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ABSTRACT: 
 

This paper analyses the increasing trend of using 
modern machine learning technologies to analyze 
flight data efficiently. Flight data offers an important 
insight into the operations of an aircraft. This paper 
reviews the research undertaken so far on the use 
of Machine Learning techniques for the analyses of 
flight data by evaluating various anomaly detection 
algorithms and the significance of feature selection 
in Flight Data Monitoring. These algorithms are 
compared to determine the best class of algorithms 
for highlighting significant flight anomalies. 
Furthermore, these algorithms are analyzed for 
various flight data parameters to determine which 
class of algorithms is sensitive to continuous 
parameters and which is sensitive to discrete 
parameters of flight data. The paper also 
addresses the ability of each anomaly detection 
algorithm to be easily adaptable to different 
datasets and different phases of flight, including 
take-off and landing. 

 
1. INTRODUCTION 

1.1. Flight Data Monitoring 

Flight Data Monitoring (FDM) is an activity carried 
out by airlines primarily as a means of monitoring 
and improving the safety and operation of their 
aircraft [1]. The data recorded by the flight data 
recorder on-board an aircraft is downloaded and 
analyzed through various tools and techniques, 
with the ultimate objective of using that analysis to 
improve civil aviation operations, establishing 
maintenance schedules, training pilots and 
modifying operational procedures amongst others, 
without compromising safety [2]. In this way FDM 
has two key objectives: 

 
1. It detects technical flaws, unsafe practices 

or conditions outside desired operating 
procedures at an early stage, thus 
preventing potential incidents or accidents 
[3]. 

 
2. It provides an objective means of 

following-up on corrective actions by 

 
increasing training or altering Standard 
Operating Procedures [4]. 

 

The benefits of FDM are often highlighted by 
accident investigations. One such classical 
example is of Gulf Air’s A320 flight GF072 accident 
on the 23rd. of August 2000 near Bahrain 
International Airport. The final report of the 
Accident Investigation Board (AIB) in summary 
stated that at the time of the accident, the flight 
data analysis system was not functioning 
satisfactorily. Non-availability of flight data analysis 
deprived the airline of a valuable safety analysis 
tool [5]. 

 

Once the flight data is downloaded from the 
aircraft, the entire flight duration known as a 
timeline is analyzed. Traditionally, FDM involves 
the use of statistical techniques to analyze data. 
An airline analyses flight data through dedicated 
software which highlights if certain parameters of 
flight data have exceeded pre-determined limits. 
This approach is based on known ‘exceedances’ 
i.e. predefined issues [6]. Such exceedances in the 
timeline are known as events. Exceedance or 
event detection is the standard FDM algorithmic 
methodology that checks the data for deviations 
from flight manual limits, SOP’s and good 
airmanship. This relies on human experts to create 
a rule-based system that detects known safety 
issues, based on whether a small set of 
parameters exceed some predefined set of 
thresholds. A single event is a collection of multiple 
snapshots. A snapshot is a sample of a flight data 
parameter taken at a point during the flight. A 
collection of snapshots taken at the same point in 
time will create a vector which describes the 
condition of the aircraft at that point in time. 
Examples of events include: 

 
1. High descent rate below an altitude of 

400ft 
2. Low approach speed below an altitude of 

500ft 
3. High unstick speed 
4. Maximum operating altitude exceedance 
5. Late selection of flaps to landing 

configuration 
6. Exceedance of maximum operating 

altitude 
7. Engine over-temperature 
8. Excessive bank angles 



2 
 

9. Deviation from glidepath 
10. High pitch of the aircraft during take-off 

 
There can be over 100 such events defined by an 
airline and these must be checked for every flight 
of every aircraft. 

 

Detecting an event is a laborious process. 
However, with developments in computational 
techniques, other avenues could be explored for 
flight data analysis. For example, in finance and 
online gaming, Machine Learning (ML) techniques 
have been major drivers in the development of 
these industries. ML is an application of Artificial 
Intelligence (AI) by which computer programs are 
designed to access data, discover patterns, learn 
and improve from experience, without further direct 
human intervention [7]. Such computational 
techniques would be very effective for the aviation 
industry. 

 
1.2. Role of ML in FDM 

The aviation industry operates at a tight financial 
margin [8,9]. Despite the fact that air travel 
continues to grow, the aviation industry remains 
susceptible to external factors such as oil prices 
[10]. Hence, the efficient analyses of flight data can 
improve flight operations, reducing fuel 
consumption as well as maintenance and 
insurance costs while increasing the level of safety 
[11]. However, the traditional statistical approaches 
for the analyses of flight data, which rely on pre- 
defined thresholds, do not provide enough 
information and are tedious. This limitation can be 
addressed by adopting ML techniques. These 
techniques can compare flight data parameters 
from a large number of flights and identify new or 
unknown patterns [12]. These patterns may show 
abnormal or inconsistent behavior with respect to 
most of the flights. The outliers are of interest and 
require further investigation. One example of an 
abnormal flight pattern is during the descent phase 
where the aircraft is not following the standard 
procedure for a stable approach where by the 
landing gear is not down by 1000 feet of altitude. 
Another example of an abnormal flight could be 
excessive pitch of the aircraft during take-off. With 
traditional methods of flight data analysis, the flight 
is flagged red if the aircraft’s pitch crosses a 
specific threshold but with ML algorithms the 
abnormal pitch could also be detected as shown in 
Fig. 1. 

 

Modern ML algorithms are best suited not just to 
classify flights as safe or unsafe, but also to further 
analyze flight details and explain in more detail the 
reasons for flights being unsafe. With the 
development of ML algorithms, the analysis of 
flight data is becoming more efficient and more 
suitable to make predictions from flight data [14, 
15]. The following sections describe the ML 
techniques that have been used for FDM. In the 

last part, the conclusion is presented, and future 
work is discussed. 

 

 

 

Figure 1. Aircraft pitch at take-off [13] 
 

2. FEATURE SELECTION 

Flight data consist of a large number of flight 
parameters, for example, altitude, computed air 
speed, etc. These parameters are crucial to 
analyze any flight data or to detect an anomaly. 
However, not all these parameters are equally 
important, and some parameters are more 
important and are thus recorded at high frequency. 
Currently in the aviation industry, experts decide 
on parameters which are important for FDM. 
Therefore, selecting the right kind of parameters 
has always been considered as a matter of a 
judicious choice. 

 

A poor prior selection of parameters would lead to 
an inefficient FDM analysis. A better method is to 
have a learning algorithm with a capability to 
choose which set of parameters are the best for a 
particular scenario. This will help to create an FDM 
analysis which is capable of coping with (and 
adapting to) different types of data. Prior selection 
of parameters may bias the learning process and 
lead to worse anomaly detection performance 
when compared to leaving the choice to the 
machine i.e. the learning algorithm. 

 
The process of automatic selection of attributes 
from the given data by the learning algorithm itself 
is known as Feature Selection (FS). Theodoridis 
and Koutroubas [16] define feature selection or 
feature reduction as the procedure in which, given 
a number of features, one selects the most 
important of them. The goal is to reduce the 
number of parameters, and at the same time, 
retain as much of their class discriminatory 
information as possible. More general methods 
that create new features based on transformations 
or combinations of the original feature set are 
termed Feature Extraction (FE) algorithms [17]. 
This procedure can reduce not only the cost of 
recognition by reducing the number of features that 
needs to be collected, but in some cases, it can 
also provide a better classification accuracy due to 
finite sample size effects [17]. FS thus helps in 
generalizing performance with more 
computationally efficient methods and identifying 

critical features. 
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The field of FS has a lot of potential for FDM, but it 
has not been explored much. A literature research 
uncovered only two major prior works [18, 19] 
which use this technique for FDM. In [18] the FE 
algorithm called Symbolic Dynamic Filtering (SDF) 
[20] is used, whereas [19] uses scalar feature 
selection, vector feature selection and Kalman 
filtering. 

 
In [18], SDF, a robust time-series feature extraction 
tool for enhancement of performance of pattern 
classification is used. It involves four major steps: 

 

1. Generating symbol sequences via 
portioning of the time series data sets. 

2. Constructing Probabilistic Finite State 
Automata (PFSA) from the respective 
symbol sequences. 

3. Extracting of features as probability 
matrices or as state probability vectors 
from PFSA. 

4. Pattern classification based on the 
extracted features. 

 

Algorithms, constructed in the SDF setting yielded 
superior performance in terms of early detection of 
anomalies and robustness to measurement noise 
in comparison with other existing techniques such 
as Principal Component Analysis (PCA), Neural 
Networks (NN) and Bayesian techniques [21]. SDF 
based feature extraction technique is sensitive to 
signal distortions and at the same time robust to 
measurement noise and spurious signals. It is also 
adaptable to low-resolution sensing due to the 
coarse graining in space partitions. 

 
In [19], scalar feature selection processing helps to 
select features identified by the ambiguity function 
and the correlation coefficient method. The 
ambiguity function is used to examine the overlap 
of the features, thus helping to reduce the number 
of features and the correlation coefficient is used to 
identify highly correlated features. Features which 
are highly correlated are replaced with most 
significant feature. For two flights from different 
classes (e.g. normal and anomalous), a parameter 
preferably having a normal distribution is taken. 
Then it’s mean, and variance are taken for those 
two flights. Statistical tests such as the t- test are 
applied to this feature. After the test, if the two 
means are in the same interval of significance, 
they are considered equal and thus that feature 
does not provide any discriminatory information 
between the two flights and is dropped. 

 
The reduced set of features is then passed to 
vector feature selection process. The objective of 
this processing is to select the best features that 
yield the maximum discrimination between the set 
of flights. All the combinations of features are tried 
using methods such as Backward & Forward 

selection, Floating Sequential search and Branch & 
Bound. A detailed discussion of these methods is 
beyond the scope of this paper. The Kalman filter 
is used to determine the importance of each 
selected feature to discriminate between flights by 
characterizing low probability density function 
valued samples as unusual. 

 

Since the work done in implementing FE 
algorithms for the FDM is limited, the full potential 
of FE algorithms is yet to be explored by 
experimenting with PCA, NN and Independent 
Component Analysis (ICA) for FDM. The work in 
[18] has shown that SDF has significantly improved 
the anomalies detected from real-life flight data. 

 
Having described the techniques to choose our 
feature set, the following section focuses on using 
the features to detect anomalies. 

 

3. ANOMALY DETECTION 

Anomaly detection or outlier detection refers to the 
task of identifying new or unknown patterns which, 
in many cases, are abnormal or inconsistent with 
the rest of the data set [18]. An outlier is an 
observation that deviates too much from other 
observations. As compared to the exceedance- 
based approach mentioned earlier, outlier or 
anomaly detection technique is more effective as it 
is not dependent on human generated rules and 
can even detect previously unknown issues. 

 
Furthermore, the exact definition of an outlier 
depends on the context. Definitions fall roughly into 
five categories [22]: 

 

1. Distribution-based, where outliers are 
observations which deviate from a 
standard distribution. 

2. Depth-based which relies on the 
computation of different layers of k-d 
convex hulls. 

3. Clustering-based methods, which define 
outliers as observations that do not fit in 
the overall clustering pattern. 

4. Density-based methods, which detect 
outliers as objects that are in a less-dense 
region of the feature space than the rest of 
the dataset. Objects can be outliers 
relative to their neighborhoods, particularly 
with respect to densities of the 
neighborhoods. 

5. Distance-based methods, which define 
outliers as an observation that is some 
mini mum distance away from a certain 
percentage of observations in the dataset. 

 

Outliers can be detected using supervised, 
unsupervised, as well as semi-supervised ML 
techniques. Supervised techniques make use of a 
dataset to train the models. The learning algorithm 
produces an inferred function from the input and 
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correct output. One example of this technique is 
any automatic speech-to-text system in a mobile 
phone, which trains itself to recognize the user’s 
voice. On the other hand, unsupervised techniques 
allow learning algorithms to infer a function which 
describes a hidden structure from unlabeled data. 
The algorithm does not figure out the right output, 
but it uncovers patterns in the data. For example, 
customer segmentation based on customer 
purchasing history and behaviors helps to create a 
company's customer base. The customer data can 
be segmented into clusters using unsupervised 
learning that can then be further analyzed to 
identify certain associated patterns. This leads to a 
more customized customer approach and is core 
to customer satisfaction as well as retention. 

 

Semi-supervised techniques generally use a small 
amount of labelled data and a large amount of 
unlabeled data. The algorithms based on these 
techniques help to considerably improve the 
learning accuracy of a system. One example of the 
application of a semi-supervised technique is the 
prediction of future stock values on the basis of a 
few past values. 

 
For the analysis of flight data, the authors of this 
paper have studied- work done in the application of 
the above methods only in the field of FDM. The 
observations found are discussed in the following 
sections and the concluding remarks about the 
above methods can be found in Section 4. 

 
3.1. Distribution-based & Depth based methods 

In distribution-based methods, a standard 
distribution (e.g. Normal, Poisson, etc.) is used to 
fit the data set. Outliers are defined based on the 
probability distribution. The biggest drawback of 
this method is that most of the distributions used 
are univariate i.e. dependent on one variable [23]. 
In the case of FDM, the underlying distribution is 
unknown and flight data has a large number of 
parameters. Therefore, identifying the underlying 
distribution or fitting the flight data with a standard 
distribution is a costly as well as time-consuming 
process, and hence infeasible. 

 
On the other hand, in depth-based methods, each 
object is represented as a point in k-d space and is 
assigned a spatial depth. However, when applied 
to outlier detection, this approach becomes 
inefficient for large datasets [23]. 

 
These statistical methods are becoming outdated 
with the onset of ML techniques. The major reason 
for this is the volume of flight data the vast number 
of features and the computing power required. 
Therefore, the authors of this paper advocate the 
use of ML techniques for FDM as they are data- 
driven and require no prior assumptions about the 

underlying relationships between the variables as 
in the case of statistical modelling. ML is more 
efficient on high volume data sets as more data 
makes the prediction more accurate. 

 
3.2. Clustering-based & Density based methods 

Clustering is an unsupervised ML technique in 
which the data points are assigned to subsets or 
groups (called clusters) based on similarities 
between parameters. It has been commonly used 
for statistical data analysis where the parameters 
are predefined [24]. In clustering, the algorithm 
itself groups the data points. Objects with common 
features are grouped together into clusters. When 
applying clustering techniques to flight data, one 
can assume that the majority of flights are safe and 
can be classified as such. It can therefore be 
determined that those flights which do not fit the 
normal flight pattern would be unsafe and further 
investigation is required to determine the reasons 
for these abnormalities [25]. 

 
Expert domain knowledge has shown that most 
incidents occur, or have precursors, during the 
descent phase of the flight. From the statistics 
presented in Fig 2., it can be seen that Approach 
and Landing Accidents (ALAs) account for more 
than 50% of all the accidents [26]. This is the major 
reason behind the focus of research work on 
approach and landing. 

 

In a case study presented in [25], partitional and 
density-based clustering technique are used to 
identify and compare anomalies during the 
approach phase of several flights. Flights that differ 
from the norm follow a different approach pattern 
than usual and need to be flagged for further 
investigation. Clustering techniques were applied 
to 100 data points from six aircraft of the same 
type with approaches to the same airport runway. 
The data was de-identified to remove any 
implications to any pilot, airline, airport or aircraft 
manufacturer. To validate the usage of clustering, 
the author in [25] uses the unstable approach as 
the known safety incident because much work has 
been done to identify unstable approaches. The 
author defines a stable approach through a 
number of aircraft parameters which should stable 
at a predetermined setting by the time the aircraft 
is at an altitude of 1000 feet above the landing 
runway threshold (Instrument Flight Rules (IFR)) 
prior to landing. The aircraft should be on the glide 
path and with a proper air speed, with a stable 
descent rate and engine power setting, and 
configured correctly for landing at this 
predetermined point on the approach (1000 feet 
above the landing runway threshold). The 
parameters are shown in Tab 1. The author 
investigates flight data parameters from altitudes of 
12,000 feet to touchdown during the descent 
phase of the flight. 
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Figure 2. Percentage of fatal accidents and onboard fatalities [26] 
 

The author in [25] uses the partitional method of 
clustering. This method applies a degree of 
membership to every object in the dataset and 
iteratively changes object memberships in order to 
solve an objective function. Partitional based 
clustering can be classified as Soft clustering 
(overlapping clustering) or Hard clustering (or 
exclusive clustering). With soft clustering, fuzzy 
sets are used to cluster data, so each object 
belongs to two or more clusters with different 
degree of membership. In contrast with hard 
clustering, objects are grouped in an exclusive way 
i.e. if an object belongs to a definite cluster then it 
cannot be included in another cluster [27]. 

 

Table 1. Unstable approach parameters [25] 
 

Approach Rule Recorded 
Parameter 

Unit 

Established on 
the glide path 

Glideslope 
deviation 

Dots 

Proper air speed Indicated 
Airspeed 

Knots 

Stable descent 
rate 

Inertial Vertical 
Velocity 

feet/minute 

Stable engine 
power setting 

Engine 1 N1 
Speed 

% 

Proper landing 
configuration 

Landing gear 

down and Flap 
Configuration 

Degrees 

 
In [25] k-means and k-medoid are used as hard 
partitional clustering algorithms, while the Fuzzy c- 
means (FCM) algorithm is used as a soft partitional 
clustering algorithm. In addition to this, Fuzzy 
clustering by Local Approximation of Memberships 
(FLAME) is also used as a soft portioning 
clustering algorithm. A short discussion on this 
work is presented in following section. 

In the k-means clustering algorithm, each of the k 
clusters is represented by the mean or weighted 
average of its points. K-means is based on the 
centroid of the cluster whereas k-medoid is based 
on the medoid of the cluster. In [25], the author 
finds that in case of k-medoid as the value of k 
increases there is clear segregation between good 
and bad clusters. Also, FCM algorithm determines 
clusters almost similar to k-means algorithm. On 
the other hand, the FLAME algorithm shows more 
clear clusters as it involves two steps. 

 
1. It first creates a k-nearest neighbors’ graph 

to identify objects with the highest local 
density i.e. objects in the same 
neighborhood. 

2. It then identifies objects with a local 
density lower than a threshold (outliers). 

 

Fuzzy memberships are then assigned to objects 
with varying degree of memberships only to 
objects in regions of highest local density and not 
to objects in regions of lower local density. 
Therefore, in FLAME a partitional-based clustering 
technique is mixed with a density-based clustering 
technique i.e. only spatial proximate objects 
belonging to the same cluster. This mixed method 
of clustering produces better and more clearly 
segregated clusters. This method is also more 
suitable for real-life datasets as it can adapt to 
different types of data sets. 

 
Cluster based Anomaly Detection (ClusterAD) [14, 
15, 28] is based on the Density-Based Spatial 
Clustering of Applications with Noise (DBSCAN) 
algorithm. The first step of the algorithm is to 
transform data from the Flight Data Recorder 
(FDR) into high-dimensional vectors, which capture 
the multivariate and   temporal   characteristics of 
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each flight. In a second step, the dimensions of the 
aforementioned vectors are then reduced to 
address issues related to data sparseness and 
multicollinearity. The third step is to apply cluster 
analysis on the aforementioned vectors of reduced 
dimensions. Groups of proximate vectors are 
clusters, or the common patterns; standalone 
vectors are anomalies, or abnormal flights. This 
algorithm was applied in [14] to analyses the flight 
phases of takeoff and final approach. It 
automatically determined the number of clusters, 
and found clusters based on a density criterion in 
the data and found outliers in the feature space. 

 

3.3. Distance-based methods 

In distance-based methods, outliers are the points 
farthest away from other points. In [29], a distance- 
based outlier detection technique is proposed 
based on the idea of nearest neighbors and is the 
most popular method in this category. 

 
The work in [18] uses iOrca [30], a scalable version 
of the Orca developed by [31] on real-world data 
sets of a commercial passenger jet airline for the 
descent phase of the flight. Orca is a k-nearest 
neighbor based unsupervised anomaly-detection 
algorithm. Orca uses a nested loop structure to 
calculate pairwise distances between data points. 
In [30], the authors introduced a novel indexing 
strategy and an early termination criterion to make 
Orca scalable to extremely large data sets. The 
indexed version of Orca is known as iOrca. 

 
The work done in [18] is very important for FDM as 
this is the first time that, a feature extraction 
technique-SDF was used, and for the first time, 
anomalies were ranked on the basis of a score. 
iOrca with SDF reported more anomalies than 
when compared to the run with temporal features, 
as the SDF-based features were more unique in 
representing anomalous states of individual flights. 
Furthermore, [18] shows that the distance-based 
anomaly detection technique is more efficient than 
the exceedance-based technique. 

 
However, the distance-based methods have 
exponential time complexity since every data point 
needs to be compared to every other, in order to 
find the nearest neighbor [6]. Since the volume of 
flight data is huge and the number of parameters 
affecting the data set is large, this method in its 
crude form is not suitable for FDM due to its time 
complexity. 

 

3.4. Other Unsupervised Methods 

Multiple Kernel Anomaly detection (MKAD) [32], 
combines the strength of both vector space-based 
algorithms as well as sequential anomaly detectors 
to detect a variety of anomalies from heterogenous 
data sources. MKAD is a multiple kernel learning 
approach to detect anomalies in complex 

heterogenous systems such as FDM, that involves 
various data sources and data structures. MKAD is 
based on classical one-class Support Vector 
Machines (SVMs) [33] which is an unsupervised 
learning method that finds a set of outliers using a 
decision boundary. Given a dataset that has a 
probability distribution of P, one-class SVM aims to 
find a subset of the dataset S such that the 
probability that a test point from P lies outside S is 
bounded by some value. The limitation of MKAD is 
that it assumes one type of data pattern for normal 
operations, which is not always valid in real 
operations, since standards vary according to flight 
conditions. 

 
The work in [14] compares the performance of 
ClusterAD with those of MKAD, as well as with 
exceedance-based detection. Results showed that 
both ClusterAD and MKAD were able to identify 
operationally significant anomalies, surpassing the 
capability of exceedance-based detection. 
ClusterAD performed better with continuous 
parameters and earlier known safety issues, 
whereas MKAD was more sensitive towards 
discrete parameters. Also, MKAD supported more 
heterogeneous data sets and both MKAD as well 
as ClusterAD were able to detect anomalies across 
a fleet of aircraft. In the future, a combination of 
these two methods can be a powerful algorithm for 
FDM. 
 
The work in [6] compares the performance of iOrca 
with that of MKAD algorithm. Both these algorithms 
output anomaly scores and the location of the 
anomalies. MKAD characterizes whole flight as 
normal or abnormal, whereas iOrca points out at 
which point in time the abnormality has been 
found. Thus, MKAD is better for reporting 
anomalies at fleet level and iOrca performs better 
to detect anomalies within a flight.  

 
Furthermore, in the work done in [34] a Self- 
Organizing Map Neural Network (SOM NN) model 
of anomaly detection in aircraft operation is 
compared with a one-class SVM model. SOM NN 
is an unsupervised, two-tier neural network 
consisting of input layers and output layers. The 
input layer consists of vectors of data which needs 
to be structured and the output layer represents 
the organized version of the data. SOM helps in 
transforming data points originally in high 
dimension into 2D space. This helps in further 
analysis and structure of the dataset can be 
viewed. Thus, SOM is used to cluster the data 
points. From the clusters, anomalous data points 
can be discovered. 

 
The result from the work [34] shows that one-class 
SVM performs better as the threshold (boundary) 
used allows for more data to be classified as an 
anomaly. The work also highlights the role of 
available computing power while deciding upon the 
model. SOM NN improves its algorithm complexity 
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with less computational resources. If good 
computing power resources are available (e.g. 
supercomputer) then one-class SVM is the 
better choice. 

 
4. CONCLUSION AND FUTURE WORK 

Until now, FDM has not exploited ML 
techniques fully. ML techniques have the 
potential to significantly improve the analysis of 
flight data by discovering unknown patterns. 
The application of ML to FDM has been very 
limited and mainly been concerned with the 
descent phase. Traditional FDM analysis is 
limited to detect only pre- programmed events, 
which require knowledge of a particular 
scenario (usually lessons learnt from historic 
flight safety incidents). However, ML also 
comes with its share of challenges. These 
include: 

 

1. Adaptability to different datasets is an 
important consideration for selecting an 
ML algorithm for FDM [25]. As the volume 
of the flight data is very large, it is 
necessary that the algorithm is optimized 
to speed up the process of data analysis 
and outlier identification. 

2. FDM parameters are stored at different 
rates and these need to be pre-processed 
to allow analysis. 

3. Computational power of the resource 
available. 

4. Choosing the right ML tools and 
techniques for the given problem, for 
example choosing between supervised or 
unsupervised method for FDM. 

 
Unsupervised learning methods are more 
favourable as they support heterogenous data sets 
with a large number of parameters as is the case 
with the flight data. This is the major reason that 
the majority of research work done is based on 
unsupervised methods. However, supervised 
methods also need to be researched as methods 
like classification can be of great use, for example, 
classification of anomalies and parameters. 

 

Amongst the unsupervised techniques, anomaly 
detection based on clustering was found to be 
most accurate. However, it has its own limitations; 
the major limitation being that the number of 
clusters needs to be known a priori. This is often 
difficult to implement in practice and an iterative 
process is normally used to determine the best fit. 
Also, anomaly detection methods require a 
detection threshold to be set in advance. This 
threshold decides percentage of flights to be 
detected. A tight detection threshold will miss true 
anomalies whereas a loose detection threshold will 
trigger false alarms. So, ML techniques in future 
can help to decide what optimum threshold level 
should be used. 

It is also important to note that the algorithms which 
have been used for FDM focus mainly on segregating 
abnormal events from normal events. So, in future one 
of the other areas of interest could be exploring an 
algorithm which could optimize outlier detection for 
flight data. It would be ideal if the anomaly detection 
algorithm could also determine the exact parameters 
which made that flight anomalous and also provide a 
sort of score for each of those parameters as the 
algorithms output anomaly score in [6]. In addition, a 
flight would not be simply classified as normal or 
anomalous but would be assigned a degree of being 
an outlier. Currently, the major research work is 
focused on descent phase of the flight as it is the most 
sensitive part. In future, the ML algorithms should be 
tested for other phases of the flight as well. The major 
challenge in this case is to make the time series of 
different flights comparable as the temporal patterns in 
other flight phases are very diverse. 

 

ML tools and techniques are reshaping the way in 
which data is being analyzed in almost every 
industry, with the aviation industry being no 
exception. For FDM analysis, ML has a bigger role 
to play in the future and this area requires further 
research. 
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