Drug Design of molecules binding to the 5-HT receptor using a Bioisosteric approach

Maria Schembri, Claire Shoemake, Lilian Azzopardi

Department of Pharmacy, Faculty of Medicine and Surgery, University of Malta, Msida, Malta

email: maria.r.schembri.08@um.edu.mt

INTRODUCTION

A strategy used to improve a lead compound is based on the concept of

bioisosterism. In bioisosterism, the properties of a compound are

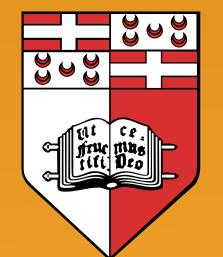
fine-tuned by the replacement of some groups or fragments in a

molecule, without affecting its overall biological activity.¹

AIMS

• To design molecules binding to the 5-HT receptor using a bioisosteric

approach.


• To compare the affinity of the generated bioisosteres to the affinity of

the endogenous ligands.

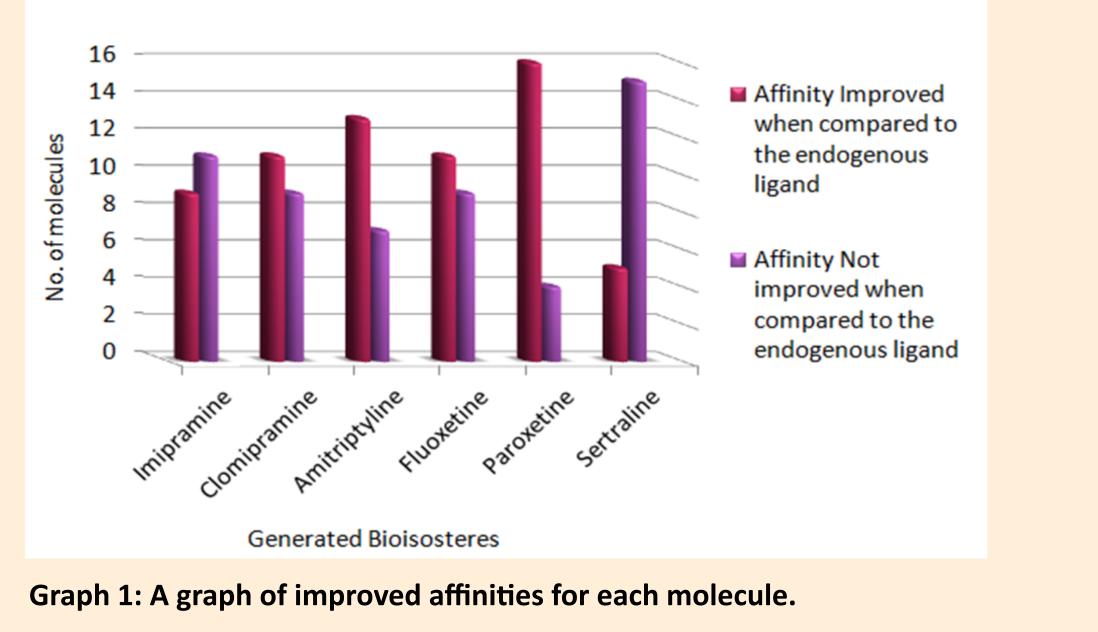
METHOD

• Three Tricyclic Antidepressants (TCAs—amitriptyline, imipramine and clomipramine) and three Selective Serotonin Reuptake Inhibitors (SSRIs-

Department of Pharmacy

University of Malta

fluoxetine, paroxetine and sertraline) were selected. Molecular modelling of these structures was carried out in SYBYL-X[®]1.2²


• The Structure Activity Relationships (SARs) of each selected molecule were identified from the literature to identify which moieties on these molecules

were crucial for binding and for eliciting biological activity.

- Using Spark[®]V10³ software and its molecular databases, 4 different fragments were selected to generate novel ligands which are bioisosteric to the original molecules. The top 5 bioisosteres that had the highest BIF (Bio-Isostere Factor) were chosen for each of the 4 fragments. This process was repeated for every SSRI and TCA molecule.
- The ligand binding affinity (pKd) of the bioisosteric structures for the cognate target receptor was measured in Score^{®5} and compared to that of the

·		Results									
	Rank	Structure	BIF%	Score	Field Score	Shape Score	MW	SlogP	Rof5	Unstable	Frag ID
	1	ET C	82	0.978	0.961	0.994	374	5.1	1	false	224
	2	BIT	80	0.975	0.968	0.983	327	4.7	0	false	289
	3	BART	75	0.969	0.976	0.962	341	4.7	0	true	77827
	4	ET E	75	0.969	0.98	0.957	335	5	0	false	686
	5	ST C	72	0.965	0.933	0.996	330	5	0	false	343
	6	BIT	71	0.964	0.977	0.951	337	5.2	1	false	497
	Table 1:	Table 1: Top bioisosteric results generated by Spark [®] when changing a specific fragment.									
RESULTS											
A total of 120 designed bio	oisosteric m	olecules we	re imp	orted to	o Score®	Out o	of the	120 b	ioisost	eres gen	erated,
									_		
or their affinity to be mea	sured. Table	e 2 shows th	ne resu	lts obta	ined for	impro	ved af	finity v	vhen c	ompared	to thei
-						-		-		•	
						-		-		ompared clomipra	
ne of the fluoxetine fragm	nents. The c	olumn show	ving `Pro	edicted	average	below	deli	niates	that	•	amine,
one of the fluoxetine fragm -log(kd)' shows the average	nents. The co	olumn show of the endo	ving 'Pro	edicted	average and its	below parox	deli etine	niates have t	that the high	clomipra	amine, umber c
one of the fluoxetine fragm -log(kd)' shows the average corresponding five bioisos	nents. The co ge affinity o teres. As sh	olumn show of the endo nown, the e	ving 'Pro genous endogei	edicted ligand	average and its	below parox affinit	y deli etine ies, wi	niates have t th paro	that the high exetine	clomipra ghest nu having 1	amine, umber c
for their affinity to be mea one of the fluoxetine fragm -log(kd)' shows the averag corresponding five bioisos ligand had an average af	nents. The co ge affinity o teres. As sh	olumn show of the endo nown, the e	ving 'Pro genous endogei	edicted ligand	average and its	below parox affinit	y deli etine ies, wi	niates have t	that the high exetine	clomipra ghest nu having 1	amine, umber c
ne of the fluoxetine fragm log(kd)' shows the averag orresponding five bioisos gand had an average af	nents. The co ge affinity o teres. As sh finity of 5.	olumn show of the endo nown, the e	ving 'Pro genous endogei bioisos	edicted ligand	average and its	below parox affinit	y deli etine ies, wi	niates have t th paro	that the high exetine	clomipra ghest nu having 1	amine, umber c
one of the fluoxetine fragmone of the fluoxetine fragmonolog (kd)' shows the average orresponding five bioisos gand had an average af	nents. The co ge affinity o teres. As sh finity of 5. highest affin	olumn show of the endo nown, the e	ving 'Pro genous endogen bioisos 6.03.	edicted ligand nous flu	average and its	below parox affinit	y deli etine ies, wi	niates have t th paro hity to t	that the high exetine	clomipra ghest nu having 1	amine, umber c
one of the fluoxetine fragm -log(kd)' shows the average corresponding five bioisos igand had an average af mproved affinity with the l	hents. The constraints of the second	olumn show of the endo nown, the e 79 and its ity reaching	ving 'Pro genous endogen bioisos 6.03. re Predi	edicted ligand nous flu teres s	average and its uoxetine	below parox affinit	v deli etine ies, wi ng affir	niates have t th paro hity to t	that the high exetine	clomipra ghest nu having 1	amine, umber c

5 of the molecules show an endogenous ligand. The graph amitriptyline, fluoxetine and bioisosteres with improved he 20 molecules with improved

5	C16H15NOF3Cl	72	5.81	6.25	5.57	5.88	-8.02
6	C19H22N0F3	71	5.90	6.36	5.85	6.03	-8.23

6.38

6.02

6.09

5.61

5.45

5.82

5.93

5.76

5.94

5.82

5.81

5.92

82

80

75

Table 2: A comparison of the affinities of the endogenous ligand and of the generated bioisosteres generated by Score[®].

CONCLUSION

The results show that when a bioisosteric approach is used, properties such as the affinity of the ligand binding to the receptor are refined. Further studies

-8.90

-7.86

-8.10

can be carried out using other strategies such as de novo drug design where analysis of the improvement in affinites of the new ligands designed de novo can

be made.

ligand

1

2

4

C16H15NOF3BR

C17H17N0F4

C19H20NOF3

REFERENCES

1. Kennewell E.A, Willett P, Ducrot P, Luttmann C. Identification of target-specific bioisosteric fragments from ligand-protein crystallographic data. Journal of Computer-Aided Molecular Design 2006;20: 385-394.

2. SYBYL-X 1.2, Tripos International, 1699 South Hanley Rd., St. Louis, Missouri, 63144, USA.

3. SparkV10, Cresset BioMolecular Discovery Ltd, Broadwater Rd, Welwyn Garden City, UK

4. Wang R, Liu L, Lai L, Tang Y. SCORE: A New Empirical Method for Estimating the Binding Affinity of a Protein-Ligand Complex. J. Mol. Model. 1998; 4: 379-394.