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Abstract

The main eigenvalues of a graph G are those eigenvalues of the (0, 1)-
adjacency matrix A with a corresponding eigenspace not orthogonal to j =
(1 | 1 | · · · | 1)T. The principal main eigenvector associated with a main
eigenvalue is the orthogonal projection of the corresponding eigenspace onto
j. The main eigenspace of a graph is generated by all the principal main
eigenvectors and is the same as the image of the walk matrix. We explore
a new concept to see to what extent the main eigenspace determines the
entries of the walk matrix of a graph. The CDC of a graph G is the direct
product G ×K2. We establish a hierarchy of inclusions connecting classes
of graphs in view of their CDC, walk matrix, main eigenvalues and main
eigenspaces. We provide a new proof that graphs with the same CDC are
characterized as TF-isomorphic graphs. A complete list of TF-isomorphic
graphs on at most 8 vertices and their common CDC is also given.

Keywords: bipartite (canonical) double covering, main eigenspace, comain
graphs, walk matrix, two-fold isomorphism.

2010 Mathematics Subject Classification: 05C50, 05C51.

http://dx.doi.org/10.7151/dmgt.2386


2 I. Sciriha and L. Collins

1. Introduction

A graph G = (V,E) of order n has a vertex set V = {1, . . . , n} and an edge set
E ⊆ {{u, v} : u, v ∈ V and u 6= v}. We consider graphs which are simple, that
is, graphs which are undirected, without multiple edges or loops. A k-walk in
a graph G is a k-tuple (u0, u1, . . . , uk) ∈ V k+1 such that {ui−1, ui} ∈ E, for all
1 6 i 6 k.

Let graphs Gi, 1 6 i 6 k, have order n1, n2, . . . , nk, respectively. The disjoint

union of the graphs Gi, denoted by G1 ∪̇ · · · ∪̇Gk or
⋃̇k

i=1Gi, is the disconnected
graph of order n1 + n2 + · · ·+ nk, having the k components Gi.

The adjacency matrix of a graph G, denoted by A(G), or simply A where the
context is clear, is the symmetric n× n matrix (aij), where aij = 1 if {i, j} ∈ E,
and aij = 0 otherwise. We use terminology for a graph G and its adjacency
matrix A interchangeably, since the graph G is determined, up to relabelling
of the vertices, by A. Thus the eigenvalues and eigenvectors of a graph G are
respectively those of the matrix A. The spectrum spec(G) of a graph G is the
multiset consisting of the s distinct eigenvalues µ1, . . . , µs, each occurring m(µi)
times, 1 6 i 6 s, where the multiplicity m(µi) is the number of times that µi
is repeated as a root of the characteristic polynomial det(λI − A). Since A is
real-symmetric, m(µi) is the dimension of the eigenspace EG(µi) associated with
µi, where EG(µi) = {x ∈ Rn : Ax = µix}.

Two graphs G1 and G2 are isomorphic if there exists a permutation matrix P
such that PTA(G1)P = A(G2) whereas the graphs are two-fold (TF) isomorphic
if there exist permutation matrices P and Q such that PTA(G1)Q = A(G2). Iso-
morphic graphs have the same underlying graph with different labellings. The ad-
jacency matrices of isomorphic graphs are similar whereas those of TF-isomorphic
graphs are congruent.

Let j denote the vector (1 | 1 | · · · | 1)T. The number of distinct eigenvalues of
an n-vertex graph is taken to be s. The eigenvalues µ1, µ2, . . . , µp of G (1 6 p 6
s 6 n) having an associated eigenvector x not orthogonal to j (that is 〈x, j〉 6= 0)
are said to be main. Their eigenspace determines the number of walks of G. The
remaining distinct eigenvalues µp+1, µp+2, . . . , µs are non-main.

Spectral decomposition of A yields

(1) A =
s∑

i=1

µiPi,

where Pi : R → EG(µi) is the orthogonal projection of Rn onto the eigenspace
EG(µi) for µi, 1 6 i 6 s. Note that, for 1 6 i 6 s, the non-zero columns of Pi

are eigenvectors associated with the eigenvalue µi. For 1 6 i 6 p, the principal
main eigenvector of µi is Pi j. Moreover, the sum

∑p
i=1 Pi j = j.



The Walks and CDC of Graphs with the Same Main Eigenspace 3

A pair of graphs G and H are comain if they have the same set of main
eigenvalues (ignoring multiplicity). The main eigenspace, Main(G), is the space
generated by all the principal main eigenvectors. Thus

(2) Main(G) = Span{P1 j, . . . ,Pp j}.

The entry a
(k)
ij of the matrix Ak is the number of walks of length k starting

from vertex i and ending at vertex j. Then the ith entry of Akj is the total
number of walks of length k starting from vertex i. For i = 1, 2, . . . , k, the n× k
matrix, WG(k), whose k columns are Ai−1j is the k-walk matrix of G

WG(k) =
(
j Aj A2j · · · Ak−1j

)
.

Walks and main eigenvalues are closely related. It turns out that the number
of walks of length k in an n-vertex graph G is given by

(3) Nk =

p∑
i=1

∥∥Pi j
∥∥2
µi

k = c′1µ1
k + c′2µ2

2 + · · ·+ c′pµp
k,

where µi, for i = 1, . . . , p, are the main eigenvalues of G, Pi is the orthogonal
projection of Rn onto the eigenspace of µi and c′i = ‖Pi j‖2 is the square of the
length of the principal main eigenvector associated with µi. The constants c′i are
independent of the length k of the walk [3, p. 44].

If G has p main eigenvalues, then the rank of the walk matrix WG(k) with k
columns is min{k, p} [9]. It follows that the first p columns of WG(k) are linearly
independent and form a basis for the column space of WG(k). Therefore we can
restrict the number of columns of the walk matrix of a graph.

Definition 1. The walk matrix WG (or W) of a graph G having p distinct main
eigenvalues is the p-walk matrix WG(p) of G.

It is the purpose of this article to use the canonical double covering (also
referred to as bipartite double covering in the literature) of a graph to investigate
the relation between the walk matrix and the main eigenspace.

The canonical double covering, CDC(G), of a graph G = (V,E) of order n,
is a graph G′ = (V ′, E′) of order 2n where V ′ = V × {0, 1}, and

E′ =
{
{(u, 0), (v, 1)}, {(u, 1), (v, 0)} : {u, v} ∈ E

}
.

In other words, CDC(G) is obtained by producing two copies of the vertex set,
and replacing edges {u, v} in the original graph by edges from the first copy to
the second copy, and vice versa. It is always bipartite, with partite sets V × {0}
and V × {1}. The CDC of the 3-cycle C3 is the 6-cycle C6. Figure 1 shows the
CDC of the complete bipartite graph K2,3.
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1 2

3 4 5

K2,3

1 2

3 4 5

1 2

3 4 5

≡

1 2

3 4 5

1 2

3 4 5

CDC(K2,3) ' K2,3∪̇K2,3

Figure 1. Canonical double coverings of K2,3, where vertices (v, 0) are represented by

circle nodes, and vertices (v, 1) by square nodes.

It is well known that the main eigenspace is the same as the column space of
the walk matrix [11]. This prompts the question.

How are the walk matrices of non-isomorphic graphs with the same main
eigenspace related?

This is investigated in Section 2. We show that there is a close relationship,
even when the graphs are not comain. In Section 2, we also show that non-
isomorphic graphs with the same CDC have the same walk matrix and that the
converse is false.

We determine minimal conditions that ensure that graphs share the same
k-walk matrix, in Section 3. When comain graphs share the same walk matrix
W (:= Wp), then for both graphs W can be extended to the same Wk for k ≥ p.
For p ≥ 2, graphs with the same W have the same degree sequence. We also focus
on the specific principal main eigenvectors and the main eigenspace. We show
that graphs with the same main eigenspace that are not comain have a different
degree sequence. There has been a great interest, recently, in the research on
walks in graphs [7]. In this paper, graphs with the same CDC are proved to have
the same walk matrix and we show that the converse is false. A pair of graphs on
6 vertices with the same main eigenspace, has appeared in the literature as a pair
of graphs that have the same CDC [12]. This pair of graphs, which we call the
Zelinka pair, was the basis of a study on TF-isomorphic graphs [6]. In Section
4, we give a new proof of the characterization of TF-isomorphic graphs as the
graphs sharing the same CDC. In this study related classes of graphs have been
identified. In Section 5, we establish a hierarchy of inclusions, connecting the
different classes of graphs in view of their CDC, walk matrix, main eigenvalues
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and main eigenspaces. This is illustrated in a relation diagram given in Figure
7. Furthermore, in Appendix, to supplement the Zelinka pair of graphs, we give
an exhaustive list of all pairs of TF-isomorphic graphs on at most 8 vertices and
their corresponding CDC.

2. The Canonical Double Covering and the Walk Matrix

Let V 0 be the vertex set of : : : on n vertices. So, V 0 = : : : etc.; Page 5.
Let V ′ be the vertex set of CDC(G) of a graph G = (V,E) on n vertices. The

set V ′ can be expressed as V × {0, 1}. The vertex labelling of CDC(G) assigns
the first n labels to the n vertices in V × {0}, followed by the labelling (in the
same order) of V × {1}. For this labelling, the adjacency matrix of CDC(G) is
given by

A(CDC(G)) =

(
O A(G)

A(G) O

)
.

This is equivalent to the direct product of G with K2, that is CDC(G) = G ×
K2. It can also be obtained as the NEPS of G and K2 with basis {(1, 1)} [3].
Consequently, the eigenvalues of CDC(G) are those of G and their negatives; that
is µ is an eigenvalue of G with multiplicity η if and only if ±µ are eigenvalues of
CDC(G) with the same multiplicity η [3].

The CDC is bipartite and distinguishes between bipartite and non-bipartite
connected graphs. A connected graph G is bipartite if and only if CDC(G) is
disconnected. If G is bipartite, then CDC(G) ' G∪̇G. Figure 1 shows the CDC
of the bipartite graph K2,3. Moreover the CDC operation is additive with respect
to disjoint union. If G = G1∪̇ · · · ∪̇Gk and Gi is connected for 1 ≤ i ≤ k, then

CDC(G) = CDC

(⋃̇k

i=1
Gi

)
'
⋃̇k

i=1
CDC(Gi).

A remarkable property of graphs, that share the same labelled CDC, is that
the number of walks of any length from corresponding vertices in the respective
graphs is the same.

Theorem 2. Let G, H be two labelled graphs with CDC(G) ' CDC(H). Let k
be a natural number. Then

WG(k) = WH(k)

for appropriate labelling of the vertices.

Proof. To simplify notation, for a graph Γ, we write AΓ and CΓ (or C) for
A(Γ) and A(CDC(Γ)), respectively. Since CDC(G) ' CDC(H), we can relabel
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the vertices of the graph H so that CG = CH . Now, for all `, 0 ≤ ` ≤ k, the
(`+1)th column of the walk matrix of CG and CH will be the 2×1 block matrices

CG
`j =

(
AG

`j

AG
`j

)
and CH

`j =

(
AH

`j

AH
`j

)
,

respectively, but since CG = CH , it follows that AG
`j = AH

`j for all `, 0 ≤ ` ≤
k. It follows that the columns of WG(k) and WH(k) are equal.

The converse of Theorem 2 is false.

Counterexample 3. A counterexample establishing that the converse of Theo-
rem 2 is false is given by the graphs illustrated in Figure 2. Indeed, these graphs
have

WG =


1 3 9
1 3 10
1 3 10
1 3 10
1 3 10
1 3 9
1 4 12

 = WH ,

but CDC(G) 6' CDC(H).

1 2 3

4 5 6

7

Graph G

1 2 3

4

5

6

7

Graph H

Figure 2. The graphs G and H have the same walk matrix but different CDC.

3. The Walk Matrix and Main Eigenspace

In [11], the column space of WG(k) is shown to be the same as the subspace
Main(G). For main eigenvalues µ1, . . . , µp of G, according to [4], the main char-
acteristic polynomial M(G, x) =

∏p
i=1(x−µi) = xp− c0x

p−1−· · ·− cp−2x− cp−1.
The next result presents minimal conditions for two graphs to have the same
k-walk matrix.
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Theorem 4. Let two comain graphs have p main eigenvalues and the same walk
matrix. Then W can be extended to the same k-walk matrix for any k > p.

Proof. Let G and H be two comain graphs with the same walk matrix W . Since
Pij is an eigenvector associated with µi, then for 1 ≤ i ≤ p, (A − µiI)Pij = 0.
Therefore M(G, x)j =

∏p
i=1 (A − µiI)

∑p
j=1 Pjj = 0 [10]. It follows that

(A)pj − c0(A)p−1j − · · · − cp−2Aj − cp−1Ij = 0, which provides a recurrence
relation for the kth column of WG(k) as a linear combination of the previous
p columns, for k ≥ p. Observe that the coefficients of the main characteristic
polynomial and the first p columns of the walk matrix are the same for both
graphs. Hence the kth column of WG(k) is the same as the the j-th column of
WH(k) for all j, 0 ≤ j ≤ k.

Theorem 4 shows that minimal conditions for two graphs to have a common
k-walk matrix for any k ∈ Z+ are that they have the same main eigenvalues
and the same W. Since the entries of the companion matrix Q of the main
characteristic polynomial M(G, x) depend only on the main eigenvalues, graphs
sharing the same W and Q suffice to determine the k-walk matrix, thus providing
another set of minimal conditions for two graphs to have the same k-walk matrix.

Theorem 5. The k-walk matrix of a graph G can be expressed in terms of W
and the entries of Q.

Proof. Let the main characteristic polynomial M(G, x) be M(G, x) =
∏p

i=1(x−
µi) = xp − c0x

p−1 − · · · − cp−2x− cp−1.

Then the companion matrix Q is


0 0 · · · 0 cp−1

1 0 · · · 0 cp−2
...

...
...

...
0 0 · · · 1 c0

 and AW = WQ.

Since M(G,A)j = 0, Apj = W


c0

c1
...

cp−1

 . It follows that, for 1 ≤ ` ≤ k,

the (p + `)th column of WG(k) is Ap+`−1j. For k = (p + `), the k-th column of

WG(k) can be expressed as WQ`−1


c0

c1
...

cp−1

 .

Even if the principal main eigenvectors of two n-vertex graphs are the same,
the walk matrix is not uniquely determined.
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Theorem 6. Non-comain non-regular graphs with the same principal main eigen-
vectors have a different walk matrix.

Proof. Let G and H have the same principal main eigenvectors {z1, . . . , zp}, but
different eigenvalues, µG1 , . . . , µ

G
p and µH1 , . . . , µ

H
p , respectively. Since the zi are

projections onto distinct eigenspaces, they are mutually orthogonal and therefore
linearly independent. Note that z1 + · · ·+ zp = j. Column q + 1 of WG(k) is

Aq
Gj =

p∑
i=1

Aq
Gzi =

p∑
i=1

(µGi )qzi.

Similarly

Aq
Hj =

p∑
i=1

(µHi )qzi.

Since the zi are linearly independent and {µGi } 6= {µHi }, column q of the walk
matrix is different for the two graphs for q ≥ 2.

Example 7. The graphs G and H, shown in Figure 3, satisfy the conditions of
Theorem 6 and have the same principal main eigenvectors(

1

2
(−1±

√
5),

1

2
(−1±

√
5),

1

2
(−1±

√
5),

1

2
(−1±

√
5), 1, 1, 1, 1

)
.

Hence they have the same column space of their walk matrix W. However, their
walk matrices W are different

WG =



1 2
1 2
1 2
1 2
1 4
1 4
1 4
1 4

 and WH =



1 3
1 3
1 3
1 3
1 6
1 6
1 6
1 6

 .

Note that the two graphs are not comain. The graph G has main eigenvalues
1±
√

5, whereas H has main eigenvalues 3
2(1±

√
5).

It is worth stating that in Example 7, the graphs have the same main eigen-
vectors and therefore the same column space of their respective W. Now, we
verify that the conditions of Theorem 4 are minimal. The walk matrix W alone
is not sufficient to determine the number of walks of arbitrary length from any
vertex.
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1

2

3

4

5 6

78

Graph G

1 3

24

5 6

78

Graph H

Figure 3. Graphs G and H have the same principal main eigenvectors, but have different

walk matrices.

Example 8. A walk matrix WG(p) = WH(p) common to two non-comain graphs
G and H does not necessarily extend to the same k-walk matrix for arbitrary
k > p. The two pairs (G5 622, G12 058) and (G5 626, G12 093) shown in Figures 5 and
6 are the smallest pairs (with respect to the number of vertices), obtained by a
programming and computer search using Wolfram Mathematica [5]. Moreover,
they are the only examples on at most 8 vertices having the same walk matrix,
but not the same k-walk matrix for k ≥ p. Throughout the article, the numbering
of the graphs is in accordance with the list of non-isomorphic graphs on 8 vertices
provided on Brendan McKay’s graph data website [8].

Example 8 shows that having the same walk matrix is not sufficient for graphs
to have the same k-walk matrix for all k ∈ Z+. Next we prove that not even having
the same main eigenvalues suffices for two graphs to have the same k-walk matrix.

Counterexample 9. The graphs G and H of Figure 4 show that the condition
that the graphs are comain does not suffice to prove that two graphs have the
same k-walk matrix. Indeed, they both have main characteristic polynomial
x(x3− 2x2− 4x+ 7), but their CDCs are not isomorphic and their walk matrices
are

WG =


1 2 6 12
1 2 4 10
1 2 4 10
1 2 6 12
1 4 8 24
1 2 6 14
1 2 6 14

 , WH =


1 2 6 12
1 3 7 19
1 2 6 14
1 3 7 19
1 2 6 12
1 3 5 15
1 1 3 5

 .
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1

2

3

4

5

6

7

Graph G

12

3

4 5

6 7

Graph H

Figure 4. Graphs G and H have the same main eigenvalues, but have different walk

matrices and different CDCs.

Examples 8 and 9 show that the conditions required in Theorem 4 are indeed
minimal.

The walk matrix sheds light on the degree sequence of a graph. The k-walk
matrix of a ρ-regular graph on n vertices is (1 | ρ | ρ2 | · · · | ρk−1)j and depends
only on ρ.

Theorem 10. Non-regular connected graphs with the same walk matrix have the
same degree sequence.

Proof. LetG andH be non-regular connected graphs with the same walk matrix.
A graph is regular if and only if it has exactly one main eigenvalue. For a
connected graph with more than one main eigenvalue, the number of columns of
W is at least two. The second column of WG is A(G)j, whose entries are the
vertex degrees of the labelled graph. Since WG = WH , the two graphs have the
same degree sequence.

4. Graphs with the Same CDC and TF-Isomorphism

If two graphs G, H have isomorphic canonical double coverings, we do not neces-
sarily have that both G and H are connected. Indeed, for instance, CDC(C6) '
CDC(K3∪̇K3). However, we do have the following lemma which will be useful in
the next theorem.

Lemma 11. Let G and H be two graphs with CDC(G) ' CDC(H). Then G has
no isolated vertices if and only if H has no isolated vertices.

Proof. If G has an isolated vertex, then there exists graph G′ such that G =
G′∪̇K1. So CDC(G) = CDC(G′∪̇K1) = CDC(G′)∪̇CDC(K1) = CDC(G′)∪̇K2

and therefore CDC(H) = CDC(G′)∪̇K2. Thus the matrix

A(CDC(H)) =

(
O A(H)

A(H) O

)
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has two zero columns, corresponding to the isolated vertices which make up K2.
But a column of zeros in the matrix above arises only when a zero column is
present in one of the non-zero blocks A(H), and since both non-zero blocks are
equal to A(H), these two columns must be distributed equally between both
blocks. This zero column of A(H) corresponds to an isolated vertex in H. The
converse follows immediately by construction of a CDC.

The relation QAGR = AH , where the permutation matrices Q and R are
not inverses presents a weakened form of graph isomorphism. It is called two-fold

isomorphism or TF-isomorphism, and we write G
TF' H for the TF-isomorphic

graphs G and H.

G5 622

Main Eigenvalues: 1−
√
65

2
, 1+
√

65
2

Walk Matrix 3-walk Matrix

1 4
1 4
1 4
1 4
1 5
1 5
1 5
1 5





1 4 20
1 4 20
1 4 20
1 4 20
1 5 21
1 5 21
1 5 21
1 5 21



G12 058

Main Eigenvalues: 3−
√
37

2
, 3+
√
37

2

Walk Matrix 3-walk Matrix

1 4
1 4
1 4
1 4
1 5
1 5
1 5
1 5





1 4 19
1 4 19
1 4 19
1 4 19
1 5 22
1 5 22
1 5 22
1 5 22


Figure 5. The first of the only two pairs of graphs on at most 8 vertices, with the same

W (and therefore the same main eigenspace) but different W(k) for k ≥ 3 as described

in Example 8.

TF-isomorphism was first studied by Lauri et al. in [6]. They show, using
a combinatorial argument that TF-isomorphic graphs are graphs with the same
CDC. We present a different proof by showing that the adjacency matrices of
graphs sharing the same CDC are congruent.

Theorem 12. Suppose G and H are two graphs with adjacency matrices AG

and AH . Then CDC(G) ' CDC(H) if and only if there exist two permutation
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matrices Q and R such that

Q AG R = AH .

Proof. Suppose, without loss of generality, that the graphs G and H have no
isolated vertices (if they do, then by Lemma 11, we could pair them off until we
are left with two graphs having no isolated vertices). If CDC(G) ' CDC(H),

then there exists a permutation matrix P =

 P11 P12

P21 P22

 such that

P>
(

O AG

AG O

)
P =

(
O AH

AH O

)
.

G5 626

Main Eigenvalues: 1 +
√

17, 1−
√

17

Walk Matrix 3-walk Matrix

1 4
1 4
1 4
1 4
1 6
1 6
1 6
1 6





1 4 24
1 4 24
1 4 24
1 4 24
1 6 28
1 6 28
1 6 28
1 6 28



G12 093

Main Eigenvalues: 2 +
√

10, 2−
√

10

Walk Matrix 3-walk Matrix

1 4
1 4
1 4
1 4
1 6
1 6
1 6
1 6





1 4 22
1 4 22
1 4 22
1 4 22
1 6 30
1 6 30
1 6 30
1 6 30


Figure 6. The second of the only two pairs of graphs on at most 8 vertices, with the same

W (and therefore the same main eigenspace) but different W(k) for k ≥ 3 as described

in Example 8.

Since all the matrices have non-negative entries,

(4) P>21AGP12 + P>11AGP22 = AH ,

(5) P>21AGP11 = P>12AGP22 = O.

Observe that (P11+P21)>AG(P22+P12) = AH by (4) and (5). Now suppose
Q := (P11 + P21)> or R := P22 + P12 is not a permutation matrix. Being the
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sum of two submatrices of P, this can only happen if a row and a column are
zero. But then AH will have a row of zeros, corresponding to an isolated vertex
in H, a contradiction.

Conversely, if QAGR = AH , then P :=

(
O Q

R> O

)
defines a permutation

matrix, and

P>
(

O AG

AG O

)
P =

(
O AH

AH O

)
,

as required.

In [6], the authors discuss a pair of TF-isomorphic graphs on 7 vertices found
by B. Zelinka. In Appendix, we present an exhaustive list of 32 non-isomorphic
graph pairs on up to 8 vertices that have the same CDC. The Zelinka example
corresponds to the pair (G1164, H1032).

5. Establishing the Hierarchy

In this section, we compare the strength of relationships and similarities among
classes of graphs characterized by their main eigenvalues, main eigenspaces, prin-
cipal main eigenvectors, walk matrices, and CDCs. This establishes a hierarchy
of inclusions among different classes of graphs.

As seen in Figure 7, a partial order of nested classes of graphs with specific
combinatorial and spectral properties can be deduced. That the set of graphs with
isomorphic CDCs is a subset of graphs sharing the same walk matrix is established
in Theorem 2. The converse of 2, is false and this is shown by the properties of the
graphs in Example 3, which have different k-walk matrices. Being TF-isomorphic
and having isomorphic CDC are equivalent and this is established by Theorem 12.

Let us consider other links among the classes of graphs being considered. In
[11], the class of graphs with the same walk matrix is shown to be a subclass of
graphs with the same main eigenspace. But does this mean that the principal
main eigenvectors {P1j, . . . ,Ppj} which generate the main eigenspace are the
same? We show that this is not the case, in the following example.

Counterexample 13. The two pairs of graphs in Figures 5 and 6 have the same
walk matrix but different principal main eigenvectors. Moreover, by Theorem 6,
their k-walk matrix is different since they are not comain.

The graphs of the first pair (G5 622, G12 058) have the following two respective
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Same Main
Eigenspace

Related Walk
Matrices

Same Prin-
cipal Main

Eigenvectors

Same Walk
Matrix

Isomorphic
CDCs

Same Main
Eigenvalues

Two-fold
isomorphic

∧

Thm 14

(2)

Thm 2

Thm 12

Qs 16

[11]

(3)

/
Ex 15

/ Thm6&Ex13

/ Ex 3
/Ex
8

&
9

/

Ex 9

Figure 7. The hierarchy among the different classes of graphs: The symbol ⇒ means
“implies”. The dashed lines which merge at the ∧ node denote the conjunction of those
two conditions. The dotted lines denote Question 16.

principal main eigenvectors:

G5 622 :
1

8

(
−1±

√
65,−1±

√
65,−1±

√
65,−1±

√
65, 8, 8, 8, 8

)
,

G12 058 :
1

6

(
−1±

√
37,−1±

√
37,−1±

√
37,−1±

√
37, 6, 6, 6, 6

)
.

The main eigenvectors corresponding to G5 622 are not scalar multiples of those
corresponding to G12 058, but both separately span the same main eigenspace.

Finally we elaborate on what is meant by “related walk matrices” in Figure
7. Note that the column space of the walk matrix W of graphs with the same
main eigenspace is the same even when the entries of W are different as shown
by the graphs shown in Figure 7.

Theorem 14. Let G and H be two graphs. Then Main(G) = Main(H) if and
only if there is an invertible matrix Q such that WGQ = WH .

Proof. If Main(G) = Main(H), then the column vectors of WG and WH form
bases for the same space [11]. In particular, the columns of WH can be expressed
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as a linear combination of those of WG. Indeed, if the ith column ci of WH is
α1ij + α2iAGj + · · ·+ αpi(AG)p−1j, then

WH =

(
| | |

c1 c2 · · · cp

)
=
(
j AGj · · · (AG)p−1j

) α11 · · · α1p
...

. . .
...

αp1 · · · αpp


︸ ︷︷ ︸

:=Q

=WGQ.

The matrix Q must be invertible, since rank(WH) = rank(WG) = p.

Conversely, in WH = WGQ the column vectors of WG are combined linearly
by the columns of Q; so they are vectors in Main(G). Since Q is invertible, the
linearly independent columns of WG span the column space of all of WH . Hence
they form a basis for both Main(H) and Main(G).

Example 15. An example of a pair of graphs G and H having related walk
matrices is given in Figure 8. These correspond, respectively, to graphs 31 and
37 from [2], and were pointed out by Curmi [1].

1

2

3

4

5

6

Graph G

1

2

3

4

5

6

Graph H

Figure 8. Graphs G and H have the same main eigenspace and related walk matrices.

Indeed, we have

WG =


1 2
1 2
1 2
1 2
1 5
1 5

 =


1 3
1 3
1 3
1 3
1 4
1 4

( 1 −7
0 3

)
= WH

(
1 −7
0 3

)
= WHQ.

This same pair of graphs also serves as a counterexample to the following: graphs
that have the same main eigenspace do not necessarily have the same principal
main eigenvectors. Indeed, the principal main eigenvectors ofG are (1, 1, 1, 1, 1

4(1±√
33), 1

4(1±
√

33)), whereas those of H are (1, 1, 1, 1, 1
4(−1±

√
33), 1

4(−1±
√

33)).

The graphs in Figure 3 also have related walk matrices: WG =
(

1 0
0 2/3

)
WH .

We end with a section based on the observations of the graphs in Appendix,
to be presented below.
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Question 16. Let G and H be two graphs with CDC(G) ' CDC(H). Do G and
H have the same main eigenvalues? This problem is still open.

Remark 17. On at most 8 vertices, all TF-isomorphic graphs are comain. Even
though in Appendix, the algorithm narrows the search space to consider graphs
on at most 8 vertices, the list is still exhaustive, because it was determined
computationally that there are no counterexamples to the conjecture implied by
Question 16 on at most 8 vertices.

6. Appendix. All Pairs of TF-isomorphic Graphs on at most 8
Vertices

Here, we give a complete list of all the TF-isomorphic graphs on 8 vertices, that
is, all pairs of graphs G, H with CDC(G) ' CDC(H). Since for any pair of
TF-isomorphic graphs, we have

CDC(G∪̇K1) ' CDC(H∪̇K1)

by Lemma 11, this list contains all possible TF-isomorphic graphs on at most 8
vertices (those pairs with n < 8 vertices will correspond to graphs with isolated
vertices added to both, such as the first pair in the table).

This list was constructed by running a C program which filtered the list
of non-isomorphic graphs on 8 vertices available on Brendan McKay’s website
[8]. First, the large search space of

(
12 346

2

)
= 76 205 685 pairs of non-isomorphic

graphs was significantly reduced to 1 595 pairs of graphs which are comain using
the QR algorithm, a step that is justified by Remark 17. This was the most inten-
sive step computationally. Then another program found the CDC of each of the
remaining graphs, and these were compared pairwise to check for isomorphism.
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