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Abstract

In this research we propose a novel approach, consisting of an ensemble of data-
mining and machine learning techniques, to prove that it is possible to extract and
predict vehicular traffic patterns from mobile usage data. An anonymized mobile
phone usage dataset from a telecommunications provider in Malta was used to
generate an origin-destination (OD) matrix that defines the top two activity hubs
through clustering. The OD matrix was used to infer user trips over fastest routes
between these top two locations across time. We then applied spatial binning
techniques to deduce the aggregate distribution of traffic load on the traffic network.
A predictive model based on an artificial neural network (ANN) was trained with
the whole network traffic flow load in a time series to predict traffic level for specific
nodes.

Daily trip distribution showed to have a very strong correlation (r = 0.94,
p < 1.1e − 11) with those reported in 2010 in the National Household Travel
Survey (NHTS). Similarly a significantly strong linear relationship (r = 0.69, p <
0.001) was found when comparing mean hourly route trip delays with mean trip
delay estimation recorded with a Google API. To evaluate the traffic flow count
method, we compared our results with manual counts retrieved from a 2016 study
by Nigel Pace. Strong instances of correlation (r = 0.75,p < 0.05) were observed for
low congested traffic points. These contrasted with the weak negative correlation
(r = 0.45,p < 0.05) for traffic flow in locations where traffic congestion occurs
frequently. Traffic flow prediction through an ANN proved to be efficient with
F1-Scores ranging from 0.58 to 0.9 for different road segments in experimentation.

The proposed solution needs improvement by adding a dynamic traffic assign-
ment to the whole algorithm. This would give more accurate results, especially
for traffic flow points that tend to be congested, by capturing user route selection
changes and get more precise localization of delay causes.
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1. Introduction

1.1 Economic development and urbanization im-

pact on transport

Land transport is a societal reality that is essential for people to get to work, leisure

and other places for other purposes. Transport is essential for delivering goods and

services. Land transportation has undoubtedly evolved at a fast pace and late

technology advancements are making vehicular transportation more efficient, less

polluting, faster, safer and more comfortable. There are many land transport modes

which include bus, rail and private car as the most generally used. In Malta 60%

of commuters opt for the car as the preferred mode of transport. This is stated

in the modal split report in the National Transport Household Survey 2010 report

document [1].

Economic development and urbanization come at a cost. It surely has a direct

impact on the increase of traffic congestion and all undesirable consequences it

brings with it. Traffic congestion is especially synonymous with urban places where

the private car is the preferred mode of travelling. The EU Transport Directorate

(2018) mentions how traffic congestion in urban areas in the EU is costing 100

billion Euro every year which amounts to 1% of the EU GDP [2]. Colak et al.

elaborate on the crippling effect on the economy because of traffic congestion [3].
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Chapter 1. Introduction

Traffic congestion amounted to 43% (€117.9 million) of external costs in Malta in

2012, which is the origin of the mobile traces datasource used in this study [4].

Other causes of external costs related to traffic include accidents, climate change,

air pollution and noise which are all directly incremented by traffic congestion.

No policy change scenario envisages an external cost of €151.1 million and €154.1

million for the years 2020 and 2030 respectively incurred on the economy of Malta.

In the US, traffic congestion is similarly a cause of concern. Interesting but

worrying facts are listed in a US mobility research done in 2015 [5]. It states that

the extra miles travelled by Americans in 2014 were 6.9 million at the cost of $160

billion. Congestion costs in the USA is on the increase. In the year 2000 it was

reported to be at the level of $114 billion.

Traffic delays have a heavy impact on the shipment industry as well. Travel

costs increase when travel time increases. Pick-up and delivery time estimation

become less accurate because of traffic congestion. Transport companies need to

take costly measures in order to make up for this and the increase in cost is more

often than not passed to the consumer [5, 6].

1.2 Addressing Traffic congestion

Both car users and public transport users tend to get frustrated from unneces-

sary delays on the road. This time is deducted from a healthy lifestyle or from

productivity hours.

Drivers can adapt to smartly mitigate delay times. Individual drivers can hear

radio adverts or check CCTV to inform themselves about the traffic situation before

departing or while driving for better planning. Use of software such as Google

Maps 1, Apple Maps 2 or Waze 3 help to have an informed decision how to schedule

trips and decide what route to take. These applications might even suggest other

1https://www.google.com/maps (accessed April 3, 2018)
2https://apple.com/ios/maps (accessed April 3, 2018)
3https://waze.com/en-GB (accessed April 3, 2018)
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Chapter 1. Introduction

transport modes that offer faster or more convenient alternatives to get to the same

destination.

Efficient traffic management should be at the top of national transportation

agencies’ agenda. Possible measures that can be taken by transport authorities

include making different modes of transport more widely available and encourage

the public to use it. Smart technology is another means to alleviate travelling

frustration by giving information, instructions and control traffic flow in an auto-

mated manner. For more uptake of public transport the public for instance can

be informed and educated through mobile applications. Mobile applications can

be used to make the public transport experience more efficient, practical and the

preferred choice. There are other deterrents such as increases in vehicle license tax

and adding of parking fees to force drivers off the road and make them use public

transport or cleaner ways of transportation such as cycling.

Law enforcement is another way to facilitate traffic flow. This would diminish

road accidents or casual road blockages that can cause flow disruptions. Automatic

number plate recognition (ANPR), through camera feeds processing, can be used

to measure traffic flow and even to apply a toll to users in certain traffic zones as

a deterrent for private car use. Park and ride systems shift away concentration

of traffic from urban centres [4]. Nuaimi et al. for instance show how concerted

efforts can lead to smarter cities by analysing static data and make infrastructural

changes by opening or modifying roads. In this study dynamic data was used to

manage traffic lights to alleviate congestion, inform the public through their smart

phones about the traffic status and control logistics related to movement of goods

[7].

Investment in the transport infrastructure to expand capacity is difficult to

directly justify with a simple cost benefit analysis model [8]. Increase in road

capacity might seem a simple straightforward solution to alleviate traffic. However

infrastructure alterations might not necessarily equate to easing of traffic. Such

costly changes might just spatially shift the problem elsewhere or fail to lead to

3
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the expected result. Forecasting of the gains made by road capacity increase or

any other transport system changes may be distorted if induced traffic is not taken

in consideration. Induced traffic may result from changes in route choice, peak

hour traffic, modal split, overall transport volume, land use and quality of public

transport services [9]. When formulating return on investment functions induced

traffic should not be ignored.

1.3 Traffic information and management systems

Traffic management systems primarily monitor traffic status in the road network

and take traffic control decisions, such as, increasing or decreasing lanes in a tidal

lane system based on traffic data. The traffic data, on which traffic management

decision logic is based on, must be updated frequently and it should be reliable.

Intelligent traffic management systems are more efficient when the traffic control

decisions are based on real-time streams of traffic data. Processing real-time feeds

is challenging both in terms of computational resources and design but is more

reactive to abnormal situations such as accidents or unusual weather conditions

since it is modelled on a running sample [10]. Traffic related data stream processing

might entail heavy real time processing of high variety data coming from multiple

sources. Modern approaches, such as big data based information systems, become

essential in order to create automated control systems that alleviate the load on

the transport network [11].

Traffic Information Systems (TIS) can tap into mobile usage records as a main

source of information. Such TIS leverage mobile data collection that has wide

coverage, is reliable, accurate and is frequently updated [12]. Less coverage is to be

expected in rural areas where base stations are highly dispersed when compared to

urban areas. Mobile vehicle geolocation has limited spatial resolution. For example

it cannot be used for traffic flow counts on lanes, whereas it could be easily done

with inductive loops.

4
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1.4 Traveller centric traffic flow probing

Obviously, the dynamics of traffic flow is determined by the travel needs of the

masses. The daily commutes of every individual impacts those of others. The

interaction on a large scale of all the vehicles in a time series is difficult to model

and to predict in a robust and responsive manner [13]. Traffic sensors, cameras

and induction loops are all sources of information that can be used to both detect

high traffic intensity or even forecast it beforehand. However, the coverage these

techniques offer is limited. Camera feeds and inductive-loop detectors cannot be

installed in every road of the transport infrastructure. Devices carried by travellers,

or embedded in vehicle, can be possibly used to build smart solutions for traffic

management [13].

1.4.1 Passive vs Active data collection

Long before the information era started, spatio-temporal data on human mobility

was collected in various forms and modalities. One of the methods used to gather

such information is to do straightforward surveys[14, 3]. However these are expen-

sive methods because a lot of manual work needs to be carried out. Besides they

could only give a snapshot of reality at a given point in time. Generally, these

types of surveys are done every five to ten years [10]. The data made available

would be too static and increasing the frequency of survey taking would directly

require more human resources assigned to the process. As mobile telecommuni-

cations and gradual adoption of its services came into the picture, at the turn of

the millennium, more data points could be collected in an automated fashion. A

limitation, which comes with mobile user related information, is the lack of de-

mographic knowledge on the mobile owner. Surveys gather such information and

make stratified sampling possible in order to have a more representative sample

[3].

5
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1.4.2 Application of mobile traces analytics

Mobile traces can be processed and used to offer location based services that have

a wide application spectrum that go beyond solving mobility issues [15, 14, 16, 17].

An individual’s location and its relation with that of others within the context of

the continuum of time is invaluable in many ways. This formidable datasource,

however, poses a challenge. Location data, which usually comes in large amounts,

has to be harvested, ingested efficiently and ideally processed in real time for the

required final purpose which is value added location based services.

The range of application and branches of research abound on remote collection

of mobile users’ geolocation information. To name a few applications include:

traffic patterns and prediction modelling, crowd management, hotspot detection,

lost device recovery, emergency rescue, use for investigative authorities, location-

based recommendation and advertising systems, contextualized information, social

interaction based application, epidemiology etc.

Calabrese et al. emphasized that studies on human mobility patterns would

be vital for better sustainable urban planning and a boost for the environment’s

well being given that transportation in 2004 accounted for 22% of primary energy

use[14].

Steenbruggen et al. mention how mobile geolocation data can be used to differ-

entiate weekday traffic patterns from those in the weekend [18]. Another specific

type of prediction based on mobile usage discussed in [15] is jam detection. Macro-

scopic monitoring and analysis of vehicle mobility through mobile traces is a wide

area of study on its own which can branch in many fields of study [18].

1.5 Problem definition

From this research it is required to demonstrate that it is possible to attain an

accurate measure of traffic flow and predict traffic flow for specific locations from

predefined time intervals ahead. It is required to prove that this can be possibly

6
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done by constructing a predictive model and make use of inference techniques that

base themselves on data usage records collected from the mobile cellular network.

As we will expand in Chapter 2, the trajectory path plotted by the mobile antenna

through which users are given service is far from being a true picture of the actual

path of the user. Another aspect of the problem is to detect when and where user

trips start and finish and how this can be translated into traffic load on the road

infrastructure.

An algorithm must be devised to deduce the most probable path taken by the

user for his most common trips. The predictive model has to predict the traffic in

a responsive manner since predictions that take a long time to compute will not be

useful.

1.5.1 Research Questions

Research will be done in a direction outlined by the questions below:

1. Is the resolution of mobile data usage cell tower location fit for purpose to

measure vehicular traffic flow on the road network?

2. How is it possible to extract the geolocation of main areas of activity from

user’s mobile data usage records?

3. Is it possible to extract trip information that is based on the users’ main

areas of activity?

4. What is the best approach to analyse traffic flow on the road infrastructure

over time in space, given that trip information is available?

5. Is it possible to model traffic flow over time with machine learning techniques

that use mobile data usage or processed data derived from it? How much time

ahead can the model predict traffic flow with an acceptable margin of error

in such a way that the prediction is useful and practical for trip planning and

traffic management systems?

7
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1.6 Aims and objectives

In this dissertation we will focus on measuring traffic flow and predict how traffic

flow changes over time for a selection of locations by using mobile data usage.

There are different metrics that we have found in literature, intended to measure

traffic (discussed in detail in Section 2.5). With regards to traffic flow we opted

for simplicity and chose volume in a specific point in time as a definition to work

with. Within this definition, a direct relationship between traffic flow and traffic

congestion is not necessarily implied. To determine the traffic slowdown due to

congestion, the capacity of the road segment needs to be known in order to check

the volume-over-capacity ratio. This metric does impact the traffic delay [10].

A combination of data mining and machine learning techniques will be used to

devise a data processing pipeline. This data processing pipeline will:

1. consume raw event data records containing cell tower locations and date time

and carry out preliminary descriptive statistical analysis.

2. zoom into the main areas of activity of users by using unsupervised machine

learning techniques that cluster the most dense groups of geolocation data

points.

3. determine routes between these main activity areas by using third party tools

and collect spatial grid aggregate data from daily trips done along these routes

from thousands of users.

4. use the transformed data which is representative of traffic flow in various loca-

tions to train and validate a predictive model using artificial neural networks

[14, 10, 15, 19].

5. feed visualization tools that enable visual inspection of traffic patterns pro-

jected on maps.

8
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A selection of methods that are encountered in literature will be applied and

evaluated. The real challenges arise in the quest for a high spatio-temporal resolu-

tion when modelling traffic, given that mobile usage records’ geolocation dataset is

sparse and tracks the position of users with a considerable margin of displacement

error [15, 16].

1.7 Dissertation outline

This dissertation started by introducing the reader to the problematic nature of

vehicular traffic. It continues by expanding the socio-economic impact of traffic and

how it can be addressed with modern technology. At the outset, it is mentioned

how mobile data usage has great potential to monitor traffic conditions and to

predict it over time.

A background on traffic flow detection and prediction, and an overview of re-

lated literature, will be given in Chapter 2 “Background and literature review”.

The proposed method to demonstrate the soundness of certain selected implemen-

tations of certain concepts inspired by literature will be elaborated in Chapter 3

“Methodology”. Validity and versatility of the created model will be evaluated and

discussed in the “Evaluation and Results” chapter. The “Conclusion” chapter will

summarize what has been achieved and to what extent in this dissertation, while

highlighting limitations in the process. Finally, Chapter 6 “Future Works” will

discuss possible improvements and potential future projects that can build on the

work done in this dissertation.
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2. Background and Literature

Review

This chapter will go over mainstream techniques and approaches that make use of

mobile data for traffic flow detection and prediction.

2.1 Mobile location data sources

Network derived user location is an important attribute of a mobile cellular net-

work. It is used to trigger call and data session handover and to enable a network

to locate a user. Network paging is used to find the initial location of a mobile user.

Other records are generated when there is a location update and hand over infor-

mation [20]. Network signalling records contains rich metadata to troubleshoot

network issues. These records include also geolocation data.

From a telecommunications background perspective there are two types of gen-

erated records. These types are call data records (CDR) and event data records

(EDR). An EDR, differently from a CDR, comprises other forms of activity other

then calling. Both CDR and EDR data are generated by network elements to cap-

ture and report user activity within the network. Reporting frequency and record

triggering events can be configurable, allowing operators to trade off between keep-

ing at their lowest the quantity of generated records that are hungry of storage

10
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resources and providing enough data for billing/troubleshooting purposes.

Mobile internet is the service that generates most records. As soon as the user

connects to the network, a first record is generated, providing all of the available

information, including which cell tower is providing the service. Since data sessions

span over a long period of time, periodic updates are required, allowing billing

related entities to control whether the user may continue to make use of the service

or not. These updates may be triggered by either of the following:

1. Volume - a new record is generated as the user consumes more than a pre-

configured volume.

2. Time - if the user is idle, a new update record is still generated after a specific

amount of time from the previous record.

3. Network Trigger - operators may decide to generate a record each time there

is a specific change (for instance, a change in radio access technology)

Together with call records, SMS records (messaging) and data traffic (2G/GSM,

3G/UMTS, 4G/LTE) records can also be stored. SMS records structure are similar

to those of CDRs [14]. A CDR structure would include the A-party (who is calling),

the B-party (the person who is receiving the call), call duration, date and time of

calls amongst other things which might not prove to be useful for location deducing

purposes. The location is implicitly the sector of the base station antenna which

was managing the call/sms and where ultimately the CDR has its origin. The

trigger for a cell handover or for a 4G to 3g or 2G handover is dependent on the

received signal strength as well as cell congestion [11]. This has an implication

on location detection as we will see later on. A data event record would include

volume of transmitted data in the session.

Mobile device location traces have their limitations when used for vehicular traf-

fic analyses. In contrast to surveys, they lack demographics [14, 3] and market share

of the mobile service provider that made the dataset available for scientific research

might not be really representative of the commuting patterns [20]. Many studies
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highlighted the importance of removing bias when preprocessing such datasets be-

fore any further processing is done [21, 10]. Passive data, gathered in the form of

CDRs, are not suited to extract different modes of travel, route assignment and

classify detailed activity types [3].

Mobile device location data is not only limited to data that originates from

cellular networks. Global positioning system (GPS) is the most reliable source of

geolocation because of its higher resolution with lower margin of error. This data is

generated by the device and needs to be stored and communicated from the user’s

mobile with his own specific authorization. Using GPS data for a mobility study is

more challenging because it needs the consent of users to get such data and drains

the battery quickly especially because of long signal acquisition time[22]. Thus

users would be reluctant to have such service running in the background on their

mobile phones all the time [23].

CDR data was the mobile location data source mostly used in recent research

[17]. The intention of our research is to use data usage EDRs since these can have

a higher temporal resolution. CDR data can be more commonly generated when a

user is not moving unless he is using hands free in his car. CDRs therefore would be

more suited for home and work location detection whilst data usage records would

be more generated frequently both when user is moving and stationary. From the

literature review it results that most research projects use voice CDRs to trace

mobility. Research projects that were found to rely on mobile data usage to detect

vehicular traffic or predict it include [15, 20].

Other sources of geolocation include social mobile application recorded events

such as check-ins in facebook [15]. Such data can be accessed by available APIs 1.

1https://developers.facebook.com/docs/graph-api/reference/v3.0/checkin (accessed April 7,
2018)
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2.1.1 Mobile usage data format and dataset sample struc-

ture

It is important to analyse in depth the structure of mobile records dataset sample

and the method of collection thereof in order to understand possible limitations

and strengths in related research. Another topic of special interest is the use

of secondary datasets used to validate results achieved when modelling travel on

mobile generated data. Hoteit et al. (2014) utilized mobile data coming from 1

million users between July and October 2009 [15]. The data consisted of calling

and messaging parties’ anonymous id together with data of when users made a

data session. Calabrese et al. (2013) used data originating from CDRs (a sample

of 1 million mobile users in Massachusetts) which included calling id, time of when

call/sms was sent or received and when a data session is initiated [14]. Interestingly

Calabrese et al. (2013) used vehicle safety inspection data as well. This data was

used especially for evaluation. Vehicle safety inspection data was later used to

approximately verify the kilometres covered by inferring the trajectory. The time

window used by [14] was 3 months long and the area under study was metropolitan

Boston.

Calabrese et al. and Colak et al. stressed several reasons why research data sam-

ples collected with surveys present a lot of disadvantages when compared to mobile

device generated data including sample size which is smaller, update frequency

and certain types of time windows that are seldom considered or not captured by

surveys such as seasonality, public holidays and weekends [14, 3].

Gonzalez et al. mention two datasets in their research. The first sample was

of 100,000 individuals sub-sampled from a wider dataset population of 6 million

anonymized phone users. Similar to other research aforementioned, the data which

was used included id of device from which calls or sms originated or terminated

and location of tower projected over time. The reported average area covered by

a cell tower was 3 km2 with 30% of cell towers having a coverage of 1 km2 or less.
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The second dataset consisted of 206 mobile users whose actual location was traced

every two hours for a week. By comparing analysis of this dataset to the first one

Gonzalez et al. found irregularity in calling patterns observed when using CDR

data only. Displacements were recorded for consecutive calls in order to construct

a travelled distance distribution model.

Hoteit et al. use two datasets which have GPS location of 86 mobile users in

various places in the world [17]. One dataset is generated by sub-sampling the

original one in order to emulate a sparse CDR dataset. Authors were forced to do

this since no real CDR dataset was available for their research.

In literature two different types of tools have been found to be employed to

aggregate location data. Airsage datasets were found often to be used in literature

[15, 24, 14, 12, 22, 3]. Basically Airsage does not simply just record the tower cell

sector but depending on a refined triangulation algorithm it gives a more precise

location. Hoteit et al. (2016) [17] use MACACOApp which is an app that records

mobile data usage but most importantly also GPS data. As already aforementioned

GPS technology gives a more accurate geolocation. However the data sample size

is smaller in comparison to data samples collected in the form of raw CDR data in

other studies.

2.1.2 Mobile position inference from Floating cellular data

Collection of localization data that makes use of mobile phone data connectivity

with base stations is commonly referred to as floating car data or more specifi-

cally floating cellular data (FCD) for sensor data originating mainly from cellular

networks. A specific technique to actually determine a user’s location is based on

triangulation as done by the Airsage solution [15]. An intuition about triangula-

tion is shown in Figure 2.1 which is reproduced from an article by Phil Locke [25].

The red ellipse is the location boundaries for the phone. Proprietary algorithms

process data received from mobile service providers and outputs refined location

information to customers. It was reported that in testing carried out by Geostat
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Figure 2.1: Illustration of the triangulation concept which is based on signalling and
negotiation with nearby towers. Triangulation computes the location information
inferred from signal strength experienced by the mobile phone user. If no second
or third tower was present the location would be considered anywhere within the
sector on the circumference that is demarcated by the signal strength. The red
ellipse is the location boundaries for the phone. As reproduced from article by Phil
Locke [25].

Inc. Airsage got accurate classification of congested traffic 91% of the time [22].

No technical background was made available on how these algorithms get a more

precise location of mobile users and this is most likely attributed to the fact that

the algorithms behind the solution are patented 2.

It is stated in [3] that Airsage location computation accuracy is within 200 to

300 metres. Calabrese et al. state that the degree of location precision reported by

AirSage is an average of 320m and median of 220m [14]. As already mentioned,

AirSage has been used in [15] as well. In comparison [16] simplistically mentions

that 30% (average is 3km2) of the towers are placed in a density of 1 tower per

square km. This roughly would mean that, at most, an unprocessed location

2https://patents.justia.com/assignee/airsageinc
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retrieved from cellular location data would have a maximum error of around 500m.

Location given by cell tower position, to which mobile phone user is connected

to, is not useful for precise localization since recorded geolocation might be hun-

dreds of metres away from the actual position. In our research we cannot make

use of Airsage datasets. Such solutions must be already in accordance with mobile

network operators from where mobile usage data is acquired.

Therefore, in this research some effort had to be dedicated to devise a simple

triangulation or clustering method that can achieve more accurate mobile user

location than the actual cell tower location. Since the grouping of multiple mobile

users within a grid of location cells is more practical in giving a more clear traffic

flow measure an essential topic to treat in traffic congestion research is spatial

binning. Spatial binning determine geographical aggregate statistics.

MapReduce frameworks such as Spatial Hadoop exist so the expensive temporal

geospatial analytics are done within an acceptable time window [26, 27]. Such tools

provide the possibility of doing spatial joins that can correlate spatial features

extracted from sources such as OpenStreetMaps with mobility data from a mobile

usage dataset [28].

2.2 Privacy and data anonymization

Mobile subscribers location and CDRs are highly sensitive data, therefore anonymiza-

tion is required to protect the privacy of individuals when using such data for

research purposes. Some standard practices that make anonymization procedures

more robust are listed in Laurila et al. [29]. For instance Laurila et al. exposes facts

regarding potential privacy breach risks within datasets that have unique identifiers

hashed. One of these is contractual binding where data users are legally bound to

not attempt to reverse-engineer identity. Another method to further protect sensi-

tive data through anonymization is truncation of data. For example only a part of

the data is kept if it is decided that it is enough and meets the purpose of the data
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processing exercise. Also Laurila et al. also give a detailed account of techniques

used to hash unique identifiers. Shin et al. elaborates on how to use k-anonymity

algorithm so that location data of a user makes his identity undistinguishable from

other k-1 other users in the same region [30].

Another way to guarantee privacy is limiting data retention. To safeguard

privacy travel paths of a specific mobile user is kept for not more than 1 day in [15]

and for not more than 2 days in [14]. It is the norm to assign a hashed anonymous

identifier to each mobile user in such a method as well.

2.3 Big Data, the cloud and large scale real time

stream processing

Liu Jun et al. expand on the recent phenomenon of computing systems not keeping

up the pace with the vast increase in storage requirements [11]. In this study it is

explained how intensive computing speeds are compromised when there is a lot of

data reading and writing and when it is required to move both input and output

data around in a distributed system for further processing and consumption.

Big data frameworks are suited for such scenarios. It shards the volume of data

on a cluster of nodes and makes the addition of a new node in the infrastructure

seamless. Failure of a node will not disrupt an ongoing global process since data will

be redundant. Data redundancy is implemented by replication of data in blocks

residing in nodes across the cluster. Hot replacement of failing nodes is also a

smooth operation in big data infrastructure. The main paradigm shift to attain a

high performance gain was to limit distribution of data across the network because

this would mean less efficiency because of network transmission latency. The main

strength of new Big Data architecture resides in offloading processing to the nodes

where the data is located and only the resulting required information is transmitted

back to a centralized node where the driver program is [31].

When is the data infrastructure of a system in need of a shift to the Big Data
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paradigm and traditional RDBMS systems cease to be the preferred choice? When

you have the 3 V’s which are volume, velocity and variety in the data is a recipe

for big data introduction as a part of the solution. This is quite applicable to the

processing of the multitude of mobility data which comes in huge amounts and

need to squeeze out information in the least amount of time. Our dataset that was

collected between August 2016 and September 2017 is 150 GB in size. Building a

predictive model on this dataset of such size and retrain in real-time would require

a big data solution.

Currently some of the leading frameworks in this area are Hadoop and Spark.

Hadoop is treated in detail in [11] and revolves around the MapReduce program-

ming model. This work shows how enormous amounts of data is stored in a

distributed fashion on HDFS (hadoop file system) which is highly scalable and

fault tolerant. Spark is used extensively in lambda architectures that include both

nightly batch and real time batch processing. Liu Jun et al. research is not directly

related to the analysis of mobility behaviour but describes well how to process

mobile device generated data traffic [11]. It also gives a good account on how to

monitor the infrastructure through various metrics and tooling. There are many

papers related to mobile user travel pattern prediction that make use of big data

innovation [11, 29, 32]. Toole et al. [10] state that dataset size can be an issue for

computation when determining the origins and destinations (OD) matrix (refer to

Sections 3.5 and 2.4). In this same study parallelization is used to assign routes to

trips.

2.4 Origin and destination matrices computation

A consistent recurrence in traffic flow analyses literature is the study of how to

deduce origin and destination (OD) locations for travelling vehicles [21]. Many

research articles confronted the problem posed by traffic congestion detection by

first deducing the OD matrix [10, 21, 19, 20, 14, 3].
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2.4.1 Use of OD matrices to store information on main user

locations and trips inbetween

ODs are used to extract main activity hubs. Gonzalez et al. state that 40% of the

time users are at their two preferred locations [16]. Therefore most trips can be

mostly explained as being between several locations since users tend to be highly

inclined to be regular in spatial and temporal terms. All this leads to safely assume

that the majority of trips are between home and work. In literature it is commonly

found that locations that were likely to be recorded in OD matrices were home

and work [20, 3]. In [20] home location is detected for user by checking which 500

metres square cell has the most activity during the night for every specific user.

Colak et al. label zones such as home and work and tries to find purpose behind

other types of trips [3]. In this work it is mentioned as well how ODs are analysed in

terms of stays and trips. Frequency of calls and time of day determine the labelling

of these stays. It is stated that it was not possible to categorize other types of stays

other than home and work. So these types of stays were labelled under the ’other’

class.

Calabrese et al. (2011) put forward the concept of virtual location which is

derived from fused visited locations by the user [20]. This research devises an

algorithm that localizes the centroid of important locations in a user trip that are

to be labelled as the origin or destinations of particular users. The method analyses

which points are in the proximity of others within a 1 km radius.

2.4.2 Cleaning of data, removal of noise and minimization

of displacement error

A common occurrence in literature is to remove users that do not make enough

mobile usage. The behaviour of these is less predictable and its more difficult to

generate trips from OD data for this type of users. In [10] users that do not make

enough calls are filtered out from the dataset and [3] filters out users with low
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activity when labelling activity zones.

Displacement errors due to sudden change of cell tower for various reasons are

reported to make datasets inconsistent. False displacements are reduced in [21] by

using a time window of 10 minutes. The most common location in the 10 minute

window was considered the actual location. A time window of 1 hour is then used

to detect trips. In Calabrese et al. (2011) a low pass filter is used to minimize

localization errors [20]. To reduce sudden movements due to cell tower handover

clustering is used. The same concern is raised in [3] in a similar fashion and it is

described how CDR data contains jumps or oscillations which introduce noise in

the dataset.

It is mentioned in [3] how Airsage dataset inherently provides triangulation that

gives medoids as processed data. Filtering out of noise in a Rio de Janeiro CDR

dataset is done by labelling stays only if records are registered for a user for more

than 10 minutes. When observing stays for users for a longer period of time it is

possible to get more clear patterns where the stays are actually visited by users or

not. Toole et al. [10] remove noise from mobile phone calls deduced trajectories

by using the stay algorithm proposed in Zheng et al. [33]. A location is labelled

as a ’stay’ whenever user makes a set of calls within a time window greater than a

given threshold. The centroid is then calculated for a set of locations that are close

to each other in order to compute a better approximate location of the user. In

[21] estimation of OD matrices can be found to be unreliable because of sampling

bias. Equally [10] stresses that bias needs to be removed when constructing OD

matrices.

An important attribute to consider in OD matrices is its resolution since it might

be important to aggregate data for statistical purposes. Not a lot of information

was found in literature on this. In [3] census tracts and town boundaries are chosen

for OD resolution level. No justification for this choice is given though.
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2.4.3 Use of scaling methods to get more accurate OD ma-

trices

Scaling methods to scale traffic flow counts are often used to obtain OD matrices

that reflect reality better. In [21] a scaling factor β was used to get an OD matrix

for the scaled up traffic flow between nodes. Traffic flowing from node i to node j

was scaled up by this scaling factor β. The scaling factor is obtained by inputting

optimization formulas, route choice probabilistic models, network data and the

original OD matrix in a simulation engine. The scaling is then distributed as

shown in Equation 2.1

ODij =
∑
ij

(t−ODij) ∗ βij (2.1)

In Equation 2.1, ODij is the final resulting actual OD matrix. (t − ODij) is

the transient OD matrix that contains trip data from origin nodes to destination

nodes. Transient here means that the node to node trips may be missing the actual

nodes’ information because CDR data does not capture all locations in the trips

made. Thus (t−ODij) represents only a segment of the actual trips. i, j represent

different links between nodes. A simulation platform, MITSIMLab3, was used to

find a scaling factor βij for every transient OD link.

Colak et al. uses the iterative proportional fitting (IPF) upscaling method [3].

Here Colak determined the expansion factor for each tract and in the IPF took in

consideration trips to destinations as well. In his conclusions Colak stated that the

IPF Procedure to distribute user CDRs according to population might have been

too simplistic of an approach.

2.4.4 Route selection for OD matrices

Route selection is necessary to link origins and destinations from OD matrices to

generate OD trips. In [21] route is determined by a function of least travel time

3https://its.mit.edu/software/mitsimlab (accessed November 14, 2017)
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path. In [10] Open Street Maps4 (OSM), which is an open source map editing

framework, is used to infer routing. Some studies assign trips to a user when there

are consecutive calls in the same day and the calls are done from different locations.

An example approach is that two consecutive ’stays’ that are not more than 1 day

apart would constitute a trip [3, 10]. OD matrices determined trips would not be

sufficient to model traffic on a network. Microscopic traffic assignment dependent

on these trip generation exercises needs to be modelled. Toole et al. for instance

implements incremental traffic assignment (ITA) in which trips are added to net-

work incrementally [10]. Then on each iteration routes are assigned according to

capacity saturation of roads. It is admitted however that Wardrop’s equilibrium

adapts better since routes are changed dynamically depending on congestion. How-

ever ITA algorithm is chosen because it is simpler to implement. Colak et al. relies

on a probabilistic model for traffic assignment. Departure times for trips are set

according to pre-set distribution of departures [3].

2.4.5 OD matrices evaluation

Evaluation related to OD matrix generation is generally done by correlating the

generated locations and trips to survey data. Toole et al. [10] compare survey data

traffic load on road network with that generated through OD matrices formed from

mobile CDRs. Simulation generated routes for the latter have been produced with

the ITA approach. Toole et al. state however that other methods should be further

explored to remove uncertainty from the proposed techniques.

Iqbal et al. collected traffic count data on a spread of 3 days in 13 locations

and this data was used for calibration of the system proposed [21]. For validation

another day was used with 4 different locations. Prediction root mean square error

(RMSE) and root mean square (RMS) percent errors were 335.09 and 13.59%

respectively. In [20] evaluation was done against a tract by tract census. Euclidean

distance was calculated and the distribution of the trip distance confirms Gonzalez

4https://www.openstreetmap.org (accessed December 7, 2017)
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affirmation that trips follow a random walk [16] which is discussed in section 2.6

(See equation 2.2).

P (x) = (x + 14.6)− 0.78−x/60 with R2 = 0.98 (2.2)

Here euclidean distance added error and to have it visualized with lines ema-

nating from and linking nodes, although it might prove to be simpler, it would not

give more insight on the road infrastructure use. In the OD trip analysis done by

[20] it is estimated amongst other things that a user makes 5 trips on weekdays and

4.5 during the weekend. This matches approximately the US census data which is

4.18 during weekdays and 3.86 on weekends. Study concludes that the OD matrices

that are produced with the proposed methods can be of great value to those who

are responsible for traffic planning.

Colak et al. carried out evaluation against traffic surveys and already avail-

able OD matrices from department of transportation [3]. The validation however

was done against a morning sample. Colak et al. boasted of trip generation and

attraction correlation near to 1 for both cities in study namely Boston and Rio

de Janeiro. The correlation with already validated datasets is highest when OD

matrices are generated from aggregations done on larger polygons.

Colak et al. reported OD matrix limitations. Suitability of CDRs to determine

ODs is only good at a certain resolution. It is stated that better results are attained

when using higher resolution for home or work location detection and aggregation

within larger zones (towns or districts) for OD trips representation. OD matrices

are less fitted to get information on the whole travel model which for example

includes modal split information.
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2.5 Traffic flow measurement and pattern extrac-

tion

Traffic flow measurement can be explained in terms of vehicle count per t amount

of time or even in a more descriptive way with a metric that measures travel per-

formance as volume over road capacity V/C [10]. The latter metric has more

information since a road with low capacity may be more congested than another

that has the same rate of traffic flow but a higher capacity. In a more elaborate met-

ric proposed by [10] a road can be possibly classified as a function of betweenness

and usage. Classes are defined as connector (high betweenness and high usage),

attractor (low betweenness and high usage), peripheral (high betweenness and low

usage) and local (low betweenness and low usage).

2.6 Model fitting to human mobility

Mathematical modelling of human mobility is important to predict with a stated

certainty the location of a mobile user in time since data collected from mobile

devices is sparse. Interpolation methods were used to describe human mobility

patterns in [15]. These are namely linear-interpolation, nearest-neighbour inter-

polation and cubic interpolation. Linear-interpolation would simply project the

mobile user position at time (t) by plotting a straight line from the last previously

recorded location and the one right immediately after. This method’s error margin

is widened if data collection time interval is longer for data points pertaining to

the same individual that is moving. As for the nearest-neighbour method, location

is attributed to the previous recorded value or to the subsequent depending which

is the closest on the time axis. The cubic interpolation is best explained when

contrasted with the linear one. This method as explained in [15] is described as

“shape preserving”. The slopes shaping the curves are deduced from derivatives

and give a less sharp demarcation and better guess depending on a series of data
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samples.

In [16] both the variation of displacements for consecutive ’steps’ (i.e. call

location and respective time at which call is made) and the radius of gyration

distribution was modelled as truncated power-law which is referred to in all the

work as a levy-flight (See Figure. 2.2 and Equation 2.3 for illustration of displace-

ment distribution modelling). A levy-flight is a random walk where the probability

distribution of the steps taken is heavy-tailed. This model explains what is the

probability distribution P (Δr) of the distance travelled from radius of gyration by

individuals who travel as far as 400km (D1) and those who travel as far as 80km

(D2). D1 and D2 are cutoff values.

P (Δr) = (Δr + Δr0)
−βexp(−Δr/κ) (2.3)

with exponent −β=1.75 ± 0.15 (mean ± standard deviation), Δr0=1.5 km and

cutoff values κ|D1
= 400km and κ|D2

= 80km

Figure 2.2: Truncated levy flight human motion modelling. Reproduced from [16]

This mathematical model is cited and verified in [14]. The methodology adopted
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in [17] suggested approaches how to determine home and work locations, span of

movement and complete trajectory. Two datasets were compiled. One dataset

is a sub-sample of another dataset which has a higher resolution because it has

been composed of GPS geolocation data. The sparsity of the second dataset have

been mimicked by a cumulative distribution function in order to create a virtual

CDR dataset. Only users with high activity were considered in order to have less

irregularity. Home and work locations were determined with a mode function with

catch-all time boundaries for day and night where supposedly users are either at

work or home respectively. For span of movement a similar mathematical approach

was adopted as the ones in [15, 16]. As for the actual movement trajectory error

was calculated by calculating the euclidean distance of each CDR data-point from

the actual GPS recording which is nearest in time. Some techniques were used to

lessen the margin of error. Since most of the time the typical mobile phone user

is static, data completion is attained by applying a list of inference rules for which

different results are achieved when estimating users location, hence the name of

the paper “filling the gaps”.

A problem was outlined in [14] about detecting a lot of trips in very short

distance which do not reflect statistical data given by surveys. This is explained

as being caused by fluctuating random connections with towers which spatially

misplace the user when in reality he is not actually physically moving. This is-

sue was tackled by mathematically creating so called by [14] ’virtual locations’ (a

mass/group of traced positions in a given radius of Airsage resolution) and actually

recording a movement when user moves from a virtual location to the other. Cal-

abrese et al. limit static location detection to the home location and the proposed

process how to manage to get each user’s location is similar to that expounded in

[17]. In a novel style this work studies the relationship between total trip length

calculated from mobile phone location data and vehicle kilometres travelled (VKT)

and urban features such as entropic type, population density, intersection density,

average distance to non-work destinations, distance to subway stations and high-
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way exits. These urban features were derived from US Census of 2000 and activity

travel surveys.

Estimation of load error is proportional to concentration of users in a given

block [15]. For recorded error with value less than 1 km a probability of 80.78% of

being within commonly travelled territory contrasts with a probability of 19.22%

when user travels outside of it. From the opposite perspective of having error

greater than 1 km, the probability of being inside radius of gyration was found to

be 40.25% and that of being outside is 59.75%.

In [14] results state that 49.40% of mobility variation can be explained for

individual mobile users and 56.48% for vehicle associated mobility in terms of trip

length.

In [16] results point to the phenomenon that the greater is the radius of gy-

ration the less symmetric in shape is the probability density function which gives

the probability of a user being in a given location (x,y). Also the margin of er-

ror increases similarly as stated in [15]. It is also shown how individual mobility

is well described by a levy-flight. Also a probability density function has been

implemented to give the likelihood a user is at a certain given place in time.

The techniques used to further refine the location based on the assumed location

home interval gives results in the range of 92%-95% of cases within 100m [17].

Techniques will produce large errors (in the range of 50km) when user travels long

distances and may not return to home location during the usual time interval.

Error distance from trajectory depends on radius of gyration [15]. Interpolation

methods are found to be most suited depending on distance from the geometrical

centre of all the movement. Nearest neighbour is most suited for rg less than

3 km. Between 3 km and 10 km both linear and cubic interpolations perform

well. For commuting travelling patterns trajectory is best estimated with a cubic

interpolation. Interesting insights were contributed in [14] where it is stated that

job accessibility and distance to non-work destinations are inversely proportional

to total trip length. Distance from subway does increase trip length for individual
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mobile users but it does not impact vehicle use. This means that subway commodity

does not necessarily decrease vehicle use in the surrounding area. Vehicular trip

length decreases when correlated with increase in intersection density but not so for

individual mobile users. Urban entropy and population does significantly impact

trip length. Thus this study can help a lot in urban planning and large scale policy

making. In [17] it is affirmed that the solution of data completion augmented by

the placing of users in their home location at inferred intervals of time produces

better results then what was achieved in literature.

There are many approaches in literature how to classify group mobility patterns

under specific categories. Hoteit et al. (2014) segmented mobile users depending

on the width of the radius of gyration (rg). The different distinguished categories

of users are listed as sedentary, urban, peri-urban users and commuters. The clas-

sification boundary was decided upon steep changes in the cumulative distributed

function of the radius of gyration. Respectively these classification labels fall in

the ranges rg <= 3km, 3km < rg <= 10km, 10km < rg <= 32km, 32km < rg

[15]. The radius of gyration (see eq. 2.4) is the notion outlined by the sum of all

displacements from the centre of mass divided by the number of trips. This pa-

rameter describes how distributed are the trips far away from the zone where the

user mostly frequently returns. Repeated utilization of this mathematical notion

is found in [15, 16, 17].

rg =

√√√√ 1

n

n∑
i=1

(
→

p i −
→

p centroid)2 (2.4)

where

→

p centroid =
1

n

n∑
i=1

→

p i (2.5)

where rg is the radius of gyration and
→

p is the magnitude of the displacement

vector.

In [17], the hypothesis that an individual tends to be found with high probability
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at his home or place of work leads to classification of individual calling activity

locations. The classification method labels these locations as ’stop-by’ categories.

The ’stop-by’ category ’stop-by home’ is demarcated by the night time interval

where a user is expected to be at home. ’stop-by-flexhome’ is a refinement over and

above ’stop-by-home’ were night time interval varies per user. ’Stop-by-spothome’

fills data gaps or corrects errors when there are exceptional errors where user is

expected to be in home location, as indicated by previous category.
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One of the main objectives (O1) was to extract meaningful features from mobile

data usage that would serve as the basis to build a traffic flow model. Before choos-

ing an approach and constructing an algorithm that maps raw data and translates

it into traffic flow metrics a thorough familiarization exercise with the data was

due. A feasibility check had to be carried out on whether it was possible that

by devising an algorithm a direct relationship is established between mobile usage

data and traffic flow. If data was found to be too sparse, both temporally and

spatially, augmentation would have been required by tapping into other datasets.

Such datasets could include ANPR data collected from video streams, call data

records available openly on the internet, accident reports and anything related

to road transport which would convey additional information on human mobility

patterns.

In this chapter we will elaborate how we investigated a number of approaches

and how we decided to dig deeper with a set of techniques preferred to others de-

pending on how practical the solution was and how it would give a better result.

The methodology presented in this chapter has a step by step scientific method

in which procedures were devised to test hypotheses. The data that results from

a devised procedure was analysed and if it was not working properly further op-

timizations were done and alterations were discussed. Finally conclusions were

drawn and communicated in Sections 4 and 5 and where results were not found

30



Chapter 3. Methodology

aligned or partially aligned with the hypotheses, suggestions how further research

can be done were outlined in Section 6.1.

The main hypotheses’ experimental procedures that have been tested and re-

fined in this methodology are

1. Clustering of main user activity locations.

2. Trip generation from main activity clusters.

3. Trip count and trip delay measurement.

4. Traffic flow load distribution on road infrastructure.

5. Traffic flow prediciton with different prediction time interval ahead.

3.1 Mobile data collection and structure

The anonymized dataset was provided by GO Plc Malta1 which is one of the main

Maltese telecommunication services providers. The anonymization process was

done by the company itself and authors had no access to the original dataset. The

dataset used was from October 2016. The data volume for the whole month of

October was 11 GB. Notwithstanding the fact that all experimentation was only

done with data from one month, results were considered to be satisfactory even

though it is known that for certain machine learning algorithms, training with

more data would probably give better results.

The number of distinct cell towers that mobile phone users connected to amounted

to several thousands but distinct cell locations amount to only a few hundreds since

a cell tower shares antennas for different technologies. Precise figures cannot be

disclosed due to commercial sensitivity.

The month of October 2016 was chosen for its heavy traffic characteristics

because schools start and university students start to travel with their cars adding

1https://go.com.mt (accessed May 4, 2018)
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to the load of traffic. Summary statistics on the dataset were found to be coherent

with figures stated in the Malta Communications Authority (MCA) Data report

sheet2. These summary statistics cannot be disclosed since they are commercially

sensitive. The resulting statistics, such as count of mobile data users ratio to all

the subscriber base, were derived from all the distinct users that make calls or use

data. It is important to note however, that the data users considered in this study

might not necessarily be directly proportional to the number of moving vehicles

at a certain point in time. The dataset includes static users, users who are just

passengers in the car, users that have more than one device and other users that

make use of other means of transport. Such factors must be taken in consideration

when setting up the proposed solution and evaluating results. The records’ data

structure is shown in Table 3.1.

Data item Description Example value
A NUM user hashed identifier. 5a8bd7889fb3051b10f249a5554c803a
TIMESTAMP date and time of usage. 2017-01-01 00:00:00.000
SOURCE Type of Record. Data or

Voice.
DATA

CELL ID Cell identifier 3073
TOWN Cell town Paola
DURATION Duration of call or data ses-

sion in seconds
60

VOLUME Volume of data used in ses-
sion in kilobytes. Applica-
ble only for records of data
usage.

324.34

LONGITUDE longitutidnal coordinate 14.50664
LATITUDE latitude coordinate 35.87
RAT TYPE Network technology LTE

Table 3.1: Description of data fields in the mobile usage raw dataset

2https://mca.org.mt/articles/data-report-sheet-drs-latest-figures-published (accessed Novem-
ber 8, 2017)
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3.2 Dataset preliminary analysis

The data usage records count was found to be four times as much as that for call

data records. This fact evidently gives an edge on other research that used calling

data records as their data source since the frequency of users location recording is

much higher. Higher temporal resolution reflects higher spatial resolution. A user

might not make data sessions for a long period of time and therefore his travelling

information would be missing for this period. Higher spatio-temporal resolution

conduce to better results both when extracting main user activity hubs and when

measuring traffic flow counts. Lower sampling rates lead to interpolation error. In

Section 2.4 it is described how in literature data with a resolution under a given

threshold is filtered out.

Table 3.2 shows some summary statistics about the main unprocessed data

set. Minimum and maximum timestamps show that data stretches for the whole

month under analysis. The total count of data usage records is 97 million. The

data session’s mean duration for the dataset was approximately 16 minutes which

was quite discouraging. This would entail that on average a wait of 16 minutes

would be required to write to data storage a mobile cell EDR. This is not desirable

for near real-time future traffic count forecasts because the time for the detected

departure is retrieved much later than it would actually have happened in such a

way that predictions become useless. This would boil down to having a data session

duration length which contributes to a considerable displacement error. Until the

user connects to the next cell there is a distance covered within the average of 16

minutes and a standard deviation of 22 minutes which is also very high. For a

vehicle driving at an average of 40km per hour this would translate to an average

displacement error of 10km.

Some interesting facts were noted when a frequency diagram was plotted, see

Figure 3.1). 15% of the EDRs have a data session duration of 1 hour. This duration

is the limit set by the telecommunications provider for a mobile usage EDR. These

records are generated for users who are not moving. Records with such duration
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Summary timestamp data session duration (s) volume (Kb)
count 97718761 97718761 97718761
mean null 944.702465855047 1008228.7463008869
stddev null 1367.394246 3791128.444
min 2016-10-01 00:00:00.000 0 0
max 2016-10-31 23:59:59.000 3600 3.5590011E7

Table 3.2: Basic summary statistics of main EDR dataset.

Figure 3.1: The single line column bar spike on the right represents sessions of 1
hr duration.

were filtered out for a better summary statistics since the main focus is on records

that are related to movement. As a consequence more precise statistical information

was acquired which describes better the possible level of displacement error and

how long does it take to register the first record after a user moves from one location

to another.

After we removed the 1 hour duration EDRs newly calculated summary statis-

tics show that the mean and standard deviation decreased to 8 minutes and 14

minutes respectively. This is a 50% gain with respect to previous statistical data.

Further looking at the data session duration frequency plot, by overlaying a cu-

mulative distribution it is shown that 80% of the records are below the 5 minute
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Figure 3.2: 80% of the records are below the 5 minute threshold.

mark. These data facts have to be all taken in consideration when assessing the

usefulness of the prediction results in evaluation and results in Chapter 4.

Summary timestamp data session duration (s) volume (Kb)
count 82589696 82589696 82589696
mean null 458 1094048
stddev null 827 4031503
min 2016-10-01 00:00:00.000 0 0
max 2016-10-31 23:59:59.000 3599 35590011

Table 3.3: Basic summary statistics of main EDR dataset after removing 1 hour
duration EDRs.

3.3 Algorithm Selection

One of the main challenges involved in this study was to assign vehicular traffic to

the road network depending on surrounding cell tower traffic in a time series.
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3.3.1 Trajectory interpolation through cell tower data

We first investigated the possibility to snap the cell tower location data to the

road infrastructure mesh depending from which direction the vehicle is coming.

Various APIs are available to retrieve nearest road from an input geographical

location3. We investigated how cell tower transmission is configured. There are

many settings which determine the range of the cell tower including frequency,

rated power, height of tower etc. Given that such information was not available,

transmission range of the cell towers was an unknown variable. Another alternative

to roughly estimate the range was to calculate the average distance from the nearest

k neighbouring towers for all cell towers. However from a sample taken from the

available dataset of the cell towers across Malta, the variance seemed quite high,

ranging from an inter-distance of 150m in urbanized areas to several kilometres in

rural areas (comprehensive cell tower locations map across the country not being

shown since it is commercial sensitive information). Furthermore, it was decided

to plot the cell towers’ on the map and check if their distribution pattern would

make it feasible to snap a data record cell tower location to the nearest road or

area polygon. Thus here it was assumed that the area around cell towers will have

transmission strength with equal range from each tower. Allowance for overlapping

was also taken into consideration.

A typical example of how many road sections there are within an area covered

by a number of cell towers can be seen in Figure 3.3. One can easily appreciate

that a lot of roads are associated to a particular cell tower which makes it difficult

to devise an algorithm to derive trajectories and traffic flow counts from cell tower

location data. Given that there are a lot of unknowns including how handover

procedure is handled in specific areas and the actual range of cell towers, the

solution path of snapping to nearest roads depending on EDR coordinates was

3Google Snap to Road API, Bing Map API and OSRM nearest service are examples:
https://developers.google.com/maps/documentation/roads/snap (accessed January 8, 2018),
https://microsoft.com/en-us/maps/snap-to-road (accessed January 8, 2018), http://project-
osrm.org/docs/v5.5.1/api/#nearest-service (accessed January 8, 2018)
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discarded. This approach would have been impractical to assign traffic to junctions,

roads or polygon areas and the probability of inaccurate results was high.

Figure 3.3: Cell tower range distribution. Red dots are cell tower locations and
dotted line is the estimated range.

3.3.2 Traffic simulation from OD matrix

Another approach that was considered was to simulate traffic by using statistical

information based on travel patterns extracted from the dataset. In Section 2.4

we described how Iqbal et al. optimized OD matrices through simulation. An OD

matrix can be used as input to a simulation based traffic model. We discuss how

an OD matrix was generated in Section 3.4.

Toledo et al. [34] mentions that OD flows are an important input to simulation

models but an accurate OD matrix is difficult to acquire. An example of an im-

plementation of a simulation based on an OD matrix can be found in [35]. In this

study, electronic toll collection data is used to form an initial OD-Matrix. This

OD matrix is further improved by optimizing a model that gets observed detector

data and a simulation based on current OD, computes the least cost difference
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and optimizes the OD matrix depending on result. This process is iterated until

an acceptable coefficient of determination is achieved. Simulation models gener-

ally give two types of outputs namely a visual simulation of traffic flow on a map

and textual statistical output that can include metrics such as traffic delays, gap

distances, speed and overall trip distance travelled by vehicles.

While macroscopic traffic simulators seem promising for motorways environ-

ments they were found to be less suitable for urban scenarios [36]. Urban envi-

ronments have a lot of conflicting traffic flows caused by the numerous junctions

and small roads that feed and attract traffic from the road network. Also such

simulators require accurate OD matrices. This cannot be achieved by using our

dataset due to displacement error created by distance separation between cell tower

location and actual location.

In our research we tried to focus on both the macroscopic and on the microscopic

level since we had a dataset that has ample coverage especially in urban areas.

3.3.3 Traffic flow detection by trip generation assigned

traffic

The method we adopted to detect traffic on the road network involved first the

generation of an OD matrix that contains main stay locations for users in a time

series. Then a trip is generated between each main location for each user as will be

explained in Section 3.5. The trip includes turn by turn directions with longitude

and latitude coordinates. Traffic load assignment is then assigned to junctions and

turns depending on the time retrieved from OSM (Open Street Maps) data (see

section 3.6). The major challenge here proved to be the traffic assignment, given

that there is an interaction of a lot of vehicles at a given point in time with a

complex structure of roads and unexpected events such as weather, accidents and

road blockages.
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3.4 Main activity hubs extraction through clus-

tering

One of the main steps of the proposed algorithm is to derive main areas of activity

from the mobile data usage of subscribers. This can be achieved using clustering.

Clustering was also used to remove noise caused by displacement through frequent

oscillations by finding a centroid of activity. The removal of the displacement error

through triangulation has been ruled out. There are missing dataset features that

are required to get a more accurate location with this process such as strength of

signal from every cell tower that the user connects to. Moreover, simple geometrical

triangulation does not have the aggregation characteristics that clustering has.

Grouping of similar locations have to be implemented on top of triangulation.

Triangulation is more suited to remove noise or displacement error caused by cell

tower oscillations or handovers. These are caused either because the signal from a

tower is weaker from another that can provide better service or there is momentary

offloading causing a user to switch his connection to another tower with less load.

In Section 2.4 it was discussed how certain authors employed various techniques

to smooth sudden location change of mobile users because they often switch cell

towers in very short time intervals that cannot be attributed to movement.

Clustering is a machine learning unsupervised technique used to classify entities

which have similar features. Clustering is done depending on the chosen algorithm

and calibration hyper-parameters that control the grouping process. Two clustering

techniques that were considered for their appropriateness to this research were k-

means and DBSCAN [37, 38].

3.4.1 K-means clustering

k-means algorithm is highly popular especially for first analysis of datasets because

it is simple to implement and highly efficient. The main drawback of k-means

clustering is the requirement to select the number of clusters before running the
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algorithm. Then a number of expected centroids equal to the number of targeted

clusters are randomly chosen. The algorithm starts to find the nearest neighbours

based on a distance metric until finally the clusters are formed. This process can

be run iteratively until the ideal set of centroids with the least root mean square

error are found. Also something important to note is that clusters tend to be

spherical in nature. This would be highly visible if 2D clusters are plotted on a

graph. The only advantage of using k-means clustering over using DBSCAN is its

speed. k-means performs better than DBSCAN especially for incremental version

of the algorithms when datasets are frequently updated [37].

3.4.2 DBSCAN clustering

DBSCAN (density based spatial clustering of applications) has an edge on k-means

and is mostly suited to our research since it does not need to set the number of

clusters that we are after for each user at the outset. Moreover it finds clusters

of non-spherical nature and leaves noisy elements out of the computed clusters

[37]. DBSCAN has three main hyper parameters to set namely minimum points, ε

(radius of area within which density is measured) and a distance metric. The algo-

rithm is more sensitive to density rather than to aggregate distance of surrounding

points. Basically the algorithm finds core points that have the required minimum

points in its neighbourhood dictated by the distance metric. Other non core points

that are within core points’ radius range (i.e. they are not surrounded with the

minimum number of points) are referred to as boundary points. If clusters formed

by the core points overlap each other they are grouped together into one single

cluster, hence the non-spherical shape of the clusters.

DBSCAN was the preferred candidate for clustering since the aim was to find

dense clusters of mobile data usage activity and random locations visited by users

are of no interest and need to be filtered out. The curse of dimensionality does not

apply here since there are only two dimensions with the same scale. The values

of hyper-parameters were 500m for radius, minimum required points was set to

40



Chapter 3. Methodology

Figure 3.4: DBSCAN clustering to find main user activity hubs. (Sample illustra-
tion)

3 and euclidean distance was chosen as the distance metric. The mean distance

between a sample of cell tower locations taken randomly from the whole dataset was

calculated to be 350m. The radius was chosen to be 500m to allow for overlapping

but not include too many cell towers accept for the shouldering ones. By choosing

an excessive ε the centroid location coordinates was being too inaccurate and was

clustering a wide range of subscribers’ activity. With a smaller ε minimal clustering

(every cell tower will be start to be considered a cluster) was being attained since

cell tower location areas will not overlap.

The OPTICS algorithm, which does away with the ε parameter, iterates until it

finds the optimal ε and orders its clusters in a hierarchical result. However this al-

gorithm is more computationally expensive and we opted to use the non-generalized

DBSCAN version of the algorithm. The implementation used4 was integrated into

Apache Spark processes that output clusters of usage patterns for every user. The

output of the implementation we used was in the form of coordinates that outlined

the rectangular boundaries of the cluster. The final geographic coordinates that

4https://github.com/scalanlp/nak (accessed November 10, 2017)
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denote the main activity clusters were those of the centroid. The centroid for each

rectangular cluster had to be determined with readily available libraries (esri was

the used library)5 within Apache Hive.

In Figure 3.4 clustering of cell towers can be observed. The centre of the

quadrilaterals would mark the centre of activity for the mobile usage. When there

are no cell towers nearby the coordinates of the cell tower itself becomes the centre

of activity for the mobile data usage.

3.5 OD Matrix trip Generation

OD matrix trip generation consists of a sequence of steps. A high-level overview

is given in the form of pseudo-code in Algorithm 1. The main modules of the

algorithm will be discussed in detail in the following subsections. The interaction

between these main modules is depicted in Figure 3.5.

3.5.1 OD Matrix computation

In our research we decided to focus on two main areas of activity per user as the

basis of our OD matrix generation, namely home and work location. Inclusion

of more areas of activity is left for future studies (refer to Section 6.1). It is

assumed that most of the trips happen between home and work and vice versa.

This is based on conclusions encountered in related literature (see Section 2.4).

The top two mobile data usage activity clusters per user were retrieved from the

resulting users’ clusters created with DBSCAN algorithm run (see Section 3.4). We

considered these top two clusters as the origin and destination of trips including

returns. Then the user EDRs that have geographical coordinates located in the two

main activity cluster areas are filtered into a new dataset through the spatial join

technique [27]. This process results in a dataset containing all data usage records

5https://github.com/Esri/spatial-framework-for-hadoop, https://github.com/Esri/geometry-
api-java (accessed December 10, 2017)
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Figure 3.5: This diagram summarizes the data processing required in phases that
build one whole pipeline underlying the proposed algorithm.

that have a location in either of the top two clusters for any user in a times series.

This resulting dataset is substantially the OD matrix.

3.5.2 Trip generation, route choice and traffic assignment

Basic OD matrices, on their own, do not give information on how traffic flow is

distributed on the roads because they only represent home and work locations.

Therefore we had to further enrich the OD matrix by detecting when trips happen

by recording change of user cluster location events. This was achieved by ordering

OD matrix entries by user and timestamp. The dataset was then scanned and

when location of activity of a given record is found to be different from the pre-

vious record, the previous record is tagged as a departure and the current one is

set as an arrival. We used Apache Hive’s window analytic functions for the com-

putations because it offers an sql-like syntax which we were already familiar with

and processing is done on top of Hadoop. This made processing of huge amounts
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of data faster through parallel, distributed computing6. Hive is a data warehouse

infrastucture tool running on Hadoop that abstracts a lot of java api calls to get

data from distributed file systems managed by Hadoop7. Hive has a specific SQL

dialect HiveQL(HQL) that can retrieve data from hdfs (hadoop disributed file sys-

tem) without implementing the mapreduce calls.

There is a caveat on the accuracy of the actual duration of the trip. Records

of mobile data usage are generated depending on actual usage at a given location.

The frequency of generation of such records has a direct effect on the accuracy

of departure and arrival times for any given trip. The higher is the temporal

resolution, the more accurate are the departure and arrival times. If on the other

hand records are generated at a lower frequency it cannot be determined with

confidence and with a low margin of error. For example the user might arrive

at his work location but he takes too much time to start his first mobile data

session. This would add extra trip delay with the result that the trip duration is

less accurate depending on the gap of time between the actual arrival time and

the first generated mobile usage record timestamp. Therefore users with more

frequent usage of mobile data have trips with durations with a narrower error

margin. Departure times are more precise since these are computed by adjusting

the EDR timestamp and adding the data session duration. This gives an accurate

timestamp that represents when users leave their main clusters (home or work

location).

We inferred the routes between origins and destination from the OSM in a

similar manner to the work of Toole et al. [10]. A route was assigned for each

entry in the OD matrix together with duration information from the trip. The

user’s routing choice was assumed to be the fastest one given by the Open Source

Routing Machine8 (OSRM). The OSRM api provides the possibility to request

6https://cwiki.apache.org/confluence/display/Hive/LanguageManual+WindowingAndAnalytics
(accessed February 15, 2018)

7https://en.wikipedia.org/wiki/Apache Hive (accessed November 20, 2017)
8http://project-osrm.org/docs/v5.15.2/api/#route-service (accessed January 12, 2018)
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alternative routes. However in the approach taken the route selection was always

considered to be static and user does not change route depending on traffic or due

to unexpected events on the road network such as accidents or blockages caused

by various other reasons. The fastest route is attributed to each trip done by each

user. This may not always be the case since route selection can differ depending on

traffic perception and arbitrary route selection made by users. This is a limitation

of this research and introduces inevitable bias. It should be noted however that in

the urban scenario in Malta the different routes to take towards work and back are

limited due to the small scale of the road network infrastructure. In other words

there are few possible routes which users can choose from or that enable detouring,

making it highly probable that the fastest path is the preferred choice. In Section

4.3, it is discussed how to measure a level of confidence in the traffic assignment

model.

Figure 3.6: Cumulative distribution of trip delay. This figure shows how negative
trip delay instances are a very small percentage. Cutoffs of -5 and 45 minutes were
chosen to select the trips for the learning model.

Another important information that was extracted from the route selection is
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Figure 3.7: Trip delay probability distribution presents a heavy tail on the right.

the trip delay. The total duration for each trip per user was retrieved from the

OSRM. The derived route duration does not account for delays. The difference

between the actual trip duration retrieved from observed departures and arrivals

per user and the OSRM derived trip duration was considered to be the global

trip delay. After computing delays for each trip per user, aggregate statistics were

collated to describe typical delays at different hours both in weekdays and weekends.

Trip delay difference is evident even between Saturdays and Sundays but is highly

regular for weekdays as seen in Figure 3.8.

A peculiar observation is the negative trip delays. This can be accounted for by

actual trips that were faster than expected and estimated by OSRM. Such negative

trip delays were observed during the night when people tend to arrive earlier due

to almost in-existent traffic. Average trip delay peaks happen between 6:00 a.m.

and 7:00 a.m. and 4:00 p.m. and 5:00 pm. for every weekday. Saturdays and Sun-

days peak trip delays are observed later in the day where usually during weekdays

average trip delays are smaller. This can be attributed to the fact that people go

out later during the day on these two days. Also, it is clearly noticeable that, for
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Saturdays and Sundays, only one distinct peak can be seen in the distribution, and

average trip delays per hour are much lower in general.

Figure 3.8: Average trip delay patterns are different between weekdays and week-
ends. Peaking of average trip delay on weekdays happen between 6:00 a.m and
7:00 a.m. and between 4:00 p.m. and 5:00 p.m. Peaks for weekend days happen
later in the day.

Trip delay data had to be further investigated to remove outliers and data that

was not suited for the traffic flow count and the machine learning model had to be

filtered out. The data model fitted a heavy tailed distribution as seen in Figure 3.7.

Data was skewed to the right because of long trip delays attributed to pauses in

trips that are likely caused by intermediate location visits between the main areas

of activity. Similarly, trip delays of less than -5 minutes9 were mainly attributed

to sudden location displacement caused by cell tower switching (see section 2.4 in

9The negative trip delays are caused by trips with duration less than the one retrieved from
the OSRM
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chapter 2 ). Cut-off points were set to -5 minutes and 45 minutes for the lower and

upper bounds respectively. Consequently, 50% of the data was maintained.

In OSM a route consists of steps and these in turn contain manoeuvres. Ma-

noeuvers encapsulate geographical coordinates data and duration property after

which the driving decision should be taken. The manoeuvres’ timestamp was com-

puted by accumulating the duration of the previous steps and adding the final total

offset to the trip departure timestamp. A new dataset was created with records

including previous data structure and steps’ information having the timestamp and

the coordinates. Therefore, the new dataset, in addition to the coordinates of mo-

bile users at their origin and their destination had trip geolocation information in

the form of trip steps.

The determined trip delays are not factored in the algorithm step that dis-

tributes traffic flow on the road network. Therefore the definition of traffic flow

in our study, which is the volume of vehicles going through a road segment at a

given point in time, refers to the traffic flow load expected to be handled by the

road segment based on a given set of calculated departures at a given time, rather

than the actual traffic flow. Further work has to be done to improve the algorithm

in order to adjust the trip step timestamps for a mobile data user when there are

trip delays or if the user is travelling faster. This is further elaborated in Section

6.1. This can be done by using dataset entries that are registered between the

departure and the arrival of any given trip and modify the step timestamps to be

more close to the actual real value. This would give a more precise insight on traffic

congestion.

3.6 Traffic flow aggregation through spatial bin-

ning

To get aggregate statistics on traffic distribution, hadoop spatial binning was used

as proposed in Eldawy et al. [27]. Spatial Hadoop was used due to its highly efficient
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Algorithm 1 Experimental Overview

1: A. Filter Data:
2: data mobile usage ← filter data usage records from raw dataset

3: B. Main activity locations clustering:

4: data users clusters ← run DBSCAN on data mobile usage
5: data users top 2 clusters ← filter top two user clusters from data user clusters
6: data users top 2 clusters geo data points ←

get data users top 2 clusters left spatial join data mobile usage

7: C. OD Matrix generation:

8: data users top 2 clusters geo data points sorted ←
sort by user and datetime data users top 2 clusters geo data points

9: for each user group ug in data users top 2 clusters geo data points sorted
do

10: for each user record ur in ug do
11: if urt cluster id �= urt−1 cluster id (where t is timestamp) then
12: urt−1 departure flag ← true
13: urt−1 destination coordinates ← urt location coordinates
14: urt actual trip duration ← urt−1 timestamp - urt timestamp

15: data users departures arrivals ← store final resulting dataset

16: D. OD Matrix based trip generation:

17: for each user departure arrival record udar in data user departures arrivals
do

18: if udar departure flag = true then
19: udar route ← derive OSRM route from udar origin,destination coordinates
20: udar OSM route duration ← derive OSRM route duration from

1.5emudar origin, destination coordinates
21: udar trip delay ← udar actual trip duration - udar OSM route duration

22: data users trips ← store final resulting dataset
23: data users trips steps ← new empty dataset
24: for each user trip record utr in data users trips do
25: for each user trip step uts in utr route do
26: data users trips steps ←

add new record with step coordinates and timestamp details

27: E. Traffic flow spatial binning:

28: data bin traffic flow time series ←
count traffic flow group by bin id and step timestamp from

data users trips steps
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29: F. Traffic flow prediction:

30: data distinct time window end ← get distinct time window ends from
data bin traffic flow time series

31: data distinct bin ids ← get distinct bin ids from data bin traffic flow time series
32: data distinct time window ends bin ids ←

data distinct time window end cross join data distinct bind ids
33: data sparse bin count time series ←

data distinct time window end bind ids left join data bin traffic flow time series
34: data time windows bin count ←

two dimensional pivot on data sparse bin count time series by bin ids
35: data bin count ← data time windows bin count
36: sample locations ← location array[a,b,c,d]
37: window frames ← window frames array[30 min,60 min,180 min,1 day]

38: for each each bin for location bin-loc in sample locations do
39: for each global prediction at t-ahead time ahead in window frames do
40: for each each record with bin counts bin-count-record for time t in

data bin count do
41: t-ahead-bin-loc-count ← get bin count for bin-loc at time t-ahead
42: bin-count-record-with-label ←

attach t-ahead-bin-loc-count to bin-count-record

43: data labelled points ← store final resulting dataset
44: data labelled points reduced ←

take first 1000 components of PCA dimensionality reduction of
data labelled points

45: data training ← split data labelled points reduced and get 60% of data
46: data testing ← split data labelled points reduced and get 40% of data
47: multilayer perceptron classifier model ← fit model on data training
48: multilayer perceptron classifier prediction result ←

run model on data testing
49: report result metrics
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processing of geolocation data because it uses MapReduce10 and a 2-level spatial

index. MapReduce executes tasks with a level of parallelism and computation is

distributed. Spatial Hadoop uses a special algorithm to partition data in Hadoop

and maintains a spatial index for fast querying and fast spatial joins [27].

A Hive user defined function (UDF) from esri (esri is the company that owns

the ArcGIS solution) is used within the Hive query language (HQL) syntax to

interact with Hadoop and count traffic flow by spatial bin11. A spatial bin is a

computational geometry that can be used to numerically describe features in a

specific region. In our case we used 0.0005 degrees bins to count traffic flow ’steps’

derived from OSM routes. 0.0005 degrees bins approximately equate to 50 by 50

metres bins. We are stating that dimensions are not precise when computing the

geometrical bin because dimensions are not strictly universal and vary according to

map position. These tend to be more of an elongated rectangle near the poles and

squarish near the equator. This happens because latitudes get narrower for bins

near the poles due to the fact that the earth is not a perfect sphere but an oblate

spheroid12. Not withstanding this, the bins in the spatial area under investigation

are of the same size since Malta does not cover a wide area. We chose 50m2 spatial

bins to aggregate traffic flow data. In this way we do not have too much wide

geometries that can aggregate traffic coming from two roads. Bins with sizes that

are less than 50m2 make aggregations less meaningful since aggregation is more

near to data points rather than grouping polygons.

The centroid for each bin was calculated in order to attain the central coordi-

nates of the polygon delineating the bin. Aggregation was not only done spatially

but also temporally with intervals of 5 minutes each. This choice of interval’s size is

quite subjective in nature but it has been decided that it is both granular enough

and not too wide to describe traffic flow temporally. The choice of time ahead

10https://hortonworks.com/apache/mapreduce (accessed January 20, 2018)
11https://github.com/Esri/spatial-framework-for-hadoop (accessed December 10, 2017)
12http://www.longitudestore.com/how-big-is-one-gps-degree.html (accessed December 12,

2017)
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Figure 3.9: Traffic flow count through spatial and temporal binning.

52



Chapter 3. Methodology

Figure 3.10: Traffic flow count categorization through a colour coding. Traffic flow
count intensity is represented with a colour scheme ranging from dark green (low
recorded traffic) to dark red (heavy traffic). The range stretches on 11 quantiles.

window sizes would affect the prediction results. A larger time window would not

permit finer prediction in a time series. For example a non-sliding 10 minute time

window would allow predictions 10 minutes ahead and a 20 minute sliding window

would allow for predictions 20 minutes ahead and so on.

We did not use a sliding window since this would have resulted in less data

points for training since training of neural networks would be more costly in terms

of computation and would have made analysis more time consuming and complex.

Having a sliding window on the other hand makes it more flexible to decouple the

averaging window size from the time ahead distance. The prediction time ahead

parameter would not need to be a multiple of the averaging window.
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Figure 3.11: Traffic flow count through spatial and temporal binning.

Visual tools such as CartoDB13 where used to illustrate aggregation of traffic

flow count in spatial bins. Figure 3.9 shows which areas attract most traffic in

Malta. Locations such as the Santa Venera tunnels and Southern Harbour area

around the four lane roads in Marsa have bigger distinctive spherical markers in-

dicating that these roads are very busy. The tool allows to select specific date and

time to analyse traffic temporally. A similar visualization (figure 3.9) depicts aver-

age traffic intensity across the whole month under investigation. CartoDB allowed

us to configure pop ups that can display relative information to the bubble such as

location coordinates and average month traffic.

Another illustration (see figure 3.10) uses a colour scheme in a categorical man-

ner to display the intensity of traffic flow. This visualization technique makes it

13https://carto.com (accessed May 10, 2018)
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Figure 3.12: Traffic flow count at 6:00 a.m. illustrated through CartoDB temporal
mapping

easier to categorize traffic flow count than the technique used to display traffic in

figure 3.9.

CartoDB was a fundamental tool to analyse how traffic flow count changed with

time and where. Methods that have been devised in this research to aggregate traf-

fic flow on the road network, can effectively have the generated results illustrated

temporally by moving a time window slider in the CartoDB UI. For instance the

traffic at 7:00 a.m shown in Figure 3.13 is busier than the traffic at 6:00 a.m. in

Figure 3.12. Figure 3.14 is a zoomed in image of the figure shown in 3.13.

3.7 Traffic flow modelling and prediction

The hypothesis that traffic flow in all areas is directly correlated to how traffic in a

specific given area will be in the immediate future determined how the prediction

model was structured. More specifically traffic flow at any particular bin bi at
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Figure 3.13: Traffic flow count at 7:00 a.m. illustrated through CartoDB temporal
mapping.

Figure 3.14: Traffic flow count at 7:00 a.m. illustrated through CartoDB temporal
mapping (zoomed in).
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time t influences traffic at bin bj at time t + n. The traffic intensity at any given

location is a function of other traffic flow counts from other preceeding bins. The

computation of traffic in a location that is based on past traffic cannot be achieved

by deriving a mathematical function. A process of artificial intelligence learning is

needed in order to build a model. Black box predictive modelling was obtained by

training a neural network. Neural networks are known for their ability to generalize

and to be able to learn and handle unexpected inputs [39]. There were various steps

needed to fit a neural network model which was then used to predict the traffic

flow. The aim was to select a sample of locations and predict their traffic. In the

following subsections, it will be explained how data was processed prior to training

of the model, how the model hyperparameters were chosen, how the model was

eventually trained and then how the model was validated.

3.7.1 Preprocessing data for the prediction model

The first data mining exercise was to build a dataset where each record contains

all Malta traffic flow count for every 5 minutes for the month of October 2016

(see Table 3.4). This dataset was then ordered by time. This dataset was to be

derived from the generated dataset in Subsection 3.5.2. This dataset consisted of

aggregated traffic flow for each spatial geolocation in a time series with 5 minutes

bins. The final resulting dataset from preprocessing was used to train and validate

the artificial neural network (ANN). The features selected to build the model are

the traffic flow counts at every location geofenced by a spatial bin. The aggregation

process of traffic counts within specific spatial bins was explained in Section 3.6.

We used two configurations for traffic classification. Experimentation with the

ANN training and validation was done primarily with four labels. Experimenta-

tion was also done with eight labels to test how it would perform in comparison.

Classification of traffic was done using 4 labels since traffic is labelled similarly in

available traffic applications such as Google Maps Traffic14 and Tomtom navigation

14https://www.google.com/maps (accessed May 20, 2018)
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software15. These labels describe different classes of traffic speed ranging from slow

to fast. In Google Maps traffic speed is visualized through colour coding. Green

for example is used to indicate slow traffic speeds and dark red is used to notify

about heavy traffic congestion.

In our research Label 1 would indicate very low traffic flow count per minute and

Label 4 would represent high traffic flow count per minute. The assigning of the

labels consisted first of classifying the traffic count of the bin location for every 5

minute window for which prediction modelling was carried out. Then the resulting

classification was assigned to the t− 5n record where n is an integer denoting the

number of fixed time intervals to predict ahead. Therefore after this operation, we

introduce another column to Table 3.5 with future classification of traffic count for

a given bin location.

Four datasets were prepared for training. These datasets were differentiated by

the label assigned. The classification label for each dataset record was retrieved

from time t + 5n ahead through window analytical functions for n with values of 3,

6, 12 and 288. Since we used a 5 minute binning that sums the traffic flow count,

3,6,12 and 288 time ahead windows would represent 15 minutes, 30 minutes, 1 hour

and 1 day ahead predictions respectively.

bin id longitude latitude time window start time window end traffic flow count
4611467925420319675 14.4320000001052 35.905499999918 2016-10-01T00:00:00.000Z 2016-10-01T00:05:00.000Z 12
4611467846458306816 14.489500000100501 35.918499999953397 2016-10-01T00:00:00.000Z 2016-10-01T00:05:00.000Z 2
4611468259490374713 14.506000000011101 35.850499999983199 2016-10-01T00:00:00.000Z 2016-10-01T00:05:00.000Z 3
4611468311119383155 14.485500000027001 35.841999999986903 2016-10-01T00:00:00.000Z 2016-10-01T00:05:00.000Z 2

Table 3.4: A sample of traffic flow count by bin for every 5 minute window.

The resulting dataset had traffic flow count for each bin with 5 minute temporal

resolution. Traffic counts of zero were not yet present before preprocessing. The

main features of this dataset included bin id, traffic flow count and time window

start and end timestamps.

Further processing was however needed to generate a dataset with records that

give a snapshot of all traffic count for Malta for every 5 minutes. First all distinct

15https://mydrive.tomtom.com (accessed May 20, 2018)
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bin ids where extracted and these amounted to 4134. All the possible time windows

of 5 minutes in the month of October were generated, and these amounted to 8928.

By performing a Cartesian product between all time series values and all possible

bin ids a new dataset with all possible bin id and time window combinations was

created. A left join between the original aggregated traffic flow with the latter

produced dataset resulted in a new dataset with records that comprehensively

describe traffic flow for every 5 minute window for the whole region under study.

This data structure was not suitable to be programmatically inputted to the neural

network training and further reorganization was necessary. A dataset with data

record format where each row contains all traffic flow for all Malta was needed.

The columns would be the bin ids that describe all the traffic in all areas. The

rows would contain traffic flow count values at a particular 5 minute interval for

all these bin ids. To achieve this, a two dimensional pivot was used to transform

data and traffic per bin. In the resulting dataset, the traffic count per bin is stored

column-wise. The pivot operation based on the data from 3.4 resulted in the data

that is shown in 3.5.

time window timestamp bin id 1 bin id 2 bin id 3 ... bin id 4134
2016-10-01T00:00:00.000Z 0 0 2 ... 0
2016-10-01T00:05:00.000Z 0 1 1 ... 1
2016-10-01T00:10:00.000Z 0 0 0 ... 0
2016-10-01T00:15:00.000Z 1 0 0 ... 0

Table 3.5: Sparse traffic flow matrix

After all the feature data were organized in a format that could be fed to the

model, a label for each data row was assigned. An ANN is a supervised machine

learning type which requires output that can be mapped from input data during

the training phase. The output in our case is classification of the level of traffic

flow count for a sample location (spatial bin) for which we need to determine the

traffic at time t + 5n. The output label was not chosen to be the traffic count but

the logarithmic function:
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y = �log(x + 1)/log(maxx/n + 1) ∗ b�+ 1 (3.1)

Where x is the actual traffic flow count, y is the final classification label, n is

the step size coefficient (the higher it is the smaller the steps)and b is the number

of classification levels (bins).

Figure 3.15: Traffic count cumulative distribution for a chosen location.

If a step function with equally spaced intervals was used to classify traffic count,

the function label outputs would almost all fall under the first class without mean-

ingful differentiation (see Figure 3.15). The skewness towards low counts of traffic

is highly decreased with logarithmic binning. The use of logarithmic ’step’ func-

tion, defined in Equation 3.1, squeezes indicators in the low traffic flow label bin

and widens the range for high level traffic. Note how in Figure 3.17 the logarithmic

step function with n=2.36 manages to classify low traffic counts that happen to

have high frequency more evenly than step functions with smaller n values. In our

experimentation traffic count labelling was done with step size coefficient of 2.36

which proved to give better results for prediction evaluation. Classification of what

is easy, moderate or heavy traffic flow is rather subjective. The coefficient of 2.36

value was chosen by changing the coefficient value and visually inspect plots like

the one shown in Figure 3.17 to decide that the binning represents proportionally
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Figure 3.16: Traffic count logarithmic step function.

the cumulative distribution of traffic flow count.

From Figure 3.17 it can be seen that traffic flow count that ranges from 0 to

1 is classified with Label 1 (zero or minimal traffic flow count), traffic flow that

ranges from 2 to 3 is classified with Label 2, traffic flow count that ranges from 4

to 10 is classified with Label 3 and traffic flow count that is equal or greater than

11 is classified with bigger labels. More than 60% of traffic flow count records are

classified with Label 1 and more than 20% are classified as Label 2 traffic flow.

3.7.2 Dimensionality Reduction

The dataset acquired from the original mobile data usage dataset is huge. The fea-

tures that describe the data amounted to 4134 as already mentioned in Subsection

3.7.1. The planned computational complexity depended on how quickly the model

converges. However for each iteration carried out to reduce the cost and undergo

gradient descent the magnitude of the computations to be performed depended on

the number of training examples multiplied by the number of features multiplied

by in turn by the number of neurons in each hidden layer. The number of hidden
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Figure 3.17: Traffic count logarithmic step function showing the lower traffic counts
mapping.

layers was chosen depending on how much complex the problem is but tends to fall

victim of overfitting the model if too many layers are inserted in architecture. As

mentioned in [40] ANN design parameters such as number of neurons and number

of hidden layers need a trial and error approach to get an architecture that yields

better results. Therefore it was important to optimize computation times in order

that experimentation that leads to an optimal architecture is less time consuming.

Also, the final model is simpler and more practical in terms of getting a prediction

after an acceptable amount of time.

One way how to lower computation time was to reduce the number of features.

This entails mapping an n-dimensional space to a smaller dimensional space which

reduces the number of features in the process. Raschka [41] states that by reducing

dimensionality in data there is less risk of overfitting and thus the model can

generalize better to testing data. In [42] experimentation is done by keeping 95%

and 99% of the total variance. We chose to keep 324 components that explained

90% of the total variance. By trial and error it was found that similar results are

attained by using 90% and 98% of the variance. Original data features showed to
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Figure 3.18: First components contain a higher percentage of the variance. First
324 components explain 90% of the variance

be highly correlated, so a high degree of compression was possible through PCA.

As explained in the Formula below 3.2,

min
k

⎧⎨
⎩k :

Σk
i=1λi

Σn
i=1λi

≥ r

⎫⎬
⎭ (3.2)

we selected k to be 324 so that the preserved variance ratio r is 90%. In

Equation 3.2 eigenvalues λi were ordered in decreasing variance. n represents the

original dimensionality of the reduced dataset. In Figure 3.18, it can be observed

that the first 324 components explain more than 90% of the data.

3.7.3 Prediction through Multilayer Perceptron Classifier

The next step in the data processing pipeline consisted in predicting traffic from

a stipulated time ahead for a given location point. This prediction had to be

based on data that was harvested some time before. All of the original datasets

had records with timestamps set in the past, so we simulated prediction of traffic

flow by trying to forecast traffic at a certain point in time which is ahead of a
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given timestamp. Evaluation was carried out with a different number of first PCA

components, prediction multi-steps ahead and number of possible classes.

As already explained in Subsection 3.7.1, the multi-step time series prediction

was evaluated with a variable amount of steps ahead. Each step was already defined

to be 5 minutes long. The experimentation was done with 3,6,12 and 288 steps

that reflect 15 minutes, 30 minutes, 1 hour and 1 day. These particular prediction

time intervals were selected because practically an individual would need to know

traffic in certain locations just before he leaves home. Traffic information 3 hours

in advance would prove to be irrelevant for a commuter that just leaves home.

This applies especially for Malta based trips, where distances are relatively short

and surely any journey is less than 3 hours. Even transport authorities might not

find 3 hours beforehand information useful for management purposes. Individual

users leaving at 7.00 am in the morning would contribute not information for traffic

status at 10.00 am where traffic flow would have eased by then. Therefore we opted

to analyse and predict the impact of traffic at 15 minutes, 30 minutes, 1 hour and

1 day before respectively.

One of the first decisions was to choose what type of approach for machine

learning to take in order to build a model. The problem at hand was complex,

both because of the number of features and the relation they have with each other.

A Multilayer Perceptron Classifier (MLPC) is a highly non-linear model that can

adapt to problems with high complexity. An MLPC is a specific form of ANN in

which perceptrons are feed forward neurons and are interconnected with weights.

Layers with a different number of perceptrons define the architecture of the MLP.

The first layer is the input layer and the last layer is the output layer. Hidden

layers that are optionally inserted in between the input and output layer apply any

function to the previous layer and output to the following layer [40].

The ANN approach is stated to have the universal approximation property

which underlines how an ANN of MLPC type can represent any bounded continuous

function to a given arbitrary degree of accuracy [43]. However, it is considered to be
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a black box that is difficult to control and monitor while learning during the training

stage. Spark ML MLPC implementation contains intermediate layer neurons that

use the logistic function and output nodes that use softmax function16.

The Spark 2.3.0 implementation that was used makes use of back-propagation

to learn the model. It employs the logistic function as an activation function with

Limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) to minimize error17.

The topology choice was determined after carrying out a grid search configured

with a set of different hyperparameters. Different configurations for architecture

structure were tried out and evaluated until the best performing architecture was

chosen. The input and output layers size (number of neurons) are respectively

dictated by the number of input PCA extracted features and output classes which

are the possible traffic levels indicated by model. Two hidden layers were added

to the overall topology. After testing out different possible architectures, the final

configuration consisted of 324 neurons for both the input layer and for the second

hidden layer, 400 neurons for the first hidden layer and 4 neurons for the output

layer which defined the output classes (see Figure 3.19). All architecture layers are

fully connected to the successive layer.

The available labelled data points dataset was split into 60% training and 40%

testing. The model with maximum iterations parameter set to 200 showed that

after a set of runs it converged consistently. The first phase of setting up the model

consisted of the training part where the weights settle to a final value that lead

to a minimal error in its classification within the parameter of tolerance set in the

configuration. Training outputs a model which is then fitted on the testing data.

In the testing phase the prediction efficacy of the model built during training is

checked by retrieving certain metrics.

16https://spark.apache.org/docs/latest/ml-classification-regression.html#multilayer-
perceptron-classifier (accessed April 29, 2018)

17https://dzone.com/articles/deep-learning-via-multilayer-perceptron-classifier (accessed May
10, 2018)
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Figure 3.19: Multilayer Perceptron Classifier topology (324,400,324,4) - generated
with python matplotlib library
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4. Evaluation and Results

In this chapter we discuss the systematic evaluation approach that was adopted

to get vehicular traffic related information and to build a prediction model from

mobile usage data, several stages were involved. The stages in this machine learning

pipeline are highly dependent on previous stages’ results, mainly, because each stage

feeds its output to the next stage.

Therefore inaccurate results error introduction in early stages would trickle

down the pipeline. For example interpretation of error ratio at the prediction

stage, which is the last stage, must be primarily done in the context of results

observed in preceding stages. If traffic counts are not accurately measured, the

training data itself would not lead to predictions that can be put to practical use.

As part of the evaluation process that will be described in detail in the following

sections we evaluate four main experimental procedures:

1. Average trip counts per hour for weekdays and weekdays

2. Average trip delay per hour for weekdays and weekends

3. Traffic flow count in a selection of locations

4. Traffic count prediction for a selection of locations
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Figure 4.1: OD matrix generated trip count patterns per day week. To note how
Saturdays and Sundays which are outlined by the last and first two peaks respec-
tively have unique traffic delay patterns.

4.1 Trip counts per hour evaluation

After determining the users’ daily routes between different origins and destinations

two sets of important information were derived. These are namely, trip count and

trip delay per route.

The former represents the average hourly trips done while the latter represents

the average delay for every route or for all trips in general. Distributions for

both were further derived by using information such as trip departure and arrival

timestamp which is available for every route.

In Figure 4.1, we show that the trip distribution derived from mobile usage

EDRs’ generated OD Matrix is strikingly similar with the trip distribution as re-

ported in a National Household Travel survey (NHTS) done in 2010 [1] (see Figure

4.2).

As illustrated in figure 4.3, trip count peaks for both reported distributions are

observed at 7:00 a.m. and 5:00 p.m. NHTS data was collected on a Wednesday

and has no car trip distribution for Saturdays and Sundays. Since figure shown in

4.1 shows that weekdays’ OD generated trips count distribution is similar in shape

the average was taken on all weekdays of the whole month. However, it should be

noted that trip counts on a Monday are distinctively slightly higher than the other
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Figure 4.2: Car trip distribution as reported in Transport Malta 2010 National
Survey [1].

Linear regression statistics
Pearson correlation coefficient (r) Degrees of freedom p-value
0.94 22 1.13628e− 11∗

Table 4.1: NHTS and OD trip distributions proved to be highly correlated. ∗p <
0.001

weekdays (see figure 4.1).

The dynamics of the plot show how there is a sudden decrease of trips per

hour after 7:00 a.m. that continues till 11:00 a.m. when trips start to rise again

to gradually ramp up. The gradient suddenly increases again at 3:00 p.m. The

increase and decrease of trip rate around the 5:00 p.m. peak is smoother than then

the one observed in the morning peak for both distributions as shown in Figure

4.3).

NHTS [1] reports 11% in car trips from 1998 to 2010 and as shown in Figure

4.2 the distribution again shows resemblance. Both the relationship between HTS

datasets gathered in 1998 and 2010 and the relationship of these to the existent

OD generated trip dataset demonstrate that trip distribution increases evenly with
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Figure 4.3: Comparison between OD average trip distribution over a month and
Transport Malta 2010 survey results ([1])

Figure 4.4: Linear relationship between OD average trip distribution over a month
and Transport Malta 2010 survey results [1]

a specific scale factor across the hours as years go by.
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Figure 4.5: Expected trip delay 7 day distribution retrieved with Google distance
matrix API for Mosta to Marsa route. Note how Sunday and Saturday delay
pattern is different from the one observed for weekdays.

A linear regression model was devised to express the scaling up from trip distri-

bution in 2010 and the one registered in 2016 in this study. A correlation statistical

analysis would have sufficed to establish a linear relationship. There is definitely

no causality relationship between these two variables. However, a regression model

was fitted to the data to express how scaling up of counts can be done from the OD

generated one to actual data that is collected through surveys (see Figure 4.4) .

Results are reported in Table 4.1 and these show that there is a significant positive

relationship between trip distributions.

4.2 Trip average delay per hour evaluation

Evaluation of average global trip delay results computed from OD and OSRM

generated trips (OD-OSRM) proved to be challenging, because ground truth data

could not be found in literature that considered similar research type and in reports

from local transport authorities. In the NHTS [1] in addition to trip count statistics

it is mentioned that a detailed matrix with trip information including departure

and finish time was compiled. Correspondence with Transport Malta to attain such

data or similar information proved to be futile up to the date of completion of this
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work.

Figure 4.6: DMAPI expected average trip delay comparison with OD-OSRM com-
puted average trip delays for routes: Mosta to Marsa (MM), Mellieha to Swieqi
(MS), Birkirkara to Sliema (BS), Valletta to Mgarr (VM)

At the end of April 2018 Google maps made available traffic information overlay

on its maps. In addition to this Google Cloud distance matrix API (DMAPI)

exposed a web service that gives duration and duration in traffic of trips that are

defined with origin and destination for Malta as well.

The trip delay model built through the OD matrix is a basic statistical one

that gives average trip delay per hour. Google distance metric API gives estimated

duration information (with traffic and without) by specific route. In order to

compare the estimations of our model with the Google one for the local traffic a

data-mining process that scraped a data set of trip delay through the DMAPI web

service was carried out. Figures 4.7 and 4.8 show traffic status for the same zone

at the same hour for OD-OSRM traffic flow count and Google traffic status. Note

the similarity in how traffic hotspots’ locations are shown.
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Table 4.2: Correlation statistics between DMAPI routes’ average trip delay and
DMAPI routes’ correlation with OD-OSRM computed trip delay. Note that corre-
lation is being done between data retrieved in June for DMAPI and data retreived
in October for OD-OSRM

Figure 4.7: OD-OSRM traffic flow count mapping at 8:00 a.m. on a weekday
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Figure 4.8: Google Map Traffic mapping at 8:00 a.m. on a weekday - to compare
with OD-OSRM traffic flow count mapping

Seven whole days of Google DMAPI data from June 2018 was scraped by re-

trieving duration information for every quarter of an hour (see Figure 4.5 for an

example). Estimated trip delay is calculated by subtracting estimated trip duration

from trip duration in traffic. Average trip delay was then computed per hour. This

process was done for four different routes namely Mosta to Marsa (MM), Mellieha

to Swieqi (MS), Birkirkara to Sliema (BS) and Valletta to Mgarr (VM) and the

overall trip delay average was calculated on these routes. These routes were chosen

for two reasons. Firstly these were chosen because they represent routes that are

really varied in type in terms of direction and areas covered. Secondly because the

average time of the selected route trips which is retrieved from Google API (24

minutes) approximates the global trip average time which is reported for a car trip

in [1] (20 minutes). To be noted however that from 2010, trip delays likely increase

was due to further loading of traffic on the road infrastructure.

Correlation results showed that there is a strong linear relationship between the
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routes’ trip delay pattern which were investigated with the DMAPI. Correlation

between DMAPI and OD-OSRM trip delay estimation is less but still considerable.

Between DMAPI average overall trip delay and OD-OSRM non shifted expected

trip delay data there is a correlation of 0.69 (see table 4.2).

When comparing trip expected delays we noticed some distinctive features that

differentiate OD-OSRM trip delay plot and the DMAPI ones. Trip delays are

higher in OD-OSRM data than for DMAPI. We also noted that patterns for plots

based on DMAPI retrieved trip delay data tend to have delays peaking distinctively

higher in the morning rather than in the afternoon. Furthermore, OD-OSRM trip

delay morning peak comes 1 hour earlier. The fact that more trip delay is observed

for the OD-OSRM dataset can be attributed to the fact that in October there is

much more traffic. It is known that in Malta, October is one of the most chaotic

months for traffic because schools and colleges would have just started. In June, the

University of Malta semester is almost closing (no more lectures are being held)

and primary and secondary students finish in the early afternoon. Government

department work till midday from mid June as well. The earlier peak observed in

the OD-OSRM data can be explained in the light that, in October, to cope with

the heavy delays on the roads, commuters leave earlier to avoid traffic congestion.

When shifting the OD-OSRM data by one hour (see dotted line in fig. 4.6 ) a

higher correlation of 0.78 is observed with (DMAPI) overall average trip delay.

The fact that the data has different seasonality is a serious limitation in the

evaluation of the OD-OSRM trip delay model with DMAPI data as ground truth.

Given that at the time of writing results could not be recomputed for OD-OSRM

for June it was attempted to get DMAPI webservice estimations data for October

2018. DMAPI does not give responses for data queries that request past data.

However, it can give expected trip duration data in the future even if is queried

from months ahead. The data retrieved for 7 days in October 2018 with DMAPI

from four months in advance was exactly the same as the one retrieved for the same

route in June. Therefore there was not the possibility to evaluate our model with
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DMAPI data from the same month which was expected to a have a more similar

pattern. Still, from the perspective of knowing how traffic in June and October

is different, and the strong correlations between the trip delay estimation models,

there is a good confidence level in relying on the OD-OSRM trip delay estimation

data.

4.3 Traffic flow count evaluation

Route information was retrieved from OSRM with the OD matrix as input. Thus

with a matrix of origins and destinations each trip done by any user was assigned a

route (refer to method discussed in Section 3.5.2). The fastest route was retrieved

from the OSRM and alternative routes were not considered. This is decisive to-

gether with OD matrix computation to characterize the traffic assignment model.

The average OD-OSRM computed traffic flow count was compared with average

actual traffic flow counts at the same locations and at the same exact date and

time in order to analyse how accurately the traffic assignment distributes traffic

flow with fastest route as default selection.

The ground truth data that was used, came from work done by Nigel Pace in

his dissertation submitted in 2017 [44]. Directional traffic flow counts were manu-

ally gathered from web camera streams recorded from four locations. These were

gathered from Kappara and Marsa roadways for traffic which is both northbound

and southbound. The Marsa roadway is referred to as the Marsa-Hamrun bypass,

which is the road leading to and from the Santa Venera tunnels. These roads are

known for heavy traffic loads and congestion in Malta. The Kappara roadways get

and feed traffic to the old Kappara roundabout which today has been replaced by

a flyover. The dates for the data collection were from Monday 17th October to

Friday 21st October. Data for the day of Tuesday 18th October was missing from

the dataset and there was no particular reason specified why this was missing. The

traffic flow count consisted of an average traffic flow count per minute taken over
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(a) Traffic flow Count Kappara North - OD-OSRM

(b) Traffic flow Count Kappara North - video stream count

Figure 4.9: Kappara North Traffic flow counts from OD-OSRM and video stream
count comparison. Video stream count graphic has been reproduced from [44].
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(a) Traffic flow Count Kappara South - OD-OSRM

(b) Traffic flow count Kappara South - video stream

Figure 4.10: Kappara South Traffic flow counts from OD-OSRM and video stream
count comparison. Video stream count graphic has been reproduced from [44]
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(a) Traffic flow count Marsa North - OD-OSRM

(b) Traffic flow count Marsa North - video stream

Figure 4.11: Marsa North Traffic flow counts from OD-OSRM and video stream
count comparison. Video stream count graphic has been reproduced from [44].
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(a) Traffic flow count Marsa South - OD-OSRM

(b) Traffic flow count Marsa South - video stream

Figure 4.12: Marsa South Traffic flow from OD-OSRM and video stream counts
comparison. Video stream count graphic has been reproduced from [44].
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Table 4.3: Correlation statistics for linear regression models. OD-OSRM traffic
flow count is the predictor variable and video stream traffic count is the dependent
variable. ∗Results are all significant with p < 0.05.

intervals of 15 minutes. This resulted into 44 samples for data gathered from 6.00

a.m to 8.45 a.m. for every day. A daily average for every quarter of an hour was

then taken for both the actual data and the one generated with OD-OSRM. The

traffic flow count data generated by OD-OSRM is only representative of a sample

of the travelling population (i.e. those who have their 2G/3G/4G data switched on

while travelling). This explains why the traffic flow counts generated by OD-OSRM

are much smaller than those which were manually recorded in Pace [44]. This can

clearly be observed in Figures 4.9a to 4.12b.

A simple linear regression model was fitted for each location to analyse the type

of relationship between the OD-OSRM traffic flow counts and actual traffic flow

count data used from [44]. There is no implied cause and impact relationship. We

attempted to determine whether a true actual traffic flow count can be determined

with a linear regression model from OD-OSRM traffic flow data. The resulting

models were evaluated to determine how the independent variables which are loca-

tion OD-OSRM traffic flow counts explain the variance of actual traffic flow. The

null hypothesis here was that there is no significant functional mapping of actual

traffic counts by OD-OSRM traffic counts for any specific road section.

Results include Pearson’s correlation coefficient, R2 which indicates the ex-

plained variance and p-value which shows that all results are statistically signifi-

cant. Degrees of freedom value was 43 for each directional flow under study since

there was one independent variable and 44 sample data points were available for
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(a) OD-OSRM and video stream traffic flow Count linear plot - Kappara North

(b) OD-OSRM and video stream traffic flow Count linear plot - Kappara South

Figure 4.13: OD-OSRM and video stream traffic flow Count linear plot for Kappara
traffic flow points.
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(a) OD-OSRM and video stream traffic flow Count linear plot - Marsa Northbound

(b) OD-OSRM and video stream traffic flow Count linear plot - Marsa Southbound

Figure 4.14: OD-OSRM and video stream traffic flow Count linear plot for Marsa
Northbound and Southbound traffic flow points.
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each traffic flow point under examination. These results are shown in Table 4.3.

From the results’ table one can conclude that there is a strong correlation

between OD-OSRM and actual traffic flow counts for both Kappara carriage ways.

The strong correlation is well illustrated with line plot shown in Figure 4.13. Line

charts presented in Figure 4.9 and Figure 4.10 that illustrate traffic count for both

Kappara carriageways show that traffic fluctuation patterns are very similar. On

the contrary there is a weak negative correlation for Marsa traffic flow points (see

Table 4.3 and line plots in Figure 4.14). In fact, when we analysed traffic flow

charts in Figure 4.11 and Figure 4.12, we found that while actual traffic flow count

starts high at 6.00 a.m. and gradually slows down up to 9.00 a.m. in OD-OSRM

traffic flow charts shows that traffic increases constantly and peaks at 7.30 a.m.

and then it starts to decrease for the subsequent later averaged samples. Traffic

flow in Marsa traffic points does not necessarily mean that traffic flow is slowing

down because there is less traffic load. It could be the case that traffic is slowing

down because of an increase in traffic congestion [44].

Our explanation as to why there is strong correlation with Kappara traffic flows

but a weak negative one with Marsa located traffic flows can be based on the fact

that traffic tends to be slower in Marsa traffic flow points when compared with

the Kappara traffic flow points. OD-OSRM measurements are based on trips that

have been detected but if actual vehicular traffic slows down due to congestion

the OD-OSRM traffic flow count does not reflect actual traffic counts. Therefore,

two conclusions are derived from this. A first conclusion is that reliable regression

models can be trained on actual traffic data for traffic flow road sections which

do not experience heavy traffic slow down. Secondly the regression model mapped

traffic flow counts gives a reliable account of what flow capacity is expected to be

serviced at any given point in time from a given road section in order that traffic

flows smoothly.
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4.4 Traffic flow count prediction for a selection

of locations evaluation

In Section 3.7, an approach on how to predict traffic flow count for specific road

sections was presented. The model proposed is an MLPC that as a function takes

the traffic flow count from each recorded location as input and predicts an approx-

imated traffic flow count for a specific location/road section for a date time in the

immediate future. The traffic flow counts are binned using specific labels through

a logarithmic function.

Traffic flow count is represented with 4 bins which are equivalent to the model’s

classes. These classes range from class one to class four with class one being the

lowest indicator of traffic flow count and class four being the highest. The MLPC

model was devised by dedicating 60% of the data for training and 40% of the

data for testing. Since Neural networks require a lot of data to train properly no

data was dedicated for validating the models when searching the optimal hyper

parameters such as neural network topology layout and PCA’s first k components.

A trial and error approach was used to check how the model would perform when

changing such hyperparameters. Testing was done only for the application phase

to evaluate how the model would perform with real-world data.

Collected performance metrics included accuracy and weighted precision, recall

and F1-score. Accuracy gives a very basic picture of how the model is performing,

however it does not provide clear information how the model is performing across all

traffic flow count classes. The locations chosen from the available dataset possess

the property of unbalanced classes. For example if a given location has 95% of

classes of type one a model which always predicts class one will be 95% accurate

on testing. Weighted precision and weighted recall further describe the performance

of the model. When having a high precision and a low recall the model is more

appropriate for exactness in classification (false positives are kept at a minimum at

the cost of a high number of false negatives). A high recall and low precision model
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Table 4.4: Classification evaluation metrics for 4 traffic flow road sections with 4
label classification and PCA set to extract 324 first components. Testing was done
with 4 sizes of prediction time window ahead for each prediction location.

is better in identifying a higher percentage of classes correctly but can output a

relatively high number of false positives in the process.

In machine learning sometimes high recall is more important than high precision

or the other way round and in most of the times there is a trade-off. The more

tuning is made to any one of the metrics to improve it, the riskier it is to get a

lower performance in another metric. The ideal is to have both high recall and

high precision. In the case of this study recall for high level of traffic classes is very

important since knowledge of high traffic count is important and noise would be

acceptable. Weighted F1-score was used to portray a balanced measure between

recall and precision.
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Figure 4.15: Confusion matrix for Hamrun to Valleta road traffic flow count for 15
minutes ahead prediction interval.

Table 4.4 shows the evaluation results described in terms of the metrics just

discussed. It can be seen that models trained to predict for smaller time ahead

intervals generally perform better than models that are trained with a lengthier

prediction time interval for the same location. Models all have proven to have

highest recall and precision for class one traffic flow counts. It appears from table

that the best overall classification metric scores were attained for Hamrun-Valletta

roadway. However on examination of the confusion matrix (shown in Figure 4.15)

for classification results per label we noted that the model performed very badly

for high traffic flow count classes. There were no results for class four and for

classes two and three the precision and recall metrics are very low. In fact, when

computing the F1-score for class two and class three, both result to be low at 0.14

87



Chapter 4. Evaluation and Results

Figure 4.16: Confusion matrix for Marsa to Aldo Moro road traffic flow count for
15 minutes ahead prediction interval.

and 0.0 respectively. This was found to happen as well in literature. In [45] it is

stated how trained ANN model does not perform well when traffic counts are low.

Relative error in evaluation is much bigger when traffic flow is small. Results are

only being quoted by Lv et al. when traffic flow is 450 vehicles or more for a 15

minute time window [45].

In contrast predictive overall results for Marsa road that leads to Aldo Moro are

less promising than those for Hamrun-Valletta arterial road. Still, the predictive

efficacy results are very good, especially when examined in the perspective of the

confusion matrix shown in fig. 4.16. Class four cases, which are classified as class

one or class two cases are very few and, even if almost half of class four test values

were predicted as class three, in practice, this would still make the model useful

and offer guidance to describe the level of high traffic flow counts.
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4.5 Conclusion

This chapter demonstrated how the proposed techniques were evaluated. We have

seen how there is a very strong correlation of 0.94 between global average trip count

per hour distribution which was determined with our method and the one reported

in NHTS. This may indicate that our model which is derived from mobile usage

data is highly relevant for the real world with assured performance. Our model has

an edge on surveys similar to NHTS because the illustrated trip count per hour

statistics have seasonality and the model can be updated frequently.

Global trip delay was evaluated against data collected from Google’s DMAPI.

4 routes were used for testing and correlation statistics were compiled. A very

strong correlation of 0.78 exists between the average trip delay computed with our

method and DMAPI average trip delay.

When building models to express a linear regression between our method and

manual data collected from video streams by Nigel Pace we saw that there was a

strong correlation between models for Kappara South and Kappara North road-

ways but a week negative correlation with Marsa Hamrun bypass North and South

roadways. We concluded that a linear regression model can be used to accurately

upscale traffic flow count data from our method for a given road section, only if

the road section does not experience traffic congestion frequently.

We evaluated the prediction with a MLPC by dedicating 40% of the data for

testing. Performance metrics were different for the 4 locations for which prediction

testing was done. The highest F1-scores were achieved for Hamrun to Valletta

route traffic flow prediction but on further scrutinizing the confusion matrix a

heavy imbalance of classes towards class 1 was the reason why good prediction

results were observed. The Hamrun to Valletta predictive model in fact did not

perform well for classes that represent higher traffic flow counts such as Class 2

and Class 3. For other locations promising results were observed with a generally

strong F1-score for all the classes. The models performed better when predicting

from a shorter interval before.
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In this dissertation we described a systematic approach from which a data pro-

cessing pipeline was devised to extract vehicular traffic patterns from mobile usage

data. A cascading data processing pipeline methodology was used which consisted

in building models for each pipeline phase that processed input data and fed next

phases down the chain. The ensuing ensemble of techniques can be applied to

deduce traffic analytics from time series mobile usage data.

The aforementioned pipeline models include users’ activity hubs clustering, OD

matrix based trip generation, trip delay information and traffic flow measurement

and prediction. Density based clustering was used to create an OD matrix contain-

ing data on visits done to the two top locations, defined as the two places where

users made most use of mobile data. Trips were generated between every recorded

departure from origin and arrival to destination and the resulting trip duration.

OSRM was used to retrieve routes for these trips and get the actual estimated trip

duration without traffic. The difference between the OSRM trip duration and the

actual trip duration recorded from OD trip generation was considered to be the trip

delay statistical information. OSRM was used as well to collect time series data

that indicated where the traffic flow is being distributed on the road infrastructure

in order to build aggregate statistical models. The traffic flow counts’ dataset then

was used to train an MLPC to build a model that predicts traffic flow count at

varied time intervals ahead.
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Clustering was the only part of the methodology that could not be evaluated

directly. Ground truth was not available to test how accurately the resultant main

locations for each user were matching the actual ones. Its evaluation relied on traffic

flow count evaluation which is highly dependent on the OD-OSRM generated trips

which are defined by the users’ main two clusters.

Since the mobile users population does not match the number of commuters

that use their own vehicle for transportation it was expected that trip distribution

statistics would give lower values than those reflected by actual values. A scaling

up method was needed to extrapolate real world trip distribution statistics. A very

strong correlation of 0.94 was found between average NHTS 2010 trip distribution

data and trip distribution generated by the OD-OSRM method devised in our

research. A linear regression model was built to map OD-OSRM figures to scaled

up numbers. One should underline the fact that a lot of human resources are

needed to collect survey data and that surveys become eventually outdated. The

method proposed in this research can use readily available data, can have its model

dynamically updated and can be configured with a 5 minute temporal resolution.

Survey responses may not contain exact departure and arrival times since people

possibly tend to round these when replying. Therefore, as a conclusion our method

is more practical than surveys to get information on user trips. However, it needs

to be calibrated and scaled up by modelling on actual surveys through regression.

This, however, does not need to be done frequently.

Correlation statistics were carried out for trip hourly average delay for four

different routes. A promising overall correlation of 0.72 was found between trip

delay data originating from OD-OSRM and Google’s DMAPI. However one must

note that DMAPI data was collected for a week in the month of June 2018 and OD-

OSRM data was collected in October 2016. Our approach seems to work better to

give predictive models for the distant future because Google’s model for the distant

future gives identical results to those given for the immediate future. Our method

can be easily modelled with seasonality to forecast distant traffic delay if a year of
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data is available.

Traffic flow distribution linear regression models were built to map OD-OSRM

traffic flow distribution to actual ones. The linear relationship with data collected

manually for four locations was analysed. It was concluded that the linear relation-

ship is statistically significant and tends to have high correlation if the road traffic

flow capacity is not exceeded. Otherwise for locations that tend to have high traf-

fic congestion, correlation is both low and negative during traffic congestion time.

Therefore, it was concluded that negative correlations in traffic flow distribution

linear models indicate that locations are experiencing slowing down of traffic due

to congestion.

Machine learning techniques were employed to predict traffic flow counts at a

given time for a given location from previous traffic flow counts at an earlier time

for all location data points. An MLPC was trained for four locations and prediction

intervals ranged from 15 minutes to 1 day. Satisfactory results were attained and

from these results it is concluded that users or information support systems can

make well informed decisions on predicted traffic flow data for selected locations.

The main strength of this dissertation was to give an accurate measure and

an effective prediction of traffic flow demand (not traffic congestion) on the road

infrastructure. The insight gained could help transport agencies’ administrators

to tackle infrastructure problems before they eventually happen. Improvement is

mainly needed on dynamic traffic assignment algorithms.

5.1 Major contributions of this dissertation

This research posed questions on whether it is feasible to get vehicular traffic de-

scriptive and predictive analytics from mobile usage data. We showed how it is

possible to retrieve top activity locations for users. It is possible also to achieve

accurate results in getting global trip counts and trip delays. From mobile data

usage as well, we have shown that it is possible to collect trip data for all users.
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The trip data was then used to actually map traffic flow demand on the road grid.

However, it was found that traffic flow mapping gave accurate results for low traffic

congestion roads, whereas for high traffic congestion roads our model did not give

accurate results. Finally, a MLPC was found really efficient to predict traffic flow

for a set of locations. The confidence level given by the prediction results is high

and if traffic flow input used to train the predictive model is accurate the method

we devised could be used in the real world to forecast traffic in real-time. We did

not experiment with processing of real-time streams but the model we devised can

be easily adapted for real-time processing since it uses window analytics which are

widely used for stream processing.

5.2 Discussion

In this research machine learning was used to train an MLPC with all locations’

traffic flow count as data features. All the traffic flow count would be mapped by

a built model to a level of traffic representing the future traffic flow count for a

specific location. A similar predictive model can be built to predict estimated trip

delay for every given route for any given required time. A comprehensive used

routes database that exists in Malta for all users based on the OD matrix has to

be compiled. Then statistical information on trip delays per 5 minutes for same

routes are aggregated. One should investigate the possibility of using routes’ trip

delays as training input features to a machine learning model. The final predicted

classification would be a trip delay class for certain give routes. The model basically

would be a function that maps trip delays for a set of routes to a classification of

trip delay for a given route.

In order not to increase the evaluation combinations only two main clusters’

location were retrieved per user. These two clusters were considered as being the

home and work locations. However the main relevant assumption was that most

trips were made between these two main clusters. This is not representative for all
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trips made and would incur phantom trip delays that could only be explained by

stops at locations frequently visited by users that are not one of the main activity

clusters. A fact that heavily impacts daily traffic in Malta are extra trips whose

destinations are concentrated around schools. School run trips can be detected

by extracting the third most common location that is located within a school

geofencing boundary and by time boxing with school starting and finishing hours.

A lot of trips have been discarded with the used methodology because they had

excessive delays. Many of these trips can be retained to better explain the traffic

dynamics if trips are further divided with the insertion of a third location.

Other datasources such as social media and ANPR video streams could be used

to further dynamically assign traffic to the road network. From social network

feeds one can extract for example accidents location and time. This data could be

used to analyse the accident impact on traffic flow and can be used as an input

feature for machine learning models. Also correlation between weather and traffic

flow can be done by using available weather APIs.

This dissertation’s methodology made extensive use of Open source maps (OSM)

and Open Source Routing Machine (OSRM). An interesting project would be to

edit the OSM maps under observation (opening of a new road) with map editing

software and check the impact on the traffic flow of routes which are adjacent or

near to the modification done in the map. OSRM generates route information

based on the OSM data and when the OSM data file is modified the change is

reflected in the routing information. This would be very useful to simulate and

analyse the impact on traffic flow before the actual alteration is made in the road

infrastructure.
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This dissertation created a lot of experimental data while developing and evaluating

techniques which can be the background for future projects. Features suggested

in this chapter were not investigated due to time constraints. Future works are

categorized into two namely, future improvements and future research.

6.1 Future improvements

The challenge in such projects is to find ground truth to properly evaluate findings

and achieved results. One way to achieve this is to develop or use off the shelf

software that collects GPS points and collaborate with a group of people to gather

the data. The resulting sample of data would be ideal to carry out correlations

with experimental outcomes.

DBSCAN was used to find density based clusters to extract the most common

origin and destination locations for users. As discussed in Section 3.4, ε was set to

500m. OPTICS is an algorithm which is similar to DBSCAN but it does not require

ε parameter as an input and is more efficient to find meaningful clusters for data

with varying density [46]. Clusters generated on data used in this research and that

had a weak density might have not been captured with a radius of 500m. DBSCAN

was furthermore computationally expensive and consumed a lot of time in the

experimentation phase. An optimization for the performance of the processing of
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the whole pipeline would be running DBSCAN on data in parallel in a distributed

manner. An implementation based on the Spark platform is proposed in [38].

One limitation in this dissertation was to assume that users always take the

fastest route and do not detour for whatever reason along the trip. Traffic as-

signment therefore is static and does not adapt to the traffic events on the road

infrastructure. This does not give optimal results when gathering real-time and

historical analytical statistics on routes, trips and distributed traffic load on the

road infrastructure. Other methods must be combined with the proposed solution

to rectify route selection and give a more realistic picture of traffic flow based on

actual user route taking.

One way how to improve the correct route selection rate is by further polling

mobile usage data during a user trip and snap the user to the nearest road route

with snap to road software such as Roads API from Google1. This type of software

takes a set of coordinates as input and returns a similar set of data that most

likely define the route outlined by the set of data. Route selection would not be

necessarily computed for each user every time a user trip is detected. A statistical

model can be built to learn what are the most likely routes taken by each user on

a given date and time context. This model can then be used in the application

phase to analyse traffic loads which are related to the predicted routes.

An averaging moving filter could be used to remove noise from the traffic flow

count and improve results by applying a smoothing function. When getting a

sliding average more data points can be used for prediction. In our approach to

reduce computational costs, an average with binning size of 5 minute each was

calculated. This reduced however, a 60 data point resolution to 12 data points in

an hour. When building a machine learning model that predicts traffic flow counts,

a fixed interval was used to get the future classification label (refer to section 3.7).

This fixed interval had to be a multiple of the 5 minute window and there was no

flexibility for more granular tuning. Having less data points for the reasons just

1https://developers.google.com/maps/documentation/roads/snap (accessed January 8, 2018)
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mentioned provided less data for training to the MLPC.

Evaluation for average trip delay computation (see section 4.2) was done by

comparing results based on a June dataset with data retrieved through DMAPI and

an October mobile data usage dataset. This evaluation although it gave promising

results should be repeated with seasonality of datasets removed from the equation

to compare like with like. Malta traffic in October is very different from Malta

traffic in June.
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trips by purpose and time of day inferred from mobile phone data,” Trans-
portation Research Part C: Emerging Technologies, vol. 58, pp. 240–250, 2015.

[20] F. Calabrese, G. Di Lorenzo, L. Liu, and C. Ratti, “Estimating origin-
destination flows using opportunistically collected mobile phone location data
from one million users in boston metropolitan area,” IEEE Pervasive Com-
puting, no. 4, pp. 36–44, 2011.

[21] M. S. Iqbal, C. F. Choudhury, P. Wang, and M. C. González, “Development
of origin-destination matrices using mobile phone call data,” Transportation
Research Part C: Emerging Technologies, vol. 40, pp. 63–74, 2014.

[22] M.-h. Wang and S. D. Schrock, “Feasibility of Using Cellular Telephone Data
to Determine the Truckshed of Intermodal Facilities,” Cell, no. August 2009,
2012.

99



References

[23] R. Ahas, M. Tiru, E. Saluveer, and C. Demunter, “Mobile telephones and
mobile positioning data as source for statistics : Estonian experiences,” Pre-
sentation for NTTS, 2011.

[24] M. H. Wang, S. D. Schrock, N. Vander Broek, and T. Mulinazzi, “Estimat-
ing Dynamic Origin-Destination Data and Travel Demand Using Cell Phone
Network Data,” International Journal of Intelligent Transportation Systems
Research, vol. 11, no. 2, pp. 76–86, 2013.

[25] P. Locke, “Cell tower triangulation - how it works,” Jun 2012.

[26] H. Wu, T. Zhang, and J. Gong, “GeoComputation for Geospatial Big Data,”
Transactions in GIS, vol. 18, no. S1, pp. 1–2, 2014.

[27] A. Eldawy and M. F. Mokbel, “Spatialhadoop: A mapreduce framework for
spatial data,” in Data Engineering (ICDE), 2015 IEEE 31st International
Conference on, pp. 1352–1363, IEEE, 2015.

[28] L. Alarabi, A. Eldawy, R. Alghamdi, and M. F. Mokbel, “TAREEG : A
MapReduce-Based Web Service for Extracting Spatial Data from Open-
StreetMap *,” pp. 0–3, 2014.

[29] J. K. Laurila, D. Gatica-Perez, I. Aad, J. Blom, O. Bornet, T.-M.-T. Do,
O. Dousse, J. Eberle, and M. Miettinen, “The mobile data challenge: Big data
for mobile computing research,” Proceedings of the Workshop on the Nokia
Mobile Data Challenge, in Conjunction with the 10th International Conference
on Pervasive Computing, pp. 1–8, 2012.

[30] H. Shin, J. Vaidya, V. Atluri, and S. Choi, “Ensuring Privacy and Security for
LBS through Trajectory Partitioning,”

[31] W. Inoubli, S. Aridhi, H. Mezni, M. Maddouri, and E. M. Nguifo, “An ex-
perimental survey on big data frameworks,” arXiv preprint arXiv:1610.09962,
2016.

[32] A. M. Kurien, G. Noel, K. Djouani, B. J. Van Wyk, and A. Mellouk, “A
subscriber classification approach for mobile cellular networks,” Simulation
Modelling Practice and Theory, vol. 25, pp. 17–35, 2012.

[33] Y. Zheng and X. Xie, “Learning travel recommendations from user-generated
GPS traces,” ACM Transactions on Intelligent Systems and Technology, vol. 2,
no. 1, pp. 1–29, 2011.

[34] T. Toledo, M. Ben-Akiva, D. Darda, M. Jha, and H. Koutsopoulos, “Calibra-
tion of Microscopic Traffic Simulation Models with Aggregate Data,” Trans-
portation Research Record: Journal of the Transportation Research Board,
vol. 1876, pp. 10–19, 2004.

100



References

[35] S. Hirai, J. Xing, R. Horiguchi, T. Shiraishi, and M. Kobayashi, “Development
of a Network Traffic Simulator for the Entire Inter-urban Expressway Network
in Japan,” Transportation Research Procedia, vol. 6, no. June 2014, pp. 285–
296, 2015.

[36] A. Bazghandi, “Techniques, Advantages and Problems of Agent Based Model-
ing for Traffic Simulation,” International Journal of Computer Science Issues,
vol. 9, no. 1, pp. 115–119, 2012.

[37] S. Chakraborty NKNagwani Lopamudra Dey, “Performance Comparison of
Incremental K-means and Incremental DBSCAN Algorithms,” International
Journal of Computer Applications, vol. 27, no. 11, pp. 975–8887, 2011.

[38] F. Huang, Q. Zhu, J. Zhou, J. Tao, X. Zhou, D. Jin, X. Tan, and L. Wang,
“Research on the parallelization of the dbscan clustering algorithm for spatial
data mining based on the spark platform,” Remote Sensing, vol. 9, no. 12,
p. 1301, 2017.

[39] M. Sommer, S. Tomforde, and J. Hähner, “Using a neural network for fore-
casting in an organic traffic control management system.,” in ESOS, 2013.

[40] A. K. Jain, J. Mao, and K. M. Mohiuddin, “Artificial neural networks: A
tutorial,” Computer, vol. 29, no. 3, pp. 31–44, 1996.

[41] S. Raschka, Python machine learning. Packt Publishing Ltd, 2015.

[42] K. Yang and C. Shahabi, “A PCA-based similarity measure for multivariate
time series,” Proceedings of the 2nd ACM international workshop on Multime-
dia databases - MMDB ’04, p. 65, 2004.

[43] K. Hornik, M. Stinchcombe, and H. White, “Universal approximation of an
unknown mapping and its derivatives using multilayer feedforward networks,”
Neural networks, vol. 3, no. 5, pp. 551–560, 1990.

[44] N. Pace, “Investigating the Potential of Big Data in the Management of Traffic
in Malta,” 2017.

[45] Y. Lv, Y. Duan, W. Kang, Z. Li, and F.-Y. Wang, “Traffic flow prediction
with big data: a deep learning approach,” IEEE Transactions on Intelligent
Transportation Systems, vol. 16, no. 2, pp. 865–873, 2015.

[46] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “Optics: Ordering
points to identify the clustering structure,” in Proceedings of the 1999 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’99,
(New York, NY, USA), pp. 49–60, ACM, 1999.

101


