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Abstract

A graph 𝐺 is singular of nullity 𝜂 if the nullspace of its adjacency matrix G has

dimension 𝜂. In the Hűckel model, a molecular graph of nullity 𝜂 has 𝜂 non-bonding

orbitals (NBOs). By considering the properties of vertices playing different roles in a

singular graph, we give a geometrical significance to the maximal induced subgraphs

that have lower rank. We determine lower and upper sharp bounds for the order of

the substructures where the spin of the NBO electrons is concentrated. In the case of

degeneracy of the NBOs, lack of stability points towards a “first order”Jahn-Teller

distortion, resulting in a combined effect of the NBOs.

1 Introduction

A graph 𝐺 is said to be of order 𝑛 if it has 𝑛 vertices. For a labelling of the vertices

{1, 2, . . . 𝑛}, the adjacency matrix of a graph 𝐺, denoted by A(𝐺) (or simply A or G), is

the 𝑛×𝑛matrix (𝑎𝑖𝑗), where 𝑎𝑖𝑗 = 1 if {𝑖𝑗} is an edge and 0 otherwise. The spectrum 𝑆𝑝(𝐺)

of a graph 𝐺 consists of the collection, with repetitions, of the eigenvalues of A, which are
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the solutions of the characteristic equation det(𝜆I−A) = 0. Since relabelling the vertex

set of a graph produces similar adjacency matrices, the spectrum is an invariant of 𝐺. The

multiplicity of the eigenvalue zero in 𝑆𝑝(𝐺) is referred to as the nullity1, 𝜂(𝐺), of 𝐺. Note

that by the Dimension Theorem, for a linear transformation G, 𝜂(G) + rank(G) = ∣𝐺∣.
The difference between the number of positive and negative eigenvalues of A is referred

to as the signature of 𝐺.

A graph 𝐺 on 𝑛 vertices is singular if 𝜂(𝐺) > 0; that is, if there exists x ∕= 0,x ∈ ℝ
𝑛,

such that Ax = 0. Since A satisfies Ax = 𝜆x for the eigenvalue 𝜆 = 0 and x ∈ ker(A),

we refer to x as a kernel eigenvector of 𝐺.

In Hűckel molecular orbital theory, a simplified Schrődinger equation applied to a 𝜋–

conjugated molecule whose C-skeleton is the same as that of 𝐺, is Ax = 𝜆x. The

eigenvalues 𝜆 of A estimate the energies of the 𝜋-electrons in conjugated unsaturated

systems, while the eigenvectors x of A model the 𝜋–molecular orbitals. The eigenvalue

zero is associated with the non-bonding orbitals (NBOs) of a 𝜋–conjugated molecule

represented by the kernel eigenvectors of A.

For a graph 𝐺, 𝑟𝑎𝑛𝑘(G) is therefore the number of non-zero eigenvalues of the adjacency

matrix. For a graph with at least one edge, the rank is bounded below by two and above

by the order of the graph. These bounds were improved by a number of authors.

The results of a computer search for graphs with six non-zero eigenvalues is given in

[7]. There are 1644 non-isomorphic such graphs on six to fourteen vertices. In [8], both

upperbounds and lower bounds are discussed. In [14], a lower bound for the rank in

terms of parameters of singular subgraphs of 𝐺 is given. In [19], the rank is shown to be

bounded by a function of the number of negative eigenvalues of 𝐺.

This paper is motivated by the following mathematical curiosities that have chemical

implications in Molecular Orbital Theory:

1. What properties must a vertex possess within a graph so that the rank remains constant

or changes by a particular number on deleting the vertex?

2. If no two columns of A are identical, what is the largest number of positions on which

1The term corank(A) is also used for nullity(A) in the literature.
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two columns coincide?

3. How does the structure of a singular graph control the rank?

We address the above questions in sections 2, 3 and 4 respectively. Known results are

surveyed and we supply proofs where it is expedient for the global understanding of the

concepts presented.

2 Core Vertices

The graphs we consider are simple, that is they have no loops or multiple edges. For an

arbitrary labelling of the vertices of a graph and a feasible kernel eigenvector x ∈ ℝ
𝑛,

x ∕= 0, the 𝑛 × 𝑛 real symmetric 0 − 1 adjacency matrix A, satisfying Ax = 0, defines

singular graphs with x as a nullvector in the nullspace of A. The non-zero restriction x𝐹

of x defines an induced subgraph 𝐹 , of the respective graph 𝐺, induced by the vertices

corresponding to the non-zero entries of x. If the vertices of 𝐹 are labelled first, then

x = (x𝐹 ,0)
𝑡. If Ax = 0 and x =

(
x𝐹

0

)
, where all the ∣𝐹 ∣ entries of x𝐹 are non-zero,

then the ∣𝐹 ∣ × ∣𝐹 ∣ submatrix F of A, satisfies FxF = 0 and defines an induced subgraph

𝐹 of 𝐺 called a core of 𝐺, denoted by (𝐹,x𝐹 ) or just 𝐹 when the context is clear. If

x = x𝐹 , then 𝐺 is said to be a core graph. Note that a core of 𝐺 is a core graph in its

own right.

The five-vertex path 𝑃5 has nullity one, and core 𝐾3, that is the three-vertex graph with

no edges. The four-cycle 𝐶4, is itself a core graph of nullity two, since for a normal

labelling round the cycle, C4(x) = 0 where x = (1, 1,−1,−1)𝑡. Note that 𝐶4 has also two

distinct cores, each being 𝐾2.

2.1 Deleting Core Vertices

When a vertex and the edges incident to it are deleted from a graph, the nullity, may

change by at most one so that, by the Dimension Theorem, the rank may remain un-

changed or decrease by at most two. These considerations are in line with Cauchy’s in-
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equalities for Hermitian matrices, also known as the Interlacing Theorem [9]. For graphs,

it may be stated as follows:

Theorem 2.1 Interlacing Theorem: Let 𝐺 be an 𝑛-vertex graph and 𝑣 ∈ 𝒱. If the eigen-

values of 𝐺 are 𝜆1, 𝜆2, . . . , 𝜆𝑛 and those of 𝐺−𝑣 are 𝜇1, 𝜇2, . . . , 𝜇𝑛−1, both in non-increasing

order of magnitude, then 𝜆1 ≥ 𝜇1 ≥ 𝜆2 ≥ 𝜇2 ≥ . . . ≥ 𝜇𝑛−1 ≥ 𝜆𝑛.

Figure 1: Singular configurations are induced subgraphs of a singular graph.

A basis 𝐵 for the nullspace can be transformed into another, 𝐵′, by linear combinations

of the vectors of 𝐵. However, the union of the collections of the positions of the non-zero

entries in the basis vectors is the same for all bases. There is therefore a bipartition of

the vertices that has a direct bearing on the change in rank on deleting a vertex. If a

vertex of a graph 𝐺 lies on some core determined by the vectors in 𝐵, then it is said

to be a core vertex. Vertices not lying on any core are said to be core-forbidden. The

vertices 7 and 8 of the graph in Figure 1 are core-forbidden vertices. Thus if A is the

adjacency matrix of a singular graph 𝐺, the partition of the vertex set 𝒱(𝐺) into CV and

core-forbidden vertices, 𝒱(𝐺)∖CV, is independent of the basis used for the nullspace. The

following result is immediate.

Proposition 2.2 For all possible bases of the nullspace, the set CV of core vertices is an

invariant of a graph 𝐺.
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It follows that the set of core-forbidden vertices, 𝒱(𝐺)∖CV, is also an invariant of 𝐺. This

concept has been used ad hoc in the theory of singular graphs. [1, 5, 13].

Lemma 2.3 If 𝐻 is an induced subgraph of a graph 𝐺, then 𝑟𝑎𝑛𝑘(𝐻) ≤ 𝑟𝑎𝑛𝑘(𝐺).

Proof: This is true for all principal submatrices H of G. Also, since on adding a vertex

to a graph, the nullity increases by one, remains unchanged or decreases by one, the rank

does not decrease.

By Lemma 2.3, the rank of a graph is an upperbound for the rank of its vertex-deleted

subgraphs. The following result characterizes core vertices in a singular graph.

Proposition 2.4 The rank of a graph remains unchanged on deleting a vertex 𝑣 if and

only if 𝑣 is a core vertex.

Proof: The rank of a graph remains unchanged on deleting a vertex 𝑣 if and only if the

number of kernel eigenvectors in the nullspace of the adjacency matrix reduces by one.

We show that a necessary and sufficient condition for the rank to remain constant is that

𝑣 is a core vertex.

Let 𝐺 be a singular graph of nullity 𝜂, having the core vertices labelled first with the

core vertex 𝑣 being among the first 𝜂 vertices. If 𝐵 = {z1, z2, . . . , z𝜂} is a basis for the

nullspace of the adjacency matrix of 𝐺, then the 𝜂 × 𝑛 matrix M whose rows are the 𝜂

vectors in 𝐵, has rank 𝜂. By row reduction, M can be reduced to the Hermite Normal

form M′, in which, to the (column) position of the first non-zero entry of each of the 𝜂

row vectors, there corresponds a zero entry in all the other rows. One of these positions

is that of 𝑣. Since row reduction is equivalent to taking linear combinations of the kernel

eigenvectors, the rows of M′ are a full set of 𝜂 linearly independent kernel eigenvectors of

𝐺. Deleting 𝑣, affects just one of the row vectors so that the remaining 𝜂− 1 rows of M′,

restricted to 𝐺− 𝑣, are kernel eigenvectors of 𝐺− 𝑣. Moreover, there are no more kernel

eigenvectors linearly independent of these 𝜂− 1 row vectors for 𝐺− 𝑣, as otherwise these

can be extended (by adding a zero in the 𝑣 position), contributing a kernel eigenvector of

𝐺 linearly independent of the rows of 𝑀 and the nullity of 𝐺 would then be more than
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𝜂. If 𝑢 is a core-forbidden vertex, deleting it leaves all 𝜂 rows of M′, restricted to 𝐺− 𝑢,

as kernel eigenvectors of 𝐺− 𝑢.

The core vertices can also be seen in the context of graph angles [3]. They are the

vertices 𝑣 such that Pe𝑣 = 0, where P is the orthogonal projection of ℝ𝑛 (with standard

orthonormal basis e1, ..., e𝑛) onto the eigenspace of 0. In the chemical context, the entries

of x determine the distribution of the electron(s) occupying the NBO: from them follow

the charges on the atoms, the bond-orders and, in the case of single occupation, the net

spin density at each site. For a labelling of 𝐺, a zero entry in the 𝑖th position of x indicates

a lack of charge at the 𝑖th C-centre. The NBO-charge is distributed among the C-atoms

in proportion to the square of the entries of x. Thus the charge is concentrated in the

substructure, the core with respect to x, that corresponds to the non-zero entries of x.

The eigenvalue zero of A, for a molecular graph 𝐺, indicates the presence of a NBO, x,

with no net stabilization or destabilization.

Figure 2: Adding a vertex so as to increase the nullity.

Non-adjacent vertices having the same neighbours are said to be duplicate vertices2.

A trivial way of increasing the nullity is to add a duplicate vertex since this results in two

equal rows of the adjacency matrix. Adding an isolated vertex to a graph also increases the

nullity. Note that graph invariants such as rank and chromatic number remain constant

when a duplicate or isolated vertex is added. A non-trivial way of increasing the nullity is

shown in Figure 2. The nullity of the graph on five vertices is one and increases to two for

the six-vertex graph. Thus both graphs shown in Figure 2 have four non-zero eigenvalues.

By Proposition 2.4 and by interlacing, the rank remains constant on deleting a core vertex,

whereas it decreases if a core-forbidden vertex is deleted. Removal of a core-forbidden

vertex from a 𝑛-vertex graph 𝐺 of rank 𝑟, may result in a graph of rank 𝑟−1 and the same

2Two duplicate vertices are also referred to as vertices of the same type [12] or twins [8].
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nullity as for 𝐺, provided no new cores are created in 𝐺 − 𝑣. Alternatively, the removal

of a core-forbidden vertex may produce a new core in 𝐺 − 𝑣, in which case the nullity

increases by one, forcing the rank to reduce by two. If the new core created happens

to be 𝐾2 (the subgraph consisting of two isolated vertices), then duplicate vertices are

produced in 𝐺− 𝑣, whose adjacency matrix would then have two identical rows. A sharp

upperbound for the number of non-zero entries coinciding in two identical rows of 𝐺− 𝑣

is 𝑛 − 3, as in the case of 𝐺2 of Figure 3, when a pair of duplicate vertices 𝑎 and 𝑏 are

adjacent to all the remaining vertices in 𝐺− 𝑣.

Figure 3: Non-canonical vertex-deleted subgraphs.

3 Change in Rank

In this section we answer question 2, giving a new proof by interpreting the effects on the

rank when deleting vertices of different properties.

Following A.Torgašev and M.Lepović, we call graphs with no duplicate vertices, canonical

3 [20, 7]. Note that all four graphs shown in Figures 2 and 3 are canonical. Both 𝐺1 − 𝑣

and 𝐺2 − 𝑣 of Figure 3 are non-canonical. To answer question 2, therefore, the minimal

number of vertices to be deleted, from a canonical graph to produce a non-canonical

subgraph, needs to be determined.

There are only finitely many canonical graphs of any given rank. Kotlov and Lovász

obtained Ramsey type bounds for the largest number of vertices of a canonical graph of

3Canonical graphs are also referred to as reduced graphs [4] in the literature.

-757-



a particular rank [8]. They based their arguments on the following result for which we

give a new perspective based on the structure of singular graphs. Our proof of this result

elucidates the possible substructures that may be present and gives a sharp upperbound

for the order of the induced substructures that may be non-canonical within a graph.

Lemma 3.1 Let 𝐺 be a canonical graph without isolated vertices and of rank 𝑟. If deletion

of vertices from 𝐺 results in a maximal graph 𝐻 of lower rank, then

(i) no two rows (or columns) of A(𝐺) coincide on more than ∣𝐻∣ positions;
(ii) 𝐻 has at most two duplicate vertices (i.e. no triplets);

(iii) if 𝐻 has a pair of duplicate vertices, then its rank is exactly 𝑟 − 2.

Proof: We consider graphs with core forbidden vertices first. By Proposition 2.4, for the

rank to decrease on deleting a vertex, the vertex chosen for deletion must not be a core

vertex. On deleting a core-forebidden vertex, either the nullity remains unchanged or it

increases by one, by interlacing. In the former case, the rank decreases by one and in the

latter by two.

If the rank decreases by one, then no new cores are created and therefore no two vertices

become duplicate vertices. In 𝐻 no two rows are identical. Thus in 𝐺 no two rows coincide

on ∣𝐻∣ positions or more.

If on the other hand the rank decreases by two, then the dimension of ker(A) increases

by one and a new core is created. It could happen that two vertices which in 𝐺 were not

duplicates, become so in 𝐻. In such a scenario, two rows of 𝐻 are identical. Thus in

A(𝐺), the corresponding two rows coincide on exactly ∣𝐻∣ positions. If the core created

does not correspond to duplicate vertices, then rows of A(𝐺) coincide on less than ∣𝐻∣
positions.

The last possibility to consider is for core graphs. Each vertex is a core vertex and on

deletion of a vertex, the rank does not change. However core forbidden vertices appear on

deletion of one or more vertices and a maximal graph 𝐻 of lower rank can be determined.

Thus no two rows of A(𝐺) coincide on more than ∣𝐻∣ positions as described above.

This proof answers the second question we posed in a manner that emphasises the internal

structure of the molecule. We note that in graphs with no isolated vertices, duplicate
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vertices correspond to a core-order of two, the smallest possible. Thus two is a lower bound

for the order of the substructures where the spin of the NBO electrons is concentrated

and it is reached by molecular graphs with duplicate vertices. Duplicate vertices were

also studied in [2] where the authors viewed them as providing the threshold case in the

concept of graph singularity.

4 Relating Graph Structure to the Rank

In this section we investigate problem 3. We study the nullity and the rank in parallel.

We address the problem in a way that requires more details about the structure of sin-

gular graphs. Since it is the existence of the non-zero part {x𝐹 ∈ ℝ
∣𝐹 ∣} of the kernel

eigenvector

(
x𝐹

0

)
of a graph 𝐺 that determines that 𝐺 has cores {𝐹} and therefore is

singular, the substructures are determined by the non-zero part of the kernel eigenvectors

of 𝐺.

4.1 Singular Configurations

It is instructive to deal first with graphs of nullity one, that is when the nullspace has

only one generator (up to scalar multiples).

Lemma 4.1 The number of vertices of a graph 𝐺 of nullity one, with core (𝐹,x𝐹 ), is at

least ∣𝐹 ∣+ 𝜂(𝐹 )− 1.

Proof: For a graph 𝐺 of nullity one, the core is uniquely determined and is an induced

subgraph of 𝐺. By interlacing, at least 𝜂(𝐹 )−1 vertices need to be added to 𝐹 to produce

𝐺, in such a way that the nullity reduces by one with each vertex addition.

When this lower bound is reached, the singular graph 𝐺 exhibits an extremal property4.

It has the minimum order among singular graphs for a given core (𝐹,x𝐹 ).

4We know of no cores that cannot be ’grown’ into singular configurations.
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Definition 4.2 A graph 𝐺, ∣𝐺∣ ≥ 3, is a singular configuration, with core (𝐹,x𝐹 ), if

it is a singular graph, of nullity one, with 𝐹 as an induced subgraph, having ∣𝐹 ∣+𝜂(𝐹 )−1

vertices, satisfying ∣𝐹 ∣ ≥ 2, Fx𝐹 = 0 and G

(
x𝐹

0

)
=

(
0

0

)
.

A singular configuration is necessarily connected. Otherwise it either has two singular

components and nullity more than one or else it has a non-singular component and the

number of vertices of 𝐺 exceeds ∣𝐹 ∣+ 𝜂(𝐹 )− 1. The proof of Proposition 4.1 suggests a

greedy algorithm to construct a subclass of singular configurations with a particular core.

Construction 4.3 Starting with a feasible core (𝐹,x𝐹 ) and 𝜂(𝐹 ) > 1, if a connected

graph 𝑆 of nullity one with kernel eigenvector

(
x𝐹

0

)
is produced by adding a minimal

set 𝒫 of independent vertices, until the nullity is reduced to one, then 𝑆 is a singular

configuration . Note that a vertex is accepted in 𝒫 only if it reduces the nullity by one

on adding it to the graph. The signature remains constant throughout this construction,

while the rank increases by two with each vertex addition, so that 𝑟𝑎𝑛𝑘(𝑆) = 𝑟𝑎𝑛𝑘(𝐹 ) +

2∣𝒫∣. In general, there may be non-isomorphic singular configurations with the same

(𝐹,x𝐹 ), as seen for the subgraphs 𝐺−{7} and 𝐺−{8} of the graph in Figure 1. The set

of independent vertices added to the core, to form 𝑆, is said to be the periphery 𝒫 of 𝑆,

with respect to x𝐹 . This construction produces the simplest singular configurations where

there are no edges between pairs of vertices of 𝒫 . Such a singular configuration 𝑆 is said

to be a minimal configuration (MC) since not only the number of vertices but also the

number of edges is as small as possible. There are 𝑝 =

( ∣𝒫∣
2

)
possible subsets of edges

between pairs of distinct vertices of 𝒫 and therefore 2𝑝 possible singular configurations

with a particular spanning minimal configuration .

In [12], a catalogue of all minimal configurations of core-order two to five is included. Note

that a singular configuration and its spanning minimal configuration have a common core

as an induced subgraph. Reversing the construction process, the nullity increases with

each periphery vertex-deletion from 𝑆.

The following result proved in [17] , shows the significance of singular configurations,

as the substructures of a singular graph. It provides a necessary condition, in terms of
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admissible subgraphs, for a graph to be of a specific nullity 𝜂.

Proposition 4.4 Let 𝐻 be a singular graph of nullity 𝜂, without isolated vertices. There

exist 𝜂 singular configurations as induced subgraphs of 𝐻.

4.2 Adding edges

We consider now the effect on the rank as a minimal configuration is converted into a

singular configuration by adding edges between pairs of distinct vertices of 𝒫 . For a

minimal configuration 𝑁 , if the vertices of 𝐹 are labelled first, followed by those of 𝒫 ,
then for x =

(
x𝐹

0

)
, Nx = 0. Note that if edges are added joining some or all of the

distinct pairs of vertices in 𝒫 , then the singular configuration , 𝑆, produced still satisfies

S

(
x𝐹

0

)
=

(
0

0

)
.

Theorem 4.5 Adding edges between distinct vertices of the periphery of a minimal con-

figuration leaves the rank unchanged.

Proof: Let (𝐹,x𝐹 ) be the core of the minimal configuration 𝑁 . For edges to be added

between vertices of the periphery, ∣𝒫∣ is at least two, so that 𝜂(𝐹 ) ≥ 3.

Labelling the 𝐹 -vertices first, we have

N =

(
F P

P𝑡 0𝜂(𝐹 )−1

)
, (1)

where O𝜂(𝐹 )−1 is the square zero matrix of order 𝜂(𝐹 )− 1, and P describes the edges

between the peripheral vertices and the vertices of 𝐹 .

If 𝐺 is obtained on adding edges, then

G =

(
F P

P𝑡 Q

)
, (2)

where Q is the square matrix of order 𝜂(𝐹 )− 1, which describes the edges added between

pairs of vertices of the periphery in 𝐺.
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Let
𝑟
= denote rank equivalence. By row reduction of the top ∣𝐹 ∣ rows,

G
𝑟
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R U

1 .... .... ...

O𝜂(𝐹 ) 0 1... .... ...

... .... ...

0 0... .... ...0 1

0 0... .... ...0 0

P𝑡 Q

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3)

where each entry of the 𝜂(𝐹 ) rows of O𝜂(𝐹 ) is zero. The matrix R is also zero in the case

when 𝐹 = 𝐾𝜂(𝑁). Each entry on the main diagonal of the submatrix consisting of the

𝜂(𝐹 )− 1 rows below U is 1.

Now Q can be row reduced to zero using the 𝜂(𝐹 )−1 non-zero rows above it. In so doing,

P𝑡 changes but since each row of P𝑡 is linearly independent of those of F (or of R) and

the rows of P𝑡 form a linearly independent set of vectors, it follows that no row of P𝑡 can

be row reduced to zero. Thus the nullity of G equals that of N.

A minimal configuration is a singular configuration and therefore connected. In a minimal

configuration𝑁 , a vertex of 𝒫 is joined to core-vertices only and the vertex degree of 𝑣 ∈ 𝒫
is at least two [12]. If a vertex is deleted from a singular configuration , the nullity changes.

It increases to two if 𝑣 is a periphery vertex but reduces to zero if 𝑣 is a core vertex [18].

An induced singular configuration in a singular graph 𝐺 sharing the same core as 𝐺

enables us to determine a lower bound for the rank.

Proposition 4.6 Let the connected graph 𝑍 have core (𝐹,x𝐹 ) and let the singular config-

uration 𝑆, with a spanning minimal configuration 𝑁 , be an induced subgraph of 𝑍, having

the same core (𝐹,x𝐹 ). Then 𝑟𝑎𝑛𝑘(𝑁) = 𝑟𝑎𝑛𝑘(𝑆) ≤ 𝑟𝑎𝑛𝑘(𝑍).

Proof: If two vertices of the periphery of 𝑁 are joined by an edge, 𝑟𝑎𝑛𝑘(𝑆) = 𝑟𝑎𝑛𝑘(𝑁)

by Theorem 4.5. The result now follows by Lemma 2.3.
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4.3 Core Size Sequence

The number of maximal connected graphs of rank 𝑟 that can be obtained is bounded

above by 2𝑟. To investigate by how much the rank increases as a singular configuration is

grown into a larger graph of nullity 𝜂 ≥ 1, we consider the entries of basis vectors for kerA.

Let 𝑤𝑡(x) denote the weight or number of non-zero entries of the vector x. We adopt

the convention to write a basis for the nullspace of A in which the kernel eigenvectors are

ordered according to the monotonic non-decreasing sequence of the weights of its vectors.

A maximal set of linearly independent vectors u1,u2, . . . ,u𝜂 in the nullspace of A, with

the smallest total weight
∑𝜂

𝑖=1 𝑤𝑡(x𝑖), are said to form a minimal basis 𝐵𝑚𝑖𝑛 for ker(A).

A result that holds for any vector space is proved in [6] and applied here to kerA:

Proposition 4.7 Let 𝐵1 = (u1,u2, . . . ,u𝜂), with weight sequence 𝑡1, 𝑡2, . . . , 𝑡𝜂, be a min-

imal basis for kerA. If 𝐵2 = (w1,w2, . . . ,w𝜂) is another ordered basis for kerA, with

weight-sequence 𝑠1, 𝑠2, . . . , 𝑠𝜂, then ∀𝑖, 𝑡𝑖 ≤ 𝑠𝑖.

In 𝐵𝑚𝑖𝑛 = (u1,u2, . . . ,u𝜂), the smallest and largest weights 𝑤𝑡(u1) and 𝑤𝑡(u𝜂) have been

referred to as the graph singularity 𝜅 in [2, 11] and core-width 𝜏 in [14], respectively. The

core-order sequence of a singular graph 𝐺 is the weight-sequence of a minimal basis 𝐵𝑚𝑖𝑛,

for kerA. Proposition 4.7 establishes the well definition of the core-order sequence of 𝐺.

The basis, 𝐵𝑚𝑖𝑛, for kerA determines a fundamental system of cores of 𝐺.

Corollary 4.8 [6] The core-orders in a fundamental system of cores is a graph invariant.

In the basis 𝐵𝑚𝑖𝑛, the entries in x are taken to be integers, with a greatest common

divisor of one. In the chemical model, however, eigenvectors belonging to an energy level

are taken to be of unit length and orthogonal. For a degenerate NBO in the Hűckel model,

orthogonalization may force the vectors in 𝐵𝑚𝑖𝑛 to be transformed to others, representing

the non-bonding orbitals, which are their linear combination, involving more centres in

the distribution of charge, bond-order and spin.
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4.4 Computing the Rank of Graphs

If the rank of a subgraph 𝐻 is known, then to determine the rank of the parent graph

𝐺, the change in rank, on adding vertices with particular neighbours until 𝐺 is formed,

needs to be known.

By Proposition 4.4, if the nullity of 𝐺 is one, with core (𝐹,x𝐹 ), then it is possible to delete

a maximal subset 𝐿 ∈ 𝒱(𝐺)∖𝒱(𝐹 ) of vertices of 𝐺 such that 𝑆 = 𝐺− 𝐿 is still of nullity

one with core 𝐹 . This suggests another way of constructing singular configurations. The

set 𝐿 of vertices is in general not unique, so that distinct singular configurations, with the

same core (𝐹,x𝐹 ) and order, may be found as induced subgraphs of 𝐺. For instance, in

the graph 𝐺 of Figure 1, 𝐿 is {7} or {8} corresponding to distinct singular configurations

𝐺−{7} or 𝐺−{8} respectively. Note that ∣𝐿∣ is constant for all 𝑆 and that the signature

may alter as the vertices of 𝐿 are deleted one by one. Moreover, for graphs of nullity one,

the set 𝐿 of vertices contributes ∣𝐿∣ to the rank of 𝐺.

Proposition 4.9 Let 𝐺 be a graph of nullity one with core (𝐹,x𝐹 ) and a singular con-

figuration 𝑆(𝐹,x𝐹 ) as an induced subgraph. The rank of 𝐺 is given by 𝑟𝑎𝑛𝑘(𝐺) =

𝑟𝑎𝑛𝑘(𝑆) + ∣𝐿∣.

We shall generalize this result for any nullity in Proposition 4.11.

In the proof of Proposition 2.4, the rows of M′ form a basis that can determine the

minimum weight sequence and one of a possible number of minimal bases 𝐵𝑚𝑖𝑛. The

determination of minimum rank as 𝜏 varies is regarded as an extremal problem [14].

A core of nullity one is a nut graph. For particular properties of nut graphs, see [15]. Now

we present a sharp lower bound for the rank of a graph of any nullity, reached when the

core is a nut graph.

Corollary 4.10 Let the singular connected graph 𝑍 have core-width 𝜏 with corresponding

core 𝐹𝜏 . Then 𝑟𝑎𝑛𝑘(𝑍) ≥ 𝜏 − 1. If equality holds, then 𝐹𝜏 is a nut graph and 𝑍 is a core

graph.
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Proof: By Lemma 2.3, the rank of a singular configuration 𝑆 with core 𝐹𝜏 induced in 𝑍

satisfies rank(𝑍) ≥ ∣𝑆∣ − 1. Since the nullity 𝜂(𝐹𝜏 ) of the largest core in a fundamental

system of cores, is at least one, rank(𝑍) ≥ 𝜏 + 𝜂(𝐹𝜏 ) − 2 ≥ 𝜏 − 1. If equality holds,

𝜏 − 1 = 𝑟𝑎𝑛𝑘(𝑍) ≥ 𝜏 + 𝜂(𝐹𝜏 ) − 2, then 𝜂(𝐹𝜏 ) ≤ 1. Since 𝐹𝜏 is singular, 𝜂(𝐹𝜏 ) ≥ 1, so

that 𝐹𝜏 is a nut graph.

By Proposition 2.4, 𝑟𝑎𝑛𝑘(𝐺) = 𝑟𝑎𝑛𝑘(𝐹𝜏 ) implies that each vertex added to 𝐹𝜏 to form 𝐺

increases the nullity, creating a new core, so that the vertices added, are core vertices. If

𝐹𝜏 is a nut graph, then each vertex of 𝐺 lies on a core. Thus 𝐺 is a core graph.

For graphs of nullity at least one Proposition 4.9, can be generalized. We introduce the

parameter 𝑌 that measures the contribution to the rank by the vertices not in the chosen

singular configuration .

Proposition 4.11 Let the induced subgraph 𝑆(𝐹,x𝐹 ) of a connected graph 𝑍 of nullity 𝜂

be a singular configuration with x𝐹 ∈ 𝐵𝑚𝑖𝑛. If a set 𝐿 of vertices are added to 𝑆 to obtain

𝑍, then 𝑟𝑎𝑛𝑘(𝑍) = 𝑟𝑎𝑛𝑘(𝑆) + 𝑌 , where 𝑌 = ∣𝐿∣ − 𝜂(𝑍) + 1.

Proof: Label 𝑆 with the last vertex being in 𝐹 and continue to add 𝐿 to form 𝑍. The

first ∣𝑆∣ − 1 rows of A(𝑍) are linearly independent and the rank of the first ∣𝑆∣ rows is

∣𝑆∣ − 1. Each of the last ∣𝐿∣ rows either does not contribute to the rank when it creates

a new core in 𝑍 or else increases the rank. In the latter case, the increase may be one

or two. It is one if the adjacencies of the added vertex are compatible with the cores

induced in 𝑍 and two if a core of 𝑍 is destroyed. Thus besides the first ∣𝑆∣ − 1 rows, only

∣𝐿∣ − (𝜂(𝑍)− 1) rows contribute further to the rank.

4.5 Chemical Implications

Duplicate vertices belong to the same orbit of the automorphism group of a graph. So

they must have identical entries in each eigenvector, except in zero-eigenvalue vectors,

when the sums of entries on their neighbours will be equal. For all eigenvalues, however,

their charges and their bond orders to neighbours will be equal.
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An 𝑛–vertex molecule with a single NBO occupied by an electron, with spin shared among

all sites, is a nut graph with maximal core-width 𝜏 = 𝑛. By Corollary 4.10, for degeneracy

of the NBO in a core graph 𝑍 with core-width 𝜏 satisfying 𝑟𝑎𝑛𝑘(𝑍) = 𝜏 − 1, the Hűckel

model predicts that one of the orbitals corresponds to the vertices of a nut graph in 𝑍.

Moreover if it is occupied by an electron, every centre or vertex in the graph receives

its share of charge, bond-order and spin. In reality, group theory shows that Jahn-Teller

distortion occurs in which any non-linear molecule in a degenerate electronic state, will

distort spontaneously so as to remove the degeneracy and make a more stable system.
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