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Abstract - Important results of Colin Clark’s research in 
the 70s are used again in the discussion of the limits to 
the privatization of the fisheries. Those results 
highlighted the possibility of species extinction motivated 
by special forms of the natural growth function. This 
paper revisits the situation in which the growth function 
exhibits a non-feedback, or depensation, curve. The 
existence of non-shrinkage curves poses problems in 
determining the sustainable yield and has important 
implications for resource management. The so-called 
"Allee Effect" may explain the difficulties of recovery of 
certain stocks, even when there are a set of limitations to 
the fishing effort. Ultimately, it explains the extinction of 
some species: if we face a situation of non-critical 
feedback, an effect of irreversibility is introduced. These 
effects are considered in the schooling species fisheries 
case. 

Keywords ‐  Natural Growth Law, “Allee Effect”, 

Irreversibility, “Schooling” Fisheries”. 

1. Introduction 
After almost four decades, important results of 

Colin Clark’s (1973, 1974) research are used again in 
the discussion of the limits to the privatization of the 
fisheries as a means of introducing more efficiency in 
fisheries operations (Clark, Munro & Sumaila (2008, 
2010)). Those results highlighted the possibility of 
species extinction motivated by special forms of the 
natural growth function of species.  

This paper revisits the situation in which the 
growth function exhibits a non-feedback, or 
depensation, curve. The existence of non-shrinkage 
curves poses problems in determining the sustainable 
yield and has important implications for resource 
management.  

The structure of the paper is the following:  

In the first point we present the basic model of 
fisheries management, the so-called Gordon /Schaefer 
model. This bio-economic model introduces an 
equation that reflects the natural growth of the species 
and describes their biological dynamics.  

The second point introduces different forms of 
this equation and investigates the impacts of non-
feedback characteristics of growth functions on the 
management and conservation policy. In this context, 
the so-called "Allee Effect" may explain the 
difficulties of recovery of certain stocks, even when 
there are a set of limitations to the fishing effort.  

In the third point the effects of irreversibility 
are considered and the possibility of species extinction 
is discussed. The schooling species fisheries case is 
used as an example of this kind of preoccupations. 

2. The underlying Biological Dynamics of 
Gordon/Schaefer Model 

To design an acceptable bio-economic model 
of fishing, we must introduce, in its foundation, a 
biological model of fishing resources growth. In the 
Gordon (1954) article, the underlying biological 
foundation is a variant of Schaefer (1957). The 
populations’ dynamics can be easily described with a 
“Macro-biological Approach”. A fish resource 
population or biomass will, if not subject to human 
capture, grow in terms of weight, both as a 
consequence of recruitment of new individuals and as 
the result of the growth of individual fish in the 
population. Natural mortality will act as a check on 
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growth. If we assume stable environmental conditions 
(especially, if we do not introduce men as predators), 
along the time, the biomass will approach a natural 
equilibrium level at which net growth is zero (Coelho, 
1989; Coelho, 1999; Smith, 1968). 

We define the Law of the Natural Growth as the 
specific form by each species or resource is 
regenerated. In fact, each specie regeneration capacity 
is affected by biological characteristics (birth rate, 
mortality rate, age structure, etc.) and environmental 
characteristics (nutrients abundance, temperature, 
habitat, existence and efficiency of the predators, etc). 
It was interesting to evaluate all of the factors but 
difficult. So, when introducing into the model the 
biological characteristics, we must consider restrictive 
hypothesis. 

If we do not attempt to distinguish among the 
factors influencing net growth, the growth of the 
biomass can be viewed as a function of the biomass 
itself and the population dynamics can be modelled by 
a very simple differential equation: 

F(x) = dx/dt 

x denotes the biomass and F(x) represents the 
regeneration capacity associated with every level of 
the stock. 

The relation between the rate of growth and the 
level of the stock is not monotonic. In the Schaefer 
model, we’ll have a quadratic function: 

F (x) = r x (1- x/K)   

K denotes the carrying capacity and r, constant, 
denotes the intrinsic growth rate. When integrated, we 
are facing the popular Lotka/Volterra logistic equation 
of population dynamics (Neher, 1974; Wilen, 1985). 

When we introduce men action of fishing, the 
first equation is modified: 

dx/dt = F (x) – H (t)  

H (t) denotes the capture rate. 

The production function is given by: 

H (t) = h E(t) x(t)  

where E(t) denotes the fishing effort at time t (a 
kind of “capital-jelly” measure of the flow of labour 
and capital services devoted to fishing; this could be 
evaluated, for example, in terms of fishing hours), and 
h, constant, denotes a capture-ability coefficient 

measuring the different capture conditions between 
fishing grounds. 

If the resources are being captured in a 
sustainable basis, then dx/dt = 0 and H (t) = F(x). 
Hence, F(x) can be viewed as the sustainable yield 
associated with a given biomass level. Since H(t) is a 
function of E, as well as x, one can establish the 
sustainable yield/fishing effort relationship: 

Y =  E -  E2, 

where Y denotes sustainable physical yield, 

with  =h K and  = h2 K/r. 

With the biological model complete, we can 
introduce prices and costs. We assume that both the 
demand for captured resources and the supply of 
fishing effort are perfectly elastic. The cost function 
can be expressed as the simple equation: 

C = c E  

We assume that the total cost is linear with 
effort. The constant c denotes unit cost of effort. 

Sustainable revenue is represented by pY, 
where p is the unit price of fishing. It has, also, a 
quadratic form.  

We can now solve the model and analyse the 
behaviour of the “industry”.  

The main conclusions can be summarized as 
follows: If fishing was managed by a “sole owner”, it 
would be stabilised at the point where sustainable 
resource rent - sustainable revenue less total cost - is 
maximised. In this situation, fisheries are managed in 
a socially optimal manner. If fishing effort expands 
beyond this point, overexploitation of the resources 
occurs.  

But, as fishing activities take place in a regime 
of open access, there is no landlord to appropriate the 
resource rents generated by fishing. Thus, if fishing 
was at the point where resource rents are maximised, 
the “industry” would be enjoying super-normal returns 
and new fishermen would be attracted to enter the 
fishing ground. If fishing is unregulated and 
competitive, fishing effort will expand, leading to 
overexploitation of biomass. In this case, fisheries 
would not be in equilibrium until it had expanded to 
the point where total costs are equal to total revenues, 
that is, until resource rent had been fully dissipated. 
This “bionomic equilibrium” reflects the existence of 
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externalities in the capture process and it’s a case of 
market failure (Filipe et al, 2007; Coelho, 2011).  

Besides the relevance of the conclusions, we 
have to underline the role of the biological model when 
constructing such a bio-economic model of fisheries 
management. In fact, the potency of explanation of the 
basic model depends on the capacity of the growth 
equation that is introduced, to catch the fundamental 
characteristics of biological dynamics of the species 
considered. At the same time, if we do not want to 
introduce too much mathematical complexity in the 
model, we must take care of the efficacy/ feasibility of 
the model and of the biological information needs to 
estimate the bio-economic model. 

3. Compensation and Non-feedback 
Control in Biological Models 

Also problematic is the possibility that F(x) 
does not have the usual form. Several alternative forms 
for the logistic model have been proposed. 

The logistic model itself and, in general, 
models with a growth function such as the first figure 
- so that the proportional rate of growth 

 

 
r x

F x

x
( ) 

  

is decreasing with x - are called models of pure 
compensation. 

 

 

 

On the other hand, if r (x) is an increasing 
function of x, for certain values of x, it is said that there 
is a process of non-feedback or "depensation”. For 
example, there are curves that shows non-feedback for 
0 < x < K* and compensation for x > K *. These types 
of curves are the so-called non-feedback curves. 

Also, we can use the expression “curve of non-
critical feedback” to refer non-feedback curves with 
the property F(x) <0 for certain values of x, near x = 0, 
as in the second figure.  

 

 

      

The existence of non-shrinkage curves poses 
problems in determining the sustainable yield, y, and 
has important implications for resource management. 
The first aspect can be seen as follows. Assuming that 
the stock is subject to a given capture with a constant 
effort, we have: 

 

dx

dt
F x qEx ( )

 

Suppose that we want to build the Yield-Effort 
curve:    y = y (E). 

In the case of pure compensation, each level of 
space (E) produces a unique and stable solution for the 
population balance XE and the corresponding yield YE 
is: 

 
 y f xE E

. 

Therefore, the curve Yield-Effort rises to a 
maximum (MSY) and then decreases slowly as the 
effort is being increased. The sustained yield is zero 
for values of E ≥ E*, where q E* = F'(0) = max r(x) = 
r*. As in the logistic model, the resource stock is 
driven asymptotically to zero if the catch rate is 
maintained at a level higher than the intrinsic growth 
rate r*. 

 

  F(x)        

        0   K x
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In the absence of feedback effect we face the 
problem of the existence of multiple equilibrium 
solutions. For each level of effort E <E* = max r(x)/q 
there is a population of stable equilibrium 1xE and a 
yield equilibrium 1yE, equally stable. But, for values 
of E>E+=F'(0)/q, there is also a population of unstable 
equilibrium, 2xE.  

If the initial level of the population x(0) is 
higher than 2xE, the equilibrium level is established at 
x = 1xE; however, if x(0)<2xE, equilibrium is 
established at x = 0, assuming that E is constant. Thus, 
there remains a critical effort E* such that y(E) = 0, but 
the yield curve-effort is different from pure 
compensation model, now forming a discontinuity at 
E = E*, where the yield curve reaches zero if E exceeds 
the critical level. 

 

 

 

       

The implications for the management policy 
are very relevant:  

First, the incremental approach of Schaefer 
model is not appropriate, since a slight increase of E 
can lead the population to collapse. It reminds us the 
“butterfly effect”: a simple variation in E conducts the 
population to a possible disaster. 

Furthermore, the model introduces a special 
effect. Suppose that the effort is approaching the level 
E> E* and x (t) approaches zero (while x is still 
positive). If E is reduced to a level below E*, this does 
not imply that the system returns to 1yE. In fact, one 
can demonstrate that if the reduction is not below 2xE, 
the population will continue to decline. That is, to 
return to 1yE may be necessary to reduce the effort 
until E+.  

In short: to bring the population to acceptable 
levels, the reduction in fishing effort may be much 
higher than desirable. This "Allee Effect", as it is 
known in Anglo-Saxon literature (see, for example, 
Southey (1972) and Larkin, Raleigh & Wilimovscky 
(1964)), may explain the difficulties of recovery of 
certain stocks, even when there were a set of 
limitations to the fishing effort. Ultimately, it explains 
the extinction of some species. 

Worse, if we face a situation of non-critical 
feedback. A new effect is introduced - that of 
irreversibility. 

 

 
 
         

In this case, it can be seen that each level of 
effort E ≥ 0 gives rise to two equilibrium solutions 
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(1xE and 2xE ) and that x = 0 is a stable equilibrium 
solution for any E. If effort goes beyond a supercritical 
level, the population may find itself reduced to a level 
lower than K0 (the minimum viable population). So, 
we find ourselves in a situation of irreversible 
extinction. 

4. Non-critical Feedback and Species 
Extinction 

In the world’s fisheries there are some studied 
cases of this situation of non-feedback control. These 
studies also have important practical indications about 
resource management and conservation measures. 

An example is the so-called "Schooling 
fisheries" case. These species, like sardine, tend to live 
in large schools. The existence of large schools 
provides a means of defense against large predators. 
The mathematical theory that studies the relationships 
between schools and predators, due to Brock and 
Riffenburgh (see Clark, 1974) indicates that the 
detection by predators is an inverse function of the size 
of the shoal. Since the amount of fish that a predator 
can consume has an average threshold, when 
exceeding this limit, the growth of the school implies 
a reduction of consumption by the predator. Also, 
other defensive aspects of the school, such as bullying 
or confusion of predators, are elements of more 
effective “schools”. 

However, this type of large schools behavior 
has allowed the development of highly efficient 
fishing techniques. With modern fish finding 
equipment by satellite, with modern nets of fibers, 
strong and easy to handle, fishing can remain 
profitable, even for small stocks (Bjorndal (1987), 
Neher (1990), Mangel and Clark (1983)). Of course, 
as these stocks are getting scarce they become even 
less protected.  

Furthermore, the existence of these techniques 
prevents a stock effect on business costs, as opposed 
to the so-called "search fisheries."  For “search” 
species, the fishing action implies search and 
detention. The existence of larger populations is 
essential for fishermen because it reduces the costs of 
detection (see Neher, 1974). But now, the high 
capacity of detection of new technology means that 
costs are no more sensitive to the size of stock, even 
for schooling fisheries (Bjorndal and Conrad, 
1987).This situation is extremely dangerous because 
of the low biotic potential of some species. The 
reproductive capacity requires a minimum value 
below which extinction is inevitable. Since the 

efficiency of the school is reduced, the losses due to 
the effects of predation are relatively large at low stock 
levels. Clark (1974) states this turns into a situation of 
non-feedback in the stock-recruitment relationship. 
And that implies a discontinuity in the curves of yield-
effort, so that an infinitesimal increase in stress, below 
a certain threshold, leads to an unstable state which can 
lead to extinction. 

In the case of non-critical feedback, the path to 
extinction may be irreversible. According to Clark 
(1974), a necessary and sufficient condition for the 
existence of non-critical feedback is that the average 
fertility is too small to balance the high mortality of 
some low levels of population, for which the school 
becomes inefficient. So, the fishing communities can 
face a possible sudden collapse in the exploitation of 
small schooling species subject to strong capture. 
These breakdowns can directly result from overfishing 
or can be indirectly induced by environmental 
fluctuations operating on a population of excessive 
exploitation and decreased resistance. 

Bjorndal, Conrad and Salvanes (1993), in a 
study on the capture of seals in the area of 
Newfoundland, concluded that, although the stock had 
not reached the danger of extinction, the existence of a 
feedback-like effect could be appropriate to describe 
the dynamic behavior of this specie. The same way, 
the poor biotic potential of species like whales, 
especially when subject to severe operating 
conditions, together with the existence of an 
intertemporal discount rate higher than the natural 
growth rate of the species, may be explanatory factors 
for the near extinction of this species and the need of 
establishing a “moratorium” on whaling by the 
International Whaling Commission. On this issue, see, 
for example, the studies of Conrad (1989) and Clark 
(1987). 

5. Final Remarks 

The widespread implementation of rights based 
management (RBM) schemes in fisheries 
management, as ITQs, increased the opportunity for 
private sector groups to influence fisheries 
management. This development has given rise to a 
debate over the extent to which should be encouraged 
this private influence.  

In a provocative paper, Grafton, Kompass & 
Hilborn (2007) state, on the basis of empirical 
investigation, that the results of Clark (1973, 1974) are 
really no more than a theoretical curiosity with no 
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practical significance. But, other important 
investigations’ results highlight that the conclusions of 
Clark cannot be safely dismissed. See, for example, 
the study of Dulvy, Sadovy & Reynolds (2003). The 
authors point that the possibility of extinction is 
relevant. In fact, the extinction occurred in about 100 
marine fisheries (most of all, it is expected, in 
situations of positive minimum viable population 
levels – see Hutchings (2000)). That indicates that 
there is substantial scientific evidence that we can find 
several species with positive minimum viable 
population levels, and that there exist population levels 
below which the resources cannot replace their 
original levels of abundance even if we reduce the 
fishing effort. 

According to Clark, Munro & Sumaila (2010) 
this should imply that there are limits to the 
privatization of fisheries: there are situations in which 
the communities should not put under private hands 
the defense of the common interest. In situations of 
“depensation” growth curves and of little growth rate 
of renewal, compared to the existing interest rate, the 
private management should lead (“efficiently-
seeming”) to species extinction.  

We go further: in situations like this we should 
also not purely confide in public policy. The 
management of such situations imposes an important 
restriction to the managers and underlines the 
fundamental idea that, in these types of industries, 
there is more than simply Economics. In fact, Nature 
and her laws impose a necessary humility to political 
devisors. A principle of precaution in the definition of 
total authorized capture levels and in the formulation 
of other command and control, or economic, tools is 
simply a question of good sense and ethical posture. 
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