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ABSTRACT

Multimodal datasets often feature a combination of continu-
ous signals and a series of discrete events. For instance, when
studying human behaviour it is common to annotate actions
performed by the participant over several other modalities
such as video recordings of the face or physiological signals.
These events are nominal, not frequent and are not sampled
at a continuous rate while signals are numeric and often
sampled at short fixed intervals. This fundamentally differ-
ent nature complicates the analysis of the relation among
these modalities which is often studied after each modality
has been summarised or reduced.

This paper investigates a novel approach to model the
relation between such modality types bypassing the need
for summarising each modality independently of each other.
For that purpose, we introduce a deep learning model based
on convolutional neural networks that is adapted to process
multiple modalities at different time resolutions we name
deep multimodal fusion. Furthermore, we introduce and
compare three alternative methods (convolution, training
and pooling fusion) to integrate sequences of events with
continuous signals within this model. We evaluate deep mul-
timodal fusion using a game user dataset where player phys-
iological signals are recorded in parallel with game events.
Results suggest that the proposed architecture can appro-
priately capture multimodal information as it yields higher
prediction accuracies compared to single-modality models.
In addition, it appears that pooling fusion, based on a novel
filter-pooling method provides the more effective fusion ap-
proach for the investigated types of data.

Categories and Subject Descriptors

H.1.2 [Information Systems]: User/Machine Systems—
Human factors; 1.2.1 [Artificial Intelligence|: Applica-
tions and Expert Systems— Games
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1. INTRODUCTION

The different sources of information that form a multi-
modal dataset are usually presented on a variety of for-
mats related to their abstraction level. We can distinguish
two particular formats that are common across multiple do-
mains: continuous signals and sequences of discrete events.
Continuous signals are often captured by hardware devices
such as cameras, microphones and physiological sensors that
monitor a human or the environment at a high and fixed
sampling rate and a low abstraction level. On the other
hand, sequences of discrete events are processed by software
(e.g. alogged action in a virtual environment) or annotated
by experts (e.g. a facial action unit), they are more infre-
quent than continuous recordings but they hold more ab-
stract and complex information that characterises the user’s
behaviour or context. Capturing the relation between these
two streams of data can provide valuable information that
is not visible on each modality independently. For example,
an increment in skin conductance (SC) can indicate an in-
crement in arousal but a facial action unit indicating a smile
or a frown can connect that heightened state of arousal to
excitement or anger. However, integrating automatically
these signals is not trivial due to their different formats
and abstraction levels. Most studies resort to feature- or
model-level fusion [16], i.e. the signals are reduced indepen-
dently prior to their fusion (see [21, 12] among others). This
process, however, neglects the low-level interactions among
modalities which leads to models of lower expressivity.

In this paper we introduce deep learning as a general
methodology for data-level fusion. Rather than reducing
each modality independently (feature-level fusion) our ap-
proach generates a set of multimodal features, thereby, main-
taining core properties of the dissimilar signals and resulting
to fused models of higher accuracy. While deep learning has
been applied for automatic feature extraction [8, 9, 13] the
integration of multiple modalities with different time reso-
lutions has been far from trivial. Towards this aim this pa-
per introduces an augmented convolutional neural network
(CNN) that integrates signals at different layers according



to their sampling rate. CNNs reduce the time resolution
of their input signals as they pass through convolution and
pooling layers, increasing the abstraction level of the infor-
mation and, thereby, making them the ideal model for the
fusion task at hand.

Based on the CNN model, we evaluate three different ap-
proaches to fuse sequences of discrete events with continu-
ous signals. The first approach, namely convolution fusion,
consists of transforming the sequence of events into a pulse
signal that is one when the event is occurring and zero oth-
erwise. This signal can be simply introduced as the input to
a convolutional layer. The second approach, namely training
fusion, utilises the fused signal that is created when combin-
ing information from the original continuous signals and the
sequence of discrete events. This fused signal is produced
by a single-layer CNN that models the effect discrete events
have on the continuous signals and vice-versa. In this ap-
proach, the sequences of events are not directly added to a
convolutional layer, but they are used to stir the training
process. The third approach, namely pooling fusion, intro-
duces the sequence of discrete events into a pooling layer
resulting in a novel filter-pooling method that attenuates
the outputs of a convolutional layer within time intervals
when events are not occurring. This method complements
training fusion by highlighting the patterns detected by a
CNN when the interaction among modalities is potentially
occurring.

We evaluate and compare the three approaches on a dataset
that includes a physiological signal (skin conductance) and
two different sequences of events (collecting pellets and col-
liding with enemies in a 3D prey/predator game). After ex-
tracting multimodal features with the CNN, we use a single-
layer perceptron to predict six different affective states. The
results of this initial study show that convolutional neural
networks can be adapted to create multimodal features with
a high predictive power. Pooling fusion appears to be the
most promising fusion approach. Even though the filter-
pooling layers hinder information when events do not occur,
when combined with standard average-pooling layers the
pooling fusion approach outperforms the other two fusion
approaches and any single-modality modelling attempts. Con-
volution fusion also yields high prediction accuracies but it
shows lower robustness. Finally, the training fusion does not
appear to be able to capture information specific to both
modalities within the space of topologies explored.

2. RELATED WORK

Sequences of discrete events and continuous signals are of-
ten found together in many different domains but this com-
bination is particularly prominent in human-computer inter-
action studies. The interaction with the computer is often
characterised by a series of events that give a context to
multiple other modalities that generate continuous streams
of data. Successfully fusing context with other modalities
appears to be the key to automatically understand user ex-
perience [1].

In this domain, McQuiggan et al. [12] used statistical
summarisation (i.e. extracted averages, standard deviations
and other simple statistical features) to reduce continuous
signals such as heart rate and skin conductance. In addi-
tion, different events arising from the interaction with a 3D
learning environment where processed with ad-hoc metrics
such as the time spent on a task (duration of the event or

time between events) or a list of locations visited. On a
similar basis, statistical summarisation was used to reduce
several physiological features and game events in [10, 21].
Although these simple approaches yield models of acceptable
prediction accuracies, the exact relation among modalities
remains largely unknown. The method proposed in this pa-
per attempts to improve the accuracy and expressiveness of
these models by exploiting the low temporal relation among
modalities.

Data-level fusion of events and continuous signals has been
achieved before using frequent sequence mining [11]; how-
ever, this approach requires transforming the continuous sig-
nals into sequences of events. For instance, in [11] a skin
conductance signal is converted into a sequence of signifi-
cant increments and decrements of the signal. This trans-
formation requires ad-hoc preprocessing which discards part
of the information present in the raw signal. Deep learning
approaches investigated in this paper, on the other hand, are
defined for continuous signals and therefore do not require
ad-hoc preprocessing.

Deep learning has already been applied to a number of
human-computer interaction tasks such as facial expression
recognition [17], speech recognition [8] and modelling of phys-
iological signals [9]; however, all these studies develop meth-
ods tailored for single-modality atemporal or continuous data,
and therefore are not suited for series of events that are cen-
tral to this paper. Likewise, some studies have explored the
fusion of dissimilar modalities that are either atemporal (e.g.
text and images [19], images and sound [14]) or well syn-
chronised (e.g. video and sound [13]). The main approach
followed in these studies consists of processing each modality
individually and combining them at a higher representation
level. By doing so, however, the low level interactions be-
tween modalities may be hindered, which, in turn, signals
the necessity of new deep learning approaches to data level
multimodal fusion. This paper proposes alternative deep
fusion mechanisms for eliminating the drawbacks of current
multimodal fusion practice reported above.

3. METHOD

In order to facilitate the extraction of information across
sequences of discrete events and continuous signals, we de-
fine a new architecture for convolutional neural networks
to handle inputs at different time resolutions. As CNNs
are naturally suited for continuous signals but no discrete
events, we propose three different approaches to integrate
sequences of events with other continuous modalities. In
this section we describe the basics of CNNs and detail the
proposed enhancements. In addition, we briefly describe the
modelling mechanism used to test the prediction power of
the variant CNNs.

3.1 Convolutional Neural Networks

Convolutional (or time-delay) neural networks [8] are feed-
forward neural networks designed to deal with large input
spaces as those seen in image classification tasks. CNNs
are constructed by stacking alternatively convolutional lay-
ers and pooling layers. A convolutional layer consists of
a number of neurons that process sequentially consecutive
patches of the input signal, i.e. this layer convolves a set of
neurons along the temporal dimension of the input signal.
Each neuron defines one local feature which is extracted at
every position of the input signal; the resulting values cre-
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Figure 1: Three approaches to deep multimodal fusion via convolutional neural networks. The example CNNs illustrated
present two layers with one neuron each. The first convolutional layer receives as input a continuous signal at a high time
resolution, which is further reduced by a pooling layer. The resulting signal (feature map) presents a lower time resolution.
The second convolutional layer can combine this feature map with additional modalities at the same low resolution. In the
convolution fusion network (left figure), the two events are introduced at this level as a pulse signal. In the pooling fusion
network (middle figure), the events are introduced as part of the first pooling layer, resulting in a filtered feature map. Finally,
in the training fusion network (right figure), the events affect the training process of the first convolutional layer, leading to

Single layer
perceptron

an alternative feature map.

ate a new signal referred to as feature map. A pooling layer
reduces the dimensionality of the feature maps generated
by a convolutional layer. It typically applies a simple sta-
tistical function (e.g. average or maximum value) to non-
overlapping patches of the feature maps. By stacking sev-
eral convolutional and pooling layers, CNNs can effectively
reduce the input signals to a small set of features. The exper-
imenter must define the topology of the network including
the number of neurons and the number of inputs for each
neuron in each convolutional layer, and the number of inputs
and function used by the pooling layer. Once those param-
eters are fixed, the neurons can be automatically trained to
minimise the loss of information in the feature extraction
process.

The pooling layers perform a very simple processing task,
and thus the extracted features are mainly defined by the
convolutional layers, and more concretely, their neurons. By
analysing the weights of each neuron, one can derive the
characteristics of the input that every feature is capturing.
When the input to the neuron is a 1-dimensional signal (e.g.
skin conductance), the weights of the neuron can be plotted
in a temporal order to reveal the input patterns that yield
higher output values (e.g. see [9]).

We train each convolutional layer using denoising auto-
encoders [5, 4]. This approach consists of feeding the outputs
of the convolutional layer into a decoder that reconstructs
the original input signal; by means of gradient-descent, the
weights of each neuron are adjusted iteratively to achieve
a minimal reconstruction error, i.e. a minimal discrepancy
between the signal reconstructed by the decoder and the
original input signal [9]. The neurons of each convolutional

layer are trained patch-wise, i.e. by considering the input at
each position (one patch) in the sequence as one example.
This allows faster training than training convolutionally, but
may yield translated versions of the same filter. This is the
same idea as the process followed by PCA but with the ad-
vantage of bypassing the linearity assumption [20]. Alter-
native training methods such as restricted Boltzmann ma-
chines present a more complex theoretical background but
have not produced better results in practice. Thus, we opt
for the simplest method.

3.1.1 Dealing with multiple time resolutions

Standard CNN architectures process all inputs at the first
layer after all data samples have been reduced to the same
dimensions. Then the neurons of the first convolutional layer
scan the input signals sample-by-sample along time. When
the signals present different number of samples per unit of
time, however, this process is not applicable as the scanning
process requires a different pace for each modality.

The CNN architecture can be adapted by allowing modal-
ities with different sampling rates to feed into different lay-
ers (see Figure 1). Consequently, the signals with a higher
sampling rate are processed earlier by a convolutional and a
pooling layer that transform them into a feature map with
the same time resolution as the signals with lower sampling
rates. Alternatively, one could simply undersample all the
signals to the lowest sampling rate (which can be seen as
a form of a pooling layer). However, using also a convolu-
tional layer can potentially reduce the information loss be-
cause consecutive outputs of a convolutional layer are very
similar when entering the pooling layer. In addition, the
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Figure 2: Signals captured in one game through the three
approaches for fusion. The top figure shows the raw skin
conductance signal. The second figure depicts the sequence
of enemy collision events. The third figure shows the output
of a convolutional layer with one neuron applied to the SC
signal. The bottom figure depicts the output of a filter-
pooling layer applied to the previous convolutional layer.

convolutional layers increase the complexity of the informa-
tion as the time resolution is reduced, which may facilitate
modality fusion at the same abstraction level. Consider for
instance the example of skin conductance and pellet collec-
tion events; matching one of those events with the exact
value of SC on an exact millisecond might not provide in-
teresting information. Alternatively, if SC is first processed
by a convolutional layer, it may detect spikes on the signal
caused by a pellet collection event.

A disadvantage of using this architecture is that global re-
lations might be missed (e.g. if the final game score is related
to the maximum value of the SC). Nevertheless, we expect
that the local temporal relations among the modalities are
more informative in most domains.

3.1.2  Convolution fusion

With the architecture presented above, the simplest solu-
tion to introduce a sequence of events is to transform it into
a continuous signal at the appropriate sampling rate. We
choose a pulse signal that equals one only when the event
was recorded and zero otherwise (see Figure 1 and Figure
2).

3.1.3 Training fusion

Training fusion is inspired by the idea that the continuous
signals may present specific patterns when discrete events
are occurring, that are not that common otherwise. On
that basis, the events are used to select specific parts of the
continuous signals. A new subset of data is created by ex-
tracting patches within a given time window centred at each
event (in this paper the window is 5, 10 and 15 seconds).
The resulting dataset is used to train a single-layered CNN
that is specialised on the patterns of variation in the con-
tinuous signals around the events. We expect that, to some
degree, this model characterises both the changes that are
produced in the continuous signals when events occur and
the variations in the continuous signals that prompt events.

Once trained, the single-layered CNN is convolved over
the raw continuous signal to generate a new set of signals
based on the variation patterns seen around the events (see
Figure 2). As we are using a CNN to further process the
resulting signals, this approach can be interpreted as an al-
ternative training of the first layer of the network (see Figure

1).
3.1.4 Pooling fusion

An alternative approach to introduce discrete event infor-
mation into the CNN is through the pooling layers. This
is achieved by defining a new pooling method (denoted as
filter-pooling) that attenuates the input signal (i.e. the out-
put of the previous convolutional layer) around a sequence of
events given. The result is a new signal where the patterns
within a given window (in this paper 5, 10 and 15 seconds)
centred at the events are highlighted (see Figure 2 and Fig-
ure 1)). This fusion approach makes multimodal patterns
more salient for the next layer of the CNN. In this paper we
use a simple filter that equals 1 within the time window se-
lected and decays linearly to zero (or increases linearly from
zero) within two seconds after (or before) the window.

3.2 Modelling

Once the CNN is trained as described in the previous sec-
tion, it can be used to produce a number of multimodal
features (see Figure 1). We test whether these features are
more informative than single-modality features by training
a single layer perceptron (SLP) to predict a series of tar-
get outputs. As the dataset used in this paper contains
pairwise preferences indicating different affective states, we
employ a preference learning variant of backpropagation to
train the SLP (see Section 3.2.1). In addition, as the CNN
creates features that capture any characteristic of the input
signals regardless of the prediction target, automatic feature
selection (see Section 3.2.2) is an essential process towards
distinguishing which of those features can assist the creation
of the prediction model. These experiments are performed
using the Preference Learning Toolbox [2].

3.2.1 Preference Learning

Preference learning [3] is a subfield of machine learning
that deals with the problem of learning orders. When these
orders are specified as pairs of data samples, the learning
problem consists of creating a model that outputs higher
values for the samples preferred on each pair and lower for
the non-preferred. Backpropagation [18] on its basic form
optimises an error function iteratively across a number of
epochs by adjusting the parameters of a neural network (i.e.



value of each weight and threshold) proportionally to the
derivative (gradient) of the error with respect to the param-
eter. In this paper we use the regularised least squares er-
ror function, designed for learning from pairwise preferences
[15].

3.2.2 Feature Selection

Feature selection (FS) consists of a search scheme to test
alternative combinations of input features and a heuristic to
determine their relevance. Opposed to other dimensionality
reduction methods such as principal component analysis [20]
and Fisher’s projection [7] that project the feature space into
a space of lower dimensionality, FS eliminates dimensions
(features) from the original space maintaining the physical
meaning of the inputs to the model. We consider that this
is a key feature for multiple domains, as it is necessary to
analyse the mappings captured by the models learned.

In this paper we used sequential forward feature selection
(SFS) [21, 6], a bottom-up search procedure where one fea-
ture is added at a time to the current feature set. The feature
to be added is selected from the subset of the remaining fea-
tures such that the new feature set generates the maximum
value of an objective function over all candidate features
for addition. The objective function used in this paper is
the training accuracy of an ANN model on the evaluated
dataset.

4. DATASET

The dataset used to evaluate the proposed methodology
was gathered during an experimental game survey in which
36 participants played four pairs of different variants of the
same video-game. The test-bed game named Maze-Ball is
a 3D prey/predator game that features a ball inside a maze
controlled by the arrow keys. The goal of the player is to
maximise her score in 90 seconds by collecting a number of
pellets scattered in the maze while avoiding enemies that
wander around. A number of eight different game variants
were presented to the players. The games were different with
respect to the virtual camera profile used which determines
how the virtual world is presented on screen. We expected
that different camera profiles would induce different experi-
ences and affective states which would, in turn, reflect on the
physiological state of the player making possible to predict
the players’ affective self-reported preferences using infor-
mation extracted from their physiology. Each participant
played one pair of variants in both orders and other two
pairs with different game variants. The games played by
each participant are assigned in such a way that, in total,
4 preference instances should be obtained for each pair of
the game variants in both orders (2 preference instances per
playing order).

Skin conductance was recorded during each game ses-
sion using the IOM biofeedback device at 31.25Hz. While
other off-the-self devices offer higher sampling rates, previ-
ous studies have shown that accurate predictors of affect can
be constructed for this device. Following previous work on
training convolutional models of affect from SC [9], we fur-
ther reduced the signal by 8 after applying a mean filter of
the same length, to produce approximately 2.5 recordings
per second. In addition, pellet collection and collision with
enemies are logged. After each pair of games, the players
filled-in a questionnaire reporting which of the games in-
duced higher levels of anziety, challenge, excitement, fun,

frustration and relazation. The answers “none of the two”
and “both equally” are also included in their options (4 al-
ternative forced choice questionnaire). The details of the
Maze-Ball game design and the experimental protocol fol-
lowed are already well reported in the literature and can be
found in [21, 10].

S. RESULTS

In order to evaluate the proposed methodology, we com-
pare single and multiple modality features created with CNNs.
As seen in previous work [9] the topology of the network is
critical to create accurate prediction models, however, the
exhaustive evaluation of all combinations is intractable. Af-
ter preliminary experiments with the single modalities, we
fix the topology of the CNN to two layers with 5 neurons
each; each neuron has 20 inputs for each input feature map
(either an input modality or the output of the previous pool-
ing layer). The learning rate, number of epochs and corrup-
tion level are adjusted for each experiment independently.

The outputs of the CNNs are used as inputs for the single
layer perceptron. For each experimental condition, we run
SFS 10 times, and for each of those runs we evaluate the best
set of features using the 3-fold cross validation accuracy of
a SLP. This procedure may hinder partially the generality
of the created models, as the average cross-validation accu-
racy is used to guide the feature selection search. However,
the comparison between single and multiple modalities, and
across fusion approaches is fair because all experiments fol-
low the same procedure.

Significance in this paper is calculated using a two-tailed
unpaired t-test.

5.1 Fusing Skin Conductance with Pellet Col-
lection

The best models that rely on training fusion applied to
pellet collection events and SC (C?**) outperform the single-
modality models built on SC (s) only on anziety and frus-
tration (see Figure 3a). This suggests that this approach
captures low amount of event-specific information. This is
also supported by the small differences across trained neu-
rons (see Figure 4). As it can be observed, the weights of
the five neurons are very similar for the alternative time
windows (5, 10 and 15). In fact, the difference with respect
to a model built on the complete dataset (i.e. using every
interval in the SC signal, hence ignoring events) is also very
small.

Interestingly, the convolution fusion approach that intro-
duces pellet collection events as a pulse signal (IT? +s) yields
prediction accuracies significantly higher than CP** only for
challenge and fun (p-value < 0.01), and only higher than
the single-modality approach for challenge and anziety (p-
values < 0.01) as depicted in Figure 3a which indicates that
this approach did not fuse physiological and contextual in-
formation satisfactorily either. Models based only on the
event signal (IT?) yield poor prediction accuracies which in-
dicates that either the pellet collection event is not relevant
for prediction on its own, or that the nature of the pulse sig-
nal complicates the feature extraction task for convolutional
neural networks.

When the CP"* signals are combined with a filter-pooling
layer (R (CP**)), we observe significant improvements (p-
values < 0.01) in prediction accuracy for all affective states
except frustration with respect to the unfiltered version (see
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Figure 3b). Furthermore, these models outperform the other
approaches significantly in all affective states except fun
(no significant difference compared to single-modality), and
challenge and fun (no significant difference compared to
IT? + s). This suggests that incorporating the contextual
information as a filter-pooling layer, facilitates the fusion
process when compared to the use of convolution fusion.

Finally, when the filtered CP"* signals are combined with
the raw SC signal into the same model (A}, (CP™*) +s), fur-
ther improvements are observed, notably for frustration and
anziety (p-value < 0.01), and fun (p-value < 0.05) (see Fig-
ure 3c). This suggests that the information carried by the
SC signal in intervals when no events are triggered is also
relevant for prediction of particular states. It thus appears
that the combination of filter-pooling and standard average-
pooling methods can provide a mixture of single and mul-
tiple modality signals that yield more accurate multimodal
predictors.

The time window values used to define the filter in the
pooling layer signals C*™* do not show a consistent variation
across affective states. This pattern was expected as the
physiological manifestations of each emotion may be salient
within different time intervals around the events.

5.2 Fusing Skin Conductance with Enemy Col-
lision

Predictors using enemy collision events as a pulse signal
together with the raw SC signal (II° + s) show significantly
higher accuracies (p-values < 0.01) than predictors using
the C°"* signals or a single modality (s or II¢) for fun, ea-
citement, frustration and anziety, and no difference in the
remaining two affective states (see Figure 5a). As observed
by the heightened prediction accuracies of several models
based on II¢, it appears that the pulse signal based on en-
emy collisions yields more informative features than the pel-

let collection signal, which also contributes to more accurate
convolution fusion models. As also seen in the previous set
of experiments, training fusion models (C¢**) do not con-
sistently outperform the single skin conductance signal. In
fact, the differences between the neurons trained using SC
values around enemy collision events and pellet collection
events are minimal (Figure 4). Therefore, it appears that the
training fusion approach captured only a minimal amount
of information about the events in this dataset.

Adding a filter-pooling layer, improves the accuracy of
models based on C*** in all affective states (p-values < 0.01),
and it even results in accuracies higher than I1¢ + s for anz-
iety (p-value < 0.01), challenge (p-value < 0.01) and relaz-
ation (p-value = 0.03) as depicted in Figure 5b. These re-
sults further validate the appropriateness of using the filter-
pooling layer as a method to fuse sequences of events with
continuous signals.

Similarly to the experiments with pellet collection events,
adding the raw SC as an additional input (hf, (C°T®) + s)
yields further improvements (see Figure 5¢). These improve-
ments lead to accuracies above (p-values < 0.02) or equal to
I1° + s in all affective states, making this combination the
most robust method for fusion identified across all experi-
ments of this paper. As before, the optimal time window is
dependent on the affective state.

When comparing the results for the same time window
value, we can observe some accuracy decrements when the
raw signal is added (e.g. compare hs(C°T) to his(C°T5)+s
for excitement). This is caused by the fixed topology used
in both experiments that forces the second model to ignore
information from h§s(Ct*) in favour of the added s signal.
While the new information introduced by s is in general
relevant, some of the ignored information may have been key
for the prediction. A simple and sensible solution consists
of increasing the number of neurons as the number of inputs
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Figure 3: Pellet collection events and skin conductance. Av-
erage classification accuracy of 10 single-layer perceptrons
trained on a set of features selected using sequential fea-
ture selection. The pool of available features is created by
convolutional neural networks that take one or more of the
following signals as input: a SC signal (s), a pulse signal
representing the pellet collection events (II?), a fusion signal
produced by a single-layered CNN (C”**) and a fusion signal
produced by a CNN with a filter-pooling layer (h} (C***®))
with time window t.,.

increase. This will naturally allow the CNN to extract more
patterns from each modality.

6. CONCLUSIONS

In this paper we introduce deep learning as a method for
fusing sequences of discrete events and continuous signals.
In particular, we define a convolutional neural network ar-
chitecture to integrate modalities with different time reso-
lutions and propose three different approaches to integrate
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Figure 5: Enemy collision events and skin conductance. Av-
erage classification accuracy of 10 single-layer perceptrons
trained on a set of features selected using sequential fea-
ture selection. The pool of available features is created by
convolutional neural networks that take one or more of the
following signals as input: a SC signal (s), a pulse signal
representing the enemy collision events (I1¢), a fusion signal
produced by a single-layer CNN (C*"*) and a fusion signal
produced by a CNN with a filter-pooling layer (hf, (C*T*))
with time window ..

information from the continuous signals and the sequences
of events. We evaluate these using a dataset that contains
game events and physiological signals.

The first fusion approach, convolution fusion, consists of
injecting events as a pulse signal into a convolutional layer.
This method yielded high prediction accuracies specially
when the events appeared to be informative as a standalone
modality. Nevertheless, models based on a single-modality
could outperform them, suggesting that the convolutional



network cannot extract all the relevant information associ-
ated with the events.

The second fusion approach, training fusion, is based on
training a single-layer convolutional network to distinguish
the effects of events in the continuous signals. This method
appears to fail to capture information across modalities as—
regardless of the events presented and time interval used—
the resulting CNNs found similar patterns in the dataset
studied. The prediction accuracies also suggest that this
method is weaker than convolution fusion.

The third method, pooling fusion, adds information about
events through a pooling layer that filters the output of a
convolutional layer connected to a continuous signal. This
method boosts the prediction accuracies of training fusion
models suggesting the successful integration of information
from continuous signals and the sequences of events. As a
side effect of this pooling method, patterns found on the con-
tinuous signal when no events occur are attenuated. How-
ever, we show that a combination of this new pooling method
with standard average-pooling yields models that can com-
bine single modality and multimodality information leading
to more accurate predictions than any of the other methods
evaluated. It appears that the filter-pooling layer is respon-
sible for the entire improvement on accuracy, and therefore
it is likely to yield the same results if used independently of
training fusion. Future work will investigate this hypothesis
and explore the new space of parameters introduced by this
pooling method, including the type of filter and the window
size.

While our experiments are restricted to unidimensional
signals, the architecture introduced in this paper is general
and can be applied to other multimodal datasets including,
for instance, video recordings. Future work will focus on val-
idating these methods in such datasets as well as extending
the current evaluation to a larger number of modalities, pre-
diction models, feature selection mechanisms and network
topologies.
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