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ABSTRACT 

 

Multilevel modelling technique recognizes the existence of 

hierarchal structures in the data by allowing for random 

effects at each level in the hierarchy, thus assessing the 

variation in the dependent variable at several hierarchical 

levels simultaneously.  Multilevel modelling is becoming an 

increasingly popular technique for analysing nested data with 

such popularity accredited to the computational advances in the 

last two decades. In many sports, including football, the game 

fixtures are nested within seasons, which in turn are nested 

within country leagues invoking a multilevel structure in the 

data. Many gaming companies engage in sport data analysis 

in a bid to understand the dynamics and patterns of the game. 

This will assist the gaming company in developing fantasy 

sport games that will enhance gamer engagement and augment 

revenue to the company. 

 

This paper presents a comprehensive description of two and 

three level models, which are applied to a real football data 

set accessed from an online free football betting portal. The 

aim is to examine the relationship between the number of 

goals scored during a football match and several game-related 

predictors. These multilevel models, which assume a Poisson 

distribution and a logarithmic function, are implemented using 

the facilities of GLLAMM (Generalized Linear Latent and 

Mixed Models), which is a subroutine of STATA.  

 

 

1. Introduction 
 

The concept of Generalized Linear Models (GLMs) was first 

introduced by Nelder and Wedderburn (1972) where several 

widely used distributions, including the Normal, Poisson, 

Binomial, Gamma, Geometric, Multinomial and Inverse 

Gaussian distribution were combined together as members of 

the exponential family. The iteratively reweighted least 

squares algorithm was used for maximum likelihood 

estimation.  A fundamental assumption of GLMs is that the 

responses are independent making these models inappropriate 

for longitudinal data, repeated measures and multilevel data 

with a nesting structure. To overcome this limitation, Liang 

and Zeger (1986) developed the concept of Generalized 

Estimating Equations (GEE) by removing the independence 

assumption.  This development gave rise to GEE models that 

accommodate highly correlated data by specifying a structure 

for the working correlation matrix.  To accommodate nested 

hierarchical structured data, Bryk and Raudenbush and (1992) 

introduced the concept of multilevel models. In contrast with 

the GLM and the GEE, these models take into consideration 

the hierarchical nature of the nested data by accommodating 

the error term and random effects at each hierarchical level of 

nesting. The development of software packages and the 

introduction of supercomputers alleviated the implementation 

of multilevel models to large data sets, particularly when the 

hierarchical structure exceeds two levels of nesting and the 

number of random effects is considerable.  

 

 

2. Theory 
 

In a generalized linear model framework, the expected value 

of the response ������ = ��� is related to linear predictor  	�� 
through a non-linear invertible link function 	��∙� given by: 
 ������ = ��	��� 
 

In this generalized linear model, the response mechanism is 

fully described by the conditional probability density function 

of the response ��  given the linear predictor		��. The model is 

completed by specifying a distribution for the observed 

response	���|���, which in the case of count data is the 

Poisson distribution with parameter	���. 
 

ℙ����|���� = ���
��������
�����!  

 

where 
 ������ = �������� = ���  
 

The link function ��∙� for count data is the logarithm link 

specified in the following way: 

  

�������� = 	 log ��� = 	�� 	 
 

A Poisson model assumes that the duration of the observation 

period is fixed in advance (constant exposure); however, this 

is not always the case. The model can be extended further by 

including a varying exposure rate ���. As a result the Poisson 

regression model can be written in the form: 
 log ��� = log��� + !"� + !��#��� +⋯+ !%�#%��  
 

This implies that the relationship between �� and the linear 

predictor 	� is offset by the amount	log���. This term is a 

fixed part offset and if required, it is centred on the mean so 

as to avoid numerical instabilities. Yet, we do not always 

require an offset, or where the offset is a constant.  A two-level 

random intercept model with one explanatory variable  #���  
can be provided for count data and is given by: 



log ��� =		 log��� + !"� + !��#��� + &"� 
 

An extended two-level random intercept model with several 

explanatory variables is given by:  
 log ��� =		 log��� + '() + &"� 
 

Similarly, the two-level random coefficient, 1-predictor model 

for count data is given by: 

 log ��� = log��� + !"� + !��#��� + &"� + &��#��� 
 

More generally, we have that:  

 log ��� = log��� + '() + *(+� 
 

+� follows a multivariate normal distribution +�~-�., 0�� 
respectively with:  

 

0� = 1 2���&"�� 342�&"� , &���
342�&�� , &"�� 2���&��� 5 = 6 7"8 7"�7�" 7�8 9 

 
A three-level random intercept model with one explanatory 

variable  #���: can be provided for count data and is given by: 

  log ���: =		 log���: + !"�: + !��:#���: + &"�:	+	�"": 

 

An extended three-level random intercept model with several 

explanatory variables is given by:  

 log ���: = log���: + 	'() + &"�:	+	�"": 
 

where  &"�:	~-�0, 7"8�  and 	�"":~-�0, <"8� 
Similarly, the three-level random coefficient, 1-predictor model 

for count data is given by: 

 log ���: =	 log���: + !"�: + !��:#���: + &"�:+ &��:#���:  

               +�"": + ��":#���:  

 

where &��: 	~-�0, 7�8� and ��":~-�0, <�8� 
 
More generally, we have that:  
 

log ���: = log���: + '() +	*(�8�+� + *′�>�?: 
 
 

3.  Application 
 

The data set is sourced from www.football-data.co.uk, a free 

football betting portal that provides historical results and 

odds. The dataset comprises information about 6,860 football 

matches, two professional European football leagues and ten 

football seasons dating from 2005/2006 to 2014/2015. One of 

the European leagues is the German football league, the 

Bundesliga, where in every season there are 306 match 

fixtures. The other football league is the Serie A, an Italian 

league with 380 match fixtures per season.  

Every football match is nested in the season during which it 

was played and, each season is nested in either one of the two 

football leagues. This structure invokes the multilevel nature 

of this data set where the level-1units are the football 

matches, the seasons are the level-2 units and the football 

leagues are the level-3 units. The response variable is the 

number of goals scored per match, and the ultimate scope of 

the study is to investigate the variability in this response 

variable induced by observed and unobserved heterogeneity. 

The following table defines the explanatory variables used in 

the Poisson multilevel models. 

 

Table 1: Description of predictors 

Notation Predictor 

hthg 
The total number of goals scored by the home 

team during the first half 

htag 
The total number of goals scored by the away 

team during the first half 

sa 
The shooting accuracy is the ratio of the total 

shots on target to the total number of shots 

fouls 
The total number of fouls committed during 

the match 

cards 
Total number of yellow and red cards 

received during the match 

home1h 
1 corresponds to a home team win after the 

first half and 0 corresponds to otherwise 

away1h 
1 corresponds to an away team win after the 

first half and 0 corresponds to otherwise 

corners 
The total number of corners awarded during 

the match 

dhtg 
The absolute difference between the total 

home and away goals after the first half 

 

In the two-level random intercept Poisson model given by: 
 log ��� =		 log��� + '() + &"� 
 '( is a row vector including the values of the explanatory 

variables, ) is a column vector of regression parameters in the 

fixed component of the multilevel model and &"� is the 

random intercept with distribution		&"�~-�0, 	7"8�.  In this 

section, a parsimonious two-level random intercept Poisson 

model is fitted using seven predictors #��� , … , #A�� , where 

!�, … , !A are the corresponding parameters and !" is the 

intercept parameter. The model is implemented using the 

facilities of GLLAMM.    

 

The adaptive quadrature converged after two iterations and 

another five iterations were needed to update the parameters 

using the Newton-Raphson algorithm. The log-likelihood of 

the parsimonious two-level random intercept Poisson model 

is -11255.4. The explanatory variables dhtg and corners were 

not significant and so were removed from the model fit. The 

estimated parameters 	!", !�, … , !A and estimated variance	7"8 

are displayed in Table 2. 

 

Since the mean and variance of the Poisson distribution are 

equal then the variance to mean ratio is 1. Thus a value of 1 is 

used for  level 1 variance. The fractions of residual variability 

that are attributed to level 1 and level 2 are 0.975 and 0.025 



respectively. This implies that 97.5% of the total variance is 

accounted for by level-1 variations between matches and 2.5% is accounted for by level 2 variations between seasons.  

 

Table 2: Parameter estimates, standard errors and p-values 

Parameter Coef. S.E. Z P z>  

Constant -2.285 0.050 -45.6 0.000 

hthg 0.273 0.011 25.6 0.000 

htag 0.288 0.012 24.3 0.000 

sa 1.455 0.074 19.7 0.000 

fouls -0.006 0.001 -5.52 0.000 

cards 0.008 0.004 2.09 0.037 

home1h 0.100 0.021 4.68 0.000 

away1h 0.116 0.023 4.98 0.000 

offset 2.398    

Level-1 var.  1   

Level-2 var. (int.) 0.025 0.007  

 

Figure 1 displays the path diagram to present the structure of 

the implemented 2-level random intercept model. 

 

 
Figure 1: Path diagram for 2-level random intercept model 

 

The gllapred poster directive is used to estimate the posterior 

means and posterior standard deviations using empirical 

Bayes prediction for random effects.  For this 2-level random 

intercept model, different posterior means and posterior 

standard deviations are estimated for each of the 10 seasons.   

In order to predict the level-2 units specific regression lines 

with varying intercepts, the parameter estimates and the 

empirical Bayes estimates of the random intercept are plugged 

into the model. The gllapred predict, linpred directive is used 

to compute the linear predictor of the fixed component and 

adds it to the posterior mean.  
 

The posterior standard deviations are the conditional standard 

deviations of the prediction errors given the observed 

responses and treating the parameters as known in a Bayesian 

context. Taking the square root of these standard deviations, 

one gets the conditional mean squared error of prediction 

conditional on the observed responses. The empirical Bayes 

estimates of the random intercept  &"�~-�0, 0.025�	 for	each	 level-2	 unit	  T = 1,2, … ,10 along with the posterior 

standard deviations are provided in Table 3. 
 

Table 3: Posterior means and posterior standard deviations 

Season Posterior Mean Posterior St. Deviation 

1 0.0322 0.0288 

2 0.0286 0.0228 

3 0.0741 0.0223 

4 0.0399 0.0229 

5 0.0474 0.0231 

6 0.0617 0.0228 

7 0.6658 0.0230 

8 0.0990 0.0229 

9 -0.0219 0.0231 

10 -0.1704 0.0231 

 

 
Figure 2: Log of predicted values against shooting accuracy 

 

Figure 2 displays the logarithm of the predicted values against 

the shooting accuracy of the football match. The parameter 

estimate of sa is 1.4554 which implies that for every 1 unit 

increase in shooting accuracy the logarithm of the predicted 

value is expected to increase by 1.455, given that the other 

effects are kept fixed. The ten seasons trajectories displayed in 

Figure 2 have different intercepts but the same gradient as 

conditioned by two-level random intercept model. The ten 

trajectories have positive gradients implying that the number 

of goals per match increases with the shooting accuracy. It 

can be noted that the trajectories for the 2014/2015 and 

2013/2014 seasons are below the other seasons which implies 

that in the last two football seasons the number of goals 

scored per match was less compared to the other seasons.  

 
In the two-level random coefficient Poisson model given by: 

 log ��� = log��� + '() + *(+� 
 +� includes the random intercept &"� and the random slope 

&��. The row vector *′ holds a single explanatory variable, 

#>�� , which is the shooting accuracy during the match. So the 

random slope &�� allows the linear relationship between the 

logarithm of predicted values and shooting accuracy to have a 



different slope for each of the ten seasons.  '( includes the 

values of the predictors and ) holds the regression parameters. 

The log-likelihood of the parsimonious two-level random 

coefficient model is -11253.9. The parameter estimates 	!", !�, … , !A and the estimated variances	7"8, τ�8 and	7�" are 

displayed in Table 4. Figure 3 displays the path diagram to 

present the structure of the implemented 2-level random 

coefficient model. 

 

Table 4: Parameter estimates, standard errors and p-values 

Parameter Coef. S.E. Z P z>  

 Constant -2.296 0.048 -48.1 0.000 

 hthg 0.271 0.011 25.4 0.000 

 htag 0.288 0.012 24.3 0.000 

 sa 1.592 0.101 15.8 0.000 

 fouls -0.005 0.001 -5.13 0.000 

 cards 0.007 0.004 1.96 0.049 

 home1h 0.100 0.021 4.67 0.000 

 away1h 0.113 0.023 4.86 0.000 

 offset 2.398    

 Level-1 var.  1   

 Level-2 var. (int.) 0.021 0.034  

 Level-2 var. (slope) 1.158 0.537  

 Level-2 covariance -0.152 0.156  

 

 
Figure 3: Path diagram for 2-level random coefficient model 

 

Comparing these estimates to the random intercept model, the 

fixed effects estimates have not changed substantially but the 

estimates of the covariance matrix are quite different. The 

fraction of total residual variance attributed to the level-1 units 

is 0.459 and the fraction of total variance attributed to the level-

2 random intercept and random slope are 0.01 and 0.531 

respectively. This implies that 45.9% of the total variance is 

accounted for by level-1 variations between matches, 1% of the 

variance is accounted for variations between season intercepts 

and 53.1% of the variance is accounted for variations between 

season slopes. The empirical Bayes predictions for the random 

intercepts and the random slopes of the ten seasons are 

provided in Table 5 along with the posterior standard deviation. 

&� = 6&"�&��9 ~	- X	Y00Z , Y 0.0207 −0.1516−0.1516 1.1581 Z	^ 
 

Table 5: Posterior means and posterior standard deviations 

Season P.M. 1 S.D. 1 P.M. 2 S.D. 2 

1 -0.0044 0.0399 -0.0223 0.1254 

2 0.0005 0.3989 -0.0477 0.1260 

3 -0.0063 0.0392 0.0762 0.1215 

4 -0.0010 0.0391 -0.0193 0.1216 

5 -0.0081 0.0404 0.0249 0.1299 

6 -0.0253 0.0401 0.1127 0.1263 

7 -0.0008 0.0398 0.0341 0.1246 

8 -0.0151 0.0409 0.1674 0.1346 

9 0.0585 0.0374 -0.3433 0.1009 

10 0.0827 0.0364 -0.6210 0.0831 

 

 

Figure 4: Log of predicted values against shooting accuracy 
 

Table 6: Parameter estimates, standard errors and p-values 

Parameter Coef. S.E. Z P z>  

 Constant -2.295 0.053 -43.2 0.000 

 hthg 0.271 0.011 25.1 0.000 

 htag 0.288 0.012 24.1 0.000 

 sa 1.388 0.130 10.6 0.000 

 fouls -0.006 0.001 -5.48 0.000 

 cards 0.009 0.004 2.29 0.022 

 home1h 0.099 0.021 4.64 0.000 

 away1h 0.111 0.023 4.78 0.000 

 offset 2.398    

 Level-1 var.  1   

 Level-2 var. (int.) 0.011 0.056  

 Level-3 var. (int.) 0.019 0.037  

 Level-3 var. (slope) 0.334 0.117  

 Level-3 covariance 0.074 0.051  

 

The three-level random coefficient Poisson model given by: 
 log ���: = log���: + '() +	&"�: + *′?: 
 ?: holds the random  intercept �"": and  slope ��":at level-3 

and  &"�: is the random intercept at level-2. *′ holds the 



predictor, #>��  and  '( and  ) are the same as in previous 

models. The log-likelihood of the parsimonious three-level 

random coefficient model is -11243.8. The parameter 

estimates 	!", !�, … , !A and the estimated variances	7"8, <"8,  <�8	and	<�" are displayed in Table 6. 

 

This implies that 73.3% of the total variance is accounted for 

by level-1 variations between matches, 0.8% of the variance is 

accounted for by level 2 variations between seasons,  1.4% is 

accounted for by level 3 variations between football league 

intercepts and 24.5% is accounted for by level 3 variations 

between football league slopes.  

 

Figure 5 displays the path diagram to present the structure of 

the implemented 3-level random coefficient model. 

 

 

Figure 5: Path diagram for 3-level random coefficient model 

 &"�: 	~-�0, 0.011� 
 
 

?: = 6�"":��":9~	- X	Y00Z , Y0.019 0.0740.074 0.334Z	^ 
 

The empirical Bayes estimates for the random intercept &"�: 

for T = 1,2, … ,10	along with the posterior standard deviations 

are given in Tables 7, along with the Bayes estimates for the 

random effects 	�"":	and ��": for	a = 1,2 and their posterior 

standard deviations given in Table 8. 

 

Table 7: Posterior means and posterior standard deviations 

Season Posterior Mean Posterior St. Deviation 

1 -0.1370 0.0428 

2 -0.0089 0.0419 

3 0.0460 0.0419 

4 -0.0040 0.0426 

5 0.0080 0.0427 

6 0.0527 0.0425 

7 0.0097 0.0428 

8 0.0758 0.0422 

9 0.0664 0.0425 

10 -0.2573 0.0475 
 

Table 8: Posterior means and posterior standard deviations 

League P.M. 1 S.D. 1 P.M. 2 S.D. 2 

1 0.0096 0.0328 0.1002 0.0705 

2 0.0259 0.0336 0.1508 0.0729 

 

The 3-level random coefficient model provides the best fit 

because it has the lowest AIC value. 

 

 

4. Conclusion 
 

Football is a game that has matured over the years, where 

football players run faster, they shoot harder, they dribble 

quicker and, they pass the ball more accurately. As a result, 

game practices including offside traps, pressing and triangular 

passing have evolved over time. Changes in these techniques 

are the main reason why goal scoring has gradually decreased 

from an average of approximately 4.5 goals per game in 1900 

to an approximate average of 2.6 goals more than 100 years 

later. Goal scoring has remained essentially stable in the last 

two decades. Results in chapter 4 confirm the latter statement, 

since goal scoring is not affected much by the football season 

during which the game was played.   

 

This paper presents a proper methodology to model count data 

in the presence of nested data. The three level random 

coefficient model which included shooting accuracy both as a 

main effect and as a random effect showed that 73.3% of the 

total variation is accounted for by variation at level-1, 	0.8% is 

accounted for by variation at level-2, 1.4% is accounted for by 

variation at level-3 intercepts and 24.5% is accounted by 

variation in level-2 slopes. Moreover, shooting accuracy, 

number of fouls, number of red and yellow cards booked by 

referees, number of goals scored during the first half by the 

home team and by the away team and whether the home team 

is winning/losing at half time where all found to be significant 

predictors of the number of goals scored per match. 
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