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Abstract

The nullity of a graph is known to be an analytical tool to predict reactivity
and conductivity of molecular π-systems. In this paper we consider the change
in nullity when graphs with a cut–edge, and others derived from them, undergo
geometrical operations. In particular, we consider the deletion of edges and vertices,
the contraction of edges and the insertion of an edge at a coalescence vertex. We
also derive three inequalities on the nullity of graphs along the same lines as the
consequences of the Interlacing Theorem. These results shed light, in the tight–
binding source and sink potential model, on the behaviour of molecular graphs which
allow or bar conductivity in the cases when the connections are either distinct or
ipso.

1 Introduction

Let G be a simple undirected graph with vertex set V = V(G) and edge set E = E(G). A

graph F is a subgraph of G if V(F ) ⊆ V(G) and E(F ) ⊆ E(G). If v ∈ V(G) is deleted from

G and the graph, G− v, obtained has more components than G, then v is a cut–vertex of

G. Similarly, a cut–edge e ∈ E(G) is an edge whose deletion increases by one the number
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of components in the resulting graph G−e. Given two component graphs F1 and F2, with

root vertices v1 and v2, respectively, the coalescence G = F1 ◦F2 is the graph obtained by

identifying v1 with v2, that is, these two vertices are replaced with a single vertex incident

to all the edges which are incident to v1 and v2 in F1 and F2, respectively. The vertex v in

G formed by the identification of v1 and v2 is the coalescence vertex and it is a cut–vertex

of the coalescence G.

The n× n adjacency matrix A = A(G) = (aij) of G encodes the adjacencies between

the vertices of a labelled graph G on n vertices. The entry aij is one if there is an edge

e = vivj between the vertices vi and vj, and zero otherwise. The characteristic polynomial

of the graph G, denoted by φ(G), is the characteristic polynomial det(λI − A) of the

adjacency matrix A, where I is the n × n identity matrix. If zero is an eigenvalue of

A, then A is a singular matrix and the graph G is singular ; otherwise G is nonsingular.

The eigenvalues λ1, λ2, . . . , λn of A are the eigenvalues of the graph G, and they form

the spectrum of G. Since A is a real symmetric matrix, its eigenvalues are real numbers.

The nullity η(G) is the multiplicity of the eigenvalue zero in the spectrum of the graph

G. The nullspace of G is the eigenspace associated with the eigenvalue zero and a kernel

eigenvector is a vector x( 6= 0) in the nullspace ker(A) of A.

In the sequel, we make use of the following two important results, namely Schwenk’s

Coalescence Theorem and a consequence of Cauchy’s Interlacing Theorem for real sym-

metric matrices, respectively, stated hereunder for graphs in Theorems 1.1 and 1.2.

Theorem 1.1. [14] Let H1 = G1 + v1 and H2 = G2 + v2 be two graphs with root vertices

v1 and v2, respectively. The characteristic polynomial of the coalescence H1 ◦H2 is given

by

φ(H1 ◦H2) = φ(H1)φ(G2) + φ(G1)φ(H2)− λφ(G1)φ(G2).

Theorem 1.2. [11, pp.119] Let u be any vertex of a graph G on n ≥ 2 vertices. Then

η(G)− 1 ≤ η(G− u) ≤ η(G) + 1.

The Interlacing Theorem permits the nullity of a graph to change by at most one upon

the deletion or addition of a vertex. It admits three types of vertices; the first type is

a core vertex (CV) u for which η(G − u) = η(G) − 1 [17]. In [18], it was shown that a

necessary and sufficient condition for the nullity of a graph G to increase on the addition

of a vertex u is that the vertex u is a CV. If η(G−u) is either equal to η(G) or to η(G)+1,
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then the vertex u is a core–forbidden vertex or, equivalently, a Fiedler vertex. Following

the terminology used in [4], a vertex u is a middle core-forbidden vertex (CFVmid) if

η(G − u) = η(G) and an upper core-forbidden vertex (CFVupp) if η(G − u) = η(G) + 1.

In the literature, vertices which are CFVupp are also referred to as Parter vertices [10].

Almost 60 years ago, Collatz and Sinogowitz posed the problem of characterizing all

singular graphs [2]. Significant progress in this regards was done in [6], [15] and [16].

However the problem is still not yet solved completely and research is ongoing. More

recently, Ali et al. [1], determined the nullity of subgraphs obtained by perturbations of

the coalescence G relative to the nullity of G.

The close link between the electron energy given by Schrödinger’s equation in the

quantum theory of molecules [8] and the nullity of a molecular graph was first recognised

almost 60 years ago [5, 13]. A molecular graph is a labelled graph with vertices repre-

senting the atoms of a π-system and edges representing the chemical sigma bonds. The

nullity of a molecular graph proved to be a predictive instrument in molecular reactivity

and conductivity. For alternant unsaturated conjugated hydrocarbons, it gives an indi-

cation of the stability of the associated compound. An alternant unsaturated conjugated

hydrocarbon with an unstable open–shell electron configuration corresponds to a singular

bipartite graph. The associated compound is predicted to be so highly reactive that it

decomposes as soon as it is formed. This prediction is significant in molecular orbital

theory and it has been experimentally verified in numerous cases. For instance, there

are more than a thousand stable benzenoid hydrocarbons whose molecular graphs are

non-singular, whilst to date no stable benzenoid hydrocarbon whose molecular graph has

a non-zero nullity is known [6].

More recently, the incessant activity focusing on carbon nano molecules and their

conductivity properties has led to a better understanding of how these can be utilised

in circuits as conductors or insulators of electric current. In particular, much research

(see, for example, [3,12,19]) has been carried out to establish when a molecule, connected

via two or one of its atoms in a circuit by two similar semi-infinite wires, allows or bars

conductivity at the Fermi level (which corresponds to the zero energy level in the tight–

binding source and sink potential model). The research distinguishes between the two

setups that are possible, namely the distinct connection when two distinct atoms in the

molecular graph act as the connecting vertices v1 and v2, and the ipso connection when
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there is only one connecting vertex (v1 = v2) for the two wires. In Theorem 4.3 of [3], it is

demonstrated that when the distinct connecting vertices v1 and v2 are CV in a molecular

graph G for which η(G) ≥ 2, then conductivity does not occur if and only if v1 and v2

are also CV in G− v2 and G− v1, respectively. Furthermore, in Theorem 4.5 of [3], it is

also shown that for an ipso connection, a singular molecular graph allows conductivity if

and only if the connecting atom v1(= v2) is either a CV or a CFVmid.

Figure 1 illustrates the graph G with a cut–edge e and the subgraphs of G which

are of interest to us in this work. For a graph G with a cut–edge e = v1v2, let G − e

be F1∪̇F2, where F1 − v1 = G1∪̇G2∪̇ . . . ∪̇Gr and F2 − v2 = Gr+1∪̇Gr+2∪̇ . . . ∪̇Gs, for

r ∈ {1, . . . , s− 1}. The coalescence F1 ◦K2 (or F1 + v2) of the graph F1 and the complete

graph K2 has terminal vertex v2. Similarly F2 ◦K2 = F2 + v1 has terminal vertex v1. We

remark that the two components of G − e can be labelled F1 and F2 arbitrarily. Thus,

when in the sequel we refer to F1, we implicitly imply that F1 with root vertex v1 is chosen

without loss of generality from the two components of G − e. Also, if G is a graph with

a cut–edge e = v1v2, a result obtained on the premise that v1 is of a certain type in F1

or in G will also hold, without loss of generality, if v2 is of that same type in F2 or in G.

For an edge e = v1v2 of a graph G, the graph obtained from G by contracting the edge e

to a new vertex v, such that v will be adjacent to all the (former) neighbours of v1 and

v2 in G, is denoted by G = G/e. We note that the graph G can be obtained back from G

by replacing the vertex v of G by the edge e = v1v2 for a unique choice of the neighbours

of v1 and v2 in G; we write G = G : e (a formal discussion on this operation is presented

in Section 6).

Figure 1. The graphs G = G : e, G − e = F1∪̇F2, G = G/e, F1 + v2 and F2 + v1,
where e = v1v2.
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The rest of this paper is structured as follows. In Section 2, we consider graphs with

a terminal vertex and discuss the type of this vertex and of its neighbour. For a graph G

with a cut–edge e such that the components of G− e are F1 and F2, the properties of the

end vertices of e are used to prove our main results, namely:

(i) the types of the end vertices of the cut–edge e in G are determined, given their types

as root vertices in F1 and F2 (Section 3);

(ii) the difference in nullity η(G − e) − η(G) is restricted to the range −1 to 2 for a

cut–edge e (Section 4);

(iii) if the cut–edge e is contracted, then the difference in the nullity of G and of G/e is

at most one (Section 5);

(iv) if a cut–vertex of G is replaced by a cut–edge, the nullity changes by at most one

(Section 6).

The results stated above have important implications in both the distinct and ipso

connections in electrical circuits. We show that:

(i) for a distinct connection, conductivity necessarily occurs if the connecting vertices

v1 and v2 which are the end–vertices of a cut–edge in a molecular graph, are both

CV (Theorem 3.11); and

(ii) for an ipso connection at a cut–vertex v in a molecular graph G, which is obtained

from a graph of nullity at least two by contracting a cut–edge joining a CFVupp with

a CV to v, the molecule G is an insulator (Corollary 5.3).

2 Graphs with a terminal vertex

We start this section by discussing the type of the neighbour of a terminal vertex in a

graph. Let F1 be a graph with root vertex v1 and let v2 be the terminal vertex of F1 + v2,

where v1v2 is a pendant edge. The following well–known result appears in [20].

Lemma 2.1. [20] The nullity remains unchanged when the two vertices incident to a

pendant edge are deleted.

An immediate consequence is that the type of neighbour of a terminal vertex is deter-

mined uniquely, independent of the type of the terminal vertex. However, as we show in

Theorems 2.4, 2.5 and 2.6, the terminal vertex may be of any type.
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Lemma 2.2. In F1 + v2, the vertex v1 is a CFVupp.

Proof. Let L = F1 + v2. Since v2 is a terminal vertex and L − v1 = (L − {v1, v2})∪̇K1,

then η(L − v1) = η(L − {v1, v2}) + 1. By Lemma 2.1, η(L) = η(L − {v1, v2}) and thus

η(L− v1) = η(L) + 1. By definition, v1 is a CFVupp in L.

In the rest of this section, we determine the type of the terminal vertex v2 in F1 + v2

by exploring the possible types of v1 in F1. Since the proofs make use of the coalescence

F1 ◦K2, we need the following results from [1].

Theorem 2.3. [1] Let H1 = G1 + v1 and H2 = G2 + v2 be two graphs with root vertices

v1 and v2, respectively, and let H be the coalescence of H1 and H2 obtained by identifying

the vertices v1 and v2 to get the coalescence vertex v.

(i) If v1 is a CV in H1 or v2 is a CV in H2, then η(H) = η(H1) + η(H2)− 1.

(ii) If v1 is a CFVupp in H1 and v2 is a CFVmid in H2, then η(H) = η(H1) + η(H2).

(iii) If each of v1 and v2 is a CFVupp in the respective component graph, then η(H) =

η(H1) + η(H2) + 1.

(iv) If each of v1 and v2 is a CFVmid in the respective component graph, then either v

is a CFVmid in H and η(H) = η(H1) + η(H2), or v is a CV in H and η(H) =

η(H1) + η(H2) + 1.

In Theorem 2.4 we consider F1 + v2 when v1 is a CV in F1.

Theorem 2.4. Let F1 be a graph with root vertex v1, and let F1 + v2 be obtained from F1

by joining a new vertex v2 to v1 by an edge. Then v1 is a CV in F1 if and only if v2 is a

CFVupp in F1 + v2.

Proof. Since each vertex of K2 is a CFVupp in K2, if v1 is a CV in F1, then by Theo-

rem 2.3(i), η(F1 + v2) = η(F1) + η(K2)− 1. But η(K2) = 0; thus η(F1 + v2) = η(F1)− 1.

Hence, v2 is a CFVupp in F1 + v2.

Conversely, let v2 be a CFVupp in F1 + v2. By definition, η(F1) = η(F1 + v2) + 1. By

Lemma 2.1, η(F1 + v2) = η(F1 − v1), implying that η(F1 − v1) = η(F1)− 1. Hence, v1 is

a CV in F1.

The case when v1 is a CFVmid in F1 is considered in Theorem 2.5.
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Theorem 2.5. Let F1 be a graph with root vertex v1, and let F1 + v2 be obtained from F1

by joining a new vertex v2 to v1 by an edge. Then v1 is a CFVmid in F1 if and only if v2

is a CFVmid in F1 + v2.

Proof. If v1 is a CFVmid in F1, then by Theorem 2.3(ii), η(F1 + v2) = η(F1) + η(K2). It

follows that η(F1 + v2) = η(F1). Hence, v2 is a CFVmid in F1 + v2.

Conversely, let v2 be a CFVmid in F1 + v2. Thus, η(F1 + v2) = η(F1). By Lemma 2.1,

η(F1 + v2) = η(F1 − v1), implying that η(F1) = η(F1 − v1). Hence, v1 is a CFVmid in F1.

The case when v1 is a CFVupp in F1 follows by exclusion, from all the possible cases,

of the occurrences mentioned in Theorems 2.4 and 2.5.

Theorem 2.6. Let F1 be a graph with root vertex v1, and let F1 + v2 be obtained from F1

by joining a new vertex v2 to the v1 by an edge. Then v1 is a CFVupp in F1 if and only if

v2 is a CV in F1 + v2.

We have shown that by knowing the type of the root vertex v1 in F1, we can immediately

deduce the type of the terminal vertex v2 in F1 + v2, and conversely. Table 1 illustrates

this bijective relationship. A clear dichotomy appears between the type CFVmid and the

other two types of vertices.

v1 in F1 v2 in F1 + v2

CFVupp CV
CV CFVupp

CFVmid CFVmid

Table 1. The type of a terminal vertex.

3 Type of vertices incident to a cut–edge

Heilbronner [7] obtained the characteristic polynomial of a graph G having a cut–edge

by applying the Laplacian development to the determinant φ(G). The result is given

here in Theorem 3.1. We adopt an algebraic–geometric approach by constructing G as a

coalescence to give a different (much simpler) proof from the one given by Heilbronner.

Theorem 3.1. [7] The characteristic polynomial of a graph G with a cut–edge e = v1v2

is given as: φ(G) = φ(G− e)− φ(G− {v1, v2}).
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Proof. Let F1 and F2 be the components of G−e with root vertices v1 and v2, respectively.

Recall that the characteristic polynomials of the complete graphs K1 and K2 on one and

two vertices are λ and λ2 − 1, respectively. By Theorem 1.1, we have φ(F1 + v2) =

λφ(F1)− φ(F1− v1). Now, F1 + v2 is a graph with root vertex v2. Applying Theorem 1.1

again to determine the characteristic polynomial of the graph G = (F1 + v2)◦F2, we have

φ(G) = φ(F1 + v2)φ(F2 − v2) + φ(F1)φ(F2)− λφ(F1)φ(F2 − v2)

= (λφ(F1)− φ(F1 − v1))φ(F2 − v2) + φ(F1)φ(F2)− λφ(F1)φ(F2 − v2)

= φ(F1)φ(F2)− φ(F1 − v1)φ(F2 − v2)

= φ(G− e)− φ(G− {v1, v2}).

In the rest of this section, we determine the type of the vertex v1 incident to a cut–edge

e = v1v2 in a graph G, given the type of the root vertex v1 in the component graph F1 or

F2 + v1. We require the following results from [1].

Theorem 3.2. [1] Let H1 = G1 + v1 and H2 = G2 + v2 be two graphs with root vertices

v1 and v2, respectively, and let H be the coalescence of H1 and H2 obtained by identifying

the vertices v1 and v2 to get the coalescence vertex v.

(i) If v1 is a CFVupp in H1 or v2 is a CFVupp in H2, then v is a CFVupp in H.

(ii) If each of v1 and v2 is a CV in the respective component graph, then v is a CV in

H.

(iii) If v1 is a CV in H1 and v2 is a CFVmid in H2, then v is a CFVmid in H.

(iv) If each of v1 and v2 is a CFVmid in the respective component graph, then v is either

a CFVmid or a CV in H.

Since the graph G with a cut–edge e = v1v2 is obtained from the coalescence of the

component graphs F1 and F2 + v1, each having root vertex v1, by using Theorem 3.2, we

can deduce the following result.

Theorem 3.3. Let G be a graph with a cut–edge e = v1v2, and let F1 and F2 be the

components of G− e with root vertices v1 and v2, respectively.

(i) If v1 is a CFVupp in F1 or in F2 + v1, then v1 is a CFVupp in G.

(ii) If v1 is a CV in each of F1 and F2 + v1, then v1 is a CV in G.
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(iii) If v1 is a CV in F1 and a CFVmid in F2 + v1, or if v1 is a CFVmid in F1 and a CV

in F2 + v1, then v1 is a CFVmid in G.

(iv) If v1 is a CFVmid in each of F1 and F2 + v1, then v1 is either a CFVmid or a CV in

G.

The following result is immediate from Theorems 2.4 and 3.3(i).

Theorem 3.4. Let G be a graph with a cut–edge e = v1v2, and let F1 and F2 be the

components of G− e with root vertices v1 and v2, respectively. If v1 is a CV in F1, then

v2 is a CFVupp in G.

Note that this result is independent of the type of v2 in F2. Theorem 3.5 deals with

the instance when v1 is a CV in F1 and v2 is a CFVmid in F2.

Theorem 3.5. Let G be a graph with a cut–edge e = v1v2, and let F1 and F2 be the

components of G− e with root vertices v1 and v2, respectively. If v1 is a CV in F1 and v2

is a CFVmid in F2, then v1 is a CFVmid and v2 is a CFVupp in G.

Proof. Since v1 is a CV in F1, then by Theorem 3.4, v2 is a CFVupp in G. By Theorem

2.5, since v2 is a CFVmid in F2, then v1 is also a CFVmid in F2 + v1. Thus, by Theorem

3.3(iii), v1 is a CFVmid in G.

If we know that at least one of the root vertices of F1 and F2 is a CFVupp, then we are

able to determine the type of both v1 and v2 in G. This is the result of Theorem 3.6.

Theorem 3.6. Let G be a graph with a cut–edge e = v1v2, and let F1 and F2 be the

components of G − e with root vertices v1 and v2, respectively. If v1 is a CFVupp in F1,

then the type of each of v1 and v2 remains unchanged in G.

Proof. Since v1 is a CFVupp in F1, by Theorem 3.3(i), v1 is a CFVupp in G and by

Theorem 2.6, v2 is a CV in F1 + v2. Now, G is obtained by identifying the vertex v2 in

F1 + v2 with the vertex v2 in F2. We consider the three different cases for the type of v2

in F2.

(i) If v2 is a CFVupp in F2, then by Theorem 3.2(i), v2 is a CFVupp in G.

(ii) If v2 is a CV in F2, then by Theorem 3.2(ii), v2 is a CV in G.

(iii) If v2 is a CFVmid in F2, then by Theorem 3.2(iii), v2 is a CFVmid in G.
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Hence, v1 and v2 remain of the same type in G.

The case when the two root vertices are of the same type in F1 and F2 is presented in

Theorem 3.7.

Theorem 3.7. Let G be a graph with a cut–edge e = v1v2, and let F1 and F2 be the

components of G− e with root vertices v1 and v2, respectively.

(i) If each of v1 and v2 is a CV in F1 and F2, respectively, then each of v1 and v2 is a

CFVupp in G.

(ii) If each of v1 and v2 is a CFVupp in F1 and F2, respectively, then each of v1 and v2

is a CFVupp in G.

(iii) If each of v1 and v2 is a CFVmid in F1 and F2, respectively, then v1 and v2 are either

both CV or both CFVmid in G.

Proof. We note that (i) and (ii) are special cases of Theorem 3.4 and Theorem 3.6, re-

spectively.

To prove (iii), note that η(G− v1) = η(F1− v1) + η(F2) (refer to Figure 1). Since v2 is

a CFVmid in F2, then η(G− v1) = η(F1− v1) + η(F2− v2). Similarly, since v1 is a CFVmid

in F1, then η(G−v2) = η(F1−v1)+η(F2−v2). Also, η(G−v1) = η(G−v2). We conclude

that v1 and v2 are of the same type in G. Moreover, by Theorems 2.5 and 3.3(iv), v1 and

v2 cannot be CFVupp in G.

Table 2 illustrates all the possible cases. Further to the relationship among the types

of vertices presented in Table 1, we note that the type of v1 and v2 in G is determined

uniquely by knowing the type of v1 in F1 and the type of v2 in F2, except for the instance

when the root vertices v1 and v2 are both CFVmid in F1 and F2.

v1 in F1 v2 in F2 v1 in G v2 in G

CFVupp CFVupp CFVupp CFVupp

CFVupp CV CFVupp CV
CFVupp CFVmid CFVupp CFVmid

CV CV CFVupp CFVupp

CV CFVmid CFVmid CFVupp

CFVmid CFVmid
CFVmid CFVmid

CV CV

Table 2. Type of the vertices incident to a cut–edge e = v1v2.

-780-



After considering all the possible types of pairs of vertices, the following result follows

immediately.

Theorem 3.8. It is impossible to have a graph G with a cut–edge e = v1v2 such that v1 is

a CFVmid and v2 is a CV in G.

The case when v1 and v2 are both CV in G has an interesting consequence on one of

the kernel eigenvectors of G, as follows.

Theorem 3.9. Let G be a graph with a cut–edge e = v1v2, and let F1 and F2 be the

components of G − e with root vertices v1 and v2, respectively. If v1 and v2 are both CV

in G, then

(i) each of v1 and v2 is a CFVmid in F1 and F2, respectively;

(ii) v1 and v2 correspond to non–zero entries on exactly one kernel eigenvector in a basis

for the nullspace of A(G).

Proof. From Table 2, v1 and v2 are both CV in G if they are both CFVmid in F1 and F2,

respectively; hence (i) follows immediately. To prove (ii), let η(G) = η and let both v1

and v2 be CV in G. Then there exist kernel eigenvectors with a non zero entry at the

positions corresponding to v1 and v2. Let x(1),x(2), . . . ,x(η−1) be linearly independent

kernel eigenvectors in the nullspace of A(G) with a zero entry at the position correspond-

ing to the vertex v1, and let x(η) be a kernel eigenvector having a non zero entry at that

position. Note that if x
(i)
res. is the vector obtained from x(i) by removing the zero entry at

the position corresponding to v1, thus reducing its dimension by one, then x
(i)
res. is a kernel

eigenvector of A(G − v1). Since η(G − v1) = η − 1, then x
(1)
res.,x

(2)
res., . . . ,x

(η−1)
res. are η − 1

linearly independent eigenvectors generating the nullspace of A(G−v1). Suppose there is

some x
(i)
res., for i ∈ {1, 2, . . . , η− 1}, having a non zero entry at the position corresponding

to the vertex v2. Since v2 is a CV in G, then G− {v1, v2} has nullity

η(G− {v1, v2}) = η(G− v1)− 1 = η − 2. (1)

However, η(G−{v1, v2}) = η(F1−v1)+η(F2−v2) and from the proof of Theorem 3.7(iii),

η(F1 − v1) + η(F2 − v2) = η(G − v1) = η(G − v2). Thus, η(G − {v1, v2}) = η − 1,

a contradiction to (1). Hence the kernel eigenvector containing the non zero entry at

the position corresponding to the vertex v1 must also contain the non zero entry at the
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position corresponding to the vertex v2. Thus, each of x(1),x(2), . . . ,x(η−1) has a zero

entry at both positions corresponding to the vertices v1 and v2, implying that if v1 and

v2 are CV in G then they correspond to non–zero entries on the same kernel eigenvector

in the nullspace of A(G). Indeed, on deleting both vertices, the nullity reduces by one

only. Hence, there is one and only one kernel eigenvector (up to multiplicities) that has

non–zero entries in these positions.

We conclude this section by presenting a chemical application of Theorem 3.9 by prov-

ing a sufficient condition for a molecular graph with a cut–edge to be an insulator. We

first extract the following result from Table III of [3].

Lemma 3.10. [3] Let G be a molecular graph with two distinct core vertices v1 and v2.

Then G with connecting vertices v1 and v2 is an insulator if and only if η(G−{v1, v2}) =

η(G)− 2.

We thus have the following result.

Theorem 3.11. A molecular graph G with a cut–edge whose end vertices v1 and v2 are

the connecting vertices of a molecule in a circuit cannot be an insulator if v1 and v2 are

both CV in G.

Proof. By Theorem 3.9, v1 and v2 correspond to non–zero entries on one kernel eigenvector

only, and thus η(G−{v1, v2}) = η(G)−1. Hence, from Lemma 3.10, G is not an insulator.

4 Nullity of graphs with a cut–edge

In [9], Ibrahim remarked that the nullity of a graph changes by at most two upon deleting

an edge. In Theorem 4.1, we present a short proof for this statement. We proceed to

show, in Theorem 4.7, that the range can be restricted further when e is a cut–edge.

Theorem 4.1. Let G be any non–empty graph, then for each e ∈ E(G), |η(G)−η(G−e)| ≤

2.

Proof. Let e = v1v2. By Theorem 1.2, η(G) − 1 ≤ η(G − v1) ≤ η(G) + 1. We obtain

G−v1 +v′ by introducing a new vertex v′ in G−v1 adjacent to the same neighbours of v1
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in G excluding v2. Using Theorem 1.2 once again, we obtain η(G)− 2 ≤ η(G− v1 + v′) ≤

η(G) + 2. The result follows by noting that G− v1 + v′ = G− e.

Table 3 illustrates the statement of Theorem 4.1. It shows that the difference η(G)−

η(G−e) is realizable for all values between −2 and 2. No example is exhibited in the case

when η(G)− η(G− e) = 2 and e is a cut–edge in G because, as we shall have occasion to

show in Theorem 4.7, no such graphs exist.

η(G)− η(G− e) G η(G) G− e η(G−e)

−2

1 3

2 4

−1

1 2

1 2

0

1 1

1 1

1

2 1

2 1

2 3 1

Table 3. The nullity of graphs and their subgraphs upon deleting an edge (cut–
edge).

Given the type of vertex v1 in the component graphs F1 or F2 + v1, we are now in a

position to determine the difference between the nullity of a graph G with a cut–edge e

and the nullity of G− e. We use some further results from [1].

Theorem 4.2. [1] Let H1 = G1 + v1 and H2 = G2 + v2 be two graphs with root vertices

v1 and v2, respectively, and let H be the coalescence of H1 and H2 obtained by identifying

the vertices v1 and v2 to get the coalescence vertex v.

(i) If v1 is a CFVupp in H1, then η(H) = η(H1) + η(G2) = η(H1) + η(H2 − v2).
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(ii) If v1 is a CV in H1, then η(H) = η(G1) + η(H2) = η(H1 − v1) + η(H2).

Again, we consider G = F1 ◦ (F2 + v1) with coalescence vertex v1. If v1 is a CFVupp

in F1, then by Theorem 4.2(i), η(G) = η(F1) + η(F2) = η(G − e). Hence we have the

following result.

Theorem 4.3. Let G be a graph with a cut–edge e = v1v2, and let F1 and F2 be the

components of G − e with root vertices v1 and v2, respectively. If v1 is a CFVupp in F1,

then η(G) = η(G− e).

Theorem 4.3 implies that if we know that at least one of the root vertices in F1 and

F2 is a CFVupp, then the nullity of G− e is not influenced by the type of the other root

vertex. The situation is completely different when none of the root vertices is a CFVupp

because the nullity will change on deleting e from G.

The case when one of the root vertices is a CV and the other is not a CFVupp in the

respective component graph is treated in Theorem 4.4.

Theorem 4.4. Let G be a graph with a cut–edge e = v1v2 and let F1 and F2 be the

components of G− e with root vertices v1 and v2, respectively.

(i) If each of v1 and v2 is a CV in F1 and F2, respectively, then η(G) = η(G− e)− 2.

(ii) If v1 is a CV in F1 and v2 is a CFVmid in F2, then η(G) = η(G− e)− 1.

Proof. Since v1 is a CV in F1, by Theorem 4.2(ii), η(G) = η(F1 − v1) + η(F2 + v1). By

Lemma 2.1, η(F2 + v1) = η(F2 − v2), and thus

η(G) = η(F1 − v1) + η(F2 − v2). (2)

(i) Since v1 and v2 are both CV in F1 and F2, respectively, then η(F1) = η(F1− v1) + 1

and η(F2) = η(F2− v2) + 1. Hence, by (2) we obtain η(G) = η(F1)− 1 + η(F2)− 1 =

η(G− e)− 2.

(ii) Since v1 is a CV in F1 and v2 is a CFVmid in F2, then η(F1) = η(F1 − v1) + 1 and

η(F2) = η(F2 − v2). From (2), we obtain η(G) = η(G− e)− 1.

The following corollary is immediate from Theorems 2.4 and 4.4.
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Corollary 4.5. Let G be a graph with a cut–edge e = v1v2, and let F1 and F2 be the

components of G− e with root vertices v1 and v2, respectively.

(i) If each of v1 and v2 is a CFVupp in F2 + v1 and F1 + v2, respectively, then η(G) =

η(G− e)− 2.

(ii) If v1 is a CFVupp in F2 + v1 and a CFVmid in F1, or if v1 is a CFVmid in F2 + v1

and a CFVupp in F1, then η(G) = η(G− e)− 1.

Proof. By Theorem 2.4, the vertex v1 is a CFVupp in F2 + v1 if and only if v2 is a CV in

F2, and v2 is a CFVupp in F1 + v2 if and only if v1 is a CV in F1. Hence the result follows

by Theorem 4.4.

Finally, to address the case when v1 is a CFVmid in F1, we need to consider the types

of the vertex v1 in G, as follows.

Theorem 4.6. Let G be a graph with a cut–edge e = v1v2, and let F1 and F2 be the

components of G− e with root vertices v1 and v2, respectively.

(i) If v1 is a CFVmid in F1 and a CFVupp in G, then η(G) = η(G− e)− 1.

(ii) If v1 is a CFVmid in F1 and a CV in G, then η(G) = η(G− e) + 1.

(iii) If v1 is a CFVmid in F1 and a CFVmid in G, then η(G) = η(G− e).

Proof.

(i) Since v1 is a CFVupp in G, then by definition, η(G) = η(G − v1) − 1. As shown in

Figure 1, G − v1 = F1 − v1∪̇F2, and thus η(G − v1) = η(F1 − v1) + η(F2). Since,

v1 is a CFVmid in F1, by definition, η(G− v1) = η(F1) + η(F2) = η(G− e). Hence,

η(G) = η(G− e)− 1.

(ii) Since v1 is a CV in G, then η(G) = η(G − v1) + 1. Since G − v1 = F1 − v1∪̇F2

then η(G− v1) = η(F1 − v1) + η(F2). Now, v1 is a CFVmid in F1 and, by definition,

η(F1 − v1) = η(F1). Thus η(G − v1) = η(F1) + η(F2) and hence η(G) = η(F1) +

η(F2) + 1 = η(G− e) + 1.

(iii) Since G − v1 = F1 − v1∪̇F2, then η(G − v1) = η(F1 − v1) + η(F2). Now, v1 is a

CFVmid in F1, implying that η(G − v1) = η(F1) + η(F2) = η(G − e). Since v1 is a

CFVmid in G, by definition we also have η(G) = η(G−v1). Hence, η(G) = η(G− e).
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At this point, we are able to prove our claim that there is no graph G with a cut–edge

e such that η(G)− η(G− e) = 2.

Theorem 4.7. If G is any graph with a cut–edge e = v1v2, then η(G) − 1 ≤ η(G − e) ≤

η(G) + 2.

Proof. We consider all the six different possible cases for the type of vertex v1 in F1 and

v2 in F2.

• If either v1 is a CFVupp in F1 or v2 is a CFVupp in F2, then by Theorem 4.3, η(G) =

η(G− e).

• If each of v1 and v2 is a CV in F1 and F2, respectively, then by Theorem 4.4(i), η(G) =

η(G− e)− 2.

• If either v1 is a CV in F1 and v2 is a CFVmid in F2, or v1 is a CFVmid in F1 and v2 is a

CV in F2, then by Theorem 4.4(ii), η(G) = η(G− e)− 1.

• If each of v1 and v2 is a CFVmid in F1 and F2, respectively, then by Theorem 3.7(iii),

v1 and v2 are either both CV or both CFVmid in G. If they are both CV in G, then by

Theorem 4.6(ii), η(G) = η(G − e) + 1; whilst if they are both CFVmid in G, then by

Theorem 4.6(iii), η(G) = η(G− e).

Hence, in all possible cases, the nullity upon removing a cut–edge e from G lies between

η(G)− 1 and η(G) + 2.

5 Contracting a cut–edge of a graph

In this section we show that on contracting a cut–edge, the nullity changes by at most

one. In the following theorem, we first establish the type of the new vertex obtained upon

contracting a cut–edge and derive the nullity of the resulting graph. The proof follows in

two steps. We first delete the cut–edge to obtain two component graphs F1 and F2 with

root vertices v1 and v2, respectively, and use the results in Sections 3 and 4 to determine

the nullity of the graph obtained and the type of the root vertices in F1 and in F2. The

second step involves coalescing the two component graphs using results from [1], presented

here in Theorems 2.3 and 3.2. Thus we have:

Theorem 5.1. Let G be a graph with a cut–edge e = v1v2, and let G/e be the graph G

with the edge e contracted to the vertex v.
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(i) If v1 and v2 are both CFVupp in G, then v is either a CFVupp or a CV in G/e and

η(G/e) = η(G) + 1.

(ii) If v1 is a CFVupp in G and v2 is a CV in G, then v is a CFVupp in G/e and

η(G/e) = η(G)− 1.

(iii) If v1 is a CFVupp in G and v2 is a CFVmid in G, then v is either a CFVupp or a

CFVmid in G/e and η(G/e) = η(G).

(iv) If v1 and v2 are both CFVmid in G, then either v is a CFVmid in G/e and η(G/e) =

η(G), or v is a CV in G/e and η(G/e) = η(G) + 1.

(v) If v1 and v2 are both CV in G, then either v is a CFVmid in G/e and η(G/e) =

η(G)− 1, or v is a CV in G/e and η(G/e) = η(G).

We note that in Theorem 5.1, we do not consider the case when v1 is a CFVmid and v2

is a CV in G because, as we discussed in Theorem 3.8, this case cannot occur.

Remark 5.2. We have examples illustrating all the above situations except for the last

case, that is, when v1 and v2 are both CV in G and v is a CV in G/e. We think that this

case is not possible, but have no proof of this claim.

In Theorem 4.5 of [3], it is proved that for an ipso connection, a singular molecular

graph allows conductivity if and only if the connecting atom is either a CV or a CFVmid.

A consequence of Theorem 5.1 is the following chemical application to molecular graphs.

Corollary 5.3. Let G be a graph of nullity at least two with a cut–edge e such that one of

the end–vertices of e is a CFVupp and the other end–vertex is a CV. A molecular graph

obtained from G by contracting e to a vertex v is an insulator if the ipso connection is

made at v.

Along the same lines as the consequences of the Interlacing Theorem when a vertex

is deleted, we state the next result for edge contraction which is another immediate

consequence of Theorem 5.1.

Theorem 5.4. Let G be a graph with a cut–edge e, and let G/e be the graph G with the

edge e contracted to the vertex v. Then

η(G)− 1 ≤ η(G/e) ≤ η(G) + 1.
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6 Replacing a cut–vertex with an edge

In this section, we discuss the inverse to the problem discussed in Section 5. The coales-

cence F1 ◦F2, denoted by G, is the graph with a cut–vertex v = v1 = v2 such that G−v =

(F1− v1)∪̇(F2− v2). Recall that F1− v1 = {G1, . . . , Gr} and F2− v2 = {Gr+1, . . . , Gs} for

some r ∈ {1, . . . , s− 1}. The graph G : e is constructed by introducing the edge e = v1v2

in F1∪̇F2. Note that G : e is identical to the graph G with cut–edge v1v2.

The following theorem follows immediately from Theorem 5.1.

Theorem 6.1. Let v be a cut–vertex in G and let e = v1v2 in G : e.

1. If v is a CFVupp in G, then v1 or v2 is a CFVupp in G : e.

2. If v is a CV in G, then v1 and v2 are of the same type (either both CFVupp or both CV

or both CFVmid) in G : e.

3. If v is a CFVmid in G, then in G : e, either

(i) v1 and v2 are both CV, or

(ii) v1 and v2 are both CFVmid, or

(iii) v1 is a CFVmid and v2 is a CFVupp, or v1 is a CFVupp and v2 is a CFVmid.

As we noted in Remark 5.2, we know of no graph G in which v is a CV such that both

vertices v1 and v2 are CV in G : e.

In Theorems 6.3 to 6.5, we use the type of the cut–vertex v in G to determine the

nullity of the graph G : e. For this purpose we need three results from [1], stated here in

Theorem 6.2.

Theorem 6.2. [1] Let H1 = G1 + v1 and H2 = G2 + v2 be two component graphs with

root vertices v1 and v2, respectively, that form the coalescence G obtained by identifying

the vertices v1 and v2 to get the coalescence vertex v.

(i) If v is a CV in G, then v1 and v2 are either both CV or both CFVmid in H1 and H2.

(ii) The vertex v is a CFVupp in G if and only if at least one of v1 and v2 is a CFVupp

in H1 or H2.

(iii) If v is a CFVmid in G, then either v1 and v2 are both CFVmid in H1 and H2, or v1

is a CFVmid in H1 and v2 is a CV in H2.
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Theorem 6.3. Let G be a graph with a cut–vertex v. If v is a CFVupp in G, then η(G)−1 ≤

η(G : e) ≤ η(G) + 1.

Proof. Since v is a CFVupp in G, by Theorem 6.2(ii), either v1 is a CFVupp in F1 or v2 is a

CFVupp in F2, and by Theorem 4.3, since G = G : e, η(G− e) = η(G : e). We have three

cases to consider.

(i) If v1 and v2 are both CFVupp in F1 and F2, respectively, then by Theorem 2.3(iii),

η(G) = η(G− e) + 1, and thus η(G : e) = η(G)− 1.

(ii) If v1 is a CFVupp in F1 and v2 is a CFVmid in F2, then by Theorem 2.3(ii), η(G) =

η(G− e), and thus η(G : e) = η(G).

(iii) If v1 is a CFVupp in F1 and v2 is a CV in F2, then by Theorem 2.3(i), η(G) =

η(G− e)− 1, and thus η(G : e) = η(G) + 1.

Theorem 6.4. Let G be a graph with a cut–vertex v. If v is a CV in G, then η(G : e) is

either η(G)− 1 or η(G).

Proof. Since v is a CV in G, then by Theorem 6.2(i) we have two cases to consider.

(i) If each of v1 and v2 is a CV in F1 and F2, respectively, then by Theorem 2.3(i),

η(G) = η(G − e) − 1, and by Theorem 4.4(i), η(G : e) = η(G − e) − 2. Thus,

η(G : e) = η(G)− 1.

(ii) If each of v1 and v2 is a CFVmid in F1 and F2, respectively, and by the premise that

v is a CV in G, then by Theorem 2.3(iv), η(G) = η(G− e) + 1. By Theorem 3.7(iii),

the vertices v1 and v2 are either both CV or both CFVmid in G : e. In the first case,

by Theorem 4.6(ii), η(G : e) = η(G− e) + 1 and thus η(G : e) = η(G). In the latter

case, by Theorem 4.6(iii), η(G : e) = η(G− e) and thus η(G : e) = η(G)− 1.

If what we claim in Remark 5.2 is proved to be true, then η(G : e) can only be equal

to η(G)− 1 when v is a CV in G.

Theorem 6.5. Let G be a graph with a cut–vertex v. If v is a CFVmid in G, then η(G : e)

is either η(G) or η(G) + 1.
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Proof. Since v is a CFVmid in G, then by Theorem 6.2(iii), we have two cases to consider.

(i) If each of v1 and v2 is a CFVmid in F1 and F2, respectively, then since v is a CFVmid in

G, by Theorem 2.3(iv), η(G) = η(G− e). By Theorem 3.7(iii), the vertices v1 and v2

are again either both CV or both CFVmid in G : e. Thus, either η(G : e) = η(G−e)+1

and thus η(G : e) = η(G) + 1 (by Theorem 4.6(ii)), or η(G : e) = η(G− e) and thus

η(G : e) = η(G) (by Theorem 4.6(iii)).

(ii) If v1 is a CV in F1 and v2 is a CFVmid in F2, then by Theorem 2.3(i), η(G) =

η(G−e)−1, and by Theorem 4.4(ii), η(G : e) = η(G−e)−1. Thus, η(G : e) = η(G).

Theorems 6.3 to 6.5 yield another inequality of the same type obtained as a consequence

of the Interlacing Theorem, this time involving the replacement of a cut–vertex by an edge.

Theorem 6.6. Let G be a graph with a cut–vertex v, and let G : e be the graph G with the

vertex v replaced by the edge e. Then

η(G)− 1 ≤ η(G : e) ≤ η(G) + 1.
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