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Abstract 
 
The interaction between practice and theory in mathematics is a central theme. 
Many mathematical structures and theories result from the formalisation of a real 
problem. Graph Theory is rich with such examples.  The graph structure itself was 
formalised by Leonard Euler in the quest to solve the problem of the Bridges of 
Königsberg. 
     Once a structure is formalised, and results are proven, the mathematician seeks 
to generalise.  This can be considered as one of the main praxis in mathematics. 
     The idea of generalisation will be illustrated through graph colouring.  This idea 
also results from a classic problem, in which it was well known by topographers 
that four colours suffice to colour any map such that no countries sharing a border 
receive the same colour.  The proof of this theorem eluded mathematicians for 
centuries and was proven in 1976.  Generalisation of graphs to hypergraphs, and 
variations on the colouring theme will be discussed, as well as applications in other 
disciplines. 
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Introduction 
 
Graph Theory is an extremely vast and rich area of mathematics, falling under the 
broader topic of Combinatorics.  Its origins trace back to the eighteenth century, 
the Swiss mathematician Leonard Euler and the city of Königsberg (now 
Kaliningrad). 
     In the early 18th century, the citizens of Königsberg spent their days walking on 
the intricate arrangement of bridges across the waters of the Pregel River, which 
surrounded two central landmasses connected by a bridge. Additionally, the first 
landmass (an island) was connected by two bridges to the lower bank of the Pregel 
and also by two bridges to the upper bank, while the other landmass (which split 
the Pregel into two branches) was connected to the lower bank by one bridge  and 
to the upper bank by one bridge, for a total of seven bridges, as shown in Figure 1 
(Reid, 2010). According to folklore, the question arose of whether a citizen could 
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take a walk through the town in such a way that each bridge would be crossed 
exactly once (Carlson, 2006). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 
 
In 1735 the Swiss mathematician Leonhard Euler presented a solution to this 
problem, concluding that such a walk was impossible. He argued, that for this to be 
possible, for each bridge entering a land mass, there must be another bridge to 
allow an exit, meaning that each landmass, with the possible exception of the 
initial and terminal ones if they are not identical, must serve as an endpoint of an 
even number of bridges. 
     It would be several years before mathematicians would picture the Königsberg 
bridge problem as a graph consisting of vertices representing the landmasses and 
edges representing the bridges, as shown in Figure 2 (Carlson, 2006). The degree of 
a vertex of a graph specifies the number of edges incident to it. In modern graph 
theory, an Eulerian trail traverses each edge of a graph once and only once. Thus, 
Euler’s assertion that a graph possessing such a path has at most two vertices of 
odd degree was the first theorem in graph theory (Euler, 1736). 
 
     
 
 
 
 
 
 
 
 

Figure 2 

The aim of this paper is to explore the concept of generalisation in mathematics, 
which is one of the most important properties one considers when dealing with 
mathematical structures, through the theory of graphs, as well as the interaction 
between theory and application to real world problems.  To further explore and 
discuss this notion, we consider the topic of graph colouring.  We first give some 
basic definitions and results, and we then develop the various generalisations, both 
of the graph structure, as well as the concept of colouring.  
     We first give the formal definition of a graph. A graph is an ordered pair 𝐺𝐺𝐺𝐺 =
(𝑉𝑉𝑉𝑉,𝐸𝐸𝐸𝐸) such that 𝑉𝑉𝑉𝑉 is a set, called the vertex set, and 𝐸𝐸𝐸𝐸 is a family of 2-
element subsets of 𝑉𝑉𝑉𝑉, called the edge set, that is 𝐸𝐸𝐸𝐸 ⊆ {{𝑢𝑢𝑢𝑢, 𝑣𝑣𝑣𝑣}:𝑢𝑢𝑢𝑢, 𝑣𝑣𝑣𝑣 ∈ 𝑉𝑉𝑉𝑉}.  In Figure 
3, the vertices are the points 𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵,𝐶𝐶𝐶𝐶,𝐷𝐷𝐷𝐷,𝐸𝐸𝐸𝐸,𝐹𝐹𝐹𝐹,𝐺𝐺𝐺𝐺 which are marked as nodes, and the 
edges are  

�{𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵}, {𝐴𝐴𝐴𝐴,𝐸𝐸𝐸𝐸}, {𝐵𝐵𝐵𝐵,𝐸𝐸𝐸𝐸}, {𝐶𝐶𝐶𝐶,𝐷𝐷𝐷𝐷}, {𝐶𝐶𝐶𝐶,𝐸𝐸𝐸𝐸}, {𝐶𝐶𝐶𝐶,𝐹𝐹𝐹𝐹}, {𝐷𝐷𝐷𝐷,𝐸𝐸𝐸𝐸}, {𝐷𝐷𝐷𝐷,𝐹𝐹𝐹𝐹}, {𝐹𝐹𝐹𝐹,𝐺𝐺𝐺𝐺}�. 
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The structure and definition of a graph led to further studies, and several results 
and types of graphs were studied and constructed, as well as properties of such 
structures, some of which we give here, and others later on. As mentioned, the 
degree of a vertex is the number of edges incident to it.  A graph is said to be 
simple if it has no loops or multiedges.  A complete graph 𝐾𝐾𝐾𝐾𝑛𝑛𝑛𝑛 is a graph on 𝑛𝑛𝑛𝑛 
vertices such that every pair of vertices are joined by an edge, that is the number 
of edges is �𝑛𝑛𝑛𝑛2�.  A bipartite graph 𝐺𝐺𝐺𝐺 is one in which the vertex set can be 
partitioned into two sets 𝑋𝑋𝑋𝑋 and 𝑌𝑌𝑌𝑌 that is  𝑉𝑉𝑉𝑉 = 𝑉𝑉𝑉𝑉(𝐺𝐺𝐺𝐺) = 𝑋𝑋𝑋𝑋 ∪ 𝑌𝑌𝑌𝑌 and 𝑋𝑋𝑋𝑋 ∩ 𝑌𝑌𝑌𝑌 = ∅, and 
such that any edge joins a vertex in 𝑋𝑋𝑋𝑋 to a vertex in 𝑌𝑌𝑌𝑌.  A complete bipartite graph 
𝐾𝐾𝐾𝐾𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛 is one in which  |𝑋𝑋𝑋𝑋| = 𝑚𝑚𝑚𝑚, |𝑌𝑌𝑌𝑌| = 𝑛𝑛𝑛𝑛 and 𝐸𝐸𝐸𝐸 = {𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥: 𝑥𝑥𝑥𝑥 ∈ 𝑋𝑋𝑋𝑋,𝑥𝑥𝑥𝑥 ∈ 𝑌𝑌𝑌𝑌}, that is all 
possible edges joining a vertex in 𝑋𝑋𝑋𝑋 to a vertex in 𝑌𝑌𝑌𝑌. 
     When a graph is represented graphically, we consider the notion of a plane 
graph, which is a graph for which, in the graphical representation, no two edges 
cross each other.  A graph is said to be planar if there exists a plane representation 
of the graph.  Planar graphs are characterized by the famous Theorem by 
Kuratowski (Nishizeki & Chiba, 1988), which states that a graph is planar if and only 
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In 1735 the Swiss mathematician Leonhard Euler presented a solution to this problem, 
concluding that such a walk was impossible. He argued, that for this to be possible, for each 
bridge entering a land mass, there must be another bridge to allow an exit, meaning that each 
landmass, with the possible exception of the initial and terminal ones if they are not identical, 
must serve as an endpoint of an even number of bridges. 
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through the theory of graphs, as well as the interaction between theory and application to real 
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joining joins a vertex in 𝑋𝑋𝑋𝑋 to a vertex in 𝑌𝑌𝑌𝑌. 

When a graph is represented graphically, we consider the notion of a plane graph, which is a 
graph for which, in the graphical representation, no two edges cross each other.  A graph is 
said to be planar if there exists a plane representation of the graph.  Planar graphs are 
characterized by the famous Theorem by Kuratowski (Nishizeki & Chiba, 1988), which states 
that a graph is planar if and only if it does not contain any subdivision of 𝐾𝐾𝐾𝐾5 or 𝐾𝐾𝐾𝐾3,3.  A 
subdivision of an edge is the operation where the edge is replaced by a path of length 2, the 
internal vertex added to the original graph. A subdivision of a graph 𝐺𝐺𝐺𝐺 is a graph achieved by 
a sequence of edge-subdivisions on 𝐺𝐺𝐺𝐺. 

Arguably, one of the most famous theorems in graph theory is the Four Colour Theorem (for a 
history of this see (Mitchem, 1981)). This states that, given any separation of a plane into 
contiguous regions, producing a figure called a map, no more than four colours are required 
to colour the regions of the map so that no two adjacent regions have the same colour.  The set 
of regions of a map can be represented more abstractly as a graph that has a vertex for each 
region and an edge for every pair of regions that share a boundary segment.   The resulting 
graph is always planar.   Hence, in graph-theoretic terminology, the Four Colour Theorem 
states that the vertices of every planar graph can be coloured with at most four colours so that 
no two adjacent vertices receive the same colour.  It is generally accepted that this is what 
initiated the study of vertex colourings in graphs.  The proof of this “well-known fact” eluded 
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if it does not contain any subdivision of 𝐾𝐾𝐾𝐾5 or 𝐾𝐾𝐾𝐾3,3.  A subdivision of an edge is the 
operation where the edge is replaced by a path of length 2, the internal vertex 
added to the original graph. A subdivision of a graph 𝐺𝐺𝐺𝐺 is a graph achieved by a 
sequence of edge-subdivisions on 𝐺𝐺𝐺𝐺. 
     Arguably, one of the most famous theorems in graph theory is the Four Colour 
Theorem (for a history of this see (Mitchem, 1981)). This states that, given any 
separation of a plane into contiguous regions, producing a figure called a map, no 
more than four colours are required to colour the regions of the map so that no 
two adjacent regions have the same colour.  The set of regions of a map can be 
represented more abstractly as a graph that has a vertex for each region and an 
edge for every pair of regions that share a boundary segment.   The resulting graph 
is always planar.   Hence, in graph-theoretic terminology, the Four Colour Theorem 
states that the vertices of every planar graph can be coloured with at most four 
colours so that no two adjacent vertices receive the same colour.  It is generally 
accepted that this is what initiated the study of vertex colourings in graphs.  The 
proof of this “well-known fact” eluded mathematicians for over 100 years and was 
finally proved by Appel and Haken in 1976 (Appel & Haken, 1976), the first 
major theorem to be proved using a computer.  Through this problem, the notion 
of vertex colouring is introduced. 
     The paper is organised as follows:  we first discuss generalisations of the graph 
structure in different ways, and give some ideas of possible applications.  We then 
consider colouring, and look at various generalisations of this theme, leading to a 
unifying definition of the concept of vertex colouring of graphs and their 
generalisations, which encompasses all the possible variations discussed.  Finally, 
we look at some interesting applications of graphs and colourings, particularly in 
computer science and telecommunication technology. 
 
 
Generalisation of the Graph structure 
 
If we look back at the formal definition of a graph, a graph is made up of a set of 
elements which we call vertices, and a family of subsets of this set, all of order two.  
This of course suggests that the structure can be generalised in more than one 
way.  One such way is to give the edges direction, that is the edges are now 
ordered pairs of vertices, and are often referred to as arcs.  We call this a directed 
graph, or digraph (Weisstein, 2000).  Graphically we use an arrow on the edge to 
indicate its direction.  A graph can be considered to be a special case of a digraph in 
which an edge can be considered to be two arcs, one in each direction.  We will not 
dwell on this concept but rather look at the next idea of generalisation in more 
detail, particularly in the area of colouring. 
     Another way of generalising the graph structure is to remove the restriction of 
the size of the subsets, that is, rather than taking only subsets of size two, we can 

take larger subsets of vertices.  This gives rise to the concept of a hypergraph.  A 
hypergraph is made up of a set of elements called vertices, and a family of non-
empty subsets called hyperedges or edges, which can now be of any size.  An r-
uniform hypergraph is a hypergraph in which all edges are of size r.  So essentially a 
graph is a 2-uniform hypergraph. 
     The idea of looking at a family of sets as a similar structure to a graph started 
around 1960, by Berge and Lovasz amongst others (Berge, 1997). In regarding each 
set as a "generalised edge" and in calling the family itself a "hypergraph", their 
initial idea was to try to extend certain classical results of Graph Theory. However, 
it was noticed that this generalisation often led to simplification; moreover, one 
single statement, sometimes remarkably simple, could unify several theorems on 
graphs. In addition, the theory of hypergraphs is seen to be a very useful tool for 
the solution of integer optimization problems when the matrix has certain special 
properties which involve scheduling and location problems. 
     Several graph operations and results were thus studied in this new context, 
amongst which was the concept of colouring.  In the next section we shall look at 
the area of colouring and several variations on the original theme which result 
when we consider hypergraphs. For standard graph theoretical notation we refer 
to (West, 2000). 
 
 
Colouring Graphs and Hypergraphs 
 
As previously mentioned, the Four Colour Theorem is considered the first graph 
colouring problem to be posed.  It led to the definition of a proper vertex colouring 
of a graph, that is an assignment of colours to the vertices such that no two 
adjacent vertices receive the same colour, as well as the chromatic number of a 
graph 𝐺𝐺𝐺𝐺,𝜒𝜒𝜒𝜒(𝐺𝐺𝐺𝐺), which is the minimum number of colours required for a proper 
colouring of 𝐺𝐺𝐺𝐺.  Several families of graphs where studied with the aim of 
determining their chromatic number.  Clearly, one can see that the chromatic 
number of a bipartite graph is 2, and this is another characterisation of bipartite 
graphs, and the chromatic number of a complete graph 𝐾𝐾𝐾𝐾𝑛𝑛𝑛𝑛 is 𝑛𝑛𝑛𝑛.  The proof of the 
Four Colour Theorem finally showed that the chromatic number of planar graphs is 
4. 
     An obvious extension to consider was the colouring of the edges of a graph.  
An edge-colouring of a graph is an assignment of colours to the edges of the graph 
so that no two incident edges have the same colour. In 1964, Vizing (Vizing, 1964) 
proved that the minimum number of colours needed to edge-colour a simple 
graph, termed the chromatic index χ′, is either its maximum degree Δ, or Δ+1. 
What followed was a study to classify all known graphs as Class 1 if χ′ = Δ, or Class 
2, when 𝜒𝜒𝜒𝜒′ = Δ + 1.  This classification is not yet complete. 
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if it does not contain any subdivision of 𝐾𝐾𝐾𝐾5 or 𝐾𝐾𝐾𝐾3,3.  A subdivision of an edge is the 
operation where the edge is replaced by a path of length 2, the internal vertex 
added to the original graph. A subdivision of a graph 𝐺𝐺𝐺𝐺 is a graph achieved by a 
sequence of edge-subdivisions on 𝐺𝐺𝐺𝐺. 
     Arguably, one of the most famous theorems in graph theory is the Four Colour 
Theorem (for a history of this see (Mitchem, 1981)). This states that, given any 
separation of a plane into contiguous regions, producing a figure called a map, no 
more than four colours are required to colour the regions of the map so that no 
two adjacent regions have the same colour.  The set of regions of a map can be 
represented more abstractly as a graph that has a vertex for each region and an 
edge for every pair of regions that share a boundary segment.   The resulting graph 
is always planar.   Hence, in graph-theoretic terminology, the Four Colour Theorem 
states that the vertices of every planar graph can be coloured with at most four 
colours so that no two adjacent vertices receive the same colour.  It is generally 
accepted that this is what initiated the study of vertex colourings in graphs.  The 
proof of this “well-known fact” eluded mathematicians for over 100 years and was 
finally proved by Appel and Haken in 1976 (Appel & Haken, 1976), the first 
major theorem to be proved using a computer.  Through this problem, the notion 
of vertex colouring is introduced. 
     The paper is organised as follows:  we first discuss generalisations of the graph 
structure in different ways, and give some ideas of possible applications.  We then 
consider colouring, and look at various generalisations of this theme, leading to a 
unifying definition of the concept of vertex colouring of graphs and their 
generalisations, which encompasses all the possible variations discussed.  Finally, 
we look at some interesting applications of graphs and colourings, particularly in 
computer science and telecommunication technology. 
 
 
Generalisation of the Graph structure 
 
If we look back at the formal definition of a graph, a graph is made up of a set of 
elements which we call vertices, and a family of subsets of this set, all of order two.  
This of course suggests that the structure can be generalised in more than one 
way.  One such way is to give the edges direction, that is the edges are now 
ordered pairs of vertices, and are often referred to as arcs.  We call this a directed 
graph, or digraph (Weisstein, 2000).  Graphically we use an arrow on the edge to 
indicate its direction.  A graph can be considered to be a special case of a digraph in 
which an edge can be considered to be two arcs, one in each direction.  We will not 
dwell on this concept but rather look at the next idea of generalisation in more 
detail, particularly in the area of colouring. 
     Another way of generalising the graph structure is to remove the restriction of 
the size of the subsets, that is, rather than taking only subsets of size two, we can 

take larger subsets of vertices.  This gives rise to the concept of a hypergraph.  A 
hypergraph is made up of a set of elements called vertices, and a family of non-
empty subsets called hyperedges or edges, which can now be of any size.  An r-
uniform hypergraph is a hypergraph in which all edges are of size r.  So essentially a 
graph is a 2-uniform hypergraph. 
     The idea of looking at a family of sets as a similar structure to a graph started 
around 1960, by Berge and Lovasz amongst others (Berge, 1997). In regarding each 
set as a "generalised edge" and in calling the family itself a "hypergraph", their 
initial idea was to try to extend certain classical results of Graph Theory. However, 
it was noticed that this generalisation often led to simplification; moreover, one 
single statement, sometimes remarkably simple, could unify several theorems on 
graphs. In addition, the theory of hypergraphs is seen to be a very useful tool for 
the solution of integer optimization problems when the matrix has certain special 
properties which involve scheduling and location problems. 
     Several graph operations and results were thus studied in this new context, 
amongst which was the concept of colouring.  In the next section we shall look at 
the area of colouring and several variations on the original theme which result 
when we consider hypergraphs. For standard graph theoretical notation we refer 
to (West, 2000). 
 
 
Colouring Graphs and Hypergraphs 
 
As previously mentioned, the Four Colour Theorem is considered the first graph 
colouring problem to be posed.  It led to the definition of a proper vertex colouring 
of a graph, that is an assignment of colours to the vertices such that no two 
adjacent vertices receive the same colour, as well as the chromatic number of a 
graph 𝐺𝐺𝐺𝐺,𝜒𝜒𝜒𝜒(𝐺𝐺𝐺𝐺), which is the minimum number of colours required for a proper 
colouring of 𝐺𝐺𝐺𝐺.  Several families of graphs where studied with the aim of 
determining their chromatic number.  Clearly, one can see that the chromatic 
number of a bipartite graph is 2, and this is another characterisation of bipartite 
graphs, and the chromatic number of a complete graph 𝐾𝐾𝐾𝐾𝑛𝑛𝑛𝑛 is 𝑛𝑛𝑛𝑛.  The proof of the 
Four Colour Theorem finally showed that the chromatic number of planar graphs is 
4. 
     An obvious extension to consider was the colouring of the edges of a graph.  
An edge-colouring of a graph is an assignment of colours to the edges of the graph 
so that no two incident edges have the same colour. In 1964, Vizing (Vizing, 1964) 
proved that the minimum number of colours needed to edge-colour a simple 
graph, termed the chromatic index χ′, is either its maximum degree Δ, or Δ+1. 
What followed was a study to classify all known graphs as Class 1 if χ′ = Δ, or Class 
2, when 𝜒𝜒𝜒𝜒′ = Δ + 1.  This classification is not yet complete. 
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     The colouring of hypergraphs started in 1966 when Erdös and Hajnal (Erdös & 
Hajnal, 1966) introduced the notions of colouring and the chromatic number of a 
hypergraph, and obtained the first important results.  From the definition, in a 
proper colouring no edge is allowed to be monochromatic. In the literature these 
colourings are sometimes called classic colourings. This generalization of graph 
colourings initiated a wide area of further research. First, some old problems in set 
systems were formulated as colouring problems and many results in graph 
colouring were extended to hypergraphs.  For example, using a natural 
generalization of the degree of a vertex, the classic theorem of Brooks’, which for 
classic graph colouring states that the chromatic number is at most ∆, except for 
complete graphs and odd cycles (Brooks, 1941), was shown to hold for 
hypergraphs (Berge, 1989). 
     The fact that hypergraphs can contain more than two vertices in an edge 
allowed the exploration of different and more restricted colouring notions.  The 
classic concept of hypergraph colouring is asymmetric: with the chromatic number 
as its central notion, this theory focuses on the minimum number of colours, while 
the maximum number of colours has no mathematical interest since a totally 
multicoloured vertex-set is always feasible. However, one can now consider the 
maximum number of colours when excluding polychromatic edges. 
     Voloshin (1993)  introduced the concept of a mixed hypergraph colouring, which 
eliminated the above asymmetry and opened up an entirely new direction of 
research. Instead of H = (V, E), the basic idea is to consider a structure H = (V, C, D), 
termed a mixed hypergraph, with two families of subsets called C-edges and D-
edges. By definition, a proper λ-colouring of a mixed hypergraph H = (V, C, D) is a 
mapping c : V → {1, 2, . . . , λ} for  which two conditions hold:  
           • every C ∈ C  has at least two vertices of a Common colour;  
           • every D ∈ D  has at least two vertices of Different colours. 
     A mixed hypergraph in which each edge is both a C-edge and a D-edge is called 
a bihypergraph (Voloshin, 1993).  Here we require that each edge is non-
monochromatic and non-rainbow (polychromatic), or NMNR for short, as termed in 
(Caro, et al., 2015).  Note that, for classic graph colouring, a graph may be 
considered to be a 2-uniform mixed hypergraph in which all edges are D-edges. 
     This concept led to the discovery of new principal properties of colourings that 
do not exist in classical graph and hypergraph colourings: first of all, we now look 
at a lower chromatic number 𝜒𝜒𝜒𝜒  and an upper chromatic number 𝜒𝜒𝜒𝜒.  The chromatic 
spectrum of a hypergraph 𝐻𝐻𝐻𝐻  is the set of values k such that 𝜒𝜒𝜒𝜒 ≤ 𝑘𝑘𝑘𝑘 ≤ 𝜒𝜒𝜒𝜒 and 𝐻𝐻𝐻𝐻 is k-
colourable.   We now have hypergraphs which are uncolourable, and perhaps most 
counterintuitively, which have gaps in the chromatic spectrum, that is there may 
exist integers a, b where a<b, such that the hypergraph H is a-colourable and b-
colourable, but not t-colourable for some a < t < b.    
     So with the more general structure of a hypergraph, new concepts in vertex 
colourings emerged, such as mixed hypergraphs, and this led to further vertex-

colouring variations.  Bujtás and Tuza (2009) define colour-bounded hypergraphs 
as follows.  We are given two integers, si and ti associated with each edge ei – a 
proper colouring requires that for each edge ei, the number of colours used lies 
between si and ti (inclusive).  We can have a colouring such that si = α, and ti = β are 
the same for each edge – we call this an (α,β)-colouring (Caro, et al., 2015).  Given 
a hypergraph H, we have a proper (α,β)-colouring if the number of colours for 
every edge lies between α and β.  So, for an r-uniform hypergraph, an NMNR-
colouring is equivalent to a (2,r-1)-colouring, a classic colouring is equivalent to a 
(2,r)-colouring.  This again illustrates the idea of generalisation, where a new 
definition encompasses previous definitions as special cases.  Some properties of  
NMNR-colourings, such as uncolourability and chromatic spectrum gaps, can be 
extended to (𝛼𝛼𝛼𝛼,𝛽𝛽𝛽𝛽) − colourings. 
     We now describe L-colourings and Q-colourings of r-uniform hypergraphs, 
which can further encompass several different types of hypergraph colourings 
described in the literature. Such ideas, which originated in Voloshin's seminal work 
in Jiang et al. (2002), were more explicitly studied in Milici et al. (2001) ,  Griggs et 
al. (2008) and Quatrocchi (2001), and studied in much more generality for oriented 
graphs in  Dvörak et al. (2010).  We define L- and Q-colourings as follows (Caro, et 
al., 2016). 
     Let H be an r-uniform hypergraph, 𝑟𝑟𝑟𝑟 ≥ 2 and consider 𝐸𝐸𝐸𝐸 ∈ 𝐸𝐸𝐸𝐸(𝐻𝐻𝐻𝐻).  Then a 
colouring of the vertices of E induces a partition 𝜋𝜋𝜋𝜋 of r whose parts are the 
numbers of vertices of each colour appearing in E.  This partition is called the 
colour pattern of E and is written as  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝐸𝐸𝐸𝐸) = (𝑛𝑛𝑛𝑛1,𝑛𝑛𝑛𝑛2, … ,𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘), where 𝑛𝑛𝑛𝑛1 ≥ 𝑛𝑛𝑛𝑛2 ≥
⋯ ≥ 𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘 ≥ 1  and ∑ 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘

𝑖𝑖𝑖𝑖=1 = 𝑟𝑟𝑟𝑟. 
     For any edge 𝐸𝐸𝐸𝐸 ∈ 𝐸𝐸𝐸𝐸(𝐻𝐻𝐻𝐻), we assign 𝑄𝑄𝑄𝑄(𝐸𝐸𝐸𝐸) ⊆ 𝑃𝑃𝑃𝑃(𝑟𝑟𝑟𝑟), where P(r) denotes the set of 
all possible partitions of r.  A colouring of the vertices of H is said to be an L-
colouring, where 𝐿𝐿𝐿𝐿 = {𝑄𝑄𝑄𝑄(𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … , |𝐸𝐸𝐸𝐸(𝐻𝐻𝐻𝐻)|}, if ∀𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 ∈ 𝐸𝐸𝐸𝐸(𝐻𝐻𝐻𝐻), 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖) ∈ 𝑄𝑄𝑄𝑄(𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖). 
In the case when all the edges are assigned the same family of partitions Q, i.e. 
𝑄𝑄𝑄𝑄(𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖) = 𝑄𝑄𝑄𝑄,∀𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 ∈ 𝐸𝐸𝐸𝐸(𝐻𝐻𝐻𝐻), we call this a Q-colouring. 
     The main types which have been studied, some of which have already been 
mentioned, are now described in terms of L- and Q-colourings.  
     Two particularly important partitions of r will be used several times - the 
monochromatic partition (r) and the rainbow partition (1,1, … ,1).  M and R are 
used to represent these partitions respectively. 

• For classical graph colourings, 𝑄𝑄𝑄𝑄 = {𝜋𝜋𝜋𝜋 ∈ 𝑃𝑃𝑃𝑃(𝑟𝑟𝑟𝑟):𝜋𝜋𝜋𝜋 = 𝑅𝑅𝑅𝑅}. 
• For classical colourings of hypergraphs, 𝑄𝑄𝑄𝑄 = {𝜋𝜋𝜋𝜋 ∈ 𝑃𝑃𝑃𝑃(𝑟𝑟𝑟𝑟):𝜋𝜋𝜋𝜋 ≠ 𝑀𝑀𝑀𝑀}.  
• In Voloshin colourings of hypergraphs or mixed hypergraphs (Voloshin, 

1993), there exist two types of edges, D-edges and C-edges. A D-edge 
cannot be monochromatic, that is all vertices of the edge having the same 
colour, while a C-edge cannot be polychromatic(rainbow), that is all 
vertices having a different colour. Hence for all D-edges, 𝑄𝑄𝑄𝑄𝐷𝐷𝐷𝐷 = 𝑄𝑄𝑄𝑄(𝐸𝐸𝐸𝐸) =
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     The colouring of hypergraphs started in 1966 when Erdös and Hajnal (Erdös & 
Hajnal, 1966) introduced the notions of colouring and the chromatic number of a 
hypergraph, and obtained the first important results.  From the definition, in a 
proper colouring no edge is allowed to be monochromatic. In the literature these 
colourings are sometimes called classic colourings. This generalization of graph 
colourings initiated a wide area of further research. First, some old problems in set 
systems were formulated as colouring problems and many results in graph 
colouring were extended to hypergraphs.  For example, using a natural 
generalization of the degree of a vertex, the classic theorem of Brooks’, which for 
classic graph colouring states that the chromatic number is at most ∆, except for 
complete graphs and odd cycles (Brooks, 1941), was shown to hold for 
hypergraphs (Berge, 1989). 
     The fact that hypergraphs can contain more than two vertices in an edge 
allowed the exploration of different and more restricted colouring notions.  The 
classic concept of hypergraph colouring is asymmetric: with the chromatic number 
as its central notion, this theory focuses on the minimum number of colours, while 
the maximum number of colours has no mathematical interest since a totally 
multicoloured vertex-set is always feasible. However, one can now consider the 
maximum number of colours when excluding polychromatic edges. 
     Voloshin (1993)  introduced the concept of a mixed hypergraph colouring, which 
eliminated the above asymmetry and opened up an entirely new direction of 
research. Instead of H = (V, E), the basic idea is to consider a structure H = (V, C, D), 
termed a mixed hypergraph, with two families of subsets called C-edges and D-
edges. By definition, a proper λ-colouring of a mixed hypergraph H = (V, C, D) is a 
mapping c : V → {1, 2, . . . , λ} for  which two conditions hold:  
           • every C ∈ C  has at least two vertices of a Common colour;  
           • every D ∈ D  has at least two vertices of Different colours. 
     A mixed hypergraph in which each edge is both a C-edge and a D-edge is called 
a bihypergraph (Voloshin, 1993).  Here we require that each edge is non-
monochromatic and non-rainbow (polychromatic), or NMNR for short, as termed in 
(Caro, et al., 2015).  Note that, for classic graph colouring, a graph may be 
considered to be a 2-uniform mixed hypergraph in which all edges are D-edges. 
     This concept led to the discovery of new principal properties of colourings that 
do not exist in classical graph and hypergraph colourings: first of all, we now look 
at a lower chromatic number 𝜒𝜒𝜒𝜒  and an upper chromatic number 𝜒𝜒𝜒𝜒.  The chromatic 
spectrum of a hypergraph 𝐻𝐻𝐻𝐻  is the set of values k such that 𝜒𝜒𝜒𝜒 ≤ 𝑘𝑘𝑘𝑘 ≤ 𝜒𝜒𝜒𝜒 and 𝐻𝐻𝐻𝐻 is k-
colourable.   We now have hypergraphs which are uncolourable, and perhaps most 
counterintuitively, which have gaps in the chromatic spectrum, that is there may 
exist integers a, b where a<b, such that the hypergraph H is a-colourable and b-
colourable, but not t-colourable for some a < t < b.    
     So with the more general structure of a hypergraph, new concepts in vertex 
colourings emerged, such as mixed hypergraphs, and this led to further vertex-

colouring variations.  Bujtás and Tuza (2009) define colour-bounded hypergraphs 
as follows.  We are given two integers, si and ti associated with each edge ei – a 
proper colouring requires that for each edge ei, the number of colours used lies 
between si and ti (inclusive).  We can have a colouring such that si = α, and ti = β are 
the same for each edge – we call this an (α,β)-colouring (Caro, et al., 2015).  Given 
a hypergraph H, we have a proper (α,β)-colouring if the number of colours for 
every edge lies between α and β.  So, for an r-uniform hypergraph, an NMNR-
colouring is equivalent to a (2,r-1)-colouring, a classic colouring is equivalent to a 
(2,r)-colouring.  This again illustrates the idea of generalisation, where a new 
definition encompasses previous definitions as special cases.  Some properties of  
NMNR-colourings, such as uncolourability and chromatic spectrum gaps, can be 
extended to (𝛼𝛼𝛼𝛼,𝛽𝛽𝛽𝛽) − colourings. 
     We now describe L-colourings and Q-colourings of r-uniform hypergraphs, 
which can further encompass several different types of hypergraph colourings 
described in the literature. Such ideas, which originated in Voloshin's seminal work 
in Jiang et al. (2002), were more explicitly studied in Milici et al. (2001) ,  Griggs et 
al. (2008) and Quatrocchi (2001), and studied in much more generality for oriented 
graphs in  Dvörak et al. (2010).  We define L- and Q-colourings as follows (Caro, et 
al., 2016). 
     Let H be an r-uniform hypergraph, 𝑟𝑟𝑟𝑟 ≥ 2 and consider 𝐸𝐸𝐸𝐸 ∈ 𝐸𝐸𝐸𝐸(𝐻𝐻𝐻𝐻).  Then a 
colouring of the vertices of E induces a partition 𝜋𝜋𝜋𝜋 of r whose parts are the 
numbers of vertices of each colour appearing in E.  This partition is called the 
colour pattern of E and is written as  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝐸𝐸𝐸𝐸) = (𝑛𝑛𝑛𝑛1,𝑛𝑛𝑛𝑛2, … ,𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘), where 𝑛𝑛𝑛𝑛1 ≥ 𝑛𝑛𝑛𝑛2 ≥
⋯ ≥ 𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘 ≥ 1  and ∑ 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘

𝑖𝑖𝑖𝑖=1 = 𝑟𝑟𝑟𝑟. 
     For any edge 𝐸𝐸𝐸𝐸 ∈ 𝐸𝐸𝐸𝐸(𝐻𝐻𝐻𝐻), we assign 𝑄𝑄𝑄𝑄(𝐸𝐸𝐸𝐸) ⊆ 𝑃𝑃𝑃𝑃(𝑟𝑟𝑟𝑟), where P(r) denotes the set of 
all possible partitions of r.  A colouring of the vertices of H is said to be an L-
colouring, where 𝐿𝐿𝐿𝐿 = {𝑄𝑄𝑄𝑄(𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖): 𝑖𝑖𝑖𝑖 = 1, … , |𝐸𝐸𝐸𝐸(𝐻𝐻𝐻𝐻)|}, if ∀𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 ∈ 𝐸𝐸𝐸𝐸(𝐻𝐻𝐻𝐻), 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖) ∈ 𝑄𝑄𝑄𝑄(𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖). 
In the case when all the edges are assigned the same family of partitions Q, i.e. 
𝑄𝑄𝑄𝑄(𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖) = 𝑄𝑄𝑄𝑄,∀𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 ∈ 𝐸𝐸𝐸𝐸(𝐻𝐻𝐻𝐻), we call this a Q-colouring. 
     The main types which have been studied, some of which have already been 
mentioned, are now described in terms of L- and Q-colourings.  
     Two particularly important partitions of r will be used several times - the 
monochromatic partition (r) and the rainbow partition (1,1, … ,1).  M and R are 
used to represent these partitions respectively. 

• For classical graph colourings, 𝑄𝑄𝑄𝑄 = {𝜋𝜋𝜋𝜋 ∈ 𝑃𝑃𝑃𝑃(𝑟𝑟𝑟𝑟):𝜋𝜋𝜋𝜋 = 𝑅𝑅𝑅𝑅}. 
• For classical colourings of hypergraphs, 𝑄𝑄𝑄𝑄 = {𝜋𝜋𝜋𝜋 ∈ 𝑃𝑃𝑃𝑃(𝑟𝑟𝑟𝑟):𝜋𝜋𝜋𝜋 ≠ 𝑀𝑀𝑀𝑀}.  
• In Voloshin colourings of hypergraphs or mixed hypergraphs (Voloshin, 

1993), there exist two types of edges, D-edges and C-edges. A D-edge 
cannot be monochromatic, that is all vertices of the edge having the same 
colour, while a C-edge cannot be polychromatic(rainbow), that is all 
vertices having a different colour. Hence for all D-edges, 𝑄𝑄𝑄𝑄𝐷𝐷𝐷𝐷 = 𝑄𝑄𝑄𝑄(𝐸𝐸𝐸𝐸) =
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{𝜋𝜋𝜋𝜋 ∈ 𝑃𝑃𝑃𝑃(𝑟𝑟𝑟𝑟):𝜋𝜋𝜋𝜋 ≠ 𝑀𝑀𝑀𝑀}, while for all C-edges, 𝑄𝑄𝑄𝑄𝐶𝐶𝐶𝐶 = 𝑄𝑄𝑄𝑄(𝐸𝐸𝐸𝐸) = {𝜋𝜋𝜋𝜋 ∈ 𝑃𝑃𝑃𝑃(𝑟𝑟𝑟𝑟):𝜋𝜋𝜋𝜋 ≠
𝑅𝑅𝑅𝑅}, and 𝐿𝐿𝐿𝐿 = {𝑄𝑄𝑄𝑄𝐶𝐶𝐶𝐶 ∪ 𝑄𝑄𝑄𝑄𝐷𝐷𝐷𝐷}. 

• A special case of this type of colouring is a non-monochromatic non-
rainbow (NMNR) colouring, as discussed in (Caro, et al., 2015), which is a 
Q-colouring where 𝑄𝑄𝑄𝑄 = {𝜋𝜋𝜋𝜋 ∈ 𝑃𝑃𝑃𝑃(𝑟𝑟𝑟𝑟):𝜋𝜋𝜋𝜋 ∉ {𝑀𝑀𝑀𝑀,𝑅𝑅𝑅𝑅}}. Such hypergraphs are 
often referred to as bi-hypergraphs. 

• An (𝛼𝛼𝛼𝛼,𝛽𝛽𝛽𝛽)-colouring of a hypergraph H, as described in (Caro, et al., 2015), 
is the case where 𝑄𝑄𝑄𝑄 = {𝜋𝜋𝜋𝜋 ∈ 𝑃𝑃𝑃𝑃(𝑟𝑟𝑟𝑟):𝜋𝜋𝜋𝜋 = (𝑛𝑛𝑛𝑛1,𝑛𝑛𝑛𝑛2, … ,𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘),𝛼𝛼𝛼𝛼 ≤ 𝑘𝑘𝑘𝑘 ≤ 𝛽𝛽𝛽𝛽}.  This is 
based on the concept of colour-bounded hypergraphs first defined by 
Bujtás and Tuza in (Bujtás & Tuza, 2009). Observe that classical 
hypergraph colourings are (2,r)-colourings, while NMNR-colourings are 
(2,r-1)-colourings. 

• Bujtás and Tuza defined another type of hypergraph colouring with 
further restrictions in (Bujtás & Tuza, 2009): a stably-bounded hypergraph 
is a hypergraph together with four colour-bound functions which express 
restrictions on vertex colourings. Formally, an r-uniform stably bounded 
hypergraph is a six-tuple H = (V(H),E(H), s, t, a, b), where s,t,a and b are 
integer-valued functions defined on E(H), called colour-bound functions. 
We assume throughout that 1 ≤ 𝑠𝑠𝑠𝑠 ≤ 𝑝𝑝𝑝𝑝 ≤ 𝑟𝑟𝑟𝑟 and 1 ≤ 𝑝𝑝𝑝𝑝 ≤ 𝑏𝑏𝑏𝑏 ≤ 𝑟𝑟𝑟𝑟  hold. 
A proper vertex colouring of H= (V(H), E(H), s, t, a, b) satisfies the following 
three conditions for every edge 𝐸𝐸𝐸𝐸 ∈ 𝐸𝐸𝐸𝐸(𝐻𝐻𝐻𝐻):. 
o The number of different colours assigned to the vertices of E is at 

least s and at most t. 
o There exists a colour assigned to at least a vertices of E. 
o Each colour is assigned to at most b vertices of E. 
Hence, such a colouring is a L-colouring where L is a family of  𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖   such that 
for each 𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖 , 𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖 = {𝜋𝜋𝜋𝜋 ∈ 𝑃𝑃𝑃𝑃(𝑟𝑟𝑟𝑟):𝜋𝜋𝜋𝜋 = (𝑛𝑛𝑛𝑛1,𝑛𝑛𝑛𝑛2, … ,𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘),𝑛𝑛𝑛𝑛1 ≥ ⋯ ≥ 𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘, 𝑠𝑠𝑠𝑠 ≤ 𝑘𝑘𝑘𝑘 ≤
𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝 ≤ 𝑛𝑛𝑛𝑛1 ≤ 𝑏𝑏𝑏𝑏}. 

• Another type of colouring which has been defined is conflict-free 
colouring, in which each edge contains a vertex with a “unique colour” 
that does not appear on any other vertex in E. The surveys (Pach & Tardos, 
2009) and (Smorodinsky, 2013) include interesting results about, and 
applications of this type of colouring.  In this case, 𝑄𝑄𝑄𝑄 = {𝜋𝜋𝜋𝜋 ∈ 𝑃𝑃𝑃𝑃(𝑟𝑟𝑟𝑟):𝜋𝜋𝜋𝜋 =
(𝑛𝑛𝑛𝑛1,𝑛𝑛𝑛𝑛2, … ,𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘),𝑛𝑛𝑛𝑛1 ≥ 𝑛𝑛𝑛𝑛2 ≥ ⋯ ≥ 𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘 = 1}. 

 
This illustrates the power of generalisation, one of the main praxis in mathematics.  
What started as a single structure (the graph) and a defined concept for it (vertex 
colouring), led to variations of both structure and defined concept, leading to one 
unifying definition such that every variation can be described as a restricted case of 
this definition. 
 
 

Applications 
 
Mathematical structures, concepts and results are interesting in themselves, but 
more so when they prove to have important applications in solving problems from 
other disciplines.  As we have seen, structures themselves are often the results of 
trying to solve an existing problem.  We now look at a few applications of some of 
the results and methods which we have discussed. 
     We have seen that the main inspiration for the definition and study of vertex 
colourings in graphs was the Four Colour Theorem.  The Groupe Spécial Mobile 
(GSM) was created in 1982 to provide a standard for a mobile telephone system. 
The first GSM network was launched in 1991 by Radiolinja in Finland with joint 
technical infrastructure maintenance from Ericsson. Today, GSM is the most 
popular standard for mobile phones in the world, used by over 2 billion people 
across more than 212 countries. GSM is a cellular network with its entire 
geographical range divided into hexagonal cells. Each cell has a communication 
tower which connects with mobile phones within the cell. All mobile phones 
connect to the GSM network by searching for cells in the immediate vicinity. GSM 
networks operate in only four different frequency ranges. The reason why only 
four different frequencies suffice is clear: the map of the cellular regions can be 
properly coloured by using only four different colours! So, the vertex colouring 
algorithm may be used for assigning at most four different frequencies for any 
GSM mobile phone network. 
     In fact, several applications of hypergraphs and hypergraph colouring in the 
world of telecommunications, particularly in the solution of resource allocation.  
One such example involves wireless communication, which is used in many 
different situations such as mobile telephony, radio and TV broadcasting, satellite 
communication, etc.  In each of these situations a frequency assignment problem 
arises with application-specific characteristics.  Several different modelling 
approaches have been developed for each of the features of the problem, such as 
the handling of interference among radio signals, the availability of frequencies, 
and the optimization criterion. The work described in Even et al. (2003) and 
Smorodinsky (2003) proposed to model frequency assignment to cellular antennas 
as conflict-free colouring. In the model developed in this research, one can use a 
very “small” number of distinct frequencies in total, to assign to a large number of 
antennas in a wireless network. 
     Another interesting application of mixed hypergraph colouring is the Byzantine 
agreement problem (Jaffe, et al., 2012).  A set of n processors, any f of whom may 
be arbitrarily faulty, must reach agreement on a value proposed by one of the 
correct processors.  The system is said to be f-tolerant if there is a protocol which 
ensures that after a finite number of steps, all correct processors receive the right 
value. It is a celebrated result that unless n > 3f, Byzantine agreement is impossible, 
due to the fact that faulty processors can equivocate, that is, say different things to 
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{𝜋𝜋𝜋𝜋 ∈ 𝑃𝑃𝑃𝑃(𝑟𝑟𝑟𝑟):𝜋𝜋𝜋𝜋 ≠ 𝑀𝑀𝑀𝑀}, while for all C-edges, 𝑄𝑄𝑄𝑄𝐶𝐶𝐶𝐶 = 𝑄𝑄𝑄𝑄(𝐸𝐸𝐸𝐸) = {𝜋𝜋𝜋𝜋 ∈ 𝑃𝑃𝑃𝑃(𝑟𝑟𝑟𝑟):𝜋𝜋𝜋𝜋 ≠
𝑅𝑅𝑅𝑅}, and 𝐿𝐿𝐿𝐿 = {𝑄𝑄𝑄𝑄𝐶𝐶𝐶𝐶 ∪ 𝑄𝑄𝑄𝑄𝐷𝐷𝐷𝐷}. 

• A special case of this type of colouring is a non-monochromatic non-
rainbow (NMNR) colouring, as discussed in (Caro, et al., 2015), which is a 
Q-colouring where 𝑄𝑄𝑄𝑄 = {𝜋𝜋𝜋𝜋 ∈ 𝑃𝑃𝑃𝑃(𝑟𝑟𝑟𝑟):𝜋𝜋𝜋𝜋 ∉ {𝑀𝑀𝑀𝑀,𝑅𝑅𝑅𝑅}}. Such hypergraphs are 
often referred to as bi-hypergraphs. 

• An (𝛼𝛼𝛼𝛼,𝛽𝛽𝛽𝛽)-colouring of a hypergraph H, as described in (Caro, et al., 2015), 
is the case where 𝑄𝑄𝑄𝑄 = {𝜋𝜋𝜋𝜋 ∈ 𝑃𝑃𝑃𝑃(𝑟𝑟𝑟𝑟):𝜋𝜋𝜋𝜋 = (𝑛𝑛𝑛𝑛1,𝑛𝑛𝑛𝑛2, … ,𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘),𝛼𝛼𝛼𝛼 ≤ 𝑘𝑘𝑘𝑘 ≤ 𝛽𝛽𝛽𝛽}.  This is 
based on the concept of colour-bounded hypergraphs first defined by 
Bujtás and Tuza in (Bujtás & Tuza, 2009). Observe that classical 
hypergraph colourings are (2,r)-colourings, while NMNR-colourings are 
(2,r-1)-colourings. 

• Bujtás and Tuza defined another type of hypergraph colouring with 
further restrictions in (Bujtás & Tuza, 2009): a stably-bounded hypergraph 
is a hypergraph together with four colour-bound functions which express 
restrictions on vertex colourings. Formally, an r-uniform stably bounded 
hypergraph is a six-tuple H = (V(H),E(H), s, t, a, b), where s,t,a and b are 
integer-valued functions defined on E(H), called colour-bound functions. 
We assume throughout that 1 ≤ 𝑠𝑠𝑠𝑠 ≤ 𝑝𝑝𝑝𝑝 ≤ 𝑟𝑟𝑟𝑟 and 1 ≤ 𝑝𝑝𝑝𝑝 ≤ 𝑏𝑏𝑏𝑏 ≤ 𝑟𝑟𝑟𝑟  hold. 
A proper vertex colouring of H= (V(H), E(H), s, t, a, b) satisfies the following 
three conditions for every edge 𝐸𝐸𝐸𝐸 ∈ 𝐸𝐸𝐸𝐸(𝐻𝐻𝐻𝐻):. 
o The number of different colours assigned to the vertices of E is at 

least s and at most t. 
o There exists a colour assigned to at least a vertices of E. 
o Each colour is assigned to at most b vertices of E. 
Hence, such a colouring is a L-colouring where L is a family of  𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖   such that 
for each 𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖 , 𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖 = {𝜋𝜋𝜋𝜋 ∈ 𝑃𝑃𝑃𝑃(𝑟𝑟𝑟𝑟):𝜋𝜋𝜋𝜋 = (𝑛𝑛𝑛𝑛1,𝑛𝑛𝑛𝑛2, … ,𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘),𝑛𝑛𝑛𝑛1 ≥ ⋯ ≥ 𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘, 𝑠𝑠𝑠𝑠 ≤ 𝑘𝑘𝑘𝑘 ≤
𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝 ≤ 𝑛𝑛𝑛𝑛1 ≤ 𝑏𝑏𝑏𝑏}. 

• Another type of colouring which has been defined is conflict-free 
colouring, in which each edge contains a vertex with a “unique colour” 
that does not appear on any other vertex in E. The surveys (Pach & Tardos, 
2009) and (Smorodinsky, 2013) include interesting results about, and 
applications of this type of colouring.  In this case, 𝑄𝑄𝑄𝑄 = {𝜋𝜋𝜋𝜋 ∈ 𝑃𝑃𝑃𝑃(𝑟𝑟𝑟𝑟):𝜋𝜋𝜋𝜋 =
(𝑛𝑛𝑛𝑛1,𝑛𝑛𝑛𝑛2, … ,𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘),𝑛𝑛𝑛𝑛1 ≥ 𝑛𝑛𝑛𝑛2 ≥ ⋯ ≥ 𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘 = 1}. 

 
This illustrates the power of generalisation, one of the main praxis in mathematics.  
What started as a single structure (the graph) and a defined concept for it (vertex 
colouring), led to variations of both structure and defined concept, leading to one 
unifying definition such that every variation can be described as a restricted case of 
this definition. 
 
 

Applications 
 
Mathematical structures, concepts and results are interesting in themselves, but 
more so when they prove to have important applications in solving problems from 
other disciplines.  As we have seen, structures themselves are often the results of 
trying to solve an existing problem.  We now look at a few applications of some of 
the results and methods which we have discussed. 
     We have seen that the main inspiration for the definition and study of vertex 
colourings in graphs was the Four Colour Theorem.  The Groupe Spécial Mobile 
(GSM) was created in 1982 to provide a standard for a mobile telephone system. 
The first GSM network was launched in 1991 by Radiolinja in Finland with joint 
technical infrastructure maintenance from Ericsson. Today, GSM is the most 
popular standard for mobile phones in the world, used by over 2 billion people 
across more than 212 countries. GSM is a cellular network with its entire 
geographical range divided into hexagonal cells. Each cell has a communication 
tower which connects with mobile phones within the cell. All mobile phones 
connect to the GSM network by searching for cells in the immediate vicinity. GSM 
networks operate in only four different frequency ranges. The reason why only 
four different frequencies suffice is clear: the map of the cellular regions can be 
properly coloured by using only four different colours! So, the vertex colouring 
algorithm may be used for assigning at most four different frequencies for any 
GSM mobile phone network. 
     In fact, several applications of hypergraphs and hypergraph colouring in the 
world of telecommunications, particularly in the solution of resource allocation.  
One such example involves wireless communication, which is used in many 
different situations such as mobile telephony, radio and TV broadcasting, satellite 
communication, etc.  In each of these situations a frequency assignment problem 
arises with application-specific characteristics.  Several different modelling 
approaches have been developed for each of the features of the problem, such as 
the handling of interference among radio signals, the availability of frequencies, 
and the optimization criterion. The work described in Even et al. (2003) and 
Smorodinsky (2003) proposed to model frequency assignment to cellular antennas 
as conflict-free colouring. In the model developed in this research, one can use a 
very “small” number of distinct frequencies in total, to assign to a large number of 
antennas in a wireless network. 
     Another interesting application of mixed hypergraph colouring is the Byzantine 
agreement problem (Jaffe, et al., 2012).  A set of n processors, any f of whom may 
be arbitrarily faulty, must reach agreement on a value proposed by one of the 
correct processors.  The system is said to be f-tolerant if there is a protocol which 
ensures that after a finite number of steps, all correct processors receive the right 
value. It is a celebrated result that unless n > 3f, Byzantine agreement is impossible, 
due to the fact that faulty processors can equivocate, that is, say different things to 
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different processors.  It has been found that if all processors are grouped into all 
possible triplets to form a complete 3-uniform hypergraph such that within triplets, 
equivocation is not possible, then equivocation can be avoided across all 
processors and the system can be made Byzantine f-fault tolerant even when n > 
2f. However, using all possible triplets as communication problems is too expensive 
in terms of algorithmic complexity.  Using vertex-colouring theory, conditions for 
which a system is f-tolerant can be found without considering all possible triplets, 
this reducing processing time significantly. 
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different processors.  It has been found that if all processors are grouped into all 
possible triplets to form a complete 3-uniform hypergraph such that within triplets, 
equivocation is not possible, then equivocation can be avoided across all 
processors and the system can be made Byzantine f-fault tolerant even when n > 
2f. However, using all possible triplets as communication problems is too expensive 
in terms of algorithmic complexity.  Using vertex-colouring theory, conditions for 
which a system is f-tolerant can be found without considering all possible triplets, 
this reducing processing time significantly. 
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