Structure Activity Relationship of Drugs of Abuse

Kersty Axisa, Janis Vella Szijj, Anthony Serracino Inglott

Department of Pharmacy, Faculty of Medicine and Surgery, University of Malta, Msida, Malta

email: kersty.axisa.15@um.edu.mt

$\overline{}$		

The study aimed at identifying links between structural modifications and physiological effects, adverse effects and toxicities of synthetic cannabinoids, cathinones and opioids.

METHODS

Literature review identified the functional groups of the external structural backbone of synthetic drugs of abuse in relation to adverse drug reactions, toxicities and physiological effects of amino alkyl indoles, synthetic cathinones and fentanyl analogues.

RESULTS

RESULIS								
`	Molecular	Adverse Drug	Cause of ADR					
	Structure	Reaction (ADR)						
XLR-11 (Synthetic Cannabinoid)	F	Acute Kidney Injury	Overstimulation of CB ₁ receptors in kidney cells caused by the high potency and selectivity of XLR-11 and its pyrolysis products to CB ₁ receptors					
MDMB- CHMICA (Synthetic Cannabinoid)		Acute Kidney Injury	Overstimulation of CB ₁ receptors in kidney cells caused by high selectivity of MDMB-CHMICA to CB1 receptors due to presence of indole core, tert-leucine group and ester link.					
A-PVP (Synthetic Cathinone)		Psychosis and Delirium	Potent inhibitory uptake effects at dopamine transporter and norepinephrine transporter due to presence of pyrrolidine ring.					
MDPV (Synthetic Cathinone)		Psychosis and Delirium	Potent inhibitory uptake effects at dopamine transporter and norepinephrine transporter due to presence of pyrrolidine ring.					
		Rhabdomyolysis	Increased muscular activity caused by sympathomimetic stimulation and hyperthermia.					
	•	Disseminated Intravascular Coagulation	Dopamine induced hyperthermia					

Drug of abuse	Fentanyl	Acetylfentanyl	Ocfentanil	acryloyfentanyl	Furanylfentanyl
Molecular Structure					
Lipophilic	XLogP=4.0	Lower Lipophilic	Lower Lipophilic	Higher Lipophilic	Higher Lipophilic
Character		character than fentanyl (XLogP=3.6)	character than fentanyl (XLogP=3.6)	character than fentanyl (XLogP=4.2)	character than fentanyl (XLogP=4.6)
Duration of Physiological effects	30-60 minutes	Lower duration of effects when compared to fentanyl	Lower duration of effects when compared to fentanyl	Higher duration of effects when compared to fentanyl	Highest duration of effects when compared to fentanyl

Table 2: Table showing link between drug of abuse, molecular structure, lipophilic character and duration of physiological effects of fentanyl analogues.

CONCLUSION

The physiochemical changes brought about by structural modifications to produce synthetic drugs of abuse are linked to changes in potencies and changes in types and duration of effects.

Synthetic cannabinoids and synthetic cathinones are linked to increased adverse effects and toxicities. Fentanyl analogues displayed similar effects and toxicities to those of earlier developed opioids but differed in duration of effects.

This study contributes to an explanation of the higher potencies, toxicities and adverse drug reactions associated with the abuse of synthetic drugs.

Table 1: Table showing drug of abuse, molecular structure, adverse drug reaction and cause for ADR for XLR-11, MDMB-CHMICA, α -PVP and MDPV.