10P Publishing

@ CrossMark

OPENACCESS

RECEIVED
7 October 2015

REVISED
10 November 2015

ACCEPTED FOR PUBLICATION
23 November 2015

PUBLISHED
23 December 2015

Content from this work
may be used under the
terms of the Creative
Commons Attribution 3.0
licence.

Any further distribution of
this work must maintain
attribution to the
author(s) and the title of
the work, journal citation
and DOL

NewJ. Phys. 18 (2016) 013009 doi:10.1088/1367-2630/18,/1/013009

H eutsche Physikalische Gesellscha Published in partnership
New journal Of PhYSlCS st M(I)DPG with: Deutsche Physikalische
IOP Institute of Physics | Gesellschaft and the Institute

The open access journal at the forefront of physics .
of Physics

PAPER

Thermodynamics of trajectories and local fluctuation theorems for
harmonic quantum networks

Simon Pigeon', Lorenzo Fusco', André Xuereb'~, Gabriele De Chiara' and Mauro Paternostro’

! Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen’s University Belfast, Belfast
BT7 INN, UK
> Department of Physics, University of Malta, Msida MSD2080, Malta

E-mail: s.pigeon@qub.ac.uk

Keywords: thermodynamics of trajectories, fluctuation theorem, harmonic quantum network, heat exchange, large deviation approach,
quantum phase space representation, gaussian ansatz

Abstract

We present a general method to undertake a thorough analysis of the thermodynamics of the quantum
jump trajectories followed by an arbitrary quantum harmonic network undergoing linear and bilinear
dynamics. The approach is based on the phase-space representation of the state of a harmonic
network. The large deviation function associated with this system encodes the full counting statistics
of exchange and also allows one to deduce fluctuation theorems (FT's) obeyed by the dynamics. We
illustrate the method showing the validity of alocal FT about the exchange of excitations between a
restricted part of the environment (i.e., a local bath) and a harmonic network coupled with different
schemes.

1. Introduction

The recent development of thermodynamics of trajectories for quantum systems promises to shed new light on
the thermodynamics of quantum systems [ 1—4]. Based on the density matrix representation of a system it allows,
through the large deviation function, to access the full counting statistics of the exchange of excitations between
asystem and its environment but also to explore the long-time behaviour of a system, revealing phenomena such
as dynamical phase transitions [2, 5]. However, similarly to thermodynamics of trajectories for classical systems
[6], the effectiveness of the method is usually limited by the practical difficulty of obtaining the large deviation
function. As the density matrix of the system reaches a long-time limit, the method of thermodynamics of
trajectories requires, in principle, significant computational effort to find the large deviation function.
Furthermore for a system evolving in an infinite-dimensional Louiville space the situation is even more difficult
because necessary truncation of the space will be needed, leading to an approximated large deviation function.

In this article we will present a general method for the determination of the large deviation function for a
large variety of systems evolving in an infinite-dimensional Louiville space, allowing a sensible reduction of
computational power and without need of approximations. We present a method for the full characterisation of
the exchange of excitations with the environment for a general network of quantum harmonic oscillators,
undergoing linear and bilinear dynamics. Our method is based on two essential steps: (i) a quantum-optic
phase-space representation of the network’s degrees of freedom, and (ii) a multidimensional Gaussian ansatz.

We will present the general framework in section 2, introducing the large deviation function that encodes the
statistics for the exchange of excitations. The method which we will detail can handle all possible linear and
bilinear interactions. In section 3 we will show how this method can be used to numerically verify local detailed
FT's on the exchange with a given bath. We will first consider the simplest case of a single harmonic oscillator,
whose large deviation function has recently been analytically derived [4] using a similar approach (section 3.2)
followed in section 3.3 by a harmonic chain where the inter-oscillator coupling is rotating-wave-like (RW-like).
Following this, we will consider two coupled oscillators where each is damped by a given thermal bath with a
squeezing-like (section 3.4) and position—position-like (section 3.5) inter-oscillator coupling.

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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2. General framework

In this section we will detail the derivation of the large deviation function for an arbitrary network of quantum
harmonic oscillators. We will start by defining our model (section 2.1) and its dynamics, followed by the
unraveling of the considered exchange process and its related thermodynamics (section 2.2). In section 2.3 we
will present the phase space representation of the network, and the quantum Fokker—Planck equation derived
from it. Using a Gaussian ansatz we will formally define the large deviation function (section 2.4).

2.1. Modelling a harmonic network

Considering a set of N quantum harmonic oscillators, the network Hamiltonian can be written as

H= Zil H + Zfij I—ALj, in terms of single-oscillator (H;) and two-oscillator (I-AL-]-) Hamiltonians. For
simplicity, and because of our later restriction to Hamiltonians that are at most quadratic in the operators, we
restrict ourselves to bipartite coupling between oscillators. As we will be interested only in linear and bilinear
Hamiltonians, we can explicitly write the single-oscillator Hamiltonians as

A= fmi(&f&i 4 ;) 4 ﬁdi(t)w,»(ﬁf + ﬁi) + (ﬁnaiai +he). (1)

This corresponds to the Hamiltonian of a harmonic oscillator, of frequency wj, driven by a bounded time-
dependent force |d;(t)| < D;, undergoing single mode squeezing with rate Y; € C. The coupling between
oscillators encoded through Hj; can take three different forms

(i) the position—position coupling (x—x type)

A5 = sigy(ai + a7 ) (4 + a)) Q)
(ii) the RW coupling
A RW o At a
A5 = fig;(aia] + afa)) 3)

(iii) the two-mode squeezing (OPO-like) coupling
0

~ OPO At A A
Hy = fz’gij(ai1 ]T + a,-aj), 4)

where in each case we have g; = g;;. The dynamics of the system is given by the master equation 9;p = W[p],

where p is the density matrix of the full network and the superoperator W[¢] = —1 [H, *] + L[] describes the
system dynamics. £ = Zf\i [(Li + S))isthe global dissipator composed of two types of exchange channels:
number damping channels and squeezing damping channels, respectively described by the superoperators

L[] = E(zﬁif ch; — {.’ &i&;}) + E‘(Zﬁi caf — {-, &:&i}) (5)

and

Si[] = Ai(Zﬁi ch; — {.) ai&i}) + Ai(zai’k . (jiT _ {., aifaj})_ 6)

Based on this Lindblad form of the master equation, we will now present our method to unravel the statistics of
exchange of excitations between the network and a given bath.

2.2. Unraveled statistics and thermodynamics of trajectories

To build the trajectories we will follow the approach introduced in [1]. To do so we have to define the observable
of interest for the exchange of excitations between the system and its environment. We introduce a counting
process described by the number K, which gives the number of the quanta exchanged between the system and
part of the environment, a given bath r, defined as

K, =K, — K4, (7)

where K, are the numbers of quanta entering and leaving the oscillator coupled to the bath . We note here that
the index r will be used throughout to denote the ‘reference’ bath for which we are studying the exchange
statistics.

The probability of obtaining a given value of K, after a time t will be defined as p;. (1) = Tr {ISK’ [)} where

P isa projector over the subspace associated to K, excitations. From the probability p, (f) we can define the
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moment generating function, also known as the dynamical partition function, as

Z,(s, 1) = Y e Kp (0). ®)

K,
From the large deviation theory we know that in the long-time limit we have Z (s, t) ~ e/, where 6, (s) is the large
deviation function. The large deviation function is the fundamental building block of the theory of thermodynamics
of trajectories and encodes the long-time dynamics of the system relatively to a given counting process K.

Once defined, the counting process number K, is used to bias the trajectories as in equation (8) [1]. A biased
density matrix can be defined as p, := > X ek pXr b, and the corresponding dynamics is given by the biased
master equation 0;p, = WIp 1 + L[], where W is the superoperator associated to the unbiased system while
L is the non-trace-preserving part of the dynamics emerging from the biasing procedure and encoding the
statistics of interest. For the considered counting process we have

L] = 2F,(e—5 - 1)&, caf + 2F,(e5 - 1)&5-&,. )
The large deviation function 6, (s) can be defined with respect to the biased density matrix p, as:

0,(s) = lim %ln [Tr {,65}], (10)

t—00

where the index r refers to reference bath. In order to solve the above equation we will now consider the phase-
space representation of the system.

2.3. Phase-space representation and the generating function

The phase-space representation is a well-established method commonly used in quantum mechanics to deal
with quantum harmonic oscillators [7, 8]. The advantage of this approach is that a harmonic oscillator, evolving
alongan infinite Hilbert space, can be fully characterised by means of a quasi-probability distribution evolving in
the complex plane. In what follows we will concentrate on the characteristic function associated with this quasi-
probability. We will consider the symmetrically-ordered generating function

Xs(ﬁl ,...,ﬁN) = Tr{exp [ii(ﬁ;"@; + ﬁ,ﬁ,-)]i)s}, (11)

i=1

but a similar approach can be conducted with other representations. Details of the derivation of the phase-space
representation of different parts of the dynamics can be found in appendix. We can collect the different
contributions to the dynamics in term of the complex coordinates 3; = p; + ig;, writing the quantum Fokker—
Planck equation, associated with the generating function x, in the following form

O, =[p"-A- 9 +p"-D-p+d-p
+3(95 - B - 0p+p7 - F! - p)
_ (PT.F;.6p+ %Tr{F;})] Xo (12)
Here p’ = (p}, 4> ---> Py qy) IS the vector p;and g; conjugate fields of respectively the position and momentum

quadratures. The first line of equation (12) refers to the unbiased part of the dynamics, given by the superoperator
W, while the second and third refer to the biased part, given by £;. The drift matrix A is defined as

D[ T]-L+ T —w+2%[ 7]

A= % + G, (13)
= wb 2R[] 29[M]-T+
where G is the coupling matrix, which can be written ass
0 Gz1 - Gng
R (14)
Gl',N GZ',N w0
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with G;; = Gj; and the following coupling scheme-dependent definitions

0 0
2 g 0 (x—x type),

0 —g;

0 ]] (RW type), (15)
8ij W

8ij
8ij 0

] (OPO—like type).
OPO

L

In equation (12), D is the noise matrix defined as
— T — T + 2R( A; —23(A;
sy [ronems) ()

Sl cm) nonoam(n)) 1

Finally, for what concerns the unbiased part of the dynamics we have the driving vector
d" = (0, widi(t), ..., 0, wydy (t))T. With these definitions we can describe all the processes addressed so far.
The second and third lines of equation (12) account for the biased part of the dynamics. Indeed, we have

+_ Noo fig(s) 0
Fs - iejl 61r( 0 fii(s)]) (17)

where rlabels the reference bath,and f,_ (s) = I;(e™ — 1) & (e’ — 1). We can now rewrite equation (10)in
terms of the generating function x as

0,(s) = lim - In[x,©] (18)
t—oo t

This is possible owing to Tr { ﬁs} = X, (0), where (0) is the volume of the biased quasi-probability
distribution, i.e., the biased Wigner function in the present case. We remark that this quantity is not dependent
on the choice of the specific type of phase-space representation. Notice that the above definition is valid for any
harmonic network, subjected to an arbitrary dynamical process. We now restrict our attention to linear and
bilinear processes in order to proceed further with our analysis in a fully analytical form.

2.4. Gaussian ansatz and large deviation function

To solve equation (18) we now consider a multidimensional Gaussian ansatz. Its validity relies on the fact that,
when undergoing linear or bilinear dynamics, a Gaussian state remains Gaussian at all times. This argument can
be easily extended to non-Gaussian initial conditions converging with time to Gaussian states, as described by
the central limit theorem. This allows us to formulate the problem in terms of the finite number of parameters
entering the Gaussian ansatz. Considering multiple coupled harmonic oscillators, each associated to a two-
dimensional phase space (generated by p; and g;), our ansatz reads

X; = As exp (1 pl - x, — %pT D YR p), (19)
where x! = (x;, N> ---» XN> Yy) is the vector of expectation values of position and momentum of each oscillator
(here k; = <I€,> with k = x, ). The covariance matrix ¥ can be decomposed in terms of the two-dimensional
block matrices as

Y X o YN
» Y, ... X
So= T T TN (20)

N1 BNz o BNN

XX xy

where X;; = b T and 0. = i((éf- +fA4é')> — (@) {f) (5 f € {%;, $}). By definition, we have
b 7 o) hj T Wy T NI i i» )i 1)- BY ’
i,] i,]

3= Ezi. As the biased density matrix p, is not normalised, we have to take into account the norm of the
generating function A,. Moreover A, s the central quantity of interest since we notice, from equation (18), that
the large deviation function is given by
.1
0,(s) = lim —In [As(t)]. 21
t—oo t
Applying this ansatz to equation (12) we can extract the time evolution of the norm A, the coordinate vector

X,, and the covariance matrix 3. Notice that the s index illustrates the dependence of these elements upon the
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bias parameter s. We find that

20, In A,(t) = Tr {Fj : Es(t)} +x,07 - Ff - xy(8) — Tr {F’} 22)
For the first moment we have
(1) = [A = F, + F[ - B0] - x(0) + d®), (23)
and for the second

S0=(A-F) S0+ 20 (A-F)
+ X,(t) - Ff - (1) + Ff — 2D. (24)

Equation (22)—(24) define the evolution of the generating function at any time, governed by the biased master
equation. To obtain the unbiased dynamics we simply have to take s — 0, or equivalently F¥ — 0. Going one
step further, using equation (22), we have that the large deviation function is

t

0,(s) = lim — f [Tr {Ff 3 - B} +xI(n)  F XS(T)]dT. (25)
t—oo 2 JO

This definition is valid for any harmonic network undergoing linear and bilinear processes. From the counting

process considered here and the associated matrix Fsi, we find

0,(s) = lim 1 fo ' {fr+(s) > [af(s, £) + k2Gs, t)] - Zfr_(s)} dr, (26)

2t k=x,y

where the means and variances are here dependent on time ¢, and on the bias parameters s, while r refers to the
bath under consideration.

Itis interesting now to look at some specific cases. Let us assume that the system converges towards a
stationary state, in which case lim,_, . X, (t) = X, with 33, the covariance matrix of the stationary solution of
equation (24). We find that

6,(s) = %Tr {Bi-5 -} + lim 217]: [x{@) - B x(m) |dr. 27)

As we are ultimately interested in the long-time behaviour, a simple approximation can be used to obtain the
last term of equation (27) without the need of the full time evolution of x,(¢) and X(¢). It consists in replacing
the stationary covariance matrix 3. in the evolution equation of x,(¢) (equation (23)). This approach was used
in [4] to solve analytically the large deviation of a driven harmonic oscillator coupled to N baths.

In the more restrictive case where the Hamiltonian is quadratic in creation and annihilation operators (i.e.,
we have no driving), equation (23) achieves a stationary solution with x; = 0. Therefore, the last term in

equation (25) drops, leaving a large deviation function depending only on the stationary biased covariance
matrix X as

0,(s) = %Tr {Fs+ i S F;}. (28)

We have thus seen how, through equations (23) and (24), we can obtain the large deviation function
associated to a given counting process K, this being the net number of excitations exchange with the rth bath in
contact with the system, as long as the oscillators undergo linear and bilinear dynamics. Moreover, assuming the
existence of stationary solutions, the complexity of the problem dramatically reduces. In this case, we do not
need the full system evolution, but only its stationary solution given by the large deviation approach. Here the
problem corresponds to solving an algebraic Riccati equation (equation (24)) for different values of the bias
parameters s. This type of algebraic equation is frequently encountered in dynamical control problems. Accurate
numerical methods exist to solve this type of equation (see [9] for formal approaches to the solution of a Riccati
equation). Through a phase-space approach complemented by a suitable Gaussian ansatz, we have presented a
powerful method to access the large deviation function exactly. As stated above the large deviation function
encodes by definition the full counting statistics, since 076, (s)|s = ¢ = (—1)"k,, where &, is the nth cumulant
of the counting process K, [ 1-5]. However this function encodes other crucial thermodynamic information
about the system, one example of which is given by the possibility to formulate FTs. Our method gives access to
this invaluable source of information, for a large variety of quantum systems, through reasonable computational
effort, as we will now demonstrate.
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3.Local FTs

We now introduce the general concept of a FT (section 3.1) and its connection with the thermodynamics of
trajectories. In section 3.2 and 3.3 we focus on a single harmonic oscillator and a harmonic chain, respectively,
and determine the associated FT. We show how our approach is able to recover the results of previous
investigations and to go beyond them by providing an explicit route for the approach of physically relevant
forms of coupling among the oscillators belonging to a given network (see section 3.4 and 3.5).

3.1. FTs in thermodynamics of trajectories

FTs are used to fully characterise the fluctuations endured by a system while interacting with an environment
[10, 11]. Several FT's can be formulated, depending on the scenario considered. We will here focus on FTs for a
system in a stationary state. More precisely, we will concentrate on local FTs, related to the exchange between a
system and part of the environment. The idea is that it is not always possible to keep track of all dissipation
processes undergone by the system. In such cases local FT's allow to discuss fluctuation relations in the exchange
processes between a system and part of its environment. Moreover, as we will see, while global FT's can be
formulated in a wide variety of physical contexts, for local FT's the results are less general. For example,
considering the total exchange between a system an its environment, FT's always find a definition [11, 12]
(eventually through extended versions of equation (29) [13]), while in the local case FT's cannot always be found
as we will see. This is not dependent on wether the system under consideration is classical or quantum, butitisa
consequence of the possibility to have some correlations in the exchange of excitations with different parts of the
environment which gives valuable information on the thermodynamical behaviour of the system.

Consider a net number counting process such as K, := K,_ — K, (where we remind that K, stands for the
net number of quanta leaving and entering into the system from a specific bath labeled r), p; (t) is the
probability to observe a given net number K; of excitations exchanged after a time £, and p - (¢) is the probability
to observe the counting process number — K. If we have

t
im pK’—() = eKrsr) (29)
t—00 pr, (t)

where s, is independent of K,, then alocal FT exists with respect to the rth bath. We know that the existence of a
FT is, by definition, associated with the existence of a specific Gallavotti-Cohen symmetry relation of the large
deviation function 6, (s) related to the counting process K, [10]. This can be written explicitly as

0,(s) = Qr(sr - s), (30)

where the symmetric point s, is given in equation (29). The derivation of the latter can be quite involved, whereas
determining the existence of symmetry properties of a function can be done efficiently, making the large
deviation function a powerful tool to determine FTs. In order to illustrate the opportunity embodied by the
method presented here, in relation to the determination of fundamental thermodynamic relations, we will now
focus on the simple example of a single quantum harmonic oscillator.

3.2. Example 1: quantum harmonic oscillator

For a single harmonic oscillator of frequency w coupled to multiple baths, the large deviation function can be
obtained analytically using the method introduced in [4] and highlighted here. We can access the exchange
statistics between the system and a given bath, considering the counting process K, as previously defined. In this
case we find that the symmetric point of the large deviation function 6, (s) is given by

DDA
= N 5
I‘r Zizrn

where T} (T}) refers to the rate of exchange of excitations from (to) the system to (from) the ith bath. First of all, in
this case we have that alocal FT exists in any case and whatever the environment architecture could be. Moreover
it depends only on the rate of excitation exchange between the system and the baths, and not on the internal
system parameters. To illustrate such features, we consider the simple case of two thermal baths coupled with the
same strength to the system. We have I} = (; + 1)/2and I} = 71;v/2, with 7i; = [exp (aw/ks T}) — 1] ! the
density of excitations in the ith bath [7]. In this case, the symmetric point is given by

Jw (1 1
=20 = - 32
51 kB(Ti Tz) (32)

s;=1In

(D

which corresponds to the typical entropy flux taking place between two baths at temperatures T; and T,.

6
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From equation (31) we can see that with only two connected baths we have s, = —s;, indicating that the
statistics of exchange between the system and one bath is strongly related to that with the second. Considering
that we are addressing a simple scenario where the system cannot store or transform any of the absorbed
excitations, whatever enters the system from one side gets out from the other side with the same statistics.
Consequently we will have an identical and opposite statistics leading to 6, (s) = 6,(—s), and thus s, = —s;. The
system just conducts from one bath to another, with the statistical properties of the exchange of excitations
depending on the overall environment. Under these circumstances it becomes clear that the statistics of heat
flowing into or out of the system will be the same as the ones revealed by 6, (s), while the total net exchange with
both baths will be null. As a consequence, we can deduce that the system acts as a perfect thermal conductor.

As this elementary example shows, determining the large deviation function can directly lead to the
definition of alocal FT. The method used here to obtain the large deviation function is similar to the one
developed in the first section, with the nuance that here exact results can be found because of the simplicity of the
system [4]. For more complex systems a numerical calculation for the stationary solution of equation (24) is
necessary.

From now on we will consider different types of harmonic chains where the chain is connected to the
environment by its two end oscillators. Each end oscillator is coupled to a thermal bath with identical coupling
strength v, such that I} = (71; + 1)7y/2 and I} = #;7/2. One bath will be cold (T;) and one hot (Tyy > T)).

3.3. Example 2: RW-type harmonic chain
Let us consider a chain of N coupled harmonic oscillators of frequency w;. Given that only the first and last
oscillators are coupled to the environment, the matrices D and A are defined as

D 23X (28 + 1) (81 + i) ° (33)
N E i=1 0 (Zﬁ,‘ + 1)(5,‘)1 + 61‘,N)
and
A G, O 0
G, Ay Gy3 0
A=] 0 Gy; A; 0} (34
0 0 0 Ay
with
— 1(61',1 + 61‘,1\1) — Wi
Ai=| 2 , , (35)
wj - 5(51’,1 + 5i,N)

and with G; ; the two-oscillator RW-like coupling matrix as defined in equation (15).

In figure 1 we show the large deviation function obtained from the steady-state solution of equation (24)
related to the exchange with the bath 1 for identical oscillators (w; = w). The different curves correspond to
different bath temperatures T}, while AT = Ty — T; = /a/kg. The bias parameter is normalised with respect
to s = 7w/kg T}, where s = s corresponding to a branch point.

Based on the determination of 6, (s) as presented in figure 1, the Gallavotti-Cohen symmetry can be
obtained, leading to a possible FT. To that purpose we need to determine s,,;,, the minimum of 6, (s), and check
ifit corresponds to an axis of symmetry. Note that here, imposed by the flexibility of the approach encompassing
awide variety of systems, the symmetry property of the large deviation function cannot be directly derived from
the definition of 6, (s) in equation (25), unlike what was found in [ 14] for a related system. In the upper panel of
figure 2, we represent the possible local FT s, = 25, between the system and each bath, such as
0 (Smin) = min (6, (s)). To determine if s,,,;, is a symmetry point, we define the following quantity

9, (ZSmin)

0, (Smin) .

Should 6, (s) be symmetric with respect to s, = 2s.,,;, we should have 6, (s,) = 6,(0) = 0 by definition, and so
Sym; — 0. The behaviour of equation (36) against kg T,/ /i is presented in the lower panel of figure 2, where we
appreciate that Sym_ < 102 throughout the whole window of sampled temperatures, thus providing strong
numerical evidence of the symmetry of the large deviation function. A criterion based on Sym, — 0isavalid test
for symmetry whenever 6, (s) is continuously differentiable, as in our examples. It allows us to incorporate

Sym, = (36)

7
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0.1 " T T . . .

0.08

0.06 -

0(s)

0.04+ ]

0.02 ]

-0.02 — : : : : :
02 0 02 04 06 08 1

sls
(o}

Figure 1. Large deviation function 6, (s) for a harmonic chain of N = 10 oscillators. The bias parameter s is normalised with respect to
sc = /w/ kg T,. Each colour corresponds to a different temperature of the (cold) bath 1: T; = 0.5/w/ kg in dark blue, T} = 7w/ kg in
light blue,and T; = 5/av/ kg in yellow (respectively from lower to higher for s > 0). The bath parameters are such that the
temperature differenceis fixedto AT = Ty — T, = /w/ks, § = 0.1w, and v = 0.1w.

10°
E 10°
wn

-10

10
107" 10° 10’ 102

kp T /hw

Figure 2. Symmetry of the large deviation function 6; (s). In the upper panel the symmetric points s; of the large deviation function are
shown, normalised by s., and on the lower panel is shown Sym;, the symmetry criterion of ¢ (s) as defined in equation (36). The blue
line refers to the exchange with the bath 1 and the red line to the exchange with the bath 2. The dashed line corresponds to the
threshold defined, below which 6 (s) is assumed to be symmetrical. Both are shown as a function of the bath temperature T}. Other
parameters are taken to be the same as for figure 1.

numerical errors introduced when solving the Riccati equation and provides a qualitative understanding of the
behaviour oflocal FTs.

Figure 2 shows clearly that (i) alocal FT exists at any temperature and that (ii) it behaves exactly as for the
single harmonic oscillator case, i.e., s; = k@ (% — %) The independence of the FT obtained on the size of

B \ 11 2

the system has to be connected to the type of coupling between the oscillators, which is responsible for the
conservation of the number of excitations. As soon as an excitation enters the system another has to exit. This
leads to the same conclusion as before that the system is a perfect heat conductor because s; = —s,, as shown in
figure 2. The convergence to 0 of s; and s, at high temperatures indicate that the system thermalises also locally.
Indeed, for any network of oscillators connected to two baths that is stable in the sense that the eigenvalues of the
A matrix have a all negative imaginary part will give the exact same result, as long as the coupling is of RW-type
in between all oscillators. This independence on the heat conduction on the geometry of the system considered
can be the cause for the breakdown of Fourier law observed for harmonic chains [15]. We next turn our attention
to different kinds of coupling between oscillators.

8
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2
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.16
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Figure 3. Symmetry of the large deviation function 6, (s) for two oscillators coupled through squeezing. In the upper panel the
symmetric point s of the large deviation function normalised over s. and on the lower panel evaluation of Sym,, the symmetry
criterion in equation (36). The other parameters are as in figure 1, except the number of oscillators which is reduced to 2.

3.4. Example 3: two thermal squeezed modes

Here we consider an archetypal scenario often encountered in quantum optics, i.e. two harmonic oscillators
interacting through a squeezing Hamiltonian and each connected to a thermal bath. This model describes a large
variety of physical systems from optical parametric amplification [16] to optomechanical systems [17] and other
hybrid quantum systems [18]. The Hamiltonian is

2
A= mZ(ﬁfﬁi + %) + 7 (giadi + hic), (37)

where we have simplified our notation by setting w; = w, = w. Applying the approach presented previously, we
have

~
-= —w 0
> g
w -1 g 0
A= 2 , (38)
0 -1
g 2
~
0 w - =
g 2

for the drift matrix, while the noise matrix will be similar to the one previously encountered in equation (33).

Similarly to what has been done previously, we compute the large deviation related to the net number of
excitations exchange between the oscillator 1 and its bath. Determining the minimum of this function and
evaluating its symmetry properties we found, as represented in figure 3, that (i) a FT indeed exists and (ii) it
matches the relation s; = (Zaw/kg)(1/T; + 1/Ty).

Considering now the exchange between the system and the second bath we find that the respective local FT's
agreed, such that s, = s;. The system operates here emitting heat to both the baths (s, > 0) witharate
depending on both bath temperatures but independent of inter-oscillator coupling. This independence derive
from the system being in a global state (two mode squeezed state) damped through local channels. This result is
in direct contrast with what was observed previously. This behaviour derives from the dissimilarity between the
type of inter-oscillator coupling and the one with the baths, leading to a situation where the system cannot
thermalise.

Note that the choice of two identical oscillators can and was extended to more oscillators with the present
method. We found that for a chain of identical oscillators coupled through squeezing coupling with damping on
the first and last oscillators, there exists a stable solution for the system only for an even number of oscillators,
while the local FT's remain unchanged.

With these two examples, we have seen two extremely different local FT's and thermodynamic behaviour. Let
us next consider an intermediate example.
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Figure 4. Large deviation function for two oscillators coupled through (%, — £ )? coupling for various coupling strengths g. Blue
g = 0.1lw, orange g = w, yellow g = 10w, and purple g = 100w, while v = 0.1w. The bath temperatureis T, = 107w/ kg, while
other parameters are as in figure 1.

3.5. Example 4: two oscillators coupled through relative distance
Consider now two oscillators coupled through an (£ — % )? coupling (such as the motional degrees of freedom
of two trapped ions, for example [19]). Each oscillator is in contact with a bath at a given temperature. The
interest in this type of coupling arises from the fact that it combines both a conservative interaction and a
squeezing one, corresponding to a combination of both the cases presented previously. Due to this combination
the results obtained are quite different to the ones obtained before.

We have for the drift matrix A

-1 0 0
2
w+2g —— —12¢ 0
A— , (39)
0 o -1 —u
2
—2 0 w+2 —%

while D remains as in equation (33). If previously the outcome of the system and associated FT's were
independent of the system parameters (oscillator frequencies wand coupling strength g), here the situation is
very different. We will therefore focus on the dependence on two key parameters: the coupling strength ¢
between oscillators, and the coupling strength v to the baths.

3.5.1. Dependence on the inter-oscillator coupling strength g

In figure 4 large deviation functions (related to the exchange with bath 1) corresponding to various coupling
strengths gare shown. For s > 0 we have that the smaller the coupling (blue curve), the flatter 8, (s). This can be
directly related to changes of the activity or average net number of quanta exchanged with the bath

(K,)/t = 0s0,(s)|s = o), which increases as the coupling gincreases. Looking for FT's, we can observe in figure 4
that increasing the coupling g, the minimum s,,,;,, seems to pass from 0 (blue line) to 0.5 s. , where we define the
convenient unit s, = /w/kg T;. Simultaneously, the branch point located on the negative values of s tends to 0.
Finally regarding the possible symmetry properties of 6, (s), the increase of the coupling leads to anon
symmetric function (connected to the change of position of the negative branch point). On the other hand, when
decreasing the coupling, the negative branch point converges to —s, leading to a symmetric large deviation
function associated to FT.

We show this behaviour in figure 5. As previously done (see figures 2 and 3) the hypothetical FT s; = 25, is
shown as a function of T} for different coupling strengths g (same colour code as in figure 4). From these plots we
observe that, by increasing g (from bottom to top curve), 2s,;, tends to s.. For small coupling (blue, bottom
curve) we have that 2s,;, is close to the case where the coupling between oscillators was of RW-type (black
dashed line) as expected, presenting however a finite difference. We see that only in the case of small coupling
strengths between oscillators we find alocal FT. As previously observed, the existence of alocal FT, unlike global
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Figure 5. Symmetry of the large deviation function 6, (s). In the upper panel the potential FT s; = 2s,j, normalised. The thin black
dashed line indicates the result obtained for RW-coupling between oscillators (see section 3.3), while the other curves correspond to
various values of g (same colour code as in figure 4). The full line corresponds to the situation where s; is found to correspond to a FT,
while the dashed part to situation where is not, relatively to the symmetry criterion Sym; (equation (36)), as represented in the lower

panel.
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Figure 6. Map of the large deviation function 6, (s) for various coupling strengths to the baths ~ (vertical axis) for a temperature of
T, = 10/aw/kg and g = 0.2w. The red curve represents sp,;,, and the dashed part indicates when 6 (s) is not symmetric with respect to
Smin (according to the criterion given in equation (36)). Other parameters are the same as in figure 4.

FT, is not necessarily guaranteed, as demonstrated here. The non-existence of local FT could be due to partial
correlation effects between the statistics of exchange with the different baths.

3.5.2. Dependence on the coupling strength to the baths~

We now focus on the coupling strength to the baths, v, and how it affects potential FT's. To this end, we plot in
figure 6 a map of the large deviation function versus s and . The red line corresponds to the minimum found for
given v, where the dashed part represents the non-symmetric regime. We see that, differently from what
happens for the dependence on the coupling parameter g, the behaviour of the large deviation function against -y
is more complex. Globally we can distinguish three regimes: (i) a weak coupling regime where the large
deviation function is symmetric with s,,;, close to zero; (ii) a strong coupling regime where a FT is found to hold,
with a symmetry point tending to s; = /aw/kg T; when the coupling strength «yincreases; (iii) an intermediate
regime where a FT is not necessarily defined and the symmetric point is rapidly changing with . These three
regions are connected to the ones found in [20], which discusses the heat conduction across a similar system. The
scaling behaviour of the mean energy exchange with a given bath r (K,) /¢t = 0,6, (s)[s = o) for small and large
coupling is found in our work to scale respectively as yand 1/, matching the results in [20].

11
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Figure 7. Symmetry of the large deviation function 6, (s). In the upper panel the potential FT s; = 2s,;, normalised. The thin black
dashed line indicates the result obtained for RW-coupling between oscillators (see section 3.3), while the other curves correspond to
different values of -y with from blue to green v = 0.1w, 0.5w, w, 2w and 10w. The full line corresponds to the situation where s, is
found to correspond to a FT, while the dashed part to the situation where it is not, in the sense of the symmetry criterion Sym;
(equation (36)), as represented on the lower panel.

The dependence on the bath temperature is presented in figure 7, where we focus our attention on potential
FTs. The various curves shown correspond to different values of 7, and we see that we recover the three regimes
observed in figure 6. For small y (blue curve) we have a defined FT close to the result obtained for the RW-type of
coupling (with a finite difference similar to the one previously observed in figure 5), as expected. The
intermediate regime presents less well-defined characteristics (yellow, green and maroon curves). The impact of
the temperature appears to affect strongly the existence of a FT. In general, we can see that for high temperatures
the range of existence of a FT tends to be enlarged. For lower temperatures however there is also a defined FT.
Notice that from distinct symmetry criteria, different results may be found, but giving a qualitatively similar
picture. Finally for strong damping we have a defined FT, tending to s; — /aw/kg T;. In this regime the damping
is so strong that the statistics of exchange is only directed by the related bath: the two oscillators appear to be
uncoupled.

4, Conclusion

We have presented a general framework to fully characterise excitation-exchange processes between a harmonic
network and its environment. The method applies for any network of oscillators with linear and bilinear
network interactions, connected to many baths (whether thermal or squeezed) and gives access to the large
deviation function attached to a counting process corresponding to the net number of excitations exchanged
between the system and a given bath. After giving details of the framework we focused on the possibility, given a
large deviation function, to derive local FT's related to the exchange with a given bath. After discussing the
meaning of these theorems we explored different basic networks: from a single harmonic oscillator to a chain,
considering various coupling schemes between oscillators. We found that for the systems considered alocal FT
can generally be found, especially in the case of RW-like coupling. However position—position coupling can lead,
depending on the parameters, to a situation where local FT's cannot be defined.

The great versatility of the proposed method makes it applicable to many photonic, phononic and hybrid
quantum systems, and able to fully characterise the thermodynamics of exchange taking place with an
environment.
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Appendix. Phase-space representation of linear and bilinear dynamics of quantum
oscillators

Here we outline the derivation of the phase space representation for the different terms of the dynamics as
defined in section 2.1, in terms of the symmetrically-ordered generating function as defined in equation (11).

Considering the definition of the Hamiltonian dynamics involving a single oscillator, as defined in
equation (1), we have

Te{ = [ A pJe i aa) L [ v (870 — 5i05) — 2adi()(BF — 3:) = 271610

+ 200,870 | x. (A1)

For the dissipative part, as defined in equations (5) and (6), we have
T {2 p Jeatesi)} = [ (1 - B) (870, + 5:04) — (T + T) 57 | and (A2)
Te {S[a]e (a0} = (A7BE67 + i) . (A3)

Concerning the coupling part between oscillators we have for the different scenarios considered: (i) position—
position coupling, as defined in equation (2)

Tr{ —[ A5 ﬁs]efzu:u,ﬂ(ﬂré:wﬁu)} = —zglj[(ﬂ,» - ﬂz*)(aﬁ,. + aﬂf) + (8= 87) (05 + 8ar)]x5

(A4)
(if) RW coupling (equation (3))
Tr{ —é[ﬁfw, ﬁs]elzuzu,n(ﬂfﬁjwuaa)} = —lg,-j(ﬁiaﬂj - 5?33}‘ + B0 — 5?33?))(5 (A5)
and (iii) OPO-like coupling, as defined in equation (4)
1| yOPO A ] (Braf+ g4
Tr{ —;[Hij ', ps]e Sm i (81848, ﬂ)} = —1g; (@'aﬂj — B0+ B8;0 45 — 5?5@)%- (A6)

For what concerns the biased part of the dynamics defined in equation (9) we have
Tr { . p]e =i na) } - zfi+(s)(aﬁiaﬁ + iﬂ,ﬂj‘)xs(..., Bis.)
— £ (870 + 5105+ 1)xs (s Bionr)s (A7)

where i refers here to the bath of reference (from which the counting process K;is defined). Combining the above
equations we can define the Fokker—Planck equation ruling the dynamics of the generating function x.
Decomposing 3; in terms of real and imaginary parts, i.e., 3; = p; + ig;, we can write the Fokker—Planck
equation into a matrix form as a function of the vector p” = (p,, q;, ..., py» qy) and corresponding derivative

vector 85 = (8 pp Ogpes Ops 3qN) as presented in equation (12). Notice that the moments p; and g, are
respectively related to the position (x;) and momentum (y;) of the ith oscillator.

References

[1] Garrahan] P and Lesanovsky 12010 Phys. Rev. Lett. 104 160601
[2] Hickey] M, Genway S, Lesanovsky I and Garrahan J P 2012 Phys. Rev. A 86 063824
Hickey ] M, Genway S, Lesanovsky I and Garrahan J P 2013 Phys. Rev. B 87 184303
[3] Budini A2011 Phys. Rev. E84011141
LiJ,LiuY, PingJ,LiS-S, LiX-Qand Yan Y 2011 Phys. Rev. B84 115319
Garnerone S 2012 Phys. Rev. A 86 032342
Horowitz] M 2012 Phys. Rev. E85 031110
Leggio B, Napoli A, Messina A and Breuer HP 2013 Phys. Rev. A88 1
Znidaric M 2014 Phys. Rev. Lett. 112 040602
[4] Pigeon S, Fusco L, Xuereb A, De Chiara G and Paternostro M 2015 Phys. Rev. A92 013844
[5] Pigeon S, Xuereb A, Lesanovsky I, Garrahan J P, De Chiara G and Paternostro M 2015 New J. Phys. 17 015010
[6] Touchette H2009 Phys. Rep. 478 1
[7] Gardiner CW and Zoller P 2004 Quantum Noise (Berlin: Springer)
[8] Schleich W P 2001 Quantum Optics in Phase Space (Berlin: Wiley)
Carmichael HJ 2002 Statistical Methods in Quantum Optics I (Berlin: Springer)
[9] Laub A 1979 IEEE Trans. Autom. Control 24913
[10] Kurchan] 1998 ]. Phys. A: Math. Theor. 313719
Lebowitz ] and Spohn H 1999 J. Stat. Phys 95 333
[11] Evans D] and Searles D] 2002 Adv. Phys. 517

13


http://dx.doi.org/10.1103/PhysRevLett.104.160601
http://dx.doi.org/10.1103/PhysRevA.86.063824
http://dx.doi.org/10.1103/PhysRevB.87.184303
http://dx.doi.org/10.1103/PhysRevE.84.011141
http://dx.doi.org/10.1103/PhysRevB.84.115319
http://dx.doi.org/10.1103/PhysRevA.86.032342
http://dx.doi.org/10.1103/PhysRevE.85.031110
http://dx.doi.org/10.1103/PhysRevA.88.042111
http://dx.doi.org/10.1103/PhysRevLett.112.040602
http://dx.doi.org/10.1103/PhysRevA.92.013844
http://dx.doi.org/10.1088/1367-2630/17/1/015010
http://dx.doi.org/10.1016/j.physrep.2009.05.002
http://dx.doi.org/10.1109/TAC.1979.1102178
http://dx.doi.org/10.1088/0305-4470/31/16/003
http://dx.doi.org/10.1023/A:1004589714161
http://dx.doi.org/10.1080/00018730210155133

10P Publishing

NewJ. Phys. 18 (2016) 013009

[12] Seifert U2005 Phys. Rev. Lett. 95 040602

Esposito M and Van den Broeck C 2010 Phys. Rev. Lett. 104 090601

Seifert U2012 Rep. Prog. Phys. 75 126001
[13] Rékos A and Harris R ] 2008 J. Stat. Mech. P05005
[14] Saito K and Dhar A 2007 Phys. Rev. Lett. 99 180601
[15] Rieder Z, Lebowitz ] L and Lieb E 1967 J. Math. Phys. 8 1073

Asadian A, Manzano D, Tiersch M and Briegel H ] 2013 Phys. Rev. E87 012109

Nicacio F, Ferraro A, Imparato A, Paternostro M and Semido FL 2015 Phys. Rev. E91 042116
[16] Collett M J and Gardiner CW 1984 Phys. Rev. A 30 1386
[17] Purdy TP, YuP-L, Peterson R W, Kampel N S and Regal C A 2013 Phys. Rev. X3 031012
[18] Mahboob I, Okamoto H, Onomitsu K and Yamaguchi H 2014 Phys. Rev. Lett. 113 167203
[19] CiracJ1, Blatt R, Zoller P and Phillips W D 1992 Phys. Rev. A 46 2668
[20] Velizhanin K A, Sahu S, Chien C-C, Dubi Y and Zwolak M 2015 Sci. Rep. 5 17506

S Pigeon et al

14


http://dx.doi.org/10.1103/PhysRevLett.95.040602
http://dx.doi.org/10.1103/PhysRevLett.104.090601
http://dx.doi.org/10.1088/0034-4885/75/12/126001
http://dx.doi.org/10.1088/1742-5468/2008/05/P05005
http://dx.doi.org/10.1103/PhysRevLett.99.180601
http://dx.doi.org/10.1063/1.1705319
http://dx.doi.org/10.1103/PhysRevE.87.012109
http://dx.doi.org/10.1103/PhysRevE.91.042116
http://dx.doi.org/10.1103/PhysRevA.30.1386
http://dx.doi.org/10.1103/PhysRevX.3.031012
http://dx.doi.org/10.1103/PhysRevLett.113.167203
http://dx.doi.org/10.1103/PhysRevA.46.2668
http://dx.doi.org/10.1038/srep17506

	1. Introduction
	2. General framework
	2.1. Modelling a harmonic network
	2.2. Unraveled statistics and thermodynamics of trajectories
	2.3. Phase-space representation and the generating function
	2.4. Gaussian ansatz and large deviation function

	3. Local FTs
	3.1. FTs in thermodynamics of trajectories
	3.2. Example 1: quantum harmonic oscillator
	3.3. Example 2: RW-type harmonic chain
	3.4. Example 3: two thermal squeezed modes
	3.5. Example 4: two oscillators coupled through relative distance
	3.5.1. Dependence on the inter-oscillator coupling strength g
	3.5.2. Dependence on the coupling strength to the baths &#x003B3;


	4. Conclusion
	Acknowledgments
	Appendix. Phase-space representation of linear and bilinear dynamics of quantum oscillators
	References



