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Abstract
The reconstruction conjecture (RC) and the polynomial reconstruction problem (PRP) are two open
problems in algebraic graph theory. They have been resolved successfully for a number of different
classes and subclasses of graphs. This paper offers proofs for a positive conclusion for polynomial
reconstruction of the following three subclasses of the class of disconnected graphs. These subclasses
are disconnected graphs with two unicyclic components, bidegreed disconnected graphs with regular
components, and disconnected graphs with a wheel as one component.

1. Introduction

The graphs considered in this paper are simple graphs, that is graphs with no loop or multiple edge. A graph
defined as , consisting of two disjoint sets: a non-empty set  the elements of which
are called vertices and a set  of unordered pairs of distinct elements from  whose elements are
called edges. Two vertices in the same edge are said to be adjacent. If every pair of vertices of G are adjacent,
then G is called a complete graph. A complete graph of order n is denoted by . Deleting a vertex v and all
the edges incident on v from G generates the subgraph  of G. The adjacency matrix of a labelled graph
G, with vertex set  is the (0,1)-symmetric matrix  of order 
whose ijth entry, , is 1 if vi is adjacent to vj and 0 otherwise.

The characteristic polynomial of a graph G is the characteristic polynomial of its adjacency matrix  and
is denoted by . Let In denote the  identity matrix. Then,

,

where  denote the coefficients of the characteristic polynomial of the graph G. From the
definition of the characteristic polynomial  and for a graph with no loop, .

Solving the equation  gives the eigenvalues  of ; these are also called the
eigenvalues of G. For a particular λi, there is at least one non-zero vector x, called an eigenvector, in the
eigenspace of λi, that satisfies the equation . Because  is a real and symmetric matrix, all
the eigenvalues are real and can be ordered . The multiset of eigenvalues of  consist-
ing of the eigenvalues and their multiplicities is called the spectrum of G and is denoted . The spectrum
of a graph is invariant under a change in labelling of the vertices of G. The polynomial deck of G is the mul-
tiset of the characteristic polynomials of all vertex-deleted subgraphs of G and is denoted by .

The degree of a vertex vi in a graph, denoted by ρi, is the number of edges incident on vi. A graph is said to
be regular if all its vertices have the same degree. If every vertex of a graph has either degree ρ1 or degree ρ2
( ) then the graph is called a bidegreed graph.

A connected 2-regular graph of order n is called a cycle graph and is denoted by . A graph that has pre-
cisely one cycle is called a unicyclic graph. Removing an edge from  gives a path graph of length ,
denoted by . A path can be defined as a sequence of distinct vertices  and edges
1 Corresponding author.
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, where . Adding a vertex v to  and connecting this to all the other verti-
ces (i.e., inserting a dominant vertex) gives the wheel graph on n vertices, denoted by . Examples of these
three types of graph with order six are shown in Figure 1. 

Ulam’s famous reconstruction conjecture [1] has given rise to many variant problems. One such problem is
the polynomial reconstruction problem (PRP) that was posed by Cvetkovi  and independently by Schwenk.
It was later outlined by Gutman and Cvetkovi  in [2]. This problem considers reconstructing the character-
istic polynomial of a graph G from its polynomial deck, . The problem can be stated as follows:

Polynomial Reconstruction Problem: Is it true, that for  the characteristic 
polynomial  of a graph G of order n is uniquely determined by the collection
of characteristic polynomials  of the vertex-deleted subgraphs 
of G, ? h

The lower bound on the order n of the graph G in this formulation of the polynomial reconstruction problem
is required because the two graphs  and  on two vertices are the only two non-isomorphic graphs,
known to date, that have the same polynomial deck but different characteristic polynomials. In this paper, a
graph G is said to be polynomial reconstructible if for every graph H such that , then

.

The polynomial reconstruction problem is still open in general, as is Ulam’s reconstruction conjecture. How-
ever the polynomial reconstruction problem has been shown to be true for certain classes of graphs. For exam-
ple, it has been shown to be true for trees [3], certain subclasses of the class of graphs with terminal vertices
[4], certain subclasses of disconnected graphs [5] and for unicyclic graphs [6].

The class of disconnected graphs is one that warrants attention, since if the polynomial deck can yield the
information that the graph is disconnected, then the characteristic polynomial can be reconstructed from

. Currently it is not yet known whether the property of a graph being disconnected can be determined
from the polynomial deck of the graph. If this graph property of disconnectedness can be determined from the
polynomial deck then this would also help tremendously when searching for possible counterexamples to the
polynomial reconstruction problem. Since it is conceivable that there may exist a connected graph and a dis-
connected graph that have the same polynomial decks, such a pair of graphs could possibly be a counterex-
ample pair to the polynomial reconstruction problem. A counterexample pair, denoted by , consists of
two graphs G and H having characteristic polynomials  and .

Before proving the main results of this paper we present additional results and techniques. In Section 2, graph
properties and other invariants that can be determined from the polynomial deck are outlined. In Section 3, the
counterexample technique is considered; that is, a pair of graphs that offer a potential counterexample pair to
the polynomial reconstruction problem are studied, and necessary conditions are determined for such a pair
of graphs with the aim of contradicting some combinatorial property of the pair of graphs. The implication
would then be that the pair of graphs considered are polynomial reconstructible. In Section 4, the main results
of this paper are proved. Here, three subclasses of disconnected graphs are proved to be polynomial recon-
structible: (1) graphs having unicyclic components, (2) bidegreed graphs with two regular components, and
(3) graphs with a wheel as one component.

2. Polynomial Reconstructible Graph Properties and Invariants

In this section, graph properties and invariants are outlined and shown to be reconstructible from the polyno-
mial deck. These properties and invariants may lead to a positive outcome to the polynomial reconstruction
problem for certain classes of graphs.

The following theorem was originally proved by F.H. Clarke in [7].

e1 e2 … ek, , , ei vi vi 1+,{ }= Cn 1–
Wn

Figure: The graphs C6, P6, and W6.
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Theorem 2.1: The derivative of the characteristic polynomial of a graph G is given by

(1) . j

Hence, integrating  gives all terms, except the constant term a0, of the characteristic polynomial of
the graph G from its polynomial deck. If an eigenvalue of G, λi, is known, then  and so a0 can
be determined, in which case G is polynomial reconstructible. This proves Lemma 2.2:

Lemma 2.2: If the polynomial deck  of a graph reveals an eigenvalue of G,
then G is polynomial reconstructible. j

Another extremely useful theorem when considering the polynomial reconstruction problem is the interlacing

theorem. This can be formulated as follows (see [8], page 37).

Theorem 2.3 (Interlacing Theorem): Let G be a graph of order n and let . Let
the spectrum of G be , where  and let the spectrum of

 be , where . Then the eigenvalues of
 interlace those of G; that is, . j

Corollary 2.4: If one of the polynomials of  has a repeated root, then this root is also
an eigenvalue of G and the characteristic polynomial of G is reconstructible. j

Certain graph properties and invariants of G can be determined from the polynomial deck and we now outline
and prove some of these by means of a series of lemmas.

Lemma 2.5: The degree sequence , consisting of the degrees of all the vertices, of a
graph G is polynomial reconstructible.

Proof: The degree sequence, , of G is , where  is the degree of vertex vi of G. The degree  is
the number of edges removed when vi is deleted from G and is the difference between the coefficients 
in  and  in  obtained by integrating Equation (1). j

Theorem 2.6 [9]: The length of a shortest odd cycle of a graph G and the number of such
cycles can be determined from the polynomial deck . j

Corollary 2.7 [9]: The number of triangles in a graph G of order n is equal to
 and can therefore be reconstructed from the polynomial deck . j

Lemma 2.8 [9]: The number  of closed walks of length k that start and end at a 
vertex v of a graph G of order n can be calculated from the collection  for

. j

We now discuss the spectral moments of a graph G of order n with adjacency matrix  and eigenvalues
. For , the kth spectral moment of G is the sum Sk of the kth powers of the n eigenvalues.

Note that this is equal to the trace,  of the kth power ( ) of the adjacency matrix . It is also
well known that this is equal to the number of closed walks of length k in G.

Corollary 2.9 [9]: The spectral moments  of a graph G of order n 
can be determined from the polynomial deck . j

Theorems 2.13 and 2.15, that we state and prove later, show that the number of quadrangles and pentagons in
a graph are polynomial reconstructible. Theorem 2.13 is taken from [9], but before proving that the number
of quadrangles is reconstructible, a lemma is needed to prove that , where m is the num-
ber edges, p is the number of pairs of incident edges, and q is the number of quadrangles in a graph G. A proof
of this lemma is not provided or referenced in [9] and is proved here by applying results in [10] to Newton’s
recurrence.

Theorem 2.15 can be found in [9] and here we offer a different proof. In [9] this result is first proved by stating
the equation , where m is the number of edges, s is the number of triangles with a pen-
dant edge, and t is the number of triangles of G; and then showing that each of the terms can be determined
from the polynomial deck, thus obtaining the number of pentagons of G from the polynomial deck. The proof
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we offer below correlates the number of closed walks of length five to the fifth spectral moment, thus deter-
mining the number of pentagons of G.

Before proving Lemma 2.11, additional definitions and the Harary–Sachs Coefficient Theorem (Theorem
2.10) are required. Theorem 2.10 was originally proven by Sachs in [11] and in the literature, in particular in
chemical graph theory, it is referred to as the Sachs Coefficient Theorem. In [12] Gutman remarks that this
should be called the Harary–Sachs Coefficient Theorem since this is an immediate consequence of Harary’s
results in [13].

Definition 1 [13]: A basic figure for a graph G is a spanning subgraph of G whose compo-
nents consist only of cycles or K2 graphs. The number of components and cycles in a basic
figure B are denoted by  and , respectively. j

Theorem 2.10 [12]:

Let  be the characteristic polynomial of a graph G then, 

for , , and for , ,

where the sum is over all basic figures B that have exactly  vertices in 
the set  and that are subgraphs contained in the graph G. j

Lemma 2.11: The fourth spectral moment, S4, of a graph G is equal to ,
where m is the number of edges, p is the number of pairs of incident edges, and q is the num-
ber of quadrangles in G.

Proof: From Newton’s recurrence (see [14], pages 31–33), we obtain

From Theorem 2.10,

,

where  is the number of components of B and  is the number of cycles in B. For , there are
two types of basic figures on four vertices; namely,  and .

For ,  and ; for ,  and . Hence, , where
k2 is the number of subgraphs isomorphic to  in G (that is, the number of disjoint edge pairs). The number
of disjoint edge pairs in a graph can be evaluated by determining the number of ways one can choose any two
distinct edges from the graph G and then subtracting the number of subgraphs isomorphic to  in G. The
number of ways of choosing two distinct edges from a graph with size m is . For each vertex vi with degree
ρi, there are  pairs of adjacent edges. Hence,

.

Therefore,

.

Substituting this in the Newton formula result for S4 gives

.
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Let

 and ,

then , which completes the proof. j

From Newton’s recurrence, the following result is immediate.

Corollary 2.12: The coefficients  and the spectral moments
 for a graph G of order n can be determined from the 

polynomial deck . j

Theorem 2.13 [9]: The number of quadrangles in a graph G of order n can be
determined from the polynomial deck .

Proof: Using the notation in Lemma 2.11, , . Hence, by Lemma 2.5, both m and p can
be determined from .

By Corollary 2.12, . Consequently, S4 can be determined from .

Using Lemma 2.11, q can be determined from . j

Lemma 2.14: The number of triangles s with a pendant edge in a graph G
with order n is given by

.

Proof: Consider a vertex  and suppose that vi is a vertex of a triangle subgraph of G with at least
one pendant edge. Then, the number of pendant edges incident on vi is , where the factor of two
removes the two edges that belong to the triangle subgraph being considered. By Lemma 2.8, the number of
triangle subgraphs is . Hence, summing over all  gives the result. j

Theorem 2.15 [9]: The number of pentagons in G can be determined from the
polynomial deck .

Proof: The fifth spectral moment S5 of G is equal to the number of closed walks of length five. The subgraphs
of G that permit closed walks of length five are the pentagon , the triangle , and  with a pendant
edge. A  subgraph gives a total of ten closed walks of length five, a  subgraph gives a total of 30 closed
walks of length five and  with a pendant edge gives a total of ten closed walks of length five. Let  be
the number of  subgraphs in G, s be the number of  subgraphs with a pendant edge, and  be the
number of  subgraphs. Summing gives .

From Lemma 2.14, . Thus, s, S5, and  are all reconstructible from .

Hence,  is also reconstructible from . j

3. Properties of a Counterexample Pair

Recall that two graphs G and H are said to be a counterexample pair, denoted by , if the characteristic
polynomials  but . Some properties that a counterexample pair must have
are listed below. These results are taken from [4]. Unless otherwise stated, G and H are taken to be graphs in
a counterexample pair.

Lemma 3.1: The characteristic polynomials of G and H differ only in the constant term a0.
j

Hence, for a counterexample pair  the constant terms of the characteristic polynomials are related by
, where .

Lemma 3.2 [4]: G and H have no eigenvalue in common. j

Lemma 3.3 [4]: No polynomial in  has a repeated eigenvalue. j
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The Perron–Frobenius Theorem concerns specific spectral properties of connected graphs. This theorem is
one of the most important theorems in spectral graph theory and was proved independently by G. Frobenius
in [15] and O. Perron in [16]. We state the theorem as in [8] (see Appendix A).

Theorem 3.4 (Perron–Frobenius Theorem): If G is a connected graph with at least two
vertices then its largest eigenvalue λmax is a simple root of  and there exists an
eigenvector x corresponding to λmax all of whose entries are positive. If λ is any other
eigenvalue of G then  and the deletion of any edge e from G decreases the
largest eigenvalue; that is, . j

From Theorem 3.4, a number of results related to the polynomial reconstruction problem follow easily. One
such result is the following lemma.

Lemma 3.5 [4]: The two graphs G and H in a counterexample pair are not both 
disconnected.

Proof: The maximum eigenvalue (also called the index) of a disconnected graph is the maximum eigenvalue
of a component and this appears in the polynomial deck corresponding to a vertex- deleted subgraph contain-
ing the same component. If G and H have the same deck and both are disconnected graphs then they will have
the same maximum eigenvalue, which contradicts Lemma 3.2. j

In an attempt to expand the notion of a counterexample pair to the polynomial reconstruction problem, one
can ask whether a counterexample pair  could generate infinite families of counterexample pairs

 in the form of disjoint unions with an arbitrary graph H. From Lemma 3.5 the answer is
in the negative. On the other hand, if Tutte’s remarkable result, in [17]; namely, that the deck

 consisting of the one-vertex deleted subgraphs leads to the unique characteristic poly-
nomial of the adjacency matrix of G, is taken into account then two non-isomorphic graphs G1 and G2 in a
counterexample pair with the same polynomial deck arise from different polynomial decks

 for an arbitrary graph H. Moreover, since , the infinite family
 for an arbitrary graph H does not lead to pairs of graphs with the same polynomial deck.

4. Polynomial Reconstruction of Subclasses of Disconnected Graphs

Disconnected graphs with more than two components and with two components of unequal order were proved
to be polynomial reconstructible in [3].

Theorem 4.1 [3]: Let  be a disconnected graph of order  and with
exactly two connected components G1 and G2. If , then G is polynomial
reconstructible. j

Theorem 4.2 [3]: Let  be a disconnected graph with k
connected components  for . Then, G is polynomial reconstructible.

j

Corollary 4.3: If G is a disconnected graph with an odd number of vertices then G is
polynomial reconstructible. j

From these results, the only remaining class of disconnected graphs that have not yet been determined to be
polynomial reconstructible are those disconnected graphs that have precisely two components of equal order.
We now prove that disconnected graphs (1) that have precisely two unicyclic components, (2) that are bide-
greed with regular components, and (3) that have a wheel as a component are polynomial reconstructible.

4.1. Disconnected Graphs with two Unicyclic Components

In [6], the polynomial reconstruction problem is solved for the class of unicyclic graphs. Here, that result is
used to prove that disconnected graphs having two unicyclic components are also polynomial reconstructible.
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Theorem 4.4: Let  be a disconnected graph of order n whose components
are both unicyclic graphs. Then G is polynomial reconstructible.

Proof: Suppose that G is not polynomial reconstructible. Then there exists a graph H such that  is a
counterexample pair to the polynomial reconstruction problem. The order of each component of G is equal to

 since, if the components of G do not have equal orders then G is polynomial reconstructible by
Theorems 4.1 and 4.2. Because each component is unicyclic, then the number of edges of each component is

, and thus, .

By Lemma 3.5, the graph H must be connected and have the same order and number of edges as G. Hence,
by Lemma 3.1, . This can only be the case if H is a unicyclic graph but then from [6], H is uniquely
polynomial reconstructible.

Hence,  cannot be a counterexample pair and G is polynomial reconstructible. j

4.2. Bidegreed Disconnected Graphs with Regular Components

In [18], the edge reconstruction conjecture, another variant of Ulam’s reconstruction conjecture, was solved
positively for bidegreed graphs. This prompted us to study this class of graphs in the polynomial reconstruc-
tion problem setting. Here, the polynomial reconstruction problem is shown to hold for bidegreed discon-
nected graphs with regular components.

Theorem 4.5: Let  be a disconnected graph of order n such that G1 is
regular of degree ρ1 and G2 is regular of degree ρ2 ( ). Then, G is polynomial 
reconstructible.

Proof: Suppose that there exists a graph H such that  is a counterexample pair. Since G is discon-
nected then, from Lemma 3.5, H must be a connected graph. Furthermore, from Lemma 3.1, the characteristic
polynomials of G and H differ only in the constant term.

Since G1 is regular of degree ρ1, then its maximum eigenvalue . Similarly, .
Because G is disconnected, then , as noted in the proof of Lemma 3.5. Suppose, without
loss of generality, that ; that is, .

Now, , where  is the maximum degree of H, because H is a connected graph.
Since, by Lemma 2.5, G and H have the same degree sequence, then . However,
by Lemma 3.1, the characteristic polynomials of G and H differ by a constant, and therefore, it follows
that . Hence, . This is a
contradiction. Therefore, G is polynomial reconstructible. j

4.3. Disconnected Graphs with a Wheel as a Component

Because the existence of a dominant vertex in a graph G can be determined from the polynomial deck 
(by Lemma 2.5), the class of graphs having a component with a dominant vertex warrants study. Here, we
show that the class of disconnected graphs that have a wheel as a component are polynomial reconstructible.
We prove this using the property that the wheel component has a dominant vertex.

Theorem 4.6: Let  be a disconnected graph of order n and let one of the
components be a wheel. Then, G is polynomial reconstructible.

Proof: Suppose, without loss of generality, that G1 is the component that is a wheel and let v be the dominant
vertex of this component. Then the polynomial corresponding to  in  is the product of the char-
acteristic polynomial of a cycle and the characteristic polynomial of the component G2. Because, for ,
every cycle, Cr, has a repeated root, then by Corollary 2.4, G is polynomial reconstructible. j

5. Conclusion

Spectral properties that arise from the class of disconnected graphs can be sufficient to determine the polyno-
mial reconstruction of certain subclasses of the class of disconnected graphs. For example, in [5] a number of
subclasses of disconnected graphs are shown to be polynomial reconstructible. In this paper the list of sub-
classes of disconnected graphs that are polynomial reconstructible has been extended to include those that
have exactly two unicyclic components, bidegreed disconnected graphs with regular components, and discon-
nected graphs that have a wheel as a component.

G G1 G2∪=

G H,( )

n 2⁄

m G1( ) m G2( ) n 2⁄= = m G( ) m G1( ) m G2( )+ n= =

m H( ) n=

G H,( )

G G1 G2∪=
ρ1 ρ2≠

G H,( )

λmax G1( ) ρ1= λmax G2( ) ρ2=
λmax G( ) ρ1 or ρ2=

λmax G( ) ρ1= ρ1 ρ2≥
λmax H( ) ρmax H( )≤ ρmax H( )

ρmax H( ) ρ1=

λmax H( ) λmax G( )> ρ1= ρmax G( ) ρmax H( ) ρ1 λmax H( ) λmax G( )>≥ ρ1= = =

PD G( )

G G1 G2∪=

G v– PD G( )
r 3≥



48 Graph Theory Notes of New York LXIII (2012)

The polynomial reconstruction problem for the class of disconnected graphs remains open in general. If the
property of disconnectedness of a graph can be determined from its polynomial deck then this class will
immediately be polynomial reconstructible, since the maximum eigenvalue that appears in the polynomial
deck  is also an eigenvalue of G. However, to date it has not been shown that this property can be
determined from the polynomial deck. Were connectedness to be proved then not only would this give a pos-
itive result for the class of disconnected graphs but it would also rule out a disconnected graph being one of
the graphs in a counterexample pair. Hence, a number of connected graphs that require a disconnected graph
to form a counterexample pair would also be shown to be polynomial reconstructible.
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ć ć
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