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Abstract 

The development of digital multimedia systems has seen an unprecedented growth in 

recent years, with immersive video technology taking a central role.  An application 

which is driving interest in this technology is free-viewpoint video which allows 

viewers to interactively navigate a scene by selecting their preferred viewing position.  

This is made possible through the generation of novel viewpoints rendered from a 

small set of texture and depth map views using a view synthesis technique.   

Meanwhile, according to Cisco, mobile video traffic accounted for 60% of total mobile 

data traffic in 2016 and this is expected to reach 78% by 2021.  This growth in mobile 

video traffic coupled with the introduction of free-viewpoint video in the mobile 

ecosystem will have an impact on the user experience especially in crowd event 

scenarios. Such scenarios are characterised by high uplink user data traffic coupled 

with excessive uplink signalling overhead caused by channel quality feedback reports.   

 

In this thesis, the high uplink signalling overhead problem is tackled through the 

design and development of a set of novel Channel Quality Indicator (CQI) feedback 

reduction schemes.  These are based on a User Equipment (UE)-assisted predictive 

filtering technique and a CQI clustering scheme respectively, where the latter is able to 

achieve an uplink signalling feedback reduction of 88.2%. Moreover, a cross-layer 

depth-texture bit rate allocation estimation technique and an enhanced depth map rate 

control scheme aimed at improving the synthesised view quality is proposed.  

Furthermore, a content-aware scheduling algorithm based on the widely used modified 

largest weighted delay first (M-LWDF) packet scheduling scheme is designed and 

tested in conjunction with the combined CQI feedback reduction schemes mentioned 

above.  Whilst, the content-aware scheduling scheme yields an improvement in both 

the system performance and visual quality metrics, the use of the feedback reduction 

schemes has a detrimental effect on the visual quality.  For this reason, a lean cross 

layer technique is designed to adapt the CQI feedback by soliciting CQI reports from 

individual UEs.  This solution has not only improved the texture and synthesised view 

Peak Signal-to-Noise Ratio (PSNR) quality, approaching that of the content-aware M-

LWDF scheme without any CQI feedback reduction applied, but also achieves an 

uplink feedback signalling overhead reduction of 84.1%. 
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1 

 

Chapter 1 Introduction 

 

1.1 Context and Motivation of the work 

 

The past decade has seen a rapid development in digital multimedia systems owing to 

the increasingly demanding consumer needs of higher resolution, improved realism 

and better interactivity.  Whilst video quality has progressively improved from the 

legacy standard definition (SD) to 4K/8K ultra high definition (UHD) format, the 

deployment of 3DTV (3-dimension television), aimed at improving realism through 

the introduction of depth perception, experienced a slowdown within the consumer 

electronics industry in recent years [1].  This is generally attributed to the fact that 

earlier systems allowed depth perception from a fixed set of viewpoints whilst viewers 

are required to wear glasses without any form of interactivity.  However, the advent of 

auto-stereoscopic displays coupled with advances in the multi-view video plus depth 

(MVD) representation and coding standards reinvigorated the interest in immersive 

technology [2].  In fact, the use of immersive video techniques has already captured 

the interest of the video advertising industry which estimated an increase of 46% in 

advertisement views when using immersive video technology compared to the 

standard video technology [3].  Meanwhile, an application which is fast gaining 

traction in recent years and continues to drive interest in immersive technology is free-

viewpoint video (FVV) [4, 5].   

 

1.1.1 Free-Viewpoint Video 

In an FVV system based on the MVD representation, viewers have the facility to 

interactively navigate a scene by selecting either existing or novel viewpoints rendered 

from a small set of texture and depth map views using a view synthesis technique [6].  

Such an application has not only attracted consumers seeking a new, interactive and 

immersive experience but has also garnered commercial interest in sporting and other 

entertainment events [7, 8]. 

 

The coding of the MVD representation plays a pivotal role in the FVV end-to-end 

transmission chain and has received significant research attention.  This led the 

standardisation bodies, namely the International Organisation for 
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Standardisation/International Electrotechnical Commission (ISO/IEC) Motion Picture 

Experts Group (MPEG) and the International Telecommunication Union (ITU-T) 

Video Coding Experts Group (VCEG), to jointly develop and release multi-view video 

coding (MVC) standards starting with H.264/MVC in 2009 and subsequently 

H.265/Multi-view High Efficiency Video Coding (MV-HEVC) and H.265/3D-HEVC 

in 2014 and 2015 respectively.  Both MV-HEVC and 3D-HEVC can effectively be 

used in the compression of the MVD representation, however, the latter achieves better 

coding efficiency, owing to the introduction of coding tools specifically designed for 

this representation, at the expense of increased computational complexity.  Meanwhile, 

the research and commercial interest in FVV and similar immersive technologies is 

expected to grow further as the standardisation bodies are preparing for a “beyond 

H.265” standard featuring super multi-view (SM) and free navigation (FN) coupled 

with 360-degree video applications to be released by 2020 [9]. 

 

1.1.2 Mobile Data Capacity Crunch 

According to the Cisco Visual Networking Index Forecast report published in 

September 2017 [10], global mobile data traffic, shown in Figure 1.1, is expected to 

reach 17EB per month in 2018 and increase to 48EB per month by 2021 with a 

compound annual growth rate (CAGR) of 42%.  Meanwhile, in 2016, mobile video 

traffic accounted for 60% of total mobile data traffic and is expected to increase to 

78% by 2021.  This surge in mobile video data traffic, together with the introduction of 

FVV in the mobile ecosystem is expected to compound the pressure on mobile 

network operators (MNO) to deliver a superior customer-received usage experience 

(CRUX) [11], given the capacity constraints of current 4
th

 generation Long Term 

Evolution (LTE) wireless cellular networks. 
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Figure 1.1: Mobile data traffic and proportion of mobile video traffic 

 

Meanwhile, apart from this expected growth, MNO need to design and optimise radio 

access networks for crowd events such as sports events, mass entertainment gatherings 

and public demonstrations.  These scenarios are characterised by a large number of 

subscribers, usually in the thousands, confined in a relatively small geographical area 

thereby leading to a high traffic density zone.  With reference to the traffic profile 

collected from a live LTE commercial network of a radio sector covering a crowd 

event scenario, shown in Figure 1.2, crowd events exhibit a significantly higher 

proportion of uplink data traffic relative to the total traffic, when compared to a normal 

business day, due to the higher user propensity to share multimedia content.  In 

addition to this high uplink data traffic, each user equipment (UE) in the radio sector is 

required to send channel quality indicator (CQI) feedback reports to the eNB, to 

support its scheduling functions, leading to high uplink signalling overhead.  In order 

to address this problem and avoid the risk of uplink control channel congestion, MNOs 

typically increase the resources for the uplink control channel at the expense of lower 

uplink user data channel capacity thereby leading to lower uplink throughputs.  

However, this runs counter with the fact that the traffic profile in such events is uplink 

dominated.  Thus, it is necessary to design low complexity CQI feedback reduction 

techniques such that precious uplink resources for the user data are not sacrificed, 

particularly in crowd event scenarios.  
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Figure 1.2: Proportion of uplink data volume from total - Normal business day vs. Crowd event traffic 

profile 

As crowd events constitute an attractive use case for the deployment of FVV systems, 

the study of low latency MVD video transmission over an LTE network in such 

scenarios is particularly relevant.  Apart from the typical challenges associated with 

video transmission over wireless networks, the relatively high number of active users 

per radio sector coupled with the limited channel state information impinge on the key 

quality of service parameters, namely delay and packet loss.  Hence, the use of 

content-awareness in both the packet scheduling and CQI feedback reduction 

techniques is essential. 

 

Meanwhile, considering the channel bandwidth constraints of commercial LTE radio 

access networks, the video encoders are generally equipped with a rate control scheme 

to ensure that the encoded bit stream abides with strict target bitrates.  In the case of 

MVD video content, rate control needs to be applied across both the texture and depth 

map views.  Although the depth map views are strictly used for view rendering, 

encoding these views at a low bit rate results in a significant degradation of the 

synthesised view quality [12].  Moreover, the same rate control scheme is generally 

applied to both the texture and depth map views without any consideration of the depth 

map characteristics. Thus it is imperative that the depth-texture view bit allocation and 

rate control for the depth map views are tuned appropriately. 
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1.2 Main Objectives of this work 

 

The focus of this work is on the mitigation of the high uplink signalling overhead 

present in crowd event scenarios, whilst minimising view quality distortion, through 

the use of lean cross-layer design for the transmission of low latency MVD video 

content over an LTE network.  To this end, the main objectives for this work are: 

 

• Develop a novel, low complexity scheme to reduce the uplink signalling 

overhead present in crowd event scenarios thereby leaving more resources for 

the uplink user data traffic. 

• Develop a low complexity technique to estimate the optimal depth-texture view 

bit allocation for the transmission of low latency MVD video that improves the 

synthesised view quality. 

• Exploit depth-map characteristics to enhance the standard rate control scheme. 

• Study the performance of standard Quality of Service (QoS)-aware packet 

scheduling schemes for the transmission of MVD video in crowd event 

scenarios and explore enhancements that can be applied to such schemes with 

the aim of improving the quality of the delivered MVD video. 

• Establish the impact of CQI feedback reduction scheme on both the system 

level performance and quality of the delivered MVD video and explore the use 

of cross-layer design to mitigate any video quality degradation introduced by 

the CQI feedback reduction scheme. 

 

1.3 Contribution of this work 

 

The main contributions of this work are split into three main areas:   

 

1. The high uplink signalling overhead present in crowd event scenarios reduces 

the capacity for uplink user data traffic.  This problem is addressed through: 

• A novel UE-assisted predictive filtering scheme based on the LMS and 

NLMS adaptive filters located in both the UE and eNB; 
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• A reduced complexity UE-assisted predictive filtering scheme able to 

reduce computational load by up to 35% when compared to the LMS 

based predictive filtering scheme; 

• A novel CQI clustering coupled with a cluster leader election technique 

exploiting the slow varying radio channel conditions experienced by 

static users. 

 

2. The bit rate allocation for the depth map and texture views rate control 

algorithm, in the respective encoders, is either set to a fixed proportion of the 

total available bit rate or estimated through the use of techniques based on pre-

encoding or pre-estimation of model parameters, making it unsuitable for real 

time encoding.  Moreover, the rate control scheme applied to the texture views 

is typically re-used for the depth map views without consideration of the depth 

map characteristics.  The contribution in this area are: 

 

• A novel cross-layer MV-HEVC depth-texture bit rate allocation 

estimation technique based on a formulated statistical model using both 

the image characteristics and the total available bit rate for the MVD. 

• An enhanced R-λ model based rate control scheme for the depth map 

views using a refined key frame bit allocation and R-λ model coupled 

with an adaptive Lagrange multiplier and QP clipping function. 

 

3. The use of the CQI feedback signalling reduction schemes result in degradation 

of the MVD video quality thereby affecting the user experience.  Moreover, the 

standard QoS-aware packet scheduling schemes for the transmission of MVD 

video in a crowd event scenario were found to offer the same level of 

performance.  The contribution in this area are: 

• A content-aware packet scheduling scheme based on a well established 

QoS-aware packet scheduling scheme utilising RLC queue based 

weighted factors coupled with an MVD packet prioritisation scheme. 

• A novel CQI feedback reduction scheme based on the combined use of 

CQI clustering and UE-assisted predictive filtering scheme. 
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• A novel lean cross-layer technique allowing the eNB to solicit CQI 

feedback from individual UEs thereby adapting the CQI feedback based 

on high priority packet loss rate and weighted head of line packet delay 

metrics. 

 

1.4 Chapter Organisation 

 

With reference to Figure 1.3, this work is organised into three main sections with each 

section divided into two chapters. 

 

The first section focuses on the design, implementation and testing of novel CQI 

feedback reduction schemes.  This starts with chapter 2 giving a detailed technical 

review of the key elements in an LTE radio access network followed by a literature 

review of CQI feedback signalling reduction techniques.  The new CQI feedback 

reduction schemes are then presented in chapter 3. 

   
 

Chapter 1: Introduction

Chapter 2: LTE Radio Access 

Network  Background & 

Literature Review

Chapter 3: CQI Feedback 

Reduction Schemes

Chapter 4: H.265/HEVC 

Background and Literature 

Review

Chapter 5: Depth-Texture bit 

allocation and depth map rate 

control

Chapter 6: MVD Video 

Transmission Background and 

Literature Review

Chapter 7: Combined feedback 

reduction scheme and cross-

layer scheme

Chapter 8: Conclusion

SECTION 1

SECTION 2

SECTION 3

 

Figure 1.3:  Chapter Organisation 
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The second section focuses on the MVD video encoder residing in the application 

layer.  This section starts with chapter 4 giving an overview of the latest standard video 

encoder, namely High Efficiency Video Coding (HEVC) together with its Multi-View 

(MV)/3D extensions and proceeds to a review of work aimed at the depth-texture view 

bit allocation problem and rate control schemes.  In chapter 5, we introduce a new 

cross-layer MV-HEVC based depth-texture bit rate allocation estimation scheme for an 

FVV application aimed to maximise the rendered view quality.  Cognizant of the fact 

that the rate control scheme used for texture is generally utilised for the depth map 

views, we explore potential improvements in this area and propose an enhanced depth 

map rate control scheme to improve the rendered view quality. Both the cross-layer 

depth-texture bit rate allocation estimation scheme and the enhanced depth map rate 

control scheme, introduced in this section, are independent of the CQI feedback 

reduction schemes presented in the first section. 

 

The third section focuses on the MVD video transmission over LTE network in a 

crowd event scenario where the CQI feedback reduction schemes and the optimal 

depth-texture bit allocation technique, presented in the previous sections, are combined 

with the proposed content-aware scheduling scheme.  This starts with chapter 6 giving 

a comprehensive overview of the video bit stream packetisation coupled with the 

relevant packet scheduling algorithms and cross-layer schemes.  In chapter 7, we first 

establish the performance of several quality of service (QoS) aware packet scheduling 

algorithms in a crowd event scenario followed by the introduction of an enhanced 

content-aware scheduling scheme based on a well established packet scheduling 

algorithm.  This is then followed by a study to establish the impact of a new combined 

CQI clustering and predictive filtering scheme on both system performance metrics 

and downlink transmitted view quality.  In order to alleviate the impact of the 

proposed scheme, a cross-layer technique is utilised to adapt the CQI feedback with 

the aim of improving the system level performance metrics and minimise view quality 

degradation, whilst reducing the uplink signalling overhead and yielding additional 

capacity for the uplink user data.  The improvement achieved by this solution has been 

verified using both objective and subjective testing methodologies. 

 

Finally, chapter 8 provides a summary of the key results presented in this thesis 

together with an outlook of potential future research avenues. 
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Chapter 2  LTE Radio Access Network 

 

This chapter presents a technical review of the LTE radio access network together with 

the background necessary for the design and development of the new CQI feedback 

signalling reduction schemes.  It gives: 

 

• A description of the LTE radio protocol architecture including radio resource 

management and link adaptation; 

• An overview of the channel feedback report types together with a description 

of the CQI feedback process and signalling reduction techniques. 

 

2.1 LTE Radio Protocol Architecture 

The LTE radio protocol architecture, shown in Figure 2.1, resides in both the UE and 

E-UTRAN.  As shown in Figure 2.1, the protocol stack is split into two; namely the 

control plane and the user plane.  The user plane transports the IP data packets 

generated at the application layer to and from the evolved packet core (EPC) whilst the 

control plane transports both access stratum (between UE and eNB) and non-access 

stratum (between UE and EPC) signalling. 
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PHY
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Figure 2.1: LTE Radio Protocol Architecture 
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The radio resource control (RRC) management entity, residing at layer 3 of the access 

stratum protocol stack, manages all the signalling between the UE and the eNB 

including the setup of dedicated radio bearers (DRB) for data transmission [13].  

Moreover, it also facilitates the transport of non-access stratum signalling through 

signalling radio bearers (SRB) established between the UE and the eNB.  Both the 

signalling and user plane traffic in the access stratum flows through the layer 2 entities 

made up of the packet data convergence protocol (PDCP), radio link control (RLC) 

protocol and the medium access control (MAC) protocol prior to transmission over the 

air by the physical layer. 

 

2.1.1 PDCP Layer 

The functions of the PDCP layer, shown in Figure 2.2, include the implementation of a 

sequence numbering scheme to aid in-sequence delivery and missing/duplicate packet 

detection [14].  Moreover, security features such as integrity protection and ciphering 

are implemented in the PDCP layer to ensure secure delivery of data packets over the 

air interface.  In addition to these functions, the PDCP layer performs robust header 

compression (RoHC) [15] for the transport of Internet Protocol (IP) / User Datagram 

Protocol (UDP) / Real Time Protocol (RTP) traffic, such as Voice over IP (VoIP), 

thereby improving the air interface efficiency. 
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Figure 2.2: PDCP Layer Operation 
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2.1.2 RLC Layer 

The RLC layer receives service data units (SDU) from the PDCP entity and transforms 

them into RLC packet data units (PDU) by performing segmentation and 

concatenation depending on the RLC mode of operation [16].  This process is 

conducted in order to fit the RLC SDUs into the transport blocks (TB) available in the 

MAC layer based on the underlying physical channel.  The RLC protocol offers three 

different modes of operation namely Transparent Mode (TM), Unacknowledged Mode 

(UM) and Acknowledge Mode (AM).  The RLC TM mode of operation, shown in 

Figure 2.3, is simply a transmission buffer to store the RLC SDUs until a transmission 

opportunity is signalled from the MAC layer.  This is strictly used to transport 

common signalling channels responsible for paging, system information block 

transmission, or initial RRC connection establishment [17]. 

 

Transmission 

Buffer

Transmitting RLC Entity (UE/eNB)

RLC SDU

PDUs

Receiving Buffer

Receiving RLC Entity (UE/eNB)

RLC SDU

PDUs

 

Figure 2.3: RLC TM Operation 

 

As shown in Figure 2.4, both RLC UM and RLC AM implement segmentation and 

concatenation coupled with re-ordering and duplicate detection of RLC PDUs.  In 

addition, the RLC AM operates an Automatic Repeat reQuest (ARQ) re-transmission 

mechanism to recover any missing PDUs over the air interface.  These modes can be 

used for both control and user plane RLC PDUs whilst the mapping of the 

corresponding SRB or DRB is done by the eNB using the QoS Class Indicators (QCI).  

This allows the RLC layer to tailor its services to the radio bearers based on the QoS 

requirements. 
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Figure 2.4: RLC AM/UM Operation (AM operational elements shown in red) 

 

2.1.3 MAC Layer 

The MAC layer takes a central role within the LTE radio protocol stack.  Apart from 

mapping the logical channels, carrying RLC PDUs, to the transport channels and 

multiplexing multiple radio bearers for delivery by the physical layer [18], the MAC 

layer implements some of the key radio resource management functions.  These 

include packet scheduling, link adaptation and hybrid ARQ (HARQ).   

 

With reference to Figure 2.5, the packet scheduler exploits the time and frequency 

selective fading, common in wireless environments, to dynamically distribute the 

available resources among UEs having data in the eNB RLC buffers and awaiting 

scheduling.  Such scheduling decisions are carried out at every transmission time 

interval (TTI), which is set to 1ms in LTE, and involves selecting the users to be 

scheduled together with the amount of resources to be assigned depending upon their 

QoS requirements.  
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Figure 2.5: MAC Layer Functionality 

 

The received signal level and quality is affected by several impairments inherent to 

wireless environments including multipath propagation, path loss and interference.  In 

order to counter these affects the link adaptation entity selects the transmission 

parameters, such as modulation and coding scheme (MCS) and multiple-input multiple 

output (MIMO) transmission rank and pre-coding, to match the channel conditions on 

the resources allocated by the scheduler [19].  In order for the packet scheduler and 

link adaptation entities to gain channel awareness, the UE sends channel feedback 

information to the eNB including a Channel Quality Indicator (CQI) report coupled 

with a Pre-coding Matrix Indicator (PMI) report, Pre-coding type indicator (PTI) and 

Rank Indicator (RI) depending on the MIMO transmission mode and eNB 

configuration [20]. 

 

In order to further improve system performance and increase robustness against link 

adaptation errors, LTE implements a hybrid ARQ protocol which offers a fast, layer 1 

retransmission mechanism.  HARQ effectively combines forward error correction 

(FEC) with an ARQ protocol such that transport blocks received in error are used in 

FEC decoding rather than simply discarded.  The HARQ retransmission protocol 

implemented in LTE is based on an 8-process Stop-And-Wait (SAW) protocol 

between the UE and eNB and the receiver uses ACK/NACK messages to inform the 

transmitter whether the current transport block was received correctly or otherwise.  

LTE supports two HARQ combining methods, namely [21]: 
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• Chase Combining where each retransmission is an exact copy of the data first 

transmitted allowing time diversity and soft combining gain at a low 

complexity; 

• Incremental Redundancy, where additional redundant information is included 

with each re-transmission allowing the effective coding rate to increase based 

on the number of retransmissions. 

 

2.1.4 PHY Layer 

As opposed to previous generations of mobile communication systems, LTE employs 

Orthogonal Frequency Division Multiple Access (OFDMA) for the downlink whilst 

the uplink is based on Single Carrier Frequency Division Multiple Access (SC-

FDMA).  In an OFDMA transmitter the high bit rate data to be transmitted is first split 

into several parallel low bit rate data streams.  Each of these streams is then modulated 

on a set of narrow, mutually orthogonal, sub-carriers using a conventional modulation 

scheme [22].  In LTE, the sub-carrier spacing is set to 15 kHz whilst the number of 

sub-carriers varies depending on the overall channel bandwidth.  The process of 

splitting the high bit rate data into multiple low bit rate data streams results in a larger 

OFDM symbol duration thereby partially counteracting the effect of inter-symbol 

interference (ISI), caused by multi-path delay spread, whilst reducing error rates.  

Nevertheless, LTE further employs the use of a cyclic prefix (CP) to avoid ISI 

whereby a posterior portion of the symbol is copied and prepended to the symbol. 

 

Apart from the good spectral properties and the handling of multiple bandwidths, the 

implementation of OFDMA is made relatively efficient through the use of the Fast 

Fourier Transform (FFT).  Moreover, a key attribute of OFDMA is that it allows the 

scheduler in the base station transmitter to allocate users to different sub-carriers 

thereby exploiting the time-frequency selective nature of wireless channels and 

increasing robustness.  Nevertheless, OFDMA presents a number of challenges namely 

[23]: 

 

• Sensitivity to frequency offsets caused by hardware imperfections and Doppler 

shift in high mobility scenarios; 
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• High Peak-to-Average Power Ratio (PAPR) of the transmitted signal requiring 

the use of high linearity power amplifiers operating with a large power back-off 

leading to poor power efficiency.  This is the key reason why 3GPP opted to 

use OFDMA in the downlink direction whilst using the power efficient SC-

FDMA in the uplink direction.   

 

In addition to OFDMA, LTE uses multiple transmit and receive antennas, at both the 

eNB and UE side, in order to exploit the space-time diversity, present in a multipath 

rich environment, giving rise to spatial multiplexing.  This creates multiple parallel 

data transmission paths which are orthogonal in the space-time domain and thus cause 

minimal interference to each other [17].   

 

With reference to Table 2.1, 3GPP LTE specifies a number of downlink MIMO 

transmission modes (TM) exploiting several MIMO concepts.  Each transmission 

mode defines its own channel state information feedback requirements leading to a 

complex list of configuration options [20].  Nevertheless, transmission modes 3 and 4 

utilising a 2 x 2 MIMO antenna configuration represent the most commonly deployed 

setup in live commercial LTE networks due to antenna size, cost and performance 

considerations [17].  Both TM 3 and 4 are usually operated with an adaptive 

transmission mode algorithm which allows the eNB to reconfigure the MIMO TM 

during a data session based on the channel feedback reports sent by the UE.  

Considering TM3, in good radio conditions with a rich multipath environment the eNB 

uses spatial multiplexing to maximise the user data throughput whilst in cell edge 

conditions or poor multipath environment, the eNB switches to a transmit diversity 

(TxD) mode (TM2) to exploit diversity and increase robustness. 
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Downlink 

transmission 

mode TM 

Key Characteristics 

UE 

Feedback 

Type 

3GPP 

Release 

1 • Single antenna port transmission  CQI 8 

2 

• Transmit Diversity (TxD). 

CQI 8 
• Transmit the same information in different layers 

through different antennas. 

• Increases robustness in low SINR conditions. 

3 

• Open loop Spatial Multiplexing (OLSM). 

CQI, RI 8 
• Transmit different information in different layers 

through different antennas. 

• Increases throughput in high SINR conditions. 

 
    

4 

• Closed loop Spatial Multiplexing (CLSM). 

CQI, RI, 

PMI 
8 

• Optimises the precoding process by taking into account 

the current channel conditions for each layer as 

reported by the UE through the PMI. 

 
    

5 

• Multi-User MIMO (MU-MIMO) 

CQI, PMI 8 

• Increases overall cell capacity rather than the 

throughput of a single user. 

• Spatial multiplexing is used to transmit two codewords 

belonging to different users at the same time. 

6 

• Single-User MIMO (SU-MIMO) 

CQI, PMI 8 • Similar to CLSM but uses a single codeword (CLSM 

Rank-1 scheme) and aimed at enhancing robustness. 

 

7 
• Beamforming (referred to as "virtual" antenna port 5). 

CQI 8 
• Uses UE specific reference signal. 

8 

• Combined beamforming and MIMO up to 2 antennas. 
CQI, RI, 

PMI 
9 • Combine MIMO and beamforming techniques such 

that LTE signal is directed towards the addressed UE. 

9 

• Combined beamforming and MIMO up to 8 antennas. 
CQI, RI, 

PMI/PTI 
10 • Evolution over TM8 adding the support of MIMO 8x8 

in combination with beamforming. 

10 

• Combined beamforming and MIMO up to 8 antennas 

with Coordinated Multi-point Transmission (CoMP). 
CQI, RI, 

PMI/PTI 
11 • Similar to TM9 with the addition of CoMP support 

whereby antennas may be physically in different 

locations. 

Table 2.1: Downlink Transmission modes for 3GPP LTE [20] 

 

2.2 LTE Radio Frame Structure and Physical Channels 

The FDD LTE radio frame structure together with a definition of a physical resource 

block (PRB) and resource element (RE) are shown in Figure 2.6.  The radio frame is 

composed of 20 slots, each lasting 0.5ms.  As discussed in Section 2.1.4, the scheduler 

allows multiple users to receive data traffic at the same time by allocating users in 
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different parts of the radio channel.  In LTE, this allocation is done on a PRB basis, 

each consisting of 12 sub-carriers, resulting in a minimum bandwidth allocation of   

180 kHz, and lasts for one slot.  A PRB has six or seven OFDM symbols, depending 

on whether an extended or normal cyclic prefix is configured [17] whilst a resource 

element (RE), defined as one subcarrier lasting one symbol, can carry reference signals 

(RS), modulated information (user plane or control plane traffic) or nothing (muted). 
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Figure 2.6: LTE Radio frame structure, Physical Resource block and Resource element 

 

The transport channels at the MAC layer are mapped onto several physical channels 

depending on their transmission direction (uplink (UL) / downlink (DL)) and use as 

shown in Table 2.2. 
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Physical Layer Channel Direction Functionality 

Physical Broadcast Channel 

(PBCH) 
DL Transports RRC broadcast messages 

Synchronisation Channel 

(SCH) 
DL Used to identify Cell ID, frame and slot timing 

Downlink Reference Signal 

(DL-RS) 
DL Used for cell signal quality estimation 

Physical Downlink 

Shared/Control Channel         

(PDSCH/PDCCH) 

DL 
Transports the user plane and control plane data to 

UEs 

Physical control format 

indicator channel         

(PCFICH) 

DL 
Indicates to the UE the number of OFDM symbols 

used for the PDCCHs 

Physical Hybrid-ARQ 

Indicator Channel        

(PHICH) 

DL 
Transports HARQ (N)ACK for uplink data 

transfers 

Physical Uplink 

Shared/Control Channel 

(PUSCH/PUCCH) 

UL 
Transports user plane and control plane data to the 

eNB 

Demodulation Reference 

Signal (DM-RS) 
UL 

Channel estimation for uplink coherent 

demodulation/detection of the uplink control and 

data channels 

Sounding Reference Signal 

(SRS) 
UL 

Used to provide uplink channel quality estimation 

feedback to uplink scheduler for channel aware 

scheduling in the eNB 

Physical Random Access 

Channel (PRACH) 
UL Transports RACH preambles 

 

Table 2.2: LTE Physical Layer Channels [17] 

 

In order for the UE to estimate the DL RF channel characteristics, 3GPP LTE uses 

coherent demodulation by transmitting RS in the OFDM time-frequency grid structure.  

Several RS have been defined in 3GPP LTE however the three main ones are the cell-

specific, UE-specific and channel state information reference signals.  The latter has 

been introduced in 3GPP R10 to support 8-layer spatial multiplexing.  Whilst focusing 

on the cell-specific RS and with reference to Figure 2.7, these RS are transmitted 

within the first and fifth OFDM symbol of each slot and having a frequency domain 

spacing of six subcarriers.  Moreover, there exists a frequency domain staggering of 

three subcarriers between the first and second reference symbols resulting in four 

reference symbols within each PRB.  The RS mapping depends on the number of 

antennas and whether normal or extended CP is used, leading to the existence of 

several different mappings [17]. 
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Figure 2.7: Mapping of downlink cell-specific reference signals (1- antenna, normal cyclic prefix) 

 

2.3 Channel Feedback Report Types 

As discussed in the previous sections, in order for the packet scheduler and link 

adaptation entities in the eNB to gain channel awareness, the UE can send four types 

of channel feedback information depending on the MIMO and eNB configuration.  

These include: 

• RI which indicates the UE recommendation for the number of layers to be used 

in spatial multiplexing and only relevant when the UE is operating in MIMO 

modes with spatial multiplexing; 

• PMI is strictly relevant to closed loop MIMO operation and indicates the pre-

coding matrix to be used by the eNB which allows the mapping of each layer 

onto one or more antennas; 

• PTI was introduced in Release 10 to support the extended MIMO transmission 

modes and is used to distinguish between slow and fast fading environments; 

• CQI which is considered a critical element in the channel feedback information 

sent by the UE and the focus of this study. 

 

With reference to the 3GPP LTE defined CQI index table, shown in Table 2.3, the 4-

bit CQI index corresponds to the UE recommendation of the highest MCS and TBS it 

can decode at the time with a block error rate (BLER) not exceeding 10% [23]. 

 

 

Slot 0 Slot 1 

1 RB 
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  CQI Index 
UE Cat. 1 - 10 UE Cat. 11 - 12 

Modulation Efficiency Modulation Efficiency 

1 QPSK 0.1523 QPSK 0.1523 

2 QPSK 0.2344 QPSK 0.377 

3 QPSK 0.377 QPSK 0.877 

4 QPSK 0.6016 16QAM 1.4766 

5 QPSK 0.877 16QAM 1.9141 

6 QPSK 1.1758 16QAM 2.4063 

7 16QAM 1.4766 64QAM 2.7305 

8 16QAM 1.9141 64QAM 3.3223 

9 16QAM 2.4063 64QAM 3.9023 

10 64QAM 2.7305 64QAM 4.5234 

11 64QAM 3.3223 64QAM 5.1152 

12 64QAM 3.9023 256QAM 5.5547 

13 64QAM 4.5234 256QAM 6.2266 

14 64QAM 5.1152 256QAM 6.9141 

15 64QAM 5.5547 256QAM 7.4063 
 

Table 2.3: CQI Table [20] 

 

The CQI index is calculated by the UE and is based on the DL Signal-to-Interference-

and-Noise Ratio (SINR) measured using the DL cell-specific reference signals 

transmitted by the eNB.  For each PRB k, the received SINR is given by [23]: 
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     (2.1) 

where Pi and Gi are the transmit power and antenna gain of the serving eNB i whilst Pj 

and Gj are the transmit power and antenna gain of the interfering eNB j, and nk is the 

additive Gaussian noise.  

 

The measured SINR is then mapped to a discrete CQI index, using a UE chipset 

vendor specific mapping table, and thus when reporting the CQI index the UE 

considers both the downlink channel quality and the capabilities of the UE receiver.  

This allows a UE with enhanced receiver performance to feedback a higher CQI index 

for the same DL SINR conditions. In order to allow the eNB gain rich channel 

awareness and fully exploit the advantages of frequency domain scheduling (FDS), 

each UE must report detailed channel state information measured across the whole 

channel bandwidth.  However, as the number of UEs increases, the uplink signalling 

overhead becomes prohibitively high and thus a time domain feedback compression 
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technique in the form of periodic or aperiodic reporting has been adopted in LTE.    

Whilst periodic reporting makes extensive use of the capacity constrained PUCCH, 

which also carries uplink scheduling requests and HARQ signalling, it allows the eNB 

to gain coarse channel information on a regular basis.  Meanwhile, aperiodic reporting 

allows the UE to send rich channel information over the PUSCH which doesn’t have 

the same capacity limitations as the PUCCH.  However, the PUSCH is a dedicated 

resource and thus only one UE can be scheduled on a single portion of the spectrum at 

a time [23].   

 

In 3GPP LTE, a connected user is defined as a UE which has at least one established 

DRB whilst not necessarily transferring data.  In general, every connected user in a cell 

is required to send periodic CQI reports and thus the signalling load on the PUCCH 

resources increases rapidly with the increasing number of UEs in the cell.  With 

reference to Figure 2.8, the PUCCH resources are located at the edges of the LTE 

channel such that the PUSCH region is maximised.  Thus, the dimensioning of the 

PUCCH region is critical as the allocation of a wide PUCCH region results in lower 

resources reserved for the PUSCH leading to lower uplink capacity for data traffic.  

Meanwhile, a narrow PUCCH region may result in a degradation of the data call setup 

success rate in case of an increase in the number of connected users in the cell due to 

the lack of available control channels.  Apart from the number of connected users, the 

PUCCH capacity dimensioning process depends on the amount of CQI feedback 

signalling.  A network operator has little control on the number of connected users in 

the cell and hence techniques to reduce the CQI feedback signalling are highly 

desirable especially in high load conditions. 
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Figure 2.8: PUCCH/PUSCH region 

 

2.4 CQI Feedback Signalling Reduction Schemes 

The main goal of any CQI feedback signalling reduction scheme is to allow the eNB to 

gain reasonably accurate channel awareness to maintain an adequate system 

performance with limited uplink feedback.  Several CQI feedback signalling 

reductions schemes have been proposed however these can be grouped into two types; 

namely frequency domain and threshold/prediction based techniques. 

 

2.4.1 Frequency-domain schemes 

Frequency domain schemes are typically used in conjunction with the time domain 

schemes described in section 2.3 and are broadly divided into three; namely full-band, 

sub-band and wideband compression schemes. 

   

Full-band channel reporting represents the ideal scenario whereby the UE reports the 

channel state information across all the PRBs.  This type of detailed reporting, 

although optimal, is not feasible and a number of techniques have been proposed to 

reduce the signalling overhead whilst allowing the eNB to reconstruct a good 

approximation of the entire system bandwidth.  These techniques are generally based 

on the use of mathematical transforms such as the discrete cosine transform (DCT) 

[24, 25] and the Haar wavelet transform [26].  Although these techniques allow the 
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eNB to reconstruct a good approximation of the entire system bandwidth, using a 

relatively small number of transform coefficients reported by the UE, their 

performance strongly depends on the delay spread of the channel which varies with 

UE speed.  This makes them highly unreliable. 

 

In sub-band compression, a UE transmits a selected set of CQI values to the eNB 

thereby allowing the eNB to gain limited channel awareness in the frequency domain 

and allow FDS. The 3GPP LTE standard defines two sub-band compression 

techniques namely eNB configured and UE-selected sub-band feedback.  With 

reference to Figure 2.9, in the eNB configured sub-band feedback scheme the system 

bandwidth is divided into q sub-bands of N consecutive PRBs and the UE reports a 4-

bit wideband CQI value together with a 2-bit differentially encoded CQI value for each 

sub-band [23].  The sub-band size N is dependent on the channel bandwidth B and is 

given in Table 2.4 [20]. 

SINR

PRB1 2 3 4 5 6 . . .

. . .

BB-1

CQI

Sub-band1

. . .

2 3 4 q. . .

4-bit Wideband 

CQI value

2-bit ∆ per sub-band 

Aggregation of N PRB

 

Figure 2.9: eNB-Configured sub-band feedback compression 



24 

 

System Bandwidth B Sub-band size N 

6 – 7 NA 

8 – 10 4 

11 – 26 4 

27 – 63 6 

64 – 110 8 

 

Table 2.4: eNB configured sub-band feedback – sub-band size N 

 

The UE-selected sub-band feedback is based on the Best-M techniques presented in 

[27] and represents an effective balance between the system performance and the 

uplink feedback signalling load [23,28,29].  As shown in Figure 2.10, the system 

bandwidth is first divided into q sub-bands of N consecutive PRBs and each UE selects 

J preferred sub-bands.  The UE will then report a 4-bit wideband CQI value coupled 

with a 2-bit differentially encoded CQI value representing the mean quality of the J 

preferred sub-bands.  In addition, the location of the selected J preferred sub-bands is 

also transmitted thereby incurring an incremental increase in feedback load. The value 

of J together with the sub-band size N is given in Table 2.5.  

SINR

PRB1 2 3 4 5 6 . . .

. . .

BB-1

CQI

Sub-band1

. . .

2 3 4 q. . .

4-bit Wideband 

CQI value

Aggregation of N PRB

2-bit ∆ giving the 

average quality of the J 

preferred sub-bands 

 

Figure 2.10: UE-selected sub-band feedback compression (preferred sub-bands marked in violet) 
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System Bandwidth B Sub-band size N Number of Sub-bands J 

6 – 7 NA NA 

8 – 10 2 1 

11 – 26 2 3 

27 – 63 3 5 

64 – 110 4 6 
 

Table 2.5: UE-Selected sub-band feedback – sub-band size N and number of sub-bands J 

 

With reference to Figure 2.11, wideband compression allows the UE to feedback a 4-

bit CQI value for all the PRBs in the bandwidth thereby achieving a high compression 

factor.  The lack of channel information in the frequency domain precludes the use of 

FDS leading to a lower system performance by as much as 40% in the average cell 

throughput at low mobility [23].  Nevertheless, the 3GPP LTE standard includes 

wideband compression since Release 8 and is commonly used in live commercial 

networks especially in highly loaded networks. 

SINR

PRB1 2 3 4 5 6 . . .

. . .

BB-1

CQI

4-bit Wideband 

CQI value

Aggregation of B PRB

 
 

Figure 2.11: Wideband CQI feedback compression 
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Although the channel frequency response across a 180 kHz PRB is typically flat, the 

effect of frequency selective fading results in different PRBs experiencing different 

fading characteristics.  Hence, when combining the instantaneous SINR of multiple 

PRBs, such as in the case of wideband or sub-band feedback compression schemes, the 

effective SINR, γeff, is computed using an effective SINR mapping (ESM) model such 

as the exponential ESM (EESM) [30,31,32] given by: 

  

     
1

1
log e

kN

eff

kN

γ
λγ λ

−

=

 
= −  

 
∑     (2.2) 

where λ is a factor that is MCS dependent and calibrated using link-level simulations 

[32], N represents the number of PRBs to group and γk is the instantaneous SINR of the 

k
th

 PRB found using (2.1). 

 

The bit cost for the full-band, eNB configured sub-band, UE-selected sub-band and 

wideband feedback schemes for Tu UEs in the sector is shown in Table 2.6.  For the 

case of full-band reporting, a UE reports a 4-bit wideband CQI value together with a 2-

bit differentially encoded CQI value for each PRB B. 

 

Feedback scheme Bit cost 

Full-band ( )4 2 uB T+  

eNB configured sub-band ( )4 2 uq T+  

UE selected sub-band 24 2 log u

B
T

J

   
+ +       

 

Wideband 4 uT  
 

Table 2.6: Bit cost for various feedback schemes 

 

2.4.2 Threshold / Prediction based schemes 

This category groups together techniques based on either event-based triggering or 

channel prediction to reduce the uplink signalling feedback.  Although several 

predictive channel quality methods have been proposed, the large majority are 

designed to limit the degradation in system performance caused by CQI delay rather 

than addressing the CQI feedback reduction problem.  In [33], the authors explore the 

use of a normalised least mean square (NLMS) adaptive filter to compensate for CQI 
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delay at the eNB whilst an autoregressive prediction filter is used in [34].  Meanwhile, 

the authors in [35, 36] investigate the use of various CQI prediction schemes based on 

a number of techniques varying from cubic spline extrapolation and short-term 

averaging to the application of Wiener filter.  In [37], a cross layer CQI feedback 

scheme for the IEEE 802.16e standard is explored.  In this work, the authors extend the 

work found in [38-41] and propose a feedback window adaptation algorithm to adapt 

the CQI feedback rate for each UE.  The proposed prediction-based feedback scheme 

is based on a base station side recursive least square (RLS) algorithm however the 

authors fail to adequately demonstrate its efficacy as it has been tested in a single 

sector scenario. 

 

In [42-46] several signalling feedback reduction schemes, based on the use of a fixed 

threshold set on the users that are most likely to be scheduled, are proposed.  In these 

works, only users which exceed this set threshold are allowed to feedback their 

channel state information to the base station leading to a questionable fairness 

situation.  In [47], the authors present a contrasting strategy whereby low SINR users 

are selected as candidates to use full-band feedback whilst the rest use wideband 

frequency domain compression.  Even though this scheme exhibits some gains, it is 

designed for scenarios where channel conditions vary slowly.  Moreover, the impact of 

the use of the full-band feedback is not appropriately evaluated and the study has been 

carried out in a single cell scenario ignoring the underlying network dynamics due to 

interference and varying traffic load.  Meanwhile, in [48], the disadvantages of fixed 

threshold-based schemes are addressed by proposing an adaptive threshold feedback 

compression scheme based on a particle swarm optimisation (PSO) technique 

requiring a relatively large number of iterations.  In [49], the authors explore the use of 

a Gaussian Process (GP) regression method to estimate the CQI in the eNB.  This 

technique is combined with a dual-control scheme based on the use of active learning 

thereby allowing the eNB to estimate for each user the optimal prediction time.  

Although the proposed scheme is able to achieve a reduction of 77% in the uplink 

signalling overhead, when compared to the 3GPP standard eNB-configured sub-band 

feedback scheme, this comes at the expense of high computational cost and memory 

complexity induced by the GP regression technique coupled with the adaptive dual-

control scheme requiring several iterations per measurement for each user 
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Although not directly related to feedback compression, the same authors of [49] extend 

their work in [50], by proposing the use of an adaptive sub-band feedback scheme 

whereby a reinforcement learning framework is used to adapt, on a per user basis, the 

type of feedback to use.  In this work, the authors show that coarse CQI feedback is 

adequate in sectors with a high number of users.  Meanwhile, in [51], the authors 

explore the use of complimentary PUSCH grants to a select number of users so as to 

send rich channel quality feedback reports on the PUSCH even though they do not 

have any pending data for uplink transmission. 

 

A summary of the various feedback reduction schemes discussed in this section is 

given in Table 2.7. 
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Scheme 
Category 

Key Characteristics 
Frequency-domain Threshold-based Prediction-based Other 

DCT based Full-Band 

schemes [24,25] 
• 

   
• Allows the reconstruction of the entire system 

bandwidth.                                                                                                                   

• Requires the reporting of a small number of transform 

coefficients and their respective positions.                                                                                                                               

• Unreliable, as performance depends on delay spread of 

channel. 

Haar based Full-Band 

schemes [26] 
• 

   

eNB selected sub-band 

scheme [23] 
• 

   • 3GPP standardised. 

• Wideband scheme is widely used in commercial LTE 

networks especially in crowd event scenarios. 

UE selected sub-band 

scheme [23] 
• 

   

Wideband scheme [23] • 
   

Fixed Threshold CQI 

reporting schemes [42-46]  
• 

  
• Fail to address users with low signal quality leading to 

inefficient link adaptation and unfair scheduling. 

Fixed Threshold based full-

band/wideband reporting 

scheme [47] 
 

• 
  

• Achieves marginal gain at low mobility.                                                                                   

• Study carried out in single cell scenario.                                                                                   

• Impact of full-band reporting is not appropriately 

evaluated. 

Adaptive Threshold CQI 

reporting scheme [48]  
• 

  

• High complexity due to adopted PSO technique.                                                            

• Sub-band position reporting is required. 

Adaptive feedback window 

CQI reporting scheme [37]   
• 

 

• Designed for IEEE 802.16e and considers the use of 

RLS at base station side for prediction.                                                                                     

• Tested in single cell scenario. 

Gaussian Prediction based 

CQI feedback reporting 

prediction time [49] 
  

• 
 

• Exploits active learning to determine optimal CQI 

prediction time for each user.                                                                                               

• Achieves up to 77% signalling overhead reduction with 

a packet loss rate of 10%. 

Use of complimentary 

PUSCH grants [51]    
• 

• Studies the use of TCP ACKs to carry CQI feedback 

bits.                                                         

• Use of complimentary PUSCH grants to select number 

of users to send rich channel quality feedback. 

Table 2.7: Summary of CQI feedback reduction schemes 
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Chapter 3  CQI Feedback Reduction Schemes 

 

This chapter presents a detailed description of the proposed CQI feedback reduction 

schemes and is organised as shown in Figure 3.1.  Two main scenarios are considered 

namely a standard mobility scenario, modelling multiple sectors with a number of UEs 

moving at various speeds, and a crowd event scenario, involving a relatively large 

number of stationary UEs in a confined area. 

 

CQI Feedback Signalling 

Reduction Schemes

Standard Mobility Scenario Crowd Event Scenario

Predictive Filtering Schemes for 

Sub-band CQI feedback 

compression

Extension of Predictive Filtering 

to Wide-band feedback 

compression

UE feedback clustering technique 

for Wide-band feedback 

compression

 

Figure 3.1: Feedback Reduction Scheme Organisation 

 

3.1 Predictive Filtering Schemes for Sub-band CQI feedback 

compression 

The proposed sub-band CQI feedback reduction technique exploits short-term channel 

prediction through the use of a UE-assisted predictive filtering algorithm.  This is 

realised by using low computational complexity adaptive filters in both the UE and 

eNB.   
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3.1.1 System model 

With reference to the system model shown in Figure 3.2, consider that the channel 

bandwidth composed of L PRBs, where L is defined by the 3GPP Release 8 standard 

[20], is divided into q sub-bands of N consecutive PRBs.  As discussed in section 2.3, a 

UE uses the cell-specific reference signals transmitted by the eNB to measure the 

SINR on each PRB, denoted by Lγ , and calculates the effective SINR of each sub-

band, denoted by sub

qγ , using EESM given by (2.2).  The effective SINR is then mapped 

to a CQI value using the SINR to CQI mapping table, shown in Table 3.1, derived 

from the BLER-SINR curves obtained through LTE link level simulations [52, 53]. 

. . .

EESM

CQI 

Mapping

eNB side

Train Predict

Comparator and 

Control Logic

UE Side

Sub-band 1 Sub-band q

Train Predict

 Control Logic

 

Figure 3.2: Prediction filtering technique (N=5) showing the report for sub-band 1 

 

Now consider a series of CQI measurements for the q
th

 sub-band, x[k], that has to be 

reported by the UE to the eNB at every time step k.  Moreover, consider that the 

required accuracy of the measurements at the eNB is within ±Emax-cqi.  Then, using the 

proposed predictive filtering algorithm, instead of reporting every CQI measurement in  

x[k], we selectively report some elements of the measurement stream such that the 

eNB is able to reproduce the complete measurement stream for the q
th

 sub-band within 

the given accuracy. This is achieved by maintaining a set of predictors, one for each 

sub-band, in the UE and eNB which are an exact replica of each other. These 

γ1  γ2  γ3  γ4  γ5  γL-4  γL  γL-2  γL-1  γL-3  

1

subγ   

[ ]x k   

[ ]x̂ k   [ ]x̂ k   

[ ]x k   
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predictors are based on adaptive filter theory and compute an estimate of the next 

element in the measurement stream , given some previous elements.   

 

SINR CQI 

-6.15 1 

-4.37 2 

-2.37 3 

-0.42 4 

1.53 5 

3.43 6 

5.46 7 

7.25 8 

9.28 9 

11.11 10 

13 11 

14.9 12 

16.64 13 

18.41 14 

20.54 15 

 

Table 3.1: SINR-CQI Mapping  

 

With reference to Figure 3.3, when the average error between the predicted value  

and the actual value x[k] increases beyond the allowed error budget, ±Emax-cqi, then x[k] 

is transmitted to the eNB; otherwise the actual measurement is not transmitted and the 

eNB uses its own prediction, , resulting in feedback reduction. 

  

Figure 3.3: CQI feedback reduction 
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3.1.2 Adaptive Filters 

Several adaptive filters can be found in literature and the selection of an adaptive 

filtering algorithm over another depends on the trade-off of a number of factors such as 

the computational complexity, robustness and rate of convergence.  In this work, the 

least mean square (LMS) and the normalised LMS (NLMS) algorithms were selected 

in view of their simplicity, and relatively good performance in a wide variety of 

applications within the wireless communication sphere.  The operation of the LMS and 

NLMS adaptive filters is fundamentally governed by equations (3.1), (3.2) and (3.3) 

which allow the computation of the output, error and LMS weight updating 

respectively. 

 

     [ ] [ ] [ ] Ty k w k x k=     (3.1) 

     [ ] [ ] [ ]e k d k y k= −      (3.2) 

[ 1] [ ] [ ] [ ] w k w k x k e kµ+ = +      (3.3) 

where y[k] is the output of the adaptive filter, e[k] is the prediction error, d[k] is the 

desired signal, µ is the step size parameter, M is the filter order whilst [ ]w k  and [ ]x k  

denote the M× 1 column vectors: 

 

[ ]1 2 3[ ] [ ], [ ], [ ], ..., [ ]
T

Mw k w k w k w k w k=     (3.4) 

[ ][ ] [ 1], [ 2], [ 3], ..., [ ]
T

x k x k x k x k x k M= − − − −    (3.5) 

The LMS adaptive filtering algorithm is notoriously sensitive to the scaling of its input 

x[k] thereby making it challenging to select a step size that ensures convergence [54].  

Instead, the NLMS adaptive filtering algorithm uses a modified weight updating 

equation, given by (3.6), such that the step size parameter is normalised with the input 

signal power.  A detailed description of the LMS/NLMS algorithm can be found in 

[54]. 

   
2

[ 1] [ ] [ ] [ ] 
[ ]

Tw k w k x k e k
x k

µ
α

+ = +
+

               (3.6) 

where µT is the step size parameter and α is a constant to ensure that [ 1]w k +  is bounded 

even when the input is very small.   
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3.1.3 Predictive Filtering Algorithm 

With reference to Algorithm 1 (see Figure 3.4), the operation of the predictive filtering 

algorithm, which applies to both the LMS and NLMS adaptive filter case,  is divided 

in two modes of operation namely a training mode and a prediction mode.  In training 

mode, the UE reports CQI measurements x[k] to the eNB using the standard CQI 

reporting process described in section 2.4.  Meanwhile, in order to ensure 

synchronisation of the prediction filters, the UE and eNB compute ˆ[ ]x k , for the 

upcoming measurement, using the last M measurements.  Moreover, the filter 

coefficients w are updated based on the actual prediction error, using (3.3) or (3.6) 

depending on whether an LMS or NLMS adaptive filter is used.  The UE remains in 

training mode until the eNB receives Tmax measurements from the UE and the average 

absolute prediction error over the past M measurements is below a preconfigured error 

budget, |Emax-cqi|, for β consecutive times, thereby providing protection against 

oscillations between the training and prediction modes of operation.  Otherwise, the 

UE will switch to prediction mode. 

  

In prediction mode the UE continues to perform CQI measurements however it 

suppresses the transmission of these reports to the eNB.  Instead, the UE computes ˆ[ ]x k  

at each time step k, compares it to the actual measurement and calculates the prediction 

error.  As long as the prediction error remains within an error budget, the UE uses the 

predicted value to train the predictive filter, instead of using the actual measurement, 

such that the predictive filters in the UE and eNB remain synchronised.  In this mode, 

e[k] is forced to zero thereby avoiding the adaptation of the filter weights and saving 

computational overhead.  Similarly, the eNB computes ˆ[ ]x k  at each time step k and 

feeds this value to its own prediction filter.  In case, the UE observes that the average 

prediction error over the past M measurements is deviating from the maximum allowed 

error for β consecutive times, it will resume the transmission of the measurements x[k] 

to the eNB and switch back to training mode. 
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Algorithm 1: Prediction Filtering Algorithm 

1: Initialisation: 

2: k ←  0; mode ← training; txCounter ←0 

5: for k do 

6:  if mode = training then 

7:   UE transmits measurement to eNB 

8:    txCounter ← txCounter + 1 

9:    if txCounter ≥  M then 

10:        UE and eNB uses last M measurements to compute: 

11:        Prediction, x�[k] 

12:        Prediction error, e[k] 

13:        Update filter weights, w 

14:        if txCounter ≥  Tmax & e ≤  error budget for β times then 

15:   errCounter ←0 

16:   mode ←prediction 

17:        end if 

18:     end if 

19:  else 

20:          UE and eNB uses last M measurements to compute prediction, x�[k] 

21:          UE and eNB shift	x�[k], into prediction filter 

22:          UE uses x�[k] and x[k] to compute prediction error, e[k] 

23:         if e ≥ error budget then 

24:   errCounter ←errCounter + 1 

25:   if errCounter = β then 

26:       mode ← training 

27:   end if 

28:         else 

29:   errCounter ←errCounter −1 

30:   if errCounter < 0 then 

31:      errCounter ←0 

32:   end if 

33:           end if 

34:    end if 

35: k ←k + 1 

36: end for 

 

 

Figure 3.4: Algorithm 1 - Predictive filtering algorithm 
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3.1.4 Parameter tuning 

Several parameters of the predictive filtering algorithm need to be tuned prior to 

evaluating the effectiveness of the proposed technique.  These include: 

• Step size µ or µT: This is a fundamental parameter as it determines the rate 

of convergence of the adaptive filter; 

• Filter length M: This impacts the computational load and memory footprint 

of the filters. The LMS algorithm requires 2M+1 multiplications and 2M 

additions per prediction whereas the NLMS algorithm requires 3M+1 

multiplications and 2M additions per prediction; 

• Hysteresis parameter β; 

• Maximum allowed prediction error |Emax-cqi|. 

The above mentioned parameters were tuned by implementing and testing the 

predictive filtering algorithm, described in section 3.1.3, in MATLAB
®

 using CQI 

measurements extracted from several UEs simulated in an LTE system level simulator 

[55].  The LTE simulation parameters used for this study are shown in Table 3.2 whilst 

the optimal parameter values for both the LMS and NLMS prediction filtering scheme 

(PFS) are given in Table 3.3. 

Parameter Value 

System Bandwidth 10MHz (50 PRB) 

Scheduler Proportional Fair 

Number of Antennas 1 (Tx and Rx) 

CQI Reporting Type eNB configured with sub-band size = 5 

CQI Reporting Period 20ms 

Traffic Model Best Effort (Infinite Buffer) 

Frequency / Re-use 2GHz / 1 

Cellular Layout Hexagonal grid, 19 cells 

Inter-site distance (ISD) 500m 

UE speed 3km/hr, 120km/hr 

Mobility model Random Direction 

UE per Cell 10-40 UEs 

Tmax 100 

Propagation Model 3GPP Typical Urban                                 

 

Fast Fading Realisation 

L= 128.1+37.6log(d) @ 2GHz [55] 

Jakes Model [55] 

Table 3.2: LTE Simulation Parameters 
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Parameter CQI-LMS CQI-NLMS 

Filter order M 4 4 

Step size (µ or µT) 0.00005 0.01 

Hysteresis β 3 3 

Emax 1.5 1.5 

 

Table 3.3: Optimal parameter values for LMS and NLMS PFS 

The values shown in Table 3.3 were empirically determined by considering trade-offs 

between: 

• The proportion of CQI measurement reports sent by the UE from the total 

measurements;  

• The average error between the actual and predicted CQI measurement; 

• The computational load in terms of arithmetic operations per measurement. 

Considering the LMS-based PFS, the effect of varying the step size µ and filter length 

M on the abovementioned trade-offs are shown in Figure 3.5(a)-(c) and Figure 3.6(a)-

(c) respectively.  With reference to Figure 3.5 and 3.6, selecting a µ of 0.00005 and 

filter length M of 4 yields the best trade-off between the selected metrics.  The rest of 

the parameters for the LMS and NLMS schemes were determined using a similar 

methodology. 
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(b) 

 

(c) 

Figure 3.5: LMS adaptive filter parameter tuning – Step size µ. (a) Average proportion of CQI 

measurements reported to eNB from total per sub-band, (b) Average error of the predicted CQI value 

per sub-band, and (c) Average arithmetic operation/CQI measurement per sub-band 
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(c) 

Figure 3.6: LMS adaptive filter parameter tuning – Filter Length M. (a) Average proportion of CQI 

measurements reported to eNB from total per sub-band, (b) Average error of the predicted CQI value 

per sub-band, and (c) Average arithmetic operation/CQI measurement per sub-band 

 

3.1.5 Simulation Results 

The predictive filtering algorithm described in section 3.1.3 was implemented in the 

system level simulator [55] in order to verify its effectiveness in terms of average 

sector throughput, uplink signalling reduction and packet loss rate.  Simulations using 

the parameters given in Tables 3.2 and 3.3 were carried out over 50 random seeds in 

order to achieve statistical relevant results.  The mean and standard deviation (shown 

in parenthesis) of the sector throughput for different UE speeds and sector loading is 

shown in Figure 3.7(a)-(b) whilst the CQI feedback reduction for the LMS and NLMS 

PFS is shown in Table 3.4-3.5 respectively. 
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(a) 

 

(b) 

Figure 3.7: Sector Throughput (standard deviation is indicated by vertical bars) for (a) UE speed of 

3km/hr, and (b) UE speed of 120km/hr 
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Number of UEs in Sector 

UE Speed 

3km/hr                                         

(low mobility) 

120km/hr                    

(high mobility) 

10 91.8% (±0.4) 92.6% (±0.2) 

20 92.4% (±0.5) 92.4% (±0.2) 

30 92.6% (±0.2) 92.5% (±0.2) 

40 92.6% (±0.2) 92.4% (±0.2) 

Average 92.3% (±0.3) 92.4% (±0.1) 
 

Table 3.4: Feedback Reduction – LMS Predictive Filtering Algorithm 

 

Number of UEs in Sector 

UE Speed 

3km/hr                                         

(low mobility) 

120km/hr                    

(high mobility) 

10 92.6% (±1.2) 93.9% (±0.1) 

20 93.1% (±0.4) 93.6% (±0.1) 

30 93.1% (±0.4) 93.6% (±0.1) 

40 93.1% (±0.6) 93.9% (±0.1) 

Average 92.9% (±0.2) 93.8% (±0.2) 
 

Table 3.5: Feedback Reduction – NLMS Predictive Filtering Algorithm 

 

Whilst considering a marginal loss in performance, when compared to the baseline 

configuration using the 3GPP standardised eNB configured sub-band scheme, both 

schemes are able to significantly reduce the CQI signalling overhead.  With reference 

to Table 3.4 and 3.5, the NLMS PFS is marginally better than the LMS counterpart, in 

terms of feedback reduction, particularly in high mobility scenarios due to its faster 

convergence speed.  Nevertheless, in such scenarios, both schemes achieve a similar 

performance in terms of sector throughput, whilst in low mobility scenarios, the 

performance of the LMS-based scheme ranks marginally better when compared to the 

NLMS-based scheme.  The mean and standard deviation (shown in parenthesis) of the 

packet loss rate (PLR) for both schemes are shown in Table 3.6.  Although both 

schemes exhibit degradation in PLR, the CQI-LMS based PFS ranks better and is 

within 5% of the baseline configuration whilst achieving a similar performance in high 

mobility scenarios.  In view of the performance exhibited by the CQI-LMS based PFS 

together with the computational efficiency of the adaptive filters, this scheme offers 

the best compromise between the selected metrics. 
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Table 3.6: Packet Loss Rate comparison of the tested schemes 

 

3.1.6 Efficiency analysis of the CQI-LMS PFS 

The proposed scheme requires the implementation of an LMS adaptive filter for each 

connected user in the sector per sub-band and thus it is beneficial to analyse the 

additional computational load and memory requirements.  Considering the 

computational requirements of the LMS adaptive filter algorithm when operating in 

training and prediction phase, shown in Table 3.7, the additional computational load in 

the eNB, Cenb, and UE, Cue, is given by: 

 

( ) ( ) ( )1000 1000
4 1 1 2 1enb sub u sub u

p p

C M N T M N Tα α
τ τ

   
= + + − −   

      
   (3.7) 

 

( ) ( ) ( )1000 1000
4 1 1 2ue sub sub

p p

C M N M Nα α
τ τ

   
= + + −   

      
               (3.8) 

 

where M is the filter order, subN  is the number of sub-bands, uT  is the number of 

connected users in the cell, α is the proportion of time spent in training phase and pτ  is 

the CQI reporting period which is commonly set to 20ms in commercial LTE 

networks. 

   

 Training Mode Prediction Mode 

Multiplications 2M + 1 M 

Additions 2M (M – 1) for eNB, M for UE 

 

Table 3.7: Additions and Multiplications for the LMS adaptive filter 

Based on the parameters listed in Tables 3.2 and 3.3 whilst assuming uT
 
to be 200 and 

α is set to 20%, the overall computational complexity of the proposed scheme is 

Scheme 

UE Speed 

3km/hr 

(low mobility) 

120km/hr 

(high mobility) 

3GPP eNB configured sub-band 2.5% (±0.3) 17.4% (±1.7) 

CQI - LMS 6.7% (±0.7) 17% (±2.3) 

CQI - NLMS 11.6% (±1.4) 19.9% (±1.7) 
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0.9Mflops and 4Kflops in the eNB and UE respectively.  Moreover, by considering the 

use of the IEEE 754-20008 single precision floating point format [56] for all stored 

variables required in Algorithm 1, the memory footprint necessary for both the UE and 

eNB is very low as shown in Table 3.8.  Although the variable mode is a binary flag to 

indicate whether the algorithm is operating in training or prediction mode, the use of 

such bit flag requires additional masking operations to read/write from/to memory.  

For this reason, an optimised method was chosen to represent this variable by using a 

byte representation. 

 

Variable 
eNB memory footprint 

(bytes) 

UE memory footprint 

(bytes) 

k 4 4 

mode 1 1 

txCounter 4 4 

errorCounter 4 4 

x[k] 4 4 

e[k] 4 4 

Filter weights Size M 4M 4M 

Sub-bands 10 10 

Users 200 1 

   Total Memory Footprint 74kbytes 0.37kbytes 

Table 3.8: eNB and UE memory footprint 

 

3.1.7 An efficient CQI-LMS based PFS 

As discussed in the previous section, the computational load and memory footprint of 

the proposed scheme is low when compared to other operations carried out by the eNB 

baseband processor.  Nevertheless, since the majority of the computations are carried 

out in the weight update process, a reduced complexity LMS adaptive filter, based on 

the use of the sign function defined by (3.9), was also investigated [57].  With 

reference to the new weight update function (3.10), when the tap input vector for time 

sample k is less than the specified threshold δ , [ ]x k  will be equal to zero and thus the 

corresponding weights does not need to be adapted thereby yielding a reduction in the 

computational load. 

[ ]        if [ ]
( [ ], )

0              if [ ]  

x k x k
sign x k

x k

δ
δ

δ
≥

=  <
    (3.9) 
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[ 1] [ ] [ ] ( [ ], )w k w k e k sign x kµ δ+ = +               (3.10) 

 

In order to study the effect of δ  on the (i) ratio of CQI measurement reports 

transmitted to the eNB from the total measurements, (ii) the average error between the 

actual and predicted CQI values, and (iii) the computational load reduction when 

compared with the LMS-based PFS, simulations were conducted in MATLAB
®

 based 

on the parameter set for the CQI-LMS based PFS given in Table 3.3. 
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(b) 

 

(c) 

Figure 3.8: Efficient CQI-LMS based PFS parameter tuning – Threshold δ. (a) Average proportion 

of CQI measurements reported to eNB from total per sub-band, (b) Average error of the predicted 

CQI value per sub-band, and (c) Average computational load saving per sub-band when compared to 

the LMS PFS 
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As shown in Figure 3.8(a)-(c), the computation load saving increases with the 

threshold δ as an increasing proportion of the input vector [ ]x k  will be equal to zero.  

Nevertheless, this results in degradation in the CQI prediction error caused by the 

adaptive filter not being updated regularly.  Setting δ  to 4 yields the best trade-off 

between the selected metrics.  In order to study the impact of the marginal increase in 

prediction error on the network performance, the sign-clipped LMS-based PFS was 

implemented and tested in an LTE system level simulator [55], over 50 random seeds, 

using the parameters listed in Table 3.2 and 3.3.  The mean and standard deviation 

(shown in parenthesis) of the signalling overhead reduction, PLR, sector throughput 

and computational load saving for various UE speeds and cell loading with the sign-

clipped CQI-LMS based PFS are shown in Table 3.9, 3.10 and Figure 3.9 respectively. 

 

UE Speed 

Prediction 

Filtering 

Scheme 

Number of UEs in Sector 

Average 
10 20 30 40 

3km/hr 

(low 

mobility) 

CQI - LMS 
91.8% 

(±0.4) 

92.4% 

(±0.5) 

92.6% 

(±0.2) 

92.6% 

(±0.2) 

92.40% 

(±0.38) 

Sign clipped   

CQI - LMS 

89.4% 

(±0.3) 

90.1% 

(±0.5) 

90.2% 

(±0.3) 

89.9% 

(±0.3) 

89.90% 

(±0.36) 

120km/hr 

(high 

mobility) 

CQI - LMS 
92.6% 

(±0.2) 

92.4% 

(±0.2) 

92.5% 

(±0.2) 

92.4% 

(±0.2) 

92.50%  

(±0.1) 

Sign clipped   

CQI - LMS 

88.5% 

(±0.3) 

88.9% 

(±0.3) 

89.3% 

(±0.2) 

89.2% 

(±0.1) 

89.00% 

(±0.36) 

Table 3.9: CQI feedback reduction – Efficient CQI-LMS based scheme 

 

Table 3.10: Packet loss rate – Efficient CQI-LMS based scheme 

 

 

 

Prediction Filtering Scheme 

UE Speed 

3km/hr 

(low mobility) 

120km/hr 

(high mobility) 

   CQI - LMS 6.7% (±0.7) 17% (±2.3) 

Sign clipped CQI - LMS 8.6% (±1.3) 17.2% (±1.3) 
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(c) 

Figure 3.9: Sector throughput and computational load comparison (standard deviation is indicated by 

vertical bars). (a) Sector throughput @3km/hr, (b) Sector throughput @120km/hr, and (c) % 

computational load reduction 

 

Whilst considering a marginal loss in performance in terms of packet loss and uplink 

signalling reduction, the sign-clipped LMS PFS achieves a mean computation load 

saving of 35% and 26% at 3km/hr and 120km/hr respectively when compared to the 

LMS predictive filtering scheme. 

 

3.1.8 Evaluating the LMS-CQI PFS using field test measurements 

In order to further evaluate the performance of the proposed LMS-CQI PFS, radio 

measurements were collected from a live commercial LTE network, having the 

relevant radio parameters shown in Table 3.11.  The measurements were collected 

using industry standard test equipment [58] installed in a purposely setup drive test 

vehicle.  With reference to Figure 3.10 and in accordance with [59], the UE is 

connected to a pair of omni-directional antennas mounted on top of the drive test 

vehicle through a combining network exhibiting 12dB attenuation thereby 

compensating for the antenna gain and vehicle penetration loss.  The drive test route, 

shown in Figure 3.11 exhibits a rich multi-path channel leading to highly varying radio 

conditions. 
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Parameter Value 

Frequency Band 1.8GHz 

Bandwidth 20MHz 

CQI reporting period 20ms 

CQI reporting type Wideband 

MIMO Type 2x2 TM4 

Transmit Power 2 x 40W 
 

Table 3.11: Relevant commercial LTE network radio parameters 

 

 

Figure 3.10: Test vehicle setup showing the antenna combining network and connection with UE 

 

Figure 3.11: Test route – Starting at point A and stopping at point B [60] 

A 

B 

Measurement units (UEs) 
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The CQI measurements conducted by the UE and reported to the network throughout 

the drive test were collected and fed to the proposed LMS-based prediction filtering 

scheme described in Algorithm 1.  In contrast with the simulated environment, the 

tested commercial network was configured to use wideband CQI reporting and thus the 

proposed scheme was adapted to use a single LMS adaptive filter covering the whole 

bandwidth in both the UE and eNB.  Out of the 13,944 CQI measurements reported, 

only 2,383 measurements were transmitted representing a CQI feedback signalling 

reduction of approximately 83% whilst achieving an absolute CQI prediction error of 

1.2.  The distribution of the CQI prediction error is shown in Figure 3.12 whilst a 

sample of the actual and predicted measurements, indicating the two modes of 

operation described in section 3.1.3 is shown in Figure 3.13.  As shown in Figure 3.12, 

the predictive filtering scheme tends to overestimate the CQI value which might lead 

to an increased propensity to physical layer errors.  This might not be significantly 

detrimental for the case of non-real time traffic, which make use of AM RLC and 

upper layer retransmission protocols, however such link adaptation mismatch would 

lead to a lower quality of service for real time traffic such as low latency video. 

 

Figure 3.12: Distribution of CQI prediction error 

With reference to Figure 3.13, when the predictive filtering algorithm is in prediction 

mode, the CQI measurements collected by the UE are not transmitted to the eNB.  

Meanwhile, the predictors attempt to follow the variations in the channel conditions 

while keeping track of the prediction error.  As the prediction error degrades, the 

algorithm switches back to the training mode and CQI feedback measurement reports 
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are transmitted to the eNB thereby allowing the re-training of the adaptive filters.  

Once the prediction errors falls below the error budget threshold the algorithm 

switches into the prediction mode thereby ceasing the transmission of CQI feedback 

measurements. 

 

Figure 3.13: Actual and predicted CQI field test measurements [60] 

 

3.2 LMS-based predictive filtering scheme in crowd event scenarios 

A major problem associated with crowd event scenarios is the uplink signalling 

feedback congestion.  In order to control uplink signalling feedback in such scenarios, 

network operators typically resort to wideband feedback compression and feedback 

time adaptation coupled with dynamic PUCCH resource allocation.  Nevertheless, as 

evidenced by Figure 3.14 that shows measurements collected from an eNB in a live 

commercial network covering a typical crowd event scenario, these actions are not 

enough.  With reference to Figure 3.14 (a), the increase in the number of connected 

users in the sector leads to the dynamic PUCCH algorithm in the eNB to increase the 

feedback time interval from 40ms to 80ms.  Moreover, as shown in Figure 3.14 (b), as 

the number of connected users continues to increase, the PUCCH region is 

incrementally expanded, thereby reducing the number of available PRB for the 

PUSCH, until it reaches a pre-configured limit.  Beyond this point the eNB starts 

rejecting users due to lack of PUCCH resources.  Thus, the use of effective feedback 

reduction schemes would benefit the end user experience.  With reference to the LMS-
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based PFS proposed in section 3.1 and the field tests results presented in section 3.1.8, 

this scheme could easily be adapted to the wideband CQI feedback case and can offer 

significant benefits especially in crowd event scenarios. 

 

(a) 

 

(b) 

Figure 3.14: PUCCH measurements collected from a live eNB in a commercial network (a) CQI 

Feedback period adaptation, and (b) PUCCH and PUSCH dynamic allocation 
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3.2.1 Crowd event scenario simulation 

A common network design strategy implemented by mobile network operators to 

tackle crowd events is to partition the crowd into smaller areas by the use of additional 

radio sectors.  In this study, a typical sport event scenario is considered whereby users 

are seated in a three-tier football stadium, shown in Figure 3.15, which has been 

partitioned into several areas with a number of radio sectors. 

 

 

Figure 3.15: Three-tier football stadium and radio sectors under study [61] 

With reference to Figure 3.15, sector B in the south stand is the sector under study, 

whilst the adjacent sector A and C contribute to interference.  Considering the seating 

configuration parameters which are aligned with the Fédération Internationale de 

Football Association (FIFA) football stadium technical guidelines [62], shown in 

Table 3.12, each area has a seating capacity of 1540 spectators.  Moreover, considering 

the activity parameters shown in Table 3.13, the maximum number of simultaneous 

active UEs, at any one time, in the sector is approximately 130. 

Parameter Value 

Area dimension 30m x 30m 

Front/Back passage ways 1m 

Lateral passage ways 2m 

Inter-sear spacing in x-direction 0.5m 

Inter-sear spacing in y-direction 1m 

Table 3.12: Seating configuration parameters 

 

A B 

 

C 
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Parameter Value 

Operator market share 40% [63] 

Spectators sharing content in crowd events 54% [64] 

Simultaneous user ratio 40% 

Table 3.13: Activity parameters 

 

3.2.2 Radio Design 

The use of multiple radio sectors in a confined area such as a football stadium requires 

strict control of the radio network design in order to minimise co-channel interference.  

This is achieved through the use of sculpted radiation pattern antennas, shown in 

Figure 3.16, having a sharp -3dB cut-off point thereby minimising the cell overlap.  As 

shown in Figure 3.17, these antennas are typically fixed to the underside of the stadium 

roof thereby allowing the signal to be focused in a specific area of the crowd whilst 

minimising inter-cell interference.  

 

Figure 3.16: Antenna radiation pattern (Horizontal plane – red, Vertical plane – blue) [65] 
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Figure 3.17: Antenna installation in stadium [66] 

A radio coverage simulation of the area showing the reference signal received power 

(RSRP) in dBm provided by sector B at 0.5m above ground level (AGL) is shown in 

Figure 3.18 whilst the relevant simulation parameters are provided in Table 3.14. 

 

 

Figure 3.18: RSRP in dBm of Sector B at 0.5m AGL (Elevation) 

 

Sector A Sector B Sector C 
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Parameter Value 

System Bandwidth 10MHz (50 PRB) 

Scheduler Proportional Fair 

Number of Antennas 1 (Tx and Rx) 

CQI Type 
Periodic (20ms), wideband CQI 

(4bits) 

CQI Feedback Reduction 
LMS CQI Predictive Filtering         

(see Table 3.3) 

Traffic Model Full Buffer 

Mobility All UE’s are stationary 

eNB output power 43dBm 

Frequency Re-use 1 

Antenna Height 20m 

Antenna Type Commscope CNLPX3055F [52] 

Propagation Model 
Micro Cell 

L=24 + 45log(d+20) @ 2GHz [55] 

Fast Fading Realization Jakes Model [55] 

Number of UE’s, Tu {50, 70, 90, 110, 130} 
 

Table 3.14: Simulation parameters – wideband LMS-based PFS 

 

3.2.3 Simulation Results 

In order to verify the efficacy of the wideband LMS-based PFS, when applied to a 

crowd event scenario, the setup described in Section 3.2.1 and 3.2.2 was implemented 

and tested in an LTE system level simulator [55], over 50 random seeds, using the 

parameters shown in Table 3.14.  The feedback reduction and average sector 

throughput, when compared to the 3GPP wideband scheme, for various users in the 

sector are shown in Table 3.15 and Figure 3.19 respectively whilst the average packet 

loss rate for the 3GPP wideband scheme and the wideband LMS-based PFS is shown 

in Table 3.16. 

UE in Sector % Feedback reduction 

50 86.5 (±0.3) 

70 87.5 (±0.6) 

90 86.7 (±0.4) 

110 86.9 (±0.6) 

130 87.1 (±0.5) 
 

Table 3.15: Feedback reduction (standard deviation is shown in parenthesis) 

 

3GPP Wideband LMS WB 

0.9 (±0.1) 3.3 (±0.16) 
 

Table 3.16: Average Packet Loss Rate (standard deviation is shown in parenthesis) 
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Figure 3.19: Sector throughput comparison – 3GPP wideband and wideband LMS PFS 

Although the deployment of the LMS-based PFS in a crowd event scenario results in a 

marginal loss in performance when compared to the 3GPP standard wideband scheme, 

it manages to achieve a respectable average feedback signalling reduction of 87%. 

 

3.3 Wideband CQI feedback clustering technique 

An alternative to the predictive filtering scheme presented in section 3.1 and its 

application to a crowd event scenario in section 3.2 is the use of a CQI clustering 

scheme which exploits the slow varying radio channel conditions of static users in the 

same radio sector. The operation of the wideband CQI feedback clustering technique is 

shown in Figure 3.20.  During the initialisation phase, the UEs are operating in 

legacy_mode whereby periodic wideband CQI measurements conducted by the UEs 

are reported in order to allow the eNB to build a CQI report history for each connected 

UE.  The eNB keeps track of the number of CQI reports received per UE and when a 

UE reaches UEτ  reports, the eNB updates the status of the UE to cluster_wait mode.  

During this mode, the UE continues to report the CQI measurements however the eNB 

will overwrite old CQI measurement values thereby ensuring that the eNB retains the 
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latest UEτ  reports for each UE.  When all connected UEs are in cluster_wait mode, the 

eNB initiates the cluster formation phase composed of three main operations namely: 

  

1. Compute CQI statistics: For each UE, the eNB computes the mean iµ  and 

variance 
2

iσ  using the last UEτ CQI measurement reports and normalises the 

data. 

 

2. Clustering: eNB applies a data clustering algorithm on the two-dimensional 

data vector, composed of the computed normalised statistics in step 1, to cluster 

users into k clusters and assigns a cluster ID to each UE. In this work, the k-

means algorithm was chosen in view of its simplicity, robustness and 

effectiveness. 

 

3. Elect cluster leaders: For each cluster; calculate the centrality of each UE 

within the cluster using (3.11).  The centrality of a UE, Ci, defines how close a 

UE, i, is to the other UEs, j, in the same cluster, based on the computed 

normalised statistics.  The UE with the lowest centrality value (i.e. highest 

centrality) is then elected as cluster leader, UECL.  This process ensures that the 

cluster leader CQI reports are representative of the whole cluster. 

 

     ( ) ( )22
2 2

ii i j j

j i

C µ µ σ σ
≠

= − + −∑                        (3.11) 

 

After the cluster formation phase is complete, the eNB moves to the clustered phase 

during which the elected cluster leaders will continue sending CQI reports to the eNB.  

The eNB uses these reports as representative CQI reports for the other UEs in the 

cluster whilst the other UEs in the cluster are set to CQI_Suppressed mode indicating 

that these UEs will not transmit CQI measurements reports.  The eNB remains in the 

clustered phase until it receives CLγ  CQI measurement reports from all the cluster 

leaders, after which, the eNB moves back to the initialisation phase and restarts the 

process. 



6
0
 

 

 

 

Figure 3.20: Wideband CQI feedback clustering scheme [67] 
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3.3.1 Statistical Model Formulation for the number of feedback clusters 

The required number of clusters, k, is a critical input parameter for the majority of data 

clustering techniques.  Nevertheless, choosing k automatically is notoriously difficult 

and is usually either fixed or else an iterative technique to merge/split clusters is 

adopted [68] at the expense of increased computational complexity.  In this work, we 

formulate a statistical model able to estimate the number of clusters 

based on the number of active users in the radio sector using domain-specific 

knowledge.  In order to collect data for the proposed statistical model, the cluster 

formation algorithm, described earlier, was implemented and tested in MATLAB
®

 

using CQI measurements generated from several UEs, simulated in a system level 

simulator [55], for various values of k.  The parameters used in these simulations are 

provided in Table 3.17.   

 

With reference to Figure 3.21, it is evident that increasing the number of clusters, k, 

results in more compact clusters as the sum of within-cluster point-to-cluster centroid 

distance, D, decreases.  Nevertheless, the increase in k implies an increased number of 

cluster leaders transmitting CQI reports to the eNB.   In order to strike a balance 

between these two opposing factors, a cost function relating the normalised CQI report 

transmission cost, η, and cluster compactness metric, D, is used to understand the 

variation of the total cost, φ, with the number of clusters k.  Considering the reporting 

period and CQI message length shown in Table 3.17, the cost function is given by: 

 

     
( )

200    (bits/sec)

k D

k

φ α β η
η

= ⋅ + ⋅
=

                             (3.12) 

where α  and β  are weighting constants empirically set to 15 and 1.2 respectively. 
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Parameter Value 

System Bandwidth 10MHz (50 PRB) 

Scheduler Proportional Fair 

Number of Antennas 1 (Tx and Rx) 

CQI Type 
Periodic (20ms), wideband CQI 

(4bits) 

Traffic Model Full Buffer 

Mobility All UE’s are stationary 

eNB output power 43dBm 

Frequency Re-use 1 

Antenna Height 20m 

Antenna Type Commscope CNLPX3055F [52] 

Propagation Model 
Micro Cell 

L=24 + 45log(d+20) @ 2GHz [55] 

Fast Fading Realization Jakes Model [55] 

Number of UE’s, Tu {50, 70, 90, 110, 130} 

UEτ  and CLγ  100 and {3000, 5000, 8000} 

Table 3.17: Simulation parameters – CQI clustering scheme 

 

 

 Figure 3.21: Variation in cluster compactness with number of clusters                                           

(number of UEs in sector = 130) 
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Plotting the cost function on a logarithmic scale for a different number of connected 

UEs, Tu, yields a set of upward concave parabolas shown in Figure 3.22.  Further 

inspection shows that an optimal number of clusters, kopt, exist for different values of 

Tu.  

 

Figure 3.22: Cost function dynamics 

Repeating this analysis for various values of Tu and finding the optimal number of 

clusters for each case reveals the inverse relationship shown in Figure 3.23.  As the 

number of connected UEs increases, the optimal number of clusters rises until it 

reaches an asymptotic value.  This is expected as the CQI transmission cost increases 

linearly with k thereby enforcing a hard limit on the optimal number of clusters.  

Meanwhile, at low values of k, the inverse relationship will return a progressively 

lower number of clusters.  Nevertheless, experimental results show that below 15 

active users (which does not constitute a crowd event in any case), the proposed 

clustering scheme benefits diminish and hence it would be more appropriate to switch 

back to the legacy CQI reporting scheme, whereby UEs report the CQI directly to the 

eNB.  The data was further analysed in IBM SPSS
©

 statistical package and an inverse 

model, given by (3.13) and having a coefficient of determination, R
2

, of 0.966 was 

derived using the least square estimation technique [69]. 
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1

log( ) 2.61 0.867
u

k
T

 
= − ⋅ + 

 
                         (3.13) 

 

Figure 3.23: Inverse relationship between log(k) and Tu 

3.3.2 Simulation Results 

The proposed CQI clustering together with the derived statistical model given by 

(3.13) were implemented in a system level simulator [55] to verify its effectiveness in 

terms of average cell throughput and feedback reduction.  Simulations, using the 

parameters given in Table 3.17 were carried out over 50 random seeds in order to 

achieve statistical relevant results. The average sector throughput and feedback 

reduction, when compared to the 3GPP standardised wideband feedback scheme, for 

various values of Tu and CLγ  set to 5000, are shown in Figure 3.24 and Table 3.18 

respectively.   

 

The proposed CQI feedback clustering scheme manages to achieve an average CQI 

feedback reduction of 88.2% when compared to the 3GPP wideband scheme. This 

level of feedback reduction was achieved whilst maintaining approximately the same 

level of performance, in terms of sector throughput and PLR, as evidenced in Figure 

3.24 and Table 3.19.  Moreover, with reference to Table 3.18, the feedback reduction 

gradually increases as the clustering becomes more effective with increasing number 

of connected UEs.   
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Figure 3.24: Sector throughput comparison for various numbers of connected UEs in sector (standard 

deviation is indicated by vertical bars) 

 

Number of UEs % Feedback Reduction 

50 83.1 (±0.3) 

70 86.9 (±0.5) 

90 89.1 (±0.4) 

110 90.4 (±0.6) 

130 91.4 (±0.3) 

Table 3.18: Feedback reduction with respect to 3GPP wideband scheme                                      

(standard deviation is shown in parenthesis)  

 

3GPP Wideband CQI Feedback Clustering 

0.9 (±0.1) 1.5 (±0.19) 
 

Table 3.19: Average Packet Loss Rate (standard deviation is shown in parenthesis) 

 

The effect of the parameter CLγ on the performance of the proposed scheme was also 

investigated as shown in Table 3.20.  Intuitively, as CLγ increases, we prolong the 

clustered phase thereby achieving a marginally improved feedback reduction. 

However, this comes at the expense of degradation in sector performance due to the 

user clustering and cluster leader selection becoming increasingly sub-optimal. 
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Table 3.20: Effect of parameter CLγ on the performance of the proposed CQI feedback clustering 

scheme (Number of UE’s = 90) 

 

3.4 Summary 

 

This chapter has presented a thorough study on the use of a UE-assisted PFS for sub-

band CQI feedback compression.  The proposed technique is based on short-term 

channel prediction and is able to lower the CQI signalling overhead through the use of 

adaptive filters at the UE and eNB side.  Two schemes were implemented and tested 

with the CQI-LMS based PFS ranking better than the NLMS based scheme with up to 

92.4% CQI signalling overhead reduction. This level of feedback signalling reduction 

was achieved whilst maintaining the same level of sector throughput and keeping the 

PLR within 5% when compared to the standardised 3GPP eNB configured sub-band 

feedback scheme.   

 

Although the adaptive filters used in the proposed scheme exhibit a low computational 

load and memory complexity, an efficient CQI-LMS PFS able to reduce the average 

computational load by 35% in low mobility has also been studied.  This was achieved 

in lieu of a marginal loss in performance compared to the CQI-LMS based scheme.  A 

comparison of the proposed techniques, showing the improvement when compared to 

[49] and the 3GPP standardised scheme [23], is shown in Table 3.21. Even though the 

proposed scheme has been designed for sub-band CQI feedback compression, it is 

easily adapted to the wideband CQI feedback reporting scenario by simply using a 

single LMS adaptive filter in both the UE and eNB.  This was tested using field test 

measurements collected from a live commercial LTE network configured to use 

wideband CQI reporting yielding a CQI feedback signalling reduction of 83% and an 

absolute CQI prediction error of 1.2.   

 

CLγ  3000 5000 8000 

Sector Throughput in Mbit/s 22.3 22.2 21.1 

% CQI Feedback Saving 89.1 90.3 90.9 
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Scheme 
Mobility 

Characteristics 

Feedback 

Reduction 
PLR 

Throughput 

degradation 

 

Complexity 

3GPP eNB 

configured sub-

band feedback 

[23] 

Low Mobility - 
2.5% 

(±0.3) 
- - 

    
 

High Mobility - 
17.4% 

(±1.7) 
- - 

Chimento et al 

[49] 

Mixed - generally 

low mobility 
77% 10% 

Focus of study 

is on PLR 

High.  Refer to 

section 2.4.2 

     
 

LMS-CQI 

prediction 

filtering scheme 

Low Mobility 
92.4% 

(±0.4) 

6.7% 

(±0.7) 

1.1%       

(±0.7) 

0.9Mflops and 

4Kflops in the 

eNB and UE 

respectively 

    

High Mobility 
92.5% 

(±0.1) 

17% 

(±2.3) 

0.6% 

(±0.2) 

Sign Clipped 

LMS-CQI 

prediction 

filtering scheme 

Low Mobility 
89.9% 

(±0.4) 

8.6% 

(±1.3) 

2.2% 

(±0.5) 
-35.5% 

High Mobility 
89%  

(±0.4) 

17.2% 

(±1.3) 

0.8% 

(±0.8) 
-28.4% 

 

Table 3.21: Comparison of the key performance indicators for the adaptive filtering schemes 

 

The second part of this chapter dealt with a study on the use of the wideband UE-

assisted LMS based predictive filtering scheme and a UE clustering scheme in a crowd 

event scenario having a relatively high number of stationary users in the sector.  As 

evidenced by the simulation results, summarised in Table 3.22, both schemes yield 

significant feedback signalling reduction with the UE clustering scheme achieving 

better overall performance in terms of average sector throughput and packet loss rate.  

Nevertheless, both schemes could be considered as potential candidates for use in 

crowd event scenarios. 

 

Scheme 
% Feedback 

Reduction 

Throughput in 

Mbit/s 
% PLR 

3GPP Wideband Scheme [23] - 21.7 0.9 

Wideband UE assisted LMS based 

prediction filtering scheme 
87 20.4 3.3 

UE Clustering scheme 88.2 21.4 1.5 

Table 3.22: Comparison of the key performance indicators for the wideband schemes 
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Chapter 4  High Efficiency Video Coding 

 

This chapter starts with an introduction to the latest standard video encoder, namely 

the High Efficiency Video Coding (HEVC) or H.265, together with its Multi-View 

(MV)/3D extensions and the concept behind view synthesis, which enables the 

rendering of novel views and forms the foundation of FVV.  The next section 

introduces the depth-texture view bit rate allocation problem together with a review of 

works aimed at tackling this challenge.  Finally, the last section focuses on the need of 

rate control coupled with a review of works on this key video encoder element. 

 

4.1 Introduction to High Efficiency Video Coding (HEVC) 

The preceding standard, H.264/AVC, garnered significant attention within the research 

community and enjoyed widespread commercial use ranging from broadcast of high 

definition (HD) TV signals over satellite, cable and terrestrial transmission systems to 

security applications, internet and mobile network video [70].  Nevertheless, the new 

generation of higher resolution and quality content coupled with stereo or multi-view 

display mandated the need of a video encoder with a superior coding efficiency than 

that offered by the H.264/AVC capabilities.  This need was further accentuated with 

the rapid increase in mobile video traffic imposing severe challenges to mobile 

network operators.  For these reasons, the Joint Collaborative Team on Video Coding 

(JCT-VC) formed between the ITU-T VCEG and the ISO/IEC MPEG standardisation 

bodies released the first edition of the H.265/HEVC standard in January 2013 [70].  

The key principles governing the design of the new standard include [70]: 

 

• Handling of higher video resolution beyond HD video format; 

• Increased use of parallel processing architectures; 

• Significant bit-rate savings for the same quality relative to the performance of 

H.264/AVC. 
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4.1.1 HEVC video coding 

With reference to Figure 4.1, HEVC adopts the same block-based hybrid approach 

used in legacy video compression standards.  Each picture is first split into blocks and 

a block-wise prediction residual is computed between the original block and its 

prediction obtained using either intra-picture prediction or inter-picture prediction. 

Intra-picture prediction, used for the first picture of a video sequence and subsequent 

pictures at each clean random access point, makes use of previously decoded 

neighbouring samples from the same picture whilst inter-picture prediction uses 

corresponding regions of previously decoded pictures and is applied for all the 

remaining pictures of a sequence or between random access points.  In inter-picture 

prediction the encoding process involves the selection of motion data composed of a 

motion vector (MV) and associated reference picture, to be used by the decoder in 

order to predict the samples of each block.  The computed residual signal of the intra- 

or inter-picture prediction for each block is transformed using a linear spatial transform 

and the transform coefficients are scaled, quantised and entropy coded prior to being 

transmitted together with the prediction information [70]. 

 

 

Figure 4.1: HEVC video encoder (decoder modelling blocks shown in red dashed border) [70] 

 

To ensure that the video encoder and decoder generate the same predictions for 

subsequent data, the encoder implements the decoder processing loop as shown in 
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Figure 4.1.  Thus, the quantised transform coefficients are reconstructed by first 

applying an inverse scaling function followed by an inverse transform, yielding a 

decoded approximation of the residual signal.  This signal is added to the prediction 

and processed further to smooth out artefacts induced by block-wise processing and 

quantisation [70].  The resulting reconstructed picture is then stored in a decoded 

picture buffer to be used for the prediction of subsequent pictures. 

 

In order for HEVC to achieve significantly improved coding efficiency, a number of 

features were introduced which sets it apart from its predecessor.  These include [70]: 

 

• Code Tree Units (CTU) and Coding Tree Block (CTB) structure: Legacy video 

standards define the macro-block as the core element of the video coding layer 

composed of a 16×16 block of luma samples and, considering a 4:2:0 colour 

sampling, two corresponding 8×8 blocks of chroma samples.  In HEVC, the 

analogous structure to the macro-block is the CTU, also referred to as largest 

coding unit (LCU), which can be larger than the legacy macro-block.  The 

CTU consists of a luma CTB and the corresponding chroma CTBs where the 

size of the luma CTB can be 16×16, 32×32 or 64×64 samples with the larger 

sizes enabling better compression.  Moreover, HEVC supports partitioning of 

the CTBs into smaller blocks called coding units (CU) using a tree structure 

and quad tree-like signalling.   

• Coding Units (CUs), Prediction Units (PUs) and Transform Units (TUs): A CU 

is further partitioned into PU, each of which can be predicted using either intra 

or inter prediction.  This partitioning enables better matching to the boundaries 

present in the picture [71].  The PUs are in turn subdivided into TUs which is 

the basic unit for the transform and quantisation process.  

• Intra-frame prediction: Similar to H.264/AVC, the decoded boundary samples 

of adjacent blocks are used as reference data for spatial prediction however in 

contrast with AVC, intra-frame prediction in HEVC supports 33 directional 

modes in addition to planar (surface fitting) and DC (flat) prediction modes. 

• Inter-frame prediction and motion compensation: The functionality of inter-

frame prediction is essentially the same as H.264/AVC however motion 

compensation is enriched whereby quarter-sample precision is used for the 
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motion vectors and 7-tap or 8-tap filters are used for interpolation of fractional-

sample positions. 

• Quantisation control: HEVC uses uniform reconstruction quantisation coupled 

with quantisation scaling matrices supported for the various transform block 

sizes. 

• Entropy coding: Similar to its predecessor, context adaptive binary arithmetic 

coding (CABAC) is used for entropy coding however it has been enhanced to 

improve its throughput speed and compression performance whilst reducing its 

context memory requirements.  Opposed to H.264/AVC, CAVLC is not 

supported in HEVC. 

 

4.1.2 Slices and Tiles 

The concept of slices has been introduced in earlier video coding standards [72] to 

organise the generated video bit-stream into self-contained units which can be 

independently decoded.  This allows resynchronisation in case of data loss in part of 

the bit stream, thereby limiting error propagation, at the expense of the loss of 

prediction across slice boundaries.  Moreover, slices are commonly used to limit the 

maximum number of bits thereby aiding the transport of the encoded bit stream over a 

packet-switched network.  With reference to Figure 4.2, slices in HEVC define groups 

of independently decoded CTB which follow raster scan order within a picture.  The 

number of CTU in a slice varies depending on the video scene activity. 

 

Figure 4.2: HEVC Slices 
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In addition to slices, H.264/AVC introduced flexible macro-block ordering (FMO) 

[73], to organise macro-blocks into slices in a highly flexible manner.  Although FMO 

improves error resilience and allows the use of region of interest (ROI) awareness in 

high packet loss scenarios, the increased complexity coupled with lower coding 

efficiency, caused by the lack of prediction across slice boundaries, made FMO an 

unpopular tool.  Alternatively, HEVC introduced the concept of tiles in order to aid 

parallelism, improve maximum transmission unit (MTU) size matching and offer 

additional ROI functionality [74].  As shown in Figure 4.3, tiles are defined by vertical 

and horizontal boundaries with intersections that partition a picture into rectangular 

regions [75].  Both the tiles and the LCUs in each tile are processed in raster scan order 

within a picture.  Moreover, the column and row boundaries of tiles need not be 

uniform thereby offering greater flexibility and thus could be used to offer error 

resiliency of specific ROIs.  The combined use of slices and tiles in HEVC offer 

various possibilities to control the ROI whilst improving MTU size matching. 

  

 

(a) 
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(b) 
 

Figure 4.3: Slices and Tiles [74]. (a) Tile definition, and (b) Combined Slices and Tiles 

 

4.1.3 3D video fundamentals and video formats 

The human visual system allows the perception of 3D by using two main mechanisms 

namely binocular and motion parallax.  Binocular parallax allows viewers to perceive 

depth by viewing a different angle of the same object in space through each eye whilst 

motion parallax relies on the relative motion of the object to the human eyes.  Based 

on these concepts, one of the simplest and most cost effective 3D video formats is the 

conventional stereo video (CSV).  In this 3D video format two views, one for each 

human eye, are transmitted and the viewer makes use of a headgear (glasses) to direct 

each view to the respective eye thereby allowing 3D perception.   

 

With reference to Figure 4.4, headgear typically uses one of three common methods to 

separate the left and right views; namely anaglyph filtering, polarised filtering and 

time division.  In the latter, frame sequencing is employed to project the left and right 

views to the respective eye, one at a time, using an active shutter glass system 

synchronised to the display.  Nevertheless, the use of headgear to perceive 3D presents 

several drawbacks ranging from eye-fatigue, cross-talk and the lack of any motion 

parallax.  For this reason, auto-stereoscopic displays utilizing lenticular lenses or parallax 

barriers have been developed in order to direct the left and right views to the respective 

eye without the need of headgear.  Generally, such displays offer stereoscopic views at 
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multiple viewpoints, thereby allowing the viewer to experience motion parallax as the 

viewer moves from one viewpoint to another and enhancing the 3D perception. 

 

  

(a)        (b) 
 

 

(c) 

Figure 4.4: Headgear techniques [76]; (a) Anaglyph filtering, (b) Polarised filtering, and (c) Time-

division active shutter system 

 

In order to transmit stereoscopic 3D video, the sequence is either coded using 

simulcast, whereby the left and right views are individually compressed using a 

conventional video compression scheme such as H.265/HEVC, or using one of the 

frame compatible video formats shown in Figure 4.5.  In the latter, the left and right 

views are first sub-sampled and interleaved into a single high definition frame prior to 

compression.  Alternatively, a time multiplexing technique is used whereby the left 

and right views are interleaved as alternating frames or fields [77].  Although such 

frame compatible formats are attractive, as they facilitate the deployment of 

stereoscopic video to capable displays using conventional, single-view, video 

compression schemes, the spatial or temporal resolution is degraded. 
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Left 

View

Right 

View

(a) (b) (c)

(d) (e)
 

Figure 4.5: Frame compatible video format; (a) Left-Right, (b) Top-Bottom, (c) Horizontal interlacing, 

(d) Vertical interlacing, and (e) Temporal 

 

Even though this representation is effective, the main disadvantage of such 

conventional stereo video format is its restriction to a pair of views at fixed spatial 

positions.  Other alternative 3D video formats have been proposed, including model-

based [78] and point-sample representation [79], however these are either restricted to 

video sequences having known objects or require the transmission of camera 

parameters in addition to other meta-data.  The introduction of the multi-view video 

(MVV) [80] representation coupled with auto-stereoscopic displays led to significant 

developments in 3D video in recent years.  With reference to Figure 4.6, in the MVV 

representation a visual scene is captured using multiple cameras placed at different 

angles thereby allowing viewers to experience depth perception of the visual scene, 

through the use of appropriate 3D displays, from multiple viewing locations [81, 82].  

The generated video data increases proportionally with the number of cameras 

capturing the scene and thus multi-view video coding schemes are typically used to 

transmit multiple views efficiently.  Nevertheless, even though high compression rates 

can be achieved by exploiting redundancies in both the spatial and temporal domain 

and in between cameras, the need of transmitting a large number of views to generate 

an immersive 3D experience led to the development of the multi-view video plus depth 

(MVD) [83] representation. 
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Figure 4.6: Multi-view video representation 

 

With reference to Figure 4.7, the transmission of a small number of texture and depth 

map views allows the receiver to generate any number of views in-between the 

transmitted views by using the geometry data found in the depth maps and a view 

synthesis technique, such as depth-image-based rendering (DIBR).  The ability to 

synthesis novel views using a limited set of texture and depth map views does not only 

allow the efficient delivery of enhanced 3D video streams, which gives a depth 

impression of the observed scene, but also enables free-viewpoint video (FVV).  The 

latter is a complementary application of the MVD 3D video representation and has 

gained significant commercial interest, specifically for sporting events [8], as it allows 

viewers to interactively navigate a scene through different viewpoints.   
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Figure 4.7: Multi-view video plus Depth (MVD) representation 

 

4.1.4 HEVC – Multi-view and 3D extensions 

In order to support these applications, a new Joint Collaborative Team on 3D Video 

Coding Extensions Development (JCT-3V) was formed between the ISO/IEC and 

ITU-T to develop extensions on top of HEVC including 3D and multi-view standards 

[81, 82].  The development of 3D and multi-view extensions of HEVC is essentially 

split into two; namely Multi-view HEVC (MV-HEVC) and 3D-HEVC.  MV-HEVC 

uses the same design principles of MVC in the H.264-AVC framework [84] whilst 

retaining the same block-level decoding process.  The main advantage of this scheme 

is that it provides backwards compatibility for monoscopic video decoding whilst 

allowing the use of inter-view prediction thereby exploiting both inter-view and 

temporal redundancy yielding high compression rates.  Although the primary 

application of this coding architecture was intended to efficiently compress multi-view 

texture streams, it can also be applied to compress multi-view depth map streams 

thereby providing a simple and relatively low complexity technique to efficiently 

compress MVD streams as shown in Figure 4.8. 
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Figure 4.8: MVD using dual MV-HEVC streams, one for texture and the other for depth 
 

To achieve high compression rates, 3D-HEVC makes use of additional coding tools 

for the dependent views to exploit the correlation of motion and residual data between 

views [82].  The salient tools in this release include Neighbouring Block-Based 

Disparity Vector Derivation [85], illumination compensation to enhance coding 

efficiency for blocks predicted from inter-view reference pictures [86] and inter-view 

motion and residual prediction [87,88].  In addition to these tools, 3D-HEVC 

introduces a set of techniques aimed at video-plus-depth video format compression.  

Unlike MV-HEVC the depth maps, which are characterised by large homogenous 

areas and sharp edges [82], are coded using techniques designed to cater for such 

unique characteristics.  Depth maps are not intended to be viewed by end users but 

instead used for the generation of synthesised views.  For this reason, it is imperative 

that the depth map edges are preserved since inaccurate edge reconstruction has a 

significant impact on synthesised views.  To better represent the depth information, 

partition-based depth intra coding modes such as depth modelling modes (DMM) [89], 

are used.  In addition, in order to reduce inter-view redundancy, the depth information 
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is used in view synthesis prediction (VSP) to warp the texture data from a reference 

view to the current view so that a predictor for the current view can be generated [82]. 

 

Both the MV-HEVC and 3D-HEVC extensions yield significant gains when compared 

to simulcast.  The use of inter-view prediction in MV-HEVC results in an average bit 

rate saving of 40% for the three-view scenario when compared to simulcast [90].  

Meanwhile, the performance improvement of 3D-HEVC relative to MV-HEVC is 

approximately 10% but increases to 21% when considering the depth map views and 

the synthesised view quality thereby showing the effectiveness of the coding tools 

introduced in 3D-HEVC [90].  Nevertheless, the latter comes at the expense of 

increased computational complexity [81].  Moreover, the current 3D-HEVC standard 

does not allow the texture and depth map view to have differing resolutions thereby 

precluding the re-sampling of the texture or depth map views prior to encoding and 

transmission.  In contrast, MV-HEVC encodes the texture and depth views 

independently giving the possibility of higher bit rate savings through re-sampling 

techniques. 

 

4.2 Depth-Texture Map View Bit Allocation 

The compressed MVD stream is usually transported over a bandwidth limited network, 

such as a wireless cellular network, and thus a depth-texture bit allocation scheme 

coupled with appropriate rate control for the texture and depth-map views is necessary.  

Even though the depth map is treated as side-information and used only for novel view 

rendering, studies have shown that coding the depth map views at a low bit rate 

introduces artefacts which can have a significant impact on the quality of the rendered 

novel views [91].  Therefore, under the constraint of the total available bandwidth 

provided by the underlying network, the correct balance between texture and depth rate 

allocation is critical.  Several proposals can be found in literature however these are 

either based on the use of a fixed depth-texture allocation or use a pre-encoding 

technique to determine model parameters offline. 
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The use of a fixed depth-texture rate allocation, although simple and suitable for real-

time applications, does not guarantee an optimal virtual view quality.  Various fixed 

ratios, varying from 5-30% [92, 93], have been proposed in literature with 20% being 

commonly used.  In order to address the limitation imposed by this fixed depth-texture 

allocation, Morvan et al. proposed a scheme based on the combination of the texture 

and depth rate-distortion (R-D) curves yielding a single R-D surface [94].  In order to 

generate the R-D curves, the texture and depth map views are pre-encoded using 

various quantisation parameter (QP) values thereby incurring high computational cost.  

The R-D surface is then used with a hierarchical optimisation algorithm, based on an 

orthogonal search pattern which exploits the smooth monotonic properties of the R-D 

surface, to find the optimal depth-texture rate allocation ratio. Apart from the high 

computational cost and off-line analysis required to generate the R-D surface, the 

authors assume that a full reference assessment of the synthesised view is always 

possible. 

 

In an attempt to reduce the high computational cost and the full reference assessment 

constraint, several works based on model-based bit allocation schemes have been 

proposed.  In [95], the authors propose a complex distortion model incorporating the 

video coding, depth quantisation and geometry induced distortion. This model is then 

used in conjunction with an off-line joint rate allocation method to find the correct 

balance between the texture and depth bit rate which maximises the novel view 

synthesis quality.  A cubic distortion model, whose parameters are established using an 

off-line processing technique, is proposed in [96].  Here, the optimal quantisation 

parameters for the texture and depth map views are modelled by the shortest path in a 

custom constructed 3-D trellis.  In [97], the authors formulate a simple distortion 

model for the synthesised view based on the average distortion of the left and the right 

view and the average distortion of the compressed depth maps.  Based on this model 

together with the fractional rate-quantisation model [98], a joint bit allocation problem 

is formulated as a constrained optimisation problem and resolved using the Lagrangian 

multiplier method.  Similarly, the solutions proposed in [99, 100, 101, 102], follow the 

same principles and require the pre-encoding of a number of frames to derive the 

model parameters from which the optimal QP pair for the texture and depth map views 

is calculated.  Thus, in these schemes, although the computational complexity is 
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reduced, they require pre-encoding of a number of frames thereby limiting these 

schemes to non-real time applications.  As opposed to previous studies, the authors in 

[103] propose a bit allocation algorithm based on the estimated synthesised view 

distortion.  This is based on a simplified virtual view distortion model and is able to 

adjust the bit allocation based on the video characteristics.  Although this method does 

not require any pre-encoding of frames, the authors still use a set of pre-configured 

parameters to ensure a fast convergence rate.  Moreover, the algorithm assumes a fixed 

total available bit rate and its performance was not tested in a varying bit rate scenario. 

 

In our early work within this study [104], we explored the use of the macro blocks 

(MBs) prediction mode distribution at the discontinuity regions of the depth map video 

to estimate the texture-depth bit rate allocation in H.264/MVC, this being the standard 

codec at that time.  Although the proposed scheme exhibits a low estimation error and 

low complexity, its formulation is intrinsically tied with the H.264/MVC encoder and 

does not provide any input related to the available bandwidth.  Moreover, to establish 

the prediction mode distribution of the MBs at the discontinuity region, one must start 

encoding the video sequence at some arbitrary quantisation parameter (QP) value.  In 

[105], the authors propose a simplistic model to directly select the QP of the depth map 

view given the quantisation parameter of the texture video.  Similar to [104], the 

authors focus on H.264/MVC and the available bandwidth does not feature as one of 

the control inputs. A summary of the depth-texture bit allocation schemes reviewed in 

this section is shown in Table 4.1. 

Scheme 

Depth-Texture bit allocation 

scheme Computational 

Complexity 

 

Pre-encoding of 

frames 

Fixed 
Model 

Based 
Other 

 

Fehn [92], 

Klimaszewski et al 

[93] 

Various 

5-30% 

(20%) 

   

Low No 
 

Morvan et al [94]  •  High Yes 

Liu et al [95]  •  Medium Yes 

Cheung et al [96]  •  Low Yes 

Various [97, 99-102]  •  Medium Yes 

Yang et al [103] 
 

•  Medium 

No - but requires a set 

of pre-configured 

parameters 

Cordina et al [104]    • Low No 

Klimaszewski et al 

[105] 

   • Low No 

 

Table 4.1: Summary of Depth-Texture bit allocation schemes 
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4.3 Rate Control 

The overarching goal of the rate control entity in an encoder is to efficiently distribute 

the bit budget among frames whilst striking a balance between the image quality and 

smoothness under a given bandwidth constraint.  Rate control is a very active research 

topic and several schemes have been proposed for both legacy and contemporary video 

coding standards [106].  In HEVC, two main rate control schemes have been adopted; 

namely the unified rate quantisation (URQ) algorithm and the R-λ model based rate 

control, defined in JCTVC-H0213 [107] and JCTVC-K0103 [108] respectively.  The 

URQ rate control scheme makes use of the conventional quadratic model used in 

earlier video coding standards and has been further improved through the enhancement 

of the model accuracy.  In [109], the authors adopt the sum of absolute transformed 

differences (SATD) whilst in [110] a per pixel gradient value is used in the R-Q 

model.  Meanwhile, the work carried out by Li et al in [111] shows that the bit rate R 

has a stronger relationship with the Lagrange multiplier λ than the quantisation 

parameter QP, thereby leading to the development of the R-λ model.  Moreover, the 

authors in [108] show that the rate-distortion (R-D) model can be modelled using a 

hyperbolic function given by: 

 

            ( ) KD R CR−=      (4.1) 

where C and K are model parameters related to the source characteristics. 

 

Using (4.1), the Lagrange multiplier λ is defined as the slope of the R-D curve and 

thus: 
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   (4.2) 

where α1 and β1 are model parameters related to the source characteristics. 

 

The R-λ model has been adopted as the reference algorithm for HEVC and has since 

been further improved through the use of better intra-frame rate control [112, 113].  

Moreover, an efficient bit allocation scheme based on the HEVC hierarchical coding 

structure is proposed in [114] whilst a Laplace distribution based CTU rate control 

algorithm is presented in [115].  Meanwhile, Lee et al. investigated the use of separate 
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R-Q models for the texture and non-texture areas in videos and proposed a frame level 

rate control scheme for HEVC [116] whilst a region of interest (ROI) based rate 

control algorithm was proposed in [117].  In MV-HEVC, the same reference rate 

control algorithm found in HEVC is typically adopted and this is also implemented in 

the reference encoder software model [118].  Meanwhile, in [119], the authors propose 

an enhancement over the URQ and R-λ rate control schemes which consider the inter-

view prediction present in MVV encoding whilst in [120] a convex optimisation 

algorithm is used to solve a recursive rate-distortion model which takes into account 

these inter-view dependencies.  Similarly, in MV-HEVC for the MVD representation, 

the same R-λ rate control algorithm used in HEVC is adopted across all the texture and 

depth map views regardless of the fact that the texture and depth map videos have 

strikingly different characteristics.  Moreover, in 3D-HEVC, the rate control 

algorithms developed for HEVC were extended and applied for both texture and depth 

map views.  The authors in [121], exploit the depth map to enhance the accuracy of the 

mean absolute difference (MAD) by considering the inter-view disparity in the texture 

view MAD estimation whilst in [122], the authors propose an adaptive frame level rate 

control algorithm for 3D-HEVC based on a new initial quantisation parameter decision 

and bit allocation scheme. Although the results look promising, the authors do not 

indicate any improvements in the view quality.  

 

Considering that the depth map views are significantly important for the rendering of 

synthesised views, a custom designed rate control algorithm for such views, based on 

their characteristics, is beneficial.  Nevertheless, work on such rate control schemes is 

limited.  In [124], the authors propose a view synthesis distortion model based frame 

level rate control optimisation scheme for multi-view depth video coding based on a 

Nash bargaining solution.  Nevertheless, this scheme requires the pre-encoding of 

frames to determine model parameters.  Meanwhile, in [125], Lei et al propose a 

region adaptive R-λ model based rate control scheme for depth map views.  In this 

work, the authors first propose a modified frame level bit allocation method based on 

the depth map view coding bits distribution.  The depth map views are then 

decomposed into two types, each having its own R-λ model, depending on their 

importance for virtual view rendering.  The proposed scheme is able to achieve an 

average improvement of 0.3dB in Bjøntegaard Delta PSNR (BDPSNR) however; 

similar to [124], this scheme requires the pre-estimation of model parameters. 
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Chapter 5  Depth-Texture Rate Allocation Estimation 

Technique and Depth Map Rate Control Scheme 

 

As discussed in chapter 4, the depth-texture rate allocation problem has attracted a 

number of solutions however these typically require pre-encoding to fit model 

parameters aiding the optimal estimation of the depth-texture rate allocation.  

Moreover, rate control schemes are generally designed for texture views and are re-

used for the depth map views without any consideration of the depth map 

characteristics.  This chapter starts with a detailed account of the proposed cross-layer 

MV-HEVC depth-texture rate allocation estimation scheme and is followed by an 

enhanced depth map rate control scheme to improve the synthesised view quality.  As 

opposed to previous works, the proposed depth-texture rate allocation scheme does not 

require the pre-encoding of frames and considers both the image characteristics and the 

total available bit rate for the MVD stream thereby allowing online adaptation and 

making it suitable for real-time applications. 

 

5.1 Cross-layer MV-HEVC Depth-Texture Rate Allocation 

Estimation Technique 

 

5.1.1 System model and problem formulation 

With reference to the radio network sub-system of an MV-HEVC based MVD video 

delivery system for an FVV application, shown in Figure 5.1, consider that the dual 

MV-HEVC video encoder stack is able to simultaneously encode multiple texture and 

depth map views.  Moreover, consider an arbitrary case of encoding two texture views, 

view 0 and view 2, together with their corresponding depth map views and assume that 

the mobile terminal (UE) is able to synthesise view 1 using DIBR.  As shown in Figure 

5.1, the encoded texture and depth map views are combined into an MVD bit stream 

and transmitted to the UE over a standard 3GPP LTE Release 8 compliant eNB whilst 

the UE periodically reports CQI feedback reports to the eNB.  The latter is used by the 

eNB scheduler to determine the users to be scheduled in the current scheduling interval 

together with the number of resource blocks, MIMO mode of operation, MCS and 

TBS to be assigned to the scheduled UE.  These parameters effectively determine the 

maximum scheduled physical layer bit rate (channel bandwidth) supported by the UE, 
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denoted by Rp, at the current radio and loading conditions.  With reference to chapter 

2, this physical layer bit rate includes several overhead factors stemming from the 

various protocol layers between the application and physical layer.  Nevertheless, an 

eNB is able to measure the scheduled IP throughput at the PDCP layer [14], denoted 

by Ra, which is closely related to the physical layer throughput.  These measurements 

are made available to the upper layers thereby introducing a cross-layer functionality 

which will be discussed in more detail in the next sections. 

 

Layer 1

Layer 2

MV-HEVC 

Encoder 

(Texture)

MV-HEVC 

Encoder (Depth)

RTP/UDP

IP

PDCP

RLC

MAC

PHY

MVD Stream on 

PDSCH

CQI Feedback

Ra

 

Figure 5.1: System Model 

 

As discussed in section 4.2, under the constraint of the channel bandwidth, the 

synthesised view quality depends on the optimal selection of the depth-texture bit rate 

allocation.  Moreover, as evidenced from previous studies, this depends on the 

sequence characteristics.  Hence, the objective of this work is to formulate a statistical 

model, given by (5.1), able to estimate, online, the optimal depth-texture rate 

allocation ratio, βopt, based on the application layer bit rate and image statistics. 

 

 
( ), ,opt T D af Rβ = Φ Φ

                          
(5.1) 

where TΦ  and DΦ  represent the texture and depth map views image statistics 

respectively whilst Ra is the application layer bit rate available for the MVD stream. 
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Based on the model defined by (5.1), the target bit rates for the texture and depth map 

views to be used by the respective encoder rate control algorithm are given by: 

 

  (1 )

d opt a

t opt a

R R

R R

β
β

=

= −                   
(5.2) 

where Rd and Rt represent the depth map and texture views bit rate allocation 

respectively. 

 

5.1.2 Experimental setup and initial observations 

Inspired by the works in [91, 104], the variation of the optimal depth-texture ratio, βopt, 

for various video tests sequences exhibiting different video characteristics and total bit 

rate was studied by conducting a series of experiments using the test setup shown in 

Figure 5.2.  In this work, the total bit rate refers to the sum of the encoded bit rate of 

the texture and depth map views which is usually bounded by the available bandwidth 

at the application layer, Ra.  As the main interest of this study focuses on real-time 

video, a low latency prediction structure, shown in Figure 5.3, is used in these 

experiments.  Moreover, the encoding parameters together with the test sequences, 

defined in the Common Test Conditions (CTC) [125], are shown in Table 5.1 and 

Table 5.2 respectively, where L, C and R represent the left, rendered and right views 

respectively. 

MV-HEVC HM12.0

(Encoder/Decoder)

MV-HEVC HM12.0 

(Encoder/Decoder)

View Synthesis
Camera Parameters

Synthesised View 1

Texture

View 0 (Base view)

View 2 (Dependent view)

Depth

View 0 (Base view)

View 2 (Dependent view)

 

Figure 5.2: Test setup 
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Parameter Value 

QP 20 - 44 

GOP Size 4 

Intra Period 12 

LCU Size 64 x 64 

Partition Depth 4 

Fast Search 1 

Search Range 64 

RDOQ 1 
 

Table 5.1: Encoding Parameters 

 

I P P P P P P P P P

B B B B B B B B B B

P P P P P P P P P P

View 0 

(Base view)

View 2 

(Dependent view)

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

 

 

Figure 5.3: Low Latency Prediction Structure [40] 

 

 Sequence Image Size 
Cameras 

(L-C-R) 

Characteristics 

(frame rate, baseline) 

Balloons 1024 x 768 1-3-5 30 fps; 5cm in 1D plane 

Book Arrival (Book) 1024 x 768 6-8-10 15 fps; 6.5cm in 1D plane 

Kendo 1024 x 768 1-3-5 30 fps; 5cm in 1D plane 

Newspaper (News) V 1024 x 768 2-4-6 30 fps; 5cm in 1D plane 

Poznan HallV 1920 x 1088 5-6-7 25 fps; 13.75cm in 1D plane 

Poznan StreetV 1920 x 1088 3-4-5 25 fps; 13.75cm in 1D plane 

Table 5.2: Test sequence parameters and characteristics  

(Sequences marked with V were used for model verification only) 

 

With reference to Figure 5.2, in order to increase the number of data samples for the 

statistical model formulation, each test sequence was first split into chunks and each 

chunk is encoded using MV-HEVC reference software HM12.0 [118].  The size of 

each chunk was set equal to the intra frame period whilst the total bit rate and depth-

texture ratio were varied by adjusting the QP used for encoding the texture and depth 

map views between 20 and 44 in steps of 4.  A plot of the synthesised view Peak 

Signal-to-Noise Ratio (PSNR) with depth-texture rate allocation ratio β, given by (5.3), 

for the Balloons video sequence at a given total bit rate is shown in Figure 5.4. 
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R

R R
β =

+
               (5.3) 

 

Figure 5.4: PSNR vs depth-texture ratio for the Balloons sequence 

 (R2
 represents the coefficient of determination) 

 

With reference to Figure 5.4, the synthesised view PSNR follows a downward concave 

parabola yielding an optimal depth-texture ratio (shown in red) of 40.3%.  Moreover, 

the importance of estimating accurately the optimal depth-texture ratio is made evident 

since even though the synthesised view quality is fairly constant over a narrow range 

of depth-texture ratios, any large deviations from this optimal value (shown in green) 

will result in a relatively large degradation in the synthesised view’s quality.  With 

reference to Figure 5.5, the variation of the optimal depth-texture ratio is dependent on 

the sequence characteristics since different sequences impart contrasting trends.  

Moreover, as the total bit rate increases, the optimal depth-texture ratio approaches an 

asymptotic value which never surpasses 60%.  This observation is not surprising since 

increasing the depth map view bit rate beyond a specific value would not yield an 

improvement in the synthesised view’s PSNR.  Meanwhile, at low channel bit rates, 

the bit rate available for the depth map views is very low and thus it would be 

beneficial to refrain from transmitting the depth maps views and instead allocate the 

available bandwidth to the texture views only.  This would effectively preclude the 
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UEs to synthesize views at intermediate viewpoints between view 0 and view 2 

thereby limiting the number of possible viewing angles. 

 

 

Figure 5.5: Optimal depth-texture ratio with total bit rate 

 

Thus, considering these constraints in (5.2), the estimated optimal depth-texture rate 

allocation ratio calculated by the statistical model is bounded as shown in (5.4). 
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In order to model the sequence dependent characteristics, a number of texture and 

depth map image metrics were considered.  One of the key metrics used is the depth 

map entropy ratio, EDT, which has been shown to influence the optimal depth-texture 

ratio [91] and is given by: 
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where ED and ET are the average entropy [91] of the depth map and texture views 

respectively.  Other metrics used in this study includes the gradient magnitude [91] of 

the texture view, GT, and depth map view, GD, respectively.  All image statistics are 

aggregated across view 0 and view 2. 

 

5.1.3 Statistical model formulation 

The average chunk values of the image statistics coupled with their associated total bit 

rate and optimal depth-texture ratio for all test sequence used during model 

formulation, shown in Table 5.2, were collected and imported into IBM SPSS 

statistical package for analysis.  As the statistical distribution of the dependent variable 

would impact the selection of the statistical regression model, the optimal depth-

texture ratio was tested for normality using the Kolmogorov-Smirnov test at the 0.05 

level of significance yielding a p-value of 0.57.  As the p-value is greater than 0.05, the 

normality criteria is validated and thus a general linear model in the form of a multiple 

regression model is investigated in this study.  A histogram plot of the dependent 

variable against a normal distribution curve is shown in Figure 5.6. 

 
Figure 5.6: Histogram of the optimal depth-texture ratio and normal distribution curve 

 

Multi-regression models have been used extensively in various fields due to their well 

known statistical properties.  For n observed cases, a multi-regression model expresses 

the dependent variable yn as a function of p predictors given by [69]: 
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  β ε= +y x                                               (5.7) 

where y is an n-vector of responses which exhibit a normal distribution and is linearly 

related and correlated with each quantitative predictor, x is an n × p matrix whose 

elements represent the values of each predictor p for all observed cases, β is a p-vector 

of unknown regression parameters estimated using least squares estimation, and ε  is 

an n-vector of unknown random error terms.  Considering that ε  has a normal 

distribution, the least square estimate, which is equivalent to the maximum likelihood 

estimator b, is given by: 
 

( ) 1
' 'b

−
= x x x y       (5.8) 

 

 

Based on the collected data, a multi-regression model was formulated using SPSS
© 

which makes use of the least square estimation method to estimate the parameter 

values.  Although various predictors have been evaluated in SPSS, some of these 

predictors were found to be either correlated with each other or do not exhibit a strong 

correlation with the variation in the optimal depth-texture ratio.  Thus, in order to 

reduce multi-collinearity effects, which might affect the robustness of the formulated 

model, these predictors were removed from the final statistical model yielding the 

parsimonious multiple regression model given by (5.9) having seven significant 

predictors and a coefficient of determination, R
2
, of 0.86. 
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where βopt is the estimated optimal depth-texture ratio, GD and GT are the average 

chunk gradient of the depth map views and texture views respectively, EDT is the depth 

map entropy ratio given by (5.5) whilst Ra is the total bit rate available at the 

application layer. 
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5.1.4 Statistical model diagnostics tests 

Apart from the model’s coefficient of determination, R
2
, a number of statistical 

diagnostics tests were carried out and analysed in further detail.  These tests aid the 

detection of any model uncertainty, stemming from a violation of the underlying 

assumptions, and overly influential points in the data.  One key assumption of multi-

regression models is that the residuals should have a normal distribution [69].  This 

was verified by checking the standardised residuals using the Kolmogorov-Smirnov 

test at the 0.05 level of significance yielding a p-value of 0.805 thereby validating the 

normality criteria.  Moreover, in order to assess the presence of any influential points 

in the data which might degrade the model uncertainty, the Cook’s distance, Dn, given 

by (5.10), is computed for all observations n, and plotted with the unstandardised 

predicted optimal depth-texture ratio value.  With reference to Figure 5.7, the data 

contains a relatively low number of influential points (points having relatively high 

Cook's distance) thereby reducing the formulated statistical model uncertainty [69]. 
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                                      (5.10) 

where ˆ
jy  and ( )

ˆ
j iy  is the response value of the j

th
 observation with and without the i

th
 

observation respectively, p is the number of predictors in the model and 2σ̂  is the 

mean squared error.  

 

Finally, a plot of the studentised residual against the unstandardised predicted optimal 

depth-texture ratio is shown in Figure 5.8.  This plot is commonly used to identify any 

patterns in the residual of the fitted model which might indicate a violation of the 

underlying assumptions.  As the majority of the points are distributed across a 

horizontal band, indicating homoscedasticity, and lie within the standard ±2 limit, the 

model is adequate for such data fit with a very small number of outliers (shown in red). 
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Figure 5.7: Cook’s distance 

 

 

Figure 5.8: Studentised residual plot 
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5.1.5 Model Verification Results 

With reference to Figure 5.9, in order to verify the efficacy of the proposed solution 

the MV-HEVC HM12.0 reference encoder software was modified such that the texture 

and depth map view image statistics, discussed in section 5.1.3, are computed online 

for every frame.  The computed statistics together with the application layer bit rate, 

Ra, are then fed to the depth-texture rate allocation controller for smoothing and 

computation of the estimated optimal depth-texture rate allocation ratio, βopt, using 

(5.9).  Finally, the estimated optimal depth-texture rate allocation ratio is bounded, 

using (5.4), prior to calculating the target bit rates for the texture and depth map views 

using (5.2). 

 

MV-HEVC 

Encoder 

(Texture)

MV-HEVC 

Encoder    

(Depth)

Depth-Texture 

Rate Allocation 

Controller

Φt Φd 

Rt Rd 

Ra 
Encoded 

Texture 

views

Encoded 

Depth map 

views
 

Figure 5.9: Proposed cross-layer depth-texture rate allocation scheme 

 

As discussed in section 5.1.1, the application layer bit rate, Ra, depends on the 

underlying network physical layer bit rate, Rp, however for these verification tests, the 

application layer bit rate is arbitrary set such that the optimal depth-texture ratio can be 

estimated for various average total bit rates.  Using the setup shown in Figure 5.9, the 

actual and estimated optimal depth-texture rate allocation ratio for the test sequences 

used during model formulation and verification at various average total bit rates are 

shown in Figure 5.10 and 5.11 respectively.  Meanwhile, the plots for the Book Arrival 

and Newspaper test sequences, averaged over a chunk period (which is set equal to the 

intra-frame period) at a low and high total bit rate, are shown in Figure 5.12 and 5.13 

respectively.   
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Figure 5.10: Optimal depth-texture ratio – model formulation 

 

 

Figure 5.11: Optimal depth-texture ratio – model verification 
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(a) 

 

(b) 

Figure 5.12: Optimal depth-texture ratio – Book Arrival test sequence (a) Low bit rate (720kbit/s), (b) 

High bit rate (1.56Mbit/s) 
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(a) 

 

(b) 

 

Figure 5.13: Optimal depth-texture ratio – Newspaper test sequence (a) Low bit rate (2.0Mbit/s), (b) 

High bit rate (3.9 Mbit/s) 

 

As shown in Table 5.3, the proposed solution is able to estimate the optimal depth-
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these metrics degrade slightly for the Newspaper, Poznan Hall and Poznan Street 

verification test sequences with an absolute mean estimation error of 3.3% and 

standard deviation of 2.3%.  Even though the estimation error is relatively low, the 

effect of the estimation error coupled with the standard deviation on the synthesised 

view PSNR was evaluated for various test sequences at different total bit rates and this 

was found to be less than 0.1dB.  This is in accord with the observation noted earlier in 

that the synthesised view PSNR is fairly constant over a relatively narrow range 

around the optimal value.  A series of experiments were conducted on the Newspaper 

test sequence to compare the proposed cross-layer scheme, which adapts the depth-

texture rate allocation to the sequence characteristics and available total bit rate, and 

the fixed depth-texture rate allocation scheme.  As expected, with reference to Figure 

5.14, the proposed scheme is able to improve the synthesised view PSNR by an 

average of 1.2dB when compared to a fixed depth-texture rate allocation of 20% [92]. 

 

Test Sequence 
% Absolute Mean 

Estimation error 

% Standard Deviation of the 

Estimation error 

Model Formulation 2.2 2.0 

Model Verification 3.3 2.3 

Table 5.3: Statistical model estimation error 

  

 

Figure 5.14: Synthesised view PSNR – proposed cross-layer scheme vs. fixed scheme at 20% 
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5.1.6 Depth-Texture rate allocation estimation in a crowd event scenario 

In order to evaluate the adaptation of the depth-texture rate allocation ratio using the 

proposed scheme, a series of 120 frames (10 chunks) from 3 different test sequences 

were combined and encoded using the setup shown in Figure 5.9.  As opposed to the 

verification tests in the previous section, the application layer bit rate, Ra, was 

extracted from LTE simulations conducted using the crowd event scenario described in 

section 3.2.1 whilst the relevant simulation parameters are provided in Table 5.4.  In 

these tests, the LTE simulations were only used to obtain the application layer 

throughput, per radio frame, experienced by a UE in mid-sector conditions and 

establish the impact on the application layer throughput caused by a change in the 

number of users in the cell.  Based on this testing, the adaptation of the proposed 

scheme is assessed for both sequence characteristics and application layer bit rate 

changes. 

  

Parameter Value 

System Bandwidth 10MHz (50 PRB) 

Scheduler Proportional Fair 

Number of Antennas 1 (Tx and Rx) 

CQI Type 
Periodic (20ms), wideband CQI 

(4bits) 

Traffic Model Full Buffer 

Mobility All UE’s are stationary 

eNB output power 43dBm 

Frequency Re-use 1 

Antenna Height 20m 

Antenna Type Commscope CNLPX3055F [52] 

Propagation Model 
Micro Cell 

L=24 + 45log(d+20) @ 2GHz [55] 

Fast Fading Realization Jakes Model [55] 

Number of UE’s, Tu {10,30} 
 

Table: 5.4: Simulation parameters used in rate allocation ratio testing 

 

As evidenced in Figure 5.15, the optimal depth-texture rate allocation ratio, aggregated 

on a chunk level, indicates that the proposed scheme is able to adapt to varying video 

characteristics, caused by abrupt test sequence change and intra sequence changes, 

together with channel bandwidth variations caused by an increase in the number of 

UEs in the radio sector. 

 



100 

 

 

(a) 

 

(b) 

Figure 5.15: Adaptation of the optimal depth-texture rate allocation ratio caused by a variation in (a) 

Test sequence characteristics, (b) Application layer bandwidth 
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5.2 Enhanced Rate Control Scheme for depth map views 

 

Following the texture and depth map view bit rate allocation, the estimated texture and 

depth map view bit rates are assigned as target values to the rate control algorithm in 

the respective MV-HEVC encoder.  The proposed depth map rate control algorithm, 

shown in Figure 5.16, is based on the R-λ model [108] and operates on each depth map 

view independently at the group of pictures (GOP), frame, and coding tree unit level. 

 

Bit allocation per GOP

Key frame bit allocation

B/P frame bit allocation

Key frame R-λ model 

B/P frame R-λ model 

λ and 

QP 

clipping

Key frame bit allocation 
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RDO

Unit encoding and parameter updating
 

 

Figure 5.16: Proposed depth map rate control algorithm 

 

5.2.1 GOP Level Bit allocation 

At the GOP level, the bit allocation is similar to that in [108] and is given by: 
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                   (5.11) 

where NGOP is the number of frames in the GOP, TS,CODED is the bit cost of the coded 

pictures in the sequence, NS,CODED is the number of pictures in sequence already coded,  

Rtarget is the target bit rate, f is the frame rate whilst SW is the smoothing window size 
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which is set to 40 and is used to allow the controller to adapt the bit rate smoothly and 

achieve Rtarget after SW frames. 

 

5.2.2 Frame Level Bit allocation 

In the proposed scheme, the inter-B/P frame bit allocation and R-λ model is analogous 

to the scheme proposed in [108] and is given by (5.12) and (5.13) respectively. 
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where Tavgpic is the initial bit budget allocated per frame, TGOP is the target number of 

bits in a GOP and is computed using (5.11), TG,CODED is the bit cost of already coded 

frames in the current GOP, ω is the bit allocation weighting factors for the different 

hierarchical levels as defined in [108], αB,pic and βB,pic are the R-λ model parameters 

initially set to 3.2003 and -1.367 respectively and adaptively tuned during the 

parameter update procedure described in [108], whilst Px is the number of pixels in a 

frame. 

 

As opposed to the standard rate control scheme, in order to signify the importance of 

the key frames in relation to the other frames in the GOP, the bit allocation of the key 

frames is refined and is given by: 

      0.25*key

avgpic

C
T

T

γ
 

=   
 

                                      (5.14) 

where C is the complexity measure based on the sum of absolute transformed 

difference (SATD) [112] and γ is a tuning parameter controlling the amount of bit 

budget allocated to the key frames from the total.   

 

Whilst γ is typically set to 0.5582 [112] for the intra frames, this parameter was 

empirically tuned for the P-key frames by first encoding several depth map test 

sequences at various target bit rates and evaluating the average and standard deviation 

of the synthesised view PSNR together with the average PSNR of the posterior frames 

in the GOP.  With reference to Figure 5.17, the average PSNR of the synthesised view 
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for the Balloons test sequence encoded at a target bit rate of 110kbps increases with γ.  

Moreover, as expected, the average PSNR of the posterior frames degrades rapidly as γ 

exceeds 0.5 since the number of bits available for the posterior frames decreases.  

Based on these observations and after studying the variation of γ for various test 

sequences, the value of γ was empirically set to 0.41 as this strikes a balance between 

the identified quality metrics. 

 

 

Figure 5.17: Variation of tuning parameter for the Balloons test sequence 

 

5.2.3 Key frame R-λ model 

The R-λ model used in the standard rate control schemes is tuned for the texture views 

and does not consider the characteristics of depth map views.  In fact, tests conducted 

on texture and depth map views of the test sequences shown in Table 5.2 reveal a 

significant disparity in zero complexity cost CTUs whereby on average, depth maps 

have 26% of CTUs with zero complexity cost whilst, in general, texture views do not 

exhibit any CTUs with zero complexity cost.  This is expected as depth maps have a 

large number of flat areas when compared to texture views and thus the key-frame R-λ 

model, given by (5.13), was adapted to: 
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where C is the complexity measure based on SATD [112], Tkey is the refined bit budget 

of the key frame, Px is the number of pixels in a frame, whilst αK,pic and βK,pic are model 

parameters which are empirically set to fit the hyperbolic model. 

 

In order to fit the parameters of the hyperbolic model, experiments were carried out 

using the MV-HEVC encoder configured such that the depth map frames across the 

three views are encoded as key frames.  The test sequences, shown in Table 5.2, were 

encoded at four QP levels, namely 34, 39, 42 and 45 as defined in the Common Test 

Conditions (CTC) [125].  Meanwhile, the average bits per pixel (bpp), frame 

complexity C, and λpic were noted in order to model the relationship between λpic and 

(C/bpp) for the depth map key frames across the 3 views.  The relationship between 

these two variables and model parameter estimates for the Balloons test sequence 

across the 3 views is shown in Figure 5.18.  With reference to Figure 5.18, the model 

parameters for the reference and non-reference views impart different hyperbolic 

models and thus different R-λ models are considered depending on the view type.  

Considering the average values of the model parameters estimates for all test 

sequences yields the R-λ parameters shown in Table 5.5. 

 

 
 

Figure 5.18: R-λ modelling for the Balloons test sequence 
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View Type αK,pic βK,pic  

Reference View 0.018 2.104 

Non-Reference View 0.028 1.9495 

 

Table 5.5: Key Frame R-λ model parameters  

 

Using the estimated λpic, the QP for the frame is then calculated using [111]: 

 

4.2005 ln( ) 13.7122QP λ= +                                  (5.16)  

 

5.2.4 CTU Level Bit allocation 

The bit budget allocated to the frame is distributed across the CTUs in the frame based 

on their cost complexity.  Although the R-λ models used at the frame level, given by 

(5.13) and (5.15), are re-applied at the CTU level, the model parameter estimates of the 

CTUs in a frame are initially cascaded from the frame level R-λ model and then 

adaptively tuned, on a CTU level basis, during the CTU parameter update procedure 

described in [108].  Based on the CTU level bit allocation and associated R-λ model, 

the λCTU is estimated, clipped and then used to calculate QPCTU using (5.16), which is 

subsequently clipped prior to being used for unit encoding.  In the proposed rate 

control scheme, the clipping range of λCTU and QPCTU is adaptively tuned based on the 

type of CTU being processed so as to allow a wider clipping range for the CTUs in the 

depth map view located in the foreground and edges.  In order to adapt the clipping 

range, the CTUs in a frame are classified into three categories namely edge, 

background and foreground type CTU depending on their characteristics using the 

algorithm shown in Figure 5.19.  This algorithm is based on a binary edge map 

generated by an edge detection technique and even though one finds a number of edge 

detection schemes in literature, a Canny edge filter [126] is used in this work in view 

of its low complexity.  Considering the original video depth map shown in Figure 5.20 

(a), the Canny edge filter generates the binary edge map shown in Figure 5.20 (b) 

which is then processed, in conjunction with the original video depth map, using the 

algorithm shown in Figure 5.19 to generate the CTU mask shown in Figure 5.20 (c).  

With reference to Figure 5.20 (c), CTUs marked in red are treated as foreground while 

those marked in green are treated as edges. The rest are treated as background CTUs. 
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Algorithm 2: CTU Mask Algorithm 

1: for all binary edge map frames do 

2:  for Each LCU in binary edge map do 

3:        Split LCU into 16 16×16 sub-blocks 

4:        for each sub-block do 

5:             check whether sub-block contains an edge 

6:              if sub-block contains an edge then 

7:    mark sub-block as containing an edge 

8:             end if 

9:            end for 

11:          for each sub-block containing an edge in LCU do 

12:                check whether neighbouring sub-blocks contain an edge 

13:                if neighbouring sub-block containing an edge is 3 or more then 

14:                   Flag LCU as an Edge 

15:                end if 

16:          end for 

17:     end for 

18: end for 

20: for all depth map frames do 

21:       extract foreground mask by depth map thresholding 

22:       for each LCU in foreground mask do 

23:             if LCU in foreground mask is also marked as edge LCU then 

24:                 Mark LCU as Edge 

25:             end if 

26:             if LCU in foreground mask is not marked as edge LCU then 

27:                 Mark LCU as Foreground 

28:            end if 

29:       end for 

31:       for all remaining LCU not in foreground mask do 

32:            Mark LCU as Background 

33:       end for 

34: end for 

 

Figure 5.19: Algorithm 2 - CTU mask algorithm 
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(a) 

 

 

(b) 
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(c) 

Figure 5.20: CTU mask generation for Balloons [127] – Camera 1 (red – foreground, green – edge) (a) 

Original video depth map, (b) binary edge map, (c) CTU mask 

 

Based on the generated CTU mask, the clipping range of λCTU and QPCTU is then 

adapted based on the current and previous CTU type as shown in (5.17). 
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where λCTU_prev and λCTU_cur are the λ of the previous and current CTU respectively, 

QPCTU_prev and QPCTU_cur are the QP values of the previous and current CTU 

respectively, λpic and QPpic are the λ and QP of the frame respectively, Tremain and Tthresh 

are the number of bits remaining to code the current frame and low bit threshold 

respectively, whilst the parameters A, B, and ∆ depend on the previous and current 

CTU type and are given in Table 5.6. 

 

Previous CTU Type Current CTU Type A B ∆  

Background Background 1 1 1 

Foreground Foreground 2 2 2 

Edge Edge 2 2 2 

Edge Foreground 2 2 2 

Foreground Edge 2 2 2 

Background Edge 4 4 3 

Foreground Background 2 4 3 

Edge Background 2 4 3 

Background Foreground 4 4 3 

Table 5.6: Adaptive clipping parameters 

 

The parameters shown in Table 5.6 were empirically derived such that the salient 

characteristics of the depth map are retained whilst minimising frame bit exhaustion. 

The latter was also tackled through the use of a low bit threshold check at the start of 

processing of each CTU in the frame. 

   

5.2.5 Results 

In order to establish the performance of the proposed scheme, the HEVC reference 

software HM12.0 [118] was modified to implement the new rate control algorithm and 

configured for multi-view compression using the low-delay prediction structure, 

shown in Figure 5.3.  The target bit rates used for testing were set as per the CTC 

described in [125] whilst the encoding parameters are shown in Table 5.8.  As the 

focus of this work is on the depth map views, the texture views are encoded using the 

reference rate control algorithm [108] whilst the performance of the proposed depth 

map rate control algorithm was assessed, in terms of synthesised view PSNR 

improvement, BD-PSNR [128], and bit rate error as compared to the reference 

algorithm implemented in MV-HEVC.  With reference to Table 5.7, the average 
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improvement of the synthesised view PSNR and BD-PSNR are 1.15% and 0.45dB 

respectively whilst bit rate error was reduced by an average of 0.2% when compared to 

the reference algorithm in MV-HEVC.  Meanwhile, as shown in Figure 5.21, the 

proposed depth map rate control scheme yields a better R-D performance when 

compared to the reference algorithm used in MV-HEVC due to the refined bit budget 

allocation to the key frames and salient CTUs coupled with an improved R-λ model for 

the depth map. 

Table 5.7: Rate Control Performance 

(Synthesised view is indicated by the camera number shown in bold) 

Sequence / 

Resolution 

Target 

bitrate (kbps) 

 

% ∆ PSNR 

 

% ∆ bitrate 

error 
BD-PSNR (dB) 

Balloons 

(1-3-5) 1024x768 

466.7 1.01 -0.61 

0.55 
219.3 1.23 -0.79 

140.1 1.28 -0.00 

91.4 1.88 -0.03 

     

Book 

(8-9-10) 1024x768 

295.7 1.20 -0.27 

0.41 
152.1 0.91 -0.18 

101.5 1.29 -0.13 

69 1.13 -0.09 

Kendo 

(1-3-5) 1024x768 

597.5 0.76 -0.22 

0.3 
314.7 0.72 -0.15 

213.9 0.66 -0.10 

147.5 0.60 -0.08 

     

Newspaper 

(2-4-6) 1024x768 

370.1 1.47 -0.65 

0.66 
181.5 1.79 -0.07 

115.9 2.16 -0.05 

77.2 2.70 -0.04 

     

PoznanHall 

(7-6-5) 1920x1088 

205.8 1.01 -0.28 

0.39 
108.3 1.06 -0.16 

77.8 0.71 -0.07 

57 0.32 -0.06 

PoznanStreet 

(5-4-3) 1920x1088 

332.7 0.69 -0.21 

0.39 
150.2 1.12 -0.34 

96.7 0.82 -0.11 

66.4 1.04 -0.02 

Average 
 

1.15 -0.20 0.45 
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Parameter Value 

GOP Size 4 

Intra Period 24 

LCU Level Rate Control 1 

LCU size 64 x 64 

Partition Depth 4 

LCU separate RC Model True 

Tthresh 5% of frame allocation 

 

Table 5.8: Encoding parameters 

 

 

Figure 5.21: R-D plot - Balloons Synthesised View 3 

 

5.3 Summary 

 

The first part of this chapter focused on the design, implementation and testing of a 

cross-layer depth-texture rate allocation scheme.  As opposed to other schemes found 

in literature, the proposed scheme is able to estimate, on-line, the depth-texture rate 

allocation ratio without the use of pre-encoding of frames.  This is based on a 

statistical model formulated using both image characteristics metrics and the total 

available bit rate for the MVD stream.  The statistical model formulation starts with a 

series of experiments showing the importance of finding the right balance between the 
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depth map view and texture view bit rate together with the fact that the optimal depth-

texture ratio varies with both sequence characteristics and total bit rate.  This is then 

followed by a statistical analysis yielding a multiple regression model composed of 

seven significant predictors and having a coefficient of determination, R
2
, of 0.86.  

Moreover, a series of rigorous statistical tests were conducted in order to ensure model 

robustness prior to being tested on several test sequences.  The proposed scheme is not 

only able to estimate accurately the optimal depth-texture rate allocation for test 

sequences which were not used in model formulation with an estimation error of 3.3% 

but is able to adapt to varying video characteristics and channel bandwidth. 

 

In the second part of this chapter, the characteristics of depth map views were 

exploited to enhance the rate control performance for such views.  Although the 

proposed scheme is based on an already established rate control algorithm, a number 

of enhanced features, including a refined key frame bit allocation and R-λ model 

coupled with an adaptive Lagrange multiplier and QP clipping function, were 

introduced.  As evidenced by the simulation results shown in Table 5.7, the enhanced 

rate control scheme achieved an average improvement of the synthesised view PSNR 

and BD-PSNR of 1.15% and 0.45dB respectively when compared to the standard rate 

control scheme. 
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Chapter 6  Mobile Video Transmission over LTE Networks 

 

This chapter presents the foundations for the transmission of mobile video over an 

LTE network and starts with a description of the video bit stream, packetisation and 

the LTE Quality of Service (QoS) framework.  The next section focuses on the eNB 

packet scheduler, which was discussed in chapter 2, and gives an overview of the 

relevant packet scheduling algorithms found in literature.  Finally, in the last section 

the cross layer design concept, which was introduced in chapter 5, is elaborated with a 

description of the various types of cross-layer schemes together with a review of 

relevant works. 

 

6.1 Video bit stream, packetisation and LTE QoS framework 

 

6.1.1 Video bit stream and packetisation 

The coded bit stream structure at the output of the HEVC video encoder inherits a 

number of structural elements from H.264/AVC and is composed of a series of 

network abstraction layer (NAL) units.  As shown in Table 6.1, there are 64 different 

NAL unit types divided into two classes namely Video Coding Layer (VCL) NAL 

units, carrying coded slice video information, and non-VCL NAL units carrying 

control information used by the decoder to reconstruct the video sequence from the bit 

stream.  The latter includes [70]: 

 

• Video Parameter Set (VPS): This was introduced in HEVC and applies to all 

layers.  It includes the number of layers, decoded picture buffer size and picture 

ordering parameters together with information related to temporal scalability 

amongst other parameters. 

• Sequence Parameter Set (SPS): This contains parameters which apply to an 

entire coded video sequence and do not change from one picture to another.  

These include the coding tools used and associated parameters, the 

conformance parameters such as the profile, tier and level indicators, picture 

height and width in luma samples together with luma and chroma bit depth. 

• Picture Parameter Set (PPS): This contains parameters which change for 

different pictures types within a video sequence such as reference indices, 



114 

 

initial QP values, chroma QP offsets, de-blocking filter controls and tile 

configurations. 

 

NAL unit 

type 

Picture Type 

Category 
Picture Type Identifier 

Short name 

description 

VCL 

Trailing non-

IRAP 

Non-TSA, non-STSA 

trailing 

0 TRAIL_N 

1 TRAIL_R 

Temporal sub-layer 

access (TSA) 

2 TSA_N 

3 TSA_R 

Step-wide temporal sub-

layer (STSA) 

4 STASA_N 

5 STSA_R 

Leading 

Random access 

decodable 

6 RADL_N 

7 RADL_R 

Random access skipped 

leading 

8 RASL_N 

9 RASL_R 

Intra random 

access point 

(IRAP) 

Broken link access 

16 BLA_W_LP 

17 BLA_W_RADL 

18 BLA_N_LP 

   
Instantaneous decoding 

refresh 

19 IDR_W_RADL 

20 IDR_N_LP 

Clean random access 21 CRA 

Reserved 

Reserved non-IRAP 10-15 RSV 

Reserved IRAP 22-23 RSV 

Reserved non-IRAP 24-31 RSV 

Non-VCL 

Parameter sets 

Video parameter set 32 VPS_NUT 

Sequence parameter set 33 SPS_NUT 

Picture parameter set 34 PPS_NUT 

Delimiters 

Access unit delimiter 35 AUD_NUT 

End of sequence 36 EOS_NUT 

End of bitstream 37 EOB_NUT 

Filler data Filler data 38 FD_NUT 

Supplemental 

enhancement 

information 

(SEI) 

Prefix SEI 39 PREFIX_SEI_NUT 

Suffix SEI 40 SUFFIX_SEI_NUT 

Reserved 
 

41-47 RSV 

Unspecified 
 

48-63 UNSPEC 

 

Table 6.1: NAL Unit Classification 

 

A VCL NAL unit contains a slice segment of a coded picture whilst a coded picture, 

which can be composed of multiple slice segments, together with any associated non-

VCL NAL units is referred to as an HEVC access unit (AU) [129].  Similarly, in the 

case of layered extensions such as MV-HEVC, an AU contains all coded pictures from 
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the n views (layers) belonging to the same picture order count (POC) as shown in 

Figure 6.1.  Extending this concept to the MVD case yields two separate bit streams 

which are then multiplexed for transmission by the underlying network. 

Access unit 0

View 0 View 1 View 2 View n-1

. . .

Access unit 1

View 0 View 1 View 2 View n-1

. . .

Access unit k

View 0 View 1 View 2 View n-1

. . .

.

.

.

MV-HEVC bit stream  
 

Figure 6.1: MV-HEVC AU structure 

 

The NAL unit described earlier is composed of a fixed two byte NAL header followed 

by a NAL payload referred to as raw byte sequence payload (RBSP).  As shown in 

Figure 6.2, the header describes the NAL unit type, layer identifier, which is applicable 

to the scalable and MV/3D video coding extensions [130], and temporal sub-layer 

identifier.  Thus, any media-aware network element (MANE) along the end-to-end 

transmission chain can determine the content priority with relative ease by inspecting 

the NAL unit header 
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1 2 RBSP

0 NAL Unit Type Layer Id
Temporal 

Id +1

3 bits6 bits6 bits

Byte #1 Byte #2

NAL Unit header 

(2bytes)

 

Figure 6.2: NAL Unit header 

 

Whilst there exist several system layer technologies which integrate with HEVC, as 

illustrated in Figure 6.3, the most prominent delivery mechanisms over packet 

networks are based on MPEG-Dynamic Adaptive Streaming over HTTP (DASH) 

[131,132] and the Real Time Protocol (RTP) [133]. 

 

 

Figure 6.3: HEVC system layers [130] 

 

The focus of this work is on RTP which has been widely adopted and used in various 

services, ranging from IPTV to conversational applications requiring relatively low 

latency such as video conferencing [130].  Whilst RTP can be used over a number of 

different transport protocols, it is usually operated in conjunction with User Datagram 

Protocol (UDP) which, in turn, is encapsulated in IP.  Thus, considering a single RTP 

stream on a single media transport (SRST) and assuming that each slice is encoded in a 
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single NAL unit, the structure of the RTP header and associated RTP/UDP/IP 

encapsulated packet is shown in Figure 6.4. 

NALU Header RBSP

IP Header UDP Header RTP Header PayloadHdr DONL RBSP RTP Padding

Timestamp

Synchronisation source identifiers

Contributing source identifiers

V P X CSRC M
Payload 

Type

Sequence 

Number

bit 0 8 16 24 31

 

Figure 6.4: RTP header structure and RTP/UDP/IP encapsulation 

 

Focusing on the NAL unit packet, the payload header, denoted by PayloadHdr, is a 

bit-exact copy of the NAL header, shown in Figure 6.2, whilst a detailed description of 

the remaining RTP/UDP/IP header fields is found in [133, 134].  A key parameter in 

the IP header, which is particularly relevant in this work, is the Differentiated Service 

Code Point (DSCP) value.  The DSCP is a 6-bit field set by the transmitting entity to 

indicate the quality of service (QoS) level a packet receives in the network. 

 

6.1.2 LTE QoS Framework 

Starting with the first release of LTE, a comprehensive end-to-end LTE QoS 

framework, based on the Evolved Packet System (EPS) bearer model, has been defined 

in order to deliver demanding multimedia applications and services through the use of 

effective end-to-end management of network resources.  With reference to Figure 6.5, 

LTE defines several bearers traversing various interface types with the most relevant to 

this discussion being the EPS bearer, which provides a logical data path between the 

UE and the packet data network gateway (P-GW).  LTE defines two main classes of 

EPS bearers, namely default and dedicated data bearers.  A default bearer is setup 

whenever a UE registers with the network thereby allowing continuous IP 
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connectivity.  Although such bearers allow data transfer between the UE and EPS, they 

are assigned basic QoS capabilities without any service guarantees and are strictly used 

for best effort traffic.  In case packet loss/delay sensitive traffic, such as real-time 

video, needs to be transported across an LTE network, a dedicated bearer having a 

more stringent QoS is setup, in addition to the default bearer, such that IP packets 

associated with this traffic type are treated accordingly.   

 

UE eNB SGW PGW Peer Entity

Radio Air 

Interface

S1

S5/S8

Gi

Radio Bearer

Evolved-Radio Access Bearer (E-RAB)

S1 Bearer

S5/S8 Bearer

EPS bearer External bearer

End-to-end service bearer

 

Figure 6.5: LTE bearer architecture 

 

In order to ensure end-to-end QoS, each bearer in LTE is assigned a set of standardised 

QoS attributes which are then used by the LTE protocol layers between the UE and 

eNB to manage the traffic.  The EPS bearer QoS depends on the data bearer class 

whereby default data bearers are assigned non-Guaranteed Bit Rate (non-GBR) QoS 

attributes whilst dedicated data bearers can be assigned either non-GBR or GBR QoS 

attributes [135].  The three types of QoS attributes which are provided to the eNB by 

the Mobility Management Entity (MME) within the EPC to enforce the QoS on the air 

interface include: 

 

QoS Class identifier (QCI):  The QCI is a key attribute as it has a direct impact on the 

packet scheduling, queue management and link layer protocol configuration.  A QCI 

refers to an index which identifies a set of established QoS parameter values for the 
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priority, packet delay and packet loss rate.  As of LTE release 14, 3GPP has 

standardised 15 classes, shown in Table 6.2, nevertheless QCI 1-9 are widely adopted 

as these have been present as of LTE release 8.  Although the values shown in Table 

6.2 represent the 3GPP guideline for the above mentioned parameters, they also ensure 

a homogenous QoS level for traffic mapped to a given QCI in multi-vendor network 

deployments and in case of roaming subscribers. 

 

QCI 
Resource 

Type 
Priority 

Packet 

Delay 

Budget 

Packet 

Error Loss 

Rate 

Example Services 

1 GBR 2 100ms 10−2 Conversational Voice 

2 GBR 4 150ms 10−3 Conversational Video (Live Streaming) 

3 GBR 3 50ms 10−3 Real Time Gaming, V2X messages 

4 GBR 5 300ms 10−6 
Non-Conversational Video (Buffered 

Streaming) 

65 GBR 0.7 75ms 10−2 
Mission Critical user plane Push to 

Talk voice 

66 GBR 2 100ms 10−2 
Non-Mission-Critical user plane Push 

to Talk voice 

75 GBR 2.5 50ms 10−2 V2X messages 

5 non-GBR 1 100ms 10−6 IMS Signalling 

6 non-GBR 6 300ms 10−6 
Video (Buffered Streaming) TCP-

Based (for example, www, email, chat) 

7 non-GBR 7 100ms 10−3 
Voice, Video (Live Streaming), 

Interactive Gaming 

8 non-GBR 8 300ms 10−6 
Video (Buffered Streaming) TCP-

Based (for example, www, email, chat) 

9 non-GBR 9 300ms 10−6 

Video (Buffered Streaming) TCP-

Based (for example, www, email, chat).  

Typically used as default bearer 

69 non-GBR 0.5 60ms 10−6 
Mission Critical delay sensitive 

signalling 

70 non-GBR 5.5 200ms 10−6 Mission Critical Data 

79 non-GBR 6.5 50ms 10−2 V2X messages 
 

Table 6.2: Standardised QCI characteristics [135] 

 

Allocation and Retention Priority (ARP):  In the case of congestion, this parameter 

may be used to select which bearers are allowed in the network and which need to be 

modified or dropped. 

 

Maximum Bit Rate (MBR) / Guaranteed Bit Rate (GBR):  For GBR type bearers, the 

GBR indicates the bit rate that can be expected to be provided by the bearer whilst the 

MBR limits the bit rate provided by the bearer [17].  In the case of non-GBR type 

bearers an aggregated maximum bit rate (AMBR) parameter is used to control the bit 
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rate across all non-GBR bearers of a subscriber or a particular access point name 

(APN) [17].  Any excess traffic is discarded through the use of a rate-shaping function. 

As already highlighted in the previous section, the DSCP parameter in the IP header 

plays an important role in delivering an end-to-end QoS for multimedia applications.  

With reference to Figure 6.6, different traffic types are tagged with differing DSCP 

parameters by either the transmitting entity itself or a traffic classifier node.  This 

allows the S-GW/P-GW to map traffic to the bearer associated with the traffic type 

QCI using a DSCP-to-QCI mapping table.  Meanwhile, in the eNB, traffic from the 

different bearer types is placed into respective queues prior to scheduling on the radio 

interface based on their QoS service requirements. 

  

Traffic 

Classifier

Payload

Low latency video 

application

Web Application

DSCP=14 (Best Effort)

DSCP=36 (Conversational 

Video Class)

Payload

IP/UDP/RTP headers

IP/TCP headers

DSCP – QCI Mapping Table

DSCP: 14 > QCI:9

DSCP: 36 > QCI:2

QCI:2 Bearer

QCI:9 Bearer

 
 

Figure 6.6: End-to-End QoS – DSCP to QCI mapping 
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6.2 Packet Scheduling 

 

The packet scheduler residing in the MAC layer of the LTE protocol stack plays a 

pivotal role in the radio resource management and efficient delivery of video traffic as 

it needs to distribute fairly the available resources among the active UEs whilst 

adhering to their QoS requirements [136].  With reference to the generic model of the 

downlink packet scheduling function, shown in Figure 6.7, and considering one traffic 

flow per UE, the packet scheduling process at every TTI is composed of five main 

steps namely: 

 

1) Determine the traffic flows which can be scheduled in the current TTI.  In 

order for a flow to be selected as a candidate for scheduling it must have 

buffered data in the MAC layer and UE is in active state; 

2) Collect channel state information from the UEs in the form of CQI reports; 

3) For each flow, j, and resource block, k, compute a scheduling metric, mj,k, 

indicating the transmission priority of a specific flow on a given resource 

block.  Once the scheduling metric for all possible combinations are computed, 

the k
th

 RB is allocated to the j
th

 flow such that: 

 

, ,max{ }
j k i k

i j
m m

∈
=                                    (6.1) 

The scheduling metric, mj,k, depends on the scheduling strategy and 

performance requirement. However, it typically involves the CQI information 

reported by the UEs together with other flow specific indicators such as queue 

length, head of queue packet delay, service priority and past achieved 

throughput; 

4) For each scheduled flow, compute the transport block size and the MCS to be 

used for the current TTI and UE channel conditions based on 3GPP defined 

tables [20]; 

5) Inform the scheduled UEs of their assigned resource blocks and selected MCS 

by sending downlink control information on the PDCCH. 
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Figure 6.7: Generic packet scheduler model 

 

Several packet scheduling algorithms have been proposed in literature achieving 

varying levels of performance, in terms of QoS adherence, spectral efficiency, resource 

assignment fairness, and computational complexity.  Nevertheless, the large majority 

of the scheduling algorithms can be classified into three main types depending on their 

channel and QoS awareness. 

 

6.2.1 Channel un-aware packet scheduling 

Channel un-aware schedulers have been designed for wired networks and are based on 

the assumption that the transmission channel is time-invariant and error free [136], 

thereby intrinsically exhibit poor performance in wireless networks.  One of the 
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simplest algorithms in this category is the round robin (RR) scheduling algorithm 

which cyclically schedules users in order to allocate the available radio resources fairly 

among all users, irrespective of their channel conditions.  This leads to instances 

whereby users with poor channel conditions are still allocated resources. Thus, even 

though this algorithm ranks high in terms of resource assignment fairness, the system 

throughput is low as it cannot exploit multi-user (MU) diversity. 

 

In [137], a blind equal throughput (BET) scheduling algorithm was proposed with the 

aim of achieving throughput fairness among the users.  In this case, the scheduling 

metric for the j
th

 flow is given by: 

 

( )
( ) ( ) ( ) ( )

,

1

1

1 1

j k j

j j j

m
R t

R t R t r tβ β

=
−

= − + −
                            (6.2) 

where ( )jR t is the past average throughput achieved by the j
th

 flow until time t, ( )jr t

is the throughput achieved by j
th

 flow at time t and β  is a weighting factor between 0 

and 1. 

 

The use of the past average throughput measurement, ( )jR t , allows the eNB to 

schedule users which experience low throughput caused by bad channel conditions 

thereby improving throughput fairness. 

 

6.2.2 Channel aware - QoS un-aware packet scheduling 

Channel aware scheduling schemes use CQI feedback reports sent by the UEs in order 

to exploit multi-user diversity and improve system performance.  In [137], a maximum 

throughput (MT) algorithm was proposed whereby the eNB assigns RBs to users 

which experience the best channel conditions, thereby maximising the system 

throughput.  Thus, in a MT scheduler, the scheduling metric for the j
th

 flow is given 

by: 

, ,arg max{ ( )}j k i k
i j

m d t
∈

=                                         (6.3) 

where di,k is the maximum instantaneous achievable data rate of the i
th

 flow on the k
th

 

RB at time t. 
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Evidently, although the system throughput is maximised, the resource fairness ranks 

very low as users in cell-edge conditions will seldom be scheduled.  In order to strike a 

balance between high spectral efficiency and throughput fairness, the scheduling 

metrics of the MT and BET scheduling schemes are merged resulting in the 

proportional fair (PF) scheduling metric given by: 

 

,

,

( )
arg max

( 1)

1 1
( ) 1 ( 1) ( )

i k

j k i
i j

i i i

d t
m

R t

R t R t r t
T T

∈

  =  
−  

 = − − + 
 

                             (6.4) 

where ( )iR t  is the past average throughput achieved by the i
th

 flow until time t, ( )ir t

is the throughput achieved by i
th

 flow at time t and T defines the time window length to 

calculate the average throughput. 

 

The PF scheduling scheme does not take into account any QoS requirements and thus 

it is specifically used for the non-real time (NRT) traffic class.  Nevertheless, this 

scheme has attracted significant research attention and several enhancements have 

been proposed [138] with varying degrees of performance improvement at the expense 

of additional computational complexity.  Meanwhile, a generalised proportional fair 

scheduler scheme is proposed in [139] whereby weighting factors α and β, controlling 

the trade-off between spectral efficiency and fairness, are introduced resulting in the 

scheduling metric given by: 

 

,

,

( )
arg max

( 1)

i k

j k
ii j

d t
m

R t

α

β
∈

 
   =  
  −
  

                                    (6.5) 

 

6.2.3 Channel aware - QoS aware packet scheduling 

The classic packet scheduling algorithms discussed in the previous sections focus on 

the fairness, system spectral efficiency or the balance between these two factors.  

Nevertheless, the real-time (RT) flow QoS attributes, such as the stringent delay 

requirement in multi-view video transmission over LTE networks, is not addressed by 

these solutions.  For this reason, several QoS aware packet scheduling schemes were 
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proposed in literature, with the most representative focusing on guaranteeing a 

bounded delay, this being one of the main requirements for the RT traffic class.   

 

In [140], the authors merge the characteristics of the PF scheme with an exponential 

function of the end-to-end delay resulting in the EXP/PF scheme.  This scheme is 

designed to handle both RT and NRT flows whereby NRT flows are handled using PF 

scheduling metrics whilst the RT flows scheduling metric is given by: 
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                            (6.6) 

where NRT is the number of real-time flows in the radio sector, ηi is a weighting 

parameter and Di is the head of line (HOL) delay. 

 

The concept of shaping the scheduling metric with a function based on the HOL packet 

delay is studied further in [141].  Here the authors present a logarithmic based scheme 

(LOG-rule) and an improved version of the EXP/PF scheme (EXP-rule) whose 

scheduling metrics are given in [136].  As discussed in [142], the EXP-rule scheme is 

more robust as the scheduling metric of the EXP-rule increases at a faster rate as the 

HOL delay increases and it takes into account the delay of all the users in the radio 

sector.   

 

In [143], a modified largest weighted delay first (M-LWDF) scheduling scheme 

considering the channel conditions and the HOL packet delay is presented.  In this 

scheme, NRT traffic flows are handled using a PF scheduling scheme whilst the 

scheduling metric used for RT traffic flows is given by: 
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where λi is a weighting parameter. 

 

This scheduling scheme has been widely used in various studies related to the transport 

of RT traffic, such as video, in view of its simplicity and good performance.  
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Moreover, a number of modifications have been proposed.  In [144], a virtual token 

resource allocation algorithm which guarantees a minimum throughput for NRT traffic 

flows in the presence of RT traffic flows is presented whilst in [145] the M-LWDF is 

adapted to include the queue size.  In the latter, although simulation results indicate an 

improvement in performance, the study considered a simple scenario composed of a 

single LTE cell whilst no information on the type of channel state feedback used is 

provided.  In [146], the M-LWDF is enhanced such that the scheduling metric includes 

a distance factor in conjunction with the channel conditions reported by the UEs 

thereby allowing the eNB to provide a better service to cell-edge users.  Although 

effective, the study does not clearly indicate how the distance between the UE and 

eNB is calculated and how the threshold to segregate UE between near-cell and cell-

edge is determined.  

 

A series of works focus on the use of multi-level QoS-aware scheduling schemes.  A 

two level scheduling frame level scheduler (FLS) scheme based on control theory is 

presented in [142].  At the top level, a discrete time linear control model is used to 

estimate the amount of data that should be transmitted by each RT flow within a single 

radio frame to satisfy its delay requirement.  This is then followed by a standard PF 

scheme to assign the RBs to the users thereby ensuring fairness among the RT flows.  

The accurate control of the delay provided by this algorithm outperforms several other 

schemes at the expense of an increased computational effort introduced by the control 

theory based estimation model at the top level.   

 

In [147], the authors propose a time domain (TD) and frequency domain (FD) 

scheduler working in tandem.  The TD scheduler classifies flows into GBR and non-

GBR flows and selects a subset based on their QoS requirements and channel status.  

In the next level, the FD scheduler uses a PF and M-LWDF scheduler to assign 

resources to the NRT and RT traffic flows respectively.  Meanwhile, an advanced 

frame level scheduling scheme is proposed by Skondras et al in [148].  In this work, 

the authors extend the work presented in [142] by allocating radio resources using a 

three level scheduling algorithm whereby the data quota estimation method used in 

[142] is employed in the first level whilst the second and third levels are based on the 

M-LWDF scheduling scheme. 
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6.3 Cross-layer design 

 

The strict layered approach adopted by the mainstream mobile communication 

standards, such as 3GPP LTE, poses a limit on the efficient use of radio resources and 

effective delivery of video traffic.  For this reason, a cross-layer design (CLD) network 

architecture, whereby the application (APP), MAC and PHY layer interact to optimise 

layer-specific parameters, has gained popularity in recent years.  Several studies can be 

found in literature however the cross-layer adaptations typically employed in the 

downlink transmission of video traffic can be classified into three main types, namely 

[149]: 

  

• Adaptation of the MAC/PHY layer parameters based on the video source 

information at the APP layer;  

• APP layer bit rate adaptation based on the MAC/PHY layer information; 

• Joint adaptation of the APP/MAC/PHY parameters. 

 

With reference to the generic cross-layer video transmission system shown in Figure 

6.8, the controller entity is responsible for sharing and adapting layer specific 

parameters using the knowledge of the radio channel conditions, in the form of CQI 

feedback reports, and source content information.  A typical approach adopted in 

cross-layer design involves the formulation of a multi-dimensional optimisation 

problem with the objective of maximising the received video quality under a given set 

of constraints [149].  This is done by adapting: 

 

• Source coding parameters in the APP layer including the quantisation 

parameter (QP) and coding mode, Sp; 

• Resource allocation and scheduling parameters in the MAC layer, RAp; 

• Link adaptation parameters including the modulation and coding scheme 

(MCS) to be used in the PHY layer, AMCp. 
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Figure 6.8: General cross-layer adaptation 

 

Although such a multi-dimensional approach is very effective in improving radio 

resource management and the video quality experienced by users in challenging radio 

conditions, the computational effort required to solve such optimisation problems can 

be very high.  Moreover, such cross-layer techniques typically employ recursive 

optimal per-pixel estimation (ROPE) algorithm [150] to accurately estimate the packet 

loss induced distortion, thereby further increasing the computational complexity.  In 

order to manage the computational complexity of such cross-layer schemes, several 

works have been proposed employing various techniques ranging from the application 

of heuristics [151] to directed graphs [152]. 

 

Meanwhile, lean cross-layer design schemes characterised by simple and low 

complexity techniques have been proposed in literature.  Such schemes depart from the 
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multi-objective optimisation framework and end-to-end distortion estimation process, 

seeking optimal parameter settings across multiple layers, and instead focus on 

prioritising packets based on the packet payload type.  In [153], a content aware 

adaptive HARQ retransmission scheme for 3GPP LTE networks is proposed whereby 

the packet induced distortion, and hence its priority, is inferred based on the video 

frame type carried in the payload.  In this work, the authors exploit the fact that not all 

frames in a GOP carry the same level of importance as losing an I frame causes a 

significantly different level of distortion when compared to losing a P frame.  

Similarly, losing a P frame in the anterior section of the GOP is more detrimental when 

compared to losing a P frame in the posterior section of the GOP.  Thus, the media 

server hosting the video encoder exploits the various frame dependencies and relative 

frame position in the GOP to tag packets, by setting the differentiated service code 

point (DSCP) field in the IP header, based on their relative priority.  This allows the 

RLC and MAC layers in the eNB to be aware of each packet priority and adapts the 

number of HARQ re-transmissions accordingly.  Although the simulation results 

indicate an improvement in the video quality experienced by the users, the authors 

considered only two static users whilst no information is provided on the type of 

scheduler used. 

 

A similar packet prioritisation technique is adopted in [154] for the transmission of 

3D-HEVC content in wireless networks.  In this work, the authors exploit the fact that 

CQI reports sent by the UEs are merely a recommendation to the eNB indicating the 

MCS and TBS to be used and hence the MAC layer can adapt these parameters based 

on the packet payload type.  Thus, high priority packets, such as I frames and highly 

referenced frames, are typically assigned a robust MCS in order to improve protection 

and reduce the retransmission probability.  Meanwhile, the lower priority packets are 

assigned an MCS based on the CQI feedback report sent by the UE. Although 

simulation results indicate an improvement in the high priority packet loss rate, the 

simulations have been carried out using a PF scheduling algorithm with no maximum 

end-to-end packet delay constraint. 

 

Techniques based on PHY layer parameter adaptation such as those presented in [153-

154], decrease the spectral efficiency of the radio network through either higher L1 

retransmission rates or the use of more robust MCS.  This might lead to a further 
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deterioration in system performance in an otherwise already congested network.  Thus, 

in [155], the authors propose a cross-layer adaptive 3D-HEVC video transmission for 

buffered streaming services combining content awareness with packet scheduling and 

an active packet dropping technique.  In the proposed scheme, the packets are first 

prioritised based on their dependencies whilst the eNB schedules high priority packets 

in lieu of lower priority packets being dropped.  In order to mitigate the impact of the 

active dropping technique adopted by the proposed scheme, a sophisticated error 

concealment technique is used to provide graceful degradation in the presence of 

packet loss.  
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Chapter 7 Cross-Layer CQI Feedback Adaptation for MVD 

Video Transmission in a Crowd Event Scenario 

 

This chapter builds on the CQI feedback reduction techniques proposed in chapter 3 

and describes a cross-layer CQI feedback adaptation scheme for the transmission of 

MVD video in a crowd event scenario.  It starts with a performance evaluation of 

several QoS-aware packet scheduling algorithms in this scenario followed by the 

enhancement and testing of the M-LWDF algorithm to include MVD video content 

awareness.  The third section focuses on the impact of the CQI feedback reduction 

techniques, presented in chapter 3, on the transmission of MVD video in a crowd event 

scenario.  Finally, in order to alleviate the impact of the feedback reduction schemes, a 

cross layer CQI feedback adaptation scheme is proposed and tested using both 

objective and subjective testing methodologies. 

 

7.1 Performance of MVD video transmission over LTE networks in 

a crowd event scenario 

 

Although several studies have been conducted on the transmission of MVD video over 

LTE networks, these do not cater for a crowd event scenario [156-158].  Moreover, 

such studies generally assume perfect channel state information (CSI), involve a 

limited number of users or use legacy video compression schemes for the generation of 

video traffic.  Thus, prior to the development of the proposed work, a comparative 

performance analysis of three packet scheduling algorithms, namely M-LWDF, 

EXP/PF and FLS, was carried out. This selection is based on the fact that both M-

LWDF and EXP/PF packet scheduling algorithms have been widely adopted in various 

multimedia video transmission studies due to their efficacy and low complexity nature.  

Meanwhile, even though the FLS algorithm exhibits a higher computational 

complexity, studies have noted a marginal performance improvement when compared 

to the previously mentioned schemes. 

 

7.1.1 Simulation environment,  parameters and results 

In order to establish the performance of the selected packet scheduling algorithms in a 

crowd event scenario, the simulation environment, described in section 3.2.2, together 
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with the selected packet scheduling schemes, were implemented and tested in a system 

level LTE simulator [55] over 50 random seeds using the simulation parameters shown 

in Table 7.1.  With reference to the parameters shown in Table 7.1, UEs are stationary 

and each receives an MV-HEVC real-time encoded MVD stream composed of two 

texture and depth map views.  Meanwhile, unlike other studies found in literature, a 

periodic wideband CQI feedback scheme, widely used in commercial networks 

particularly in crowd event scenarios, is adopted. 

 

Parameter Value 

System Bandwidth 10MHz (50 PRB) 

Scheduler M-LWDF, EXP/PF, FLS 

Number of Antennas 1 (Tx and Rx) 

CQI Type Periodic (20ms), wideband CQI (4bits) 

Traffic Model 1 x Trace based MVD stream 

Maximum end-to-end delay for video traffic, ζ 100ms 

Protocol Overhead [55] 

RTP/UDP/IP with RoHC: 3 bytes 

PDCP: 2 bytes 

MAC and RLC: 5 bytes 

CRC: 3 bytes 

RLC Mode UM / L1 ReTx: 3 

Mobility All UE’s are stationary 

eNB output power 43dBm 

Frequency Re-use 1 

Antenna Height 20m 

Antenna Type Commscope CNLPX3055F [52] 

Propagation Model 
Micro Cell 

L=24 + 45log(d+20) @ 2GHz[55] 

Fast Fading Realization Jakes Model[55] 

Number of UE’s, Tu {25, 50, 70, 90, 110} 

 

Table 7.1: Simulation parameters for the comparison of packet scheduling algorithms 

 

With reference to the system model shown in Figure 7.1, the MVD video traffic is 

generated by encoding the texture and depth map views of the balloons test sequence 

using the parameters shown in Table 7.2.  The resulting texture and depth-map view 

bit streams are then packetized at the application layer and encapsulated within RTP, 

UDP and IP protocols prior to being sent to the eNB.  Packets received by the eNB are 

then placed into the respective UE first-in-first-out (FIFO) queue at the RLC layer 

whilst waiting for scheduling by the MAC layer.  Moreover, packets which remain 

enqueued at the eNB for a time period greater than the maximum allowed transmission 

delay are discarded.  
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Figure 7.1: MVD Transmission over LTE system model 

 

Parameter Value 

GOP Size 4 

Intra Period 12 

Prediction Structure  Low latency (see Figure 5.3) 

QP Texture: 40 / Depth: 45 

Total bit rate 675kbps 
 

Table 7.2: MVD encoding parameters 



134 

 

The performance of the selected packet scheduling algorithms is assessed along three 

main performance metrics namely, the packet loss rate (PLR), average packet delay 

and sector throughput.  With reference to Figure 7.2(a), the PLR increases rapidly as 

the number of users in the radio sector exceeds 50.  Moreover, it is evident that the 

three scheduling schemes are in general comparable, in terms of PLR, with the FLS 

scheme exhibiting a marginally better performance in high load conditions. 
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(c) 

Figure 7.2: Performance metrics for the tested scheduling algorithms (a) % Packet Loss Rate, (b) 

Average packet delay, (c) Sector Throughput 

 

It should be noted that in crowd event scenarios, the majority of the packet losses are 

due to excessive packet delays caused by bloated queues in the eNB leading to a high 

proportion of packet discards.  As shown in Figure 7.2(b), the average delay exhibited 

by the evaluated packet scheduling schemes increases with traffic load, however the 

FLS scheme tends to have a marginally higher packet delay due to the proportional fair 

algorithm implemented at the lower layer of this scheme.  Meanwhile, as expected, the 

sector throughput, shown in Figure 7.2(c), increases with traffic load until it tapers 

towards an asymptotic value. 

 

Considering the above discussion on the relative performance of the selected packet 

scheduling schemes and the relatively higher computational complexity of the FLS 

scheme, the M-LWDF scheduling algorithm is selected as the baseline scheduler for 

the rest of the work.  Moreover, based on the test conditions and MVD encoding 

parameters, shown in Table 7.1 and 7.2 respectively, the PLR increases rapidly beyond 

50 users in the radio sector and thus, unless otherwise stated, this has been selected as 

the operating point for the rest of the work. 
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7.2 Enhanced content-aware M-LWDF packet scheduling 

algorithm 

 

As shown in the previous section, congestion causes high delay build-up leading to 

significant packet loss thereby impacting the quality of the received MVD stream.  

However, as discussed in the previous chapter, not all packets have the same level of 

importance and thus it is beneficial to prioritise the scheduling of packets according to 

their relative importance with the aim of reducing the impact on the received video 

quality.  A number of techniques have been discussed in chapter 6 nevertheless in this 

work the M-LWDF packet scheduling algorithm is enhanced through the use of RLC 

queue based weighted factors thereby allowing content awareness in the evaluation of 

the scheduling metric. 

  

7.2.1 Proposed content-aware packet scheduling algorithm 

With reference to Figure 7.3, the content-aware packet scheduling scheme is split into 

two phases; namely a time domain and a frequency domain scheduling phase.  The 

time-domain scheduling phase is responsible for selecting and prioritising the flows 

(queues) to be scheduled in the current TTI, n, and is based on the calculation of a 

priority metric per flow j, denoted by TD_metric(n)j, given by (7.1).  This is based on 

three main factors which are strongly correlated with the flow performance and are 

given by (7.2)-(7.4).  Flows with a priority metric greater than TTD_Th are considered as 

suffering from queue stalling and have a higher incidence of packet discards.  For this 

reason, these flows are tagged as high priority flows in order to be given preference 

during PRB assignment in the frequency domain scheduling phase. 

  

( ) ( )
_ ( ) _ ( )

1 _ ( ) 1 _ ( )

j j

j j

TD metric n w HOL n

w Q n PLR HPP n

µ

µ σ σ

= +

 − + − 

       (7.1) 

where µ  and σ  are tuning parameters controlling the relative importance of the three 

factors discussed and empirically set to 0.75 and 0.25 respectively, _ ( ) jw HOL n  is the 

current weighted head of line (HOL) packet delay for queue j determined through 

(7.2), whilst _ ( ) jw Q n and _ ( ) jPLR HPP n  are the linearly smoothed weighted queue 
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size found using (7.3) and high priority packet (HPP) PLR for queue j calculated using 

(7.4) respectively. 
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Figure 7.3: TD-FD Content-aware M-LWDF packet scheduling scheme 
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where HOLj is the head of line packet delay of flow j, ζ is the maximum end-to-end 

transmission delay for video packets set to 0.1 seconds whilst ,1jω  is a priority level 

weighting based on the content of the video packet for the head of line packet in flow j.  

The latter together with the definition of high priority packets will be discussed in 

further detail in section 7.2.2. 
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+
=

                        (7.3) 

where ( ) jQ n  is the j
th

 queue size in bytes at the current TTI, NQ_hpp,j(n) and NQ,j(n) are 

the number of HPP and total number of packets in queue j at the current TTI 

respectively whilst ψ a normalising factor set to 20,000 bytes. 
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where Ntx_hpp,j and Nrx_hpp,j are the number of successfully transmitted and received 

HPP calculated using layer 1 (L1) HARQ re-transmission status whilst κ is a 

normalising factor set to 0.03. 

 

The frequency domain (FD) scheduling phase is responsible for the assignment of 

PRBs to the users in the radio sector.  The FD scheduling starts with the high priority 

flows, identified during the TD scheduling phase, and assigns a scheduling metric wj,i, 

computed using (7.5), to the j
th

 flow, for the i
th

 PRB.  With reference to (7.5), the 

scheduling weight is based on the M-LWDF scheme and uses the CQI reports sent by 

the UE to calculate the flow instantaneous throughput on i
th

 PRB, rj,i(n), relative to the 

current achieved average throughput, ( )jR n .  In order to introduce content awareness at 

the PRB assignment stage, the head of line packet delay, HOLj (n), is modulated with a 

weighting factor based on both the priority level weighted head of line packet delay 

and the cumulative priority level weighted delay of subsequent packets.  The latter is 

important as it allows the scheduler to consider not only the head of line packet but 

also packets which will be imminently scheduled. 

 

( )
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  
= − + +  
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∑             (7.5) 

( ) 0.8 ( 1) 0.2 ( )j j jR n R n R n= − +                                        (7.6) 

where δj is the drop probability commonly set to 0.005, ζ is the maximum end-to-end 

transmission delay for video packets set to 0.1 seconds, HOLj is the head of line packet 

delay of flow j, ,j pω  is the priority level weighting of packet p in the j
th

 flow, and 

Dj,p(n) is the delay of packet p in the j
th

 flow. 

 

Once the scheduling metric is computed for all high priority traffic flows, across all the 

PRBs, the assignment process is started whereby each PRB is assigned to the flow 

having the highest scheduling metric.  This process is repeated until no PRBs are left.  
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In case all high priority flows are scheduled and there are still available PRBs to be 

assigned, the process is restarted for the remaining flows. 

 

7.2.2 MVD video packet prioritisation 

In order to enable content awareness and allow the scheduler in the eNB to prioritise 

between the MVD video packets, the encoder needs to classify the MVD packet stream 

based on the induced PSNR degradation in case of packet loss.  Several works have 

been proposed to estimate the packet loss induced distortion ranging from the 

application of recursive optimal per-pixel estimation (ROPE) to detailed analytical 

distortion models able to accurately estimate the distortion in the synthesised view 

[159].  Nevertheless, these methods either entail high computational effort or require 

pre-estimation of model parameters.  In this work, a simple packet prioritisation 

scheme is adopted whereby the packet priority is generally based on the view type 

(texture or depth), layer (base or dependent view), frame type (key frame or other) and 

the position of the frame relative to the key frame.  For the rest of the work, a tile-

based coding configuration with three columns and three rows, as shown in Figure 7.4, 

is adopted in order to have a finer priority control for the depth map views.  Moreover, 

considering a maximum slice size of 1500 bytes, texture tiles are generally composed 

of multiple slices (packets) whilst depth map tiles are composed of a single slice 

(packet). 

 

 

Figure 7.4: Tile configuration - balloons depth map view 1 

 

Whilst the texture views are generally treated with higher priority when compared to 

depth map views, the priority of individual tiles in the depth map views depends on the 

degradation of the synthesised view PSNR resulting from packet loss effecting a tile.  
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In order to study the degradation of the synthesised view PSNR in the presence of 

depth map view tile loss, a series of experiments were carried out on various test 

sequences encoded using the low latency prediction structure shown in Figure 5.3.  In 

these experiments, we iteratively simulate the loss of individual tiles in the depth map 

base view, thereby causing both temporal and inter-view error propagation, and 

compute the relative degradation in the synthesised view PSNR for each tile loss.  

Meanwhile, a simple tile copy error concealment strategy is used in order to minimise 

the impact on the synthesised view quality.  Two tile loss scenarios were considered 

namely, tile losses in the I-key frame and tile losses in non-key frames when the I-key 

frame is received correctly.  With reference to the synthesised view PSNR degradation 

for the balloons test sequence in these two scenarios, shown in Figure 7.5, a tile loss in 

a non-key frame generally results in a negligible degradation in PSNR showing that 

even a simple error concealment strategy can be effective for depth map views, given 

their characteristics.  However, as expected, a tile loss in an I-key frame results in a 

significant degradation in the synthesised view PSNR due to the temporal and inter-

view error propagation.  Moreover, in the latter case, the degradation in the synthesised 

view PSNR varies widely in between tiles and thus, in this work, tiles in the depth map 

view key frames are segregated into two distinct priority levels, namely depth_high 

and depth_low.  The top 5 ranking tiles in terms of synthesised view PSNR 

degradation are assigned to the depth_high category whilst the remaining are set to 

depth_low. 
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(b) 

Figure 7.5: Synthesised view PSNR degradation in case of (a) Tile loss in non-key frame, (b) Tile loss in 

key frame 

 

In order to determine the priority of the tiles in the depth map key frames, the 

degradation in the synthesised view PSNR needs to be first assessed for each tile.  

Thus the re-constructed texture and depth map key frames, which are already available 

in the respective MV-HEVC encoder, are exported to the traffic classifier whereby the 

packet loss-free synthesised view is rendered and stored.  Following this process, the 

traffic classifier simulates individual tile losses in the depth map key frame iteratively, 

each time rendering a synthesized view and calculates the degradation in the 

synthesized view PSNR relative to the stored packet loss-free synthesised view.  This 

process is carried out on-line for every key frame and allows the traffic classifier to 

effectively rank tiles according to their relative contribution to the synthesised view 

PSNR degradation in the case of packet loss. 

 

The drawback of this method is that the tile loss assessment process needs to be 

repeated for every key frame thereby increasing the traffic classifier computational 

load.  However, an analysis of various test sequences reveals that the depth map tile 

priority ranking does not vary significantly from one key frame to the next, as 

evidenced in Figure 7.6 for the balloons test sequence, and thus tile loss re-
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assessments can be reduced leading to a corresponding reduction in computational 

load.  Nevertheless, in order to improve robustness, this work evaluated the use of 

image statistics, specifically the sum of the depth map and texture view gradient 

statistics calculated on co-located tiles, to detect changes in the content thereby 

triggering a tile loss re-assessment.  As shown in Figure 7.7, the variation in the 

computed image statistic for the balloons test sequence at frame 133, shown by the red 

dashed line, correlates with a change in the tile ranking shown in Figure 7.6.  Thus, 

based on these observations and with reference to Algorithm 3 shown in Figure 7.8, 

the traffic classifier triggers a tile loss re-assessment and ranking procedure only when 

the variation in the image statistic is greater than a set deviation threshold, rather than 

at every key frame.  Following a number of experiments on various test sequences, the 

deviation threshold in this work was set to 30% as this was found to strike a balance 

between the number of tile re-assessments and tile priority ranking error. 

 

 

Figure 7.6: Tile loss ranking for balloons test sequence 
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Figure 7.7: Image statistic variation per tile for balloons test sequence 

 

Algorithm 3: Tile Loss Re-assessment 

1: for all depth map key frames do 

2:  if depth map key frame is the first in sequence then 

3:        Render and store the packet loss free synthesised view 

4:        for all tiles in the depth map key frame do 

5:                  Simulate a tile loss in the depth map key frame  

6:             Render the synthesised view, calculate and store PSNR degradation 

7:              Compute and store the image statistic for the processed tile 

8:            end for 

9:       Evaluate tile ranking based on the PSNR degradation 

10:      else 

11:          for all tiles in the depth map key frame do 

12:                Compute and store the image statistic for the processed tile 

13:                if tile image statistic > deviation_threshold do 

14:                  break loop and go to line 3 

15:                end if 

16:          end for 

17:     end if 

18: end for 

Figure 7.8: Algorithm 3 – Tile loss re-assessment 
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Considering the discussion on the MVD packet prioritisation scheme, the priority level 

weighting of packet p in the j
th

 flow, ,j pω , is set according to the values shown in 

Table 7.3, where P1 and P2 refers to the first 7 frames after a key frame and the last 4 

frames in the GOP respectively.  Once the traffic classifier determines the packet 

priority, this is indicated to the eNB scheduler by setting the appropriate DSCP 

parameter in the IP packet as discussed in chapter 6. 

 

Priority 

Level 

Weighting 

,j pω  
View 

Type 

Layer 

(view) 

Frame 

Type 

Depth map Key 

Frame Tile Ranking 
HPP 

1 2 Texture Base Key Frame 
 

� 

2 2 Texture Dependent Key Frame 
 

� 

3 1 Texture Base Other - P1 
 

� 

4 1 
Depth 

Base Key Frame depth_high � 

Dependent Key Frame depth_high � 

Texture Dependent Other - P1 
 

 

5 0.5 Texture 
Base Other - P2 

 
 

Dependent Other - P2 
 

 

6 0.5 Depth 

Base Key Frame depth_low  

Dependent Key Frame depth_low  

Base Other - P1 
 

 

Dependent Other - P1 
 

 

Base Other - P2 
 

 

Dependent Other - P2 
 

 

 

Table 7.3: MVD packet priority weighting 

 

7.2.3 Simulation results 

The modified content aware packet scheduling algorithm was tested in a system level 

LTE simulation over 50 random seeds and compared with the M-LWDF scheme using 

the crowd event scenario, described in section 3.2.2, and the simulation parameters 

shown in Table 7.4.  The MVD test sequences used in these simulations, shown in 

Table 7.5, are encoded using the parameters given in Table 7.6 and prioritised using 

the traffic classifier based scheme discussed in the previous section. 
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 Parameter Value 

System Bandwidth 10MHz (50 PRB) 

Scheduler Content-Aware M-LWDF 

TD-Scheduler Threshold, TTD_Th 0.6 

Number of Antennas 1 (Tx and Rx) 

CQI Type Periodic (20ms), wideband CQI (4bits) 

Traffic Model 1 x Trace based MVD stream 

Maximum end-to-end delay for video 

traffic, ζ 
100ms 

Protocol Overhead [55] 

RTP/UDP/IP with RoHC: 3 bytes 

PDCP: 2 bytes 

MAC and RLC: 5 bytes 

CRC: 3 bytes 

RLC Mode UM / L1 ReTx: 3 

Mobility All UE’s are stationary 

eNB output power 43dBm 

Frequency Re-use 1 

Antenna Height 20m 

Antenna Type Commscope CNLPX3055F [52] 

Propagation Model 
Micro Cell 

L=24 + 45log(d+20) @ 2GHz [55] 

Fast Fading Realization Jakes Model [55] 

Number of UE’s, Tu 50 

Table 7.4: Simulation parameters – Content-aware M-LWDF 

 

Sequence Total bit rate 

Balloons 674.7 kbps 

Book Arrival (Book) 656.6 kbps 

Kendo 662.8 kbps 

Newspaper (News) 660.8 kbps 

Poznan Hall 391.4 kbps 

Poznan Street 893.8 kbps 

 

Table 7.5: MVD test sequences bit rates 

 

Parameter Value 

GOP Size 4 

Intra Period 12 

Prediction Structure  Low latency (see Figure 5.3) 

QP Texture: 40 / Depth: 45 

Tile Configuration 3 columns and 3 rows 
 

Table 7.6: MVD encoding parameters 
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Apart from the standard performance metrics namely, the packet loss rate (PLR), 

average packet delay and sector throughput, the proposed content aware M-LDWF 

scheme is also assessed on the high priority packet (HPP) PLR metric defined by: 

 

_ _

_

tx hpp rx hpp

HPP

tx hpp

N N
PLR

N

−
=                                               (7.7) 

where Ntx_hpp and Nrx_hpp are the number of HPP packets transmitted by the eNB and 

successfully received by the UE respectively. 

 

As shown in Figure 7.9, although the improvement in the average PLR is marginal, the 

high priority packet PLR of the proposed scheme is on average 1.74% better than that 

achieved by the standard M-LWDF and up to 4.3% for the balloons test sequence.  

This improvement is achieved by sacrificing low priority packets, predominantly in the 

depth map views, in lieu of improving the delivery of packets carrying more relevant 

video content. 
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(d) 

 

Figure 7.9: Performance of M-LWDF and Content-aware M-LWDF (a) PLR, (b) HPP PLR, (c) Sector 

Throughput, (d) Packet delay 

 

Although the HPP PLR metric is indicative of the impact on the video quality, in order 

to assess the visual quality of the delivered video sequences, the corrupted bit streams 

are recovered and decoded using a tile copy error concealment technique.  Using the 

decoded sequences of all the users in the radio sector, the PSNR and structural 

similarity metric (SSIM), shown in Figure 7.10 and 7.11 respectively, are calculated 

across all texture and synthesised views.  As evidenced in Figure 7.10, the proposed 

scheme improves the texture and synthesised view quality, in loaded conditions, by an 

average of 1.13dB and 1.47dB respectively.  This improvement is also corroborated by 

the SSIM results shown in Figure 7.11. 
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(a) 

 

 

(b) 

Figure 7.10: PSNR (a) Texture, (b) Synthesised views 
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(a) 

 

 

(b) 

Figure 7.11: SSIM (a) Texture, (b) Synthesised views 
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7.3 Impact of feedback reduction schemes on MVD video 

transmission in a crowd event scenario 

 

The experiments carried out in the previous section focused on the use of a standard 

wideband CQI feedback reporting scheme however, as discussed in chapter 3, crowd 

event scenarios are characterised by high uplink feedback signalling overhead leading 

to increased uplink resource consumption.  For this reason, two new complimentary 

schemes, namely a UE-assisted predictive filtering scheme and a UE clustering 

scheme, were introduced in chapter 3.  Although both schemes are able to achieve 

significant feedback reduction, this comes at the expense of an increase in packet loss 

rate.  Moreover, the simulation results shown in chapter 3, are based on a best effort 

infinite buffer traffic model and do not take into account the stringent requirements of 

MVD video transmission.  Thus, in this section, the two complimentary CQI feedback 

signalling reduction schemes, proposed in chapter 3, are combined in order to study 

the impact on the performance of MVD video transmission when using the content 

aware M-LWDF packet scheduling algorithm. 

 

7.3.1 System model 

With reference to the system model shown in Figure 7.12, the UEs in the radio sector 

are first clustered into k clusters and a cluster leader is elected for each cluster as 

described in section 3.3. In the combined scheme, the cluster leaders employ a UE 

assisted LMS based prediction filtering scheme, detailed in section 3.1, in order to 

achieve additional feedback signalling overhead savings through the reduction of 

cluster leader feedback reports.  The inter-working of the proposed schemes is 

controlled by parameters UEτ , γ and |Emax-cqi| and is summarised in the state flow 

diagram shown in Figure 7.13. 

 

The combined feedback reduction scheme is implemented and tested in a system level 

LTE simulator [55] over 50 random seeds using the simulation parameters shown in 

Table 7.7.  In these tests, the MVD video traffic is generated by encoding the balloons 

test sequence using the parameters given in Table 7.6 and prioritised using the traffic 

classifier based scheme discussed earlier. 
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Figure 7.12: Combined feedback reduction scheme system model 
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Figure 7.13: Combined feedback reduction scheme - State flow diagram 
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Parameter Value 

System Bandwidth 10MHz (50 PRB) 

Scheduler Content-Aware M-LWDF 

TD-Scheduler Threshold, TTD_Th 0.6 

Number of Antennas 1 (Tx and Rx) 

CQI Type Periodic (20ms), wideband CQI (4bits) 

CQI feedback reduction scheme 
Combined clustering and LMS-based predictive 

filtering 

Clustering parameters UEτ  =100, γ=1200 

Predictive filtering parameter, |Emax-cqi|. {0.5, 1.0, 1.5} 

Traffic Model 1 x Trace based MVD stream 

Maximum end-to-end delay for video 

traffic, ζ 
100ms 

Protocol Overhead [55] 

RTP/UDP/IP with RoHC: 3 bytes 

PDCP: 2 bytes 

MAC and RLC: 5 bytes 

CRC: 3 bytes 

RLC Mode UM / L1 ReTx: 3 

Mobility All UE’s are stationary 

eNB output power 43dBm 

Frequency Re-use 1 

Antenna Height 20m 

Antenna Type Commscope CNLPX3055F [52] 

Propagation Model 
Micro Cell 

L=24 + 45log(d+20) @ 2GHz [55] 

Fast Fading Realization Jakes Model [55] 

Number of UE’s, Tu 50 

Table 7.7: Simulation parameters – Combined feedback reduction scheme 

 

7.3.2 Simulation results 

Whilst the clustering parameters τ and γ are empirically set to 100 and 1200 

respectively, the impact of the maximum allowed prediction error, |Emax-cqi|, on the 

average PLR and CQI feedback reduction is evaluated by varying |Emax-cqi| between 0.5 

and 1.5 in steps of 0.5.  As expected, the reduction in CQI feedback, shown in Figure 

7.14, increases with the maximum allowed prediction error at the expense of an 

increase in PLR when compared to the performance achieved by the content-aware M-

LWDF scheme without the use of feedback reduction techniques.  In the analysed 

scenario, this increase is primarily due to an increase in packet discards caused by 

packet delay timer expiry rather than physical errors.  This, in turn is caused by the 

predictive filtering entity in the eNB feeding the scheduler a CQI value which is lower 

than the actual CQI value thereby leading to a relatively lower scheduling opportunity 

and the use of lower MCS when the UE is scheduled.   

 

As shown in Figure 7.14(c), the use of the predictive filtering scheme reduces the 

cluster leader reports by an average of 9%.  Moreover, considering that the PLR 
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increases significantly when the maximum allowed prediction error is greater than 1, 

|Emax-cqi| is set to 1 for the rest of the work as it yields the best trade-off between the 

selected metrics.  As expected, even though the combined use of the CQI feedback 

reduction technique yields a saving in uplink feedback signalling of 87.5% at the 

selected operating point, the increase in the packet loss rate degrades the visual quality 

of the texture and synthesised views by approximately 2dB in terms of PSNR as 

evidenced in Figure 7.15. 
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(c) 

 

Figure 7.14: Content aware M-LWDF performance combined with CQI feedback reduction scheme – 

Variation of the maximum allowed prediction error (a) PLR, (b) CQI feedback reduction, (c) Cluster 

leader feedback report savings 
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(b) 

 

Figure 7.15: Content aware M-LWDF performance combined with CQI feedback reduction scheme - 

PSNR (a) Texture views, (b) Synthesised views at selected operating point 

 

7.4 Cross-layer CQI feedback adaptation for MVD video 

transmission in a crowd event scenario 

In order to counter the impact of the proposed combined CQI feedback reduction 

scheme, a cross-layer technique is designed to adapt the CQI feedback by soliciting 

CQI reports (referred to as CQI boosts) from individual UEs.  The eNB measures and 

tracks the high priority packet PLR and weighted HOL delay for all suppressed UEs at 

each cluster leader CQI reporting cycle using (7.4) and (7.2) respectively and 

compares these metrics to pre-set thresholds.  This process allows the eNB to identify 

a subset of suppressed UEs which are either experiencing high priority packet loss or 

accumulating packet delays thereby becoming more susceptible to packet discards.   

   

To prevent further degradation in these metrics, which have a direct bearing on the 

visual quality of the MVD video transmission, the eNB triggers CQI boosts from the 

identified subset of suppressed UEs through the use of a 1-bit CQI boost request 

(CBR) indicator within the physical downlink control channel (PDCCH).  When one 

of the metrics exceeds its corresponding pre-set threshold, the eNB sets the CBR 

indicator to 1, thereby requesting the UE to report the actual CQI value in the uplink at 
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every CQI reporting cycle until the CBR indicator is reset to 0.  The eNB resets the 

CBR indicator flag for a suppressed UE when the measured metrics fall below the pre-

set threshold whilst considering some hysteresis to protect against oscillations between 

the normal and CQI boosting mode.  Whenever the eNB receives an actual CQI value 

from a suppressed UE, as a result of a CQI boost request, the eNB uses this value 

instead of the cluster leader derived value for scheduling purposes. 

 

7.4.1 Simulation results 

Whilst the weighted HOL delay threshold is empirically set to 80ms, the effect of the 

HPP PLR threshold is studied by integrating the cross-layer technique with the 

combined feedback reduction scheme, discussed in the previous section, and tested in a 

system level LTE simulator [55] over 50 random seeds using the simulation 

parameters shown in Table 7.8.  Similar to previous parameter tuning experiments, the 

MVD video traffic is generated by encoding the balloons test sequence using the 

parameters given in Table 7.6 and prioritised using the traffic classifier based scheme 

discussed in section 7.2.2. 

 

With reference to Figure 7.16(a-b), the use of the cross-layer CQI feedback adaptation 

scheme improves the packet loss rate, when compared to the same scheme without 

cross-layer adaptation, at the expense of a marginal degradation in CQI feedback 

reduction caused by the solicited CQI reports.  As expected, the CQI boosts become 

less frequent for increasing values of HPP PLR threshold leading to a gradual 

degradation in packet loss rate whilst improving the CQI feedback reduction.  

Meanwhile, the sector throughput and average packet delay, shown in Figure 7.16(c-d) 

suffer a marginal degradation as the HPP PLR threshold increases, thus this was set to 

5% for the rest of the work as it yields an acceptable trade-off between CQI feedback 

reduction and packet loss rate. 
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Parameter Value 

System Bandwidth 10MHz (50 PRB) 

Scheduler Content-Aware M-LWDF 

TD-Scheduler Threshold, TTD_Th 0.6 

Number of Antennas 1 (Tx and Rx) 

CQI Type Periodic (20ms), wideband CQI (4bits) 

CQI feedback reduction scheme 
Combined clustering and LMS-based predictive 

filtering 

Clustering parameters τ =100, γ=1200 

Predictive filtering parameter, |Emax-cqi|. 1.0 

Cross-layer HPP PLR threshold {5%, 8%, 10%} 

Cross-layer weighted HOL threshold 80ms 

Traffic Model 1 x Trace based MVD stream 

Maximum end-to-end delay for video 

traffic, ζ 
100ms 

Protocol Overhead [55] 

RTP/UDP/IP with RoHC: 3 bytes 

PDCP: 2 bytes 

MAC and RLC: 5 bytes 

CRC: 3 bytes 

RLC Mode UM / L1 ReTx: 3 

Mobility All UE’s are stationary 

eNB output power 43dBm 

Frequency Re-use 1 

Antenna Height 20m 

Antenna Type Commscope CNLPX3055F [52] 

Propagation Model 
Micro Cell 

L=24 + 45log(d+20) @ 2GHz [55] 

Fast Fading Realization Jakes Model [55] 

Number of UE’s, Tu 50 

Table 7.8: Simulation parameters – Cross layer adaptation 
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(b) 
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(d) 

 

Figure 7.16: Cross layer CQI feedback adaptation system level performance metrics – balloons test 

sequence (a) PLR, (b) CQI feedback reduction, (c) Sector throughput, (d) Average packet delay 

 

The improvements observed in the system level performance metrics at the selected 

operating point are reflected in the visual quality of the MVD stream.  With reference 

to the comparative assessment shown in Figure 7.17 for the balloons test sequence, the 

use of the proposed cross layer technique results in a significant improvement in the 

texture and synthesised view PSNR, closely matching that of the content-aware M-

LWDF without any feedback reduction techniques.  Conducting the same experiment 

using the proposed cross layer technique at the selected operating point for the 

remaining test sequences reveals similar performance improvements for both system 

level and visual quality metrics as shown in Table 7.9 - 7.10 and Figure 7.18 

respectively.   
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scheme for all test sequences.  Further observation reveals that the PZStreet test 
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proposed cross-layer scheme attempts to reduce the PLR, by soliciting CQI reports 

from a large number of UEs thereby lowering the CQI feedback reduction.  

Nevertheless, considering that the PSNR quality metric for this test sequence is below 

30dB for both the texture and synthesised views in the two tested schemes, the most 

beneficial action in this case would be to reduce the traffic intensity and switch from 

MVD video to single view video transmission. 

 
   

 

(a) 

 

(b) 

 

Figure 7.17: PSNR comparative assessment – balloons test sequence (a) Base view (b) Synthesised view 
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Sequence % PLR % HPP PLR 
Average Packet 

Delay / ms 

Sector 

Throughput / 

Mbit/s 

% CQI Feedback 

Reduction 

Balloons 1.46 (±0.23) 3.25 (±0.47) 27 (± 2) 23.52 (±0.35) 84.62 (±0.43) 

Book 1.35 (±0.4) 3.36 (±0.42) 28 (± 8) 22.69 (±0.51) 84.57 (±0.61) 

Kendo 2.66 (±0.61) 3.41 (±0.52) 28 (± 5) 23.01 (±0.62) 85.27 (±0.21) 

News 1.43 (±0.25) 3.82 (±0.45) 27 (± 7) 22.77 (±0.81) 84.28 (±0.18) 

PZHall 0.43 (±0.16) 0.5 (±0.12) 9 (± 3) 17.23 (±0.23) 87.20 (±0.37) 

PZStreet 5.72 (±0.96) 19.42 (±1.1) 44 (± 4) 28.8 (±0.66) 78.53 (±0.91) 
 

Table 7.9: Cross-layer Content-aware M-LWDF with Combined CQI feedback reduction scheme – 

System level performance metrics 

 

Sequence % PLR % HPP PLR 
Average Packet 

Delay / ms 

Sector Throughput 

/ Mbit/s 

Balloons 1.22 (±0.24) 2.69 (±0.43) 27 (± 2) 23.04 (±0.8) 

Book 1.26 (±0.27) 3.17 (±0.48) 27 (± 5) 22.69 (±0.6) 

Kendo 2.53 (±0.18) 3.30 (±0.65) 28 (± 7) 23.04 (±0.6) 

News 1.29 (±0.23) 3.73 (±0.50) 27 (± 3) 22.34 (±0.7) 

PZHall 0.40 (±0.06) 0.48 (±0.14) 8 (± 8) 17.01 (±0.5) 

PZStreet 5.42 (±0.28) 19.23 (±0.40) 46 (± 2) 27.50 (±0.8) 
 

Table 7.10: Content-aware M-LWDF packet scheduling – System level performance metrics 
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(d) 

Figure 7.18: Visual quality metrics comparative assessment of (a) Base view – PSNR (b) Synthesised 

view PSNR (c) Base view – SSIM (d) Synthesised view – SSIM 

 

7.4.2 Subjective evaluation 

Apart from the objective visual quality metrics, used in the previous sections to assess 

the efficacy of the proposed schemes, the end user experience whilst viewing video 

content is a pertinent factor.  For this reason, a series of subjective evaluations were 

conducted according to the P.910 ITU-T standard [160] to evaluate the video quality of 

the MVD video transmission in a crowd event scenario.  As the cross-layer content aware 

scheduling scheme achieves significant uplink feedback signalling reduction whilst 

exhibiting similar performance, in terms of PSNR and SSIM, to the content aware M-

LWDF scheme, the cross-layer scheme together with the standard M-LWDF packet 

scheduling scheme were selected for subjective evaluation.  In order to limit the number of 

subjective tests, the base and synthesised views of each test sequence were selected for this 

study.  Moreover, as the system level simulations considered a large number of users 

receiving an MVD video stream, the subjective evaluation was conducted using the 

impaired test sequences received by two users representing the 25th and 50th percentile of 

the PSNR cumulative distribution function (CDF).  Thus, each test sequence view is 

shown five times, in a random order, and includes: 
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• Original (compressed but without any transmission impairments); 

• Standard M-LWDF packet scheduling (25th and 50th percentile); 

• Cross-layer content-aware M-LWDF packet scheduler with combined feedback 

reduction technique (25th and 50th percentile). 

 

With reference to the P.910 ITU-T standard, the subjective evaluations were carried 

out by asking participants to rate the quality of the video content based on the Absolute 

Category Rating with Hidden Reference (ACR-HR) method.  In order to have a higher 

discriminative power the nine-level scale, shown in Table 7.11 has been used for 

quality rating.  

Quality Rating Description 

9 Excellent 

8 
Good 

7 

6 
Fair 

5 

4 
Poor 

3 

2 
Bad 

1 
 

Table 7.11: Nine-level quality rating scale for subjective evaluation 

 

Whilst a minimum number of 15 participants are required for subjective evaluations, a 

total of 25 participants were enrolled to assess the visual quality of the various video 

sequences.  The collected data was imported into IBM SPSS statistical package, 

however prior to any further statistical analysis, the participant’s opinion scores were 

analysed in order to identify any outliers which might skew the results.  No significant 

outliers were detected and thus the data gathered from the entire cohort, having the 

distribution shown in Table 7.12, was considered for the statistical analysis. 

     

Participant information Yes No  

 

 

 

 

 Normal vision acuity 100% - 

Normal colour vision 100% - 
   

Experience in Video Coding, Transmission and 

Quality Assessment 
32% 68%  

 
  

Gender 
Male Female 

  
72% 18% 

   
 Age Group 18-24 25-34 35-44 45-54 55+ 

 
64% 20% 16% 0% 0% 

 

Table 7.12: Participant distribution 
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In order to assess the reliability of the collected data, the Cronbach’s alpha [69] 

coefficient is computed for each test sequence view using: 

 

( 1)
CB

Nc

N c
α

ν
=

+ −
                                                   (7.8) 

where c  is the average inter-item covariance among the items, N is the number of items 

and ν  is the average variance. 

 

The Cronbach’s alpha coefficient measures the consistency of the participants used in 

the subjective evaluation and although it can take values between negative infinity and 

1, any value greater than 0.8 indicates good internal consistency [69].  With reference 

to Table 7.13(a-b), the cross-layer content-aware M-LWDF with combined CQI 

feedback reduction improves the mean opinion score (MOS) of both the base view and 

synthesised view by an average of 0.77 and 0.85 respectively when compared to the 

standard M-LWDF scheduling scheme.  This improvement is in accord with the 

objective metrics evaluated in the previous section. 
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Sequence Original 
 

Standard M-LWDF 
Cross-Layer content-aware M-LWDF 

with combined feedback reduction 
Improvement 

 

Cronbach’s 

Alpha 

   
25

th
 per. 50

th
 per. 25

th
 per. 50

th
 per. 25

th
 per. 50

th
 per. 

Balloons 6.83 (±1.08) 
 

1.89 (±0.90) 3.06 (±0.80) 3.16 (±1.01) 4.61 (±1.08) 1.27 1.55 0.972 

Book 7.56 (±1.01) 
 

2.83 (±1.20) 4.33 (±1.30) 3.66 (±1.20) 4.77 (±1.50) 0.83 0.44 0.98 

Newspaper 7.11 (±1.55) 
 

1.94 (±0.67) 3.16 (±0.92) 3.05 (±0.92) 4.0 (±1.15) 1.11 0.84 0.948 

Poznan Hall 7.16 (±1.33) 
 

3.55 (±1.16) 3.72 (±0.90) 3.77 (±1.02) 4.44 (±1.23) 0.22 0.72 0.957 

Poznan 

Street 
7.27 (±1.28) 

 
1.77 (±0.84) 2.47 (±0.91) 1.94 (±0.84) 2.55 (±1.08) 0.17 0.08 0.957 

Kendo 6.72 (±1.37) 
 

2.5 (±1.01) 3.1 (±0.70) 3.5 (±1.08) 4.05 (±1.17) 1 0.95 0.951 
 

(a) 

Sequence Original 
 

Standard M-LWDF 
Cross-Layer content-aware M-LWDF 

with combined feedback reduction 
Improvement 

 

Cronbach’s 

Alpha 

   
25

th
 per. 50

th
 per. 25

th
 per. 50

th
 per. 25

th
 per. 50

th
 per. 

Balloons 6.44 (±1.61) 
 

1.44 (±0.51) 3.27 (±1.28) 4.0 (±1.44) 4.33 (±1.38) 2.56 1.06 0.958 

Book 6.22 (±1.64) 
 

1.72 (±1.25) 3.72 (±1.28) 3.5 (±1.12) 3.83 (±1.12) 1.78 0.11 0.934 

Newspaper 4.22 (±1.31) 
 

1.55 (±0.82) 2.22 (±0.89) 2.77 (±0.74) 3.16 (±0.66) 1.22 0.94 0.874 

Poznan Hall 6.66 (±1.22) 
 

3.55 (±1.26) 3.61 (±1.05) 3.5 (±1.08) 3.72 (±0.75) -0.05 0.11 0.970 

Poznan 

Street 
6.55 (±1.29) 

 
1.05 (±0.19) 2.44 (±0.77) 1.61 (±0.51) 2.55 (±1.16) 0.56 0.11 0.878 

Kendo 5.58 (±1.07) 
 

2.27 (±0.81) 3.72(±0.94) 3.38 (±0.91) 4.38 (±0.87) 1.11 0.66 0.977 

 (b) 

 

Table 7.13: Subjective quality assessment – MOS statistical results for (a) Base view, (b) Synthesised view 
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7.5 Summary 

 

This chapter focused on the design, implementation and testing of a cross-layer CQI 

feedback adaptation scheme for the MVD video transmission in a crowd event 

scenario.  It started with a comparative analysis of various packet scheduling schemes 

in a crowd event scenario whilst adopting a periodic wideband CQI feedback scheme.  

All tested packet scheduling schemes exhibited the same level of performance 

however the M-LWDF was adopted as the baseline packet scheduling algorithm for 

the rest of the work given that it was widely adopted in other studies and exhibits 

relatively lower computational cost.   

 

In order to improve the visual quality experienced by the users receiving an MVD 

stream, an enhanced M-LWDF scheme based on RLC queue based weighted factors 

was explored.  In this scheme, the MVD video packets are classified according to their 

relative importance such that the eNB steers the scheduling metric in order to reduce 

the high priority packet loss.  This scheme was tested on various test sequences and 

whilst the gains in the average PLR is marginal, the HPP PLR was reduced by an 

average of 1.74% when compared to the M-LWDF and up to 4.3% for the balloons 

test sequence.  The improvement in the system level performance metrics was also 

reflected in the visual quality metrics whereby the texture and synthesised view PSNR 

quality were improved by 1.13dB and 1.47dB respectively. 

 

The third part of this chapter combined the two feedback reduction schemes, proposed 

in chapter 3 and evaluated the performance of the content aware M-LWDF scheduling 

scheme in conjunction with the combined feedback reduction scheme.  As expected, 

tests on the balloons test sequence showed that although the combined feedback 

reduction scheme is able to reduce uplink feedback signalling by 87.5% this comes at 

the expense of 2dB degradation in the texture and synthesised view PSNR quality.  In 

order to counter the effect of the combined feedback reduction scheme, the CQI 

feedback was adapted through the use of a cross-layer technique which allows the eNB 

to solicit CQI reports from individual UEs based on the HPP PLR and weighted HOL 

delay.  The use of the proposed scheme allowed the eNB to tune the CQI feedback 

such that the texture and synthesised view PSNR quality approaches that of the content 
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aware M-LWDF whilst achieving an average of 84.1% in CQI feedback signalling 

reduction.  A summary of the key performance indicators for the balloons test 

sequence is shown in Table 7.14(a-b).  Moreover, subjective evaluations showed that 

the proposed cross-layer content-aware M-LWDF scheme coupled with the combined 

feedback reduction technique yielded a MOS improvement of up to 1.55 and 2.56 in 

the base view and synthesised view quality respectively when compared to the 

standard M-LWDF scheme.   

 

Packet 

Scheduler 

 
Enhancements 

% Feedback 

Reduction 
% PLR % HPP PLR  

 

 

Combined 

feedback 

reduction 

Cross Layer 

Adaptation 

M-LWDF 
 

� � - 1.61 6.99 

Content aware 

M-LWDF 

 
� � - 1.22 2.69 

 
� � 87.5 1.9 4.24 

 
� � 84.6 1.46 3.25 

 

(a) 

 

Packet 

Scheduler 

 
Enhancements 

Average 

Texture 

views PSNR 

(dB) 

Average 

Synthesised 

view PSNR 

(dB)  

Average 

Texture 

views   

SSIM 

            

Average 

Texture 

views 

SSIM 

 

 

 

Combined 

feedback 

reduction 

Cross 

Layer 

Adaptation 

M-LWDF 
 

� � 31.88 30.75 0.92 0.93 

Content 

aware   

M-LWDF 

 
� � 33.38 32.6 0.96 0.96 

 
� � 31.48 30.6 0.91 0.92 

 
� � 33.28 32.5 0.96 0.96 

 

(b) 

Table 7.14: Key performance indicators for balloons test sequence 
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Chapter 8 Conclusion 

 

The growth in mobile video traffic coupled with the increasing demand for an 

immersive multimedia experience, is expected to have an impact on the ability of 

MNO to deliver a superior user experience, given the capacity constraints of present 

networks.  This issue is further accentuated in uplink limited crowd event scenarios 

due to the higher user propensity to upload multimedia content on social media 

platforms coupled with excessive uplink signalling overhead.  To this end, in order to 

address this high uplink signalling overhead problem whilst minimising view quality 

distortion, this thesis investigated the use of lean cross-layer design techniques for the 

transmission of low latency MVD video content over an LTE network. 

 

8.1 Summary of work 

 

The first section of this thesis addressed the high uplink signalling overhead problem 

through the introduction of two novel schemes.  The first scheme initially considered a 

standard mobility scenario using a UE-assisted predictive filtering technique based on 

adaptive filters.  Both the LMS and NLMS based schemes presented in this work yield 

a significant feedback reduction in excess of 90% when compared to the 3GPP 

standardised method however, the LMS based scheme ranks better, with a PLR within 

5% of the 3GPP standardised scheme in both low and high mobility scenarios.  This 

represents an improvement in CQI feedback signalling reduction of more than 10% 

over the work presented in [49].  The proposed scheme exhibits a low computational 

load and memory footprint.  Nevertheless, a reduced complexity scheme, yielding an 

average computation load reduction of up to 35% when compared to the LMS based 

scheme, is proposed.  However, this comes at the expense of a marginal degradation in 

the system performance metrics, when compared to the LMS based scheme, and thus it 

might not be suitable for low loss, low latency applications. 

 

In order to address the crowd event scenario, this work considered a typical sport event 

scenario whereby users are seated in a three-tier football stadium partitioned into 

several areas with a number of radio sectors.  In such a scenario, a wideband CQI 

feedback mechanism coupled with extended reporting period is generally adopted by 
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MNO with the intention to mitigate the prohibitively high signalling overhead.  

Nevertheless, measurements collected from a live commercial network show that this 

is usually not enough and thus the LMS based predictive filtering scheme is adapted 

for the wideband feedback case.  System level simulation results indicate the efficacy 

of the proposed technique with an average CQI feedback reduction of 87% and a 

marginal degradation in PLR and sector throughput when compared to the 3GPP 

standard wideband scheme. 

 

The second proposed scheme applies directly to the crowd event scenario whereby the 

slow varying radio channel condition of static users in the same radio sector is 

exploited by using a CQI clustering technique.  This scheme yields a feedback 

reduction of 88.2% with only a minor degradation in PLR and sector throughput when 

compared to the 3GPP standard wideband scheme.  Although this scheme ranks better 

than the wideband LMS based predictive filtering scheme, both schemes could be 

considered as potential candidates for use in crowd event scenarios.  As a result of this 

uplink signalling overhead reduction, the dimensioning of the PUCCH region could be 

relaxed thereby allowing more capacity for users in the radio sector to upload data over 

the PUSCH. 

 

In the second section, the depth-texture view bit allocation problem was addressed 

through the introduction of a cross-layer MV-HEVC based depth-texture bit rate 

allocation estimation scheme for an FVV application.  Opposed to previous work in 

this field, the proposed scheme does not require pre-encoding and utilises a formulated 

statistical model based on both the image characteristics and the total available bit rate 

for the MVD stream.  The proposed scheme is able to estimate the optimal depth-

texture ratio for video test sequences, which were not used in the model formulation, 

with an estimation error of 3.3%.  This results in an average synthesised view PSNR 

improvement of 1.2dB, for the Newspaper test sequence, when compared to a 

commonly used fixed depth-texture rate allocation of 20% [92]. 

 

Apart from the depth-texture view bit allocation problem, this thesis investigated 

whether additional performance gains could be achieved through a custom tuned rate 

control algorithm for the depth map views.  In this work, we exploit the depth-map 

views characteristics to enhance the standard R-λ model based rate control scheme.  
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These enhancements, which include a refined key frame bit allocation and R-λ model 

coupled with an adaptive Lagrange multiplier and QP clipping function, yield an 

average improvement of the synthesised view PSNR and BD-PSNR of 1.15dB and 

0.45dB respectively when compared to the standard rate control scheme. 

 

Finally, in the last section, an enhanced content-aware scheduling scheme based on the 

M-LWDF scheduling algorithm was presented.  The enhancement is achieved through 

the use of RLC queue based weighted factors in the calculation of the scheduling 

metric together with a relatively low complexity MVD packet prioritisation scheme.  

System level simulations conducted on various test sequences indicate an improvement 

in the system level metrics resulting in an up lift in both texture and synthesised view 

PSNR by an average of 1.13dB and 1.47dB respectively when compared to the 

standard M-LWDF packet scheduling scheme.  As expected, although the combined 

use of the CQI feedback reduction schemes, presented in the first section of this thesis, 

is able to reduce the uplink feedback signalling by 87.5%, this comes at the expense of 

a significant degradation in view quality thereby impacting the user experience.  Thus,  

a lean cross-layer technique was explored in order to adapt the CQI feedback by 

allowing the eNB to solicit CQI reports from individual UEs based on the HPP PLR 

and weighted HOL delay metrics.  This technique has not only improved the texture 

and synthesised view PSNR quality, approaching that of the content aware M-LWDF 

scheme without any CQI feedback reduction applied, but has also achieved an average 

of 84.1% in uplink feedback signalling overhead reduction. 

 

8.2 Future research avenues 

 

Regardless of the fact that the contributions in this thesis address the objectives set out 

in this research journey, there exist a number of future research avenues that could be 

explored within the presented cross-layer MVD video transmission framework.  These 

include: 

 

Enriched channel state information feedback and Sounding Reference Signals (SRS) 

This work focused on the reduction of uplink signalling caused by CQI feedback.  

However, in addition, UEs typically report other information including the PMI, RI 
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and PTI.  Moreover, the increased penetration of multi-band carrier aggregation UEs 

and higher order MIMO increases further the amount of feedback signalling.  In view 

of the channel state correlation that exists in between sub-bands, the application of 

clustering techniques coupled with lossy or lossless compression schemes presents a 

possible research avenue.  Meanwhile, uplink channel-aware schedulers rely on SRS 

for efficient uplink resource allocation.  Nevertheless, the use of SRS consumes 

additional uplink resources and thus a study of the proposed techniques in the light of 

these additional overheads can be carried out.  

 

Energy-aware cluster leader rotation and cluster size adaptation 

In the proposed CQI clustering scheme, the cluster leader is elected solely based on its 

centrality.  This implies that a UE might repeatedly get re-elected resulting in a battery 

energy usage disparity between the UEs.  Thus, a cluster leader rotation mechanism 

coupled with an energy-aware cluster leader election can be investigated.  Moreover, 

in this work, the number of users remained static during the clustering operation, 

however one would need to consider the case whereby users are added or removed 

from cluster depending on their activity. 

 

Moving crowd scenario 

All the results presented in this thesis assume a typical crowd event scenario whereby 

users are static.  However, this is not always the case as in public demonstrations a 

crowd can move slowly along an open area.  Thus, a CQI dynamic clustering scheme 

can be investigated in order to re-trigger a clustering operation as the cluster leader 

become increasingly sub-optimal rather than after a set number of feedback cycles.  

Nevertheless, such re-clustering needs to seek a balance between system performance, 

user experience and signalling overhead reduction.  Moreover, slow moving crowd 

scenarios introduce the possibility of handovers between neighbouring radio sectors.  

Considering that UEs might dwell in the handover zone for an appreciable amount of 

time, reporting both the CQI and RSRP of the serving and neighbouring sectors, the 

use of RSRP measurements coupled with sector load measurements to estimate CQI 

feedback reports of individual or group of UEs can be investigated. 
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5G Deployment 

The emerging standalone (SA) 5G New Radio (NR) specifications, standardised in 

June 2018, introduces several new network functions including Software Defined 

Networking (SDN), network slicing and Mobile Edge Computing (MEC).  The latter is 

particularly relevant as it brings both content and intelligence in the radio access 

network and closer to the UE.  Apart from the evident reduction in latency, resulting in 

improved interactivity, the use of traffic breakout and video caching techniques in the 

edge nodes lead to lower mobile backhaul traffic.  Meanwhile, with sufficient channel 

state feedback from the UEs, a radio analytics application operating on the mobile 

edge host might allow a fast channel bandwidth prediction and reporting to the back-

end video server.  For these reasons, the use of the CQI feedback reduction techniques 

proposed in this work can also be studied and extended in context of a MEC platform.  

 

Evidently, the potential research avenues indicated above coupled with the deployment 

of 5G networks, expected in 2019, and the eventual development of a “beyond H.265” 

standard is expected to deliver a truly immersive multimedia experience in the years 

ahead. 
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Appendix A: Test Video Sequences 

 

In this thesis, a series of MVD video test sequences have been used to evaluate the 

performance of the proposed schemes.  These short MVD video test sequences are 

widely used by the standardisation bodies and academia in the study of multimedia 

systems.  The key characteristics and screenshots of the MVD test sequences used in 

this thesis are shown in Table A.1 and Figure A.1 (a-f) respectively.  

 

Test Sequence Provider Resolution 
Frame 

Rate 

Baseline/Camera 

Array 

Cameras 

(L-C-R) 

Balloons Nagoya University 1024 x 768 30 5cm / 1D 1-3-5 

Book Arrival Fraunhofer-HHI 1024 x 768 15 6.5cm / 1D 6-8-10 

Kendo Nagoya University 1024 x 768 30 5cm / 1D 1-3-5 

Newspaper 

Gwangju Institute 

of Science and 

Technology 

(GIST) 

1024 x 768 30 5cm / 1D 2-4-6 

Poznan Hall Poznan University 1920 x 1088 25 13.75cm / 1D 5-6-7 

Poznan Street Poznan University 1920 x 1088 25 13.75cm / 1D 3-4-5 

Table A.1: Test Video Sequences Characteristics (L - Left, C - Centre, R – Right) 

 

 

 

(a) 
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(b) 

 

 

 

(c) 

 

 

 

(d) 
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(e) 

 

 

(f) 

Figure A.1: MVD Test sequence screenshots (Left – Centre – Right) (a) Balloons, (b) Book Arrival, (c) 

Kendo, (d) Newspaper, (e) Poznan Hall, (f) Poznan Street 
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Appendix B: Subjective Quality Evaluation Questionnaire 
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Cross-Layer Design for Multi-view Video plus 

Depth Transmission over LTE Networks in 

Crowd Event Scenarios – Subjective Testing 
 

Date: _______________ 

 
Dear Sir/Madam, 

 

Thank you for participating in this experiment relating to my research, “Cross-Layer Design 

for Multi-view Video plus Depth Transmission over LTE Networks in crowd event scenarios”.  

Kindly fill in the below by encircling one of the available options before starting the 

assessment. 

 

Age Group: 18-24  25-34  35-44  45-54  55+ 

Gender: M / F 

Normal visual acuity (e.g, with glasses if worn): Yes / No 

Normal colour vision: Yes / No 

Video Coding/Processing and/or Multimedia Transmission Experience: Yes / No 

Assessment Location: UoM / Other 

 

In this experiment, you will be shown six (6) sets of video sequences.  Each test sequence is 

split into 2 views (View 1 and View 2) and each view will be shown 5 times with varying 

degrees of quality.  The first sequence being shown does not necessarily mean it is the best 

quality sequence, since they will be shown to you at random.  Each time a sequence is shown, 

you should judge its quality by using one of the nine levels of the following scale.  Do not base 

your rating on the content of the scene or the quality of the acting.  Observe carefully the entire 

video sequence before making your judgement. 

9 Excellent 

8 
Good 

7 

6 
Fair 

5 

4 
Poor 

3 

2 
Bad 

1 



194 

 

Video Quality Rating 

Please mark the appropriate box with a 

  

Test Sequence: Balloons View 1 

 Rating 

Reference 1 2 3 4 5 6 7 8 9 

A          

B          

C          

D          

E          

 

Test Sequence: Balloons View 2 

 Rating 

Reference 1 2 3 4 5 6 7 8 9 

A          

B          

C          

D          

E          

 

Test Sequence: Book View 1 

 Rating 

Reference 1 2 3 4 5 6 7 8 9 

A          

B          

C          

D          

E          

 

Test Sequence: Book View 2 

 Rating 

Reference 1 2 3 4 5 6 7 8 9 

A          

B          

C          

D          

E          

 

Test Sequence: Newspaper View 1 

 Rating 

Reference 1 2 3 4 5 6 7 8 9 

A          

B          

C          

D          

E          
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Test Sequence: Newspaper View 2 

 Rating 

Reference 1 2 3 4 5 6 7 8 9 

A          

B          

C          

D          

E          

 

Test Sequence: Poznan Street View 1 

 Rating 

Reference 1 2 3 4 5 6 7 8 9 

A          

B          

C          

D          

E          

 

Test Sequence: Poznan Street View 2 

 Rating 

Reference 1 2 3 4 5 6 7 8 9 

A          

B          

C          

D          

E          

 

 

Test Sequence: Poznan Hall View 1 

 Rating 

Reference 1 2 3 4 5 6 7 8 9 

A          

B          

C          

D          

E          

 

Test Sequence: Poznan Hall View 2 

 Rating 

Reference 1 2 3 4 5 6 7 8 9 

A          

B          

C          

D          

E          
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Test Sequence: Kendo View 1 

 Rating 

Reference 1 2 3 4 5 6 7 8 9 

A          

B          

C          

D          

E          

 

Test Sequence: Kendo View 2 

 Rating 

Reference 1 2 3 4 5 6 7 8 9 

A          

B          

C          

D          

E          
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Abstract—Crowd events such as public demonstrations, 
sports events and mass entertainment gatherings pose 
additional challenges to mobile network operators due to 
the asymmetric traffic profile.  In such crowd events, 
networks are typically uplink limited whilst also requiring 
a significant amount of signaling information to be sent by 
the user equipment (UE) to the evolved Node B (eNB). 
This signaling includes channel quality indicator (CQI) 
feedback reports which provide necessary information for 
the selection of the downlink transmission parameters 
such as the modulation and coding scheme. In this work, 
the authors address this crowd event signaling problem by 
considering a common sports event scenario, whereby 
users are seated in a football stadium, and propose a novel 
CQI clustering scheme to reduce the feedback report 
signaling.  The proposed scheme was implemented and 
tested in an LTE system level simulator, which was 
purposely modified to model the scenario, and has shown 
efficacy with an overall CQI feedback signaling reduction 
of up to 91% whilst maintaining stable sector throughput, 
when compared to the standard third generation 
partnership project (3GPP) CQI feedback mechanism. 

Index Terms—3GPP LTE, frequency selective 
scheduling, clustering techniques, crowd event handling 

I. INTRODUCTION 

According to Cisco, the average mobile traffic is 
expected to increase five-fold by 2020 when compared 
to 2015 [1].  This increase in traffic refers to normal 
business day operating conditions. However, mobile 
network operators have to also contend with crowd 
events.  During such events a large number of users, 
typically in the tens of thousands, are usually gathered in 
a confined geographical area posing significant 
challenges to the mobile network operators tasked with 
providing an acceptable quality of service.  As opposed 
to normal operating conditions, the traffic profile during 
such crowd events is uplink dominated as users generate 
and share multimedia content, in the form of photos and 
video, on social media platforms.  Meanwhile to fully 

exploit the benefits of frequency domain scheduling 
(FDS) [2], each user equipment (UE) in the radio sector 
has to report a channel quality indicator (CQI) feedback 
report to the eNB.  This generates significant uplink 
signaling overhead whilst increasing the risk of uplink 
control channel congestion. 

In this paper, we propose a novel CQI clustering 
scheme to reduce signaling traffic in a typical crowd 
event scenario whereby users are seated in a football 
stadium.  To the best knowledge of the authors, this 
work represents the first study on the application of 
clustering techniques to CQI feedback signaling 
reduction in crowd events.  Even though the focus of 
this work is on the 3GPP LTE standard, being the 
cellular network technology commonly deployed 
worldwide, it can be applied to any current and future 
OFDMA-based cellular network technology.   

The rest of the paper is organized as follows: Section 
2 provides a brief description of CQI feedback reporting 
and signaling reduction techniques; Section 3 gives an 
overview of the system model together with a 
description of the proposed scheme; Section 4 first 
elaborates on the formulation of a statistical model used 
to estimate the number of clusters in the radio sector and 
then proceeds to a description of the simulation 
environment, parameter selection and results, while 
Section 5 provides some comments and conclusions. 

II. RELATED WORK AND OUR CONTRIBUTION 

In LTE, the UE uses the downlink reference signals 
transmitted by the eNB [2] to measure the signal-to-
interference noise ratio (SINR) for each PRB k, given by  

                       , ,

, ,

i k i k
k

j k j k k
j i

P G

P G n
γ

≠

=
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                      (1)  

where Pi and Gi are the transmit power and antenna gain 
of the serving base station i whilst Pj and Gj are the 
transmit power and antenna gain of the interfering base 
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station j, and nk is the additive Gaussian noise. The CQI 
value is then derived from the measured SINR by using 
a chipset vendor specific mapping table which gives the 
highest modulation coding scheme (MCS) that the UE 
can decode with a block error rate not exceeding 10% 
[2].  Several feedback signaling reduction schemes have 
been proposed in literature, which can be divided into 
three categories, namely time domain, frequency domain 
and threshold based techniques.  Time domain 
techniques form part of the 3GPP LTE standard and are 
split into two sub-categories, namely periodic and 
aperiodic reporting [3].  These techniques are commonly 
used in commercial networks as they allow network 
operators to control the amount of CQI feedback reports 
to be sent by the UE to the eNB by explicitly defining 
when CQI feedback reports need to be transmitted and 
their periodicity. 

Frequency domain based feedback signaling 
reduction techniques are divided into three sub-
categories namely full-band, wideband, and subband 
compression techniques.  In full-band compression 
techniques, a UE uses a mathematical transform such as 
the Haar wavelet transform [3] and the discrete cosine 
transform (DCT) [4] to calculate a small set of dominant 
transform coefficients which are then transmitted to the 
eNB.  Even though such techniques allow the eNB to 
reconstruct a good approximation of the entire system 
bandwidth quality, their efficacy depends on the delay 
spread of the channel, thereby reducing their 
applicability.    

Wideband compression, which forms part of the 
3GPP LTE standard, requires a UE to transmit a single 
CQI value derived from the effective SINR γeff given by:   

                  1

1
log e

kN

eff
kN

γ
λγ λ

−

=

 
= −   

 
                   (2)           

where N represents the number of PRBs to group, λ is a 
calibration factor that is MCS dependent [7] and γk is the 
instantaneous SINR of the kth PRB.  The effective SINR 
is computed using the effective exponential signal-to-
noise ratio mapping (EESM) [5, 6] as different PRBs 
undergo different fading characteristics.  In the case of 
wideband compression, N is set to the total number of 
PRBs defined by the system bandwidth.  Even though 
wideband compression is widely used in live 
commercial networks due to its simplicity and high 
compression factor, it precludes the eNB to have rich 
channel state information across the whole frequency 
band thereby limiting system performance. 

Subband compression techniques have attracted 
significant research attention and several proposals can 
be found in literature including Best-M individual [8] 
and Best-M average [8].  In addition, the 3GPP LTE 
standard defined two sub-band compression schemes 
namely eNB-configured sub-band feedback and UE-
selected sub-band feedback.  These techniques allow the 
eNB to have richer channel state information across a 

wider frequency band, leading to a better system 
performance when compared to wideband CQI 
reporting.  Nevertheless, this comes at the expense of a 
higher signaling overhead on the physical uplink shared 
channel (PUSCH) or physical uplink control channel 
(PUCCH), depending on whether or not the UE has 
uplink data scheduled to be transmitted [2], making 
them unsuitable for crowd event scenarios. 

Inspired by the work found in [9-11], the authors in 
[12] apply a threshold-based signaling reduction 
technique whereby users which exceed a set threshold, 
based on the likelihood that the user will be scheduled, 
are candidates to use full-band feedback whilst the rest 
use wideband frequency domain compression.  The use 
of CQI prediction techniques was investigated in [13-
15] whilst in [16] the authors explore the use of spatial 
correlation of a number of users in a moving vehicle to 
reduce the CQI feedback signaling.  In this work, the 
authors assume that a group of users which are in close 
proximity of each other, experience the same SINR 
conditions and hence a CQI feedback report received 
from a representative UE in the group can directly be 
applied to the rest of the users in the group. Apart from 
the additional complexity required to collect accurate 
user location information, the assumption that a group of 
users in close proximity of each other experience the 
same radio conditions might hold true only for the 
wanted signal, S, but not the interferers, I.  The wanted 
signal, S, received by the group of users is transmitted 
from a single location and thus undergoes the same 
radio impairments in terms of path loss, shadow and 
multi-path fading.  However, the same cannot be said 
for the interferer, I, which is usually composed of 
several interfering signals transmitted from different 
locations.  Hence the SINR of users in close proximity 
of each other cannot be assumed to be similar and thus, 
grouping the users solely based on their spatial 
proximity is not enough. 

Our contribution in this work is two-fold.  First, we 
exploit the slow varying radio channel conditions of 
static users located in the same radio sector and propose 
a novel CQI clustering scheme to reduce feedback 
signaling.  As opposed to [16], we use CQI sample 
based statistics to group UEs into several clusters.  
Secondly, a statistical model to estimate the number of 
clusters based on the active users in the radio sector is 
formulated.  In this work, we focus on wideband 
reporting, this being widely used in live commercial 
networks, however the proposed scheme can be applied 
to the subband reporting scheme with minor 
modifications. 

III. SYSTEM MODEL AND PROPOSED SCHEME 

A. System Model 

A common strategy used by mobile network 
operators in tackling crowd events is to partition the 
crowd into smaller areas by introducing additional radio 



sectors.  For the case of this study, consider a three-tier 
football stadium, shown in Fig. 1, which has been 
partitioned into several areas with a number of radio 
sectors.  The rest of this work will focus on the three 
radio sectors in the south stand, shown in Fig. 1, 
whereby sector B is the sector under study whilst the 
adjacent sectors A and C contribute to the interference. 
 

 
 
 
 
 
 
 
 
 
 
   
 
Figure 1: Three-tier football stadium and radio sectors under study 

[17] 
 

The seating configuration parameters for each area, 
which are aligned with the FIFA football stadium 
technical guidelines [18], are defined in Table I whereby 
passage ways refers to zones used for spectator 
movement.  Using this seating configuration, each area 
has a seating capacity of 1540 spectators.  Considering a 
40% operator market share [19], 54% of spectators who 
actively share content in such crowd events [20] and a 
40% simultaneous user ratio, the maximum number of 
simultaneous active UEs, at any one time, in the sector 
is approximately 130.   

TABLE I.  SEATING CONFIGURATION PARAMETERS 

Parameter Value 

Area dimension 30m x 30m 

Front/Back passage ways 1m  

Lateral passage ways 2m 

Inter-seat spacing in x-direction 0.5m 

Inter-seat spacing in y-direction 1m  

 
In order to minimize the cell overlap, a sculpted 

radiation pattern antenna having a sharp -3dB cut-off 
point is typically used in such scenarios [21].  These 
antennas are typically fixed to the underside of the 
stadium roof facing the seating area to be covered.  The 
use of this antenna allows the signal to be focused in a 
specific area of the crowd whilst minimizing inter-cell 

interference.  The signal level, in dBm, provided by 
sector B at 0.5m above ground level (AGL), is shown in 
Fig. 2 whilst the relevant simulation parameters used in 
this path loss study are provided in Table II. 

 
 
Figure 2: Sector B signal level in dBm @ 0.5m AGL (Elevation) 

 

B. Proposed Scheme 

With reference to Fig. 3, the operation of the 
proposed scheme is divided in three phases namely: 
Initialization, cluster formation and clustered phase.  
During the initialization phase, the UEs operate in 
legacy_mode and periodically report the wideband CQI 
measurement to the eNB to allow the eNB to build a 
CQI report history for each active UE.  The eNB keeps 
track of the number of CQI reports received per UE and 
when a UE reaches UEτ  reports, the eNB updates the 

status of the UE to cluster_wait mode.  In this mode, the 
UE continues to report the CQI measurements however 
the eNB will overwrite old CQI measurement values 
thereby ensuring that the eNB retains the latest 

UEτ reports for each UE.  When all active UEs are in 

cluster_wait mode, the eNB moves on to the cluster 
formation phase.  During this phase, the eNB will: 

 
1. For each UE, compute the mean ueμ  and 

variance 2
ueσ  using the last UEτ CQI measurement 

reports and normalize the data. 
2. Apply a data clustering algorithm on the two 
dimensional data vector, composed of the 
computed normalized statistics in step 1, to cluster 
users into k clusters and assign a cluster ID to each 
UE.  In this work, we selected the k-means 
algorithm, being one of the most commonly used 
and robust data clustering techniques.
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Figure 3: Proposed CQI feedback clustering scheme 

3. For each cluster; calculate the centrality of each 
UE within the cluster using (3).  The centrality of a 
UE, Ci, defines how close a UE, i, is to the other 
UEs, j, in the same cluster, based on the computed 
normalized statistics.  The UE with the lowest 
centrality value (i.e. highest centrality) is elected as 
cluster leader, UECL.  This process ensures that the 
cluster leader CQI reports are representative of the 
whole cluster. 

                 ( ) ( )22 2 2

ii i j j
j i

C μ μ σ σ
≠

= − + −               (3) 

Following the cluster formation phase, the eNB moves 
to the clustered phase and remains in this mode until it 
receives CLγ  CQI measurement reports from all the 

cluster leaders.  After which, the eNB moves back to the 
initialization phase and restarts the process. In the 
clustered phase, the cluster leader will continue sending 
CQI reports to the eNB and the eNB will use these 
reports as representative CQI reports for the other UEs 
in the cluster.  Meanwhile, the other UEs in the cluster 
will be set to CQI_Suppressed mode indicating that 
these UEs will not transmit CQI measurement reports.  

IV. STATISTICAL MODEL FORMULATION AND RESULTS 

A critical input parameter for the majority of data 
clustering techniques is the required number of clusters, 
k.  Choosing k automatically is notoriously difficult and 
is usually either fixed or else an iterative technique to 
merge/split clusters is adopted [22] at the expense of 
increased computational complexity.  In this work, we 
exploit domain-specific knowledge to formulate a 
statistical model able to estimate the number of clusters 
based on the active users in the radio sector.  In this 
respect, the cluster formation algorithm, described in 
Section 3, was first implemented in MATLAB® and 
tested using CQI measurements extracted from a large 
number of UEs, simulated in an LTE system level 
simulator [23], for various values of k.  The parameters 
used in these simulations are provided in Table I and II.  

TABLE II.  SIMULATION PARAMETERS 

Parameter Value 

System Bandwidth 10MHz (50 PRB) 

Scheduler Proportional Fair 

Number of Antennas 1 (Tx and Rx) 

CQI Type Periodic (2ms), wideband CQI (4bits) 

Traffic Model Full Buffer 

Mobility All UE’s are stationary 

eNB output power 43dBm 
Frequency Re-use 1 

Antenna Height 20m 

Antenna Type Commscope CNLPX3055F 

Propagation Model 
Micro Cell  

L=24 + 45log(d+20) @ 2GHz 
Fast Fading Realization Jakes Model 

Number of Active 
UE’s, M 

{50, 70, 90, 110, 130} 

UEτ and CLγ  100 and {3000, 5000, 8000} 

 
With reference to Fig. 4, it is evident that increasing 

the number of clusters, k, would result in more compact 
clusters as the sum of within-cluster point-to-cluster 
centroid distance, D, decreases.  Nevertheless, the 
increase in k implies an increased number of cluster 
leaders transmitting CQI reports to the eNB.   In order to 
strike a balance between these two opposing factors, a 
cost function relating the normalized CQI report 
transmission cost, η, and cluster compactness metric, D, 
is used to understand the variation of the total cost, φ, 
with the number of clusters k.  Considering the reporting 
period and CQI message length shown in Table II, the 
cost function is given by: 

 

                  
( )

2000    (bits/sec)

k D

k

φ α β η
η

= ⋅ + ⋅
=

                         (4) 

where α  and β  are weighting constants empirically set 

to 15 and 1.2 respectively. 
   



 Figure 4: Variation in cluster compactness with number of clusters 
(number of active UEs = 130) 

 
Plotting the cost function on a logarithmic scale for 

different number of active UEs, M, yields a set of 
upward concave parabolas shown in Fig. 5.  Further 
inspection shows that an optimal number of clusters, 
kopt, exist for different values of M.  

 

 
Figure 5: Cost function dynamics 

 
Repeating this analysis for various values of M and 

finding the optimal number of clusters for each case 
reveals the inverse relationship shown in Fig. 6.  As the 
number of active UEs increases, the optimal number of 
clusters rises until it reaches an asymptotic value.  This 
is expected as the CQI transmission cost increases 
linearly with k thereby enforcing a hard limit on the 
optimal number of clusters.  Meanwhile, at low values 
of k, the inverse relationship will return a progressively 
lower number of clusters.  Nevertheless, experimental 
results show that below 15 active users (which does not 
constitute a crowd event in any case), the proposed 
clustering scheme benefits diminish and hence it would 
be more appropriate to switch back to the legacy scheme 
whereby UEs report the CQI directly to the eNB.  The 
data was further analysed in IBM SPSS© statistical 
package and an inverse model, given by (5) and having 
a coefficient of determination, R2

, of 0.966 was derived 
using the least square estimation technique [24]. 

 
Figure 6: Inverse relationship between log(k) and M 
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M
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                (5) 

The proposed scheme described in Section 3 
together with the derived statistical model given by (5) 
were implemented in LTE-Sim [23] to verify the 
efficacy in terms of average cell throughput and 
feedback reduction.  Monte Carlo simulations, using the 
parameters given in Table I and II were carried out over 
50 random seeds in order to achieve statistical relevant 
results. The average sector throughput and feedback 
reduction, when compared to the 3GPP standardized 
wideband feedback scheme, for various values of M are 
shown in Fig. 7 and Table III respectively. 

 

 
Figure 7: Sector throughput comparison for various number of 

Active UEs in sector (standard deviation is indicated by vertical bars) 
 

The proposed CQI feedback clustering scheme 
manages to achieve an average CQI feedback reduction 
of 88.2% when compared to the 3GPP wideband 
scheme. This level of feedback reduction was achieved 
whilst maintaining approximately the same level of 
performance, in terms of sector throughput, as 
evidenced in Fig. 7.  Moreover, with reference to Table 
III, the feedback reduction gradually increases as the 
clustering becomes more effective with increasing 
number of active UEs.   

kopt = 4 

kopt = 7 



TABLE III.  FEEDBACK REDUCTION WITH RESPECT TO 3GPP 
WIDEBAND SCHEME 

Active UEs % Feedback Reduction 

50 83.1 

70 86.9 

90 89.1 

110 90.4 

130 91.4 
 

The effect of the parameter CLγ on the performance 
of the proposed scheme was also investigated for 
various values of CLγ , shown in Table IV.  Intuitively, 

as CLγ increases, we prolong the clustered phase thereby 
achieving a marginally improved feedback reduction.  
However, this comes at the expense of degradation in 
sector performance due to the user clustering and 
cluster leader selection becoming increasingly sub-
optimal. 

TABLE IV.  EFFECT OF PARAMETER CLγ  ON THE PERFORMANCE OF 

THE PROPOSED SCHEME (ACTIVE UE’S = 90) 

V. CONCLUSION AND FUTURE WORK 

In this paper we presented a novel CQI feedback 
scheme for signaling reduction during crowd events. 
The key contribution lies in the use of a commonly used 
data clustering technique within the CQI feedback 
management domain coupled with a statistical model to 
estimate, online, the number of clusters based on the 
active users in the radio sector.  Experimental results 
based on Monte Carlo simulations showed that the 
proposed technique provides up to 91% CQI feedback 
signaling reduction whilst maintaining the same level of 
sector throughput when compared to the standardized 
3GPP wideband scheme.  Future work will focus on the 
use of a cross-layer technique to adapt the CQI 
feedback scheme in relation to the traffic type being 
downloaded by the user. 
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Abstract: The third generation partnership project (3GPP) long-term evolution (LTE) cellular system offers high data rate
capabilities by leveraging several techniques including link adaptation and frequency selective scheduling. These techniques
rely on accurate channel quality indicator (CQI) feedback reports that are sent by the user equipment (UE) to the evolved node
B, a process which results in high signalling overhead. In this study, the authors propose a UE-assisted sub-band feedback
compression scheme based on a predictive filtering technique to reduce this signalling overhead. Four schemes based on
adaptive filters have been designed, implemented and tested in an LTE system level simulator. Simulation results indicate that
the proposed compression scheme has shown efficacy with an overall CQI feedback signalling reduction of up to 92.5% whilst
maintaining stable sector throughput, when compared with the standard 3GPP CQI feedback mechanism. Although the
proposed scheme exhibits low computational and memory complexity, a reduced-complexity scheme achieving an average
computational load reduction of up to 35% is also presented.

1 Introduction
1.1 Background and motivation

Contemporary wireless communication standards such as long-
term evolution (LTE) standardised by the third generation
partnership project (3GPP) in 2008 and further enhanced through
subsequent releases [1], offer significant improvement in the
coverage, capacity and flexibility of mobile cellular systems
compared with legacy technologies. This is realised through
several fundamental changes across all layers of the
communication stack. Primarily, at the physical layer, the system
adopts an orthogonal frequency division multiple access (OFDMA)
technique which splits the available bandwidth into orthogonal
physical resource blocks (PRB), thereby offering increased
capacity and robust performance in a multipath frequency selective
channel. The high peak data rate capability is achieved through the
use of several techniques including multiple-input multiple-output,
adaptive modulation and coding and frequency-domain scheduling
(FDS) [2]. These rely on accurate channel state information,
predominantly in the form of channel quality indicator (CQI)
feedback reports, sent by the user equipment (UE) to the evolved
node B (eNB) on the physical uplink shared channel (PUSCH) or
physical uplink control channel (PUCCH) depending on whether or
not the UE has uplink data scheduled to be transmitted [2]. This
CQI feedback is derived from the signal-to-interference noise ratio
(SINR) measurements of the downlink reference signals
transmitted by the eNB. For each PRB k, the received SINR is
given by

γk =
Pi, kGi, k

∑ j ≠ i P j, kG j, k + nk
(1)

where Pi and Giare the transmit power and antenna gain of the
serving base station i whilst Pj and Gj are the transmit power and
antenna gain of the interfering base station j, and nk is the additive
Gaussian noise. The resulting SINR is then mapped to a discrete
CQI value, using a UE chipset vendor specific mapping table,
which indicates the highest modulation coding scheme (MCS) that
the UE can decode with a block error rate not exceeding 10%. The
reported CQI value does not only indicate the downlink channel
quality but also considers the capabilities of the UE receiver

thereby allowing a UE with an advanced receiver architecture to
report a higher CQI value for the same downlink channel quality.

To take full advantage of FDS, each UE must feedback a CQI
value for each PRB to the eNB. This is known as full-band
feedback and although it allows the eNB to gain knowledge of the
channel conditions on each PRB, thereby maximising the downlink
performance, it is not practical due to the significant uplink
signalling overhead that needs to be transported over the bandwidth
limited physical channels. This is particularly relevant in high
traffic areas, where uplink control channel congestion can occur,
leading to a rapid degradation of the overall sector performance.
This problem is further exacerbated by the expected increase in
smartphone data traffic on mobile networks. According to Cisco,
the average smartphone traffic in 2020 will be almost five times
greater than 2015 [3] and thus this feedback will constitute a real
and significant problem for mobile network operators.

1.2 Related work and our contribution

The challenge to design low overhead CQI feedback schemes has
garnered significant research attention in recent years. The majority
of the techniques found in literature can be categorised into three
main groups namely time domain, frequency domain and
threshold/prediction based techniques. The overarching goal is to
strike a balance between achieving accurate channel estimation
with limited uplink feedback whilst maintaining an adequate
system performance.

To control the uplink signalling overhead, the CQI feedback is
generally limited in both the time and the frequency domain. In the
time domain, CQI reporting can either be periodic or aperiodic [4]
whilst in the frequency domain, several feedback compression
techniques were proposed which can be broadly divided into three
categories: wide-band, full-band and sub-band compression
techniques. In wide-band compression, a UE transmits a single
CQI value for all the PRBs in the bandwidth. In view of frequency
selective fading, different PRBs undergo different fading
characteristics and therefore when grouping the instantaneous
SINR of the PRBs, the effective SINR, γeff, needs to be computed
using the effective exponential signal-to-noise ratio mapping [5, 6]
given by
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γeff = − λlog 1
N ∑

k = 1

N
e−(γk/λ)

(2)

where N represents the number of PRBs to group, λ is a calibration
factor that is MCS dependent [7] and γk is the instantaneous SINR
of the kth PRB found using (1). For wide-band compression, N is
the total number of PRBs defined by the system bandwidth [2].
The effective SINR is then mapped to a discrete CQI value using
the chipset vendor specific SINR-CQI mapping table stored in the
UE. Although this technique is attractive due to its simplicity and
high compression factor, it comes at the expense of lower system
performance due to the lack of channel quality detail. Nevertheless,
wide-band compression was included in the 3GPP LTE standard as
of Release 8 and is widely used in live commercial networks.

Full-band compression techniques generally involve the use of
mathematical transforms such as the discrete cosine transform [8,
9] and the Haar wavelet transform [10] to reduce the signalling
overhead. Their advantage is that the eNB can reconstruct a good
approximation of the entire system bandwidth quality using a
relatively small number of transform coefficients reported by the
UE. Nevertheless, the reconstruction quality depends on the delay
spread of the channel.

In sub-band compression, a UE transmits a selected set of CQI
values to the eNB. Such techniques include Best-M individual [11]
and Best-M average [11]. The 3GPP LTE standard defines two sub-
band compression techniques:

• eNB configured sub-band feedback [2]: Here, the system
bandwidth is divided into q sub-bands of N consecutive PRBs
and the UE reports a wide-band CQI value together with a
differentially encoded CQI value for each sub-band.

• UE-selected sub-band feedback [2]: Similar to eNB-configured
sub-band feedback, the system bandwidth is divided into q sub-
bands of N consecutive PRBs. The UE then selects M preferred
sub-bands and reports a wide-band CQI value together with a
differentially encoded CQI value reflecting the average quality
of the M preferred sub-bands. The position of the selected M
preferred sub-bands also needs to be reported thereby lowering
some of the gains.

The third category encompasses techniques which make use of
either channel prediction or event-based triggering to reduce the
feedback. A number of predictive channel quality methods can be
found in literature however these are all aimed at mitigating the
impact of CQI delay on the system performance without any
consideration to the CQI compression problem. In [12], the authors
propose an autoregressive prediction filter, whilst a normalised
least mean square (NLMS) filter was applied to compensate for
CQI delay in [13]. Similarly, in [14, 15] the authors propose
several CQI prediction schemes based on Wiener filter, cubic
spline extrapolation and short-term average. In [16], Chiumento et
al. propose an adaptive channel quality estimation method based
on Gaussian process (GP) regression at the base station. This GP-
based CQI prediction is exploited in a dual-control technique
which makes use of active learning to determine an optimal
prediction time for each user, achieving a 77% signalling overhead
reduction when compared with the 3GPP standard eNB-configured
sub-band feedback compression technique with a packet loss rate
(PLR) of 10%. To the best of the authors’ knowledge, this
represents the only work which makes use of channel quality
prediction towards CQI feedback signalling reduction however it
does not report the computational complexity of the dual-control
technique. In [17], the authors extend the work found in [18–22]
and propose a threshold-based signalling reduction technique. In
this scheme users which exceed a set threshold, based on the
likelihood that the user will be scheduled, are candidates to use
full-band feedback whilst the rest use wide-band frequency-domain
compression. Out of all the candidates allowed to use full-band
feedback, only those which have the lowest average SINR will be
requested by the network to use periodic full-band feedback.
Although this scheme achieves marginal gains, it is mostly suitable
for low-mobility scenarios where channel conditions are largely

stable. Meanwhile, in [23], the authors propose an adaptive
threshold feedback compression scheme to address the
shortcomings of threshold-based approaches.

In this paper, we propose two sub-band feedback compression
schemes based on a UE-assisted predictive filtering technique. As
opposed to previous work, we exploit short-term channel
prediction for feedback reduction. This is accomplished through
the use of simple, low computational complexity adaptive filters in
a predictive filtering algorithm involving the UE. Two types of
adaptive filters were designed and evaluated using either the
reported CQI or SINR measurements and the efficacy of each
scheme was assessed in terms of the downlink system performance
and feedback reduction. The best scheme was further evaluated in
terms of computational complexity and memory footprint leading
to the design and evaluation of a reduced-complexity scheme. Tests
were also carried out in a live commercial LTE network to
establish the effectiveness of the proposed schemes in real-world
channel conditions. To the best of the authors’ knowledge, this
work represents the first study on the application of a UE-involved
prediction filtering technique to feedback compression which has
also been tested in a live commercial network. The proposed
schemes can be applied to any OFDMA-based cellular network
technology, however, in this work, we focus on the 3GPP LTE
standard; this being the most advanced cellular network technology
available.

The rest of the paper is organised as follows. Section 2
describes the proposed system model and algorithm, Section 3
gives a description of the simulation environment, parameter
selection, complexity analysis and results, and a detailed account of
the field measurement setup and results, while Section 4 provides
some comments and conclusions.

2 System model and algorithm design
With reference to Fig. 1, assume that the system bandwidth
composed of L PRBs, where L is defined by the 3GPP Release 8
standard [1], is divided into q sub-bands of N consecutive PRBs.
For each PRB, a UE conducts SINR measurements denoted by γL
and calculates the effective SINR of each sub-band, denoted by
γq

sub, using (2). Two sub-band feedback compression schemes were
designed using either the reported effective SINR (fed directly to
the adaptive filter as shown by the dotted path marked with an
asterisk) or CQI measurements (where the effective SINR is
mapped to a discrete CQI value in the UE as described in [24] prior
to transmission). The advantage of transmitting the effective SINR
is that the eNB is able to reconstruct an un-quantised view of the
channel conditions experienced by the UE. However, the CQI
value does not only indicate the downlink channel quality but it
also takes into account the capabilities of the UE receiver and
therefore a UE offering a better receiver performance can report a
higher CQI value for the same effective SINR measurement. 

The SINR to CQI mapping is UE chipset vendor dependent and
thus reporting the effective SINR directly would introduce
additional complexities as the eNB needs to either keep a database
of SINR-CQI mapping tables, one per UE type, resulting in
additional memory complexity in the eNB or interrogate the UE to
exchange the SINR-CQI mapping table leading to a marginal
increase in signalling. Now consider a stream of measurements for
the qth sub-band, x[k], that has to be reported by the UE. Also,
consider that the required accuracy of the measurements at the eNB
is ± Emax-sinr and ± Emax-cqi depending on whether the effective
SINR or CQI measurements are used, respectively. Then, using the
proposed predictive filtering algorithm, instead of reporting the
stream x[k], we selectively report some elements of the
measurement stream such that the eNB is able to reproduce the
complete measurement stream for the qth sub-band within the
given accuracy. This is achieved by maintaining a set of predictors,
one for each sub-band, in the UE and eNB which are an exact
replica of each other. These predictors are based on adaptive filter
theory and compute an estimate of the next element in the
measurement stream x^[k], given some previous elements. As
shown in Fig. 2, for the effective SINR measurement scheme, if the
predicted value x^[k] differs from the actual value x[k] by more than
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the error budget, ± Emax-sinr, then x[k] is transmitted; otherwise the
actual measurement is not reported and the eNB uses its prediction,
x^[k]. Thus, feedback reduction could be achieved by exploiting
short-term channel predictions. 

2.1 Adaptive filtering algorithms

The choice of the adaptive filtering algorithm depends on the trade-
off of several factors such as rate of convergence, robustness,
computation complexity and numerical properties. In this work, we
selected two well-known adaptive filter algorithms: namely, the
least mean square (LMS) and the NLMS algorithms. Despite their
simplicity, these algorithms provide good performance in a wide
variety of applications. The fundamental equations for the
computation of the output, error and LMS weight updating are
given by (3)–(5), respectively

y[k] = wT[k]x[k] (3)

e[k] = d[k] − y[k] (4)

w[k + 1] = w[k] + μx[k]e[k] (5)

where y[k] is the output of the adaptive filter, e[k] is the prediction
error, d[k] is the desired signal, μ is the step size parameter, M is
the filter order whilst w[k] and x[k] denote the M × 1 column
vectors

w[k] = w1[k], w2[k], w3[k], …, wM[k] T (6)

x[k] = x[k − 1], x[k − 2], x[k − 3], …, x[k − M] T (7)

The main difference between the LMS and NLMS algorithms is in
the weight updating equation. The LMS algorithm is sensitive to
the scaling of its input x[k] thereby making it difficult to choose an
appropriate step size that guarantees convergence [25].
Alternatively, the NLMS algorithm normalises the step size
parameter with the power of the input signal. The NLMS adaptive
filter updates the weight according to

w[k + 1] = w[k] +
μT

α + ∥ x[k] ∥2 x[k]e[k] (8)

where μTis the step size parameter and α is a constant to ensure that
w[k + 1] is bounded even when the input is very small. An in-
depth explanation of the LMS/NLMS algorithm can be found in
[25–27].

2.2 Algorithm description

The operation of the predictive filtering algorithm is divided into
two phases as shown in Algorithm 1 (see Fig. 3). This is a generic
algorithm and applies for both the LMS and NLMS adaptive filter
cases. In training mode, measurements x[k] are reported by the UE
to the eNB. Meanwhile, both the UE and the eNB use the last M
measurements to compute x^[k] for the upcoming measurement and

Fig. 1  Prediction filtering technique (N = 4) showing the report for sub-band 0
 

Fig. 2  Effective SINR channel feedback reduction
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update the filter coefficients w based on the actual prediction error
using (5) or (8) depending on the type of adaptive filter used. This
ensures that the prediction filters in the UE and eNB are
synchronised. As long as the average prediction error over the past
M measurements is above the error budget or the number of
measurements reported to the eNB is lower than Tmax, the UE
operates in training mode and transmits x[k]. Otherwise, the UE
will switch to prediction mode. In this mode, the UE computes x^[k]
at each time step k and compares it to the actual measurement.
Meanwhile, the eNB is also in prediction mode computing x^[k] at
each time step k and feeding this value to its own prediction filter.
If the prediction error is within the error budget, the UE discards
the measurement and feeds the prediction filter with x^[k] instead of
x[k] to ensure that the state of the prediction filters at both sides of
the link remain consistent. This causes e[k] to be zero and thus the
filter weights remain unchanged, saving computational overhead. If
at a time instant k the UE observes that the average prediction error
over the past M measurements exceeded the error budget for β
consecutive times, it will report the reading x[k] to the eNB and
switch back to training mode. 

3 Results
3.1 Prediction filtering parameter tuning

Prior to evaluating the efficacy of the proposed solution, the
parameters of the adaptive filters need to be tuned. These include:

• Step size μ or μT: This is a critical parameter as it tunes the
convergence speed.

• Filter length M: This affects the computational load and
memory footprint of the filters. The LMS algorithm requires 2M 
+ 1 multiplications and 2M additions per prediction, whereas the
NLMS algorithm requires 3M + 1 multiplications and 2M
additions per prediction.

In addition to the above, the hysteresis parameter β, which
provides protection against oscillations between the prediction and

training state, and the maximum allowed prediction error, |Emax-sinr|
and |Emax-cqi|, need to be studied in relation to (i) the average error
between the actual and predicted SINR/CQI, (ii) the proportion of
SINR/CQI reports sent by the UE from the total measurements and
(iii) the total number of computations required. To tune these
parameters, the predictive filtering algorithm described in Section
2, was first implemented in MATLAB® and tested using
measurements extracted from a large number of UEs simulated in
an LTE system level simulator [24]. The parameters used for the
LTE simulations are provided in Table 1 whilst the optimal
parameter values for both the LMS and NLMS solutions when
using the effective SINR or CQI measurements are given in
Table 2. These values were empirically determined by considering
trade-offs between (i), (ii) and (iii) above. The effect of varying μ
on the proportion of CQI measurements reported to the eNB and
the average error of the predicted CQI for the LMS-based
prediction filtering scheme are shown in Figs. 4a and b,
respectively. Selecting a μ of 0.00005 yields the best trade-off
between the selected metrics. A similar analysis was carried out to
determine the other parameters for the remaining schemes. 

3.2 Simulation results

The four predictive filtering schemes were implemented in LTE-
Sim [24] to verify their efficacy in terms of average cell
throughput, feedback reduction and PLR. Monte Carlo simulations,
using the parameters given in Tables 1 and 2 were carried out over
50 random seeds in order to achieve statistical relevant results. The
mean and standard deviation (shown in parenthesis) of the
feedback reduction and sector throughput for different UE speeds
and cell loading are shown in Table 3 and Figs. 5a and b,
respectively. 

All of the proposed schemes deliver significant feedback
signalling reduction at the expense of a marginal degradation in
sector throughput and increase in packet loss when compared with
the baseline configuration using the 3GPP standardised eNB
configured sub-band feedback method. Moreover, results in
Table 3 show that CQI-based prediction filtering schemes are on
average 0.9 and 6.7% better than SINR-based schemes for low-
and high-mobility scenarios, respectively.

The increase in feedback reports transmitted to the eNB for
SINR-based techniques in high-mobility scenarios is due to the
degraded temporal correlation within each sub-band leading to the
UEs to prolong the training phase. This problem is somewhat
mitigated in CQI-based prediction filtering schemes because of the
discretisation function performed by the SINR-CQI mapping. This
allows the CQI prediction filtering scheme to statistically achieve
the same level of performance, in terms of the proportion of
feedback transmitted, for both low and high mobility. Moreover,
NLMS-based predictive filtering schemes are generally marginally
better than their LMS counterparts particularly in high-mobility
scenarios. As shown in Fig. 5a, CQI-based prediction filtering
schemes are consistently better in terms of sector throughput when
compared with SINR-based schemes owing to better short-term
channel predictions. Meanwhile, in low-mobility scenarios, the
sector throughput achieved by both the LMS and NLMS CQI-
based prediction filtering schemes is within 5% of the baseline
configuration with the CQI-LMS-based scheme having an edge
over the NLMS-based scheme, whilst in high-mobility scenarios,
all the proposed schemes achieve a comparable sector throughput.

The mean and standard deviation (shown in parenthesis) of the
PLR for the various schemes are shown in Table 4. As expected,
the proposed schemes suffer from an increase in PLR; however the
CQI-based schemes rank better than the SINR-based schemes in all
scenarios. In particular, in low-mobility scenarios, the CQI-LMS-
based prediction filtering scheme offers the best performance and
is within 5% of the baseline configuration whilst achieving
comparable performance in high-mobility scenarios. Considering
the above discussion together with the computational complexity
of the adaptive filters, the CQI-LMS-based prediction filtering
scheme achieves the best compromise between the selected
performance metrics. 

Fig. 3  Algorithm 1: Prediction filtering algorithm
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Fig. 4  LMS adaptive filter parameter tuning
(a) Average proportion of CQI measurements reported to eNB from total per sub-band, (b) Average error of the predicted CQI value per sub-band

 
Table 1 Simulation parameters
Parameter Value
system bandwidth 10 MHz (50 PRB)
scheduler proportional fair
number of antennas 1 (Tx and Rx)
CQI type periodic, eNB configured sub-band size = 5
traffic model full buffer
frequency 2 GHz
frequency re-use 1
cellular layout hexagonal grid, 19 cells
inter-site distance 500 m
UE speed 3 km/h, 120 km/h
mobility model random direction
UE per cell 10–40 UEs
Tmax 100
propagation model typical urban L = 128.1 + 37.6log(d) at 2 GHz
fast fading realisation Jakes model

 

Table 2 Optimal parameter set for the evaluated predictive filtering schemes
Parameter CQI-LMS CQI-NLMS SINR-LMS SINR-NLMS
filter order M 4 4 6 6
step size (μ or μT) 0.00005 0.01 0.000008 0.0025
hysteresis β 3 3 4 4
Emax 1.5 1.5 4 4
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3.3 Complexity analysis of the CQI-LMS-based prediction
filtering scheme

The LMS adaptive filter algorithm requires 2M + 1 multiplications
and 2M additions per measurement when operating in the training

phase. Considering that an LMS adaptive filter is required for each
user in the cell per sub-band, then the additional computational
load in the eNB and UE are

Cenb = 1000
τp

4M + 1 NsubTu (9)

Cue = 1000
τp

4M + 1 Nsub (10)

where M is the filter order, Nsub is the number of sub-bands, Tu is
the number of simultaneous active users in the cell and τp is the
feedback reporting period which is commonly set to 20 ms in
commercial LTE networks. Using the parameters listed in Tables 1
and 2 for the LMS-CQI-based scheme and assuming Tu to be 200,
the proposed scheme results in a modest additional 1.7 Mflops and

Fig. 5  Sector throughput comparison (standard deviation is indicated by vertical bars)
(a) UE speed: 3 km/h, (b) UE speed: 120 km/h

 
Table 3 Feedback reduction
UE speed Prediction filtering scheme Number of UEs in sector Average

10 20 30 40
3 km/h (low mobility) CQI-LMS 91.8% (±0.4) 92.4% (±0.5) 92.6% (±0.2) 92.6% (±0.2) 92.7% (±0.4)

CQI-NLMS 92.6% (±1.2) 93.1% (±0.4) 93.1% (±0.4) 93.1% (±0.6)
SINR-LMS 92.1% (±0.7) 91.4% (±1.1) 91.5% (±0.6) 91.8% (±1.0) 91.8% (±0.4)

SINR-NLMS 91.7% (±1.4) 92.1% (±0.9) 91.2% (±1.1) 92.5% (±0.8)
120 km/h (high mobility) CQI-LMS 92.6% (±0.2) 92.4% (±0.2) 92.5% (±0.2) 92.4% (±0.2) 93.1% (±0.7)

CQI-NLMS 94% (±0.2) 93.6% (±0.1) 93.6% (±0.1) 93.9% (±0.1)
SINR-LMS 86.2% (±1.2) 85.1% (±0.8) 85.1% (±0.4) 85.3% (±0.4) 86.4% (±1.1)

SINR-NLMS 86.8% (±1.3) 87.3% (±1.0) 87.9% (±0.8) 87.5% (±0.7)
 

Table 4 Packet loss rate
Prediction filtering
scheme

UE speed
3 km/h (low

mobility)
120 km/h (high

mobility)
3GPP eNB configured
sub-band

2.5% (±0.3) 17.4% (±1.7)

CQI-LMS 6.7% (±0.7) 17% (±2.3)
CQI-NLMS 11.6% (±1.4) 19.9% (±1.7)
SINR-LMS 20.9% (±1.2) 21.2% (±2.0)
SINR-NLMS 15.1% (±1.1) 27.4% (±3.2)
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8.5 Kflops in the eNB and UE, respectively. This calculation
assumes that the algorithm is always operating in training phase.
However, in practice, the majority of the time it is in the prediction
phase as evidenced by the significant feedback reduction achieved.
In this phase, the computational complexity in the eNB and UE,
given by (11) and (12), is reduced significantly as no weight update
operations are carried out

Cenb = 1000
τp

2M − 1 NsubTu (11)

Cue = 1000
τp

2M Nsub (12)

Thus, considering a worst-case scenario where the algorithm
operates in the training phase for 20% of the time, the overall
computational complexity is reduced to 0.9 Mflops and 4 Kflops in
the eNB and UE, respectively.

An analysis of the memory requirements was also carried out.
With reference to Algorithm 1 and using the IEEE 754-2008 single
precision floating point format [28] for all stored variable
requirements, the memory footprint required for both the UE and
eNB is very low as shown in Table 5. It should be noted that the
variable named mode is essentially a binary flag to indicate
whether the algorithm is operating in prediction or training mode.
However, as the use of bit flags induces the use of a mask to read/
write from/to memory, the authors opted for a more
computationally efficient method to represent this variable by using
a byte representation thereby avoiding additional masking
operations. 

3.4 Reduced-complexity CQI-LMS-based prediction filtering
scheme

Even though the complexity of the proposed scheme is very low
compared with other operations carried out by the eNB baseband
processor (such as the fast Fourier transform and its inverse
commonly used to synthesise the OFDM symbols in a radio
frame), the authors studied the possibility of further lowering this
and its effect on the overall performance. As most of the
computations are carried out in the weight update process, the use
of a sign function, defined by (13), to clip the input vector in the
weight update function given by (14) was investigated. When the
tap input vector for time sample k is less than the specified
threshold δ, x[k] will be equal to zero and no coefficient adaptation
for the corresponding weights needs to be performed leading to a
reduction in the computational load

sign(x[k], δ) = x[k], if x[k] ≥ δ
0, if x[k] < δ

(13)

w[k + 1] = w[k] + μe[k] sign(x[k], δ) (14)

Using the parameter set for the CQI-LMS-based prediction
filtering scheme given in Table 2, simulations were carried out in

MATLAB® to study the effect of δ in relation to (i) CQI feedback,
(ii) the computational load saving when compared with the CQI-
LMS-based prediction filtering scheme and (iii) the average error
between the actual and predicted CQI values. The effects of
varying this parameter on (i), (ii) and (iii) are shown in Figs. 6a–c,
respectively, where setting δ to 4 yields the best trade-off between
the selected metrics. With reference to Figs. 6a–c, as the threshold
δ increases, a larger proportion of the input vector x[k] will be
equal to zero leading to a reduction in the computational load.
However, this comes at the expense of an increase in the CQI
prediction error as the adaptive filter is not updated regularly which
would in turn result in an increase in CQI measurements being
reported to the eNB. 

Similar to the analysis carried out in Section 3.2, the sign
clipped CQI-LMS-based predictive filtering scheme was
implemented in LTE-Sim [24] and Monte Carlo simulations, using
the parameters in Table 1, and were carried out over 50 random
seeds. A comparison of the mean and standard deviation (shown in
parenthesis) of the PLR, feedback reduction, sector throughput and
computational load reduction for different UE speeds and cell
loading with the CQI-LMS-based prediction filtering scheme are
shown in Tables 6 and 7 and Fig. 7, respectively. 

These results show an average computation load reduction of 35
and 26% at 3 and 120 km/h, respectively. However, this saving
comes at the expense of a marginal degradation in packet loss,
feedback reduction and sector throughput performance. A
summary of the identified key performance indicators for the
proposed schemes compared with both the 3GPP eNB configured
sub-band scheme and the work in [16], which represent the latest
work in this field, is shown in Table 8. The feedback reduction and
throughput degradation is computed with reference to the 3GPP
eNB configured sub-band feedback scheme, whereas the
complexity reduction of the sign clipped LMS-CQI prediction
filtering scheme is computed with reference to the LMS-CQI
prediction filtering scheme. The proposed LMS-CQI and sign
clipped LMS-CQI prediction filtering schemes are on average 14%
better when compared with [16]. This improvement comes at the
expense of degradation in PLR which is particularly notable at high
mobility. Nevertheless, at high mobility, the proposed techniques
result in statistically the same level of performance when compared
with the 3GPP eNB configured sub-band feedback scheme. 

The scheme in [16] makes use of two algorithms working in
tandem. The first algorithm estimates the CQI using a GP
regression technique which requires the use of a multivariate
optimisation algorithm to determine a set of hyper-parameters.
Although details of this algorithm are missing, the complexity of
this process on its own requires several matrix operations per
measurement for each user and sub-band. The second algorithm
uses an adaptive dual-control method for the dynamic CQI
feedback time window assignment. This requires several iterations
per measurement for each user resulting in this scheme to rank high
on computational costs and memory complexity.

3.5 Testing using field test measurements

Field test measurements were carried out on a live commercial LTE
network using a purposely setup test vehicle equipped with
industry standard test equipment [29]. In accordance with [30], the
UE is connected to a pair of omni-directional antennas placed in a
roof box on top of the test vehicle through a 12 dB attenuator to
compensate for the antenna gain and vehicle penetration loss. The
field test route, shown in Fig. 8a, was purposely selected and is
characterised by dense urban environment and high data traffic
usage yielding a rich multipath channel with highly varying radio
conditions. The CQI values reported to the network throughout the
drive test were collected and used as input to the CQI-LMS-based
prediction filtering schemes described in Section 2. Out of the
13,944 CQI measurements reported when using the 3GPP
standardised method, only 2383 were transmitted. This represents a
saving of ∼83% in feedback signalling whilst maintaining a CQI
error of 1.2. A sample of the actual and predicted measurements,
shown in Fig. 8b, indicates the operation of the two phases
described in Section 2. During prediction, measurements are not

Table 5 eNB and UE memory footprint
Variable eNB memory

footprint (bytes)
UE memory

footprint (bytes)
k 4 4
mode 1 1
txCounter 4 4
errorCounter 4 4
x[k] 4 4
e[k] 4 4
filter weights size M 4M 4M
sub-bands 10 10
users 200 1
total memory footprint 74 kbytes 0.37 kbytes
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transmitted and the predictors track the channel conditions while
keeping record of the error between the actual and predicted
measurements. The error gradually increases between samples 5
and 9 as a result of a fast fade in channel conditions. This triggers
the algorithm to switch back to training mode during which
measurements are transmitted to the eNB and the adaptive filters
are re-trained using the latest channel measurements. Prediction
mode is resumed as of sample 14 which marks the point at which
the error falls below the error budget threshold and transmission of
feedback ceases. 

4 Conclusion

In this paper, we presented a UE-assisted sub-band feedback
compression scheme based on predictive filtering techniques. It
exploits short-term channel prediction through the use of low
computational complexity adaptive filters at the UE and eNB side,
to reduce the feedback signalling overhead. Four schemes were
designed and tested with the CQI-LMS-based predictive filtering
scheme providing the best compromise between the identified
performance metrics with up to 92.5% CQI feedback reduction
whilst maintaining the same level of sector throughput compared
with the standardised 3GPP eNB configured sub-band feedback
scheme and keeping the PLR within 10%. A reduced-complexity
scheme achieving an average computational load reduction of 35%
in low mobility is also presented. This was achieved at the expense
of a marginal degradation in performance compared with the CQI-

Fig. 6  Sign clipped LMS adaptive filter threshold parameter tuning
(a) Average CQI measurements reported per sub-band, (b) Average error of the predicted CQI value per sub-band, (c) Average % computation saving relative to the standard LMS
adaptive filter per sub-band
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LMS-based scheme. A comparative analysis showed that the
proposed techniques represent a significant improvement compared
with [16]. This reduction in the uplink CQI feedback allows the

relaxation of the PUCCH dimensioning leaving more resources for
the user data to be sent over the PUSCH coupled with substantial
UE power saving. Future work will study the use of content

Fig. 7  Sector throughput and computational load comparison (standard deviation is indicated by vertical bars)
(a) Sector throughput at 3 km/h, (b) Sector throughput at 120 km/h, (c) % computational load reduction
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awareness in the proposed technique to control the PLR during the
transmission of critical data.
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high. See text for further
details
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Abstract— Contemporary wireless communication standards, 
such as the long term evolution (LTE) standard, exploit several 
techniques, including link adaptation and frequency selective 
scheduling (FSS), to offer high data rate services.  The efficacy of 
these techniques rely on the evolved Node B (eNB) having 
accurate channel state information through the use of a high 
signaling overhead process whereby channel quality indicator 
(CQI) feedback reports are sent by the user equipment (UE) to 
the eNB.  In this work, we exploit a machine learning technique 
to address this problem and propose a novel sub-band CQI 
feedback compression scheme based on support vector machines 
to reduce this signaling overhead.  The proposed compression 
scheme was implemented and tested in an LTE system level 
simulator and has shown efficacy with an overall CQI feedback 
signaling reduction of up to 88.7% whilst maintaining stable 
sector throughput, when compared to the standard third 
generation partnership project (3GPP) CQI feedback 
mechanism.   

Keywords—CQI feedback; 3GPP LTE; machine learning; 
frequency selective scheduling; support vector machine 

I.  INTRODUCTION 
The third generation partnership project (3GPP) long term 

evolution (LTE) system, initially standardized in 2008 and 
further improved in subsequent 3GPP releases [1], achieves 
high data rates through the use of several techniques which 
include frequency domain scheduling (FDS) [2] and adaptive 
modulation and coding (AMC) [2].  These techniques rely on 
the evolved Node B (eNB) to acquire accurate channel state 
information in the form of channel quality indicator (CQI) 
feedback reports sent by the user equipment (UE) to the 
evolved Node B (eNB).  To be able to fully exploit the 
advantages of FDS, each UE in the sector has to report a CQI 
value for each physical resource block (PRB) to the eNB.  
This feedback process ensures that the eNB obtains an 
accurate state of the channel conditions across all the PRBs. 
However, this generates a significant uplink signaling 
overhead.  This is particularly concerning in hotspot traffic 
areas, such as shopping malls, stadiums and event arenas, 
where the number of UEs in the sector is generally high 
thereby giving rise to congestion in the uplink control channel, 
leading to degradation in the overall sector performance.  

Moreover, considering that according to [3] the average 
smartphone traffic in 2020 will be close to 5 times greater than 
2015, this uplink feedback overhead will be a significant 
problem in mobile networks.  

The design of low overhead CQI feedback techniques has 
attracted significant research attention.  Several schemes were 
proposed in literature with different levels of compression and 
system performance whilst a sub-set of these were selected by 
3GPP and included in the LTE release standard [2].  In this 
paper, we propose a novel sub-band CQI feedback 
compression scheme based on a machine learning technique. 
To the best knowledge of the authors, this work represents the 
first study on the application of support vector machines 
(SVM) to CQI feedback compression.  Although the focus of 
this work is on the 3GPP LTE standard, being the cellular 
network technology at the forefront of mobile network 
systems, this work can be applied to any OFDMA-based 
cellular network technology.   

The rest of the paper is organized as follows: Section 2 
provides a brief description of CQI feedback reporting and 
compression techniques; Section 3 describes the proposed 
scheme together with an overview of support vector machines; 
Section 4 gives a description of the simulation environment, 
parameter selection and results, while Section 5 provides some 
comments and conclusions. 

II. RELATED WORK AND OUR CONTRIBUTION 
In LTE, the CQI feedback is calculated by the UE using 

the signal-to-interference noise ratio (SINR) measurements of 
the downlink reference signals transmitted by the eNB.  The 
received SINR for each PRB k is given by [2]: 
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where Pi and Gi are the transmit power and antenna gain of the 
serving base station i whilst Pj and Gj are the transmit power 
and antenna gain of the interfering base station j, and nk is the 
additive Gaussian noise.  The measured SINR is then mapped 
to a discrete CQI value using a chipset vendor specific 
mapping table. This gives the highest modulation coding 



scheme (MCS) that the UE can decode with a block error rate 
not exceeding 10% [2].  

In order to control the signaling overhead, several 
techniques have been proposed in literature, which can be 
grouped into three main types, namely threshold/prediction 
based, time domain (periodic or aperiodic reporting [4]) and 
frequency domain based techniques.  The first category use 
either channel prediction or event based triggering to reduce 
the feedback.  In [5], Chiumento et al. propose the use of a 
Gaussian process (GP) regression at the base station to 
adaptively estimate the channel quality.  This GP-based CQI 
prediction method is integrated in a dual-control technique 
utilizing active learning to determine an optimal prediction 
time for each user and is reported to achieve a 77% signalling 
overhead reduction when compared to the 3GPP standard 
eNB-configured sub-band feedback compression technique.  
Inspired by the work found in [6-10], the authors in [11] apply 
a threshold-based signalling reduction technique whereby 
users which exceed a set threshold, based on the likelihood 
that the user will be scheduled, are candidates to use full-band 
feedback whilst the rest use wide-band frequency domain 
compression.  An additional selection criterion is applied on 
the candidates earmarked to use full-band feedback such that 
only those which have the lowest average SINR will be 
requested by the network to use periodic full-band feedback.  
The reported simulation results show that this scheme 
achieves marginal gains and is mostly suitable for low 
mobility scenarios, where channel conditions are largely 
stable.  Meanwhile, in [12], the authors address the 
shortcomings of threshold-based approaches by proposing an 
adaptive threshold feedback compression scheme.   

Several frequency domain based feedback compression 
techniques were proposed in recent years and these can be 
broadly divided into three sub-categories namely wide-band, 
full-band and sub-band compression techniques.   

A. Wide-band Compression 
In wide-band compression, a UE transmits a single CQI 

value for all the PRBs in the bandwidth.  As different PRBs 
undergo different fading characteristics, the effective SINR γeff 
is computed and transmitted to represent a number of PRBs.  
The effective exponential signal-to-noise ratio mapping 
(EESM) [13,14] is given by: 
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where N represents the number of PRBs to group, λ is a 
calibration factor that is MCS dependent [15] and γk is the 
instantaneous SINR of the kth PRB. In the case of wide-band 
compression, N is set to the total number of PRBs defined by 
the system bandwidth.  The effective SINR is then mapped to 
a discrete CQI value as discussed earlier.  Even though wide-
band compression is attractive due to its simplicity and high 
compression factor, it offers a lower system performance due 
to the lack of channel quality detail. Nevertheless, it forms 
part of the 3GPP LTE standard and is widely used in live 
commercial networks. 

B. Full-band Compression 
Full-band compression techniques generally involve the 

use of mathematical transforms such as the discrete cosine 
transform (DCT) [16][17] and the Haar wavelet transform [18] 
to reduce the signaling overhead. Although these techniques 
allow the eNB to compute a good approximation of the entire 
system bandwidth quality using a relatively small number of 
transform coefficients reported by the UE, the reconstruction 
quality strongly depends on the delay spread of the channel. 
Full-band CQI reporting is not included in the 3GPP LTE 
standard thereby limiting its practical applicability. 

C. Sub-band Compression 
In sub-band compression, a UE transmits a selected set of 

CQI values to the eNB. Such techniques include Best-M 
individual [19] and Best-M average [19] together with the 
3GPP defined sub-band compression techniques, namely: 

• eNB-configured sub-band feedback [2]: The system 
bandwidth is divided into q sub-bands of N consecutive 
PRBs and the UE reports a wideband CQI value 
together  with a differentially encoded CQI value for 
each sub-band. 

• UE-selected sub-band feedback [2]: Similar to eNB-
configured sub-band feedback, the system bandwidth is 
divided into q sub-bands of N consecutive PRBs. The 
UE selects M preferred sub-bands and reports a wide-
band CQI value together with a differentially encoded 
CQI value reflecting the average quality of the M 
preferred sub-bands. The position of the selected M 
preferred sub-bands also needs to be reported thereby 
increasing the signaling overhead.  

Similar to wide-band compression, the effective SINR needs 
to be computed using (2) and then mapped to a discrete CQI 
value as discussed earlier.  In general, sub-band compression 
techniques allow the eNB to have a richer channel state 
information across a wider frequency band thereby leading to 
a better system performance when compared to wide-band 
CQI reporting.  However, this comes at the expense of a 
higher signaling overhead on the physical uplink shared 
channel (PUSCH) or physical uplink control channel 
(PUCCH) depending on whether or not the UE has uplink data 
scheduled to be transmitted [2]. 

In this work, the authors explore the use of SVM in sub-
band CQI feedback compression.  SVMs have already been 
applied in various areas of wireless communication systems 
ranging from uplink and downlink LTE channel interpolation 
[20-22] to LTE uplink channel extrapolation for the prediction 
of channel state information (CSI) [23].  In contrast to 
previous work, we apply the functional approximation 
properties of SVM to model the sub-band channel response.  
The support vector weights together with their positions are 
then transmitted to the eNB, instead of the individual sub-band 
CQI values, to recover the entire sub-band channel response 
within a configurable margin of error.  The same technique 
can also be applied to the full-band reporting scenario 
however this work will focus on the sub-band reporting; this 
being standardized by the 3GPP LTE standard.   
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Figure 1: SVM Compression System Model (N=2)

III. PROPOSED SCHEME 
With reference to the system model shown in Fig. 1, 

consider that the system bandwidth composed of L PRBs, 
where L is defined by the 3GPP Release 8 standard [1], is 
divided into q sub-bands of N consecutive PRBs.  A UE 
measures the SINR of each PRB, denoted by Lg , and 
calculates the effective SINR of each sub-band, denoted 
by sub

qg , using (2).  This effective SINR, sub
qg , is then mapped 

to a discrete CQI value using an SINR-CQI mapping table 
defined in [24], sub

qCQI , and aggregated to form the CQI 
vector, UEQ , for further processing by the CQI feedback 
compression manager.  The role of the feedback compression 
manager is to: 

• Determine the best compression method to use given 
the properties of QUE. In case the CQI vector exhibits 
flat channel conditions, we bypass the SVM 
compression stage and transmit a single CQI value to 
the eNB.  Otherwise, SVM compression is used. 

• In case SVM compression is used, we first normalize 
QUE in the range {0,1} by dividing each element in 
the vector by 15 prior to feeding it to the SVM.  The 
output of the SVM is a set of support vector weights, 
w, together with their corresponding locations which 
are transmitted to the eNB. In case the SVM does not 
yield non-zero support vector weights (i.e. 
approximation function cannot be fitted), a UE-
selected sub-band feedback method is adopted. The 
eNB CQI manager uses the received information to 
reconstruct the CQI vector, UEQ , and forwards it to 
the resource scheduler. 

The SVM technique was developed by Vapnik et al [25] to 
primarily address classification problems however; this was 
later extended to the regression domain [26]. In this work, we 
use this functionality to approximate the measured CQI vector, 
QUE, with:  

                             
v

i i
i 1

f ( , ) w ( )
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where the functions i ( )f x  are referred to as kernel functions, v 
is the number of support vectors, w  is the support vector 
weights which needs to be determined and x  is the input 
vector.  Using Vapnik’s linear loss function [26] with e -
insensitivity zone, the approximation error is given by: 
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where e  is a configurable parameter defining the maximum 
allowed error.  Thus, the aim of the SVM, is to find the 
smallest number of weights (support vectors) such that the 
approximation function has at most e  deviation from the 
measured CQI vector QUE. In this work, the widely used 
Gaussian kernel function (in 1 dimension) is selected, as it is 
able to map the input data into a higher dimensional space and 
was found to outperform other kernel functions (such as the 
linear kernel) in channel estimation scenarios [23].  Therefore, 
the function to be modeled is given by: 
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where ic  are the Gaussians centers and il  is the Gaussian 
width.   

The SVM network is modeled as a Radial Basis Function 
(RBF) network where the input to the 
network, 1 2 q(x , x ,...., x )=x , is the sub-band position whilst 
the output is the measured CQI vector, 

sub sub
1 q( ) (CQI ,....,CQI )=UEQ x . With reference to the detailed 

mathematical treatment of support vector regression found in 
[26], the RBF design matrix is given by (6) whilst the non-
linear optimization problem to be solved is given by (7). 
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where the Hessian matrixH and vector f are defined by (8) 
and (9) respectively.   
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The solution to (7) is a column vector α  composed of 2q 
Lagrange multipliers, which are then used to compute the 
weight vector given by (10) 
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The non-linear optimization problem in (7) can be solved 
using either quadratic programming techniques [26] or a non-
negative least square method.  As the support vector weights 
need to be computed on the UE side, the authors opted to use 
the latter to reduce the number of computations.  The non-zero 
weight values calculated in (10) are the support vectors which 
need to be transmitted together with their corresponding 
position to the eNB to reconstruct the approximation of the 
CQI vector, UEQ . 

IV. RESULTS 
Two important SVM parameters that need to be tuned in 

relation to (i) the normalized mean squared error between the 
actual and reconstructed CQI vector, and (ii) the average 
number of reports sent by the UE per CQI vector measurement 
are: 

• Maximum allowed error e , defining the 
insensitivity zone. 

• Gaussian width, l .  

To tune these parameters, the proposed scheme, described in 
section III, was first implemented in MATLAB® and tested 
using SINR measurements extracted from a large number of 
UEs simulated in an LTE system level simulator [24]. The 
parameters used for the LTE simulations are provided in Table 
I whilst the optimal SVM parameter values are given in Table 
II. These optimal parameters were empirically determined by 
considering trade-offs between (i) and (ii) above. 

TABLE I.  SIMULATION PARAMETERS 

Parameter Value 
System Bandwidth 10MHz (50 PRB) 

Scheduler Proportional Fair 
Number of Antennas 1 (Tx and Rx) 

CQI Type Periodic, eNB configured sub-band 
size = 2 

Traffic Model Full Buffer 
Frequency 2GHz 

Frequency Re-use 1 
Cellular Layout Hexagonal grid, 19 cells 

Inter-site distance (ISD) 500m 
UE speed 3km/hr, 120km/hr 

Mobility model Random Direction 
UE per Cell 10-40 UEs 

Tmax 100 

Propagation Model  Typical Urban                                 
L= 128.1+37.6log(d) @ 2GHz 

Fast Fading Realization Jakes Model 

TABLE II.  OPTIMAL PARAMETER SET 

Maximum allowed 
error e  

Gaussian width           
l  

0.2 200 
 

The effect of varying these parameters on the average 
number of reports sent by the UE per CQI vector measurement 
and the normalized mean squared error between the actual and 
reconstructed CQI vector are shown in Fig. 2 and 3 
respectively.  As expected, as the insensitivity zone increases, 
the number of reports sent by the UE per CQI vector 
measurement decreases as we are allowing a larger error 
margin.  Conversely, the normalized mean squared error 
between the actual and reconstructed CQI vector increases.  
Meanwhile, the Gaussian width parameter was found to be 
weakly linked to the selected metrics and was set to 200 for 
the rest of the studies whilst the maximum allowed error, e , 
was set to 0.2 as this yields the best tradeoff between the 
selected metrics.  

 
Figure 2: Average number of transmitted reports per CQI measurement 



 
Figure 3: Normalized mean squared error between the actual and 

reconstructed CQI vector 

 The proposed SVM based sub-band CQI feedback 
compression scheme was implemented in LTE-Sim [24] to 
verify its efficacy in terms of average cell throughput and 
feedback reduction. Monte Carlo simulations, using the 
parameters given in Table I and the optimal parameter set for 
the proposed scheme in Table II, were carried out over 50 
random seeds in order to achieve statistical relevant results. 
The average sector throughput and feedback reduction, when 
compared to the 3GPP standardized eNB-configured sub-band 
feedback, for the different simulation scenarios are shown in 
Fig. 4-5 and Table III respectively. 

TABLE III.  FEEDBACK REDUCTION 

 

 
Figure 4: Sector throughput comparison for UEs moving at 3km/hr 

 

 
Figure 5: Sector throughput comparison for UEs moving at 120km/hr 

 
The proposed SVM based sub-band CQI feedback 

compression scheme manages to achieve an average CQI 
feedback reduction of 87% and 88.7% for UEs moving at 
3km/hr and 120km/hr respectively. This level of feedback 
reduction was achieved whilst maintaining approximately the 
same level of performance, in terms of sector throughput, as 
the 3GPP eNB configured and UE-selected sub-band feedback 
scheme.  Moreover, with reference to Fig. 6-7, the CQI 
feedback compression manager is using SVM compression for 
more than 80% of the CQI measurements.  At higher mobility, 
the channel variations increase resulting in the CQI feedback 
manager to use SVM compression for even a higher 
proportion of the CQI measurements leading to a marginal 
improvement in feedback reduction when compared to the 
lower mobility scenario. 

 
Figure 6: CQI feedback manager operating mode for UEs moving at 

3km/hr 

  Number of UEs in Sector 
UE 

Speed 
Sub-band 

Feedback scheme 10 20 30 40 

3km/hr 
3GPP UE-selected 80.1 79.9 80.0 80.0 

Proposed 86.9 86.9 87.0 87.1 

120km/hr 
3GPP UE-selected 80.1 80.0 80.2 79.9 

Proposed 88.6 88.8 88.7 88.8 



 
Figure 7: CQI feedback manager operating mode for UEs moving at 

120km/hr 

V. CONCLUSION AND FUTURE WORK 
In this paper we presented a novel sub-band CQI feedback 

compression scheme based on a machine learning technique. 
The key contribution lies in the use of a support vector 
machine, at the UE, designed to reduce the CQI feedback 
signaling overhead. Experimental results based on Monte 
Carlo simulations showed that the SVM-based technique 
provides up to 88.7% CQI feedback reduction whilst 
maintaining the same level of sector throughput when 
compared to the standardized 3GPP eNB configured and UE 
selected sub-band feedback scheme. This represents an 
improvement of approximately 7% when compared to the 
3GPP UE selected sub-band feedback scheme and close to 
10% when compared to the most recent work on CQI 
feedback compression proposed by Chiumento et al [5] that 
achieved 77% reduction in CQI feedback. This reduction in 
the uplink CQI feedback will not only reduce the potential 
uplink control channel congestion in hotspot areas but also 
results in substantial UE power saving.  Future work will 
study the use of the proposed technique in the transport of 3D 
video together with a thorough assessment of the 
computational complexity and application in a 5G scenario. 
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ABSTRACT 
 
This paper presents a cross-layer depth-texture target bit rate 
allocation estimation technique for the transmission of 
Multiview High Efficiency Video Coding (MV-HEVC) 
texture plus depth content over 3GPP LTE systems.  The 
proposed technique is based on a statistical model which 
exploits the texture and depth map image characteristics to 
estimate the optimal depth-texture rate allocation to be used 
by the codec's rate control algorithm.  Experiments using 
standard test sequences show the effectiveness of the 
proposed technique as the model is able to estimate, on-line, 
the optimal depth-texture rate allocation with a mean 
absolute estimation error of 3.3% and a standard deviation 
of 2.2%.  In addition, the proposed cross-layer architecture 
allows the depth-texture rate allocation to be adapted to both 
the video content characteristics and the available 
bandwidth offered by the wireless network making it 
suitable for the transmission of multiview 3D video to 
mobile devices. 
 

Index Terms— Multiview video plus depth, 3GPP LTE 
systems, HEVC, depth-texture rate allocation, cross-layer 
architecture 
 

1. INTRODUCTION 
 
According to the latest Cisco visual networking index 
forecast report, video traffic accounted for 55% of the total 
mobile data traffic in 2015 and is expected to reach 75% by 
2020 [1].  Meanwhile, Free-View Video (FVV) [2] based on 
the multiview video plus depth representation (MVD) [3], 
which allows the flexible rendering of novel views through 
the use of depth image-based rendering techniques (DIBR) 
[4], has garnered significant commercial and research 
interest and will inevitably enter the mobile ecosystem.  
This increase in multiview 3D video traffic coupled with the 
explosive growth in video data traffic is expected to 
exacerbate the pressure on the capacity constraints of 
current wireless cellular networks, thereby making it more 
difficult for mobile network operators to adhere to the 
Quality of Service (QoS) expected by the increasingly 
demanding subscriber base. 

The MVD representation uses a limited set of texture 
views coupled with a matching set of per-pixel depth map 
views which are compressed by exploiting the redundancy 
in space, time and in between views [5,6]. Since the 
compressed MVD stream is usually transported over a 
bandwidth constrained network, such as a wireless cellular 
network, a rate control scheme functioning across the depth-
texture and frame layer is necessary.  The latter has attracted 
substantial research interest and several schemes have been 
proposed, however only a limited number of works exist on 
the optimal depth-texture rate allocation problem. Even 
though the depth map is treated as side-information and 
used only for novel view rendering, studies have shown that 
coding the depth map views at a low bit rate introduces 
artefacts which can have a significant impact on the quality 
of the rendered novel views [7]. Therefore,under the 
constraint of the total available bandwidth provided by the 
underlying wireless network, the correct balance between 
depth and texture rate allocation is critical.  

In this work, we focus on the depth-texture rate 
allocation problem in cellular networks.  As opposed to 
previous works, we formulate a statistical model which 
exploits the texture and depth map image characteristics to 
accurately estimate, on-line, the optimal depth-texture rate 
allocation. Our studies focus on the MV-HEVC 
compression standard due to its computational efficiency 
when compared to its extension, 3D-HEVC.  Moreover, 
since in our application multiview 3D video is intended to 
be transported over a 3GPP LTE based cellular network, a 
cross-layer approach is adopted such that the depth-texture 
rate allocation is adapted to both the varying video content 
characteristics and available bandwidth of the underlying 
wireless network. The model was developed using three test 
sequences and later successfully tested using previously 
unseen test sequences exhibiting differing video 
characteristics.  Moreover, real-world field measurements 
taken from a live commercial LTE network were used to 
verify the adaptation of the optimal depth-texture rate 
allocation when subjected to both varying video 
characteristics and available bandwidth. 

The rest of the paper is organized as follows: Section 2 
gives a summary of related work; Section 3 describes the 
proposed cross-layer MV-HEVC depth-texture rate 
allocation; Section 4 gives a description of the statistical 



model formulation and performance results while Section 5 
provides some comments and conclusions. 

 
2. RELATED WORK 

 
Although an optimal depth-texture bit rate allocation is 
critical for the correct rate control of MVD streams, this 
problem has attracted a relatively small number of research 
works in recent years.  Moreover, the majority of the 
proposed solutions either require off-line processing or 
assume a fixed depth-texture ratio [4].  In the latter, 
although simplistic and suitable for on-line depth-texture 
rate allocation, it cannot guarantee an optimal novel view 
rendering quality especially when the video sequence 
characteristics vary.  In [8], Morvan et al. combine the 
texture and depth rate-distortion (R-D) curves yielding a 
single R-D surface. The authors then propose a fast 
hierarchical optimization algorithm based on an orthogonal 
search pattern which exploits the smooth monotonic 
properties of the R-D surface to find the optimal depth-
texture rate allocation ratio.  Apart from the off-line analysis 
required to generate the R-D surface, the authors assume 
that a full reference assessment [9] of the synthesized view 
is always possible. In [10], the authors relax the full 
reference assessment constraint by proposing a complex 
distortion model incorporating the video coding, depth 
quantization and geometry induced distortion. This model is 
then used in conjunction with an off-line joint rate allocation 
method to find the correct balance between the depth and 
texture bit rate which maximizes the novel view synthesis 
quality.     

In [11], Cheung et al. derive a cubic distortion model, 
whose parameters are established using off-line processing, 
and show that the optimal quantization levels for the texture 
and depth map is equivalent to the shortest path in a 
specially constructed 3-D trellis. Another depth-texture bit 
rate allocation solutionwas proposed by Yuan et al. [12].  
Here, the authors formulate a simple distortion model for the 
synthesized view based on the average distortion of the left 
and the right view and the average distortion of the 
compressed depth maps. Using this model together with the 
fractional rate-quantisation model [13], a joint bit allocation 
problem is formulated as a constrained optimization 
problem and resolved using the Lagrangian multiplier 
method.  In comparison with [11], the solution proposed by 
Yuan et al. also requires off-line processing to determine the 
model parameters, thereby limiting these solutions to non-
real time applications. 

The depth-texture rate allocation problem in 
H.264/MVC was studied by Cordina et al. [14].  Here, the 
authors use the prediction mode distribution of the macro 
blocks (MBs) at the discontinuity regions of the depth map 
video to estimate the optimal depth-texture ratio.  Although 
the model exhibits a low estimation error and is suitable for 
low latency applications, its formulation is intrinsically tied 
with the MVC encoder and does not provide any input 

related to the available bandwidth.  Moreover, to establish 
the prediction mode distribution of the MBs at the 
discontinuity region, one must start encoding the video 
sequence at some arbitrary quantization parameter (QP) 
value.  In [15], the authors propose a simplistic model to 
directly select the QP of the depth map view given the 
quantization parameter of the texture video.  Similar to [14], 
the authors focus on H264/MVC and the available 
bandwidth does not feature as one of the control inputs. 
 

3. OPTIMAL DEPTH-TEXTURE RATE 
ALLOCATION 

 
3.1. System model and problem formulation 
 
Consider the radio network subsystem part of an MV-HEVC 
based 3D video delivery system shown in Figure 1.  Further 
assume that the MV-HEVC video encoder, residing in the 
core network, is able to simultaneously encode multiple 
texture and depth map views. Without losing generality, 
consider the encoding of two texture views, view 0 and view 
2, coupled with their corresponding depth map views whilst 
the synthesized view, view 1, is generated in the mobile 
terminal (UE) through DIBR techniques. As shown in 
Figure 1, the combined MVD stream is transmitted to the 
UE over a 3GPP LTE Release 8 compliant evolved Node B 
(eNB).  In addition, as per 3GPP standards, the UE 
periodically reports a channel quality feedback to the eNB, 
which the scheduler uses to effectively determine the 
maximum bit rate (channel bandwidth) supported by the UE 
at the current radio and loading conditions denoted by Rc. 
This feedback is generally used by the eNB lower layers to 
determine the number of resource blocks to be assigned to 
the UE, however in this study we consider a cross-layer 
approach thereby making the available bandwidth available 
to the application layer to be exploited by the encoder. 
 

MV-HEVC Video Encoder

IP Transport & 
Core Network

Rc

 
Fig. 1. System Model 

 
Thus, the objective of this work is to formulate a 

statistical model which estimates, on-line, the optimal 



depth-texture rate allocation ratio, ODT, as a function of TΦ , 

DΦ  and Rc given by: 

                             ( ), ,DT T D cO f Rα= Φ Φ                          (1) 
where TΦ  and DΦ  represent the texture and depth map 
views image statistics respectively and α is the lower layers 
overhead factor which is typically 0.18 [16].  Using the 
model defined by (1), the target bit rates for the texture and 
depth map views that should be used by the encoder’s rate 
control algorithm are given by: 

                            (1 )
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where Rd and Rt represent the bit rate allocated to the depth 
map views and texture views respectively. 
 
3.2. Experimental setup and initial observations 
 
Inspired by the works in [14] and [17], a number of 
experiments were carried out to determine the optimal 
depth-texture rate allocation ratio for various test sequences 
exhibiting different video characteristics and total bit rate. 
The latter is defined as the sum of the encoded bit rate of the 
texture and depth map views and is usually bounded by the 
channel bandwidth.  In order to increase the number of data 
samples for the statistical model formulation, each test 
sequence was divided into chunks, whose size was set equal 
to the intra frame period (which was set to 12 in this work).  
For each test sequence, each chunk was encoded using MV-
HEVC reference software HM11.0 [18] whilst the depth-
texture ratio and total bit rate were adjusted by varying the 
QP between 20 and 44 in steps of 2 for both the texture and 
the depth map views.  In view of our interest in real-time 
video applications, a low latency prediction structure 
described in [19] was used in this work.  The test sequences   

 
Table 1. Test sequence parameters and characteristics                       

(v indicates the sequence used for model verification only) 
 

Sequence Image Size Cameras 
(L-C-R) 

Characteristics  
(frame rate, 

baseline) 

Balloons 1024 x 768 1-3-5 30 fps; 5cm in 1D 
plane 

Book 
Arrival 1024 x 768 6-8-10 15 fps; 6.5cm in 1D 

plane 

Kendo 1024 x 768 1-3-5 30 fps; 5cm in 1D 
plane 

NewspaperV 1024 x 768 2-4-6 30 fps; 5cm in 1D 
plane 

Poznan 
HallV 1920 x 1088 5-6-7 25 fps; 13.75cm in 

1D plane 
Poznan 
StreetV 1920 x 1088 3-4-5 25 fps; 13.75cm in 

1D plane 

used for these experiments, defined in the Common Test 
Conditions (CTC) [20], are shown in Table 1, where L, C 
and R represent the left, rendered and right views 
respectively, whilst the test setup is described in [17]. 

With reference to Figure 2, the plot of the synthesized 
view Peak Signal-to-Noise Ratio (PSNR) with depth-texture 
ratio for the Balloons video sequence at a given total bit rate 
follows a downward concave parabola yielding an optimal 
depth-texture ratio (shown in red) of 40.3%. Moreover, as 
shown in Figure 2, any large deviations from this optimal 
value (shown in green) will result in 1.1dB degradation in 
the synthesized view’s PSNR, thereby emphasizing the 
importance to estimate the optimal depth-texture ratio with a 
low margin of error. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Balloons - PSNR vs depth-texture ratio 
(R2

 represents the coefficient of determination) 
 
As shown in Figure 3, the optimal depth-texture ratio is 

a function of both the total bit rate and sequence 
characteristics as different sequences impart contrasting 
trends.  Further inspection reveals that the optimal depth- 
texture ratio trends towards an asymptotic value which 
never exceeds 60%.  This is expected, as at high available 
bandwidths any further increase in the depth map bit rate 
would not translate in an improvement in the synthesized 
view’s PSNR.  Conversely, at very low bit rates, the 
allocated depth map bit rate is very low necessitating a 
return to standard 2D video, whereby the texture views only 
are transmitted.  In order to reflect these constraints in (1) 
the following bounds are applied to the estimated optimal 
depth-texture rate calculated by the statistical model: 
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In order to model the sequence dependent 
characteristics, the authors considered a number of texture 
and depth map image statistics.  These included the gradient 
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of the depth map view, GD, and texture view, GT, together 
with the depth map entropy ratio [17], EDT, given by: 
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where ED and ET are the average entropy of the depth map 
and texture views respectively. 

 
 

 
 
 

Fig. 3. Optimal depth-texture ratio with total bit rate 
 

4. STATISTICAL MODEL FORMULATION AND 
RESULTS 

 
4.1. Multi-regression model 
 
The average chunk values of the image statistics for all test 
sequences used during model formulation, shown in Table 
1, together with their optimal  depth-texture ratio and total 
bitrate were parsed, collated and imported into IBM SPSS© 
statistical package for analysis.  In this study, the authors 
opted to use a multi-regression model, as this family of 
models are the most commonly used due to their well-
known statistical properties.  Multi-regression models are 
composed of several predictors (image statistics and bit rate) 
which are used to model a single dependent variable 
(optimal depth-texture ratio) having a normal distribution.  
Thus, prior to fitting the multi-regression model, the 
dependent variable was checked for normality using the 
Kolmogorov-Smirnov test at the 0.05 level of significance 
yielding a p-value of 0.568 validating the normality criteria.  
The multi-regression model was formulated using SPSS© 

which makes use of the least square estimation method to 
estimate the parameter values.  Some predictors were not 
included in the final statistical model as they were either not 
correlated with the variation in the optimal depth-texture 
ratio or found to be correlated with each other and thus were 
removed to reduce multi-collinearity effects. The 
parsimonious model given by (5) is composed of 7 
significant predictors whereas the coefficient of 
determination, R2, of the formulated statistical model is 
0.86. 
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where ODT is the estimated optimal depth-texture ratio,GD 
and GT are the average chunk gradient of the depth map 
views and texture views respectively, EDT is the depth map 
entropy ratio given by (4) whilst αRc is the total bit rate 
available at the application layer. 
 
4.2. Model Diagnostics Analysis 

 
Following the formulation of the statistical model, a 

number of diagnostic checks were carried out to detect any 
model uncertainty: 
Standardized Residual Distribution [21]: The standardized 
residuals are checked for normality using the Kolmogorov-
Smirnov test at the 0.05 level of significance yielding a p-
value of 0.805, validating the normality criteria.  Moreover, 
a plot of the Cook’s distance [21] with the unstandardized 
predicted value, shown in Figure 4, indicates a relatively 
low number of influential points (points having relatively 

high Cook’s distance) thereby reducing model uncertainty. 
Fig. 4. Cook’s distance plot 

 
Studentized Residual [21]: Apart from the model’s 
coefficient of determination, R2, model fitness is checked 
using a plot of the studentized residual against the 
unstandardized predicted optimal depth-texture ratio as 
shown in Figure 5.  Since, the majority of the points are 
distributed across a horizontal band, indicating 
homoscedasticity, and lie within the standard 2±  limit, the 
model is adequate for such data fit with a very small number 
of outliers (shown in red). 

 



Fig. 5. Studentized residual plot 
 
4.3. Model Verification Results 

 
The proposed statistical model was integrated in the MV-
HEVC HM11.0 reference encoder software to verify the 
efficacy of the proposed solution by calculating, on-line, the 
optimal depth-texture ratio for various average bitrates.  The 
plots of the actual and estimated optimal depth-texture ratio 
for the test sequences used during model formulation and 
verification are shown in Figure 6 and 7 respectively. 

 
Fig. 6. Optimal depth-texture ratio – model formulation 

 
Fig. 7. Optimal depth-texture ratio – model verification 

With reference to Table 2, the formulated statistical 
model exhibits an absolute mean estimation error of 2.2% 
and standard deviation of 2% for the test sequences used 
during the model formulation.  Moreover, with reference to 
Figure 7, the proposed model is able to estimate the optimal 
depth-texture ratio for the Newspaper, Poznan Hall and 
Poznan Street verification test sequences with an absolute 
mean estimation error of 3.3% and standard deviation of 
2.3%.   

Table 2. Model estimation error 

Test Sequence 

% Absolute 
Mean Estimation 

error 

% Standard 
Deviation of the 
Estimation error 

Model 
Formulation 2.2 2.0 

Model 
Verification 3.3 2.3 

 
The impact of the estimation error and associated 

standard deviation on the synthesized view PSNR was 
evaluated for various test sequences at different total bit 
rates and this was found to be generally less than 0.05dB 
and at worse 0.1dB.  As shown in Figure 8, the synthesized 
view PSNR for the Newspaper sequence using the proposed 
model was found to be on average 1.2 dB better, for various 
total bit rates, when compared to the commonly used 20% 
fixed depth-texture rate case [4]. 

 
Fig. 8. Synthesized view PSNR – proposed vs fixed at 20% 

 
With reference to the system model shown in Figure 1, 

in order to evaluate the adaptation of the optimal depth-
texture ratio through the use of the cross-layer approach, a 
series of 120 frames (10 chunks) from 3 different test 
sequences were combined and encoded using the MV-
HEVC framework integrated with the proposed statistical 
model.  Field test measurements were carried out in a live 
commercial LTE network using a purposely setup test 
vehicle equipped with industry standard test equipment [22].  
The channel quality feedback reported to the network by the 
UE throughout the field test were collected and elaborated 
to estimate the average physical layer channel bandwidth 
supported by the UE.  Considering a lower layer overhead 



factor α of 0.18, the application layer bandwidth available 
for the encoder, averaged over a chunk, is shown in Figure 
9. As evidenced in Figure 9, the optimal depth-texture ratio 
was adapted at every intra frame period ensuring good 
tracking in the presence of varying video characteristics 
(abrupt test sequence change and intra sequence changes) 
and channel bandwidth. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 9. Scene change handling of the proposed technique 

 
5. CONCLUSION 

 
In this paper, we presented a cross-layer depth-texture target 
bit rate allocation estimation technique for the transmission 
of multiview high efficiency video coding texture plus depth 
content over 3GPP LTE systemsbased on a statistical multi-
regression model. Simulation results on test sequences 
exhibiting a variety of video characteristics have shown that 
the proposed technique is able to estimate, on-line, the 
optimal depth-texture ratio with an absolute mean 
estimation error of 3.3% for the test sequences not used 
during model formulation. Moreover, the PSNR of the 
synthesized view using the proposed technique is on average 
1.1dB  better when compared to the commonly used fixed 
depth-texture ratio of 20% whilst allowing good tracking 
performance in the presence of varying video characteristics 
and channel bandwidth. 
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ABSTRACT 

 
In this paper, we present a depth map rate control algorithm 
for the High Efficiency Video Coding (HEVC) Multi-View 
Video plus Depth (MVD) representation. The proposed 
algorithm is based on a bit allocation refinement technique 
for key frames together with a depth-map inspired R-λ 
model coupled with an adaptive clipping algorithm designed 
to exploit the depth map characteristics. This results in 
improved video quality of the synthesized views while 
maintaining depth map rate control accuracy. This scheme 
was tested using various standard test sequences and has 
shown efficacy with an average improvement of the 
synthesized view Peak Signal-to-Noise Ratio (PSNR) and 
Bjøntegaard Delta PSNR (BD-PSNR) of 1.15% and 0.45dB 
respectively, whilst achieving a bit rate error reduction of 
0.2% when compared to the reference rate control algorithm 
implemented in MV-HEVC. 
 

Index Terms— HEVC, Rate Control, Multi-view 
video, Adaptive clipping, View synthesis, Depth maps 
 

1. INTRODUCTION 
 
The rapid development of digital multimedia spurred an 
increased interest in three-dimensional (3D) technology 
which has reached commercialization in a variety of 
products and applications ranging from 3D television 
(3DTV), gaming, and medical imaging. The latest video 
coding standard developed by the Joint Collaborative Team 
on Video Coding (JCT-VC) is the High Efficiency Video 
Coding (HEVC) standard which was finalized in April 
2013. The multi-view (MV) version, MV-HEVC, was 
released in October 2014 and it extends the HEVC standard 
to handle multi-view video (MVV), through the use of inter-
layer prediction whilst adding depth map support. The latter 
allows the encoding of the multi-view video plus depth 
(MVD) representation [1]. This representation is attractive 
as it allows the adaptive rendering of a continuum of views 
at the decoder, through the use of depth-image-based 
rendering (DIBR) techniques [2], and realizes free-view 
video (FVV) which allows the viewer to interactively select 
an arbitrary viewing position in relation to the 3D scene 

being watched. In MVD, a set of texture views together with 
a corresponding set of per-pixel depth map views are 
independently compressed using MV-HEVC by exploiting 
the redundancy in space, time and in-between views [3,4]. 
To further improve the compression of the MVD 
representation, a second extension, 3D-HEVC, was released 
in February 2015.  This version allows the joint coding of 
texture and depth map views through the introduction of 
several new coding tools such as view synthesis 
prediction/optimization and depth map modes, which 
improve the coding efficiency at the expense of increased 
computational complexity. 

As the compressed MVD stream is usually transported 
over a bandwidth limited network, a rate control algorithm 
operating at the view, depth-texture, group-of-pictures 
(GOP), frame, and coding unit (CU) level is essential.  At 
the view and depth-texture level, the bit rate ratios are 
usually fixed with the priority given to the base view and 
texture respectively. For the remaining levels, the same rate 
control algorithms are usually used for both the texture and 
depth map views. However, these algorithms are designed 
and optimized for rate controlling the texture views and do 
not take into consideration the depth map characteristics, at 
the detriment of the synthesized view quality. Although the 
depth map videos are only used for virtual view rendering, 
any artifacts introduced during coding and rate controlling 
these depth videos at a low bit rate, can have a significant 
impact on the quality of the synthesized views [5]. In this 
work, we propose a new depth map specific rate control 
algorithm. Thus, the encoder will have the standard rate 
control algorithm operating on the texture view together 
with the proposed algorithm, operating in parallel, on the 
depth map view. The latter is based on a bit allocation 
refinement technique for key frames together with a depth-
map centric R-λ model and an adaptive quantization and λ 
parameter clipping algorithm designed to exploit the depth 
map characteristics.  

The rest of the paper is organized as follows: Section 2 
is a summary of related work; Section 3 describes the 
proposed rate control algorithm; Section 4 is a description of 
the test setup and the resulting performance of the proposed 
algorithm, while Section 5 provides some comments and 
conclusions. 

978-1-4799-7082-7/15/$31.00 ©2015 IEEE 
 



2. RELATED WORK 
 
Rate control is a very active research topic and several 
algorithms have been proposed for the legacy video coding 
standards. However, rate control techniques in HEVC and 
its extensions are limited. Two main rate control proposals 
have been adopted for HEVC, namely: the unified rate 
quantization (URQ) algorithm and the R-λ model based rate 
control, defined in JCTVC-H0213 [6] and JCTVC-K0103 
[7] respectively. The URQ rate control scheme is based on 
the quadratic model used in earlier video coding standards 
and has been further improved through the enhancement of 
the model accuracy. In [8], the authors use a per pixel 
gradient value in the R-Q model, while the sum of absolute 
transformed differences (SATD) is adopted in [9].  

The R-λ model is based on the studies carried out by Li 
et al in [10]. In this work the bit rate R was found to have a 
stronger relationship with the Lagrange multiplier λ than the 
quantization parameter QP. Moreover, in [7], the authors 
show that the rate-distortion (R-D) model is best 
characterized using a hyperbolic function given by: 

 
                               D(R) =CR−K                                    (1) 

where C and K are model parameters related to the source 
characteristics. 

The Lagrange multiplier λ is defined as the slope of the 
R-D curve and thus: 
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where α1 and β1 are model parameters related to the source 
characteristics. 

The rate control algorithm proposed in [10] became the 
reference algorithm for HEVC and has since been further 
improved in [11] and [12] to better handle the intra-frame 
rate control. In [13] the authors propose an efficient bit 
allocation method considering the HEVC hierarchical 
coding structure whilst in [14] a Laplace distribution based 
code tree unit (CTU) rate control for HEVC is proposed.  

In MV-HEVC for the MVD representation, the same R-
λ rate control algorithm used in HEVC is used across all the 
texture and depth map views regardless of the fact that the 
texture and depth map videos have strikingly different 
source characteristics. Similarly, for 3D-HEVC, the rate 
control algorithms developed for HEVC have been extended 
and applied for both texture and depth map views. In [15], 
the depth map is exploited to improve the accuracy of the 
mean absolute difference (MAD) by considering the inter-
view disparity in the texture view MAD estimation. In [16], 
the authors propose an adaptive frame level rate control 
algorithm for 3D-HEVC based on a new initial quantization 
parameter decision and bit allocation scheme. Although the 
results look promising, the authors do not indicate any 
improvements in the synthesized view quality.  

In all the rate control works reviewed for MV-HEVC 
and 3D-HEVC, no specific treatment is given to the depth 
map view. A rate control algorithm which is specifically 
designed for the depth map view will result in a beneficial 
improvement in both the rate control accuracy of the depth 
map views, and the quality of the synthesized views. 

 
3. PROPOSED DEPTH MAP RATE CONTROL 

ALGORITHM 
 
As shown in [17], the 3D-HEVC coding standard has a 
coding efficiency gain of 21% when compared to MV-
HEVC.  However, this comes at the expense of a 20% 
increase in computational complexity. Thus, although the 
proposed depth map rate control algorithm can be applied to 
both MV-HEVC and 3D-HEVC coding standards, we study 
its application to MV-HEVC due to our interest in low 
latency, low computational complexity video coding. 
Moreover, without loss of generality, the 3-view low latency 
prediction structure shown in Fig. 1 is used in this work.  

 
 
 
 
 
 

 

 
 
 
 
 

Fig. 1: Low Delay Prediction Structure 
 

The proposed depth map rate control algorithm is based 
on the general R-λ model and is illustrated in Fig. 2. Here 
the rate controller is applied to each depth map view 
independently and operates at three main levels, namely: 
group of pictures, frame, and coding tree unit level. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2: Proposed depth map rate control algorithm 
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A. GOP-level bit allocation 
 

The bit allocation at the GOP level is similar to that in 
[7] and is given by: 
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       (3) 

where Rtarget is the target bit rate, f is the frame rate, NGOP is 
the number of frames in GOP, NS,CODED is the number of 
pictures in sequence already coded, TS,CODED is the bit cost 
of the coded pictures in the sequence, whilst SW is the 
smoothing window size. SW is set to 40 and used to allow 
the controller to change the bit rate smoothly and achieve 
Rtarget after SW frames. 
  

B. Frame-level bit allocation 
 

At the frame level, the inter-B/P frame bit allocation 
and R-λ model used in the proposed work is analogous to 
that in [7] and is given by (4) and (5) respectively. 
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where Tavgpic is the initial bit budget allocated per frame, 
TGOP is the target number of bits in a GOP and is computed 
using (3), TG,CODED is the bit cost of already coded frames in 
the current GOP, ω is the bit allocation weighting factors 
for the different hierarchical levels as defined in [7], αB,pic 
and βB,pic are the R-λ model parameters initially set to 
3.2003 and -1.367 respectively and adaptively tuned during 
the parameter update procedure described in [7], whilst Px is 
the number of pixels in a frame. 

Different from the standard rate control algorithm, the 
bit allocation of the key frames, shown in Fig. 1, is refined 
such that these are given importance in relation to the other 
frames in the GOP. Thus, the refined bit budget allocation of 
the key frames is given by: 
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                          (6) 

where C is the complexity measure based on the sum of 
absolute transformed difference [11] and γ is a tuning 
parameter controlling the amount of bit budget allocated to 
the key frames from the total. For the intra frames, this 
parameter was set to 0.5582 [11], while for the P-key frames 
it was empirically set by encoding several depth map test 
sequences at various target bit rates and evaluating several 

quality metrics which include the standard deviation and 
average peak signal-to-noise ratio (PSNR) of the 
synthesized view together with the average PSNR of the 
posterior frames in the sequence. As shown in Fig. 3 for the 
Balloons test sequence encoded at a target bit rate of 
110kbps, as γ increases, the average PSNR of the 
synthesized view increases, however, as expected, the 
average PSNR of the posterior frames degrades rapidly after 
γ = 0.5, since the number of bits available for the posterior 
frames decreases. Considering these factors and after 
analysing the variation of γ for various test sequences, the 
value of γ was empirically set to 0.41 as this is the best 
trade-off between the identified quality metrics.  
 

 
Fig. 3: Variation of tuning parameter for the Balloons test 

sequence 
 

Moreover, experiments on texture and depth map views 
on the test sequences shown in Table 3 reveal that depth 
maps have on average 26% of CTUs with zero complexity 
cost whilst generally texture views do not have any CTUs 
with zero complexity cost. This is not surprising as depth 
maps have a large number of flat areas when compared to 
texture views. For this reason, the key-frame R-λ model, 
given by (7), needs to be adapted for the depth maps 
accordingly. 
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                         (7) 

where C is the complexity measure based on SATD [11], 
Tkey is the refined bit budget of the key frame, Px is the 
number of pixels in a frame, whilst αK,pic and βK,pic are model 
parameters which are empirically set to fit the hyperbolic 
model. 

To fit the hyperbolic model, an experiment was carried 
out whereby the MV-HEVC encoder was configured such 
that the depth map frames across the three views are 
encoded as key frames. Test sequences, shown in Table 3, 
were encoded and the average bits per pixel (bpp), frame 
complexity C, and λpic at four QPs (34, 39, 42, 45 - as 
defined in the Common Test Conditions (CTC) [18]) were 
used to model the relationship between λpic and (C/bpp) for 
the depth map key frames across the 3 views. Fig. 4 shows 
the relationship between these two variables and the model 



parameter estimates for the Balloons test sequence across 
the 3 views. Taking the average value of the model 
parameter estimates for the various test sequences yields 
αK,pic = 0.028, and βK,pic = 1.9495. 

  

 
Fig. 4: R-λ modelling for the Balloons test sequence 

 
Using the estimated λpic, the QP for the frame is then 

calculated using [10]: 
 

                               4.2005ln( ) 13.7122QP λ= +                    (8)  
 

C. CTU-level bit allocation 
 

At the CTU level, the bit budget allocated to the frame 
is distributed across the CTUs in the frame depending on 
their cost complexity. The R-λ models used at the frame 
level, given by (5) and (7), are re-used at the CTU level. 
However, the R-λ model parameter estimates of the CTUs in 
a frame are initially set to the frame level model parameter 
estimates and then adaptively tuned, on a CTU level basis, 
during the CTU parameter update procedure described in 
[7]. Using the CTU level bit allocation and R-λ model, the 
λCTU is estimated, clipped and then used to calculate QPCTU 
using (8), which is also clipped prior to being used for unit 
encoding. In the proposed rate control scheme, we introduce 
an algorithm which adaptively tunes the clipping range of 
λCTU and QPCTU based on the type of CTU being processed. 
In doing so, we allow a wider clipping range for the CTUs 
which are in the foreground and edges in the depth map. 

Inspired by the work in [19], CTUs in a frame are 
classified into 3 categories namely foreground, background, 
and edge type CTU depending on their characteristics using 
the algorithm shown in Fig. 6.  This algorithm takes as input 
a binary edge map generated by an edge detection 
technique. Several edge detection techniques can be found 
in literature however, in this work, a Canny edge filter based 
on Laplacian edge detection is used due to its low 
complexity. Here the edges are detected by searching for 
zero crossings in the second derivative of the image. In 
order to improve the noise immunity, the image is first 
Gaussian smoothed prior to applying the Laplacian filter 
yielding the Laplacian of Gaussian (LoG) detection which 
forms the basis of Canny edge detection [20]. Thus, taking 

the original video depth map shown in Fig. 5(a), the binary 
edge map at the output of the Canny edge filter is shown in 
Fig. 5(b).  This binary edge map is then processed together 
with the original video depth map using the CTU mask 
generation algorithm given in Fig. 6 to generate the mask 
shown in Fig. 5(c), where CTUs marked in red are treated as 
foreground while those marked in green are treated as edges. 
The rest are treated as background CTUs.   

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Fig. 5: CTU mask generation for Balloons – Camera 1 
 

 
Fig. 6: CTU mask Algorithm 

 
Using the CTU mask, the clipping range of λCTU and 

QPCTU is then adapted based on the current and previous 
CTU type as shown in (9).  

(a) (b) 

(c) 
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where λCTU_prev and  λCTU_cur are the λ of the previous and 
current CTU respectively, QPCTU_prev and QPCTU_cur are the 
QP of the previous and current CTU respectively, λpic and 
QPpic are the λ and QP of the frame respectively, Tremain and 
Tthresh are the number of bits remaining to code the current 
frame and low bit threshold respectively, whilst the 
parameters A, B, and Δ  depend on the previous and current 
CTU type and are given in Table 1. 
 

Table 1. Adaptive clipping parameters 
Previous	CTU	Type	 Current	CTU	Type	 A	 B	 Δ		

Background	 Background 1 1 1 
Foreground	 Foreground 2 2 2 

Edge	 Edge 2 2 2 
Edge	 Foreground 2 2 2 

Foreground	 Edge 2 2 2 
Background	 Edge 4 4 3 
Foreground	 Background 2 4 3 

Edge	 Background 2 4 3 
Background	 Foreground 4 4 3 

 
The parameters shown in Table 1 were empirically 

selected such that the salient characteristics of the depth 
map are retained whilst minimizing frame bit exhaustion. 
The latter was also tackled through the use of a low bit 
threshold check at the start of processing of each CTU in the 
frame.   
 

4. SIMULATION ENVIRONMENT AND RESULTS 
 
The proposed rate control algorithm was implemented in 
HEVC reference software HM11.0 [21], which was 
configured for multi-view compression using the low-delay 
prediction structure, shown in Fig. 1, and with the encoding 
parameters shown in Table 2. Moreover, the target bit rates 
for the rate control algorithm were set as per the CTC 
described in [18]. The performance of the proposed rate 
control algorithm, in terms of synthesized view PSNR 
improvement, Bjøntegaard Delta PSNR (BD-PSNR) [22], 

and bit rate error improvement, was assessed and compared 
with the latest reference algorithm implemented in MV-
HEVC [11]. As shown in Table 3, the average improvement 
of the synthesized view PSNR and BD-PSNR are 1.15% and 
0.45dB respectively. Moreover, this improvement in visual 
quality is achieved whilst reducing the bit rate error by an 
average of 0.2% when compared to the reference algorithm 
in MV-HEVC. These gains are achieved through better bit 
budget allocation to the key frames and salient CTUs 
together with an improved R-λ model for the depth map 
videos. Moreover, the complexity of the proposed algorithm 
is similar to that of the reference algorithm in MV-HEVC 
with a marginal increase in encoding time of 0.1% owing to 
the low complexity CTU mask algorithm used. 

 
Table 2. Encoding parameters 

 

GOP Size 4 
Intra Period 24 

LCU Level Rate Control 1 
LCU size 64 x 64 

Partition Depth 4 
LCU separate RC Model True 

Tthresh 5% of frame allocation 
 

 
Fig. 7: R-D plot - Balloons Synthesized View 3 

 

 
Fig. 8: Std. Deviation plot - Balloons Synthesized View 3 

 
As shown in Fig. 7, the proposed rate control algorithm 
imparts a better R-D performance when compared to the 
reference algorithm used in MV-HEVC. Moreover, the 
standard deviation of the synthesized view quality is also 
lower owing to smaller bit-budget estimation errors, which 
result in smoother buffer fullness variation and hence more 
consistent video quality. 
 



Table 3. Rate Control Performance 
(synthesized view is indicated by the camera number shown in bold) 

 
5. CONCLUSION 

 
In this paper we have presented a depth map specific 

rate control algorithm for MV-HEVC MVD representation 
based on a bit allocation refinement technique for key 
frames together with a depth-map centric R-λ model and an 
adaptive clipping function to exploit the depth map 
characteristics. The texture rate control algorithm was not 
modified in this work. Experimental results using standard 
test sequences suggested in the CTC [18] have shown that 
the proposed rate control scheme improves the synthesized 
view PSNR and BD-PSNR by 1.15% and 0.45dB 
respectively when compared to the reference algorithm used 
in MV-HEVC. The improvement in the synthesized view 
visual quality is achieved whilst improving the rate control 
accuracy by 0.2% and reducing the PSNR standard 
deviation, thereby ensuring a more consistent video quality 
and making this scheme attractive for MVD transmission 
over bandwidth limited channels.  
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Sequence / 
Resolution 

Target 
bitrate 
(kbps) 

% ∆ 
PSNR 

 

% ∆ 
bitrate 
error 

BD-PSNR 
(dB) 

Balloons 
(1-3-5) 

1024x768 

466.7 1.01 -0.61 

0.55 219.3 1.23 -0.79 
140.1 1.28 -0.00 
91.4 1.88 -0.03 

Book 
(8-9-10) 

1024x768 

295.7 1.20 -0.27 

0.41 152.1 0.91 -0.18 
101.5 1.29 -0.13 

69 1.13 -0.09 

Kendo 
(1-3-5) 

1024x768 

597.5 0.76 -0.22 

0.3 314.7 0.72 -0.15 
213.9 0.66 -0.10 
147.5 0.60 -0.08 

Newspaper 
(2-4-6) 

1024x768 

370.1 1.47 -0.65 

0.66 181.5 1.79 -0.07 
115.9 2.16 -0.05 
77.2 2.70 -0.04 

PoznanHall 
(7-6-5) 

1920x1088 

205.8 1.01 -0.28 

0.39 108.3 1.06 -0.16 
77.8 0.71 -0.07 
57 0.32 -0.06 

PoznanStreet 
(5-4-3) 

1920x1088 

332.7 0.69 -0.21 

0.39 150.2 1.12 -0.34 
96.7 0.82 -0.11 
66.4 1.04 -0.02 

Average 
 

1.15 -0.20 0.45 
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Abstract—The characteristics of the depth map video are 
different from those of the texture and thus the empirical 
function of the Lagrange multiplier λ normally used in the rate-
distortion optimization (RDO) of texture views might not be 
suitable for depth map coding. In this paper, we propose a 
technique whereby the Lagrange multiplier used to select the 
macroblock (MB) mode is adapted based on the discontinuity 
region of the depth map and the frame type. This technique, 
which was tested on various standard test sequences, preserves 
the depth discontinuities leading to an average depth map bit rate 
saving of 12.5% without incurring significant quality degradation 
in the synthesized views compared to using the fixed Lagrange 
multiplier used in the respective multi-view texture videos.   

I. INTRODUCTION 

Three Dimension (3D) technologies have reached 
commercialization in a wide spectrum of products and 
applications ranging from smartphones, TV, gaming, and 
medical imaging. This widespread proliferation of 3D 
technology is driving the market which is expected to reach 
$227.27 billion in 2016, an estimated year-on-year increase of 
15.8% [1]. An application of Multi-view Video (MVV), which 
is increasingly gaining commercial and research interest, is 
Free-View Video (FVV) [2] whereby the user can 
interractively select an arbitrary viewing position in relation to 
the 3D scene being watched. This requires the use of a large 
number of cameras to capture a scene and thus the multi-view 
video plus depth (MVD) representation [3] is beneficial, as it 
allows the flexible rendering of a continuum of views at the 
receiving end through the use of depth image-based rendering 
techniques [4]. In MVD, a small set of texture views together 
with a corresponding set of per-pixel depth map views are 
independently compressed using the Multi-view Video Coding 
(MVC) standard by exploiting the redundancy in space, time 
and in between views [5, 6]. As the characteristics of depth 
map views is significantly different from those of texture 
views, the value of the Lagrange multiplier λ used to encode 
texture views might not be the best option for the depth map 
views. 

In this paper, we propose a technique to adapt the 
Lagrange multiplier, used during depth map coding, at a 
macroblock (MB) level based on the discontinuity region of 
the depth map and the frame type. The rest of the paper is 
organized as follows: Section 2 gives a summary of the rate-
distortion optimization (RDO) mode selection process used in 

H264/MVC; Section 3 describes the proposed technique to 
adapt the Lagrange multiplier λ for the encoding of depth map 
views; Section 4 gives a description of the simulation 
environment and results, while Section 5 provides some 
comments and conclusions. 

II. RATE DISTORTION OPTIMIZED MB MODE SELECTION  

Similar to H264/AVC, the MVC encoder uses a RDO 
mode selection technique to choose the coding mode of a MB 
based on the Rate-Distortion (R-D) cost of each coding mode. 
The supported MB prediction modes include SKIP, DIRECT, 
Inter16×16, Inter16×8, Inter8×16, Inter8×8, Inter8×8Frext, 
Intra16×16, Intra8×8 and Intra4×4. The prediction mode with 
the lowest R-D cost, given by (1), is chosen to encode the MB 
[7]. 

 
( , , | )

( , , | ) ( , , | )MODE

J s c MODE QP

SSD s c MODE QP R s c MODE QPλ= +
  (1) 

 
where s and c denote the source and reconstructed MB 
respectively, MODE is the candidate MB mode, QP is the MB 
quantization parameter, R(s, c, MODE | QP) is the total bits of 
the MB header, motion vectors and discrete cosine transform 
(DCT) coefficients, λMODE is the Lagrange multiplier for the 
mode decision, and SSD(s, c, MODE | QP) is the sum of 
square differences which reflects the distortion between the 
original and reconstructed MB given by: 
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The Lagrange multiplier λMODE controls the trade-off 

between the rate and distortion. As λMODE decreases, the R-D 
cost function is biased towards minimizing the distortion 
whilst allowing a higher rate and vice-versa. Hence, selecting 
the optimal value of λMODE for a specific sequence is not 
trivial. Several studies on texture views were carried out to 
find empirical solutions to this problem [8]-[10], however the 
most commonly used solution is to calculate λMODE as a 
function of QP as shown in (3). 
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Depth map views represent the distance between an object 
and a camera as a gray scale image. Thus, they have limited 
texture and prominent contours giving rise to depth 
discontinuities which are critical for the correct synthesis of 
intermediate views. These characteristics are significantly 
different from those of texture views however, the same 
empirical function shown in (3), is usually used for the depth 
map view. 

III.  PROPOSED TECHNIQUE  

As discussed in Section II, the preservation of depth 
discontinuities is critical for the correct synthesis of 
intermediate views. Thus, an MB edge mask indicating MBs 
containing edges, needs to be generated.  

 

A. Edge Detection 

Various edge detection techniques have been proposed in 
recent years, amongst which, Laplacian edge detection 
techniques [11] are commonly used due to their high noise 
immunity. These detect edges by searching for zero crossings 
in the second derivative of the image whilst the high noise 
immunity is achieved by Gaussian smoothing the image prior 
to applying the Laplacian filter, yielding the Laplacian of 
Gaussian (LoG) detection. This forms the basis of Canny edge 
detection [12] which is used in this work to generate a binary 
edge map from the video depth map. Considering the original 
video depth map of the Balloons sequence shown in Fig. 1(a), 
the binary edge map at the output of the Canny edge filter is 
shown in Fig. 1(b). The algorithm shown in Fig. 2 is used to 
create an improved MB edge mask by reducing false edges 
created by the Canny filter. This results in the MB edge mask 
shown in Fig. 1(c). 

 
 
 

 
 

 
 
  
 

 
      (c) 

Figure 1. MB edge mask generation for Balloons – Camera 1 
 

B. Adaptation of Lagrange multiplier λ 

Using the MB edge mask generated earlier, the constant term 
in (3) (usually fixed to 0.85) is modified such that MBs 
located at edge boundaries will have their Lagrange multiplier 
lowered, thereby giving more weight to the distortion term in  

 
Figure 2. MB edge mask algorithm 

 
the RDO model.  Conversely, MBs located in relatively flat 
areas will have their constant term modified such that the 
Lagrange multiplier is increased giving more weight to the 
rate term in the RDO model. Moreover, as the frame type has 
a significant effect on the coding efficiency, this adaptation is 
carried out for all MBs in a predicted (P) frame. The MBs in 
an Intra (I) frame still have a fixed constant term, set to give 
more weight to the distortion term in the RDO model. This 
adaptation process is summarized in Fig. 3, where αedge and 
αnon-edge are the parameters used to modify the constant term in 
the Lagrange multiplier of MBs at edge boundaries and flat 
areas respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Flowchart of proposed technique  
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IV. SIMULATION ENVIRONMENT AND RESULTS 

A series of experiments were conducted to test the efficacy 
of the proposed technique and study the relationship between 
the newly defined parameters (αedge, αnon-edge) and the 
quantization parameter for the depth map views (QPDepth) for 
various test sequences. The test setup used for these 
experiments is shown in Figure 4, while the encoding 
parameters together with the test sequences used and their 
characteristics are shown in Tables 1 and 2, respectively. 

 
 

Figure 4. Test setup used during experiments 
 

Table 1. Encoding parameters 
 

GOP Size 1 

Intra Period 12 

QPTexture 32 

QPDepth 24, 28, 32, 38 and 42 

Prediction Structure I-P-P-P in time-domain [15] 

Encoded Frames 60 

 
Table 2. Test sequence parameters and characteristics                        

 

Sequence Image Size Cameras 
(L-C-R) 

Characteristics (video 
features, frame rate, 

baseline) 

Balloons 1024 x 768 1-2-3 
Complex object 

motion;  30 fps; 5cm 
in 1D plane 

Champ. Tower 1280 x 960 37-38-39 
Slow but complex 

object motion; 30 fps; 
5cm in 1D plane 

Pantomine 1280 x 960 37-38-39 
Medium complex 

object motion; 30 fps; 
5cm in 1D plane 

Book Arrival 1024 x 768 10-9-8 
Moderate object 

motion; 15 fps; 6.5cm 
in 1D plane 

 
For each test sequence and QPDepth, the parameters αedge 

and αnon-edge were varied between [0.6-2.5] and [0.7-2.2] 

respectively. The parameter settings which yielded the best 

compromise between visual quality degradation and depth bit 
rate savings, when compared to the fixed constant case (0.85), 
were determined experimentally. With reference to Figure 5 
and Figure 6, the parameters αedge and αnon-edge generally follow 
a downward linear trend with QPDepth except for the case of the 
Champ. Tower sequence. In this case, αnon-edge increases with 
QPDepth due to the slow object motion and relatively simple 
background of this specific test sequence, allowing a higher 
Lagrange multiplier in the background areas. Moreover, it is 
evident that although the gradient is approximately the same 
across all tested sequences, the intercept point is sequence 
dependent. Hence further studies need to be carried out to 
identify the relationship between the sequence characteristics 
and parameter set (αedge, αnon-edge) to allow for the real-time 
estimation of these parameters using sequence statistics and 
QPDepth. 

 

Figure 5.  αedge with QPDepth 

 

Figure 6.  αnon-edge with QPDepth 

 
Through the adaptation of the Lagrange multiplier, the 
proposed technique is able to preserve the depth 
discontinuities. This leads to significant depth bit-rate savings 
over all the test sequences and QPDepth without significantly 
degrading the synthesized view quality, when compared to the 
fixed Lagrange multiplier case, as shown in Figure 7 and 8 
respectively. As expected, as QPDepth increases, the bit rate 

View 0 View 2 

JMVC ver. 
8.5 [13] 

Texture and 
Depth 

VSRS ver. 
3.5 [14] 

Synthesized View 1 

JMVC ver. 
8.5 [13] 

Texture and 
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savings diminishes as we start being limited by the amount of 
Peak Signal-to-Noise Ratio (PSNR) degradation that we can 
allow. Nevertheless, the proposed technique achieves an 
average depth bit-rate saving of 12.5% over all test sequences 
and QPDepth. This result is obtained with a PSNR loss which is 
kept below 0.1dB compared to the fixed λ scenario. 
 

Figure 7. Depth Bit-Rate savings with QPDepth 

 

 
 

 

Figure 8. Degradation in PSNR from reference case with QPDepth 

 

V. CONCLUSION AND FUTURE WORK 

In this paper, we have proposed an adaptive Lagrange 
multiplier technique for the encoding of depth map videos in 
MVD systems. The MB edge mask, obtained from the depth 
map sequence, is exploited to selectively modify the Lagrange 
multiplier of MBs depending on their location within the depth 
map and frame type. Simulation results on test sequences 
exhibiting a variety of video characteristics and encoded using 
different QPDepth have shown that the proposed technique is 
able to preserve the depth discontinuities and leads to an 
average depth bit-rate saving of 12.5%, without any significant 
degradation in PSNR. In our future work, we shall study the 
relationship between the sequence characteristics and 
parameter set (αedge, αnon-edge) to find a general solution that 
allows real-time estimation of these parameters using 
sequence statistics and QPDepth. 
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ABSTRACT 
This paper presents an adaptive texture-depth target bit rate 
allocation estimation technique for low latency multi-view 
video plus depth transmission using a multi-regression 
model. The proposed technique employ the prediction mode 
distribution of the macroblocks at the discontinuity regions 
of the depth map video to estimate the optimal texture-depth 
target bit rate allocation considering the total available bit 
rate. This technique was tested using various standard test 
sequences and has shown efficacy as the model is able to 
estimate, in real-time, the optimal texture-depth rate 
allocation with an absolute mean estimation error of 2.5% 
and a standard deviation of 2.2%. Moreover, it allows the 
texture-depth rate allocation to be adapted to the video 
sequence with good tracking performance, allowing the 
correct handling of scene changes. 
 

Index Terms—Multi-view video, online estimation, 
multi-regression models, texture-depth rate allocation 
 

1. INTRODUCTION 

Immersive 3D technology has seen significant 
improvements over the past few years and is estimated to 
increase household penetration from 10% in 2011 to more 
than 50% by 2019 worldwide [1]. One of the main drivers 
behind the proliferation of such devices is 3D TV [2] and 
associated 3D content, whereby customers enjoy an 
immersive multimedia experience. Another application of 
Multi-view Video (MVV), which is increasingly gaining 
commercial and research interest, is Free-View Video 
(FVV) [3]. In FVV, the user interactively selects an arbitrary 
viewing position in relation to the 3D scene being watched, 
thereby requiring a large number of cameras to capture a 
scene. The multiview video plus depth (MVD) 
representation [4] is attractive as it allows the flexible 
rendering of a continuum of views at the receiving end 
through the use of depth image-based rendering techniques 
[5]. Generally, in MVD, a small set of texture views 
together with a corresponding set of per-pixel depth map 
views are independently compressed using the Multi-view 
Video Coding (MVC) standard by exploiting the 
redundancy in space, time and in between views [6,7].  As 
the compressed MVD stream is typically transported over a 

bandwidth limited network, a rate control scheme operating 
across the view, texture-depth, and frame layer is essential.  
This, in turn, requires the correct estimation of the target bit 
rate allocation at each layer for optimum operation. 

Although the depth information is used only for virtual 
view rendering, recent studies have shown that multi-view 
texture and depth compression has a significant effect on the 
virtual view rendering quality [4]. Similar to the texture 
data, any artefacts introduced by coding the depth map at a 
low bit rate can have a significant impact on the quality of 
the synthesized views [8]. Thus under the constraint of the 
total bit rate, the correct balance between texture and depth 
rate allocation is critical. In this paper, we propose a 
technique to estimate, online, the optimal texture-depth rate 
allocation by exploiting the prediction mode distribution of 
the macroblocks at the discontinuity regions of the depth 
map video. The proposed technique was tested using test 
sequences, which were not used during the development of 
the model, exhibiting widely differing video characteristics 
and capture techniques to ensure that the model can be 
generically applied whilst exhibiting good tracking 
performance when subjected to video scene changes. 

The rest of the paper is organized as follows: Section 2 
gives a summary of related work; Section 3 describes the 
proposed online texture-depth allocation estimation 
technique; Section 4 gives a description of the general linear 
model formulation and its performance while Section 5 
provides some comments and conclusions. 

 

2. RELATED  WORK 

The disparate bit rate allocation between the texture data and 
associated depth map can have an impact on the quality of 
the virtual views when the total bit rate is constrained. This 
problem has attracted research attention as it forms the basis 
of rate control for MVD applications. The authors of [5] 
adopted a generic approach whereby the texture-depth rate 
ratio is fixed (5:1). Although simplistic and suitable for real-
time applications, this approach cannot guarantee an optimal 
virtual view rendering quality. In [9], the authors proposed a 
joint texture-depth bit allocation algorithm to combine the 
texture and depth rate-distortion (R-D) curves yielding a 
single R-D surface. The optimal texture-depth rate ratio is 
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then found using a fast hierarchical optimization algorithm 
employing an orthogonal search pattern which exploits the 
smooth monotonic properties of the R-D surface. The main 
drawback of this algorithm is that the authors assume that a 
real view is available at the synthesis position allowing a 
full reference assessment [10] of the synthesised view.  
Moreover, it requires offline analysis to generate the R-D 
surface making it unsuitable for real-time applications. 

In [11], Liu et al. attempt to resolve the no-reference 
assessment problem, in texture-depth rate allocation, by 
proposing a distortion model to characterize the synthesized 
view quality without requiring the original reference image.  
Here the authors propose an additive distortion model 
accounting for the video coding, depth quantization and the 
inherent geometry induced distortion. Using this model, a 
joint rate allocation method searches for the correct balance 
between the texture and depth bit rate to maximize the view 
synthesis quality. Although the proposed algorithm is able 
to find an optimal balance between the texture and depth bit 
rate accurately, its application is restricted to non-real time 
applications due to the offline processing required and the 
relatively high complexity. In [12], Cheung et al. 
demonstrates that the optimal quantization levels for the 
texture and depth map is equivalent to the shortest path in a 
specially constructed 3-D trellis. Another solution to the 
texture-depth rate allocation problem was developed by 
Yuan et al. [13].  In their work, the authors propose a 
concise distortion model for the synthesized virtual view 
based on the average distortion of the left and the right view 
and the average distortion of the compressed depth maps. 
Using this distortion model and the fractional rate-
quantisation model [14], the joint bit allocation problem is 
formulated as a constrained optimization problem. This is 
solved using the Lagrangian multiplier method yielding the 
optimal quantization step parameter for both texture, tQ , 

and depth dQ as given by: 
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where Rc is the total bit rate contraint and at, ad,  µ, ν, bt and 
bd are model parameters which  need to be estimated by pre-
encoding the texture and depth map video at different 
quantization steps, limiting this solution to non-real time 
applications.  

In comparison with other works, this solution makes 
use of hierarchical B coding order thereby constricting itself 
to non-real-time video sequences, as future frames are not 
known, and precluding scene change handling.  

3. ONLINE  ESTIMATION  OF THE  TEXTURE-
DEPTH  RATE  ALLOCATION   

3.1. Low latency prediction structure 
Generally, video sequences are sequentially encoded using 
the H.264/MVC hierarchical B coding structure as this 

yields a better compression ratio. However, as discussed in 
Section 2, such coding order uses future frames making it 
unsuitable for low latency applications, such as 
videoconferencing.  This can be overcome by using the I-P-
P-P structure in the time domain by setting the Group of 
Pictures (GOP) size to 1. With this GOP setting, a real-time 
prediction structure, as shown in Fig. 1, can be implemented 
by setting the appropriate reference frames for each view.  

 
 

 
 
 
 
 
 
 
 

Fig. 1. Low latency prediction structure  
 
3.2. Optimal Texture-Depth Ratio 
Similar to the study carried out by Bosc et al. [15], a series 
of experiments were first conducted to determine the 
optimal texture-depth ratio for various total bit rates and test 
sequences. However, unlike [15], the low latency prediction 
coding structure was used during the experiments. The 
texture-depth ratio and total bit rate were adjusted by 
varying the Quantization Parameter (QP) for both the 
texture and the depth map video. The test setup used for 
these experiments is shown in Fig. 2 whilst the encoding 
parameters together with the test sequences used and their 
respective characteristics are shown in Table 1 and 2, 
respectively. 

 
 

Fig. 2. Test setup used during experiments 
 

Table 1. Encoding parameters 
 

GOP Size 1 

Intra Period 12 

QPTexture 20 to 44 

QPDepth 12 to 50 

Prediction Structure Low latency 
 

View 0 View 2 

JMVC ver. 8.5 
[16] 

Texture and 
Depth 

VSRS ver. 
3.5 [17] 

Synthesized View 1 

JMVC ver. 8.5 
[16] 

Texture and 
Depth 

….
. 

….
. 

….
. 

F1 F2 F3 Fn 

V0 

V1 

V2 

 I 

B 

P 

P 

B 

P 

P 

B 

P 

I 

B 

P 



  

Table 2. Test sequence parameters and characteristics                       
(v indicates the sequence used for model verification only) 

 

Sequence Image Size Cameras 
(L-C-R) 

Characteristics (video 
features, frame rate, 

baseline) 

Balloons 1024 x 768 1-2-3 
Complex object 

motion;  30 fps; 5cm 
in 1D plane 

Champ. Tower 1280 x 960 37-38-39 
Slow but complex 

object motion; 30 fps; 
5cm in 1D plane 

Pantomine 1280 x 960 37-38-39 
Medium complex 

object motion; 30 fps; 
5cm in 1D plane 

Kendo 1024 x 768 1-2-3 

Complex object 
motion with moving 

camera;30 fps; 5cm in 
1D plane 

Ballet 1024 x 768 0-1-2 
Moderate object 

motion; 15 fps; 20cm 
in 1D arc 

Book ArrivalV 1024 x 768 10-9-8 
Moderate object 

motion; 15 fps; 6.5cm 
in 1D plane 

BreakdancerV 1024 x 768 0-1-2 
Complex object 

motion; 15 fps; 20cm 
in 1D arc 

 
A plot of the synthesized view Peak Signal-to-Noise 

Ratio (PSNR) with the depth-texture ratio of the 
Champagne Tower video sequence is shown in Fig. 3. For a 
given total bit rate, the PSNR follows a downward concave 
parabola yielding an optimal depth-texture ratio of 40.7%. 
The PSNR of the synthesised view remains largely constant 
over a small range of depth-texture ratio (+/-5% in this 
example) however if we consider a depth-texture ratio of 
30% or 60%, the PSNR degrades by 0.4dB and 1.1dB, 
respectively. Other sequences exhibit a narrower concave 
parabola yielding a larger degradation in PSNR when 
deviating away from the optimal value, highlighting the 
importance of a model which is able to estimate the optimal 
depth-texture ratio accurately. 
 

 
Fig. 3. Champagne Tower - PSNR vs depth-texture ratio 

 

Plotting the optimal depth-texture ratio for increasing 
values of total bit rate (lowering QPTexture and QPDepth) and 
test sequences, imparts different linear trends between the 
test sequences as shown in Fig. 4. This implies that the 
optimal depth-texture ratio is to a certain extent dependent 
upon the test sequence characteristics and the total bit rate. 

 

 
Fig. 4. Optimal depth-texture ratio with increasing total bit rate 

 
In this study we explore the correlation between the 

depth map characteristics, specifically the macroblock (MB) 
mode type distribution at the discontinuity regions of the 
video depth map, QPDepth, and the optimal depth-texture 
ratio. Prior to determining the MB mode type distribution at 
the discontinuity regions of the video depth map, an MB 
edge mask indicating MBs containing edges,  needs to be 
generated for each view. 
 
3.3. Edge detection and Macroblock mode distribution 
Edge detection is an important research topic in image 
processing and various edge detection techniques have been 
proposed in recent years. However, the majority of the 
techniques may be grouped into two categories namely: 
Gradient edge detection [18]:These detect edges by 
searching for the extrema in the first derivative of the image, 
such as the Prewitt and Sobel filter. Although they are easy 
to compute they exhibit a high noise sensitivity. 
Laplacian edge detection [18]:These detect edges by 
searching for zero crossings in the second derivative of the 
image. To improve the noise immunity, the image is 
Gaussian smoothed prior to applying the Laplacian filter 
yielding the Laplacian of Gaussian (LoG) detection which 
forms the basis of Canny edge detection [19]. Canny edge 
detection is used in this work to generate a binary edge map 
from the video depth map. Considering the original video 
depth map shown in Fig. 5(a), the binary edge map at the 
output of the Canny edge filter is shown in Fig. 5(b). To 
create an MB edge mask whilst reducing false edges, an 
algorithm shown in Fig. 6 is used to generate an MB edge 
mask as shown in Fig. 5(c).  

The supported MB prediction modes in the Joint Multi-
View Model (JMVM) include SKIP, DIRECT, Inter16x16, 
Inter16x8, Inter8x16, Inter8x8, Inter8x8Frext, Intra 16x16, 
Intra8x8 and Intra4x4, where the prediction mode with the 
lowest R-D cost is chosen to encode the MB [2].  JMVC 
ver. 8.5 was modified to use the MB edge mask of each 

Total bitrate: 2400kbit/s 

R2 = 0.86 



  

frame and extract the cumulative prediction mode 
distribution, at the discontinuous regions of the depth map 
video, for various QPDepth settings. This prediction mode 
distribution captures the characteristics of the video depth 
map sequence and has a direct impact on the optimal depth-
texture ratio. Thus, by observing the optimal depth-texture 
ratio at various QPDepth settings and prediction mode 
distribution, a statistical regression model can be formulated 
to estimate the optimal depth-texture ratio.   

 
 
 

 
 
  
 
 

 

 
(c) 

Fig. 5. MB edge mask generation for Balloons – Camera 1 
 

 
Fig. 6. MB edge mask algorithm 

 
3.4. General multiple linear regression models 
A number of regression models can be found in literature 
however multi-linear regression models are the most 
commonly used due to their well-known statistical 
properties. Multi-regression models are an extension of 
simple regression models in which several predictors 
(QPDepth and prediction mode distribution) are used to model 
a single dependent variable (optimal depth-texture ratio). 
Given that the dependent variable y having a normal 
distribution and uncorrelated predictors, the multi-regression 
model for n observed cases that expresses the dependent 
variable yn as a function of p predictors βp is given by [20]: 
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β ε= +y x                                (3) 

where β is a p-vector of unknown regression parameters, ε is 
an n-vector of unknown random error terms, y is an n-vector 
of responses, and x is an n x p matrix of known constants.   

As long as the estimation errors have a normal 
distribution, the least square estimation method can be 
employed to estimate the regression coefficients. The least 
squares estimate b, given by: 

( ) 1' 'b
−
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is chosen to minimize the residual sum of squares given by : 
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4. MULTI-REGRESSION  MODEL  FORMULATION  

AND RESULTS 

The prediction mode distribution at the discontinuous region 
of the video depth map (extracted from the modified JMVC 
ver. 8.5), for all test sequences shown in Table 2, together 
with the optimal  depth-texture ratio at various QPDepth 
settings were parsed and imported into IBM SPSS© 
statistical package for analysis. Before formulating a multi-
regression model, the dependent variable was checked for 
normality using the Kolmogorov-Smirnov test at the 0.05 
level of significance yielding a p-value of 0.905 validating 
the normality criteria. SPSS© was used to formulate the 
multi-regression model which uses the least square  
estimation method described in Section 3.4 to estimate the 
parameter values. Not all parameters were included in the 
model due to the fact that some parameters had their p-value 
greater than 0.05, implying these were not correlated with 
the variation in the optimal depth-texture ratio.  Moreover, 
other parameters were found to be correlated with each other 
and thus were eliminated to reduce multi-collinearity 
effects. The parameters and confidence levels of the 
parsimonious model are shown in Table 3 whereas the 
coefficient of determination,R2, of the formulated model is 
0.906.   
 

Table 3. Parsimonous model 

Parameter Coefficient p-value 

Constant Term 76.76 0.000 

QPDepth -1.275 0.000 

Intra 16x16 -66.897 0.000 

Skip 11.26 0.001 

Mode 8x8 -31.264 0.001 
Thus, the parsimonous multi-regression model, given 

by (6), is composed of 5 significant predictors and an offset 
parameter which depends upon the camera baseline.  

76.76 1.275 66.897 16 16

11.26 31.264 8 8 20
D epthO ptim alD TR Q P Intra x

Skip M ode x C M

= − −

+ − +
  (6) 

where OptimalDTR is the estimated optimal depth-texture 
ratio, QPDepth is the quantization parameter for the video 

(a) (b) 



  

depth map whilst 16 16Intra x , 8 8Mode x  and Skip are ratios 
based on the MB prediction mode distribution at the 
discontinuous regions of the depth map video and calculated 
over a number of frames and CM is a camera baseline 
dependent parameter which is set to 1 when cameras are 
arranged in 1D arc and 0 when cameras are arranged in 1D 
plane. 

After fitting the multi-regression model, a number of 
diagnostic checks need to be carried out to detect any model 
uncertainty: 
Standardized Residual Distribution [21]:The standardized 
residuals are checked for normality using the Kolmogorov-
Smirnov test at the 0.05 level of significance yielding a p-
value of 0.67, validating the normality criteria. 
Studentized Residual plot [21]: To check the fitness of the 
model and detect any outliers, the studentized residual, 
shown in Fig. 7, was plotted against the unstandardized 
predicted optimal depth-texture ratio. As the points in the 
plot are distributed across a horizontal band, indicating 
homoscedasticity, and the majority of the points lie within 
the standard 2± limit, the model is adequate for such data fit 
with a very small number of outliers (shown in red). 
 

 
Fig. 7. Studentized residual plot 

 
In order to verify the efficacy of the proposed solution, 

the optimal depth-texture ratio for various QPDepth settings 
was calculated online using the multi-regression model 
integrated within the JMVC framework. The plots of the 
estimated and actual optimal depth-texture ratio for the test 
sequences used during model formulation and verification 
are shown in Fig. 8, and Fig. 9, 10, respectively. 

 

 
Fig. 8. Optimal depth-texture ratio – model formulation 

 
Fig. 9. Optimal depth-texture ratio – Book Arrival sequence 

 

 
Fig. 10. Optimal depth-texture ratio – Breakdancers sequence 

 
As shown in Table 4, the formulated multi-regression 

model was able to estimate the optimal depth-texture ratio 
with an overall estimation error of 2.8% and standard 
deviation of 2.1% for the test sequences used during the 
model formulation. Moreover, with reference to Fig. 10 and 
Fig. 11, the model is able to estimate the optimal depth-
texture ratio for the Book Arrival and Breakdancers test 
sequence, which were not used during model formulation, 
with an estimation error of 2.5% and standard devivation of 
2.2%.   

Table 4. Model estimation error 

Test Sequence 

% Absolute 
Mean Estimation 

error 

% Standard 
Deviation of the 
Estimation error 

Model 
Formulation 2.8 2.1 

Model 
Verification 2.5 2.2 

 
  The effect of the estimation error on the PSNR of the 

synthesized view was also evaluated for the Book Arrival 
sequence and this was found to be less than 0.1dB.  
Furthermore, as shown in Fig. 11, the PSNR of the 
synthesized view using the proposed technique is on average 
0.8dB better than that obtained using a fixed depth-texture 
ratio of 20%, as proposed in [5], for various total bit rate and 
QPDepth. The adaptation of the optimal depth-texture ratio 
was tested by combining 40 frames from 3 different video 
sequences and encoding the combined sequence using the 
modified JMVC framework with the proposed technique.  
As shown in Fig. 12, the optimal depth-texture ratio was 
adapted every 4 frames ensuring good tracking performance 
and correct handling of scene changes. 



  

 
Fig. 11. Synthesized view PSNR – proposed vs fixed at 20% 

 

 
Fig. 12. Scene change handling of the proposed technique 

 

5. CONCLUSION 

In this paper, we have presented a texture-depth rate 
allocation estimation technique for low-latency MVD 
systems based on a statistical multi-regression model. 
Simulation results on test sequences exhibiting a variety of 
video characteristics have shown that the proposed 
technique is able to estimate the optimal depth-texture ratio 
with an absolute mean estimation error of 2.5% for the test 
sequences not used during model formulation. Moreover, 
the PSNR of the synthesized view using the proposed 
technique is on average 0.8dB better when compared to a 
fixed depth-texture ratio of 20% whilst allowing scene 
change handling capability. 
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Abstract—This paper presents a novel view-level target bit rate 
distribution estimation technique for real-time Multi-view 
video plus depth using a statistical model that is based on the 
prediction mode distribution. Experiments using various 
standard test sequences show the efficacy of the technique, as 
the model manages to estimate online the view-level target bit 
rate distribution with an absolute mean estimation error of 2% 
and a standard deviation of 0.9%.  Moreover, this technique 
provides adaptation of the view-level bit rate distribution 
providing scene change handling capability. 

Keywords- online estimation, multi-view video, view-level rate 
control, generalised linear models 

I.  INTRODUCTION 
The latest advances in high speed networking together 

with improvements in video capturing devices, have given 
rise to a plethora of multimedia services. Moreover, 
customers are increasingly demanding a more realistic, 
immersive, multimedia experience. Multi-view Video 
(MVV) is appealing as it provides viewers with a 3D scene 
representation together with the ability to select and control 
the viewpoint. Such features allow MVV to be used in 
various applications such as tele-presence, tele-medicine, 
Free-View Video (FVV) and 3D TV [1, 2]. With progress in 
multimedia capture and compression technologies together 
with the launch of the first commercially available full size 
auto-stereoscopic 3D display by Toshiba and Phillips [3], 
MVV technology is gaining ground in the entertainment and 
consumer arena.  In addition, 3D video content is gradually 
permeating the consumer market through the proliferation of 
3D Blu-ray disks, 3D broadcasts and the Internet [4].  

There are several 3D video representations in literature, 
such as model-based representations [5] and point sample-
based representations [6]. However, the Multi-view Video 
plus Depth (MVD) data format is being proposed as the main 
3D representation format as it provides good rendering 
quality and flexible processing capabilities [7, 8]. Such data 
format fulfils the 3D video system’s requirements whilst 
supporting wide angle 3D displays and auto-stereoscopic 
displays [4]. Moreover, it allows the rendering of a 
continuum of output views with high image quality and low 
complexity [8] through the use of depth image-based 
rendering (DIBR) techniques. MVD needs the deployment of 
several video cameras to simultaneously capture a scene 
from different angles (views) and locations, leading to a 

significant amount of data. For this reason, MVD is 
generally jointly compressed using the Multi-view Video 
Coding (MVC) standard by exploiting the redundancy in 
space, time and in between views [9, 10].  Additionally, the 
depth map is often treated as the luminance component of 
color video, thereby allowing it to be compressed using 
either H264/AVC or H264/MVC. The resulting MVD stream 
is then transported over a bandwidth limited network and 
thus efficient rate control in the encoder is necessary to 
ensure that the 3D video coding satisfies the channel 
bandwidth and the decoder buffer constraints.   

Rate control in MVC is still in its infancy and no rate 
control solution has yet been defined in the standard.  
Moreover, current work focuses on either extending the 
H264/AVC rate control solutions or the implementation of 
offline strategies which are not suitable for real-time video.  
MVD rate control is generally divided into three levels 
namely view-level, video/depth-level and frame/macro 
block-level. Correct estimation of the target bit rate at each 
level is essential for optimum operation.  In this paper, we 
propose a view-level target bit rate distribution estimation 
technique for real-time MVD based on statistical analysis of 
the prediction modes used in the different view types. 

The rest of the paper is organized as follows: Section 2 
gives a summary of related work; Section 3 describes the 
proposed online view-level target bit rate distribution 
estimation technique together with an overview on statistical 
regression models; Section 4 gives a detailed account of the 
statistical model formulation and its performance while 
Section 5 provides some comments and conclusions. 

II. RELATED WORK 
Rate control in 2D video coding has garnered significant 

attention in the past decade and a number of algorithms 
have been proposed, including MPEG-2 TM5 [11], H.263 
TMN8 [12] and the H264 rate control algorithm [13,14,15].  
However, to the best knowledge of the authors, limited work 
exists on rate control for MVC and MVD video coding. 

A 3D Multi-view rate control algorithm based on the 
human visual system was first proposed by Lim et al. [16], 
however this was not based on the new H264/MVC 
standard. Yan et al. proposed a Multi-view video rate 
control algorithm for H264/MVC [17] based on [13]. In 
their work, the authors first propose an improved quadratic 
rate-quantization (R-Q) model to cater for the additional 
prediction modes and frames in MVC. Then, using the 
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fluid-flow traffic model,  hypothetical reference decoder 
(HRD) and the improved R-Q model, they estimate the 
target bit rates for the group of group of pictures (GGOP), 
group of pictures (GOP) and frame levels.  

Work on rate control for video plus depth representation 
was proposed in [18].  In this paper, the authors develop a 
rate control technique for 3D video based on Evolution 
Strategy (ES) for offline H264/AVC 3D video encoding 
using subjective quality assessment. The main drawback of 
this algorithm lies in the fact that it is not based on the new 
H264/MVC standard and is not suitable for real-time 
applications. The authors of [19] propose a similar approach 
using Lagrangian optimisation techniques. 

Another aspect of rate control is the bit allocation 
problem. In [20], Morvan et al. studied the joint 
depth/texture bit allocation problem for multi-view video 
compression. In order to ensure efficient transmission of 3D 
video, the compression of both texture and depth images is 
required. They proposed a joint depth/texture bit allocation 
algorithm for the compression of MVD by combining the 
depth and texture rate-distortion (R-D) curves yielding a 
single R-D surface. A fast hierarchical optimisation 
algorithm employing an orthogonal search pattern exploits 
the smooth monotonic properties of the R-D surface, 
thereby allowing the optimisation of the joint bit-allocation 
problem in relation to the rendering quality. Although this 
joint model could be readily integrated into H264/MVC, it 
requires offline analysis to generate the R-D surface. 

Another solution for MVD was developed by Liu et al. 
[21].  In their study, the authors propose a rate control 
technique for MVD based 3D video coding by using an 
image-stitching method to simultaneously encode video and 
depth. This is followed by a joint 3-level rate control 
algorithm made up of: 

View level rate allocation: In MVC, different inter-view 
predictions can lead to a different R-D performance [21].  
For instance, the I-view typically requires a higher bit rate 
than a P-view or a B-view at the same visual quality.  From 
experiments conducted by the authors, they found that the 
average rate proportion among the three views (I-view, B-
view and P-view) for different quantisation parameter (QP) 
settings is approximately equal to 6:4:5 for the 
Breakdancers sequence and 4.3:3.1:3.9 for the Ballet 
sequence [21]. The statistical rate allocation for a given 
sequence is pre-calculated, by offline encoding several 
frames from each view, and used to assign a different bit 
rate proportion to the different views depending upon the 
view type.  

Video and depth allocation: Since the depth map is 
strictly used for the rendering of virtual views, the depth 
sequence can be significantly compressed to attain the 
required channel bandwidth constraint. In their work, the 
authors define the bit rate for the depth sequence dR  as a 
fraction of the bit rate for the video sequence Rv. Using a 
linear R-Q model, the relationship between QP of the depth 

sequence, Qd, and QP of the video sequence, Qv, is given 
by: 

   2 4
6

6 log
2

v

d
d v Q

v v d

K
Q Q

K C C

              (1) 

where Kv, Kd, Cv, and Cd are sequence dependent constants 
which are initialised after pre-encoding several frames from 
each view during the view-level rate allocation stage. 

Frame-level rate control: The authors used a 
hierarchical rate allocation method together with coding 
complexity and buffer constraints to regulate the target bits 
for each frame [21]. Using the estimated target bits, the 
quantisation parameter is computed using the quadratic R-Q 
model [22]. Furthermore, according to the special 
characteristics of the Multi-view HRD, the buffer-related 
rate control is also considered to prevent the decoder buffer 
from overflow or underflow even when outputting multiple 
views. 

Similar to other works, the main drawback of this 
technique is its dependency on offline processing.  
Moreover, the use of hierarchical B coding order is 
inherently restricting its use to non-real-time video 
sequences, as future frames are not known. Furthermore, it 
also precludes the handling of scene changes unless the 
complete video sequence is analysed apriori leading to a 
two-pass rate control technique. 

 

III. ONLINE VIEW-LEVEL TARGET BIT RATE 
DISTRIBUTION ESTIMATION 

Consider an advanced MVD-based 3D video system as 
proposed in [4].  Further assume that the MVC encoder is 
able to simultaneously encode multiple views. Through the 
use of DIBR techniques, views can be synthesised at the 
receiver side, thereby allowing us to encode and transmit a 
subset of the views. In this work, we are considering three 
views, namely the view 0, view 1 and view 2. 

In general, video sequences are sequentially encoded 
using the H264/MVC hierarchical B coding structure.  
Although this yields a better compression ratio, it comes at 
the expense of a higher coding delay as by the time the 
reference frames are available, the current frame being 
decoded should have been already displayed. Real-time 
applications such as video conferencing are very sensitive to 
delay and industry standards limit the end-to- end delay to a 
maximum of 300ms making such prediction structure 
unsuitable to real-time communications. By default, the 
current Joint Multi-view Video Coding (JMVC) software 
model uses the hierarchical B coding structure however, as 
from JMVC ver. 2.3, the model supports a GOP size of 1 
which allows the use of an I-P-P-P structure in the time 
domain.  When using this GOP setting, the coding structure 
needs to be defined in the configuration file, whereby for 
each view, the reference frames that may be used must be 
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specified. By setting the appropriate references, a real-time 
prediction structure, utilising inter-view B frames as shown 
in Fig. 1, can be implemented without additional time delay 
as these can be catered for by parallel hardware. 

 
 
 
 
 
 
 
 
 
 

 

Figure 1. Real-time prediction structure. 
 

A key aspect in such a rate control framework is the 
estimation of the allocated bit rate in proportion to the 
different views, depending on the view type. This view-
level target bit rate allocation defines the target bit rate 
bounds of the video/depth and the frame layer rate control 
algorithm.  Ideally, this estimation is carried out periodically 
and in real-time to adapt to the changing video sequence. 
Moreover, it cannot make use of the controlled bit rate 
values at the output of the rate controller as this directly 
depends on the correct estimate at the input. However, as we 
have seen in section II, the view-layer target bit rate 
distribution is usually estimated using offline processing 
techniques with no adaptation. By exploiting the distribution 
of the prediction modes in the different views, which apart 
from other factors depends on the video sequence 
characteristics and prediction structure, we can infer the bit 
rate allocation for the different views.   

To apply adaptation, we propose the use of a statistical 
regression model, which has been trained offline, to 
estimate online the view-level target bit rate distribution, as 
shown in Figure 2. This estimation is carried out 
periodically (say at every anchor period) in order to provide 
scene change handling. The distribution of the prediction 
modes has a direct impact on the bit rate. Therefore, by 
observing the statistical distribution of the Macroblock 
(MB) prediction modes, view type (I, P or B) and the view-
level bit rate for various video sequences and QPs, a 
statistical regression model can be formulated.   

In JMVM, the supported MB prediction modes include 
SKIP, DIRECT, Inter16x16, Inter16x8, Inter8X16, 
Inter8x8, Inter8x8Frext, Intra16x16, Intra8x8 and Intra4x4.  
The prediction mode with the lowest R-D cost [3], given by 
(2), is chosen to encode the MB. 

              ( , | ) ( , ) ( , )k k k k k kJ S I SSD S I R S I               (2) 
where Sk and Ik denote the kth MB and the corresponding 
MB mode respectively,  is the Lagrange multiplier for 
mode decision, SSD(Sk,Ik) is the sum of squared difference 
between the reconstructed MB and the original MB, and 
R(Sk,Ik) is the rate after entropy coding. 

 
 
 
 
 
 
 
 
 
 
 

Figure 2. Overview of bit rate distribution estimation. 
 

There are several regression models in literature, 
however linear regression models are the most commonly 
used due to their well-known statistical properties and are 
typically composed of a single dependent variable (view-
level bit rate) and several predictors (QP, view type and 
prediction modes). A well known general linear model that 
accommodates predictors which are a combination of 
factors and covariates, as in our case, is the Analysis of 
Covariance (ANCOVA). For n observed cases, the 
ANCOVA model that expresses the dependent variable yn as 
a function of p predictors p is given by [23]: 

                   
1 11 1 1 1

1

p

n n np p n

y x x

y x x
               (3)  

                                          y x                                 (4) 

where  is a p-vector of unknown regression parameters 
estimated using least squares estimation,  is an n-vector of 
unknown random error terms, y is an n-vector of responses 
which apart from having a normal distribution, it is also 
linearly related and highly correlated with each quantitative 
predictor, and x is an n x p matrix whose elements are a 
mixture of real and dummy (0 or 1 indicators) values and 
are uncorrelated with each other.   

Given that the errors have a normal distribution, the least 
square estimate, which is equivalent to the maximum 
likelihood estimator b, is given by: 

                                     
1' 'b x x x y                                (5) 

Although regression models, such as the ANCOVA 
model, have been used extensively by researchers for 
prediction, inference and modelling, these models rely 
heavily on the underlying assumptions. In particular, 
regression models assume that the dependent variable has a 
normal distribution and that the predictors are independent. 
However, these assumptions are not always valid and other 
modelling techniques have to be explored. One of the most 
significant contributions in statistical modelling is the 
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concept of generalised linear models (GLM) [24]. These 
models relate the dependent variable to the linear predictors 
through any invertible link function and accommodate any 
error distribution present in the exponential family. 
Although GLM can be viewed as a generalisation of the 
general linear model, they still rely on the assumption that 
the responses are independent. GLM are characterised by 
three components: 

1) For n observed cases, the dependent variable yn is 
assumed to be independent and follows a distribution that is 
a member of the exponential family. 

2) The predictors influence the distribution of the 
dependent variable yn through a single linear function 
known as the linear predictor and given by: 
                 1 1 2 2 ....i i i p pix x x x                   (6) 

3) The mean μ = E(y) is related to the linear predictor 
through an invertible link function g(μ). 
                                 ( )i ig x                                 (7) 

Thus, the GLM is given by E(y) = μ = g-1(x ) where y is 
an n-vector of responses,  is a p-vector of unknown 
regression parameters estimated using maximum likelihood 
techniques, and x is an n x p matrix whose elements are a 
mixture of real and dummy (0 or 1 indicators) values. 

IV. STATISTICAL MODEL FORMULATION 
The proposed online view-level target bit rate 

distribution estimation technique was implemented in two 
parts: First the statistical model was formulated, and then 
the statistical model integrated in JMVC ver. 8.3.1. The 
latter also included the verification of its effectiveness in 
estimating the view-level target bit rate distribution. Prior to 
the statistical model formulation, the JMVC model was 
modified to extract information such as the prediction mode 
distribution, view type, and average bit rate for various QP 
settings, parse it and import it into IBM SPSS© statistical 
analysis package for analysis. The encoding parameters 
together with the test sequences used and their respective 
characteristics are shown in Table I and II respectively. 

TABLE I.  ENCODING PARAMETERS 

GOP Size 1 
Intra Period 12 

QP 26 to 50 
Prediction Structure Real-time 

Encoded Frames 60 
 
Before selecting a statistical regression model, the 

dependent variable was checked for normality using the 
One-Sample Kolmogorov-Smirnov test at the 0.05 level of 
significance. The result of this test, indicates that the data is 
not normally distributed, as the p-value is lower than 0.05, 
thereby eliminating the use of a general linear model, such 
as the ANCOVA model. This was further confirmed after 

plotting the histogram of the dependent variable, as shown 
in Fig. 3. 

TABLE II.  TEST SEQUENCE PARAMETERS AND CHARACTERISTICS       
(V INDICATES THE SEQUENCE IS USED FOR VERIFICATION ONLY) 

Sequence Image Size Frame 
Rate 

Features 

KendoV 1024 x 768 30 Complex object motion; 
Moving camera 

Break 
dancers 1024 x 768 15 Slow and very fast motion; 

No camera motion 

Balloons 1024 x 768 30 Complex object motion; 
Moving camera 

Champ. 
Tower 1280 x 960 30 Slow but complex object 

motion; No camera motion 
Book 

Arrival 1024 x 768 15 Moderate object motion; 
No camera motion 

 

 
Figure 3. Dependent Variable Histogram. 

 
This shows that the dependent variable follows a 

distribution which is a member of the exponential family. 
Therefore, a generalised linear model using the identity link 
function was chosen to fit the data. The initial GLM 
parameter estimates together with the Wald-Chi square and 
confidence levels are shown in Table III.  As shown in this 
table, the Mode 16x16 and Mode16x8 have a p-value which 
is higher than the 0.05 level of significance. This implies 
that their contribution in explaining the variation in the bit 
rate was not found to be significant and thus these two 
predictors need to be removed from the model fitting 
system. Excluding these two predictors and re-calculating 
the parameter estimates we obtain the parsimonious GLM 
model shown in Table IV. 

Thus, the parsimonious GLM model is composed of 10 
significant predictors and is given by (8). 

 

1 21945.5 179.2 161.9 1903.7
13472.9 8 16 2021.7 4 4 61861.8 8 8
3073.5 16 16 1349.4 9.9

B V V DirectB
Mode x Intra x Mode x

Intra x Skip QP
            (8) 
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where B is the estimated view-level bit rate; DirectB, 
Mode8x16, Intra4x4, Mode8x8, Intra16x16 and Skip are 
ratios based on the MB prediction mode distribution over a 
number of frames or anchor period, QP is the quantisation 
parameter whereas V1 and V2 are flags used to indicate view 
type. V1 and V2 are set to 0 and 1 for an I-view, 1 and 0 for a 
B-view, 1 and 1 for a P-View respectively. 

TABLE III.  INITIAL GLM MODEL 

Parameter Coefficient Wald Chi-Square value p-value 

Constant Term -700.3 16.137 0.000 
V1 -179.71 12.975 0.000 
V2 150.31 19.163 0.000 

DirectB 3192 35.903 0.000 
Mode16x16 851.72 1.888 0.169 
Mode16x8 14195.62 3.304 0.069 
Mode8x16 -21459.65 9.288 0.002 
Intra4x4 2878.49 7.729 0.005 
Mode8x8 56273.25 33.154 0.000 

Intra16x16 -1725.3 17.253 0.000 
QP -11.38 14.48 0.000 

 

TABLE IV.  PARSIMONOUS GLM MODEL 

Parameter Coefficient Wald Chi-Square value p-value 

Constant Term 1945.51 16.06 0.000 

V1 -179.17 12.63 0.000 

V2 161.99 23.22 0.000 

Direct B 1903.65 4.93 0.026 

Mode 8x16 -13472.9 7.43 0.006 

Intra 4x4 2021.7 4.13 0.042 

Mode8x8 61861.78 48.24 0.000 

Intra 16x16 -3073.47 22.49 0.000 

Skip -1349.43 5.85 0.016 

QP -9.927 11.95 0.001 
                                                                                                    

 
Figure 4. Standardised Pearson Residual. 

 
The Standardised Pearson Residual [25], shown in Fig. 

4, is plotted against the predicted bit rate value to check for 

the efficacy of the fitted GLM model. The points in the 
Standardised Pearson Residual plot are largely spread across 
a horizontal band indicating that the residuals have a 
constant variance (homoscedasticity). An element of 
heteroscedasticity in the model is present as the variance 
increases slightly with the predicted value. However, since 
the majority of the points lie between the standard 2 limit, 
the model is adequate for such data fit with a very small 
number of outliers (shown in red). 

The GLM model was integrated within the JMVC 
framework and the estimated view-level bit rate distribution 
was calculated online from the estimation of the view-level 
bit rate of each view. This was done for all the test 
sequences and the plots of the estimated and actual view-
level bit rate distribution during Model Formulation and 
Verification are shown in Fig. 5 and 6 respectively. 

 

 
Figure 5. Bit Rate Distribution – Model Formulation. 

 

 
Figure 6. Bit Rate Distribution – Model Verification. 

 
The mean and standard deviation of the estimation error 

for the test sequences used in the model formulation and 
verification are shown in Table V. The formulated statistical 
regression model was able to estimate the view-level bit rate 
distribution with an overall estimation error of 3.48% and a 
standard deviation of 3.42% for the test sequences used 
during the model formulation. With reference to Fig. 6, it is 
noted that the model manages to accurately estimate the bit 
rate for sequences which were not used in model 
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formulation with an estimation error of around 2% and 
standard deviation of 0.9%. Although this is an acceptable 
error for target view-level bit rate setting, this performance 
can be further improved by including other test sequences 
during model formulation. 

TABLE V.  MODEL ESTIMATION ERROR 

% Absolute Mean 
Estimation error 

% Standard Deviation of 
the Estimation error 

Test Sequence 
I-

View 
B-

View 
P-

View 
Over 
all 

I- 
View 

B-
View

P-
View

Over 
all 

Model Formulation 3.06 4.64 2.72 3.48 3.56 4.34 1.88 3.42 

Model Verification 2.31 1.92 1.96 2.02 1.0 1.4 0.35 0.9 

 

V. CONCLUSION 
In this paper, we have presented a view-level target bit 

rate distribution estimation technique that can be applied to 
real time MVD systems based on a statistical regression 
model. Simulation results on sequences exhibiting a variety 
of video characteristics have shown that the technique is 
able to estimate the view-level target bit rate distribution in 
real-time with an absolute mean estimation error of 2% for 
the test sequences not used during model formulation. The 
model integrated in the JMVC framework allows view-level 
target bit rate setting for the underlying rate control 
algorithm whilst allowing scene change handling capability. 
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