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We discuss the bending of light in a recent model for gravity at large distances containing a Rindler-

type acceleration proposed by Grumiller [Phys. Rev. Lett. 105, 211303 (2010)]. We consider the static,

spherically symmetric metric with cosmological constant � and Rindler-like term 2ar presented in this

model, and we use the procedure by Rindler and Ishak [W. Rindler and M. Ishak, Phys. Rev. D 76, 043006

(2007).] to obtain the bending angle of light in this metric. Earlier work on light bending in this model by

Carloni, Grumiller, and Preis [Phys. Rev. D 83, 124024 (2011)], using the method normally employed for

asymptotically flat space-times, led to a conflicting result (caused by the Rindler-like term in the metric)

of a bending angle that increases with the distance of closest approach r0 of the light ray from the centrally

concentrated spherically symmetric matter distribution. However, when using the alternative approach for

light bending in nonasymptotically flat space-times, we show that the linear Rindler-like term produces a

small correction to the general relativistic result that is inversely proportional to r0. This will in turn affect

the bounds on Rindler acceleration obtained earlier from light bending and casts doubts on the nature of

the linear term 2ar in the metric.
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I. INTRODUCTION

In a recent paper, Grumiller [1] has proposed a model for
gravity of a central object at large scales, by imposing
spherical symmetry, diffeomorphism invariance and addi-
tional assumptions, such as power counting renormaliz-
ability and analyticity. Starting from the most general
spherically symmetric space-time metric [2]

ds2 ¼ gABðxiÞdxAdxB þ�2ðxiÞðd�2 þ sin2�d�2Þ;
A; B ¼ 0; 1; xi ¼ ðt; rÞ; (1)

and making the above assumptions they use the process of
spherical reduction [3] to reduce the four-dimensional
Einstein-Hilbert action to a specific two-dimensional one
for the two-dimensional metric gABðxiÞ and dilation field
�ðxiÞ. The two-dimensional dilaton gravity model, which
depends on two coupling constants a and �, is given by

S ¼ �
Z

d2x
ffiffiffiffiffiffiffi�g

p ½�2Rþ 2ð@�Þ2 � 6��2 þ 8a�þ 2�:
(2)

The solution to the equations of motion derived from this
action leads to the line element

ds2 ¼ �K2dt2 þ dr2

K2
þ r2ðd�2 þ sin2�d�2Þ; (3)

K2 ¼ 1� 2M

r
��r2 þ 2ar; (4)

which reduces to the Schwarzschild line element with mass
M, when � ¼ a ¼ 0. The additional linear term in the
normK of the Killing vector @t for the above metric, which
is absent in Einstein gravity, is responsible for Rindler
acceleration [4] and provides a constant acceleration a
towards the source provided that a is positive. The author
in [1] claims that this Rindler acceleration may explain the
‘‘Pioneer anomaly,’’ [5,6] i.e. an apparently constant, radial
acceleration associated with the trajectories of the Pioneer
spacecraft, of order a� 10�11 ms�2. This was based on
the fact that for large distances r of the order of the Hubble
length, both the Rindler term 2ar and the cosmological
term �r2 become relevant and approach unity for a �
10�10 � 10�11m=s2, a value which is of the same order
as the Pioneer acceleration and the MOND characteristic
acceleration [7]. This effective model for gravity does not
exclude the possibility that the Rindler acceleration a is
system dependent, so it does not necessarily spoil the solar-
system precision tests. The metric in (3) is also a vacuum
solution of conformal Weyl gravity [8] which has also been
proposed as a possible alternative to Einstein’s theory of
gravity. Unlike the theory proposed by Grumiller, which
assumes spherical symmetry in addition to other technical
requirements, conformal Weyl gravity uses the principle
of local conformal invariance of the space-time manifold
(i.e. invariance under conformal transformations g�� !
�2ðx�Þg��; �ðx�Þ being a strictly positive function) as

the only additional condition that fixes the fourth order
*joseph.sultana@um.edu.mt
†demos.kazanas@nasa.gov

PHYSICAL REVIEW D 85, 081502(R) (2012)

RAPID COMMUNICATIONS

1550-7998=2012=85(8)=081502(4) 081502-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.105.211303
http://dx.doi.org/10.1103/PhysRevD.76.043006
http://dx.doi.org/10.1103/PhysRevD.76.043006
http://dx.doi.org/10.1103/PhysRevD.83.124024
http://dx.doi.org/10.1103/PhysRevD.85.081502


gravitational action. The fact that in both theories the
effects of the linear term in the metric (3) become compa-
rable to those due to the Newtonian potential term 2M=r on
length scales comparable to the size of a galaxy, led [1,8] to
the fitting of galactic rotation curves without the need to
invoke the presence of dark matter as normally done in
standard gravitational theory. The classical tests of general
relativity in the presence of the Rindler term in the metric
(3) with� ¼ 0were discussed in [9], and upper bounds for
the Rindler acceleration were obtained by comparing re-
sults for the perihelion shifts, light bending, and gravita-
tional redshifts with observational data. The perihelion
shift data indicated that the Rindler acceleration is system
dependent, at least in the case of massive test objects, with
the tightest bound of jaj< 10�14 m=s2 achieved from the
Earth and Mars perihelion shifts. In the case of null geo-
desics, light bending data for quasars yielded a very loose
bound of jaj< 6� 10�2 m=s2, while the Cassini data for
radar echo time delay lead to jaj< 3� 10�9 m=s2, a value
which is close to the Pioneer acceleration. In particular,
computation of the light deflection by the sun using the
metric in (3) showed that besides the positive Einstein
bending angle 4M=r0, where r0 is the distance of closest
approach of the photon’s world line to the sun, the ex-
pression for the bending angle contains an extra term
�ar0=2. The angle of deflection was obtained by finding
the angle between the asymptotes r ! 1 of the photon’s
trajectory as normally done in the Schwarzschild solution
and other asymptotically flat space-times. This leads to the
conflicting result that in lensing by a spherically symmetric
object, in this case the sun, the larger the light ray’s closest
approach distance r0 to the lens, the larger the deflection
angle. Moreover, the positive sign required by the Rindler
acceleration a, to explain the Pioneer anomaly or the fitting
of galactic rotation curves, leads to an effective repulsion
for the light rays thereby producing a defocusing (instead
of focusing) of light rays by the lens. In the case of Weyl
gravity this latter problem can be solved [10] by utilizing
the conformal invariance of null geodesics to find a con-
formal gauge in which the sign of a in (3) changes sign so
that the theory becomes attractive for null geodesics. In this
paper we consider� � 0 and show that when the curvature
of the background nonflat geometry in (3) is taken into
account, the expression for the angle of deflection lacks the
undesirable term �ar0=2, and instead contains a term
which is inversely proportional to the distance of closest
approach r0. This approach has been used earlier in [11] to
study the bending of light in conformal Weyl gravity and
was originally developed by Rindler and Ishak in [12] to
show that the bending of light in the Schwarzschild-
de Sitter space-time depends on the cosmological constant,
even though� is not present in the null geodesic equations.
The method of Rindler and Ishak has been discussed
by several authors (see Refs. [13–19]) and was also used
[20] in strong lensing by clusters to obtain observational

constraints on �. In Sec. II we present this approach for a
general nonasymptotically flat space-time and apply it to
the metric in (3) to show that the presence of the Rindler
term has only a small effect on the bending angle which
diminishes with r0. In Sec. III the results are summarized
and the nature of the constant a in the metric (3) is
discussed in light of our result for the light bending angle.

II. LIGHT BENDING IN CURVED
BACKGROUND GEOMETRIES

The null geodesic equation for the static and spherically
symmetric line element in Eq. (3) is given by

d2u

d�2
þ u ¼ 3Mu2 � a; (5)

where u ¼ 1=r. Note that the effects of the cosmological
�r2 term in the metric are not present in the null geodesic
equation. Usually the null orbit is obtained as a perturba-
tion of the undeflected straight line in flat space-time, i.e.,

r ¼ R

sin�
; (6)

which is the solution of Eq. (5) without the right hand side,
and R is the impact parameter, i.e., the distance of closest
approach of the light ray from the concentrated spherically
symmetric matter distribution. This first approximation is
then substituted in the right hand side of Eq. (5), and the
resulting differential equation for u solved in the usual
way. This has the solution

1

r
¼ u ¼ sin�

R
þ M

2R2
ð3þ cos2�Þ � a: (7)

Note that in our case the parameter R is related to the
distance r0 of closest approach (at which � ¼ �=2) by

1

r0
¼ 1

R
þ M

R2
� a: (8)

We now follow [12] and consider the subspace � ¼ �=2,
t ¼ const in (3) and let c be the angle between the two
directions d ¼ di and � ¼ �j in the plane graph of the
orbit Eq. (7), as shown in Fig. 1.
The angle c represents the angle that the photon orbit

makes with the coordinate plane� ¼ const and is given by
the invariant formula

FIG. 1. The plane graph corresponding to the orbit in (7) with
the one-sided deflection angle given by � ¼ c �� (adapted
from [12]).
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cosc ¼ gijd
i�jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gijd
idj

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gij�

i�j
q ; (9)

where di ¼ ðdr; d�Þ, �j ¼ ð�r; 0Þ, and gij denotes the

metric on the � ¼ �=2, t ¼ const surface. Differentiating
(7) gives

Aðr;�Þ � dr

d�
¼ Mr2

R2
sin2�� r2

R
cos�: (10)

Substituting this in (9), we get

cosc ¼ jAj
ðA2 þ g11r2Þ1=2 ; (11)

or

tanc ¼ ðg11Þ1=2r
jAj : (12)

As can be seen from Fig. 1, the one-sided bending angle
at a general point ðr;�Þ along the orbit is given by � ¼
c ��. Hence the total one-sided bending angle corre-
sponds to � ¼ 0 or � ¼ c 0, which corresponds to

r ¼ R2

2M� aR2
; jAj ¼ R3

ð2M� aR2Þ2 : (13)

Substituting these expressions in (12) and using the fact
that c 0 is a small angle and including only linear terms
in a, we get

c 0 � 2M

R
þ 4M2a

R
��R3

4M
: (14)

Thus the total bending angle for the photon orbit is given
by

2c 0 � 4M

R
þ 8M2a

R
��R3

2M
: (15)

III. DISCUSSION AND CONCLUSION

In an asymptotically flat space-time such as the
Schwarzschild solution, the angle of deflection of the
null trajectory is obtained by letting r ! 1 or u ! 0 in
(7). However, in the case of a nonasymptotically flat space-
time such as (3) the value of r is limited by the presence of
a cosmological event horizon and so in general it would not
be possible to take infinite values for the radial coordinate
as was done by Carloni et al. in [9]. In fact, whenM=r � 1
such that the M dependent terms in (3) can be ignored,
the metric can be rewritten under the coordinate trans-
formation

	¼ 2r

ð1þ2ar��r2Þ1=2þ1þar
; and 
¼

Z
RðtÞdt;

(16)

in the form

ds2 ¼ ½1� ða2 þ�Þ	2=4�2
R2ð
Þ½ð1� a	=2Þ2 þ�	2=4�2

�
�
�d
2 þ R2ð
Þ

½1� ða2 þ�Þ	2=4�2

� ðd	2 þ 	2ðd�2 þ sin2�d�2ÞÞ
�
: (17)

The metric is therefore asymptotically conformal to a
Friedmann-Robertson-Walker metric with arbitrary scale
factor Rð
Þ and spatial curvature � ¼ �ð�þ a2Þ. So
instead of taking an infinite value for r, one takes the
value of r at � ¼ 0 which corresponds to that region of
space-time between the Schwarzschild space-time and
cosmological background space-time in (17), where no
more significant bending occurs. It is in this region far
from the spherically symmetric matter distribution that
the source and observer are assumed to be located.
We note that besides the conventional Einstein bending

angle of 4M=R, the expression in Eq. (15) contains con-
tributions from the cosmological and Rindler terms in the
metric (3). As expected a positive � diminishes the bend-
ing angle, while a positive Rindler acceleration increases
its value. When a ¼ 0 the expression for the bending angle
reduces to that obtained by Rindler and Ishak in [12] for the
Schwarzschild-de Sitter space-time. Unlike the previous
result of [9], where the contribution to the bending angle
from the Rindler term was found to be proportional to the
distance of closest approach r0 and hence in direct contra-
diction with observations, the present treatment indicates
that it is inversely proportional to R or r0, just like the
conventional term. Moreover, its magnitude is very small;
its ratio to that of the standard 1=r component is of the
order Ma ’ 10�6, when using the bound jaj< 3 nm=s2

derived by Carloni et al. in [9], and therefore insignificant
for all practical purposes. The bound on the Rindler accel-
eration jaj< 6� 10�2 m=s2 mentioned earlier, obtained
by Carloni et al. in [9] using light bending, becomes even
less tight when the contribution from the Rindler term in
(15) is used. This and the very different bounds that were
obtained in [9] from the other classical tests add to the
mystery about the true nature and magnitude of the con-
stant a in the metric. As seen in Eq. (17) for large values of
r, the metric in (3) becomes conformal to Friedmann-
Robertson-Walker, so one can say that it describes a spheri-
cally symmetric object embedded in a conformally flat
background space. The fact the curvature of this back-
ground space depends on a and � points towards a cos-
mological origin of a. On the other hand, the different
bounds obtained from the perihelion shift data for different
planets as discussed in the Introduction, implies that a is
system dependent. Hence one can suggest that the Rindler
term 2ar in the metric provides the necessary changes in
the space-time geometry to allow the embedding of a
spherically symmetric matter distribution in a cosmologi-
cal background.
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