect to s can be used to obtain the activity (net count rate)
k(s) = —00 (s) of the system. This quantity is represented in figure 2 for different values of the bath population i
. As s clearly visible from the upper plot, for the value of the bias parameter s = 0, we have a nonanalytic point in
0 (s) for any value of 7i. The lower curves show that this point presents two distinct values of the activity k(s).
Unbiased dynamics takes place at s = 0; from this we can conclude the existence of two dynamical phases [6, 27].
These two phases havek (07) > 0andk (0%) = 0, i.e., one phase is active in the sense that the net rate of
excitations exchanged between the bath and the system is nonzero, whereas the other has an exact balance
between excitations emitted and absorbed. The two terms composing the dissipative part of the master
equation (7) act at different rates; we thus deduce that this balanced phase is inactive and no emission or
absorption events occur. Focussing now on the active phase corresponding tok (07) > 0, we also notice that the

The transformation from the interaction picture results in small oscillations of Z (¢, s) with tast — oo; we average over these oscillations
when calculating € (s) from the spectrum of the superoperator.

3
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Figure 2. [llustration of the dynamical free energy 8 (s) (top panel) and activity k(s) (bottom). Each plot shows the quantity as a
function the bias parameter s for different values of the thermal population of the bath7i: 7 = 0, 1,2 and 5, respectively, from the thick
light blue curve to the thin black one. (@ = 10, B=0.5,andI" = 0.05.)

activity seems not to depend on the thermal population of the bath 77, since all the curves converge to the same
pointass — 0. This effect, seen for small 77, stems from the weak coupling between the bath and the system
(I < a).

A feature of figure 2 that is not seen when considering a ‘symmetric’ dynamical observable such as the total
activity Ky + K_,asin [6,27,29-31], is the second point of nonanalyticity in 6 (s) that occurs for s > 0 when
i1 > 0. Counting processes of the type we consider, unlike ‘symmetric’ ones, are odd with respect to time
reversal. This is related to a Gallavotti-Cohen symmetry [15] due to the driven nature of the system’s dynamics
[32]. In contrast to most studied examples of systems presenting such dynamical properties, the dynamics of a
global, rather than alocal, degree of freedo are considered here. Based on the detailed balance exhibited by
equation (5), we have that fore® = (1 + 1)/ wefind @ (s) = 0 (so — s), whichyields a fluctuation theorem of
the form

n>>1 K/ii

P,‘?/Pf"K = ek — K77, (10)

where we have defined p° :=lim,_, py (¢), that relates the infinite-time probability of observing a trajectory
with a net count of K to one with a net count of —K. This ratio approaches unityasfi — oo in which case the rates
for the collective jump process balance (s, — 0),such thatk (0¥) = 0°. Conversely, asii — 0, the probability for
observing negative K goes to zero and the above ratio diverges.

To make the model more realistic, we now add independent damping channels acting on each spin and
explore the consequences of these channels on the dynamical behavior of the system. For simplicity, the single-
spin baths are also taken to have occupation 7 and be coupled with the rate y. In equation (7) we set W — W'

3 3
W =W +7 (i + 1) D[] +ya Y D[], (11)
i=1 i=1
p evolvesaccording tod,p = (W' + V) [p ], where V), [p ] stays unchanged from its definition equation (9) when

y/3 < I' and neglecting correlation effects between the various damping channels. D%’ | are the spin—flip
Liouvillians for spin i.

As figure 3 illustrates, introducing extra damping at the level of the individual spins has a strong effect on the
dynamical properties of the system. Concentrating on the dynamical free energy, we see that individual spin

In this limit, therefore, barring the presence of any further nonanalyticities it is a straightforward consequence of this symmetry that both
0 (s) and k(s) are continuous around s = 0.
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Figure 3. [llustration of the dynamical free energy 8 (s) (top) and the activity k(s) (bottom) without single-spin damping (y = 0; full
lines) and with (y = 0.017"; dashed lines). Each plot illustrates7i = 0 (thicklight blue curve) and 7 = 5 (thin black). (Other
parameters as in figure 2.)

damping will smooth out the nonanalyticity at s = 0. The same holds for the second nonanalyticity ats > 0. This
smoothing effect is also visible in the activity, which becomes well-defined everywhere. Meanwhile, as is clearly
visible in figure 3, for small values of the single-spin damping and low thermal population, the activity remains
approximately constant. Conversely, for high thermal population and strong single-spin damping, the activity
can switch sign and become negative. Physically, this corresponds to the case where the single-spin damping
channel upsets the balance, making it more likely that excitations enter (K _) than leave the system (K}.) through
the collective channel, leading to a thermally driven system.

The LD approach to dynamical phase transitions yields a transparent physical interpretation based on the
statistics of ensembles of trajectories of the system. To explore these statistics, we now conduct an analysis based
on a Monte Carlo wave-function (MCWF) simulation (also known as quantum jump Monte Carlo). For
classical systems, Monte Carlo simulations or other numerical methods are currently used to obtain the LD
function [10, 12]; such methods have also occasionally been applied to a quantum system [27]. The MCWF
technique is a well-established method to simulate open system dynamics, such as the one we are interested in,
following the ideas set forth in [23, 33]. Using this technique and starting off from a randomly chosen initial
condition, we simulate trajectories in equation (11) of jump events related to the operators 6. (¢). For each
trajectory generated, we estimate the activity k (0) by calculating the net rate of jump events. We consider a set of
2000 trajectories, each having approximatively 10* jump events, from which we obtain probability distributions
fork (0), as represented in figure 4. This figure shows the probability distributions for thermal populations of
i = 0 and 5, with (upper panel) our without (lower panel) single-spin damping. Samples of the typical
trajectories obtained corresponding to different parts of the distributions are shown in the inset; each vertical
line corresponds to a jump event, with upper ones representing an emission from the system to the bath (K )
and lower ones the opposite (K _). Itis clear that wheny = 0 (upper panel), the probability distribution is
bimodal, with one peak centred at an activity equal to k (0*) = 0 and the other atk (07) > 0. In the former case
(seeinset) the corresponding trajectories have no jump events.

The second peak is centred about the same value for both values of 77, in agreement with what is expected
from the lower panel of figure 2, where we saw that the activity is independent of the thermal population in the
low-temperature limit. Corresponding trajectories are shown in the inset, and as expected demonstrate jumps
associated only with 6_ (i.e., the system losing excitations to the bath) for7i = 0; for7i = 5jumpsare observed in
both directions. It can be see in figure 4 that this second peak of the distribution broadens when the temperature

5
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Figure 4. Probability distribution of the net activity obtained with the MCWF method, applied to an ensemble of 2000 trajectories.
The upper plot corresponds to the case without single-spin damping (y = 0), following equation (9), while the lower plot refers to
y = 0.017" (equation (7)). In both, light blue curves show results for 7 = 0 and in dark gray for 7 = 5. The inset shows sample
trajectories associated with different distributions. (Parameters as in figure 3.)

increases. All this yields the interpretation that the Liouville space accessible to the system consists of two
disconnected subspaces, one active and one inactive, to which the two peaks in the activity distribution are
related. Based on the fraction of K = 0 trajectories in our simulation, we can determine that 25% of the Liouville
space is inactive.

Consider now the case with damping on the individual spins, corresponding to the one shown in figure 4 in
the lower panel. In contrast to they = 0 case, we immediately see that the distribution becomes unimodal, with
the mean activity decreasing by almost 25% compared to the active trajectories of they = 0 situation. This
fraction corresponds to the fraction of inactive trajectories observed wheny = 0 (upper panel). The unimodal
behavior and the mentioned reduction lead to the interpretation that the single-spin damping channel connects
the two previously disconnected parts of the Liouville space. This interpretation is supported by the sample
trajectories shown in the inset of the lower panel of figure 4, where one can observe the trajectory ‘blinking,’ i.e.,
spontaneously switching between active and inactive behavior. In analogy with what occurs with the total
activity (see [27]), the intermittency in trajectories is a form of ‘mesoscopic’ (i.e., finite time) dynamical phase
coexistence, consistent with the fact that the dynamical free-energy is analytic in this case, and the transition
therefore becomes a crossover. A simple interpretation of this behaviour can be deduced by looking at the
eigenspace of H, and the collective spin—flip operators. We start by writing the Schrédinger-picture Hamiltonian
H, and collective operators 6, = 51 (67 — 6;) in the computational basis. The resulting 8 x 8 matrices are not
trivial to diagonalize analytically. However, it is straightforward to find an eigenvector |y ) such that 6. |y) = 0
and H|y) = €|w) for some nonzero real number ¢. The first pair of conditions render |y) a dark state of the
collective spin—flip operators, which are the operators that enter the dissipative part of the reduced master
equation, and the last condition assures that|y ) is an eigenstate of the dynamics, i.e., that a system in |y ) will
remain in this inactive subspace. It can similarly be shown that no such|y) also obeys 6 ! |y/) = 0,and that no
state exists such that 6. [y/) = 0;in other words, any inactive state is coupled through the dynamics to the active
subspace when single-_spin damping is introduced. To sum up, one can find a subspace of the Liouville space that
is both inactive and isolated, in the sense that F; does not couple it to the rest of the space, and a subspace that is
active. Wheny # 0, these two partitions are no longer isolated, and the system can switch dynamically between
the active and inactive subspaces.

To understand how closely our MCWF results agree with the LD analysis, we present in figure 5 a
quantitative comparison between the two, where we plot the activity of the system at s = 0 as a function of the
thermal populations, for both low and high temperatures. This plot shows that the MCWEF results (data points)
agree closely with the results from the LD theory (solid curves). As visible in figure 4, increasing 71 tends to
broaden the distribution of the activity. Consequently, the error bars shown in figure 5 grow quickly with 1. As
discussed previously, we clearly see that both curves tend to zero asi — oo, where the rates of the two counting

6
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Figure 5. Activity as a function of the thermal populations7i beyond the low-temperature limit. The case with (without) single-spin
damping is illustrated by the lower (upper) curves in green (black). The solid curve corresponds to the large-deviation analysis and the
data line to the Monte Carlo simulations. The error bars correspond to a fifth of the standard deviation. Other than 71, the parameters
are the same as in figure 2.

processes K, balance such that the net rate of jump events is zero. Note also that the decrease in activity matches
the predicted 25%, independently of 7i.

We sum up by recalling our main results. We have explored a simple, yet intriguing, system consisting of
three equidistant spins interacting pairwise, one of which moves in a harmonic trap. This motion gives rise to
collective spin dynamics, which are dissipated through the mechanical decay channel. Adopting an LD approach
to analyze this system, we observe that its dynamics consist of two distinct dynamical phases, one active and one
inactive, possessing different emission statistics. We observed that these two phases can be mixed by introducing
damping on the individual spins. All our observations were confirmed through Monte Carlo simulations, which
lend themselves to a natural interpretation in terms of ensembles of trajectories observed in repeated
experimental runs. The system we explore is not overly complex, but yields a surprisingly rich behavior.
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