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ABSTRACT

The identification, and subsequent discovery, of fast radio transients through
blind-search surveys requires a large amount of processing power, in worst cases
scaling as O(N3). For this reason, survey data are generally processed offline, us-
ing high-performance computing architectures or hardware-based designs. In recent
years, graphics processing units have been extensively used for numerical analysis and
scientific simulations, especially after the introduction of new high-level application
programming interfaces. Here we show how GPUs can be used for fast transient dis-
covery in real-time. We present a solution to the problem of de-dispersion, providing
performance comparisons with a typical computing machine and traditional pulsar
processing software. We describe the architecture of a real-time, GPU-based transient
search machine. In terms of performance, our GPU solution provides a speed-up factor
of between 50 and 200, depending on the parameters of the search.

1 INTRODUCTION

One of the most ambitious experiments of next-generation
radio-telescopes, such as the newly inaugurated Low Fre-
quency Array (LOFAR) and the future Square Kilometre
Array (SKA) is to explore the nature of the dynamic radio
sky at timescales ranging from nanoseconds to years. Sur-
veys for very fast radio transients necessarily generate huge
amounts of data, making storage and off-line processing an
unattractive solution. On the other hand, real-time process-
ing offers the possibility to react as fast as possible and con-
duct follow-up observations across the electromagnetic spec-
trum and even, for some events, with gravitational wave de-
tectors. Here we will consider the case where time-series data
(tied-array, or beam-formed data for array telescopes men-
tioned above) are processed to extract astrophysical radio
bursts of short duration. The multitude of potential astro-
physical events that may produce such transients, ranging
from individual pulses from neutron stars to Lorimer bursts
(Lorimer et al. 2007), are discussed in Cordes & McLaughlin
(2003).

In this paper we will mostly be concerned with de-
dispersion. This refers to a family of techniques employed to
reverse the frequency-dependent refractive effect of the inter-
stellar medium (ISM) on the radio signals passing through
it. We also use interstellar scattering to constrain the pa-
rameter space of a given search - see (Lorimer & Kramer
2005, chapter 4) for more details on these effects. From pul-
sar studies, it is well determined that propagation through
the ISM obeys the cold plasma dispersion law, where the

time-delay between two frequencies f1 and f2 is given by
the quadratic relation

∆t ' 4.15× 106 ms×
(
f−2
1 − f−2

2

)
×DM (1)

where DM is the dispersion measure in pc cm−3 and f1
and f2 are in MHz. Astrophysical objects have a particu-
lar DM value associated with them, which depends on the
total amount of free electrons along the line of sight and,
therefore, on the distance to the object from Earth.

Removing the effect of dispersion from astrophysical
data is typically done in two ways, depending on the type
of data and the requirements of the experiment. For total
power filterbank data, where the spectral bandwidth of the
observation is typically split into a number of narrow fre-
quency channels, de-dispersion consists of a relative shift in
time of all frequency channels according to equation 1. This
is known as incoherent de-dispersion as it is performed on
incoherent data. For baseband data, de-dispersion can be
done by convolution of the observed voltage data with the
inverse of the transfer function of the ISM. This is known
as coherent de-dispersion; it is more accurate in terms of
recovering the intrinsic shape of the astrophysical signal but
much more demanding in computational power. In this pa-
per, we deal with incoherent de-dispersion, applied to total
power data.

De-dispersion is an expensive operation, scaling as
O
(
N2
)

for brute-force algorithms, with more optimized
techniques diminishing this to O (Nlog(N)). For any blind,
fast transient search, de-dispersion needs to be performed
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over a range of DM values, practically multiplying the num-
ber of operations required by the number of DM values in
the search. Typically, thousands of finely spaced DM val-
ues need to be considered, so the entire operation becomes
extremely compute-intensive. In the past, searches for fast
transients, such as single-pulse pulsar searches, have been
performed offline on archival data, using standard process-
ing tools on large computing clusters or supercomputers.
The power of such searches is highlighted by the discovery
of Rotating Radio Transients (RRATs) (McLaughlin et al.
2006).

Here we discuss how such searches can be performed on-
line by using standard off-the-shelf general purpose graph-
ics processing units (GPUs). With the introduction of new
high level application programming interfaces (APIs) in re-
cent years, such as CUDA (NVIDIA Corporation 2010),
these devices can easily be used for offloading data-parallel,
processing-intensive algorithms from the CPU. The idea of
performing transient-related signal processing on GPUs is
not a new one. For example, Allal et al. (2009) have created a
fully working, real-time, GPU-based coherent de-dispersion
setup at the Nançay Radio Observatory . The digital sig-
nal processing library for pulsar astronomy written by van
Straten and Bailes (2010) can also use GPUs for performing
coherent de-dispersion, folding and detection.

Barsdell, Barnes & Fluke (2010) analyse various foun-
dation algorithms which are used in astronomy and try and
determine whether they can be implemented in a massively-
parallel computing environment. One of the algorithms they
analyse is the brute-force de-dispersion algorithm, and they
state that this would likely perform to high efficiency in such
an environment, whilst stating that optimal arithmetic in-
tensity is unlikely to be achieved without a detailed analysis
of the algorithm’s memory access patterns. The incoherent
de-dispersion algorithm has indeed been implemented using
CUDA as a test-case for the ASKAP CRAFT project (see
Macquart et al. and Dodson et al. 2010).

2 BLIND FAST TRANSIENT SEARCH
PARAMETERS

Fast transient surveys rely on a number of search parame-
ters, which depend on the characteristics of the instruments
being used and the characteristics of the target astrophysical
signals (Cordes 2008). For example, a survey for dispersed
fast transients can be designed using the following input pa-
rameters: (i) the center frequency at which the observation
is conducted (ii) the frequency bandwidth (iii) the number of
frequency channels and channel bandwidth (iv) the sampling
rate at which digital data are available (v) the expected
signal width, which depends on the science case (vi) the ac-
ceptable signal-to-noise (S/N) level of a detected signal.

Dispersion and scattering are dependent on the fre-
quency and bandwidth at which the survey is being con-
ducted, and help define the boundaries of a survey as fol-
lows:

The maximum DM value (DMmax) can be chosen ac-
cording to the maximum DM value at which there is a justi-
fied expectation to discover sources. This may be related to
the Galactic coordinates of the survey, the capabilities of the

Pass Low DM High DM ∆DM Bin ∆ SubDM

(pc cm−3) (pc cm−3) (pc cm−3) (pc cm−3)

1 0.00 53.46 0.03 1 0.66

2 53.46 88.26 0.05 2 1.2

3 88.26 150.66 0.10 4 2.4

Table 1. An example of a subband de-dispersion survey plan.

∆SubDM refers to the DM step between two successive nominal

DM values, while ∆DM is the finer DM step used for creating the
de-dispersed time-series around a particular nominal DM value.

Bin refers to the binning coefficient for a particular pass.

hardware and also considerations related to interstellar scat-
tering. Scattering has the effect of reducing the peak S/N of
a signal, and is related to DM via an empirical relationship
(see Bhat et al. 2004).
The number of frequency channels depends on the

maximum acceptable channel bandwidth. This can be cho-
sen by considering the dispersion smearing within each chan-
nel for the larger DMs in the searched DM range. Depending
on the format of the data handed down by the telescope, gen-
erating narrower frequency channels may be desirable and
necessary.
The de-dispersion step , which is the unit of discreti-

sation of the DM range, is chosen according to the width
of the target astrophysical signals and the permissible S/N
loss that occurs when de-dispersing at a slightly erroneous
DM.

De-dispersion itself can be performed by a brute force
algorithm, introducing time shifts to every channel, or us-
ing faster, approximative de-dispersion algorithms. Subband
de-dispersion is a technique used by PRESTO1 (Ransom S.
2001), and it relies on the fact that adjacent DM values of-
ten reuse the same time samples to create the de-dispersed
time series. The entire band is split into a number of groups
of channels, or subbands. Each subband is de-dispersed ac-
cording to a set of coarsely spaced DM values and collapsed
into a single frequency channel, representative of the band.
The reduced number of pre-processed channels are then
de-dispersed using a much finer DM step, resulting in de-
dispersed time-series for all DMs within the search range.
This technique results in a slight sensitivity loss, but greatly
decreases the processing time. Subband de-dispersion re-
quires additional parameters, which in PRESTO are pro-
vided as a survey plan. This dictates how the DM range
is split into passes, where each pass will bin the data us-
ing a different binning factor (the larger the DM, the more
the signal will be smeared in time, thus we can reduce the
computational cost by averaging samples). For each pass the
DM range is partitioned, each range being ∆SubDM apart.
This value dictates the subband DM step between consecu-
tive nominal DM values. The DM step is then used to split
each of these partitions.

Table 1 provides an example of such a survey plan for
a DM range of 0 - 150.66 as produced by DDplan, a script
included with PRESTO, which generates the survey param-
eters by trying to minimize the smearing induced by the
splitting of the bandwidth into subbands. This smearing is

1 PRESTO is a pulsar search and analysis software developed by

Scott Ransom
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Figure 1. The high-level thread hierarchy. The de-dispersion

manager initializes the entire system and then takes care of read-

ing input data. A de-dispersion thread per GPU is created which
handles all memory copying and kernel launches on that GPU.

The de-dispersion output thread then receives the de-dispersed

time series from all the GPUs and performs a simple burst search.

the additive effect of the smearing over each channel, each
subband, the full bandwidth and the sampling rate (assum-
ing the worst-case DM error).

3 GPU-BASED DE-DISPERSION

Using the CUDA API, we have implemented incoherent de-
dispersion, which works on any CUDA-capable GPUs at-
tached to a host computer. Our modular code parallelizes
the host and GPU execution by using multiple threads dur-
ing the input, processing and output parts. While the input
thread is reading data, the GPU is busy de-dispersing a pre-
viously read buffer and the output thread is post-processing
a de-dispersed time-series. This threaded setup is depicted
in figure 1.

The de-dispersion manager is the main thread which
takes care of initialising and synchronizing the rest of the ap-
plication. The input thread handles all CUDA-related calls,
and an instance for each attached GPU is created. The DM
range is split among these threads, such that each will pro-
cess the same input buffer for different DM values. The de-
dispersed output from GPU memory is then copied to host
memory, to an address which is shifted appropriately to ac-
commodate all the input threads.

The output thread constructs the de-dispersed time-
series and outputs the results to a data file. It may also
be responsible for event detection. The simplest approach
is then to calculate the mean (µ) and standard deviation
(σ) for the entire processed buffer, and use these values to
apply a threshold at a particular multiple of the standard
deviation (nσ). All values above the threshold are output to
file as a list of triplets of the form (time, DM, intensity).

Currently a homogeneous system is assumed, and no
load-balancing between the devices is performed. Each
thread is split into three conceptual “processing stages”,
which are guarded by several thread-synchronization mech-
anisms. This setup is shown in figure 2. The three stages
are: (i) the input section, where the thread inputs data to
be processed (ii) the processing section, which contains the

de-dispersion kernel, is the main section in the thread and
the part which takes the longest to complete (iii) the out-
put section, where the processed buffer is output and made
available to the next thread and any parameter updates are
performed.

The two aforementioned de-dispersion techniques have
been implemented, namely brute force and subband de-
dispersion, which between them have some common ele-
ments:

Maximum shift: In a buffer containing nsamp samples to
process with a non-zero DM value, each channel will require
a certain shift, with the lower frequency channels requiring
the greatest shift. Assuming this shift is of s samples, and
nsamp samples need to be de-dispersed, we require nsamp + s
samples to be available, where s is dependent on the DM
value. Since the GPU will be de-dispersing for ndms DM
values at any one time, the amount of extra samples need
to cater for the maximum DM value. For reference, we will
use the term maxshift (mshift) for this shift, which can be
calculated by manipulating equation 1:

mshift =
8.3× 106ms×∆f × f−3 ×DMmax

tsamp
(2)

where tsamp is in ms, DMmax is the maximum DM value
processed on the GPU and f and ∆f are in MHz.
Processable Samples: Data transfers between the GPU

and CPU are inefficient. For this reason the input buffer
should fill up as much of the GPU’s memory as possi-
ble, leaving enough space to store the maxshift and output
buffer. The simplest way to calculate the number of samples
which fit in memory is:

nsamp =
memory − (mshift × nchans)

ndms + nchans
(3)

The aim is to keep all the data within the GPU memory
and perform all processing there, so if there are a number of
operations to be performed (such as binning), nsamp must
accommodate these as well.
Shifts: Each channel requires a different amount of shift,

for each DM. For an input buffer with nchans channels, when
de-dispersing for ndms DM values, the required data struc-
ture has a size of ndms × nchans values. For the amount of
channels and DM values required for most situations, such
a data structure will not fit in constant memory, and would
greatly reduce the execution speed if they were calculated
for each block, for each DM. Storing these values in global
memory would slow the kernel down. To counter this, the
calculation is split in two parts, with the first part performed
on the CPU:

tchan = 4.15× 103 ×
(
f−2
1 − f−2

2

)
(4)

where f1 and f2 are in MHz. This gives us a DM-independent
shift for each frequency channel (i.e. the dispersion delay
per unit DM), resulting in a data structure of size nchans,
which in normal circumstances will fit in constant memory.
The second part of the calculation is then performed on the
GPU:

tDM =
tchan ×DM

tsamp
(5)

The division by tsamp could also be performed on the CPU,
but this would result in rounding errors when casting the

c© 0000 RAS, MNRAS 000, 1–10
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Figure 2. Each thread has three main stages: the input, processing and output stages. Data has to flow from one thread type to the

next, so synchronization objects have to be used to make sure that no data is overwritten or re-processed. Barrier and RW locks are used
to control access to critical sections. See main text for a more detailed explanation.

result to single-point precision (the value on which the GPU
would operate) since tchan is usually very small; it is more
efficient to perform the calculation on the GPU rather than
using double precision throughout.

3.1 Brute-force incoherent de-dispersion

The brute-force algorithm is the simplest and most accu-
rate to implement for de-dispersion of incoherent data, but
is also the least efficient processing wise. Assuming Ns sam-
ples, each with Nc channels, and de-dispersing for NDM DM
values, the algorithmic time complexity of the brute force al-
gorithm is O (Ns ×Nc ×NDM ). Ns can be seen as an infi-
nite stream of samples, while Nc and NDM will usually have
a similar value, resulting in approximately N2 operations for
every input sample.

According to (Barsdell, Barnes & Fluke 2010) there are
three main ways in which this algorithm can be parallelized:
(a) Ns parallel threads each compute the sum of a single in-
put time sample for every channel sequentially (b) Nc paral-
lel threads cooperate to sum each sample in turn (c) Ns×Nc

parallel threads cooperate to complete the entire computa-
tion in parallel. The current implementation uses a variant
of scheme (a), where each thread sums up the input for a sin-
gle time sample. Due to the large number of samples which
can fit in GPU memory, each thread will end up processing
more than one sample. A way to envisage this is to imagine
the CUDA grid as a sliding window which moves along the
input samples at discrete intervals equal to the total num-
ber of threads in one row. At each grid position, threads are
assigned to their respective samples.

The kernel can process any number of DM values con-
currently, and this is done by creating a two-dimensional
grid, where each row is assigned a different DM value for
de-dispersion. The output of NDM time-series, each with Ns

samples, is output to the output thread for post-processing.
This kernel is not very compute-intensive, performing

less than ten floating point operations per global mem-
ory read. This makes the de-dispersion algorithm memory-

limited. For this reason, depending on the way the data are
read from the input device, a corner-turn (matrix transpose)
might be required in order to store the data in channel order.
With this memory setup, and having each thread process
one sample for one DM value, threads within a half warp
(16 threads) will access the input buffer in a quasi-fully coa-
lesced manner. This also applies for storing the result in the
output buffer since all threads within a row will shift by the
same amount, resulting in stores which are performed in a
coalesced manner as well.

Shared memory is also used to reduce global memory
reads. Each output value requires Nc additions, and per-
forming these additions in global memory would reduce per-
formance drastically. To counter this, each thread is assigned
a cell in shared memory where the additions are performed.
The final result is then copied to global memory.

3.2 Subband de-dispersion

Subband de-dispersion uses aspects of brute-force de-
dispersion, however it is also influenced by the tree algo-
rithm, which reuses sums of groups of frequency channels
for different DM values. It relies on the fact that adjacent
DM values (given an appropriate DM step) will use over-
lapping samples during the summation, so it splits up the
DM range into several sub-ranges, each centred around a
nominal DM value. The bandwidth is also split into several
subbands, resulting in a partitioning of the set of channels.
The delays corresponding to the nominal DM for every chan-
nel in a subband, minus the delay at the highest frequency
in that subband, are subtracted from each subband channel.
This results in a partially de-dispersed set of subbands. This
scheme is depicted in figure 3. Normal de-dispersion is then
used to generate the de-dispersed time series for the rest of
the DM values within the same DM sub-range.

Depending on the number of subbands used, the size of
the DM ranges, as well as other factors, we can limit the
error induced in the result by these approximations. Fur-
ther gains can be made by binning the input samples when

c© 0000 RAS, MNRAS 000, 1–10
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Figure 3. A simple illustration to visually depict how subband
de-dispersion works. The channels are partitioned into a set of

subbands where the delays corresponding to the nominal DM for

every channel in the subband, minus the delay at the highest
frequency in the subband, are subtracted from each channel. The

subband de-dispersed signal is then further de-dispersed using

normal brute-force de-dispersion for a range of DM values around
the nominal DM value.

the dispersion is so high that a pulse with a required width
is smeared across multiple input samples. Binning averages
Nb consecutive samples. To make our GPU code compatible
with the way PRESTO generates its survey parameters, bin-
ning has also been implemented. There are, therefore, three
main stages in subband de-dispersion:

(i) Perform data binning, if required
(ii) Perform subband de-dispersion and generate the inter-
mediary time series
(iii) De-disperse the resultant time series to generate the
final de-dispersed time series.

Data transfers between the host and GPU are expen-
sive, so the above stages are performed in the GPU without
any data going back to the host, with appropriate data buffer
re-organisation performed after each kernel execution. The
memory organisation after each stage is depicted in figure
4, which can be described from top to bottom as follows:

(i) The input buffer, containing (nsamp +mshift)×nchans val-
ues
(ii) Binning averages Nb adjacent samples, so the output of
one binning loop will be (nsamp +mshift)× nchans/Nb, with
each loop having a different value for b. The output of each
binning loop is placed at the tail of the previous output, as
shown in the diagram. For l loops, the buffer will end up

Figure 4. Subband de-dispersion requires three passes of
the data: binning, subband de-dispersion and brute force de-

dispersion. During the entire process data is kept in GPU memory,

and this illustration shows how this data is organized before and
after each pass.

containing l logical blocks, each with a different bin size bi.
The memory, in samples, required for this procedure is:

mem =

l∑
i=0

(
(nsamp +mshift)× nchans

bi

)
(6)

(iii) Subband de-dispersion generates Nsub intermediate
time-series for each nominal DM, each consisting of (nsamp+
mshift)/bi samples containing nsubs channels. Maxshift sam-
ples have to be preserved so that the next stage can process
all of nsamp. The memory, in samples, required for this stage
is :

mem =

l∑
i=0

(
(nsamp +mshift)× nsubs ×Nsub

bi

)
(7)

(iv) The final output consists of the de-dispersed time series
for all the DM values, each containing nsamp/bi values. Thus
the memory requirement for this stage, in samples, is:

mem =
l∑

i=0

(
ndms × nsamp

bi

)
(8)

Having defined the input and output memory require-
ments for all the GPU stages, the number of samples which
can be processed can then be calculated. The size of the in-
put and output buffers can be computed by taking the size

c© 0000 RAS, MNRAS 000, 1–10
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Parameter Value

Pulsar Period 1000 ms
Duty Cycle 1%

Pulsar DM 75.00 pc cm−3

Top Frequency 156.0 MHz
Channel Bandwidth 5.941 kHz

Number of Channels 1024

Sampling Time 165 µs

Table 2. The parameters used to generate the fake file for evalu-

ation. A pulsar with a period of 1s and 1% duty cycle was created
at a center frequency of 153 MHz with 6 MHz bandwidth. The

bandwidth is divided into 1024 channels and a sampling time of

165 µs was used. The DM is 75 pc cm−3.

of the respective largest buffer from the processing stages,
which can then be used to compute the number of samples
which will fit in memory.

The subband de-dispersion kernel is very similar to the
brute force one, the only major change being that not all the
channels are summed up to generate the series, and more
than one value is generated per input sample. This makes
the algorithm less compute intensive and more memory lim-
ited (same number of input requests, more output requests).
However the number of nominal DM values is only a fraction
of the total number of DM values, and this greatly reduces
the number of calculations which need to be performed by
the brute force algorithm.

4 RESULTS AND COMPARISONS

To test the code, a file containing a pulsed signal was gen-
erated using the fake pulsar generator within SIGPROC2

(Lorimer, http://sigproc.sourceforge.net). The parameters
which were used to generate this fake file are listed in table
2. The fake filterbank data are generated as 1024 time-series,
one for each frequency channel. Each one is made up of a
square pulse of height 8

√
1024 = 0.25 and Gaussian noise

with mean 0 and standard deviation 1. The S/N of the av-
erage simulated pulse, integrated over frequency has a mean
value of 8.

Brute-force de-dispersion using 1000 DM values with a
DM step of 0.1 pc cm−3 was performed. Figure 5 shows the
output of the de-dispersion code, which captures all pulses
with S/N greater than 5.

The performance of the CUDA implementations has
been measured. Fake data is generated in the testing runs
themselves, with all the elements initialized to the same
value. The time taken to generate and copy the data to and
from GPU memory is not included in the timings.

Figure 6 shows the performance achieved when de-
dispersing with different number of channels, samples and
DM values. Different parameter configurations will result in
some different optimal combinations, for example, in cases
where the number of data partitions to process is exactly
divisible by the number of processors and thread blocks be-
ing used. The general tendency is for performance to in-
crease linearly as the number of channels, samples and DM

2 SIGPROC is a software package designed to standardize the

analysis of various types of fast-sampled pulsar data

Figure 5. Brute-force de-dispersion output for an input file con-
taining a simulated pulsar (see text for details). The plots are S/N

versus time (top), S/N versus DM (bottom left) and DM versus

time (bottom right). A threshold of 5σ is applied to the output.
The data points shown are at the DM of the simulated pulsar, 75

pc cm−3.

values increases until the maximum GPU occupancy level
is reached, after which the behaviour becomes asymptotic.
The optimal block size is 128, since fewer threads will re-
sult in less latency hiding and more threads will increase
scheduling latency without performance benefits. The grid
size does not affect performance too much, except for the
case where there are too many threads in each block.

As was already stated, the de-dispersion algorithm is
memory-bound, and both the GPU and CPU will spend
most of their time waiting for data. For this reason, the
flop rate achieved on the GPU is a small percentage of
the theoretical peak for the C-1060, between 80 and 120
Gflops, which comes to about 15-20%. The memory band-
width achieved within the GPU is about 55 GB/s, which is
about 50% of the theoretical peak.

The same tests were performed on a CPU, specifically
on one core of a QuadCore Intel Xeon 2.7 GHz. CPU-
performance decreases quasi-linearly as the number of sam-
ples or channels increases due to cache misses. This perfor-
mance is then compared with the appropriate GPU perfor-
mance to produce the comparison plots in figure 7. This
shows the speedup gained in performing brute force de-
dispersion when using GPUs, for different parameter values.
From these plots it follows that on average we get a speed of
about two orders of magnitude, between 50× - 200× depend-
ing on the parameters used, with the speedup increasing as
the number of input samples/channels increases.

The CUDA implementation was then compared to the
two most commonly used de-dispersion scripts, the one in
PRESTO and the one in SIGPROC. A fake file was gen-
erated containing a 600-second observation centered at 153
MHz with a bandwidth of 6.24 MHz split into 1024 channels

c© 0000 RAS, MNRAS 000, 1–10
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(a) Maximum number of samples

(b) Maximum number DM values

(c) Maximum number of channels

Figure 6. Brute-force de-dispersion performance plots for a
CUDA brute-force implementation. The general trend is for per-

formance to increase linearly with increasing number of channels,

samples and DM values, with different configurations reaching
asymptotic behaviour at different peak performances. (Incom-
plete lines show cases where there was not enough memory on

the GPU to store the data required to perform the test.)

(a) Maximum number of samples

(b) Maximum number DM values

(c) Maximum number of channels

Figure 7. Brute-force de-dispersion speedup plots. For the max-
imum number of samples used in the tests (a), performance

speedup converges to about 150×, with peaks at different number

of channels for different number of DM values. For the maximum
number of DM values (b), the speedup decreases quasi-linearly
with increasing number of channels due to maxshift offset. In

the maximum number of channels case (c), performance increases
quasi-linearly.

c© 0000 RAS, MNRAS 000, 1–10
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(a) The speed up of subband versus brute force de-dispersion

(b) Different DM values per nominal DM in subband de-dispersion

Figure 8. The relative speed up of subband de-dispersion com-

pared to brute force de-dispersion on the GPU. Plot (a) compares
a series of de-dispersion runs with varying parameters using the
two algorithms. The speed-up factor depends on optimal param-
eter combinations, the number of subbands, and the number of
DM values per nominal DM used to split the DM-range, as shown

in plot (b). See main text for further details.

and having a sampling rate of 165 ms (containing a total of
about 3.6 × 106 samples). This was run through the three
software suites for a single DM value. For the GPU code
and PRESTO only the actual de-dispersion part was timed,
whilst SIGPROC also loads from file in the innermost loop
so the timing contains some file I/O time as well. The tim-
ings are listed in table 3.

The algorithm used to perform subband de-dispersion
(both steps) is almost identical to the one used in brute-
force de-dispersion, so the scaling tests were not repeated.
Figure 8 depicts a comparison plot between the two algo-
rithms for various de-dispersion parameters. The speed-up
factor depends on optimal parameter combinations as well
as the number of subbands and number of nominal DM val-

Suite Timing

GPU Code 0.257s
PRESTO 28.321s

SIGPROC 58.099s

Table 3. Timing comparison between the GPU Code, PRESTO
and SIGPROC for one DM. SIGPROC loads data in its innermost

loop so some of the time listed is actually spent reading from file.

The timing discrepancy between the GPU Code and PRESTO is
consistent with the speedup plots.

Pass Low DM High DM ∆DM Bin ∆SubDM

(pc cm−3) (pc cm−3) (pc cm−3) (pc cm−3)

1 0.00 53.46 0.03 1 0.66

2 53.46 88.26 0.05 2 1.2
3 88.26 150.66 0.10 4 2.4

Table 4. Subband de-dispersion survey plan used to compare
PRESTO and the GPU Code, for a 60-second observation at 300

MHz with a bandwidth of 16 MHz split across 1024 channels.

ues in the DM range employed for subband de-dispersion.
The speed-up factor decreases linearly with increasing num-
ber of nominal DM values for a particular range, since more
work needs to be done in the first algorithm step (although
the same number of DM values are processed, the first step
will generally be more intensive since the data has not been
reduced yet). The number of nominal DM values and the
number of subbands depend on the amount of dispersion
smearing permissible, where a large subband-DM step and
few subbands result in a higher amount of smearing. These
values should be fine-tuned to acquire the best balance be-
tween S/N and processing speed.

The GPU subband de-dispersion implementation was
also compared with PRESTO’s prepsubband script, on
which the algorithm is based. A fake file for a single-beam
60-second observation at 300 MHz with a bandwidth of 16
MHz and 1024 channels was created. The plan used for the
test is listed in table 4. The time taken for the GPU code
and PRESTO to process the entire file is 90s and 7540s re-
spectively. Again, this indicates that the GPU code is about
two orders of magnitude faster than the CPU implementa-
tion, in this case 84× faster. For this test, PRESTO was run
in single-thread mode.

5 REAL-TIME DE-DISPERSION

The performance boost obtained from GPUs make them
an ideal candidate for use in real-time systems. An off-the-
shelf server with a high-end CUDA-enabled graphics card
has enough power to de-disperse thousands of DM values in
real-time (depending on telescope parameters). Additional
features are required for such a system, such as a way to
read and interpret incoming telescope data, further chan-
nelisation and buffering between the input stream and de-
dispersion buffers.

As a proof of concept, the GPU code was extended
to include a channeliser (a simple FFT using the NVIDIA
CUFFT library) and a kernel to calculate the power from
incoming complex voltages, to simulate the situation of at-
taching such a machine to a baseband recorder. This was

c© 0000 RAS, MNRAS 000, 1–10



Real-time, fast radio transient searches with GPU de-dispersion 9

Figure 9. A setup for real-time de-dispersion. The UDP Data
Emulator packetizes SIGPROC files and sends the data through

UDP to the processing pipeline, where the packets are read, in-
terpreted and stored in a double buffer. Once a buffer is full, it

is forwarded to the GPU which performs channelisation, power

calculation, a corner turn and de-dispersion.

used within a broader application which (i) reads in UDP
packets, filling up buffers within a double-buffer framework
(ii) forwards filled buffers to the GPU code (iii) channelizes
and calculates total power (iv) transposes data so that it
is in channel order (v) performs de-dispersion. A UDP data
emulator was used to create a simulated voltage stream from
SIGPROC fake data files and send them to the processing
pipeline. This setup is shown in figure 9.

A toy observation file was generated, whose parameters
are defined in table 5, large enough so that multiple itera-
tions of the pipeline would be required, together with the
processing parameters. The brute-force de-dispersion algo-
rithm was used for the test. Note that the data emulator’s
output speed will not match the simulated telescope’s out-
put data rate, so the way to determine whether the pipeline
is processing in real time is to time how long the GPU takes
to process one entire buffer, and then compare that with the
number of samples originally buffered.

The GPU buffer sizes were set to 219 spectra, equivalent
to about 6.7s of telescope data, meaning that all the GPU
processing for each buffer must complete within this time-
frame. The average timings for each stage of the pipeline are
listed in table 6. The total processing time on an NVIDIA
C1060 card is about 5.8s. This leaves enough extra time for
CPU-GPU synchronization and additional memory opera-
tions, also providing enough leeway for the occasional CPU
processing burst due to other running processes or the OS
itself. The test was run on server with 2 QuadCore Intel
Xeon 2.7 GHz and 12 GB DDR3 RAM, which is a modest
system for online processing.

Parameter Value

Center Frequency 610 MHz
Bandwidth 20 MHz

No. of Subbands 256

Sampling Time 12.8µs

Channels per Subband 8

Number of DM values 500
Maximum DM value 60 pc cm−3

Table 5. A toy observation for testing the real-time pipeline. A
fake file was generated with an observation at a center frequency

of 610 MHz and 20 Mhz bandwidth with 256 channels, produc-

ing 78125 spectra per second. The channelizer produces 8 chan-
nels per subband, and 500 DM values are used for the dispersion

search, with a maximum DM of 60 pc cm−3.

Stage Time

CPU to GPU copy 475ms
Channelisation 458 ms

Intensity Calculation 20 ms

Corner Turn 112 ms
De-dispersion 4500 ms

GPU to CPU copy 220 ms

Total 5785 ms

Table 6. Timing for the several stages in the processing pipeline.

6 CONCLUSIONS

We have implemented two de-dispersion algorithms, brute-
force and subband de-dispersion, using CUDA, which en-
ables data-parallel processing to be offloaded onto any num-
ber of connected CUDA-enabled GPUs. This has led to a
performance speedup of about two orders of magnitude,
between 50 and 200 for certain parameter configurations,
when compared to a single-threaded CPU implementation.
Detailed comparison with two traditional pulsar processing
suites, PRESTO and SIGPROC, confirm our results. Fi-
nally, a prototype for a real-time dispersion search pipeline
was designed, which reads in a UDP stream of telescope data
and performs FFT channelisation and de-dispersion.

Work is ongoing in this project, with plans to add sev-
eral additional processing modules in the pipeline. Coher-
ent de-dispersion is useful for studying pulsars whose DM
value is already known. Other schemes for de-dispersion are
also being considered, such as performing chirp analysis in
the frequency domain to detect chirps representing dispersed
signals. GPUs provide us with enough processing power (per
unit cost) to be able to apply processing-intensive algorithms
which would otherwise be unfeasible on a conventional CPU
system. As a result, we are in a position to carry out real-
time searches for dispersed fast-transients with appropriate
telescopes at low cost.
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