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Abstract

A graph is singutar of nullity 11 il zero is an cigenvalue of ity adjacency matrix with muhipliciiy n. A
subgraph that forces a graph to be singular is called a minimal configuration. We show various prep-
erties of minimal configurations.

1. Introduction

Let G = G(V(G), EXG)) be a graph with vertex set V(G) = {v,, Vo, s v”} and edge set E(G) . The adja-
cency matrix A(G) = A is (a‘-j},whcre ag = b ilvy.e E(G) and a;; = 0 otherwise. The values of A for
which there exist non-zero veclors ¥ such that Ax = Ax are called eigenvalives of G. The vectors x are said
to be eigenvectors of A, A graph is singular of nudliry v il zero is an eigenvalue of its adjacency matrix A with
multiplicity 1.

There are subgraphs called minimal configurations that are found in singular graphs. We study properties of
minimal configurations that determine their structure,

2. Singular Graphs

Definition 2.1: A kernel eigenvector % of ¢ singular graph with adjacency malrix A is a
non-zero vector in the nullspace of A. |

Remark 2.2: A kernel eigenvector x, € R" of a singular graph G satisfies Axy = 0.,

Definition 2.3: Let x; be a kernel eigenvector of a singular graph G of order n 2 3. A sub-
graph of G induced by the vertices corresponding to the non-zero entries of x; is said to be
a core, ¥, (with respect to ). The core is sometimes denoled by x,,, or by As, where p, the
number of vertices of the core, is called the core arder. <]

The fellowing definition of minimal configurations—the building blocks of singular graphs—is given in [1).

Definition 2.4: A singular graph I of order n23, having a core X, and periphery
o= V(M- V(X,,) is said (o be a minimal configiration, of core order p, if the following
conditions are sutisfied:

() =1,

(NP = @ (thatis, P is empty, no vertexy or # induces an empty graph (ne edge), and
(3 Tor P&, AN s b Torall ve 707 B

We show that condition (37 in the definiton can be replaced by the more powerful comdition in the feilowing
theorem.
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Theorem 2.5: A graph 17is & minimal configuration if and only il

M) =1,

(2 P = @ or P induces an empty graph, and

() ny,) = 1+|P.
Proof: By the interlacing theorem, addition to or remaval of a vertex, [ronya graph, changes the nullity by at
most one.

Let G be a minimal configuration, then M(G) = 1. By (3) of Definition 2.4, and the interlacing theorem,
WGw) =2 ifve P.

Case 1: P+ Inthis case there are zero entries in Xg, the kernel cigenvector of G, which may be writlen

Xn = (G"I., ()12, P (‘f.lzi. U}. ()2‘ Wy 0|'J'|) N

where o, 1 <7<yl arcthe only non-zero entries of x. There s a liear combination, Rel, of the rows ar col-
wmmns of A with cocfTicients equal to the entries of xg. Deletion of o vertex v, e P leaves RefunafTected since
the row or column corresponding 10 1; 14 ot involved. This means that although Rel remains valid, by (3} of
Delinition 2.4, Ref corresponds 1o two lincarly independent kernel cigenveciors on deletion of any vertex of
2. Since noiwo vertices of P are adjucent, vy. va, o vy cun be suecessively removed from G inany order,
mcreasing the nullity by one with cach deletion, until the core ¥ is ubtained. so that () > 1.

Cuve 2 P = D Anthiscase Vo= 2 and W) = [ U as said o he o graph |2,

[n both cases. i) = 1+ %P as required.

Conversely et 1) = 1+ 7] and 07 + vy + vy + o+ vpg)
then £ = @ and % = G isanu graph, W) > 1, then |2

i

N{G) = 1. Thus, nixyz 1.0 = 1,
2 1. By the Interfacing theorem,

v
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For j = |, b€y + Vi va L) B 24P + 1, independently of the sequence in which the vertices
of P are added 10 . However, the nullity of G is one. This forces the aullity to decrease by unity with each
addition of a vertex 1o y. In particular, §(Gw ) = 2 for alj i€ P as required. B

Theorem 2.6: The deletion of a vertex of the core, ¥, from & minimal configuration T
produces a non-singular graph.

Proof: Let T be a minimal conliguration with kernel eigenvector xgand let v € 3, the core of T, Suppose My
ix singuiar, thea 7 has wnother kernel cigenvector with @ zero entry corresponding o v, so that 5N > 1,4

contradiction, B
Remark 2.7: A minimal configuration, with kernel Kernel Eigenvector
cigenvectorn Xy, corresponding to g core L eun be |I

considered to be g graph of iniliny one with a mini-

nuel number of edges and vertices. The tabeled ver- ; I | I

. . . . . (13110000 (131000 (1210000 (211 1000)
tices in the Fgure refer 1o the vertices of the core

K 3 ineach minimat conliguration, \

I a minimal configuration 17 iy o subgraph of a

. l 4
1 2 f R W
araph ¢ sueh that the non-zera entries of the kernel ) 41]:13 ) ? 1
B : : > 4
K] ‘ 4

cigenvector are preserved. then ¢ is singular,

For G to be singular with mininil configuration T,
it is sufficient that the core vertives of [T have the
same degrees as they do in 6.

Figure: Minimal configurations with core K.

Corollary 2.8: A minhinal conliguration is connected.

Prooft Suppose that o minimal configuration {7 has a least two components. Since (7)) = 1, only one cony-
ponent. . is singular and Vi) oo VUL The vertices in the periphery 27 induce an empty graph V()
Howesver. T then has isolined vevtices and 13000y 2> 1 o contradieion, | B
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