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Abstract
Wepresent a generalmethod to undertake a thorough analysis of the thermodynamics of the quantum
jump trajectories followed by an arbitrary quantumharmonic network undergoing linear and bilinear
dynamics. The approach is based on the phase-space representation of the state of a harmonic
network. The large deviation function associatedwith this system encodes the full counting statistics
of exchange and also allows one to deduce fluctuation theorems (FTs) obeyed by the dynamics.We
illustrate themethod showing the validity of a local FT about the exchange of excitations between a
restricted part of the environment (i.e., a local bath) and a harmonic network coupledwith different
schemes.

1. Introduction

The recent development of thermodynamics of trajectories for quantum systems promises to shed new light on
the thermodynamics of quantum systems [1–4]. Based on the densitymatrix representation of a system it allows,
through the large deviation function, to access the full counting statistics of the exchange of excitations between
a system and its environment but also to explore the long-time behaviour of a system, revealing phenomena such
as dynamical phase transitions [2, 5]. However, similarly to thermodynamics of trajectories for classical systems
[6], the effectiveness of themethod is usually limited by the practical difficulty of obtaining the large deviation
function. As the densitymatrix of the system reaches a long-time limit, themethod of thermodynamics of
trajectories requires, in principle, significant computational effort tofind the large deviation function.
Furthermore for a system evolving in an infinite-dimensional Louiville space the situation is evenmore difficult
because necessary truncation of the spacewill be needed, leading to an approximated large deviation function.

In this article wewill present a generalmethod for the determination of the large deviation function for a
large variety of systems evolving in an infinite-dimensional Louiville space, allowing a sensible reduction of
computational power andwithout need of approximations.We present amethod for the full characterisation of
the exchange of excitations with the environment for a general network of quantumharmonic oscillators,
undergoing linear and bilinear dynamics. Ourmethod is based on two essential steps: (i)a quantum-optic
phase-space representation of the network’s degrees of freedom, and (ii)amultidimensional Gaussian ansatz.

Wewill present the general framework in section 2, introducing the large deviation function that encodes the
statistics for the exchange of excitations. Themethodwhichwewill detail can handle all possible linear and
bilinear interactions. In section 3wewill showhow thismethod can be used to numerically verify local detailed
FTs on the exchangewith a given bath.Wewillfirst consider the simplest case of a single harmonic oscillator,
whose large deviation function has recently been analytically derived [4] using a similar approach (section 3.2)
followed in section 3.3 by a harmonic chainwhere the inter-oscillator coupling is rotating-wave-like (RW-like).
Following this, wewill consider two coupled oscillators where each is damped by a given thermal bathwith a
squeezing-like (section 3.4) and position–position-like (section 3.5) inter-oscillator coupling.
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2.General framework

In this sectionwewill detail the derivation of the large deviation function for an arbitrary network of quantum
harmonic oscillators.Wewill start by defining ourmodel (section 2.1) and its dynamics, followed by the
unraveling of the considered exchange process and its related thermodynamics (section 2.2). In section 2.3we
will present the phase space representation of the network, and the quantumFokker–Planck equation derived
from it. Using aGaussian ansatz wewill formally define the large deviation function (section 2.4).

2.1.Modelling a harmonic network
Considering a set ofN quantumharmonic oscillators, the networkHamiltonian can bewritten as

H H H ,
i

N
i i j

N
ij1

ˆ ˆ ˆå å= += >
in terms of single-oscillator (Hi

ˆ ) and two-oscillator (Hij
ˆ )Hamiltonians. For

simplicity, and because of our later restriction toHamiltonians that are atmost quadratic in the operators, we
restrict ourselves to bipartite coupling between oscillators. Aswewill be interested only in linear and bilinear
Hamiltonians, we can explicitly write the single-oscillatorHamiltonians as

H a a d t a a a a h.c. . 1i i i i i i i i i i i
1

2( ) ( ) ( )ˆ ˆ ˆ ( ) ˆ ˆ ˆ ˆ ( )† †  w w= + + + + ¡ +

This corresponds to theHamiltonian of a harmonic oscillator, of frequency ,iw driven by a bounded time-
dependent force d t D ,i i∣ ( )∣  undergoing singlemode squeezingwith rate .i ¡ Î The coupling between
oscillators encoded through Hij

ˆ can take three different forms

(i) the position–position coupling (x–x type)

H g a a a a 2ij
xx

ij i i j j( )( )ˆ ˆ ˆ ˆ ˆ ( )† †= + +

(ii) the RWcoupling

H g a a a a 3ij ij i j i j
RW ( )ˆ ˆ ˆ ˆ ˆ ( )† †= +

(iii) the two-mode squeezing (OPO-like) coupling

H g a a a a , 4ij ij i j i j
OPO ( )ˆ ˆ ˆ ˆ ˆ ( )† †= +

where in each casewe have g gij ji= . The dynamics of the system is given by themaster equation ,t ˆ [ ˆ]r r¶ =

where r̂ is the densitymatrix of the full network and the superoperator ı H• , • •[ ] [ ˆ ] [ ] = - + describes the

systemdynamics.
i

N
i i1( )  å= += is the global dissipator composed of two types of exchange channels:

number damping channels and squeezing damping channels, respectively described by the superoperators

a a a a a a a a• 2 • •, 2 • •, 5i i i i i i i i i i i( ) ( ){ } { }[ ] ¯ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ( )† † † † = G - + G -

and

a a a a a a a a• 2 • •, 2 • •, . 6i i i i i i i i i i i( ) ( ){ } { }[ ] ¯ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ( )† † † † = L - + L -

Based on this Lindblad formof themaster equation, wewill nowpresent ourmethod to unravel the statistics of
exchange of excitations between the network and a given bath.

2.2. Unraveled statistics and thermodynamics of trajectories
To build the trajectories wewill follow the approach introduced in [1]. To do sowe have to define the observable
of interest for the exchange of excitations between the system and its environment.We introduce a counting
process described by the numberKr, which gives the number of the quanta exchanged between the system and
part of the environment, a given bath r, defined as

K K K , 7r r r≔ ( )-- +

whereKr± are the numbers of quanta entering and leaving the oscillator coupled to the bath r.We note here that
the index rwill be used throughout to denote the ‘reference’ bath forwhichwe are studying the exchange
statistics.

The probability of obtaining a given value ofKr after a time twill be defined as p t PTrK
K

r

r{ }( ) ˆ r̂= where

P
Krˆ is a projector over the subspace associated toKr excitations. From the probability p tKr

( )we can define the
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moment generating function, also known as the dynamical partition function, as

Z s t p t, e . 8r
K

sK
K

r

r
r

( ) ( ) ( )å= -

Fromthe large deviation theoryweknow that in the long-time limitwehave Z s t, e ,t sr( ) ( )~ q where sr ( )q is the large
deviation function.The largedeviation function is the fundamental building blockof the theoryof thermodynamics
of trajectories and encodes the long-timedynamics of the system relatively to a given countingprocessKr.

Once defined, the counting process numberKr is used to bias the trajectories as in equation (8) [1]. A biased

densitymatrix can be defined as Pe ,s K
sK K

r

r rˆ ≔ ˆ ˆår r- and the corresponding dynamics is given by the biased

master equation ,t s s s sˆ [ ˆ ] [ ˆ ] r r r¶ = + where is the superoperator associated to the unbiased systemwhile

s is the non-trace-preserving part of the dynamics emerging from the biasing procedure and encoding the
statistics of interest. For the considered counting process we have

a a a a• 2 e 1 • 2 e 1 • . 9s r
s

r r r
s

r r( ) ( )[ ] ˆ ˆ ¯ ˆ ˆ ( )† † = G - + G --

The large deviation function sr ( )q can be definedwith respect to the biased densitymatrix ŝr as:

s
t

lim
1

ln Tr , 10r
t

s{ }( ) ˆ ( )⎡⎣ ⎤⎦q r=
¥

where the index r refers to reference bath. In order to solve the above equationwewill now consider the phase-
space representation of the system.

2.3. Phase-space representation and the generating function
The phase-space representation is awell-establishedmethod commonly used in quantummechanics to deal
with quantumharmonic oscillators [7, 8]. The advantage of this approach is that a harmonic oscillator, evolving
along an infiniteHilbert space, can be fully characterised bymeans of a quasi-probability distribution evolving in
the complex plane. Inwhat followswewill concentrate on the characteristic function associatedwith this quasi-
probability.Wewill consider the symmetrically-ordered generating function

a a,..., Tr exp i , 11s N
i

N

i i i i s1
1

( ) ( )ˆ ˆ ˆ ( )†⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎡
⎣⎢

⎤
⎦⎥

⎫
⎬
⎭

*åc b b b b r= +
=

but a similar approach can be conductedwith other representations. Details of the derivation of the phase-space
representation of different parts of the dynamics can be found in appendix.We can collect the different
contributions to the dynamics in termof the complex coordinates p qi ,i i ib = + writing the quantumFokker–
Planck equation, associatedwith the generating function ,sc in the following form

p A p D p d p

F p F p

p F FTr . 12

t s
T T T

T
s

T
s

T
s s s

p

p p

p

1

2

1

2( )
( )

{ }

· · · · ·

· · · ·

· · ( )

⎡⎣

⎤⎦

c

c

¶ = ¶ + +

+ ¶ ¶ +

- ¶ +

+ +

- -

Here p q p qp , , , ,T
N N1 1( )= ¼ is the vectorpi and qi conjugatefields of respectively the position andmomentum

quadratures. Thefirst line of equation (12) refers to theunbiasedpart of thedynamics, given by the superoperator
, while the second and third refer to the biasedpart, given by .s The driftmatrix A is defined as

A G
2 2

2 2
, 13

i

N i i i i i

i i i i i1

¯

¯
( )

⎛

⎝
⎜⎜

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

⎞

⎠
⎟⎟

w

w
= Å

- ¡ -G + G - + ¡

+ ¡ ¡ - G + G
+

=

I R

R I

where G is the couplingmatrix, which can bewritten ass

G

G G

G G

G G

0

0

0

14

N

N

N N

2,1 ,1

1,2 ,2

1, 2,

( )

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
=




   

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with G Gi j j i, ,= and the following coupling scheme-dependent definitions

g x x

g

g

g

g

G

0 0
2 0 type ,

0

0
RW type ,

0

0
OPO like type .

15i j

ij
xx

ij

ij

ij

ij

,
RW

OPO

( – )

( )

( )

( )

⎧

⎨

⎪⎪⎪⎪

⎩

⎪⎪⎪⎪

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

=
-

-

In equation (12), D is the noisematrix defined as

D
2 2

2 2
. 16

i

N i i i i

i i i i1

( ) ( )
( ) ( )

¯

¯
( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟= Å

- G - G + L - L

- L - G - G - L=

R I

I R

Finally, for what concerns the unbiased part of the dynamics we have the driving vector
d t d td 0, , , 0, .T

N N
T

1 1( ( ) ( ))w w= ¼ With these definitionswe can describe all the processes addressed so far.
The second and third lines of equation (12) account for the biased part of the dynamics. Indeed, we have

f s

f s
F

0

0
, 17s

i

N

ir
i

i1

( )
( )

( )
⎛
⎝⎜

⎞
⎠⎟d= Å

=





where r labels the reference bath, and f s e 1 e 1 .i i
s

i
s( ) ( ) ¯ ( )= G -  G -

- Wecan now rewrite equation (10) in
terms of the generating function sc as

s
t

0lim
1

ln . 18r
t

s( ) ( ) ( )⎡⎣ ⎤⎦q c=
¥

This is possible owing to 0Tr ,s s{ }ˆ ( )r c= where 0s ( )c is the volume of the biased quasi-probability
distribution, i.e., the biasedWigner function in the present case.We remark that this quantity is not dependent
on the choice of the specific type of phase-space representation. Notice that the above definition is valid for any
harmonic network, subjected to an arbitrary dynamical process.We now restrict our attention to linear and
bilinear processes in order to proceed furtherwith our analysis in a fully analytical form.

2.4. Gaussian ansatz and large deviation function
To solve equation (18)wenow consider amultidimensional Gaussian ansatz. Its validity relies on the fact that,
when undergoing linear or bilinear dynamics, aGaussian state remains Gaussian at all times. This argument can
be easily extended to non-Gaussian initial conditions converging with time toGaussian states, as described by
the central limit theorem. This allows us to formulate the problem in terms of the finite number of parameters
entering theGaussian ansatz. Consideringmultiple coupled harmonic oscillators, each associated to a two-
dimensional phase space (generated by pi and qi), our ansatz reads

A ı p x p pexp , 19s s
T

s
T

s
1

2( )· · · ( )c S= -

where x y x yx , , , ,s
T

N N1 1( )= ¼ is the vector of expectation values of position andmomentumof each oscillator

(here k ki i
ˆ= á ñwith k x y,= ). The covariancematrix sS can be decomposed in terms of the two-dimensional

blockmatrices as

, 20s

N

N

N N N N

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

( )

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
S

S S S
S S S

S S S

=




   


where ,i j
i j
xx

i j
xy

i j
yx

i j
yy,

, ,

, ,

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

s s

s s
S = and e f f e e fi j

ef
i j j i i j,

1

2 ( )ˆ ˆ ˆ ˆ ˆ ˆs = á + ñ - á ñá ñ e f x y, ,i i i i( ˆ ˆ { ˆ ˆ })Î . By definition, we have

.i j j i
T

, ,S S= As the biased densitymatrix ŝr is not normalised, we have to take into account the normof the
generating functionAs.MoreoverAs is the central quantity of interest sincewe notice, from equation (18), that
the large deviation function is given by

s
t

A tlim
1

ln . 21r
t

s( ) ( ) ( )⎡⎣ ⎤⎦q =
¥

Applying this ansatz to equation (12)we can extract the time evolution of the normAs, the coordinate vector
x ,s and the covariancematrix .sS Notice that the s index illustrates the dependence of these elements upon the
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bias parameter s.Wefind that

A t t t tF x F x F2 ln Tr Tr . 22t s s s s
T

s s s{ } { }( ) · ( ) ( ) · · ( ) ( )S¶ = + -+ + -

For thefirstmomentwe have

t t t tx A F F x d , 23s s s s s˙ ( ) · ( ) · ( ) ( ) ( )⎡⎣ ⎤⎦S= - + +- +

and for the second

t t t

t t

A F A F

F F D2 . 24

s s s s s
T

s s s s

( ) ( )˙ ( ) · ( ) ( ) ·

( ) · · ( ) ( )

S S S

S S

= - + -

+ + -

- -

+ +

Equation (22)–(24)define the evolution of the generating function at any time, governed by the biasedmaster
equation. To obtain the unbiased dynamics we simply have to take s 0, or equivalently F 0.s  Going one
step further, using equation (22), we have that the large deviation function is

s
t

F F x F xlim
1

2
Tr d . 25r

t

t

s s s s
T

s s
0

{ }( ) · ( ) ( ) · · ( ) ( )⎡⎣ ⎤⎦òq t t t tS= - +
¥

+ - +

This definition is valid for any harmonic network undergoing linear and bilinear processes. From the counting
process considered here and the associatedmatrix F ,s

 wefind

s
t

f s s t k s t f slim
1

2
, , 2 d , 26r

t

t

r
k x y

r
k

r r
0 ,

2( ) ( ) ( ) ( ) ( ) ( )
⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎡⎣ ⎤⎦
⎫
⎬
⎭ò åq s t= + -

¥
+

=
-

where themeans and variances are here dependent on time t, and on the bias parameters s, while r refers to the
bath under consideration.

It is interesting now to look at some specific cases. Let us assume that the system converges towards a
stationary state, inwhich case tlimt s s( ) ˜S S=¥ with sS̃ the covariancematrix of the stationary solution of
equation (24).Wefind that

s
t

F F x F x
1

2
Tr lim

1

2
d . 27r s s s

t

t

s
T

s s
0

{ }( ) · ˜ ( ) · · ( ) ( )⎡⎣ ⎤⎦òq t t tS= - ++ -

¥

+

Aswe are ultimately interested in the long-time behaviour, a simple approximation can be used to obtain the
last termof equation (27)without the need of the full time evolution of txs( ) and t .s ( )S It consists in replacing
the stationary covariancematrix sS̃ in the evolution equation of txs( ) (equation (23)). This approachwas used
in [4] to solve analytically the large deviation of a driven harmonic oscillator coupled toN baths.

In themore restrictive case where theHamiltonian is quadratic in creation and annihilation operators (i.e.,
we have no driving), equation (23) achieves a stationary solutionwith x 0.s = Therefore, the last term in
equation (25) drops, leaving a large deviation function depending only on the stationary biased covariance
matrix sS̃ as

s F F
1

2
Tr . 28r s s s{ }( ) · ˜ ( )q S= -+ -

Wehave thus seen how, through equations (23) and (24), we can obtain the large deviation function
associated to a given counting processKr, this being the net number of excitations exchangewith the r th bath in
contact with the system, as long as the oscillators undergo linear and bilinear dynamics.Moreover, assuming the
existence of stationary solutions, the complexity of the problemdramatically reduces. In this case, we do not
need the full system evolution, but only its stationary solution given by the large deviation approach.Here the
problem corresponds to solving an algebraic Riccati equation (equation (24)) for different values of the bias
parameters s. This type of algebraic equation is frequently encountered in dynamical control problems. Accurate
numericalmethods exist to solve this type of equation (see [9] for formal approaches to the solution of a Riccati
equation). Through a phase-space approach complemented by a suitable Gaussian ansatz, we have presented a
powerfulmethod to access the large deviation function exactly. As stated above the large deviation function
encodes by definition the full counting statistics, since s 1 ,s

n
r s

n
n0( )∣ ( )q k¶ = -= where nk is the nth cumulant

of the counting processKr [1–5]. However this function encodes other crucial thermodynamic information
about the system, one example of which is given by the possibility to formulate FTs. Ourmethod gives access to
this invaluable source of information, for a large variety of quantum systems, through reasonable computational
effort, as wewill nowdemonstrate.
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3. Local FTs

Wenow introduce the general concept of a FT (section 3.1) and its connectionwith the thermodynamics of
trajectories. In section 3.2 and 3.3we focus on a single harmonic oscillator and a harmonic chain, respectively,
and determine the associated FT.We showhowour approach is able to recover the results of previous
investigations and to go beyond themby providing an explicit route for the approach of physically relevant
forms of coupling among the oscillators belonging to a given network (see section 3.4 and 3.5).

3.1. FTs in thermodynamics of trajectories
FTs are used to fully characterise thefluctuations endured by a systemwhile interactingwith an environment
[10, 11]. Several FTs can be formulated, depending on the scenario considered.Wewill here focus on FTs for a
system in a stationary state.More precisely, wewill concentrate on local FTs, related to the exchange between a
system and part of the environment. The idea is that it is not always possible to keep track of all dissipation
processes undergone by the system. In such cases local FTs allow to discussfluctuation relations in the exchange
processes between a system and part of its environment.Moreover, as wewill see, while global FTs can be
formulated in awide variety of physical contexts, for local FTs the results are less general. For example,
considering the total exchange between a system an its environment, FTs alwaysfind a definition [11, 12]
(eventually through extended versions of equation (29) [13]), while in the local case FTs cannot always be found
aswewill see. This is not dependent onwether the systemunder consideration is classical or quantum, but it is a
consequence of the possibility to have some correlations in the exchange of excitations with different parts of the
environment which gives valuable information on the thermodynamical behaviour of the system.

Consider a net number counting process such as K K Kr r r≔ -- + (wherewe remind thatKr± stands for the
net number of quanta leaving and entering into the system from a specific bath labeled r), p tKr

( ) is the
probability to observe a given net numberKr of excitations exchanged after a time t, and p tKr

( )- is the probability
to observe the counting process number K .r- If we have

p t

p t
lim e , 29

t

K

K

K sr

r

r r
( )
( )

( )=
¥ -

where sr is independent ofKr, then a local FT exists with respect to the r th bath.We know that the existence of a
FT is, by definition, associatedwith the existence of a specificGallavotti–Cohen symmetry relation of the large
deviation function sr ( )q related to the counting processKr [10]. This can bewritten explicitly as

s s s , 30r r r( )( ) ( )q q= -

where the symmetric point sr is given in equation (29). The derivation of the latter can be quite involved, whereas
determining the existence of symmetry properties of a function can be done efficiently,making the large
deviation function a powerful tool to determine FTs. In order to illustrate the opportunity embodied by the
method presented here, in relation to the determination of fundamental thermodynamic relations, wewill now
focus on the simple example of a single quantumharmonic oscillator.

3.2. Example 1: quantumharmonic oscillator
For a single harmonic oscillator of frequencyω coupled tomultiple baths, the large deviation function can be
obtained analytically using themethod introduced in [4] and highlighted here.We can access the exchange
statistics between the system and a given bath, considering the counting processKr as previously defined. In this
case wefind that the symmetric point of the large deviation function sr ( )q is given by

s ln , 31r
r

r

i r

N
i

i r

N
i

¯
¯

( )
⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

å
å

=
G
G

G

G
¹

¹

where iG ( īG) refers to the rate of exchange of excitations from (to) the system to (from) the ith bath. First of all, in
this case we have that a local FT exists in any case andwhatever the environment architecture could be.Moreover
it depends only on the rate of excitation exchange between the system and the baths, and not on the internal
systemparameters. To illustrate such features, we consider the simple case of two thermal baths coupledwith the
same strength to the system.Wehave n 1 2i i( ¯ )gG = + and n 2,i i

¯ ¯ gG = with n k Texp 1i iB
1¯ [ ( ) ]w= - - the

density of excitations in the ith bath [7]. In this case, the symmetric point is given by

s
k T T

1 1
, 321

B 1 2

( )
⎛
⎝⎜

⎞
⎠⎟

w
= -

which corresponds to the typical entropyflux taking place between two baths at temperaturesT1 andT2.
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From equation (31)we can see that with only two connected bathswe have s s ,2 1= - indicating that the
statistics of exchange between the system and one bath is strongly related to thatwith the second. Considering
thatwe are addressing a simple scenario where the system cannot store or transform any of the absorbed
excitations, whatever enters the system fromone side gets out from the other sidewith the same statistics.
Consequently wewill have an identical and opposite statistics leading to s s ,1 2( ) ( )q q= - and thus s s .2 1= - The
system just conducts fromone bath to another, with the statistical properties of the exchange of excitations
depending on the overall environment. Under these circumstances it becomes clear that the statistics of heat
flowing into or out of the systemwill be the same as the ones revealed by s ,1( )q while the total net exchangewith
both bathswill be null. As a consequence, we can deduce that the system acts as a perfect thermal conductor.

As this elementary example shows, determining the large deviation function can directly lead to the
definition of a local FT. Themethod used here to obtain the large deviation function is similar to the one
developed in thefirst section, with the nuance that here exact results can be found because of the simplicity of the
system [4]. Formore complex systems a numerical calculation for the stationary solution of equation (24) is
necessary.

Fromnowonwewill consider different types of harmonic chains where the chain is connected to the
environment by its two end oscillators. Each end oscillator is coupled to a thermal bathwith identical coupling
strength γ, such that n 1 2i i( ¯ )gG = + and n 2.i i

¯ ¯ gG = One bathwill be cold (T1) and one hot (T TN 1> ).

3.3. Example 2: RW-type harmonic chain
Let us consider a chain ofN coupled harmonic oscillators of frequency .iw Given that only the first and last
oscillators are coupled to the environment, thematrices D and A are defined as

n

n
D

2

2 1 0

0 2 1
33

i

N i i i N

i i i N1

,1 ,

,1 ,

( )( )
( )( )

¯

¯
( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

g d d

d d
= - Å

+ +

+ +=

and

A

A G

G A G

G A

A

0 0

0

0 0

0 0 0

, 34

N

1 1,2

1,2 2 2,3

2,3 3 ( )

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
=





    


with

A 2

2

, 35i

i i N i

i i i N

,1 ,

,1 ,

( )
( )

( )

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

g
d d w

w
g

d d
=

- + -

- +

andwith Gi j, the two-oscillator RW-like couplingmatrix as defined in equation (15).
Infigure 1we show the large deviation function obtained from the steady-state solution of equation (24)

related to the exchangewith the bath 1 for identical oscillators ( iw w= ). The different curves correspond to
different bath temperaturesT1, while T T T k .N 1 BwD = - = The bias parameter is normalisedwith respect
to s k T ,c B 1w= where s sc= corresponding to a branch point.

Based on the determination of s1( )q as presented infigure 1, theGallavotti–Cohen symmetry can be
obtained, leading to a possible FT. To that purpose we need to determine smin, theminimumof s ,1( )q and check
if it corresponds to an axis of symmetry. Note that here, imposed by theflexibility of the approach encompassing
awide variety of systems, the symmetry property of the large deviation function cannot be directly derived from
the definition of sr ( )q in equation (25), unlike what was found in [14] for a related system. In the upper panel of
figure 2, we represent the possible local FT s s2r min= between the system and each bath, such as

s smin .r rmin( ) ( ( ))q q= Todetermine if smin is a symmetry point, we define the following quantity

s

s
Sym

2
. 36r

r

r

min

min

( )
( ) ( )

q

q
=

Should sr ( )q be symmetric with respect to s s2r min= we should have s 0 0r r r( ) ( )q q= = by definition, and so
Sym 0.1  The behaviour of equation (36) against k TB 1 w is presented in the lower panel offigure 2, wherewe
appreciate that Sym 10r

2< - throughout thewholewindowof sampled temperatures, thus providing strong
numerical evidence of the symmetry of the large deviation function. A criterion based on Sym 01  is a valid test
for symmetry whenever sr ( )q is continuously differentiable, as in our examples. It allows us to incorporate
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numerical errors introducedwhen solving theRiccati equation and provides a qualitative understanding of the
behaviour of local FTs.

Figure 2 shows clearly that (i) a local FT exists at any temperature and that (ii) it behaves exactly as for the

single harmonic oscillator case, i.e., s
k T T

1 1
.1

B 1 2

⎛
⎝⎜

⎞
⎠⎟

w
= - The independence of the FT obtained on the size of

the systemhas to be connected to the type of coupling between the oscillators, which is responsible for the
conservation of the number of excitations. As soon as an excitation enters the system another has to exit. This
leads to the same conclusion as before that the system is a perfect heat conductor because s s ,1 2= - as shown in
figure 2. The convergence to 0 of s1 and s2 at high temperatures indicate that the system thermalises also locally.
Indeed, for any network of oscillators connected to two baths that is stable in the sense that the eigenvalues of the
A matrix have a all negative imaginary part will give the exact same result, as long as the coupling is of RW-type
in between all oscillators. This independence on the heat conduction on the geometry of the system considered
can be the cause for the breakdown of Fourier law observed for harmonic chains [15].We next turn our attention
to different kinds of coupling between oscillators.

Figure 1. Large deviation function s1 ( )q for a harmonic chain ofN=10 oscillators. The bias parameter s is normalisedwith respect to
s k T .c B 1w= Each colour corresponds to a different temperature of the (cold) bath 1 : T k0.51 Bw= in dark blue, T k1 Bw= in
light blue, and T k51 Bw= in yellow (respectively from lower to higher for s 0> ). The bath parameters are such that the
temperature difference isfixed to T T T k ,N 1 BwD = - = g 0.1 ,w= and 0.1 .g w=

Figure 2. Symmetry of the large deviation function s .i ( )q In the upper panel the symmetric points si of the large deviation function are
shown, normalised by sc, and on the lower panel is shown Sym ,i the symmetry criterion of si ( )q as defined in equation (36). The blue
line refers to the exchangewith the bath 1 and the red line to the exchangewith the bath 2. The dashed line corresponds to the
threshold defined, belowwhich s( )q is assumed to be symmetrical. Both are shown as a function of the bath temperatureT1. Other
parameters are taken to be the same as for figure 1.
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3.4. Example 3: two thermal squeezedmodes
Herewe consider an archetypal scenario often encountered in quantumoptics, i.e. two harmonic oscillators
interacting through a squeezingHamiltonian and each connected to a thermal bath. Thismodel describes a large
variety of physical systems fromoptical parametric amplification [16] to optomechanical systems [17] and other
hybrid quantum systems [18]. TheHamiltonian is

H a a ga a
1

2
h.c. , 37

i
i i

1

2

2 1( )ˆ ˆ ˆ ˆ ˆ ( )†⎜ ⎟⎛
⎝

⎞
⎠ åw= + + +

=

wherewe have simplified our notation by setting .1 2w w w= = Applying the approach presented previously, we
have

g

g

g

g

A

2
0

2
0

0
2

0
2

38( )

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

g
w

w
g

g
w

w
g

=

- -

-

- -

-

for the driftmatrix, while the noisematrix will be similar to the one previously encountered in equation (33).
Similarly towhat has been done previously, we compute the large deviation related to the net number of

excitations exchange between the oscillator 1 and its bath.Determining theminimumof this function and
evaluating its symmetry properties we found, as represented infigure 3, that (i)a FT indeed exists and (ii)it
matches the relation s k T T1 1 .1 B 1 2( )( )w= +

Considering now the exchange between the system and the second bathwe find that the respective local FTs
agreed, such that s s .2 1= The systemoperates here emitting heat to both the baths (s 0r > )with a rate
depending on both bath temperatures but independent of inter-oscillator coupling. This independence derive
from the systembeing in a global state (twomode squeezed state) damped through local channels. This result is
in direct contrast withwhatwas observed previously. This behaviour derives from the dissimilarity between the
type of inter-oscillator coupling and the onewith the baths, leading to a situationwhere the system cannot
thermalise.

Note that the choice of two identical oscillators can andwas extended tomore oscillators with the present
method.We found that for a chain of identical oscillators coupled through squeezing couplingwith damping on
thefirst and last oscillators, there exists a stable solution for the systemonly for an even number of oscillators,
while the local FTs remain unchanged.

With these two examples, we have seen two extremely different local FTs and thermodynamic behaviour. Let
us next consider an intermediate example.

Figure 3. Symmetry of the large deviation function s1 ( )q for two oscillators coupled through squeezing. In the upper panel the
symmetric point s1 of the large deviation function normalised over sc and on the lower panel evaluation of Sym ,1 the symmetry
criterion in equation (36). The other parameters are as infigure 1, except the number of oscillators which is reduced to 2.
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3.5. Example 4: two oscillators coupled through relative distance
Consider now two oscillators coupled through an x x1 2

2( ˆ ˆ )- coupling (such as themotional degrees of freedom
of two trapped ions, for example [19]). Each oscillator is in contact with a bath at a given temperature. The
interest in this type of coupling arises from the fact that it combines both a conservative interaction and a
squeezing one, corresponding to a combination of both the cases presented previously. Due to this combination
the results obtained are quite different to the ones obtained before.

We have for the driftmatrix A

g g

g g

A

2
0 0

2
2

2 0

0 0
2

2 0 2
2

, 39( )

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

g
w

w
g

g
w

w
g

=

- -

+ - -

- -

- + -

while D remains as in equation (33). If previously the outcome of the system and associated FTswere
independent of the systemparameters (oscillator frequenciesω and coupling strength g), here the situation is
very different.Wewill therefore focus on the dependence on two key parameters:the coupling strength g
between oscillators, andthe coupling strength γ to the baths.

3.5.1. Dependence on the inter-oscillator coupling strength g
Infigure 4 large deviation functions (related to the exchangewith bath 1) corresponding to various coupling
strengths g are shown. For s 0> wehave that the smaller the coupling (blue curve), theflatter s .1( )q This can be
directly related to changes of the activity or average net number of quanta exchangedwith the bath
( K t sr s r s 0( )∣qá ñ = ¶ = ), which increases as the coupling g increases. Looking for FTs, we can observe infigure 4
that increasing the coupling g, theminimum smin seems to pass from0 (blue line) to 0.5 sc , wherewe define the
convenient unit s k Tc B 1w= . Simultaneously, the branch point located on the negative values of s tends to 0.
Finally regarding the possible symmetry properties of s ,r ( )q the increase of the coupling leads to a non
symmetric function (connected to the change of position of the negative branch point). On the other hand, when
decreasing the coupling, the negative branch point converges to s ,c- leading to a symmetric large deviation
function associated to FT.

We show this behaviour infigure 5. As previously done (seefigures 2 and 3) the hypothetical FT s s21 min= is
shown as a function ofT1 for different coupling strengths g (same colour code as infigure 4). From these plots we
observe that, by increasing g (frombottom to top curve), s2 min tends to sc. For small coupling (blue, bottom
curve)wehave that s2 min is close to the case where the coupling between oscillators was of RW-type (black
dashed line) as expected, presenting however a finite difference.We see that only in the case of small coupling
strengths between oscillators wefind a local FT. As previously observed, the existence of a local FT, unlike global

Figure 4. Large deviation function for two oscillators coupled through x x1 2
2( ˆ ˆ )- coupling for various coupling strengths g. Blue

g 0.1 ,w= orange g ,w= yellow g 10 ,w= and purple g 100 ,w= while 0.1 .g w= The bath temperature is T k10 ,1 Bw= while
other parameters are as infigure 1.
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FT, is not necessarily guaranteed, as demonstrated here. The non-existence of local FT could be due to partial
correlation effects between the statistics of exchangewith the different baths.

3.5.2. Dependence on the coupling strength to the baths γ
Wenow focus on the coupling strength to the baths, γ, and how it affects potential FTs. To this end, we plot in
figure 6 amap of the large deviation function versus s and γ. The red line corresponds to theminimum found for
given γ, where the dashed part represents the non-symmetric regime.We see that, differently fromwhat
happens for the dependence on the coupling parameter g, the behaviour of the large deviation function against γ
ismore complex. Globally we can distinguish three regimes: (i)aweak coupling regimewhere the large
deviation function is symmetric with smin close to zero; (ii)a strong coupling regimewhere a FT is found to hold,
with a symmetry point tending to s k TB1 1w= when the coupling strength γ increases; (iii)an intermediate
regimewhere a FT is not necessarily defined and the symmetric point is rapidly changingwith γ. These three
regions are connected to the ones found in [20], which discusses the heat conduction across a similar system. The
scaling behaviour of themean energy exchangewith a given bath r ( K t sr s r s 0( )∣qá ñ = ¶ = ) for small and large
coupling is found in ourwork to scale respectively as γ and 1 ,g matching the results in [20].

Figure 5. Symmetry of the large deviation function s .1 ( )q In the upper panel the potential FT s s21 min= normalised. The thin black
dashed line indicates the result obtained for RW-coupling between oscillators (see section 3.3), while the other curves correspond to
various values of g (same colour code as infigure 4). The full line corresponds to the situationwhere s1 is found to correspond to a FT,
while the dashed part to situationwhere is not, relatively to the symmetry criterion Sym1 (equation (36)), as represented in the lower
panel.

Figure 6.Map of the large deviation function s1 ( )q for various coupling strengths to the baths γ (vertical axis) for a temperature of
T k101 Bw= and g 0.2 .w= The red curve represents smin and the dashed part indicates when s1 ( )q is not symmetric with respect to
smin (according to the criterion given in equation (36)). Other parameters are the same as infigure 4.
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The dependence on the bath temperature is presented infigure 7, wherewe focus our attention on potential
FTs. The various curves shown correspond to different values of γ, andwe see that we recover the three regimes
observed infigure 6. For small γ (blue curve)wehave a defined FT close to the result obtained for the RW-type of
coupling (with afinite difference similar to the one previously observed in figure 5), as expected. The
intermediate regime presents less well-defined characteristics (yellow, green andmaroon curves). The impact of
the temperature appears to affect strongly the existence of a FT. In general, we can see that for high temperatures
the range of existence of a FT tends to be enlarged. For lower temperatures however there is also a defined FT.
Notice that fromdistinct symmetry criteria, different resultsmay be found, but giving a qualitatively similar
picture. Finally for strong dampingwe have a defined FT, tending to s k T .B1 1w In this regime the damping
is so strong that the statistics of exchange is only directed by the related bath: the two oscillators appear to be
uncoupled.

4. Conclusion

Wehave presented a general framework to fully characterise excitation-exchange processes between a harmonic
network and its environment. Themethod applies for any network of oscillators with linear and bilinear
network interactions, connected tomany baths (whether thermal or squeezed) and gives access to the large
deviation function attached to a counting process corresponding to the net number of excitations exchanged
between the system and a given bath. After giving details of the frameworkwe focused on the possibility, given a
large deviation function, to derive local FTs related to the exchangewith a given bath. After discussing the
meaning of these theoremswe explored different basic networks: from a single harmonic oscillator to a chain,
considering various coupling schemes between oscillators.We found that for the systems considered a local FT
can generally be found, especially in the case of RW-like coupling.However position–position coupling can lead,
depending on the parameters, to a situationwhere local FTs cannot be defined.

The great versatility of the proposedmethodmakes it applicable tomany photonic, phononic and hybrid
quantum systems, and able to fully characterise the thermodynamics of exchange taking placewith an
environment.
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(equation (36)), as represented on the lower panel.
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Appendix. Phase-space representation of linear and bilinear dynamics of quantum
oscillators

Herewe outline the derivation of the phase space representation for the different terms of the dynamics as
defined in section 2.1, in terms of the symmetrically-ordered generating function as defined in equation (11).

Considering the definition of theHamiltonian dynamics involving a single oscillator, as defined in
equation (1), we have

H ı t ı
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Tr , e 2 d 2
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ı
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i i i i i i i i i

i i s

i i i i
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For the dissipative part, as defined in equations (5) and (6), we have
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Concerning the coupling part between oscillators we have for the different scenarios considered: (i)position–
position coupling, as defined in equation (2)
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(ii)RWcoupling (equation (3))
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and (iii)OPO-like coupling, as defined in equation (4)
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Forwhat concerns the biased part of the dynamics defined in equation (9)wehave
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where i refers here to the bath of reference (fromwhich the counting processKi is defined). Combining the above
equationswe can define the Fokker–Planck equation ruling the dynamics of the generating function .sc
Decomposing ib in terms of real and imaginary parts, i.e., p qi ,i i ib = + we canwrite the Fokker–Planck
equation into amatrix form as a function of the vector p q p qp , , , ,T

N N1 1( )= ¼ and corresponding derivative

vector , ,..., ,T
p q p qp N N1 1( )¶ = ¶ ¶ ¶ ¶ as presented in equation (12). Notice that themoments pi and qi are

respectively related to the position (xi) andmomentum (yi) of the ith oscillator.
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