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ABTS  2, 2′-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt 
AFLP  Amplified fragment length polymorphism 
PNN  Artificial Neural Network 
CDA  Canonical Discriminate Analysis  
cDNA  Chloroplast Deoxyribonucleic acid 
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Glossary          
 

Analysis of Variance (ANOVA) - A collection of statistical models used to analyze 
differences among group means. Throughout this work, Kruskal-Wallis 
ANOVA was used. It is a non-parametric method that does not rely on the 
assumption of normality.  

Cluster analysis – The task of grouping a set of objects in groups, wherein objects in 
one group are more similar to each other than to objects in other groups. 

Correlation Matrix – A symmetrical matrix (M = M’: where the variable represented 
in column i is also represented in row j), showing the correlations between all 
the variables. This means that the leading diagonal of the matrix consists of 
entries equal to 1. 

Covariance – A measure of how much two variables change together. A variable 
which tends to increase as another variable increase is said to have a positive 
covariance with the other value, while a variable which tends to decrease as 
another variable increase is said to have a negative covariance with the other 
variable.  

Covariance Matrix – A matrix similar to the correlation matrix listing covariances 
between variables instead of correlations. The leading diagonal of this matrix 
will contain the variances for each variable. 

Deresolve – A signal processing technique that changes the apparent resolution of the 
instrument, from a high resolution to a lower resolution. It is sometimes used 
for noise reduction. This function uses a triangle kernel filter for smoothing, 
which in essence convolves spectra in order to estimate their lower resolution 
equivalent with the original number of variables. The triangular kernel can be 
regarded as a moving average filter which is weighted more towards the central 
point than the adjacent ones. In this study, two chPNNels were used for 
convolution in order to preserve as much information from the spectrum as 
possible.  

Derivative transformation – A signal processing technique often applied to spectra 
to resolve overlapped bands and to correct for baseline effects. The first 
derivative of a spectrum is a measure of the slope of the spectral curve at every 
point, which is independent of baseline offsets, first derivative transformation 
are often hard to interpret as the peaks in raw spectra tend to become a zero-
crossing point upon derivative transformation. On the other hand, the second 
derivative transformation measures the change in the slope of the curve thereby 
removing both the baseline offset and the baseline slope of a spectrum. Gap-
Segment or Savitzky-Golay methods are also employed in order to avoid the 
problem of noise enhancement by applying a degree of smoothing. This is done 
by using information from a localized segment rather than from adjacent data 
points of the spectrum to calculate the derivative.  

Detrending - A signal processing transformation that removes non-linear trends in 
spectroscopic data by calculating the baseline function as the least squares fit 
of a polynomial to the sample spectrum. A second order detrending 
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transformation is used in order to remove offset, slope and curvature baseline 
effects. Detrending is often used in conjunction with SNV to reduce 
multicollinearity in spectra, whilst retaining the shape of the spectra.  

Excluded Rows Validation - A supervised validation method where a number of 
samples (usually 1/3) are excluded to be used as the test set while the model is 
built on the remaining samples in the training set. 

Explained Variance – An output I PLAS-DA statistical analysis. It is the percentage 
of variation explained by the model in X (predictor matrix) or Y (response 
matrix) when considering the number of factors used in the model. A high 
explained variance is generally desired from PLS models especially in the case 
of explained Y variation as this indicates that the model is explaining the 
prediction well. A low explained X variation is undesirable as it indicates that 
only a small part of the variation in the predictors is explaining the data and 
thus shows that a large amount of redundant data is present in the model. 

Feedforward artificial neural networks (FF-PNN) – neural networks consist of a 
set of interconnected nodes analogous to a network of neurons in a brain. Feed-
forward neural networks consist of neurons which only transfer information in 
one direction, from the input layer to a number of hidden layers and finally to 
an output layer. In ‘scikit-learn’ (Pedregosa et al., 2011) neural networks are 
implemented in the Multi-layer Perceptron (MLP) Module which learns a 
function ( ) : R Rm of    where m is the number of dimensions for input and o 
is the number of dimensions for the output.  

The input layer consists of a set of nodes containing the input features, the input 
neurons are connected to the hidden layer whereas each neuron in the hidden 
layer transforms the values from the previous layer with a weighted linear 
summation 1 1 2 2 m mw x w x w x    which is followed by a non-linear 
activation function in the case of non-linear models. The hidden layer is then 
connected to the output layer which transforms the values into the classification 
or prediction.  

The MLP classifier takes a number of parameters including; Hidden layer 
sizes – the number of nodes in the hidden layer, solver – the solver (minimiser) 
for weight optimisation, in this study, the LBFGS (Limited-memory Broyden–
Fletcher–Goldfarb–ShPNNo) solver was used as it is good for relatively 
smaller data sets (n<1000) and generally more robust than conjugate gradient 
methods albeit more computationally intensive, learning rate – ‘invscaling’ 
was used which gradually decreases the learning rate with every iteration, 
tolerance – a low tolerance was used in order to ensure that the model 
converges with a small RMSE, maximum iterations -  a large number of 
iterations (5000) was selected to ensure that the model converges at a low 
tolerance, activation – the activation function ‘identity’ was used for linear 
models as this function does not apply any non-linear transformation to the 
hidden layer , and ‘relu’ was used for non-linear models as this function returns 

( ) m ax(0, )f x x , random state – a random seed  which is used to start the 
model at different states in order to check if the model reached a suitable 
minimum. 
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F-ratio – In SLC-DA statistical analysis, the statistical significance of the 
discrimination between the groups. The larger the F-ratio the higher the 
significance. 

Gaussian filter – A signal processing technique similar to a moving average filter. 
However, the averaging function is determined by a Gaussian function.  

Hierarchical Cluster Analysis (HCA) – Hierarchical Cluster Analysis is a method of 
cluster analysis which seeks to build a hierarchy of clusters. This study only 
employs Ward’s method for HCA where the criterion for clustering is based 
on minimizing the error sum of squares. 

K-Fold cross-validation (CV) – A validation method similar to the LOOCV but 
instead of leaving a sample out, the sample set is split into groups determined 
by the number of folds. A K-fold validation will produce k subsamples, the 
statistical model is built for k times with each of the k subsamples used once 
as a test set while the remaining samples are used as the training set. 

Linear Discriminant Analysis (LDA) – A supervised classification technique that 
uses a linear combination of variables in order to characterize two or more 
classes by linearly transforming n-samples into an m-dimensional space (m<n). 
Samples from the same class will lie close to each other while samples 
belonging to different classes will be far apart. The LDA function within the 
‘scikit-learn’ toolbox (Pedregosa et al., 2011), models the class distribution of 
the data after which predictions are obtained using Bayes’ rule. However, 
going into the mathematical model of how this is performed is outside the 
scope of this work.  

Leave one out Cross-validation (LOOCV) – A validation procedure that 
successively leaves each sample out of the training set and then uses that 
model to predict the excluded sample. This method is used to assess the 
predicting ability of the model especially in cases where the number of samples 
is small. It is not suited for datasets with a large number of samples as a 
statistical model must be constructed for each sample present. 

p-value – In SLC-DA statistical analysis, the probability of F, tests if the inclusion of 
a variable has no effect on the group, a low p-value denotes that the inclusion 
of the variable is significant. 

PARAFAC – A multiway case of PCA. While PCA models consist of components 
which describe the original data structure using one score vector and one 
loading vector (equation 2), a PARAFAC model uses components with one 
score vector and two loading vectors (equation 1).  

1

F

ijk if jf kf ijk

f

x a b c e


    - Equation 1. 

Where xijk is one element of the data, aif and bjf are loadings while ckf are the 
scores, eijk is the residual matrix and F is the number of components. The scalar 
notation is used in this case since linear algebra cannot be used to describe 
multi-way arrays easily. It is worth mentioning that in the multiway analysis it 
is a common practice that scores and loadings are not distinguished and are 
treated equally numerically. 
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PARAFAC uses an ALS (alternating least squares) in order to find a unique 
solution and minimize the residual error. 

Principal Components Analysis (PCA) - An unsupervised multivariate analysis 
technique that is used to elucidate the relationships between samples having 
several or more variables. PCA highlights the differences between the analysed 
samples and thus provides useful information on the data under analysis. This 
makes PCA a useful tool in chemometrics through which visually 
uninterpretable differences in spectroscopic measurements can be emphasised, 
aiding in the interpretation of a large number of variables present in 
spectroscopic measurements. Briefly, through PCA the original set of 
multidimensional data is orthogonally transformed into a set of linearly 
uncorrelated variables referred to as Principal Components (PCs) such that 
the greatest variance lies in the first component while subsequent PC’s have a 
smaller variance than the preceding PC. Most variance within the data is 
usually explained within the first few PCs and usually, these components are 
used in order to build a model as shown in equation 2 using linear algebra: 

'X TP E   - Equation 2. 

Where X is the data, T is the scores matrix, P’ is the transposed loadings matrix 
and E are the residuals or the error matrix. The combination of T and P’ is the 
part of the data explained by the principal components thus T and P will be 
n m  matrices with n being equal to the number of PCs and m being equal to 
the number of samples in matrix T and the number of variables in matrix P. 
Matrix E will contain the data which is not explained by the latent variables 
(PCs). 

Scores describe the data structure and are used to show sample similarities or 
differences along a component; in essence, the score reflects the sample 
location (coordinate) on a PC. Similar scores for different samples show that 
they are similar to a PC while different scores mean that the samples are 
different with regards to that PC. Consequently, scores from two different 
principal components are usually plotted in bi-plots in order to give a visual 
representation of the variation of the data in a score plot.  

On the other hand, loadings describe the influence each individual variable has 
on a principal component. Loadings with small values for a given PC mean 
that they are not well accounted for by that PC. For loadings with positive 
values, it follows that samples with positive scores will have a higher value 
than the average value for a given variable, while samples with negative scores 
will have a lower value, the opposite applies for loadings with negative values. 

Median filter - A signal processing technique that replaces each data point by the 
median of its neighbours.  

Moving-average filter - A signal processing technique that replaces the value at each 
data point with the average of its nearest neighbours with the number of nearest 
neighbours being determined by the gap size. 

Multiplicative Scatter Resolution (MSC) –A signal processing method developed to 
deal with multiplicative scattering in reflectance spectroscopy, though it can 
also be used to treat similar effects such as path length variations, offset shifts 
and interference. In this case, the correction is performed by generating two 
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coefficients a and b through a regression for each spectrum onto the average 
spectrum of the samples. The coefficient a is the intercept of the regression line 
and b is the slope; these coefficients are then used to correct the values of each 
sample.  

Orthogonal Signal Correction (OSC) – A signal processing technique, used as a 
transformation method prior to PLS regression, which removes irrelevant 
variances from the predictors which are not correlated to the response (Fearn, 
1999). 

Partial Least Squares Discriminant Analysis (PLS-DA) – Partial Least Squares 
Discriminant Analysis models both the X- and Y- matrices simultaneously in 
order to determine the Factors (latent variables) in X that will best predict the 
latent variables in Y. In essence, PLS-DA is used to correlate the information 
in X to the information in Y by maximising the covariance between them whilst 
minimising the residual error.   

Assuming that Y-Matrix can be predicted using equation 3 below where U is 
the score matrix, Q’ is the transposed loading matrix and F are the residuals. 
The X-Matrix can be modelled using equation 2.  

'Y UQ F   - Equation 3. 

The PLS model will be developed in such a way as to maximize the covariance 
between the scores in X (T) and the scores in Y (U) for each factor as shown 
in equation 4.  

1 1 1

2 2 2

n n n

u r t

u r t

u r t







  - Equation 4. 

Where un is the scores for each extracted factor in the X-matrix, tn are the scores 
for each extracted factor in the Y-matrix and rn are some constants. 

This means that scores in T can be used to predict the scores in U and 
subsequently the Y-matrix from the loadings Q’.  

Predictors – used to describe the X-matrix or the matrix containing the spectral 
measurements.  

Random Holdback – a validation method similar to the Excluded Rows but the test 
set is built through a random selection of samples rather than a supervised one. 

Response - refers to the Y-matrix which in this study always refers to the classification 
system. 

Savitzky-Golay – A signal processing method in which a smoothing algorithm fits a 
polynomial of a specified order to the data points, and the averaged value is 
then predicted from this equation. This method is thus useful for removing 
noise without a great distortion in the signal. 

Standard Normal Variate (SNV) – A signal processing technique in which a 
transformation is applied to spectroscopic data to remove scatter effects by 
centring and scaling each individual spectrum. The mean and standard 
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deviation of all data points in a spectrum are calculated after which the 
transformed spectrum is calculated by subtracting the mean from every data 
point in the spectrum and dividing by the standard deviation.  

Stepwise linear canonical discriminant analysis (SLC-DA) – A linear discriminant 
method that is used for classification and data reduction. In this study 
discriminant analysis using a linear method was applied. This works by 
calculating distances from group means as the Mahalanobis distance whereby 
a common covariance matrix is used for all groups.  

A stepwise analysis allows for manual selection of variables used to build the 
linear model up to a maximum number entries (n-1) where n is the number of 
samples in the sample set. This enables the user to select variables with large 
F-ratios and small p-values in order to build a model on the most discriminant 
variables. With the addition of a new variable, the values for F and p will 
change for the both the included and excluded variables with the termination 
step being when the F-ratio and p-value approach a value of 0 and 1 
respectively. 

Canonical discriminant analysis generates components referred to as canonical 
discriminant functions that are described by scores and loadings. Similarly to 
PCA, the first two canonical functions provide the maximum separation 
amongst different groups. 

Sample - represents a row and is equivalent to describing the whole spectrum of a 
single sample of honey or a series of concentrations of different phenolic 
compounds for one sample.  

Supervised Learning – multivariate methods where the outputs of the training 
samples are known prior to modelling and are thus used to train the model to 
give desired outputs. 

Support Vector Machines (SVM) – a set of supervised learning methods used for 
classification or regression with the advantages of being effective in high 
dimensional spaces (and in cases where the number of variables is larger than 
the number of samples), computationally efficient and versatile.  SVM 
attempts to map samples as points in space so that separate categories are 
divided by a clear gap which is as wide as possible. New samples can then be 
classified into categories depending on which side of the gap they fall. A 
Linear kernel SVM model was used as implemented within the ‘scikit-learn’ 
toolbox (Pedregosa et al., 2011) which attempts to find a hyperplane which 
separates the points in multidimensional space into separate classes.  The value 
for C or penalty parameter will determine the size of the hyperplane margin 
with a larger value for the C parameter giving a smaller-margin hyperplane 
margin which increases the probability of all the training points being correctly 
classified but reduces the margin of separation between the classes.  

Test set – sample set used for validation of the statistical model built on the training 
set. 

Training set – sample set used to build the statistical model, also referred to as 
calibration set. 
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Unsupervised Learning – methods where no output data is given prior to modelling, 
thus the model itself attempts to find structure or relationships within the 
dataset provided.  

Variable – used to describe a column or a single wavelength in the case of 
spectroscopic data. In PCA and PLS-DA modelling each variable is equivalent 
to a dimension in an n-dimensional space where n is the number of variables. 

Variable importance in projection (VIP) – The VIP score is a measure of a 
variable’s importance in the PLS-DA model. It represents the contribution of a 
variable to the PLS model and is determined through a weighted sum of the 
squared correlations between the model components and the original variable.  
A value of less than 0.8 is typically considered to be a small VIP and thus a 
candidate for deletion from the model. (Wold, 1995; Eriksson et al., 2006) 

Wilks’ Lambda (λw) – A parameter used in SLC-DA to test whether there is difference 
between the means of identical groups on a combination of independent 
variables. This parameter tests the null hypothesis which states that the means 
of all independent variables are equal across the groups being tested. In order 
to achieve good predictability, the means of the groups must have different 
values thus variables which minimize the value of Wilks’ lambda (equation 5) 
should be included in the model.  

 
 

intra
w

intra inter

S

S S
 


 - Equation 5 

Where Sintra is the sum of squares of data points belonging to one category, and 
Sintra + Sinter is the total sum of squares (Vandeginste et al., 1998). Values of w 
approaching zero are obtained in cases where the categories are well resolved, 
while values of w close to 1 signify overlapping categories (Lerma-Garcia et 
al., 2007). 
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Abstract          
 

The determination of the singularity of the Maltese olive oil provides an opportunity for local 
producers to purpose a PDO certification. This objective of this study was to identify chemical and 
genetic parameters which enable the discrimination of Maltese olive oils.  
Prior to the identification of markers, a preliminary survey of quality was conducted whereby it 
was shown that monocultivar olive oils grown locally were of sufficiently high quality to be 
classified as extra virgin olive oils. The minor constituents present in EVOOs were subjected to a 
more detailed study as chemical markers. Phenolic compounds were extracted and quantified using 
microtiter assays. The antioxidant activity of these extracts was determined using different redox-
based assays including FRAP, ACC and CUPRAC assays whilst the radical scavenging activity 
towards different radicals, including DPPH, ABTS and NO, was determined.  It was shown that 
EVOOs derived from the indigenous cultivars had a significantly lower TPC and TFC whilst no 
significant difference was observed in the TdPC when compared to EVOOs from other 
Mediterranean countries. The low TPC and TFC reflected the significantly lower antioxidant and 
radical scavenging activity of the indigenous cultivars. Whilst microtiter plate assays showed that 
the indigenous cultivars had a lower phenolic content, application of HPLC for phenolic profiling 
revealed that both the indigenous and locally grown foreign cultivars had a significantly higher 
content of six phenolic compounds, namely p-coumaric acid, tyrosol acetate, 3,4 DHPEA-EDA, p-
HPEA-EDA and two unidentified compounds. Elemental characterisation via the application of 
semi-quantitative XRF analysis enabled discrimination not only between the geographical origin 
of the EVOOs but also between EVOOs and other refined seed oils. Application of classical 
statistics and chemometrics on the phenolic profiling showed that geographical discrimination 
between the different samples was possible. The application of chemometric techniques namely 
PCA, PLS-DA, PNN, SLC-DA on data derived from different chemical techniques namely 
fluorescence (SEEF and EEM), FTIR, NMR and direct infusion mass spectrometry not only 
enabled the complete discrimination of the different EVOOs but enabled the identification of 
markers which had the highest discriminatory power. In the case of SEEF spectroscopy, 
compounds having emissions in the 380-480 nm and 650-700 nm ranges were found to have the 
greatest discriminating power, as confirmed through the use of 3-way chemometric analysis 
(PARAFAC and N-PLS) on the EEM offering comparable results to those obtained using SEEF. 
For NMR, 1H chemical shifts in the 3.5-4.5, 6.7-7.0 and 9.1-9.5 ppm had the most discriminate 
power and were attributed to the presence of glycerides, terpenic, phenolic and carbonyl containing 
compounds. In the case of DI-MS under positive ESI, it was found that the data obtained was 
highly redundant, nonetheless minor phenolic compounds identified through their m/z values were 
found to be the most discriminate. FTIR spectroscopy was found to be one of the most effective 
chemical fingerprinting methodologies owing to its simplicity, with compounds having functional 
groups which vibrated at 500-1500 cm-1 being the most discriminate.    
Application of genetic analysis on the three indigenous cultivars using SSR markers revealed that 
cultivar discrimination was possible via the use of two most informative markers namely DCA-3 
and GAPU 101. Analysis of these markers on genomic DNA showed that the ‘Bidni’ cultivar 
consisted of a homozygous population whereby the individual trees are clones of each other 
showing a very similar allelic pattern to olive cultivars cultivated in northern Tunisia. In the case 
of the ‘Malti’ cultivar, the population was highly heterozygous, showing very similar allelic 
patterns to Spanish, Greek and Southern Italian cultivars, suggesting a multi-cultivar population 
coined under the same nomenclature. In the case of ‘Bajda’ at the two loci studied this could not 
be distinguished from another Leucocarpic cultivar grown in southern Italy baring the name of 
Morachia, Cannellina, Bianca, and Chiarita. From the results obtained it was concluded that 
the authenticity of the Maltese EVOO can be defined using both genetics analysis and 
chemical fingerprinting methods.  
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Introduction         
 

In recent years the olive cultivation industry in the Maltese Islands has re-emerged, 

potentially allowing the creation of a niche market for high-quality olive oils produced 

by the Maltese agribusiness sector. At present the majority of the cultivated trees used 

for oil production are imported, since they are associated with better oil yields, placing 

the relatively unexploited and yet uncatalogued native olive trees at risk. There are 

three major identified olive cultivars within the Maltese islands which are thought to 

be native, namely the ‘Bidni’, ‘Bajda’ and ‘Malti’ (Borg, 1922). Whilst the ‘Bidni’ 

and ‘Bajda’ are monocultivars the ‘Malti’ is thought to be made up of a number of 

ancient varieties which are geographically isolated from each other (Mazzitelli et al., 

2015). In this study a variety of olive oils selected from different areas around the 

Maltese islands and countries around the Mediterranean were studied. The first part of 

this work focused on the development of chemometric methods capable of assessing 

olive oil quality and the possibilities of developing methods which allow the 

determination of the authenticity of the Maltese olive oil. For comparison oils from 

geographically neighbouring regions were also studied. The second part of this study 

focused on establishing the genetic profile of the olive oils and hence the cultivars 

from which they are derived. Fresh samples of cold pressed olive oil and leaf samples 

were collected from different geographical areas of the Maltese islands, and included 

the monocultivar ‘Bidni’ and ‘Bajda’ olive cultivars as well as a representative of the 

‘Malti’ cultivar. The ultimate aim of the study was that through the use of both 

chemical and genetic analysis enough evidence would be collected to prove the 

singularity of the Maltese olive oil. 

The determination of the singularity of the Maltese olive oil provides the 

opportunity for local producers to pursue the PDO certification, which will improve 

the status of Maltese olive oil as the raw material will become more valued.  There is 

also a significant economic benefit for the producers, as well as for the Maltese 

economy, in promoting the unique qualities and flavours of the product and therefore 

in protecting the very notion of what defines that product. This certification would 

protect and guarantee a premium price for authentic products, and eliminate unfair 

competition and the misleading of consumers by non-genuine products. Apart from 

obtaining the PDO certification this study involved the development of methods which 
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can be used by private and governmental facilities for the monitoring and analysis of 

the quality of Maltese olive oil as well as other autochthonous products (Sacco et al., 

2000). This will ensure food traceability which is important as it confirms the local 

origin of the olive cultivar. Fraudulent behaviour such as intentional blending with 

other oils of cheaper quality will also be reduced, therefore safeguarding and 

reassuring the public about the quality and safety of their product. 

1.1 Aims and objectives 
 
The objective of this study was to identify and define the uniqueness of Maltese 

olive oil and the cultivars from which it is derived, using both genetic analysis and 

chemometric methods. This led to the development of fast and sensitive methods for 

the characterization and authentication of Maltese olive oils, in relation to its quality, 

genetic variety, chemical composition and geographical origin.  

The specific objectives of this study were as follows: 

Chemical analysis objectives 

1. Collection of monocultivar extra virgin olive oils from the Maltese islands and 

different countries across the Mediterranean. 

 

2. Determination of the quality of the EVOOs derived from the Maltese islands 

via the assessment of the following criteria: 

1. Free fatty acid content  

2. Iodine value  

3. Oxidation parameters: peroxide value, p-Anisidine value and TOTOX 

4. Spectroscopic parameters: K232 K266 K270 K274 K 

 

3. Assessment of  the variation in the microconstituents of olive oils derived from 

different geographical origins , including the determination of the following 

parameters: 

1. Chlorophyll and carotenoid content  

2. Quantification of the different phenolic classes found in olive oils via 

microtiter assays, including the total phenolic, total flavonoid and o-

diphenolic content 
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3. Qualitative analysis of micro elemental constituents present in different 

olive oils and seed oils via the application of X-Ray fluorescence (XRF) 

 

4. Application of metabolic profiling and fingerprinting in conjunction with 

chemometric models, in order to develop methods that enable the 

discrimination of EVOOs from different geographical origins and thus 

determine the authenticity of the Maltese EVOOs. This approach would be 

applied to results obtained from the following methods: 

1. Phenolic profiling via high liquid chromatography  

2. Synchronous fluorescence spectra 

3. 3D Excitation and emission spectrofluorometric spectra 

4. Direct infusion mass spectrometry 

5. Infrared spectroscopy  

6. Nuclear Magnetic Resonance  

 

5. Determination of the antioxidant activity of complete EVOOs and their 

phenolic constituents through the application of non-cellular models based on 

the following assays  

1. DPPH, ABTS and nitrous oxide radical scavenging activity  

2. Ferric, cupric and molybdate reducing activity  

3. Correlate the observed antioxidant activity with the amounts of 

phenolic compounds present within the oil.  

6. Adulteration studies using different seed oils and Maltese EVOOs 

7. Determination of the oxidative stability of Maltese EVOOs, through the 

application of a forced thermal degradation assay.  

Biomolecular analysis objectives  

1. Development and optimization of methods allowing extraction of good quality 

DNA from both EVOOs and leaves of their corresponding cultivars, focusing 

on the indigenous Maltese cultivars.  

2. Amplification of the extracted DNA with an array of SSR primers, with the 

aim of determining the most consistent and informative amplification pattern.  

3. Assessment of the genetic similarity between the different cultivars. 
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1.2 Historical overview of Olive and Olive Oil  
 
Olive oil derived from the olive (Olea europaea L. subsp. europaea var. 

europaea) is the main edible vegetable oil which symbolizes the Mediterranean 

countries. The oil is obtained by crushing and pressing the fruits of the domesticated 

olive tree. Domestication of the tree is thought to have occurred approximately 6,000 

years ago in the eastern Mediterranean area. The fossil record of olive trees traces back 

to the tertiary period as the presence of fossilised leaves of ancestral olive trees were 

found in Italy (Vossen, 2007). The presence of olive stones dating back to the 

palaeolithic period (Bronze Age) (35,000– 8,000 B.C.) near ancient human settlements 

found in southern Europe confirms that at the time humans already exploited this plant 

as an edible source (Schafer-Schuchardt, 1988). However, the precise origin of the 

domesticated Mediterranean olive tree is still not clear. Phylogeographical and 

phylogenetic reconstructions of the diffusion of the olive trees suggest that it most 

probably originated in the regions of Persia and Mesopotamia (Boskou, 1996) from 

the domestication of the wild olive tree (O.europaea var. sylvestris) and then diffused 

to the present Syria, Lebanon and Israel (Zeder et al., 2006; Besnard et al., 2001; 

Breton et al., 2006). 

 Expansion of the olive tree’s habitat continued with the immigration of the 

Phoenician colonies that advanced in the Mediterranean from east to west, from the 

regions of Lebanon to the coasts of Egypt and the island of Crete spreading the olive 

tree with their colonization. By the fourth millennium BC, Phoenician colonies 

colonised Libya, Greece, Sicily and southern Italy, further spreading colonisation of 

the olive tree (Harwood and Aparicio 2000; Vossen, 2007). At the end of the Roman 

era, both the olive tree cultivation and the primordial technology for olive oil 

production had spread to most parts of the Mediterranean, with the exception of parts 

of Spain, France and North Africa (Grigg, 2001). It was first introduced in France 

around 600 B.C (Luchetti, 2002; Grigg, 2001). Recent studies suggest that the olive 

trees reached the Iberian Peninsula 700 years ago (Arnan et al., 2012) rather than in 

the second millennium BC, implying that the Arabs were the first to introduce the 

production of olive oil in Spain. Evidence of this may be that the Spanish word for oil 

- aceite - comes from the Arabic alzat, or olive juice. The expansion of the olive tree 

in the Americas was undertaken by the Spanish conquistadors who planted the first 
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trees in the Caribbean, and afterwards in the American continent (Vossen, 2007; 

Kapellakis et al., 2008).  

For the Maltese islands, there are no specific records which date the 

introduction of olive tree cultivation and olive oil extraction. Analysis of burnt wood 

remains found in the prehistoric temple of Skorba (limits of Mgarr) by Dr C. R. 

Metcalfe of the Royal Botanical Gardens provided information of the flora growing in 

the Maltese islands between 5000-4300 B.C. This analysis revealed the presence of 

olive tree remains, which according to Metcalfe originated from a canopy which 

covered the temple. On further analysis, it was shown that these remains were in fact 

derived from cultivated trees rather than wild olive trees and dated back to the copper 

age (3150-2500 B.C) (Trump, 1966). Palynological analysis of pollen grains found in 

clay layers of a water aquifer in the limits of Luqa also revealed the presence of pollen 

derived from Olea genera however it was not clear whether the pollen grains were 

derived from wild or cultivated trees. 

Ancient records by Diodorus suggest that the Phoenicians designated Malta as 

a place to settle in order to extend their trade towards the western part of the 

Mediterranian (Bonanno, 1991).  Furthermore, it is thought that the settlers aided in 

the development of new agriculture lines, in particular, olive cultivation, nevertheless 

the evidence for this is still not substantial. The archaeological records of the Roman 

period provide the most conclusive evidence regarding olive oil production in the 

Maltese islands. Several trapeta - huge stone mills in which olives were crushed to an 

oily paste were - discovered in Roman villas at San Pawl Milqi (Cassar, 2015).  It is 

thought that a large number of olive trees were found in certain locations of the Maltese 

islands such as Żebbuġ (both Malta and Gozo), Żejtun and Birżebbuġa, all names 

synonymous with the growth and production of olive trees. The names of these 

locations were coined by the Arabs, nonetheless during this period the importance of 

olive cultivation came to a halt as the introduction of cotton and citrus plants took 

place. The majority of the olive trees were cut down in order to make room for cotton 

and citrus production which were deemed to be more commercially viable. This 

fragmentation of olive groves caused the formation of secluded old olive groves 

scattered along the Maltese islands.  
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During the 1990’s the olive oil industry in Maltese islands regained attention 

with the importation of international cultivars. Nowadays most of the olive groves 

found in the Maltese islands are made up of cultivars originating from Spain and Italy, 

with the most common including Frantoio, Carolea, Pendolino and Bella di Spagna. 

In November 2006 the PRIMO project (Project for the Revival of the Indigenous 

Maltese Olive) was launched, with the aim of reviving and conserving the indigenous 

olive oil cultivars found in the Maltese islands. 

1.3 Regulations safeguarding the origins of Olive Oils  
 
Due to the autochthonous nature and the symbolic meaning of the olive tree 

and its oil, the establishment of specific production protection systems came into 

action. In 1992 the European Commission introduced two types of accreditation 

namely the protected designation of origin (PDO) and protected geographical 

indication of origin (PGI) (EEC Regulation No. 2082/92 and later No. 510/06). These 

systems were designed to protect the typical characteristics and to authenticate food 

products, with the aim of discouraging competition from similar replacement products.  

This was done by the introduction of rigorous regulations such as those imposed by 

the EEC Regulation (No. 510/2006) regarding labelling, production and 

commercialisation of olive oil. According to the EEC regulation Reg. (510/06) for a 

product to be conferred PDO status the entire production cycle, from raw material to 

finished product  including processing and packaging, must be carried out in one given 

territory. The amalgamation of different factors including the starting raw materials 

(olive oil varieties), environmental physiognomies, location and skilfulness of the 

producer, makes the product unique and not reproducible elsewhere. The product 

obtained bears distinctive and exclusive characteristics such as defined chemical 

composition and distinct organoleptic parameters.  

The difference between PDO and PGI is that the latter has less stringent 

requirements but still demands that the marketed product needs be produced in the 

geographical region which defines its origin. The geographical linke to the originating 

country must occur in at least one stage of production, processing or preparation. Other 

lesser-known designations defined in European Union Law for the protection of 

regional foods include traditional speciality guaranteed (TSG) and geographical 

indications (GIs). According to the European Council Regulation (EC), No 509/2006 
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a product established under TSG is defined as an edible agricultural product which is 

produced according to a traditional production method. Compared to GI, products can 

be both agricultural and non-agricultural named after the producing region and own a 

self-assured reputation or qualities derived from their place of origin. 

Products having an authentication certificate are highly appreciated as they 

bear the assurance of quality. The determination of the origin and the authenticity of 

olive oils has been studied extensively in the past few years using both biological and 

a variety of physicochemical techniques in conjunction with chemometric studies. 

From a chemical perspective, these studies can be classified into two main categories 

(Dupuy et al., 2005). In one category the samples are previously subjected to a 

chemical treatments in order to determine and quantify the individual chemical 

constituents such as fatty acids, triacylglycerols (Bucci et al., 2002; Ollivier et al., 

2003), sterols (Leardi and Paganuzzi, 1987), phenolic compounds (Faouzia et al., 

2008; Talhaoui et al., 2015; Gong et al., 2003) aliphatic alcohols (Rigane et al., 2011) 

and inorganic multi-elemental composition (Beltrán et al., 2011). The other category 

is based on sample preservation, where a small set of samples is analysed without 

extensive preliminary treatment, using methods that include 1H 13C 31P NMR analysis 

(Alonso-Salces et al., 2010); Fourier transform infrared spectroscopy (FTIR) (De Luca 

et al., 2011; Bendini et al., 2007), Near infra-red (Galtier et al., 2007); Synchronous 

excitation-emission fluorescence spectroscopy (SEEFS) (Dupuy et al., 2005) and 

direct infusion electrospray ionization mass spectrometry (Lerma-García et al., 2008).  

Since the chemical composition of olive oil is highly complex it is invariably 

affected by a multitude of factors including the variety from which it originates, the 

terroir, fruit quality, degree of ripeness and extraction technology (Solinas et al., 1987; 

Solinas, 1987; Patumi et al., 1992; Fontanazza et al., 1993). Although the use of 

complex chemometric models is helpful in determining the authenticity however it 

requires specific chemical markers which are less likely to decompose over time.  

The use of DNA analysis provides an invariant traceability to the producing 

cultivar, independently of the place of origin, leading to specific identity or 

authenticity determination. The specificity of this technique does not highlight 

differences which the cultivar acquires by time from the environment and thus 

although the foreign cultivars which are grown in Malta produce oil of different 
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chemical composition, the inherited genetic material would be invariably the same to 

that found in other countries. The most commonly employed genetic techniques 

involve the isolation of DNA from olive oil, followed by polymerase chain reaction 

(PCR) amplification, aiming for specific biomolecular markers. A large number of 

techniques have been developed throughout the years these include; Random 

Amplified Polymorphic DNA (RAPD), Simple Sequence Repeat Polymorphism 

(SSR), Cleavable Amplified Polymorphic Sequences (CAPS), Amplified Fragment 

Length Polymorphism (AFLP), Sequence Characterized Amplified Region (SCAR) 

and Inter- Repeat Amplification (IRA), (Dietrich, Weber, Nickerson and Kwok, 1999).  

Locally the extraction of olive oils is carried out using a continuous extraction 

system. The first step involves the washing and leaf removal, this step is vital for both 

the end product and the machinery as it reduced the chance of vegetable or non-

vegetable parts that could be harmful to the machinery or contaminate the product. 

This operation is carried out by specialised machinery equipped with powerful 

blowers, which removes leaves and twigs, and a washing tank, with forced water 

circulation in which olives are washed. The second step involves the crushing of the 

olives into a paste, this is carried out using a metallic crusher, which consists of a 

metallic body, that rotates at high speed and throwing the olives against a fixed metal 

grating. Once the olive paste has formed it is homogenized into a mixing vessel. 

Mixing is vital, as it promotes contact between oil droplets allowing the separation of 

a continuous oily phase, this process is known as malaxation. Mixing is done for 30 to 

60 minutes depending on the amount of water present in the flesh of the olives. Water 

is sometimes added in order to soften the mixture favouring phase separation. The 

temperature of mixing is another important parameter which determines both the 

organoleptic parameters and the time of mixing. The higher the temperature (40 ºC), 

the longer the time of mixing and the higher the total phenolic content (Di Giovacchino 

et al.,2002; Inarejos Garcia et al.,2009). The last stage of the extraction process 

involves the use of a horizontal centrifuge. The horizontal centrifugal force separates 

oil from other liquid and solid phases of olive paste, based on the weight of the 

fractions.  
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1.4 Definitions of olive oil 
  
According to the international olive council (IOC), olive oil is solely obtained 

from the fruit of the olive tree (Olea europaea L.) and excludes oils obtained via 

solvent extraction or re-esterification processes. The early EEC Regulation 136/66 in 

1966 established a set of rules which define the organization olive oils. Articles 35 and 

36 of the legislation define the different olive oils according to their free acid content, 

expressed as oleic acid w/w and organoleptic parameters.  

Virgin olive oils 

 

 Extra virgin olive oil is distinguished by perfect sensory characteristics and the 

content of free fatty acids does not exceed 1 g/100 g.  

 Fino olive oil has perfect sensory characteristics, however it has a higher free 

fatty acid content, which does not exceed 1.5 g/100 g.  

 Ordinary olive oil has some sensorial imperfections that are still acceptable and 

a free fatty acid content which does not exceed 3.3 g/100 g. 

 Lampante olive oil has unpleasant organoleptic parameters either attributed to 

bad fruit or careless processing, with a free fatty acidity higher than 3.3 g/100 

g. Lampante olive oils are not fit for human consumption and are subjected to 

refining and sold as a component in refined seed oils. Refining involves heat 

treatment of oil, filtration, and other chemical processes including bleaching. 

The refining process removes any unpleasant taste and smells from the oil, 

making it suitable for blending with virgin olive oil in order to impart some 

flavour and aroma.  

 

Refined olive oils  

  

 Refined olive oil is obtained by subjecting lampante virgin olive oil to various 

refining methods which do not alter the initial glyceridic structure. 

 Pure olive oil is obtained by a combination of refined olive oil and virgin olive 

oil for consumption. 
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1.5 Chemical constituents of olive oil 
 
The chemical composition of olive oil can be broadly divided into two, 

saponifiable and unsaponifiable fractions which are dependent on the behaviour of 

their respective chemical constituents in the presence of a strong alkaline solution and 

heating. The saponifiable fraction constitutes 98% to 99% of the total weight, and as 

the name implies it is composed of compounds which form soaps under the 

aforementioned conditions. These include free fatty acids and their corresponding 

glycerol esterified compounds, triglycerides, diglycerides and monoglycerides. The 

remaining unsaponifiable fraction (1-2%) is composed of microconstituents which do 

not form soaps. Although this fraction is very small it is the most diverse and imparts 

the beneficial nutritional aspect of olive oil. Furthermore, this fraction is also vital from 

an analytical point of view as it offers authentication markers, and determines the olive 

oil’s shelf life. This fraction contains mostly sterols, fat-soluble vitamins, waxes, 

aliphatic alcohols, aromatic compounds and phenolic antioxidants. 

1.5.1 Major constituents of olive oil 
 

1.5.1.1 Triglycerides and Fatty acids 
 

The beneficial aspect of olive oil is also derived from the prevalent presence of 

the monounsaturated oleic acid (C18:1) which confers the ability to prevent 

cardiovascular diseases (Keys, 1980). The fatty acid fraction is composed mainly of 

monounsaturated fatty acids (MUFA) and a relatively low level of polyunsaturated 

fatty acids (PUFA). Triglycerides, which account for 98% to 99%, consist of one 

molecule of glycerol on which are esterified up to three fatty acid chains (saturated 

and unsaturated). 

 Due to the difference in the biosynthetic pathways within the plant kingdom, 

triglycerides and their corresponding fatty acids provide a means to detect 

adulterations with olive oils. Within olive oil the presence of free unesterified fatty 

acid is normally absent, thus their presence is indicative of adulteration with oils from 

different seeds. The amended EC Regulation 2568/91 states that in order for an olive 

oil to classify as virgin the relative percentages of myristic, linolenic, arachidic, 

eicosenoic, behenic and lignoceric acids need to be measured. The typical fatty acid 

composition of olive oil ranges from 7.5 to 20.0% palmitic acid, 0.5 to 5.0% stearic 
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acid, 0.3 to 3.5% palmitoleic acid, 55.0 to 83.0% oleic acid, 3.5 to 21.0% linoleic acid, 

0.0 to 1.5% linolenic acid, 0.0 to 0.8% arachidic acid, 0.0 to 0.2% behenic acid, and 

0.0 to 1.0% lignoceric acid (Montedoro et al., 2003).The fatty acid composition may 

differ from sample to sample, depending on the zone of production, latitude, climate, 

variety, and the fruit stage of maturity at the time of harvest.  

Olive oil has a fatty acid composition similar to that of high-oleic seed oils 

such as sunflower, hazelnut and almond. However the total MUFA content is of much 

higher (70–80 g/100 g) than the other vegetable oils, such as canola (59 g/100 g), 

peanut (46 g/100 g), sunflower (32 g/100 g), corn (29 g/100 g), almond (28 g/100 g), 

or hazelnut (62 g/100 g) (Nicklas et al., 2004).  Yorulmaz et al., (2013) showed that 

stearic acid, linolenic acid, and monounsaturated/polyunsaturated fatty acid ratio 

decreased while linoleic acid content increased with the maturation. Furthermore as 

shown by Diaz et al., 2005 and Aranda et al., 2004 the application of chemometric 

techniques based on triglyceride profiling can be used to distinguish between different 

olive oils derived from different cultivars.  

 

1.5.2 Minor constituents 
 

1.5.2.1 Phenolic Compounds  
 

Phenolic compounds are a class of secondary metabolites found in plants 

distributed non-uniformly at both the cellular and subcellular level. They occur as both 

soluble and insoluble compounds. The majority of insoluble phenolics are the 

components of cell walls, while soluble phenolics are compartmentalized within plant 

cell vacuoles (Pridham, 1960). Phenolic compounds are transferred from the fruit to 

the oil during processing and thus analysis of olive oil phenolic compounds reflects 

those found in the drupes. The presence of phenolic compounds in olive are related to 

the organoleptic characteristics of the oil (Gutiérrez-Rosales et al., 2003). Their strong 

antioxidant activity protects the oil from auto-oxidation (Pellegrini et al., 2001; Mateos 

et al., 2005).  

There are six major classes of phenolic compounds found in olive oil, these are 

phenolic acids, simple phenols, complex oleuropein derivatives, flavonoids, lignans 

and hydroxyl-isochromans. The individual composition of phenolic compounds found 
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in olives is affected by a number of factors including a combination of agronomic, 

climate, degree of ripeness, extraction technology and conditions of storage (Forcadell 

et al., 1987; Saitta et al., 2002; Pinelli et al., 2003 and Van der Sluis, 2005). 

Phenolic acids are aromatic secondary plant metabolites, with a widespread 

occurrence throughout the plant kingdom. As the name implies these phenols possess 

carboxylic acid functionality. There are two main distinct groups of phenolic acids, 

classified according to the constitutive carbon frameworks, namely the 

hydroxycinnamic and hydroxybenzoic structures. A number of hydroxybenzoic acids 

have been identified throughout the years; these include: gallic, protocatechuic, p-

hydroxybenzoic, vanillic, and syringic acid. Similarly the hydroxycinnamic acids 

identified include p- and o-coumaric, caffeic, ferulic and cinnamic acid (Buiarelli, et 

al., 2004; Cartoni, et al., 2000; Carrasco Pancorbo et al., 2004 Tsimidou 1998, 1999; 

Morales and Tsimidou 2000; Servili et al., 2004).  
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Figure 1.1: Major classes of phenolic acids present in olive oil. 
 

Simple phenolic alcohols are also known as phenylethanoids. These 

compounds have a simple phenolic basic structure which bears an aliphatic alcohol 
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moiety on the phenolic ring. A number of simple phenolic alcohols have been 

identified and to date most of them are structurally related to tyrosol (4-(2-

Hydroxyethyl)phenol) p-HPEA. These include: tyrosol acetate; (3,4-

dihydroxyphenyl) ethanol, hydroxytyrosol, 3,4 DHPEA; hydroxytyrosol acetate 

(Montedoro et al., 1992, Tsimidou et al., 1992; Angerosa et al., 1995, Cortesi et al., 

1995, Pinelli et al., 2003, Artajo et al., 2007); and (3,4-dihydroxyphenyl) ethanol-

glucosides (Bianco et al., 1998). Both tyrosol and hydroxytyrosol are considered as 

the main simple phenols which are found in olive oil. Similar to other phenolic 

compounds the concentration of these compounds within the fruit depends on genetic 

factors, such as the producing cultivar, but also other factors, including fruit maturity 

and agropedoclimatic conditions (González-Rodríguez et al., 2003 and 2004).   
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Figure 1.2: Simple phenols present in olive oil and their acetate and glycoside derivatives  
 

Flavonoids are compounds that share the typical 15 carbon skeleton (C6-C3-

C6). These can be further subdivided into four major subclasses depending on the 

oxidation state of the pyran ring. Flavonoids are largely planar molecules and their 

structural variation derives in part from the pattern of modification by hydroxylation, 

methoxylation, prenylation, or glycosylation. The most commonly reported flavonoid 

compounds found in olive oil are luteolin and apigenin and their corresponding 7-

monosubstituted glycosides (Rovellini et al., 1997; Vázquez-Roncero et al., 1976; 
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Carrasco Pancorbo et al., 2004). These belong to the flavone class of the flavonoids 

and are characterised by unsaturated C-rings that connect the A and B rings in a single 

conjugated system. Apart from flavones, to date only one flavanonol, taxifolin, was 

also identified in Spanish olive oil (Carrasco Pancorbo et al., 2004) and Algerian olive 

oil (Douzane et al., 2013). Catechin (Gilani et al., 2006), quercetin (Lamzira et al., 

2014) and rutin (Dağdelen et al., 2013 and Silva et al., 2006) have not yet been found 

in olive oil however these compounds were found within the actual olive fruit, whilst 

diosmetin was only tentatively identified within the leaves (Peralbo-Molina et al., 

2012).  
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Figure 1.3 Flavonoid compounds and glycoside derivatives found in olive oil 

 

Complex oleuropein derivatives also known as secoiridoids are the most 

diverse and abundant class of phenolic compounds found in olive oil and contribute to 

the bitter taste of olive oil. Secoiridoids are a type of monoterpenes derived from 

geraniol. These are characterized by the presence of either eleanolic acid or eleanolic 

acid derivatives in their molecular structure (Garrido Fernández et al., 1997). The most 

commonly known secoiridoids are oleuropein and ligstroside which are most 
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commonly found conjugated in a dialdehydic form of elenolic acid connected to 

hydroxytyrosol or tyrosol and oleuropein aglycone. These compounds were first 

identified by Montedoro et al. (1992), who also assigned their chemical structure 

(Montedoro et al,. 1993) on the basis of IR, NMR and UV analysis. Later these 

structures were confirmed by other authors (Angerosa et al., 1995) by the use of GC-

MS, prior to subjecting them to derivatisation processes. Recent studies revealed that 

both oleuropein and ligstroside aglycones are present in olive oil however they are 

found in significantly lower quantities than their conjugated derivatives (Owen et al., 

2000 and Perri et al., 1999). 

Tyrosol elenolic acid di-
aldehyde 

p-HPEA- EDA 

OH
O O

OCH3

O  

Ligstroside aglycone 
 
 

OH
O O

OCH3

OH

O
O

CH3

 

Ligstroside 
 
 

OH
O O

OCH3

O

O
O

CH3

O

OH

HH

H

H
H OH

OH

OH  
 

Hydroxytyrosol elenolic acid 
di-aldehyde 

3,4-DHPEA- EDA 

OH
O O

OCH3

O  

 
 

Oleuropein aglycone 
 
 
 
 

OH
O O

OCH3

OH

O
O

CH3
OH

 

 
 

Oleuropein 
 
 
 

OH
O O

OCH3

O

O
O

CH3

O

OH

HH

H

H
H OH

OH

OH

OH

 

 

 
Figure 1.4: Simple and complex secoiridoid compounds found in olive oil  
 

Lignans are polyphenolic substances derived from phenylalanine and the 

dimerization of substituted cinnamic alcohols with the aid of oxidative enzymes 

known as dirigent proteins. The most ubiquitous lignans found in olive oil are (+)-1-

acetoxypinoresinol, (+) - pinoresinol and (+)-1-hydroxypinoresinol. These were 

identified and characterised by Owen et al., (2000) and Brenes et al., (2000). The latter 

suggested that the presence of 1-acetoxypinoresinol can be used as an authentication 

marker for the Spanish cultivar Picual (Brenes et al., 2002).  
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Figure 1.5: Lignans present in olive oil   
 

The most recently discovered class of phenolic compounds found in olive oil 

are isochromans and their hydroxyl derivatives. These compounds are 3,4-dihydro-1H-

benzo[c]pyran derivatives which are present in nature most of the time forming part of 

fused intricate ring systems (Peng, Lu, and Ralph, 1999). These compounds are formed 

during the oil preparation especially during the process of kneading of the olive paste, 

which causes uncontrolled enzymatic hydrolysis. The presence of glycosidases and 

esterases present within the olive paste degrade secoiridoid favours the release of 

simple phenols and isochroman derivatives (Bianco et al., 2001). Bianco et al., 

identified two major isochromans namely 1-phenyl-6, 7-dihydroxy-isochroman and 1-

(39-methoxy-49-hydroxy) phenyl-6, 7-dihydroxy-isochroman. 
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Figure 1.6: Isochromans present in olive oil   
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1.5.2.2 Antioxidant activity of phenolic compounds 
 

Polyphenols are an important group of natural compounds, which are produced 

in the secondary metabolism of many plants in nature. The best-known characteristic 

of polyphenols is certainly their antioxidant capacity. This antioxidant capacity is 

attributed to their ability to donate a hydrogen or transfer an electron and/or to 

delocalize the unpaired electron within the aromatic structure (Bors et al., 1990). 

Polyphenols act as antioxidant compounds, as they are able to break free alkylperoxyl 

radicals produced by lipid oxidation chain reactions, themselves forming stable 

derivatives. The antioxidant activity of the phenolic fraction of olive has been 

extensively studied. The majority of the published studies focus on the relationship 

between the phenolic constituents and their effect on the stability of olive oil over time 

using two main accelerated oxidation methods, AOM (Active Oxygen Method) and 

Rancimat  (Brenes, et al., 2000; Baldioli et al., 1996; Pirisi et al., 2000), which provide 

insights about the shelf-life of the product. The relationship between the amount of 

phenolic compounds, the antioxidant activity and the stability of olive oil was 

confirmed from a number of studies (Lonso et al., 2003; Lee et al., 2007; Franco et 

al., 2014; Servili, et al., 2009).  
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Figure 1.7: Free radical stabilisation mechanism carried out by phenolic compounds (Top) phenolic acids 
(Bottom) flavonoid compounds.   
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Apart from scavenging free radicals the phenolic compounds are able to act as 

antioxidants by chelating metal ions such as iron and copper which act as catalysts, 

aiding in the formation of oxygen radicals via the Fenton reaction (Yamamoto and 

Niki 1988; Yamauchi et al., 1988; Benjelloun et al., 1991; Mei et al., 1998). Although 

the phenolic compounds are capable of chelating the ferrous and coppers metal ions, 

the strong reducing activity of phenolic compounds can ultimately cause the reduction 

of the oxidized counterparts of these ions, causing the formation of more catalytic 

metal ions; this effect is known as pro-oxidation (Brune et al., 1 991; Dieana et al., 

1995; Solinas et al., 1996; Moran et al., 1997). Studies showed that lipid peroxidation 

is accelerated in the presence of both ferric ions and reducing antioxidants such as -

tocopherol and ascorbate which reduce Fe3+ to the Fe2+ state catalysing hydroperoxide 

decomposition (Yamamoto and Niki, 1988).  Studies done by Keceli and Gordon 

(2002) showed that olive phenolic compounds are no exception. It was demonstrated 

that in the absence of ferric metal ions, the phenolic compounds displayed antioxidant 

activity preventing the degradation of -tocopherol stripped sunflower oil, however, 

in the presence of ferric ions the phenolic extract showed a pro-oxidative effect 

accelerating the decomposition.  
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Figure 1.8: The prooxidant mechanism of phenolic compounds in the presence of metal ions. 
 

1.5.2.3 Sterols 
 

There are four main classes of sterols which are found in olive oil: 4--

desmethylsterols, 4--methylsterols, 4, 4-dimethyl sterols or triterpene alcohols and 

triterpene dialcohols.  Although they share same basic steroidal carbon skeleton, they 

differ in the level of unsaturation of the B ring and the presence of side groups on the 

cyclopentane C ring. 
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Figure 1.9: Four main classes of sterols present in olive oil 4--desmethylsterols (-sitosterol), 4--
methylsterols (Gramisterol), 4, 4-dimethyl sterols (Butyrospermol) and triterpene dialcohols (erythrodiol) 
 

4--desmethylsterols are the most abundant sterols present in olive oil and their 

content ranges from 100 to 200 mg/g. The main 4--desmethylsterols in olive oil are 

-sitosterol (75–90 %), ∆5-avenasterol (5–36 %) and campesterol (3 %) (Boskou 2002; 

Jiménez de Blas and del Valle González, 1996; Itoh et al., 1981)). The presence of 4-

-desmethylsterols provides the olive oil with a higher oxidative capacity when 

compared to other seed oils. It was shown that olive oil was the most stable and 

resistant to oxidation during deep frying (Blekas and Boskou, 1999; Bastida and 

Sanchez-Muniz, 2001; and Naz et al., 2005). This was attributed to the presence of ∆5-

avenasterol, its low iodine value and the presence of phenolic compounds. The 

presence of ethylidene side chain in ∆5-avenasterol retards the oxidative 

polymerization in triacylglycerols when subjected to heat treatment (Blekas and 

Boskou, 1999). 

The most abundant 4--methylsterols found in olive oil are obtusifoliol, 

cycloeucalenol, gramisterol and citrostadienol. These act as intermediate compounds 

in the biosynthesis of 4--desmethylsterols. Their isolation and quantification proved 

to be very difficult and thus their content in olive oil can only be approximated. 

Boskou, 1996 approximated that their content ranged from 20–70 mg/100 g based on 

gas chromatography against internal standards combined with thin layer 

chromatography. 

The most abundant  4,4-dimethyl sterols or triterpene alcohols present in olive 

oil are - and -amyrin, cycloartenol, butyrospermol, 24-ethylenecycloartanol, 

taraxerol, dammaradienol and 24-methylene-24-dihydroparkeol (Boskou, 2002; 
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Kiritsakis et al.,2003; Paganuzzi 1982) whose content ranges between 100 and 150 

mg/100 g oil (Kiosseoglou et al. 1987). Due to their high complexity, it has been 

proposed that the triterpene alcohol or dialcohols composition (Eisner, 1965; Spencer, 

1979) could be used as tools for the detection and identification of pomace oil in 

commercial olive oils. The major triterpene dialcohols present in olive oil are 

erythrodiol and uvaol. Their total content in olive oil ranges from 1 to 20 mg/g, 

however in refined olive oil their content increases significantly up 280 mg/100 g. 

Therefore their quantification can be used to detect the presence of refined oil in virgin 

olive oil (Boskou, 2002; Mariani et al., 1987) 

1.5.2.4 Chlorophylls and Carotenoids 
 

Chlorophyll pigments are responsible for the green hue of olive oil. There are 

a number of different chlorophyll pigments present in olive oil, depending on the age 

of the oil. The freshly pressed olive oil contains a significantly higher amount of 

chlorophyll a, however its content is significantly reduced via the deterioration to 

pheophytin a via removal of the Mg2+ ion, and the latter is the major chlorophyll 

pigment which is found in packaged olive oil.  The first high performance liquid 

chromatographic studies carried out by Minguez-Mosquera et al., (1992) and Gandul-

Rojas and Minguez-Mosquera (1996) on monocultivar olive oil from Spain revealed 

the presence of chlorophyll a, chlorophyll b, pheophytin a and pheophytin b, however, 

studies done by Psomiadou and Tsimidou, 2001 on monocultivar olive oils grown in 

Greece found no chlorophyll a and only traces of chlorophyll b and pheophytin b. 

Cerretani et al, 2008 showed that chlorophyll composition did not depend on the olive 

cultivar or growing region. However, a number of studies have shown that via the 

application of chemometric techniques to HPLC data it was possible to distinguish 

between oils derived from different cultivars (Cichelli and Pertesana, 2004; Giuffrida 

et al.,2007). 

 The presence of chlorophyll pigments in olive oil has both an antioxidant 

effect and a prooxidant effect depending on the presence of light. In the presence of 

light the chlorophyll pigments have been shown to have a prooxidant effect (Endo et 

al., 1984; Wanasundara et al., 1993). This is attributed to the fact that chlorophylls and 

their degradation products pheophytins and pheophorbides, act as sensitizers to 

produce oxygen radicals in the presence of light and atmospheric oxygen. The 
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presence of these compounds increases the rate of oil oxidation (Whang and Peng, 

1988). According to Endo et al. (1984), the photosensitizing activity of pheophytins is 

higher than that of chlorophylls and lower than that of pheophorbides. 

The main carotenoids present in olive oil are β-carotene and lutein and these 

compounds impart a yellow hue to the oil. Other minor oxygenated carotenoids 

(xanthophylls) have also been reported. These include neoxanthin, violaxanthin, 

anteraxanthin and β-cryptoxanthin (Gandul-Rojas and Minguez-Mosquera 1996; Roca 

and Minguez-Mosquera, 2001). Similar to the chlorophyll composition, carotenoid 

composition is dependent on the fruit variety, the growing region, the degree of fruit 

ripeness, the extraction process, and the storage conditions of the oil (Serani and 

Piacenti 1992; Minguez-Mosquera et al., 1992). The chlorophyll and the carotenoid 

concentration in olive fruits decreases with ripening whilst the synthesis of 

anthocyanins increases, thus olive oil derived from fruits which have a low index of 

maturation have a higher concentration of pigments. Moreover, oils obtained from a 

continuous system technology have a higher pigment content than those produced by 

the traditional pressure system. 

 Giuffrida et al., (2007) proposed that the ratio lutein/-carotene could be 

useful to differentiate oils derived from monocultivars. Roca et al., (2003) have shown 

that the chlorophylls/carotenoids ratio remained stable for one year of storage at 15 ºC 

in the dark and thus proposed that this ratio could be used as an authenticity parameter. 

Similar to chlorophylls, -carotene can also act as an antioxidant and as a prooxidant. 

The antioxidant capability can be attributed to its ability in blocking singlet oxygen, 

inhibiting the oxidation of lipids (Beltra´n et al., 2005; Hrncirik and Fritsche, 2005). 

However, in the presence of high concentrations of oxygen, carotenoids act as 

prooxidants via the generation of carotenoid radicals which react with atmospheric 

oxygen to generate carotenoid-peroxyl radicals. The latter compounds act as pro-

oxidants by promoting oxidation of unsaturated lipids (Stahl and Sies, 1992). 
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Figure 1.10: Carotenoids and their oxygenated derivatives xanthophyll present in olive oil (Top Bottom) 
β- carotene, lutein, violaxanthin and neoxanthin  
 

 

 

 

1.5.2.5 Hydrocarbons  
 

The most abundant and important hydrocarbon present in olive oil is squalene. 

This is a highly unsaturated aliphatic triterpenic hydrocarbon which can constitute up 

to 90% of the hydrocarbon fraction of olive oil and up to 50% of the total 

unsaponifiable fraction (Aguilera et al., 2005). Squalene is the most important 

antioxidant present in unsaponifiable fraction of olive oil (Manzi et al., 1998; Mateos 

et al., 2003). Apart from the presence of phenolic compounds present in olive oil, the 

significantly higher quantities of squalene have been also implicated in its major health 

benefits (Gapor and Rahman 2000). Its chemopreventive activity has been reported by 

a number of studies (Rao et al., 1998; Smith et al., 1998; Harold 2006, Gaforio et al., 

2015). The antioxidant activity of squalene has also been shown in the oil itself, 

however, it degrades faster than tocopherols on storage (Manzi et al. 1998) and thus 

according to Psomiadou and Tsimidou (1999), it only plays a limited role in olive oil 

stability.  
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Figure 1.11: Squalene a naturally 30-carbon hydrocarbon compound present in olive oil 
 

 

1.5.2.6 Waxes  
 

Wax esters are formed by the esterification of high molecular mass alcohols 

with fatty acids. The most commonly found waxes in oil are C40, C42, C44 and C46 and 

these are mainly derived from seeds rather than from the fleshy mesocarp. The 

determination of wax content by gas chromatography (Pérez- Camino Cert, 1999; 

Ranalli et al., 1999) enables the detection of lampante olive oil and seed oils 

adulteration due to the use of organic solvents. The presence of several types of esters 

(saturated and unsaturated, straight-chain, even-numbered esters) and also benzyl 

alcohol, phytyl and geranylgeranyl esters makes the wax fraction highly complex 

(Reiter and Lorbeer 2001). 

 

 
Figure 1.12: (Left) Saturated and (Right) unsaturated esters, responsible for the diversity of waxes 
 

1.5.2.7 Tocopherols 
 

Tocopherols are another important class of antioxidants which are found in 

olive oil. These compounds are collectively known as Vitamin E. There are four 

classes of tocopherols (, ,  and ) based on the different side groups present on the 

chromanol ring and their corresponding unsaturated isomers known as tocotrienol. -

tocopherol constitutes up to 95% of the total tocopherol/tocotrienol content present in 

the virgin olive oil.  

The biological activity of tocopherols has been demonstrated by a number of 

studies and ranges from chemoprevention (Campbell et al., 2003) and prevention of 
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cerebral infarction (Mishima, et al., 2003) to cholesterol synthesis and absorption 

(Theriault et al., 1999).  Due to their structural similarity the development of new 

analytical techniques which enable the separation and quantification has been 

accomplished by a number of researchers using techniques including HPLC (Gimeno 

et al.,2000) RP-HPLC (Gliszczyńska-świgło et al.,2007) UPLC (Cunha et al 2006)  

and GC-MS (Parcerisa, et al.,2000; Melchert et al.,2000). However, GC is normally 

disregarded due to the nonvolatile nature of these compounds, requiring derivatization 

prior to the quantification step. Similar to the phenolic compounds, the tocopherol and 

the tocotrienol profiles vary depending on cultivar, fruit ripening stage, edaphic and 

climatic conditions, and olive-growing techniques (Beltran et al., 2005; Benito et 

al.,2010 Nieves Franco et al.,2013). 
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Figure 1.13: Tocopherols (Top) and unsaturated isomers Tocotrienols (Bottom) and there corresponding 
class based on the side chain functional group (Right)   
 
 

 

1.5.2.8 Volatile compounds and aromas 
 

Unlike other vegetable oils, olive oil possesses a unique characteristic - the 

presence of volatile and non-volatile flavours. This distinctive sensorial property can 

be attributed to a complex mixture of more than one hundred volatile compounds 

(Morales et al., 1994; Vichi et al., 2003) formed during the extraction process.  

During the crushing step, the plant tissue is perturbed causing the release of 

enzymes, namely lipoxygenases. These enzymes cause the degradation of 

hydroxyperoxides formed during the oxidation of polyunsaturated fatty acids, causing 

the release of aldehydic compounds. The aldehydes which are formed are reduced to 
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their corresponding alcohols by the presence of reducing enzymes including 

dehydrogenases and transferases, and the ultimate products are scented hexyl esters 

(Angerosa et al., 1999 and Angerosa, 2002).  The volatile fraction of olive oil consists 

of a mixture of hydrocarbons, alcohols, aldehydes, esters, phenols, phenol derivatives, 

oxygenated terpenes and furan derivatives (Boskou, 1996; Reiners and Grosch, 1998; 

Morales and Aparicio, 1999; Morales and Tsimidou, 2000).  

Analysis of the volatile profile of olive oil has been widely achieved using GC-

MS by previous extraction and pre-concentration of these compounds (Cavalli et al., 

2003; Zunin et al., 2004; Vichi et al., 2007). The newly developed headspace solid-

phase microextraction (HS-SPME) coupled with gas chromatography proved to quite 

reliable. Pizarro et al., 2010 showed volatile profiles obtained using HS-SPME were 

able to discriminate between Spanish olive oils derived from different geographical 

locations. Dabbou et al., 2011 was able to discriminate olive oils derived from 

cultivated olive trees and oleasters grown in Tunisia on the bases of volatile profiles. 
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1.5.3 Application of Chemometric techniques for the 
identification of origin 
   

The determination of the origin and the authenticity of olive oils has been 

studied extensively in the past few years using extremely varied physical-chemical 

techniques in conjunction with chemometric methods. These studies can be classified 

into three main categories.  

In target-based analysis, a specific metabolite or a class of metabolites is 

targeted. The metabolites need to be selectively extracted and isolated from the  matrix 

and other metabolites present within, with the ultimate aim of concentrating the 

selected metabolites and minimising interference from other compounds.  From a 

chemical perspective these studies require the need of separation based analytical 

techniques including HPLC (Cichelli and Pertesana, 2004) and UPLC (Herrero et al., 

2011) and GC (Ranalli et al., 1999), coupled with a detector suitable for the 

quantification and identification of the compounds of interest including UV (Cichelli 

and Pertesana, 2004), NIR (Galtier et al., 2007), NMR (Alonso-Salces et al., 2010) 

and MS (Suárez et al., 2008). Typical targeted compounds include fatty acids, 

triacylglycerols (Bucci et al., 2002; Ollivier et al., 2003), sterols (Leardi and Paganuzzi 

1987) phenolic compounds (Faouzia et al., 2008; Talhaoui et al., 2015; Gong et al., 

2003) aliphatic alcohols (Rigane et al., 2011) and inorganic multi-elemental 

composition (Beltrán et al., 2011). 

 Similar to target based analysis, metabolic profiling requires the identification 

and quantification of a number of selected metabolites, belonging to various classes of 

compounds. However unlike target based analysis the metabolites are analysed 

without a separation procedure (Vigli et al., 2003; Goodacre et al., 2002 and Garcia-

Gonzalez et al., 2004 ).  

The third analytical category is known as metabolic fingerprinting (Fiehn, 

2002). In this category, studies are performed without any preliminary identification 

of individual metabolites and rather than attempting to decipher the individual 

metabolites, the whole interactions among the different unknown metabolites is taken 

into consideration (Nicholson, 2008).  Any fingerprinting technique can produce a 

spectrum that can be considered the whole trace of the product.   
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Chemometrics involves the application of multivariate data analysis and 

mathematical methods to extract relevant information from chemical data (Gasteiger 

and Engel, 2003). Multivariate analysis enables the comparison of x number of X (Xx) 

variables with a y number of Y variables (Yy), compared to univariate statistics which 

compares a single independent x variable with a single dependent y variable. The 

application of multivariate analysis is advantageous when compared to the traditional 

univariate analysis as it gains a new and higher quality in data evaluation. 

Chemometrics vary from the standard statistical analysis in that in most cases the 

number of variables is often much higher than the number of objects, since the 

variables tend to be highly correlated. This causes traditional statistical methods to fail 

on using this kind of data. This form of data is often referred to the ‘small N large P 

problem’. It is typical of recent data analysis areas such as bioinformatics and genomics. 

Several approaches have been developed to overcome the multicollinearity problem and 

these include the elimination of some predictors through the use of stepwise methods, and 

the use of ridge regression, such as principal component regression (PCR), both of which 

will be presented at a later stage in this study. The use of specialised methods capable of 

handling large amounts of data have been developed in the field of chemometrics. 

These include the use partial least-squares (PLS) regression, artificial neural networks 

(ANN), stepwise linear canonical discriminant analysis (SLC-DA) and soft 

independent modelling by class analogy (SIMCA).  

The use of multivariate techniques can be divided into two, supervised and 

unsupervised techniques. The supervised techniques involve the use of a subset of the 

data which is used for learning whereby the algorithm is fitted in order to satisfy the 

response, while the remaining subset of data is used for the model evaluation. 

Unsupervised techniques identify the natural clustering pattern on the basis of 

similarities among the samples without prior knowledge of the classification. The most 

common method of unsupervised pattern recognition are cluster analysis (CA), 

principal coordinate analysis (PCoA) and PCA which are  recognised as very powerful 

statistical tools for extracting information within a dataset (Forina, Oliveri, Lanteri, 

and Casale, 2008; Poulli, Mousdis, and Georgiou, 2005). 

PCA is a multivariate projection method, generally used in chemometrics to 

compress large dimensional data into a smaller-dimensional space with the smallest 

loss of information by extracting systematic variations in a data set (Aguado et al., 



 

33 
 

2008). The purpose of PCA is to represent as much of the variation as possible in the 

first few axes. To do this the data is first centred so that the majority of the variables 

have a mean of zero. The data is then rotated in order to obtain as much variation as 

possible on the first axis whilst the second axis contains as much of the remaining 

variation. Plotting the first two axes will give a plot which would represent the 

maximum variation in two dimensions PC1 and PC2.  

Discriminate analysis (DA) is a statistical technique used to classify 

observations into mutually exclusive and exhaustive groups based on a set of 

measurable parameters.  The discriminate analysis is a term used to refer to 

multivariate statistical methods that are used to classify observations into a known 

number of groups. These methods involve a two-step process: the first step involves 

the discrimination between the different groups present through a linear transformation 

of the samples into a new dimensional space, and in so doing samples belonging to the 

same class are close together but samples from different classes are far apart from each 

other. The discriminate model that is built is then followed by a classification step.  

Examples of DA method are Fisher Linear Discriminant analysis and canonical 

discriminant analysis.  The problems which are associated with these forms of 

discriminate analysis is that they require a larger sample size than the number of 

predictors thus these cannot be used for data sets in which n<p. However, the 

application of stepwise methods enables the use of variables which are only 

significantly affecting the discrimination.  Discriminant Analysis is considered 

supervised learning since it explicitly makes use of the groupings in developing the 

functions; unlike PCA and PCoA the group membership must already be known prior 

to initial analysis. Discriminant analysis can also be used in order to determine the 

variables which are responsible for the group differences.  

The main aim of PLS regression is to construct an adequate mathematical 

model which explains or describes the relationships that may exist between two or 

more explanatory variables and a response variable. The model that is built would 

enable the estimation of unknown values of the response. PLS regression analysis is 

used to extract latent factors that account for much of the apparent factor (Zheng and 

Lu, 2011). Similar to PCA. PLS can be thought of as a dimension reduction technique 

which is applied to the data prior to conducting classical multivariate techniques such 

as multiple linear regression and discriminant analysis.  The multitude of signals 
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derived from each overlapping variables can be analysed using powerful 

multicomponent analysis such as PLS regression (Fuller and Griffiths, 1978; Haaland 

and Thomas, 1988). This technique allows a sophisticated statistical approach which 

is able to fit a mathematical algorithm using the full or partial spectral region rather 

than distinct wavelengths. The mathematical algorithm is fitted based on the ability to 

correlate the chemical response variable data to a property matrix of interest. At the 

same time, the mathematical algorithm accounts for all other significant spectral 

factors that perturb the data, for example spectral noise (Liang and Kvalheim 1994). 

 
Artifical neural networks are non-linear mathematical algorithms which are 

fitted on a subset of data with the aim to transform the input information into the output 

one. Throughout the training process each variable is weighed in order to produce the 

correct output value which is as close as possible to the target value (Kruzlicova et al., 

2009). Compared to other linear models of regression like PLS, the main advantage of 

ANN is that it allows the high performance modelling, of nonlinear sensor responses, 

very much related to human pattern recognition (Cetó et al., 2013).  

Cluster analysis is a multivariate analysis which, unlike DA, attempts to 

identify determined groups of observations, without any previous information about 

any observation or grouping membership, and generally not even the amount of 

clusters is known (Everitt, 1974; Gordon, 1999; Kaufmann and Rousseeuw, 1990; 

Massart and Kaufmann, 1983; Ripley, 1996). Cluster analysis can be also be employed 

in order to confirm the groups which were employed during the DA. The most 

commonly used clustering method is the hierarchical method, whereby the 

observations are partitioned in hierarchal fashion in the form of a dendrogram. The 

optimum number of clusters and the relationships between each observation are 

manually determined by the observer.  
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1.5.4 Biomolecular and genetic studies used to distinguish Olea 
europaea cultivars. 
 

Over the centuries, through vegetative propagation, humans have selected olive 

trees based on the quality and quantity of the olive. Although this procedure should 

conserve the genetic identity of the parent stock, this did not avoid the problematic 

nature of crossing between the newly introduced cultivars and the local germplasm. 

The probability of somatic mutation and inherited genetic variability makes cultivar 

identification challenging, as described by several authors (Angiolillo et al., 1999; 

Bautista et al., 2003; Belaj et al., 2002, 2003, 2004, 2006; Cordeiro et al., 2008; Gemas 

et al., 2000; Gomes et al., 2008, 2009; Martins-Lopes et al., 2007, 2009; Sefc et al., 

2000).  Since olive trees are wind pollinated self-incompatible flowers, pollination can 

only occur by means of cross-pollination. This allogamous type of pollination 

increases the genetic variability between and within the cultivars (Mekuria et al., 1999; 

Ouazzani et al., 1996; Zohary, 1994). It is believed that a small percentage of progeny 

arose from self-pollination, even when a cultivar is considered to be self-incompatible, 

however, seed genotyping showed that they were products of cross-pollination in 

almost all cases (Diaz et al., 2006).  

Olea europaea subsp. europaea is present in two forms, namely the wild 

oleaster (var. sylvestris) which is haploid, and the cultivated (var. europaea), which is 

diploid, (Breviglieri and Battaglia 1954) with a genome size range between 2.90 pg/2C 

and 3.07 pg/2C, with 1C = 1,400-1,500 Mbp (Loureiro et al., 2007). These values 

correspond to ≈ 3120 Mbp because 1pg is ≈978 Mbp based on the conversion factor 

proposed by Dolezel et al. (2003). The wild oleaster is thought to be indigenous to the 

Mediterranean basin (Green, 2002). Although the oleaster form is is similar to the 

cultivated form, it differs by having spinescent juvenile shoots, smaller fruits with a 

higher stone/mesocarp ratio, and relatively low oil content (Zohary and Spiegel-Roy, 

1975; Lumaret et al., 2004). Cross-pollination between the two varieties is also 

possible and may produce fertile offsprings, providing access to an enormous pool of 

genetic variability (Muleo et al., 2012). The application of biomolecular techniques, 

namely genetic techniques, seems to be the only possibility for identifying the cultivar 

and the oil deriving from it (Busconi et al., 2003). Molecular biology research on 

olives can be mainly divided into two major disciplines: genome and genetic diversity 
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studies, or gene characterization and functional genomics (Banilas and Hatzopoulos, 

2013). 

1.5.4.1 Phenotypic and morphological analysis 
 

Morphological, phenotypic agronomic characteristics have been widely used 

for distinguishing olive cultivars (Barranco and Rallo, 1985, Cantini et al., 1999 and 

Barranco et al., 2000; Barranco and Rallo, 2000 and Del Rio, 1994). Rugini and Lavee, 

(1992) managed to describe 2600 cultivars of Olea europaea using morphological 

analysis, however many of them might be synonyms, homonyms, ecotypes or the 

result of crosses between olive cultivars (Barranco et al.,2000). Bartolini et al. (1998) 

and Barranco et al. (2000), stated that biometric indexes used for classification should 

always be accompanied by a detailed morphological description of the organs 

(inflorescence, leaf, fruit, and stone) of olive varieties following the International 

Union for the Protection of New Varieties of Plants method. The recognition of olive 

cultivars based on morphological and phenotypic characteristics is problematic, 

especially when the trees are still juvenile.  

The application of morphological analysis for cultivar identification is very 

laborious. Furthermore, the presence of environmentally dependent polymorphs 

makes identification more complicated (Mohan et al., 1997; Tanksley and Orton, 

1983; Caraffa et al., 2002). Researchers have shown that different cultivars are 

morphologically variable based on geographical locations and under different pedo-

climatic conditions (Grati et al., 2002, Guerfel et al., 2009 and Youssefi et al., 2011). 

Although nowadays it seems that the use of morphological classification is becoming 

less important, as it has been replaced by more rigorous and less time-consuming 

biomolecular techniques, its importance is still significant. Al-Ruqaie et al., (2016) 

employed comparative morphological characteristics in order to distinguish between 

eight olive cultivars grown in Saudi Arabia, in conjugation with newly advanced 

pattern recognition statistical software. The advanced multivariate analysis software 

revealed that biometrics of leaves, fruits and seeds can be used to distinguish between 

the different varieties (Al-Ruqaie et al., 2016).  
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1.5.4.2 Isozymes and allozymes analysis 
  

Isozymes are multiple forms of the same enzyme that differ only in the amino 

acid sequence but still retain the same chemical catalytic activity. These are coded by 

the same genes which diverged over the time. Allozymes are enzymes which are 

derived from different alleles of the same gene.  Although isozymes and allozymes are 

not the same the two words are most of the times used interchangeably. They are 

usually separated by means of electrophoresis, with minimal preparation. Since 

enzymes are coded by genes, the analysis of these enzymes provides insights of gene 

expression. Compared to morphological studies enzymatic expression studies permit 

unequivocal identification of nearly all genotypes growing in different geographic 

locations (Wilson et al., 1977; Kimura, 1983; De Vienne, 1984).  

Various enzymatic expression studies have been carried out in order to 

distinguish between the cultivated Olea europaea cultivars (Ouazzani et al, 1993; 

Ouzzani et al, 1995; Lumaret et al, 1997). Enzyme polymorphism was also used in 

order to distinguish between wild and cultivated olives collected in several sites of the 

Mediterranean Basin, in order to assess the effect of olive domestication (Ouazzani 

1994, Ouazzani et al., 1993, 1995, 1996). Pontikis et al. (1980) found high 

isoenzymatic variability in olive pollen samples of 27 cultivars, mostly of Greek 

origin. All cultivars could be identified with only two out of the sixteen enzyme 

systems used. In a similar study using pollen, isoenzymatic variability carried out by 

Trujillo and Rallo (1995) showed that a combination of different enzymes could be 

used to distinguish and identify 85% of the cultivars. The remainder were identified 

through morphological analysis. Relatively recent studies conducted by Lumaret and 

Ouazzani (2004) have shown that through the study of leaf allozymes, it was possible 

to discern two major oleaster populations, the eastern oleaster populations which gave 

rise to cultivated olive clones in the Mediterranean Basin, and the western populations 

that are related to the wild Canarian populations. Furthermore, this study also 

highlights the significantly lower heterozygosity in cultivated olive trees than in 

oleasters, indicative of an intensive selection process. The disadvantage associated 

with the use of enzyme analysis is that the banding patterns obtained are highly 

variable and dependent on the electrophoresis gel conditions (Trujillo and Rallo, 

1995). Furthermore, these enzymes are unable to detect the genetic changes produced 
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by somatic mutations (DeWald et al, 1988; Tao and Sugiura, 1987; Weeden and Lamb, 

1985).  

1.5.4.3 DNA analysis 
  

Although the enzyme profiling and morphological analysis offer a rudimental 

form of cultivar identification,  the analysis of DNA markers is by far the most robust,  

as it is usually unaffected by environmental  and developmental factors (Fabbri et 

al.,1995). However, selecting the right DNA marker is essential and depends upon the 

ultimate objective of the study. In general, the DNA markers chosen must have certain 

characteristics. In order for the study to be successful these include being highly 

polymorphic, evenly and commonly distributed throughout the genome, stable over 

cohorts, simple, quick and inexpensive, and requiring only small amounts of DNA 

(Agarwal et al.,2008; Hatzopoulos et al., 2002).  The application of genetic molecular 

markers has provided great insights into the geographical locations of early olive 

domestication and later genotype diffusion (Besnard et al., 2013). 

1.5.4.4  Non- PCR based techniques 
 

1.5.4.4.1 RFLP 
 

Restriction fragment length polymorphism (RFLP) analysis is based on the 

analysis of banding patterns derived from cleaved DNA using different restriction 

enzymes, which cleave DNA at a certain base pair sequence. The resulting fragments 

are then hybridized using specific probes (Mohan et al., 1997). The use of RFLP on 

both the genomic and chloroplast DNA has been widely employed in order to assess 

the genetic linkage between the cultivated olive trees and the wild oleaster (Amane et 

al., 1999; Lumaret et al., 2000). Amane et al., (1999) assessed the variation and 

relationship between old olive trees and oleasters, cultivated around the Mediterranean 

basin using RFLP from cytoplasmic DNA. Later, a similar approach was used to study 

chloroplast DNA variation in wild and cultivated Moroccan cultivars (Amane et al., 

2000). 

 A number of different variants of RFLP analysis have been employed 

throughout the years including the use of other less common sources of DNA. Besnard, 

Baradat and Bervillé (2001) employed the use of mitochondrial DNA in order to assess 

different mitotypes found in the Mediterranean. In a similar study, Rugini et al., (2011) 
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showed the existence of three distinct mitotypes present in 37 different Italian 

cultivars. The use of mitochondrial DNA also provides insights into the maternal 

lineages involved in the evolution of olives. RFLP analysis using ribosomal rRNA has 

also been carried out, however the problem with using rRNA is that low gene diversity 

was observed (Besnard et al., 2001). However, in the same study, this was overcome 

by using the Inter Gene Spacer (IGS), which has been reported to be the most variable 

rRNA (Rogers and Bendich 1987)  

With the advance of PCR based methodologies, RFLP analysis markers are 

now not very widely used. This is mainly attributed to its time consuming laborious 

process and the use of radioactive and toxic reagents. Furthermore, in order to obtain 

consistent results, the method relies on a large quantity of high-quality DNA.  The 

advances in molecular markers which do not require a priori sequence information for 

probe generation are ensuring the replacement of RFLP methods (Agarwal et al., 

2008). 

1.5.4.5 PCR Based techniques  
 

1.5.4.5.1 RAPD 
 

The random amplified polymorphic DNA (RAPD) method was first described 

by Williams et al. (1990) and Welsh and McClelland (1990). It is based on the 

amplification of random DNA segments, by means of an arbitrary known nucleotide 

sequences which enable the detection of polymorphisms and the genetic map 

construction. The diverse DNA fragmentation pattern arises from the annealing of 

primers to multiple sites in different regions across the genome, generating numerous 

amplified products that are composed of repetitive DNA sequences (Paran and 

Michelmore, 1993). The first application of RAPD to olive tree germplasm was by 

Fabbri et al. (1995) who showed a high degree of polymorphism present in the 

germplasm. Furthermore, they managed to fully discriminate between 17 cultivars 

using very few primers. A large number of following studies carried out on different 

cultivars present in different countries also highlighted the high genetic diversity 

present in the olive tree genome or managed to fully discriminate between cultivars 

using RAPD in Iran (Shahriari et al.,2008), Spain (Belaj et al.,2002), Portugal 

(Cordeiro et al.,2008; Gemas et al.,2004; Martins-Lopes et al.,2007) Turkey 

(Wiesman et al.,1998; Çelikkol Akçay et al.,2014, Sesli and Yegenoglu, 2009, 2010) 
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Greek (Nikoloudakis et al., 2003) Italian (Besnard et al., 2001) and Malta (Mazzitelli 

et al., 2015). Owing to its high discriminatory power, RAPDs were shown to detect 

intra-cultivar variability between olives as shown by Belaj et al.,(2004). On the 

contrary, in studies carried out by Çelikkol Akçay et al.,(2014) on Turkish cultivars, 

Gemlik showed minimal intra-cultivar variation.  

Application of RAPD has also been extended in the determination of the 

geographical origin, Gemas et al., (2000) showed that cultivars grown in Portugal were 

found to be genetically divergent according to their geographic location of origin. 

Banilas et al., 2003 showed that clones of Ladolia, the main Cypriot cultivar, were 

highly morphologically and genetically diverse, suggesting that this cultivar originated 

from genetically distant landraces. The use of RAPD markers is not limited to the 

cultivated olive tree but was also applied to oleasters, Sesli and Yegenoglu 2010 

showed a very high genetic diversity in oleasters grown in Turkey. Bronzini de Caraffa 

et al., 2002 studied both cultivated varieties and the wild populations from Corsica and 

Sardinia. RAPD analysis revealed the existence of a genetic divergence between the 

oleasters and the cultivated varieties suggesting that the Corsican varieties were 

probably selected from local wild forms, contrary to the Sardinian varieties. 

The use of RAPD is advantageous over non-PCR techniques as it is a low cost, 

time efficient technique which enables the researcher to access genetic variability with 

low amounts of DNA, even if not of good quality, without the need of a previous DNA 

sequence. However, the use of RAPD technology has been criticized a lot due to it low 

inter-laboratory reproducibility.     

1.5.4.5.2 AFLP 
 

The principal of amplified fragment length polymorphism (AFLP) is based on 

the amplification of DNA fragments produced by restriction enzymes (Vos et al., 

1995).  AFLP employs the use of restriction enzymes in order to generate fragments 

allowing the simultaneous sampling of multiple loci distributed throughout a genome. 

The use of AFLPs has proven quite successful in the assessing the genetic diversity of 

the olive trees. Results obtained by a number of studies suggest that this technique is 

equally or more efficient than RAPD in intravarietal genotype discrimination (Belaj et 

al., 2003; Ercisli et al., 2009; Grati-Kamoun et al., 2006; Montemurro et al., 2005). 

The first AFLP study on the genus Olea was carried out by Angiolillo et al. (1999), 
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who studied the genetic variations within and among populations of cultivated olives 

from different locations of the Mediterranean basin. The result showed a clear 

distinction between the cultivated and the oleaster germplasms. This study also showed 

that whilst all locations studied had similar levels of genetic variability, the cultivars 

from Sicily clustered in the same group which contained cultivars from Israel and 

Syria. In another study, Baldoni et al., (2006) showed that oleasters and cultivated 

trees on the islands of Sicily and Sardinia were highly different, suggesting that all 

cultivars were introduced into these regions from the outside. The study also showed 

that cultivars found in mainland Umbria did not show large differences between the 

cultivated and wild types suggesting that these cultivars have originated either by 

selection from local oleasters or by a direct introduction from other regions. Similar 

results were obtained by Albertini et al.,(2011), who, using AFLP markers, showed 

that old varieties cultivated in the Abruzzo cluster together, suggesting that the oleaster 

population spread in central Italy via seed propagation. 

AFLP has also been employed in the traceability of olive oil, Busconi et 

al.,(2003) reported that AFLP fingerprinting of olive oil is partially superimposable 

and in agreement with the cultivar from which the oil was derived. However, there are 

few studies which claimed non-concordant genetic profiles of olive oil and fruit 

(Doveri et al., 2006; Pafundo et al., 2005). According to Pafundo et al.,(2005) the 

results obtained from AFLP analysis from olive oil are not reliable due to low, 

degraded DNA content in olive oil and the presence of phenolic compounds and 

polysaccharides, which can inhibit the activity of both restriction enzymes and DNA 

polymerases. Doveri et al., (2006) also suggest that the non-concordance is also due 

to the presence of paternal DNA from the embryos making such analyses difficult.  

1.5.4.5.3 SSR 
 

The simple sequence repeats (SSR) technique was described by Tautz et al, in 

1986 and by Litt and Luty in 1989. This method depends on short repeating stretches 

of DNA, occurring in the genomes of higher organisms (Rafalski and Tingey, 1993; 

Wu and Tanksley, 1993). The application of SSR markers marked a new era in 

assessing the genetic diversity of olive trees. A large number of studies involving the 

use of SSR markers took over size-based molecular markers. Unlike RAPD and AFLP, 

microsatellites are codominant allowing the identification of alleles at a single locus. 
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These markers are highly reproducible within and among different laboratories and 

require a very small amount of DNA (Katsiotis et al. 1998; Cipriani et al. 2002). The 

main drawback of using SSR markers is that a previous DNA sequence is required for 

primer design, however knowledge about the sequence will enable development of a 

genetic map, application in linkage analysis, and fingerprinting studies (Bracci et al., 

2009; Cipriani et al., 2002; De la Rosa et al., 2004; Gomes et al., 2009; Karp et al., 

1996; Muzzalupo et al., 2009; Rallo et al., 2002; Sefc et al., 2000)      

A number of researchers managed to isolate sequences of DNA in order to 

develop successful primers for the SSR analysis of olives. Some of the most commonly 

used SSR primers include DCA (Sefc et al., 2000) GAPU (Carriero et al., 2002) UDO 

(Cipriani et al., 2002) and EMO (de la Rosa et al., 2002). These primers have proven 

quite successful in cultivar identification and genetic diversity studies which are useful 

for other oleaceous genera. The high discriminatory power of these markers was best 

illustrated by Sarri et al., 2006, whereby a combination of three markers was used to 

differentiate 118 cultivars from different countries. Roubos et al., (2010) showed that 

the application of SSR markers to Greek olive germplasms did not yield the same 

clustering results as those obtained when using morphological parameters. However, 

the dendrogram obtained displayed similarities with the dendrogram reported by Owen 

et al., 2005, based on AFLP. The comparative study made by Belaj et al., (2003) 

showed that SSR markers had the highest index of polymorphism when compared to 

RAPD and AFLP, however, the expected heterozygosity and discriminatory power 

were comparable.  Baldoni et al., 2009 used, 37 SSR loci, in order to analyse 21 olive 

cultivars. The aim of their study was to develop a list of recommended markers for the 

creation of a universal molecular database of olive cultivars and protocols for olive. 

The use of SSR markers was also used on chloroplast DNA, Hannachi et al, 

(2010) used 7 previously developed SSR markers in order to probe both the nuclear 

DNA and chloroplast DNA in Tunisian cultivated and oleaster populations. Nuclear 

genomic DNA analysis showed five mixed clusters of cultivar and oleaster trees 

suggesting a close relationship, and one oleaster single cluster. Chlorotype SSR 

markers revealed that olive trees present in Tunisia had three separate origins 

depending on the chlorotype. 
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The application of SSR markers was also extended to determine the botanical 

origin of the olive oil. Pasqualone et al., (2004) studied the potential of SSRs in 

determining the cultivar origin of different olive oils. From the seven primer pairs 

used, six yielded amplified fragments of dissimilar lengths suggesting that SSR 

markers can be potentially employed in order to determine the cultivar from which the 

olive oil was derived. Studies done by Breton et al. (2004) involved mixing olive oils 

derived from different cultivars and later assess the efficiency of SSR markers in order 

to distinguish and identify the cultivar origins. The results obtained were partially 

successful as SSR identification of the major cultivar was possible, however, this did 

not apply to the minor ones. Other studies showed discrepancies in both the size and 

the number of the alleles which are present in olive oil when compared to the 

originating cultivar (Alba et al., 2009; Ayed et al., 2009; Vietina et al. 2011).  This 

was attributed to the low DNA quality and the presence of extra genes derived from 

pollen.  

1.5.4.5.4 SCAR  
 

Sequence characterized amplified region (SCAR) involves sequencing of 

RAPD or AFLP fragments for further definition and design of more specific primers 

(Naqvi and Chatoo, 1996; Adam-Blondon et al., 1998; Negi et al., 2000). The 

application of PCR products makes this technique highly reproducible under different 

conditions (Lawson et al., 1998). SCARs have been employed in olive trees for 

germplasm evaluation and mapping (Bautista et al.,2003; Busconi et al.,2006; 

Hernández et al.,2001), and for analysis of olive oil traceability (Pafundo et al.,2007). 

Hernández et al. (2001) were the first to apply SCAR markers to olive trees and were 

able to provide the first sequence of the intermediate RAPD region. Bautista et al. 

(2003) were able to identify 22 olive- tree cultivars using only 10 different, specific, 

repeatable markers. They demonstrated that SCAR markers are a simple, cheap, and 

reliable procedure for the identification of geographically related olive cultivars. 

Busconi et al. (2006) applied SCAR markers in order to evaluate the olive germplasm 

of forty different olive cultivars from Liguria and were able to fully distinguish 26 

different cultivars, whilst the remaining clustered in one group, indicating a very high 

genetic similarity. 
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1.5.4.5.5 SNP 
 

Single nucleotide polymorphisms are a marker system based on detection of 

variations in the genome at a single nucleotide base level. Such variations are present 

in large abundance in the genomes of higher organisms including plants. Such fine 

variation can differentiate between individuals within the same population (Agarwal 

et al., 2008). This technique is still in its infancy as the olive genome is still unknown, 

making primer design rather difficult.  The first study involving the application of 

SNP’s was carried out by Reale et al., (2006), who were able to fully discriminate 77% 

of the cultivars collected from different Mediterranean regions. However, the same 

cultivar derived from different sources was revealed as identical, demonstrating the 

utility of these markers as tools for resolving nomenclature issues, not for individual 

identification. Reale et al., (2006), developed SNP markers using the sequence-related 

amplification polymorphism (SRAP) method whereby primers were constructed with 

the aid of olive gene sequences available in the GenBank database. Hakim et al. (2010) 

identified nine SNPs loci by partial sequencing of two genes in sixteen Tunisian 

cultivars and proposed the combination of both SNPs and SSR in order to increase the 

discriminatory power for complete cultivar identification.  Recent studies conducted 

by Biton et al. (2015) applied the use of next-generation sequencing technology and 

managed to identify 145,974 SNP loci.  From these, they employed 138 SNPs to 

analyze the genetic relationships between 119 cultivars, which constituted most of the 

Israeli olive germplasm collection. Furthermore, it was shown the clustering pattern 

was very similar between SSRs and SNPs suggesting that SSR markers are also very 

reliable.  

1.5.4.5.6 Chlorophyll analysis  
 

Apart from genomic DNA marker analysis, chloroplast DNA (cpDNA) has 

also been studied in a variety of olive trees. The use of cpDNA has been shown to be 

a powerful tool for phylogenetic reconstruction at both inter- and intra-species levels 

(Palmer 1987).  Amane et al., (1999) showed that the use of RFLP’s from cpDNA 

enables the determination of the mode of inheritance of cpDNA in O. europaea.  

Results showed that in cpDNA there are three different sites corresponding to five 

distinct chlorotypes. Chlorotype I was predominant in both oleasters and cultivated 

olive trees, further confirming the relationship between the oleasters and cultivated 
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olives. Chlorotypes II, III and IV were found exclusively in secluded oleaster forests 

while chlorotype V contained three mutations located in discrete parts of the cpDNA. 

Besnard and Bervillé (2002) and Lumaret et al., (2000) successfully managed to 

distinguish between the different North African subspecies Olea europaea, 

maroccana, guanchica and laperrinei using chloroplast DNA.  Besnard and Bervillé 

(2002) concluded that amplification of RFLP markers revealed more polymorphisms 

in the cpDNA than the classical RFLP method of genomic DNA. Hannachi et al., 

(2010) applied SSR markers to cpDNA for olives, revealing the presence of five 

clusters. In this study, cultivated and oleaster olive trees clustered together indicating 

a close relationship between the two. The chlorotype SSR markers revealed three 

probable olive origins: a CE chlorotype originating from the East of the Mediterranean 

basin, the haplotype CCK originating from the west coast of northern Africa and the 

COM chlorotype originating from West Mediterranean.   
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Methodology        
 

2.1 Biomolecular analysis  
 

2.1.1 Selection of Olive Varieties and Plant Leaf Collection 
 

Plant leaf tissue was collected from three different classes of olive cultivars 

found in the Maltese islands; the indigenous class was composed of three different 

cultivars namely ‘Bidni’, ‘Malti’ and ‘Bajda’, the foreign locally grown class 

composed of three different cultivars which are commonly present in the Maltese 

islands that included Carolea, Frantoio and Pendolino. The ‘Bidni’ and the ‘Bajda’ 

cultivars are morphologically distinct and were identified onsite. The foreign cultivars 

were identified through there importation certificate. In the case of ‘Malti’ complete 

identification could not be carried as the cultivar is not yet defined. The last class 

contained the wild olive trees, the O.europaea var. sylvestris identified by its 

spinaceous shoots.  

Two different kinds of ‘Bidni’ samples were collected, those which were 

derived from young grafts cultivated in a private estate in Wardija and very old trees 

from a secluded location in ‘Bidni’ja from which the grafts were derived. The ‘Malti’ 

samples were derived from all over the island due to its wide distribution and the 

inherited possibility of the existence of morphotypes. Old ‘Malti’ olive trees present 

in Sant Anton, Lija, Mellieha, Mdina, and Wardija were also collected. In the case of 

‘‘Bajda’,’ one individual was obtained from a private estate in Wardija. Wild olive 

trees which were previously morphologically identified were collected from two 

locations, one of the specimens was collected from the University of Malta and three 

other specimens were obtained from the garigue area found in Manikata.  

Where applicable, young leaves found near the apical buds were collected, 

stored in labelled plastic bags and placed over ice during transportation. Once in the 

lab, these were stored at -80ºC. Young leaves were preferred over older leaves due to 

their low concentration of polyphenolic compounds and polysaccharides, allowing 

better quality DNA.    
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Figure 2.1: Map of sites where plant samples were obtained. 
 

2.1.2 Extraction of genomic DNA. 
 

DNA extraction was performed according to the method described by Doyle 

and Doyle (1990) with minor modifications. Approximately 0.5 g of each leaf tissue 

sample were macerated in a mixture of acetone and dry ice and pulverized with the aid 

of a mortar and pestle. The resulting mixture was warmed in order to remove the solid 

dry ice and acetone.  5 ml of extraction buffer containing 100 mM Tris-HCl, 50 mM 

EDTA, 2 % CTAB (w/v) PVP, 2 % (w/v) and Tween 20, 0.2 % (v/v) was added.  

The crushed leaves were further macerated in the presence of the extraction 

buffer and later transferred to 1.5 ml polypropylene tubes and incubated at 75 ° C for 

1 hour in a water bath. The mixture was shaken periodically, opening the caps in order 

to prevent the build-up of pressure. The samples were then centrifuged at 13,000 rpm 

for 10 minutes at 30ºC in an Eppendorf Centrifuge. The supernatant was removed by 

the aid of a sterilized Pasture pipette and added to an equal volume of phenol: 
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chloroform: isoamyl alcohol in a ratio of 25:24: 1(Sigma) and the resulting mixture 

was shaken vigorously. The mixture was then centrifuged for 10 minutes at 13,000 

rpm at 25ºC. The aqueous supernatant was transferred to a new tube and the extraction 

was repeated once again. The obtained supernatant was transferred to another tube and 

an equal volume of chloroform: isoamyl alcohol (24: 1) (Sigma), was added, shaken 

and centrifuged at 13,000 rpm for 15 minutes. The supernatant was collected and 

transferred to 1.5 ml tubes followed by 600 µL of cold isopropanol and 80 µL 

ammonium acetate (7.5 M) and agitated slightly.  

The samples were incubated overnight at -20 ° C, and then centrifuged at 

13,000 rpm for 15 minutes and 4ºC, the DNA pellet obtained was washed three times 

with 70% ethanol and dried at room temperature. Depending on the size, the pellet 

resuspended in 50-200 µL TE buffer consisting of 10mM Tris-HCl (pH 8.0), 1 mM 

EDTA.  

2.1.3 Quantitative and Qualitative Analysis 
 

The DNA concentration and quality were analysed with Thermo Scientific 

NanoDropTM 2000. Compared to the conventional use of spectrophotometers the 

NanoDropTM 2000 requires minute quantities (<1 µl) of the undiluted sample, allowing 

conservation of the extracted genomic DNA.  

DNA concentration and purity assessments are based on the UV absorbance at 

three different wavelength maxima namely 280 nm, 260 nm and 230 nm. The maxima 

observed at 280 nm is attributed to the presence of proteins. The unsaturated aromatic 

ring bearing amino acids absorb at 280 nm, these include cysteine, tyrosine and 

tryptophan with an increasing molar absorption coefficients in that order (Gill and Von 

Hippel, 1989).  The presence of aromatic heterocyclic ring structures present in DNA 

corresponding nucleotide bases, contribute to the absorbance at 260 nm (Heaton and 

Keer, 2008). The presence of phenolic compounds, polysaccharides derived from the 

plant material, together with thiocyanate and EDTA derived from the extraction buffer 

contribute for the UV absorbance maxima observed 230 nm (Arif et al.,2010). 

Ratios of these maxima provide insights into the purity and quantity of DNA. 

Thus, the 260/280 nm gives an indication of the purity of DNA and RNA. In general, 

a ratio of ~1.8 is generally accepted as an almost pure form of DNA. The presence of 
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proteins present in the sample which absorb at 280 nm effectivity lower the 260/280 

ratio. The 260/230 nm ratio is the second measure of DNA purity, it effectively 

measures the amount of the DNA relative to other contaminants. The higher the ratio, 

the purer is the DNA, typical values between 1.8 and 2.2. 

2.1.3.1 Determination of DNA Concentration and Purity using 
NanoDrop 

 
The pedestal of the Thermo Scientific NanoDrop TM 2000 was cleaned by the 

addition of 1 µL of distilled water, the arm was lowered gently and both the arm and 

the pedestal were wiped with lens tissue. The TE buffer used for the resuspension of 

the DNA pellet was used to blank the Thermo Scientific NanoDrop TM 2000 

spectrophotometer. 1 µL of DNA sample was pipetted onto the pedestal, and the arm 

was gently lowered. The 260:280 ratio, 260:230 ratio and DNA concentration, were 

recorded. The pedestal and the arm of the pipette were cleaned between each sample.   

2.1.4  Marker Based DNA Fingerprinting using SSR markers 
 

The use of DNA molecular markers provides insights about the genetic 

relationships that different cultivars present in Maltese islands share. The use of SSR-

PCR analysis involves the amplification of fragments containing a complementary 

sequence to that of the primer. The SSR primer is composed short nucleotide repeating 

sequence which binds to flanking region of a highly variable region of the genomic 

DNA. Once paired with the primer-DNA double strand is amplified. On the basis of 

the number of repeats that are amplified, fragments of different sizes that can be 

separated, visualized and sized. Analysis of these fragments reveals the presence of a 

unique set of amplicons which are unique to each cultivar enabling discrimination.  

The use of molecular markers is based on the amplification polymerase chain 

reaction (PCR). This reaction amplifies and elongates complementary primer-DNA 

regions via a thermal resistant DNA polymerase enzymes in the presence of 

deoxynucleoside triphosphates (dNTPs) which assist the de novo synthesis of DNA.  

The PCR reaction is based on three steps. The denaturation where the double-stranded 

DNA template is separated into two strands. During the Annealing stage, 

complementary primers add across to the DNA template. This stage is highly 

temperature dependent as each primer has its own temperature of Annealing 
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temperature depending on its size and guanidine cytosine content. The last stage is the 

extension or elongation step, the polymerase enzyme attaches to the newly formed 

primer-DNA double strand and elongates the DNA region, flanked by the primer 

sequence. 

PCR amplification is dependent on a number of different factors which affect 

its performance. One of the most important constituents of the PCR mixture in the 

presence of MgCl2. This salt has a concentration-dependent dual effect in the PCR. At 

the correct concentration, it promotes DNA/DNA interactions and aids in the 

formation of DNA/dNTPs complexes. At a low concentration of Mg2+ , the primer-

DNA interactions are reduced, preventing Annealing to the target DNA, while at a 

high concentration Mg2+ the base pairing of the primer sequence will be strengthened 

so much that it will fail to denature completely at 94°C, resulting in nonspecific 

primer-dimer amplification rather than DNA-primer amplification (Williams, 1989). 

2.1.4.1 Analysis with microsatellite markers  
 

For the molecular characterization of olive trees cultivated in the Maltese 

islands, a pool of 18 established SSR markers was used (Sefc et al.,2000; Carriero et 

al.,2002; Cipriani et al.,2002 de la Rosa et  al., 2002). The markers were selected on 

the basis of their ability to discriminate, clarity of signal, number of alleles, 

heterozygosity and segregation independence (Sarri et al., 2006; Baldoni et al., 2009).  

The amplification reactions were performed in a final volume of 25 µl 

containing 0.75 μl of 50mM of MgCl2, 1.5 μl of 5 pmol of forward and reverse primer, 

2.5 μl of 10X buffer, 8 μl of 2.5mM dNTPs, 0.5 μl of 5 U/μl Taq and 1 μl of 20 ng/μl 

of genomic DNA was added and the mixture was topped up with distilled water. Table 

2.2 shows the thermocycler (Eppendorf ® Mastercycler Personal) program employed 

for the amplification procedure. Table 2.3 shows the SSR primers which were used in 

this study.  
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Table 2.2: PCR Amplification cycle program 

 

PCR Amplification cycles 

No. of cycles Amplification phase Temperature and Time 

1 Initial Denaturation 95°C 5min 

35 

Denaturation 
95°C 30sec 

 

Amplification 

 

(*) 30sec 

 

Extension 

 

 

72°C 30sec 

1 Final Extension 72°C 30-60min 

 

(*) Temperature of Annealing depends on the primer to be used   
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Table 2.3 Primer sequences repeating motif and their corresponding Annealing temperature  

Primer Sequence 5’  3’ Motif 
Tm 

oC 
Reference 

DCA-3 
CCCAAGCGGAGGTGTATATTGTTAC 

TGCTTTTGTCGTGTTTGAGATGTTG 
(GA)19 59 

Sefc et al.,  

2000 

 

DCA-4 
CTTAACTTTGTGCTTCTCCATATCC 

AGTGACAAAAGCAAAAGACTAAAGC 
(GA)16 54 

DCA-9 
AATCAAAGTCTTCCTTCTCATTTCG 

GATCCTTCCAAAAGTATAACCTCTC 
(GA)23 52 

DCA-16 
TTAGGTGGGATTCTGTAGATGGTTG 

TTTTAGGTGAGTTCATAGAATTAGC 

(GT)13(GA)2

9 
57 

GAPU-101 
CATGAAAGGAGGGGGACATA 

GGCACTTGTTGTGCAGATTG 

(GA)8 (G)3 

(AG)3 
53 

Carriero et 

al., 2002 
GAPU-103 

TGAATTTAACTTTAAACCCACACA 

GCATCGCTCGATTTTTATCC 
(TC)26 52 

GAPU-59 
CCCTGCTTTGGTCTTGCTAA 

CAAAGGTGCACTTTCTCTCG 
(CT)9 52 

Chafari et 

al.,2008 
GAPU-71A 

GATCATTTAAAATATTAGAGAGAGAGA 

TCCATCCATGCTGAACTT 
(AG)10 55 

GAPU-71B 
GATCAAAGGAAGAAGGGGATAAA 

ACAACAAATCCGTACGCTTG 

(AG)6 

(AAG)8 
56.5 

UDO-99-12 
TCACCATTCTTAACTTCACACCA 

TCAAGCAATTCCACGCTATG 
(GT)10 56 

Cipriani et 

al.,2002 

UDO-99-19 
TCCCTTGTAGCCTCGTCTTG 

GGCCTGATCATCGATACCTC 
(GT)20(AT)5 56 

UDO-99-39 
AATTACCATGGGCAGAGGAG 

CCCCAAAAGCTCCATTATTGT 
(AT)5 (GT)11 56 

UDO-99-43 
TCGGCTTTACAACCCATTTC 

TGCCAATTATGGGGCTAACT 
(GT)12 53 

UDO-99-24 
GGATTTATTAAAAGCAAAACATACAAA 

CAATAACAAATGAGCATGATAAGACA 

(CA)11(TA)2 

(CA)4 
51 

EMO-30 
GTCTCTGCCCAACAATG 

CATACATGAGTGTGTGTG 
(AC)8 51 de la Rosa 

et 

al.,2002) 
EMO-03 

 

GGTGTAGCCCAAGCCCTTAT 

TGCATGACCGTGGTGTAAGT 
(A)15(CA)7 60 
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The PCR amplicons were then analyzed by agarose gel electrophoresis at 60 V 

in a 2 % (w/v) 25 cm by 10 agarose gel prepared as described in section 2.1.5.1. A 100 

bp ladder (Solis Biodyne®) was used as a size standard. The gel was then stained as 

described in section 2.1.5.3 and observed under a UV transilluminator [UVP]. A 

photographic record was made using a Canon PC 1130 camera and preliminary 

analysed using Gel Analyzer Software 2010 developed by Istvan Lazar and Dr Istvan 

Lazar.  

2.1.5 Determination of SSR amplicons using Gel Electrophoresis  

Qualitative analysis of SSR amplicons was carried out using gel 

electrophoresis in order to provide an indication of primer amplification. Gel 

electrophoresis allowed the identification of the primers which gave a discriminatory 

and consistent amplification in the majority of samples.  The bands produced were 

analysed using Gel Analyzer Software 2010 and the size of the amplicons was 

determined. The size of the alleles was placed into a contingency table and analysed 

using statistical software Past 3.06 (Øyvind Hammer, University of Oslo).  

2.1.5.1 Molecular Marker Selection  

The preliminary size of the PCR amplicons was estimated in terms of base pairs 

by comparing the distance migrated of the products to that of the 100 bp DNA ladder. 

DNA markers which gave consistent amplicon sizes were used as molecular markers. 

The distances moved by the PCR products were measured using Gel Analyzer 

Software 2010, using the 100bp ladder as a reference. Samples which gave the most 

consistent amplification were selected and sized using a more accurate capillary 

electrophoresis method performed using the Applied Biosystems 3130 Genetic 

Analyzer at MLS BIODNA.  

Apart from their reproducibility, primers were also selected in terms of their 

heterozygosity and the ability to amplify different cultivars. From the set of 18 primers, 

only six primers showed these possible characteristics. Bands appearing in the negative 

control were not considered. 
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2.1.5.2 Cluster analysis generated using SSR data 

Once the correct size of each amplicon was determined, the presence-absence 

of alleles present within each cultivar for each particular primer was noted in a two-

dimensional contingency table. A dendrogram was constructed in order to visualize 

the relatedness between different samples. The unweighted pair-group method using 

arithmetic averages (UPMGA) was used to build a dendrogram using the Jaccard 

coefficient.  

2.1.5.3 Assessing Diversity  
 

2.1.5.3.1 Allele Frequency  
 

Allele frequency is defined as the total number of one particular allele divided 

by the by the total number of alleles scored at that particular microsatellite marker. 

This is calculated for each locus.  

𝐴𝑙𝑙𝑒𝑙𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
2𝑁𝑥𝑥 + 𝑁𝑥𝑦

2𝑁
  

Where Nxx is the number of homozygotes for allele X (XX), and Nxy is the 

number of heterozygotes containing the allele X (Y can be any other allele). N = the 

total number of samples. Allele Frequency can also be determined simply by direct 

count of the proportion of different alleles. 

 

2.1.5.3.2 Heterozygosity 
 

Heterozygosity (H) is a measure of the genetic diversity within a population. 

This can be defined as the mean percentage of individuals heterozygous per locus 

(Crow and Kimura, 1970). High values of heterozygosity suggest a lot of genetic 

variabilities whilst low heterozygosity is synonymous with low genetic variability. 

There are two measures of heterozygosity, the observed heterozygosity defined as the 

number of individuals heterozygous per locus.  The expected heterozygosity (also 

called gene diversity) is calculated from individual allele frequencies (Nei, 1987) 

which is defined as the probability that at a single locus any two alleles chosen at 

random are different from each other. 
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𝐻 =  
𝑁𝑜. 𝑜𝑓 𝐻𝑒𝑡𝑒𝑟𝑜𝑧𝑦𝑔𝑜𝑢𝑠

𝑁
 

Where Ho is the observed heterozygosity, i.e. the proportion of N samples that 

are heterozygous at a given locus. 

𝐻 = 1 − 𝑝  

Where He is the expected heterozygosity, i.e. the proportion of heterozygosity 

expected under random mating and pi is the allele frequency of the ith allele. 

2.1.5.3.3 Fixation Index 
 

The Fixation Index Fi (also called the Inbreeding Coefficient) exhibits values 

ranging from -1 to +1. Values close to zero are expected under random mating, while 

substantial positive values indicate inbreeding or undetected null alleles. Negative 

values indicate an excess of heterozygosity, due to negative assortative mating, or 

selection for heterozygotes.  

𝐹 =  
𝐻 − 𝐻

𝐻
 

2.1.5.3.4 Resolving Power 
 

The resolving power (RP) of each primer is the sum of the individual fragment 

informativeness that can be represented on a 0–1 scale. 

𝑅𝑃 =  𝛴𝐼𝑏,  

In which Ib represents fragment informativeness.  

𝐼 =  1 −  [2 × (0.5 −  𝑝)] 

In which p is the proportion of the samples that contain the fragment. 
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2.1.5.3.5 Polymorphism information content  
 

The Polymorphism information content (PIC) value for each SSR primer was 

calculated according to the formula  

𝑃𝐼𝐶  =  2𝑓
1 − 𝑓

𝑁
 

In which fi is the frequency of the marker fragments that were present, and 1 - 

fi is the frequency of the marker fragments that were absent and N total number of 

alleles. PIC was averaged over all fragments for each primer. 
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2.2   Chemical Analysis  
 

2.2.1 Sampling and olive oil extraction  
 

Samples derived from fresh pressed olive oil cultivar were obtained directly 

from the various olive presses found around the island. Coupage and monocultivar 

olive oil samples were obtained and stored at 4ºC prior usage. Olive oils derived from 

the Maltese islands were classified into two, the local indigenous which included 

‘Bidni’, ‘Malti’ and ‘Bajda’ and the foreign locally grown cultivars. Olive oils were 

collected from 2013 until the end of this study. Monocultivar samples from 

neighbouring countries including Italy, Greece, France, Spain, Tunisia and Turkey 

were purchased as references samples for a total of 70 samples (35 Maltese and 35 

Foreign).   

Locally the extraction of olive oils is carried out using a continuous extraction 

system. The first step involves the washing and leaf removal, this step is vital for both 

the end product and the machinery as it reduced the chance of vegetable or non-

vegetable parts that could be harmful to the machinery or contaminate the product. 

This operation is carried out by specialised machinery equipped with powerful 

blowers, which removes leaves and twigs, and a washing tank, with forced water 

circulation in which olives are washed. The second step involves the crushing of the 

olives into a paste, this is carried out using a metallic crusher, which consists of a 

metallic body, that rotates at high speed and throwing the olives against a fixed metal 

grating. Once the olive paste has formed it is homogenized into a mixing vessel. 

Mixing is vital, as it promotes contact between oil droplets allowing the separation of 

a continuous oily phase, this process is known as malaxation. Mixing is done for 30min 

to 60min depending on the amount of water present in the flesh of the olives. Water is 

sometimes added in order to soften the mixture favouring phase separation. The 

temperature of mixing is another important parameter which determines both the 

organoleptic parameters and the time of mixing. The higher the temperature (40ºC) the 

longer the time of mixing and the higher is total phenolic content (Di Giovacchino et 

al.,2002; Inarejos Garcia et al.,2009). The last stage of the extraction process involves 

the use of a horizontal centrifuge. The horizontal centrifugal force separates oil from 

other liquid and solid phases of olive paste, based on the weight of the fractions.  
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Table 2.6: The major cultivars used in this experiment and their country of origin.  

Maltese1 
Indigenous 

Foreign Locally 
Grown 

Italian Spanish French Greece 

‘Bidni’2 Frantoio 
Frantoio, 
Leccino, 

Arbequina Picholine Koroneiki 

‘Malti’3 Pendolino 
Pendolino, 
Lecco del 

Corno 
Hojiblanca Grossane  

‘Bajda’4 Carolea 
Carolea, 
Cannava, 

Picual Burguette  

 Picholine 
Perzana, 

Ottobratica 
   

  
Tortiglione, 

Croatina, 
   

  
Moraiolo, 
Cerasuola 

   

  
Oleovastro, 
Gentile di 

Chieti 
   

 
1. Due to the fact, that very few studies have been carried out on the Maltese olive oil 

and olive trees it is important to note, that the subsequent cultivar have not yet been 
established with a PDO or PGI certification.  

2. The ‘Bidni’ cultivar is characterised by a small an ovoid-globose drupe; it is 8 - 9 mm 
in diameter and 10 - 15 mm in length which turns purple during maturity.  

3. ‘Malti’ cultivar is characterised by at least five different morphotypes and it’s still 
unknown whether   each one of them is a different cultivar or else a single cultivar 
with different morphologies. 

4. ‘Bajda’ cultivar is a distinct cultivar which bears white olive fruits is found in very 
small regions in the Maltese islands but never in the wild. There are two hypothesis 
regarding the origins of this cultivar in the Maltese islands. The first one is that it is a 
genetic mutant of a Maltese local cultivar, the other one is that it was imported by one 
of the previous conquistador as an ornamental plant.    
 

2.2.2 Determination of olive oil quality parameters  

The main quality parameters which are used both for the classification of 

different olive oils as well offering an insight about the quality of the EVOO include 

peroxide and p-Anisidine value, K232, K270, K and free acidity. These quality 

parameters are determined using standard laboratory methods, which although not 

excessively sophisticated, they are required large amounts of solvents and starting 

material, as well as time-consuming and destructive sample preparation. The methods 

for the determination of olive oil quality parameters were obtained from the European 

Community methods (E. C. Regulation N. ° 2568/91) with minor modifications.  
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2.2.2.1 Determination of free fatty acids  
 

Free acidity with olive oil is caused by the activity of lipolytic enzymes which 

attack triglycerides causing the formation of free fatty acids which increase the overall 

acidity of the oil. These enzymes are most active in freshly pressed olive oil, where 

the presences of the small amounts of water (approximately 0.5 %) increase the 

chances of hydrolysis of these triglycerides. The reaction is accelerated under storage 

temperatures higher than 18–20 °C (Salvador et al., 2001). 

The content of free fatty acids is expressed as the amount of potassium 

hydroxide or sodium hydroxide (mg) required to neutralize the free fatty acids in 1g 

of fat/oil. A sample (approximately 2g) was dissolved in a previously neutralized, 

equal part mixture of diethyl ether and 95 % ethanol (v/v). The resulting mixture was 

titrated against a previously standardized solution of ethanolic potassium hydroxide 

0.01 mol/l using phenolphthalein as an indicator.  

Acidity expressed as % of oleic acid  =  
𝑉𝑥𝑐𝑥𝑀

10𝑥𝑚
 

V = the volume of titrated potassium hydroxide solution used, in millilitres; 

c = the exact concentration in mol/L of the titrated solution of potassium hydroxide used; 

M = the molar weight in grams per mole of the acid used to express the result (= 282); 

m = the weight in grams of the sample. 

 

 

 

2.2.2.2  Determination of peroxide value 

The formation of lipid peroxides is the first stage of oil oxidation. The 

degradation of lipids process often called the PUFA cascade (Feussner and Wasternack 

2002; Wang and Hammond 2010). It occurs by means of different enzymes mainly 

which convert unsaturated fatty acids into lipid peroxides. Lipid peroxides can also 

form via lipid autoxidation under incorrect storage conditions. The presence of light, 

temperature, metals, pigments, and microorganism accelerate the rate of lipid 

oxidation (Frankel, 1989, 2005).   

The peroxide value is defined as the quantity of those substances namely 

hydroperoxides which are produced from the primary oxidation of fatty acids which 
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are able to oxidize potassium iodide under the operating conditions described. The 

peroxide value is expressed in terms of milliequivalents of active oxygen per kilogram. 

Briefly, 5-10 g of oil was dissolved in 10 ml of chloroform followed by 15 ml of acetic 

acid and 1 ml of saturated potassium iodide solution (140 g/100 mL). The flask was 

closed and the mixture was shaken for 1 minute and left for exactly 5 minutes away 

from light at a temperature of 25 °C. 75 ml of distilled water were added in order to 

quench the reaction and the resulting solution was titrated against a previously 

standardized solution of 0,002 mol/L sodium thiosulfate solution using starch as 

indicator. 

𝑃𝑉 expressed as mEq of O =  
𝑉𝑥𝑇𝑥1000

𝑚
 

V = the number of ml of the standardized sodium thiosulfate; 

T = the exact morality of the sodium thiosulfate solution used; 

m = the weight in g, of the test portion. 

 

2.2.2.3 Determination of p-anisidine value 

The anisidine value is defined as 100 times the optical density measured at 350 

nm in a 1cm cell of a solution containing 1 g oil in 100 ml of a mixture of solvent and 

reagent. This method determines the amount of aldehyde (mainly 2-alkenals and 2, 4-

alkadienals) present in olive oil, formed from the decomposition of lipid peroxides 

during the secondary stages of oxidation. Under acidic conditions, p-anisidine (4-

methoxyaniline) is able to react with aldehydes and ketones in order to form yellow 

compounds having an absorption maximum at 350 nm.  

The method measures the colour change produced by the reaction of p-

methoxyaniline (anisidine) with the aldehydic compounds found in the oil (Doleschall 

et al., 2002). This is done via the Mannich reaction which comprises the amino 

alkylation of an acidic proton located next to a carbonyl functional group, resulting in 

the final product β-aminocarbonyl compound also known as a Mannich base. This 

reaction occurs under acidic conditions since the acid is needed to activate the carbonyl 

group of the aldehyde.  The Mannich base has a yellowish colour with a λmax at 350 

nm (Doleschall et al., 2002). The colour is quantified and converted to p-AnV. 



 Methodology   

61 
 

NH2

O CH3

+ R

O

N

O CH3

H

R

p-Anisidine Secondary oxidized fatty acid Red Anisidine-FA complex
 

 
Figure 2.1: The reaction of p-anisidine with aldehydes formed from the secondary oxidation of fatty acids 

 The p-anisidine value was determined by dissolving 2.5 g of oil in 25 ml of 

iso-octane. 5ml of the resulting solution was aspirated and added to1ml of previously 

prepared p-anisidine solution (0.25% v/v in acetic acid). The solution was vortexed for 

1 minute and left to stand in the dark for exactly 10 minutes. The spectrophotometer 

was blanked with a solution containing 5 ml of iso-octane and 1 ml of p-anisidine. The 

absorbance of the sample was measured at 350 nm followed by the absorption of the 

sample without p-anisidine. The p-anisidine value was calculated using the formula 

below 

𝑝 − 𝑎𝑛𝑖𝑠𝑖𝑑𝑖𝑛𝑒 𝑣𝑎𝑙𝑢𝑒 =
25 (1.2𝐸 − 𝐸 )

𝑤
 

 

Ea = net absorbance of the oil solution  

Eb= net absorbance of the oil p-anisidine solution  

W= weight of the sample used 

 

2.2.2.4 Determination of Iodine value  

The determination of the iodine value is based on the addition of iodine to the 

double bonds of unsaturated fatty acids. This value give a measure of the total amount 

of unsaturation present within the olive oil, expressed as g I2 consumed by 100 g of 

oil. Approximately 1g of oil was weight and transferred to a 500 ml conical flask 

followed by 20 ml of equal volume mixture of cyclohexane and acetic acid. Once 

dissolved 25 ml of Wijs reagent was added, the flask was mixed and left in the dark 

for exactly 1hour after which 20 ml of saturated KI and 150 ml of water were added. 

The resulting solution was titrated against 0.1M sodium thiosulfate using starch as 

indicator. 
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𝐼  𝑣𝑎𝑙𝑢𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑎𝑠 =  
. . ( )

 

 

Ta = Titer value (ml) of the oil solution  

Tb= Titer value (ml) of the blank   

W = weight (g) of the sample used 

 

2.2.2.5 Spectrophotometric analysis   

Spectrophotometric analysis gives an indication of the state of oxidation by 

detecting specific oxidized compounds, some generated from secondary oxidation, and 

also detect possible adulteration with refined oils. The oxidation of polyunsaturated 

fatty acids is accompanied by an increase in the UV absorption of the products. In fact, 

fatty acids containing methylene-interrupted dienes and trienes show a shift in their 

double-bond position during oxidation due to isomerisation and conjugate formation. 

The resulting conjugated dienes exhibit an intense absorption at 232 nm while 

conjugated trienes absorb at 270 nm.  

The oil solution was diluted by a factor of 10 or 100 using hexane; an aliquot 

of the resulting solution was withdrawn and placed in a quartz cuvette. The absorbance 

at 274,270,266 and 230 nm was determined using a UV/Vis spectrophotometer. The 

absorbance obtained was standardized to their K value using the formula below. 

 

𝐾𝜆 =  
𝐴𝑏𝑠(𝜆)

𝐷𝑋𝐿
 

Abs (λ) = is the absorbance of the diluted oil at a specific wavelength 

D= is the dilution factor  

L= is the cuvette path length 

Since the products of oxidation of dienes (aldehydes and ketones) also absorb 

at wavelengths of 270,266 and 274 nm, these are taken into account with the use of 

ΔK coefficient defined by the following formula.  

𝐷𝑒𝑙𝑡𝑎 𝐾 = 𝐾270 −
𝐾266 + 𝐾274

2
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2.2.3 Identification and quantification of phenolic compounds  

Phenolic compounds characterise one of the families of antioxidants and are 

relatively abundant in EVOO (Visioli and Galli, 1998). There are a variety of different 

phenolic classes found in EVOO, the most characteristic are: phenols 

(hydroxytyrosol), phenolic secoiridoids (oleuropein aglycone), lignans (pinoresinol), 

flavonoids (luteolin and apigenin) and hydroxyisochromans (hydroxyisochromans 1-

phenyl-6,7-dihydroxyisochroman) (Carrasco-Pancorbo et al., 2005; Owen, et al.,2000; 

Bianco et al.,2001). The level and composition of the different classes of phenolic 

compounds are important in the evaluation of the quality of EVOO as they confer 

protection against oxidation (Servili and Montedoro, 2002). The phenolic profile of 

different olive oils is dependent on a number of different factors namely; the producing 

cultivar, storage, season, pedoclimatic conditions, maturation and extraction technique 

(Tovar et al., 2001, Romero et al., 2002, Garcia et al., 2003, Vinha et al., 2005, 

Cerretani et al., 2004).  

There is various method for the extraction of phenolic compounds present in 

olive oil but namely two procedures dominate the existing literature namely those 

based on liquid/liquid partitioning extraction (Montedoro et al.,1992) and solid phase 

extraction (SPE) (Pirisi et al.,2000). In the majority of cases, methanol is used as the 

main extracting solvent. In the case of liquid/liquid extraction, the phenolic fraction 

can be isolated from olive oil by using only methanol (Owen et al., 2000) or with 

various levels of methanol/water ranging from 0% and 40% water (Montedoro et al., 

1992 Carrasco-Pancorbo et al., 2005). According to Montedoro et al.,1992 the use of 

80:20 (v/v) methanol/water was reported as the most efficient extraction solvent and 

it is used in the official method for the determination of diphenols in olive oil. 

However, Angerosa, et al., (1995) reported incomplete recovery of some components 

and the formation of considerable emulsions between the oil and the methanol-water 

layer and suggested methanol 100% as an extraction solvent. 

  



 Methodology   

64 
 

 

2.2.3.1 Extraction of phenolic compounds using solid phase 
extraction 

In this study, phenolic compounds in olive oil were extracted by mean of solid-

phase extraction (SPE) rather than the conventional liquid-liquid extraction. The 

application of solid phase extraction has numerous advantages over liquid-liquid 

extraction including; greater selectivity; high recoveries; good reproducibility; less 

labours and low solvent and analyte volumes are required. Polar stationary phases were 

used for the isolation of phenolic compounds from oil which is a nonpolar matrix. The 

polar stationary phase is able to retain polar constituents present in olive oil while the 

fatty acids and other non-polar constituents pass through without being retrained. A 

diol bonded stationary phase was used in this experiments due to its negligible activity 

on labile esters (Perez-Camino et al., 1996 and Mateos et al., 2001). Prior extraction 

the cartridge was conditioned by eluting first, with methanol (20 mL) and then with 

hexane (20 mL), and the oil solution was then applied to the SPE column. 7.5 g sample 

of virgin olive oil were weighed and dissolved in 20 mL of hexane.  

1000mg diol-bonded phase cartridges (Analytical Columns SolGel-1ms™, 

England) were used for the extraction of phenolic compounds. The sample was passed 

through the column under a vacuum of not more than 15 inHg. The column was 

washed with hexane (2 X 6 mL) and twice with hexane/ethyl acetate (85:15, v/v; 8mL) 

which were run through the cartridge and discarded. The passage of the diluted olive 

oil - hexane solution through a diol cartridge retained the polar compounds on the solid 

phase. Hexane washing eliminated hydrocarbons, waxes, tocopherols, and 

triacylglycerols. Subsequent washing with hexane/ethyl acetate (85:15, v/v) removed 

the major part of the oxidized triacylglycerols, sterols, and diacylglycerols. The 

phenolic fraction was eluted with methanol (20 mL) filtered through a 0.45-μm nylon 

filter and concentrated to half of the initial volume with a rotary evaporator at 35 ºC 

under vacuum and then to dryness using nitrogen evaporator at 45 ºC under a slow 

stream of nitrogen, yielding a yellow solid residue.  The phenolic residue was 

reconstituted in 1.5 ml methanol/acetonitrile (1:1 v/v). 
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2.2.3.1.1 Quantification of total phenolic content using microtiter 
plating 

 

Folin-Ciocalteu colourimetric method (Singleton et al.,1999) was used in order 

to determine the total phenolic content present in the hydroalcoholic extracts derived 

from extra virgin olive oil against a standard calibration curve made with gallic acid 

(Sigma Aldrich) (R2=0.997). Folin-Ciocalteu (FC) reagent is formed from a mixture 

of phosphotungstic acid,H3PW12O40, and phosphomolybdic acid, H3PMo12O40, which, 

after oxidation of phenols, is reduced to a mixture of blue oxides of tungsten, W8O23, 

and molybdenum, Mo8O23.  

The concentrated extracts derived from SPE were diluted by a factor of 10 

using methanol/acetonitrile (1:1 v/v). 20 µL of the resulting solution was oxidized with 

100 µL of Folin-Ciocalteu reagent followed by neutralization by the addition of 

Na2CO3 (80 µL, 7.5%) in 96-well microtiter plate. After incubation at room 

temperature for 2 hours in dark, the absorbance at 600 nm was recorded using a 

microtiter plate reader (SPECTROstar Nano). TPC was expressed as mg gallic acid 

equivalents per gram of olive oil (mg GAE g-1).  

2.2.3.1.2 Quantification of total o-diphenolic compounds using 
microtiter plating 

The Arnow’s colourimetric method (Mateos et al., 2001)  was used for the 

determination of o-diphenolic compounds present in the hydroalcoholic extracts 

derived from extra virgin olive oil against a standard calibration curve made with 

pyrocatechol (Sigma Aldrich) (R2=0.997). The assay is based on the in situ formation 

of nitrous acid, obtained by dissolving sodium nitrite in a diluted mineral acid, which 

instantaneously gives a red or pink colour, changing slowly to purple or blue in the 

presence of o-diphenolic compounds (Procter and Paessler 1901). Apart from the 

Arnow’s assay, there are, two other closely related methods which are used for the 

determination of o-diphenolic compounds, the Bate-Smith and the Hoepfner assay, 

however, the addition of sodium molybdate in the Arnow’s reagent is preferred as it 

prevents the decomposition of nitrous acid (Arnow, 1937). The mechanism of the 

reaction is not yet clear, but the o-diphenolic compounds are fairly easily oxidized in 

the presence of nitrous acid to form a red stable quinone chromophore. 
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Figure 2.3: The oxidation of o-diphenolic compounds in the presence of the nitrous acid is thought to proceed 
via a radical intermediate to yield the red coloured quinone chromophore.   

20 µL of the diluted phenolic extract was added to 20 µL of 1M HCl in a 96-

well microtiter plate. The resulting mixture was briefly mixed followed by the addition 

of 20 µL of Arnow’s reagent, previously prepared by dissolving 10g of sodium nitrite 

and 10 g of sodium molybdate dihydrate in 100ml ethanol/water (1:1). The plate was 

shaken vigorously and after 15 min, 80 µL of water and 40 µL of 1M NaOH were 

added and the absorbance was measured at 370 nm was recorded using a microtiter 

plate reader (SPECTROstar Nano). TdPC was expressed as mg pyrocatechol 

equivalents per gram of olive oil (mg PyCE g-1). 

2.2.3.1.3 Quantification of total flavonoid compounds  

Due to their structure, flavonoids can easily chelate metal ions and form 

complex compounds. It seems that metal-flavonoid complexation reactions are 

particularly appropriate for analytical objectives as the formed complexes bear 

exceptional spectrophotometric characteristics. The respective colourimetric 

protocols, mainly those involving Al (III), are simple, rapid, and inexpensive and have 

met wide applications even as official methods. The principal of aluminium chloride 

colourimetric method is that aluminium chloride forms acid stable complexes. Al (III) 

is likely to bind with 1, 2 or 3 molecules of bidentate ligands to form 1:1, 1:2, and less 

often 1:3, complex compounds. In the case of flavonoids, those that can act as ligands 

bear 5 or 3-hydroxy-4-keto and/ or o-dihydroxy group (Mabry et al., 1970). 
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Figure 2.4: Complexation reaction involving flavonoids and aluminium ions. The degree of coordination is 
dependent on the flavonoids’ side groups; the larger the groups the more sterically hindered the complex is 
and thus a smaller coordination number is achieved. 

The flavonoid content present in the hydroalcoholic extracts derived from extra 

virgin olive oil was determined using the aluminium chloride colourimetric method. 

This method relies on the formation of a red complex between the flavonoids and the 

aluminium (III) ions in the presence of sodium nitrite. This complexation reaction 

provides a bathochromic displacement and a hyperchromatic effect.  

25 µL of the diluted extract was mixed with 7.5 µL of 10 % aluminium 

chloride, 7.5 µL of 7% w/v sodium nitrite and 80 µL of distilled water, and left at room 

temperature for 30 min. After which, 100 µL of 1M NaOH solution was added. The 

plate was shaken vigorously and the absorbance of the reaction was recorded at 415 

nm. The calibration curve was prepared by using catechin (Sigma Aldrich) (R2=0.997). 

TFC was expressed as mg catechin equivalents per gram of olive oil (mg CE g-1). 
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2.2.3.1.4 Determination of phenolic profiles present in extra virgin 
olive oils using high performance liquid chromatography.  

Although a large number of HPLC studies have focused on the analysis of the 

phenolic compounds in virgin olive oil, this fraction is still a complex mixture and its 

chemical nature has not been completely elucidated (Montedoro et al., 1992 and 1993; 

Brenes et al., 1999; Owen et al., 2000; Mateos et al., 2001). Furthermore a large 

number of studies have focused on the relationship between the phenolic content and 

the oxidative stability of the oil (Papadopoulos et al.,1991;  Tsimidou et al., 1992; 

Baldioli et al., 1996), the influence of the extraction system (De Stefano et al., 1999; 

Garcia et al., 2001; Vierhuis et al., 2001) maturation (Monteleone et al., 1995; Rotondi 

et al.,2004; Amiot et al., 1989) and climate (Vinha et al., 2005; Hashemi et al., 2010) 

on the phenolic composition of the oil and olive drupes. Although it has been suggested 

by most of the previous studies there are very few studies which deeply study the effect 

of the olive cultivar on the composition of the phenolic profile and the use of this 

variable as a tool for classification and identification of olive oil varieties (Oliveras-

Lopez et al., 2007; Gomez-Rico et al., 2008; Talhaoui et al., 2015). 

Phenolic separation is mainly achieved using reverse phase HPLC, whereby a 

modified hydrophobic silica stationary phase is used. The stationary phase involved 

range from C8-C30 depending on the hydrocarbon chain length which is attached to the 

silica stationary phase. The mobile phases used in reverse phase HPLC are polar 

aqueous solution and buffers with at various concentrations of acidity.  In RP-HPLC, 

higher polarity phenolic compounds will be eluted earlier than the one with lower 

polarity. The most commonly employed column for the separation of  different classes 

of phenolics and their glycosides is C18-bonded silica column ranging from 100 to 300 

mm in length and with an internal diameter of 2–4.6 mm (Merken and Beecher, 2000; 

Stalikas, 2010; Tsao and Deng, 2004; Tulipani et al.,2012). The use of C8 is less 

common and is almost exclusively used for the separation of phenolic acids only. The 

column temperature is usually kept at either room temperature or at higher 

temperatures up to 40°C. The increase in column temperature increases the 

repeatability of elution times and resolution and reduces back pressure at high flow 

rates (Merken and Beecher, 2000; Tsao and Deng, 2004). Gradient elution is usually 

preferred over isocratic elution, gradient elution involves the use of two different 

solvent mixtures; an organic solvent such as methanol or acetonitrile, pure or acidified 
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and aqueous solvent phase which is most of the times acidified with either organic 

acids namely, formic and acetic acid, or inorganic acids mainly phosphoric acid.  

Although a large number of studies have been carried out throughout the years 

complete identification and quantification of certain phenolic compounds namely 

secoiridoids has still not been fully achieved, the main reason being is that these 

compounds are not commercially available and alternative methods have been 

proposed for their quantification and identification Mateos et al., 2001. 

The HPLC system was made up of a Waters 717 plus Autosampler, a Waters 

600 pump, a Waters column heater module and a Waters 996 photodiode array detector 

managed by Empower software (Waters Inc., Milford, MA). The stationary phase was 

a Symmetry® C18 analytical column (250 × 4.6 mm i.d.) with a particle size of 5 μm 

(Woodford, Santry, Dublin). 

The mobile phases for chromatographic analysis were previously degassed and 

constituted of (A) water: acetic acid (98: 2, v/v) and (B) methanol: acetonitrile (1: 1, 

v/v) at a constant flow rate of 1 mL/min. The column temperature was set to 35ºC 

whilst the sample chamber was set to 12ºC to prevent phenolic degradation. The 

gradient elution program of solvent was as follows: 

Table 2.4: Gradient elution solvent program.   

 

Time (min) % Solvent A % Solvent B 

0 – 30 80 20 

30 – 45 70 30 

45 – 55 50 50 

55 – 65 40 60 

65 – 75 0 100 

75 – 79* 80 20 
 

* Represent the post equilibration phase   

Detection was performed simultaneously at 280 nm to measure phenols (except 

ferulic acid), cinnamic acid, and lignans, at 320 nm for flavones and ferulic acid and 

at 520 nm for any anthocyanin compounds. Phenolic compound concentrations were 

expressed as mg/ kg of syringic acid. The identification of some phenolic components 
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was carried out comparing the peak retention times with those obtained by injection of 

pure standards (hydroxytyrosol and tyrosol, purchased at Extrasynthese, Genay Cedex, 

France; vanillin, purchased at Sigma-Aldrich, Milan, Italy). The identification of the 

other phenolics (3, 4-DHPEA-EDA, p-HPEA-EDA, pinoresinol, 3, 4-DHPEA-EA, p-

HPEA-EA was made on the basis of studies found in the literature (Brenes and others 

2000; Gómez-Alonso and others 2002, 2007; Morello and others 2004; Gómez-Rico 

and others 2008). 

2.2.4 Estimation of Chlorophyll and carotenoid content in olive oil 
using spectrophotometry.  

The presence of pigments in olive oil is highly dependent on a number of 

different factors similar to the phenolic composition, these include genetic factors 

(olive variety), the index of maturity during harvest, environmental conditions, 

extraction and storage conditions. During the extraction and storage, there is an 

inevitable loss of oil pigments, mainly chlorophylls which to their structure, tend to 

undergo chemical reactions which cause the  loss of the central Mg2+ ion and the 

formation of pheophytin, in the presence of acids. Chlorophylls pigments impart a 

greenish hue to freshly pressed olive oil, however, the most abundant is pheophytin a, 

which is more stable than the corresponding chlorophyll a. Carotenoid pigments 

namely lutein and b-carotene are responsible for the yellow colouration olive oils. In 

this part of the experiment, pigments were only determined by the use of 

spectrophotometric techniques.   

Pigments were determined using the method of Minguez-Mosquera et al., 

(1991). 1.5g of olive oil were accurately weighed and dissolved in cyclohexane up to 

a final volume of 5 mL. Chlorophyll content was calculated from the absorption value 

of the olive oil solution at 670 nm and specific coefficient for pheophytin a, Eo = 613 

using the equation 

𝐶 =
(𝐴 × 10 )

613 × 100 × 𝑑
 

where “C” represents the content of chlorophyll pigments expressed in mg/kg 

of pheophytin a (ppm), “A” stands for the absorbance at the respective wavelength 

(nm) and “d” represents the thickness of the spectrophotometer cell (1 cm). 
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Cyclohexane (UV–Vis Spectroscopy) was purchased from Scharlau Chemie, Spain. A 

lambda 25 UV/VIS spectrometer (Perkin Elmer) was used. 

Carotenoid content was calculated from the absorption value of the olive oil 

solution at 470 nm and specific coefficient for lutein, Eo = 2000 using the equation 

𝐶 =
𝐴 × 10

2000 × 100 × 𝑑
 

Where “C” represents the content of carotenoid pigments expressed in mg/kg of lutein 

(ppm) 

With respect to the other phenolic compounds anthocyanins pigments tend to 

be present in very small amounts in order for them to be determined by the pH 

differential protocol (Lee et al., 2005), thus an indirect approach was used. The total 

anthocyanins concentrations were calculated by measuring the absorbance of 

undiluted oil fraction at 535 nm which is the absorption maxima of most anthocyanins 

pigments. The absorbance value is then converted to mg/kg by using the average 

extinction coefficient for anthocyanin pigments (Francis, 1982). 

𝑇𝑜𝑡𝑎𝑙 𝑎𝑛𝑡ℎ𝑜𝑐𝑦𝑎𝑛𝑖𝑛 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑚𝑔𝐾𝑔 =
𝐴𝑏𝑠  𝑥 1000

𝐴𝑣𝐸
1𝑐𝑚
10

  

 

Abs530= the total optical density at 535 nm of the phenolic fraction  

AvE535= is the average coefficient for the total anthocyanins pigments when 

1cm cuvette and 1 % (10 mg/ml) standards are used which is equal to 982. 
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2.2.5 Determination of the antioxidant activity of phenolic 
compounds from extra virgin olive oils 

Huang et al., 2005 distinguished between the antioxidant activity and the 

antioxidant capacity, whereby the antioxidant activity of a particular compound is 

governed by the reaction conditions that must be taken into account, whilst on the other 

hand the capacity does not take into account the conditions and it is used for 

comparisons when the experimental conditions are different. The antioxidant capacity 

assays can be subdivided into two, those which involve the hydrogen atom transfer 

reaction-based assays and, those involving single electron transfer reaction-based 

assays. Electron transfer reaction is less time consuming but nonetheless they provide 

comparable results. In this section, a number of electron-based assays will be used in 

order to assess the antioxidant activity of the olive oil phenolic compounds.   

   Several publications have determined the resistance to oxidation of olive oil 

is closely related to its total polyphenol content (Hrncirik and Fritsche 2005; Matos et 

al., 2007). Phenolic compounds have the ability to interrupt the initiation and 

propagation stages of the oxidative chain reaction since they react with lipid radicals 

to form more stable products (Frankel, 1998). Measuring the intrinsic antioxidant 

capacity of the olive oil together with the antioxidant capacity of its minor constituents 

give an insight into the stability towards oxidation and ultimately shelf-life.   

2.2.5.1 Determination of the total antioxidant capacity 
 

Phosphomolybdenum complex assay for the antioxidant activity is based on 

the reduction of molybdate (VI) to molybdate (V) by the sample and subsequent 

formation of a green phosphate/Mo (V) complex in acidic pH (Abdel-Hameed, 2009). 

This reaction is also the bases the for the determination of the total phenolic content 

by the use of FC reagent, which consists of a mixture of heteropoly phosphotungstates-

molybdates, however, it is believed that the molybdenum is responsible for the 

formation of the blue complex rather than the tungsten.  

The total antioxidant capacity assay of samples was carried out by the 

phosphomolybdenum method according to Umamaheswari and Chatterjee, 2007. This 

assay was modified to work with 96- well plates. 20 µl of diluted extract was shaken 

with 310 µl of reagent solution (0.6M sulfuric acid, 28 mM sodium phosphate and 4 

mM ammonium molybdate). The plates were covered and incubated in an oven set at 
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65 °C for 120 min. After the samples were cooled, the absorbance of the mixture was 

measured at 765 nm. The antioxidant capacity was estimated and expressed as ascorbic 

acid equivalents using a previously prepared calibration. 

2.2.5.2 Determination of the total reducing power  

The reducing capacity is a reflection of the total antioxidant activity, 

compounds with a high reducing power are cable of donating electrons in order to 

stabilise radical intermediates. Total reducing power of the phenolic extracts were 

determined using the ferric reducing properties of phenolic compounds. Antioxidant 

compounds which possess a reduction potential, react with potassium ferricyanide 

(Fe3+) to form potassium ferrocyanide (Fe2+), which in turn reacts with ferric chloride 

to form a ferric ferrous complex that has an absorption maximum at 700 nm. 

 100 µl of the diluted phenolic stock solution was added into each well followed 

by the addition of 100 µl 1.0M hydrochloric acid, 20 µl 1% sodium dodecyl sulphate 

and 30 µl 1% potassium ferricyanide. The mixture was incubated at 50 °C for 20 min. 

After which 20 µl of 90% TCA (trichloroacetic acid) was added followed, 30 µl of 0.1 

% ferric chloride was added to each solution and the absorbance was read at 750 nm 

using microplate reader (Micro Quant, Biotek Instruments). The antioxidant activity 

of the sample was determined using the following equation 

𝐴𝑛𝑡𝑖𝑜𝑥𝑖𝑑𝑎𝑛𝑡 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦(%)  =
𝐴𝑏𝑠  𝑥 𝐴𝑏𝑠

𝐴𝑏𝑠
 𝑋100  

 

2.2.5.3  Radical scavenging activity using DPPH assay 

The radical scavenging activity of both the phenolic extracts and the complete 

olive oil was measured using the DPPH assay. DPPH is one of the few stable and 

commercially available organic nitrogen radicals. It is a well-known radical trap 

("scavenger") for other radicals. DPPH radicals have a deep-violet colour with a strong 

absorption band centred at about 520 nm, becoming colourless or pale yellow when 

neutralized. Therefore, the rate of reduction of DPPH radicals is used as an indicator 

of the reaction progress. This property allows visual monitoring of the reaction, and 

changes in the initial number of radicals can be accounted by measuring the change in 

optical absorption at 520 nm.  
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Figure 2.5: The colour change on stabilisation of DPPH radicals makes it useful for monitoring the reaction 
progress. 

In order to determine the radical scavenging activity of phenolic compounds 

derived from olive oil, a stock solution of DPPH was daily prepared by dissolving 5 

mg of DPPH in 2 ml of methanol (MeOH) and the solution was kept in the dark at 4 

ºC. A stock solution of olive oil phenolic compounds adjusted to be equivalent to 500 

mg GAE g-1 was prepared by diluting the crude phenolic extract in absolute methanol. 

25 µl of the phenolic stock solution was added to the well and it was further 

down diluted to the lowest concentration (7.8 µg/ml) by performing a serial two-fold 

dilution in a 96-well microtiter plate. A row of negative DPPH control was added in 

the same 96-well microtiter plates by adding 100 µl of MeOH into each well. Gallic 

acid, caffeic acid catechin, pyrocatechin, quercetin, vitamin C and tocopherol were 

used as positive controls. Then, 100 µl of methanolic DPPH was added into each well 

and reaction was allowed to proceed for 30 minutes in dark. The absorbance was 

measured at 517 nm by a microplate reader (Micro Quant, Biotek Instruments). 

For kinetics studies, the rate of disappears of DPPH radicals was determined 

by measuring the absorbance of the reaction at regular time intervals (2minutes for 10 

minutes and every 5 minutes for 20 minutes). The DPPH scavenging effect (%) was 

calculated using the following formula: 

 

% 𝑅𝑎𝑑𝑖𝑐𝑎𝑙 𝑆𝑐𝑎𝑣𝑒𝑛𝑔𝑖𝑛𝑔 =  
𝐴𝑏𝑠   − 𝐴𝑏𝑠   

𝐴𝑏𝑠   
 𝑥100 

The efficient concentration at different times EC50, t (mg extract mg-1 DPPH) 

was the amount of the extracts in relation to the amount of initial DPPH, which was 

calculated using the following equation: 
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K2S2O8 

ABTS 

ABTS + 

𝐸𝐶  =
𝐼𝐶 ,  

[𝐷𝑃𝑃𝐻]
 

 

 IC50, t = inhibitory concentration at different times, defined as the concentration of extract (mg 

mL-1) required to scavenge 50 % of DPPH 

 [DPPH] t=0 = initial concentration of DPPH (mg mL-1). 

The intrinsic radical scavenging activity of olive oil was carried out using a 50 

µl sample which was two-fold serially diluted in isoamyl alcohol in a 96 well plate, 

followed by the addition of 100 µL of DPPH (4 mg) dissolved in (50 ml) isoamyl 

alcohol. 

2.2.5.4 Determination of ABTS Radical Cation Decolourization 
Assay 

ABTS assay measures the relative ability of antioxidant compounds to 

scavenge ABTS radical cations which are generated in the aqueous phase, the 

antioxidant activity is most of the time compared and expressed in terms of Trolox 

(water-soluble vitamin E analogue) standard. The radical cations are generated by the 

reaction of the strong water-soluble oxidizing agent (potassium permanganate or 

potassium persulfate) with the ABTS chloride salt. The oxidation of the ABTS salts 

results in the formation of a blue-green ABTS radical cation. Antioxidant compounds 

are able to reduce back the radical cation causing the suppression of its characteristic 

longwave (734 nm) absorption maxima, enabling the visual monitoring of the reaction. 
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Figure 2.6: Oxidation of ABTS by potassium persulfate to generate stable radical cations and its reaction 

with antiradical compound (ROH) 
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The ABTS method is more flexible than the DPPH method as it can be used at 

different pH levels (unlike DPPH, which is sensitive to acidic pH) and thus is useful 

when studying the effect of pH on the antioxidant activity of various compounds under 

different pH conditions. Additionally, ABTS is soluble in aqueous and organic 

solvents and is thus useful in assessing antioxidant activity of samples in different 

media and is most commonly used in simulated serum ionic potential solution (pH 7.4 

phosphate buffer containing 150 mM NaCl) (PBS).  

 

The ABTS•+ was produced by the reaction of 7 mM stock solution of 2,2'-

azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) with 2.45 mM potassium persulfate 

and allowing the mixture to stand in dark  at room temperature for 12 h before use. 

The concentration of the blue-green ABTS radical solution was adjusted with 

methanol to an absorbance of 0.700 (0.020± mean ±SD) at 734 nm. To 280 µL of this 

solution was added 20 µL of sample or solvent in a 96-well plate. For phenolic extracts, 

the stock solution of (500 µg/ml) was added into the well and it was further down 

diluted to the lowest concentration (7.8 µg/ml) by performing a serial two-fold 

dilution. The mixture was incubated for 5 min at 30 °C, and the absorbance at 734 nm 

was measured with a microplate reader. The percentage inhibition of ABTS•+ was 

calculated as follows; 

 

% 𝐴𝐵𝑇𝑆.  𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 =  100 −  100
𝐴𝑏𝑠

𝐴𝑏𝑠
 

 

Similar to the DPPH the efficient concentration at different times EC50, t (mg 

extract mg-1 ABTS) was calculated using the following equation: 

 

𝐸𝐶  =
𝐼𝐶 ,  

[𝐴𝐵𝑇𝑆 . ]
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2.2.5.5 Determination of the intrinsic antioxidant activity of olive 
oil using ABTS assay.   

 

 Since ABTS is soluble in various organic solvents it also investigated the use 

of ABTS radical cations for measuring the intrinsic antioxidant capacity of olive oils 

using microtiter plates. First, the solubility of both potassium persulfate and ABTS in 

different solvents which need to be strong enough to dissolve the reagents but not the 

Poly (methyl methacrylate (PMMA) plates (Table 2.5) was assessed.  

 

Table 2.5: Preliminary solubility study for the determination of the intrinsic antioxidant activity of olive oil 
against ABTS. The DMSO: Isoamyl alcohol solvent system was the most appropriate for studying the 
intrinsic antioxidant capacity of olive oils.  
 

Solvent 
Solubility of 

K2S2O8 

Solubility of 

ABTS 

Solubility of olive 

oil 

Methanol: Acetonitrile 1:1 - + - 

Methanol - + - 

Ethanol - + - 

Chloroform * -/+ + + 

Chloroform: Isoamyl alcohol  (1:1) -/+ + + 

Isoamyl alcohol - + + 

Dimethyl sulfoxide (DMSO) -/++ + -/+ 

DMSO: Isoamyl alcohol (3:1) + + + 

 

*Dissolved the PMMA plates.  
 

2.45 mM potassium persulfate (26.5 mg) was dissolved in 10ml of DMSO while 7 mM 

stock solution of ABTS was prepared by dissolving 143.9 mg of ABTS in 10 ml of 

DMSO, once dissolved the two solutions were mixed followed by the addition of 10 

ml of DMSO and 10 ml of  isoamyl  alcohol. The mixture was gently heated in a 

microwave oven at 500 W for 1minute and left to stand for 12 hours in the dark. The 

concentration of the blue-green ABTS radical solution was adjusted with isoamyl 

alcohol to an absorbance of 0.7 (±0.020) at 734 nm. The adjusted solution was 

subjected to stability testing by recording the absorbance at 734 nm over a period of 

24 hr to assess whether degradation of the radical cation occurs.50 µL of olive oil was 

twofold serial diluted in isoamyl alcohol in a 96 well plate, followed by the addition 

of 200 µL of the previously adjusted ABTS solution. The results obtained were 

expressed as % ABTS•+ scavenging and EC50 in µL of olive oil and compared with 

those obtained by measuring the intrinsic antioxidant activity using DPPH assay.  
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2.2.5.6 Determination of NO radical scavenging activity using 
Griess Reagent System  

 

The nitrous oxide scavenging activity of olive phenolic was assessed using the 

Griess Illosvoy reaction (Garratt, 1964). The Griess Reagent System is based on the 

chemical reaction between sulfanilamide and N-1-napthylethylenediamine 

dihydrochloride (NED) under acidic (phosphoric acid) conditions.  In the presence of 

hydrogen ions, nitrite forms nitrous acid, which reacts with sulfanilamide to produce 

a diazonium ion which reacts with NED to form a pink azo-chromophore which 

absorbs at 543 nm (Green et al., 1982). 
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Figure 2.7: Reaction between nitrite ions and sulfanilamide in the presence of an acid form a diazonium salt 
intermediate that subsequently reacts with NED to form an azo dye. 

 

NO-scavenging activity of each the available standards and phenolic extracts 

was determined by the method of Tsai et al., (2007) with minor modifications. Sixty 

microliters of two-fold dilution sample were mixed with 60 μl of 10 mM sodium 

nitroprusside in phosphate buffered saline (PBS) into a 96-well flat-bottomed plate 

and incubated under light at room temperature for 150 min. Finally, an equal volume 

of Griess reagent prepared in-house by 0.2% naphthylethylenediamine 

dihydrochloride (NEDD) w/v, and 2% w/v sulfanilamide in 5% phosphoric acid v/v 

was added into each well and the absorbance at 550 nm was measured with a 

microplate reader.  

 

The percentage NO-scavenging activity was calculated as follows; 

 

% NO scavenging  =  100 −  100
𝐴𝑏𝑠

𝐴𝑏𝑠
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2.2.6 MIR spectra accusation  
 

Spectra were acquired in the mid-infrared range at room temperature without 

any further sample pre-treatment step, through the use of an attenuated total reflection 

(ATR) cell made of a ZnSe crystal (10 reflections at 45°angles; PerkinElmer Inc., San 

Jose, CA) using a PerkinElmer 1600 Series FT-IR. A volume of 10 μL of oil was 

deposited on the crystal and, using the press tower of the ATR set, at the constant 

height so that the layer of oil was uniform throughout the cell. Spectra were then 

acquired between 4000 and 630 cm−1, collecting 90 scans at a nominal resolution of 2 

cm−1. A background spectrum was recorded prior each sample analysis. The crystal 

was cleaned after each analysis, using first hexane, followed by chloroform and wiped 

dry using lens paper tissues. The spectra were exported as an ASCII file using the 

instrumental software Spectrum (PerkinElmer Inc., Waltham, MA) and imported 

directly into The Unscrambler X 10.3 (CAMO Software Oslo, Norway) for all 

subsequent mathematical data processing.  

During the data analytical stage, 11 different spectroscopic signal processing 

techniques were evaluated and compared: ATR correction, 5 point smoothing, 

subtraction of a linear baseline, multiplicative scatter correction (MSC), orthogonal 

signal correction (OSC), Standard Normal Variate (SNV),  Savitzky–Golay 1st degree 

derivatization,  first and second derivative. Furthermore, flat line regions of the signal 

(3200–4000 cm−1) were eliminated prior to the statistical analysis. The effect of the 

different spectral transformations on the final classification outcomes was compared 

to those obtained without any signal processing.  
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2.2.7 ESI-DI-MS spectral acquisition 
 

Electrospray ionization (ESI) was used in the determination of the metabolic 

fingerprint of different EVOOs.  

All oils were analyzed by diluting them 1500-fold in a mixture of 85:15 

propanol: 40 mM methanolic KOH and filtered through a 0.2 µm PVDF micron filter. 

The samples were loaded into a 250 µL volume HP series syringe and introduced 

directly into a Waters ACQUITY® TQD tandem quadrupole mass spectrometer 

equipped with a Z-spray electrospray ionization (ESI) source (Waters, Milford, MA, 

USA) operating in positive mode.  The sample was infused at a rate of 50 µL/min for 

10 minutes. Nitrogen was used as the nebulizing and desolvation gas. The MS 

conditions were: capillary potential 3.0 kV, extractor cone voltage 30V, RF lens 

voltage 0.1V, source temperature 130 °C, desolvation temperature 300 °C, desolvation 

gas flow rate 500 L/h.  Data was collected by use of MassLynx 4.0 software resident 

in a personal computer. All samples were injected at least three times, and each time 

the data were integrated at 10 min and averaged. 

2.2.8 ASAP-Q-TOF-MS analysis  

Samples were directly introduced into the ASAP-Q TOF MS Xevo G2 QTOF 

(Waters Corporation, Manchester, UK) by dipping a solid glass capillary in the liquid 

samples. The samples wetted the exterior of the glass capillary. Two dips were used 

for each analysis. Nitrogen was used as a desolvation gas at 450 l h-1flow and no cone 

flow was needed for this technique. Optimization of key ion source parameters, corona 

current (μA), sample cone (V) and desolvation gas temperature (◦C) were carried out 

using 283 m/z as the reference peak which corresponded to free oleic acid (M-H) +•.  

Optimization of these parameters was done in order to prevent extensive fragmentation 

of molecular ions thus maximizing number of intact molecular ions reaching the MS 

detector. Ambient ionization MS tend to be classified as soft ionization techniques, 

thus providing a spectra rich in molecular ions with minimal fragmentation. The 

obtained spectra were formed by the protonated molecular ion (M-H) +•. The voltage 

of the sampling cone was varied from 20 V to 80 V and the voltage of the extraction 

cone was fixed at 0.1 V. Target samples were analyzed in continuous mode (3 minutes 

with a cone voltage (22V) and desolvation gas temperature ramp (350◦C). 

Atmospheric Pressure Ionization (API) in positive polarity was selected, source 
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temperature was 120◦C. Each sample was analyzed in triplicate. A blank sample was 

also analyzed under the same experimental conditions. 

 

2.2.9 1H NMR spectra accusation  
 

For NMR analysis, 20 L of EVOO was placed in 5 mm NMR tubes and dissolved 

in 700 L chloroform-d followed by the addition of 20 L of DMSO-d and vortexed 

for 20 s. The analysis was performed on a model AVANCE III 600 NMR spectrometer 

equipped with a 5mm 1H/D-BB probehead with z-gradient, automated tuning and 

matching accessory and a BTO-2000 accessory for temperature control (Bruker 

BioSpin GmbH, Rheinstetten, Germany). Samples were measured at 300.0 K after a 5 

min resting period for temperature equilibration. NMR spectra were acquired using 

Topspin 2.1 (Bruker). Automated tuning and matching, locking and shimming using 

the standard Bruker routines, ATMA (automatic tuning and matching in automatic 

mode), LOCK (frequency-field lock to offset the effect of the natural drift of the 

NMR’s magnetic field B0) and TopShim, were used to optimize the NMR conditions. 

The conventionally used zg30 1H NMR method was selected for analysis of the 

EVOO owing its ability to produce sharp signals based on proton spin-spin coupling. 

Coupling occurs due to the interaction between protons connected together through 

chemical bonds. The different chemical environment of the proton influence shielding 

and deshielding which results in variation in the chemical shifts. Protons within the 

same chemical environment can couple with one another to form multiple signals. The 

integrated peak intensity is related to the number of hydrogen influence that particular 

peak. Apart from the zg30, EVOOs were also analysised using a second NMR method 

NOESY also known as Nuclear Overhauser Effect SpectroscopY (NOESY). NOESY 

detects protons that are physically close to each other in space even if they are not 

chemically bonded. Detection of such protons is through the usual pulsed detector 

probe with the addition of a decoupler probe delivering continuous wave irradiation at 

the resonance frequency of the irradiated nucleus. The NOE signal strength decreases 

rapidly with increase in distance between the atoms. Since the observed enhancement 

is usually of less than 20%, thus to increase the sensitivity a conventional 1H spectrum  

is obtained by irradiation to a blank region of the spectrum and then subtracting this 

from the irradiated spectrum leaving only the enhanced absorption.  
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zg1H standard single pulse experiment zg30 was performed using the following 

parameters; RD – P (90°)-acquisition of the free induction decay (FID). The 

nonselective 90 °hard pulse P (90°) was adjusted to 10 s. The relaxation delay (RD), 

and acquisition time (AQ) were set to 4 s, and ~3.27 s, respectively, resulting in a total 

recycle time of ~ 6.66 s. FIDs were collected into time domain (TD) = 65536 (65 k) at 

a resolution of 0.305Hz complex data points by setting: dummy scans (DS) = 4, 

number of scans (NS) = 100, spectral width (SW) =19.999 ppm and a receiver gain 

(RG) = 40.3.  

NOESY 1D 1H experiment was carried out using a standard presaturation 

noesypr1d NMR pulse sequence using the following parameters; RD – P (90°)-

acquisition of the free induction decay (FID). The nonselective 90° hard pulse P (90°) 

was adjusted to 10 s. The relaxation delay (RD), and acquisition time (AQ) were set 

to 4 s, and ~ 2.04s, respectively, resulting in a total recycle time of ~ 6.66 s. FIDs were 

collected into time domain (TD) = 32768 (32 k) at a resolution of 0.489 Hz complex 

data points by setting: dummy scans (DS) = 4, number of scans (NS) = 100, spectral 

width (SW) = 16.02 ppm and a receiver gain (RG) = 71.8.  

Prior to Fourier transformation, the free induction decays (FIDs) were zero-filled 

to 64k and a 0.3 Hz line-broadening factor was applied. The chemical shifts are 

expressed in d scale (ppm), referenced to the residual signal of chloroform (7.24 ppm) 

(Hoffman, 2006). The region of the NMR spectra studied comprised from 0 ppm to 10 

ppm. The spectra were phased- and baseline-corrected manually, binned with 0.01 

ppm- wide buckets. The spectra were exported as an ASCII file using the Topspin 3.5 

(TopSpin™ version 5) and imported directly into The Unscrambler X 10.3 (CAMO 

Software Oslo, Norway) for all subsequent mathematical data processing.  

2.2.10 Synchronous fluorescence spectra (SEEF) accusation  
 

 The olive oils were and diluted 50% in spectrophotometrically pure 2,2,4-

trimethylpentane (Sigma- Aldrich) prior spectrofluorometric analysis.  A three-

dimensional fluorescence spectrum (3D-FS) made up of excitation-emission matrix 

(EEM) was obtained for each sample using a Jasco FP-8300 fluorescence 

spectrophotometer, with both the excitation and the emission bandwidths set at 5 nm 

for a measurement range between 210 to 750 nm. The acquisition interval and the 

integration time were maintained at 0.5 nm and 10 ms, respectively, with a scan speed 
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of 5000 nm·min-1. The oil samples were examined by means of right-angle geometry.  

SEEFS were acquired by simultaneous scanning of the excitation and the emission 

monochromators, with a constant distance, λ, of 10, 30, 60, 80, 120 and 185 nm. All 

analyses were carried out in duplicates, and the results reported as mean values. 

Fluorescence intensities were plotted as a function of the excitation wavelength. 

 

2.2.11 3D Fluorescence data extraction and 3-way chemometric 
analysis 

 
3D fluorescence spectra were exported to separate .txt tab delimited files using 

Spectra Manager II (Jasco) after which a Python script opened the delimited .txt files 

and combined them into a single array to be used by MATLAB R2015b (Simulink, 

2015) for multi-way data analysis.  

 

For PARAFAC analysis the data from the excitation range of 220-240 nm was 

removed from the 3D-FS due to anomalous noise and instrumental artefacts present, 

furthermore areas with emission wavelengths smaller or equal to excitation 

wavelengths were set to a value of zero as expected by the laws of physics, namely 

that a fluorophore cannot emit light of higher energy than the source of excitation. The 

values along the diagonal where λex = λem and the values right next to this diagonal 

were set to missing values. An analysis where the triangular part above the 

aforementioned diagonal of the EEM was set to missing values representing c. 47% 

missing values was also carried out however this yielded unsatisfactory results. 

Furthermore a blank spectrum (iso-octane) was recorded with three accumulations and 

subtracted from all sample spectra prior to multi-way modelling. 

 

There are two suggested ways on how to handle missing EEM data when using 

PARAFAC - either inputting missing data as ‘NaN’ which represents a missing value, 

or else by using a value of ‘0’. The two approaches were tested in the case where there 

was missing EEM data, corresponding to regions where λex ≥ λem and where Raman 

scattering was expected (the region right next to and including the diagonal where λex 

= λem). Substituting missing EEM data with ‘NaN’ led to inconsistent models which 

converged only after a large number of iterations. On the other hand more consistent 

and quickly converging models were obtained when the missing data with the 
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exception of the Raman scattering range was filled with zeros (Christensen et al., 

2005). 

 

PARAFAC and N-PLS modelling was performed using the ‘N-way’ 

MATLAB toolbox from Eigenvector. No data pre-processing treatments were applied 

to the input data array and non-negative constraints were applied to the PARAFAC 

model in all modes as no negative spectra or concentrations are expected. The 

convergence criteria were set to a minimum tolerance of 1×10-10 and a maximum 

analysis time of 1 hour using SVD for model initialization. For each PARAFAC model 

built, it was determined that the convergence criteria with respect to tolerance were 

met. The optimum number of components was determined by building 10 PARAFAC 

models each having a different number of components (1-10) and the optimum model 

was determined using split-half analysis. Each PARAFAC model was replicated ten-

fold, in order to ascertain true convergence. PLS-DA analysis was also performed on 

scores from mode 1 of the PARAFAC model with the optimum number (4) of 

components using Unscrambler (SAS). For N-PLS analysis the data was prepared in a 

similar fashion as for PARAFAC however only the region between 270-510 nm 

(excitation) and 290-575 nm (emission) was used. The optimum number of 

components was determined by building 15 N-PLS models each having a different 

number of components (1-15) and the optimum model was determined using the 

prediction accuracy and RMSE error of calibration and validation models. Validation 

of the model was carried out using Venetian blinds cross-validation which selects 

every sth sample from the data by making s data splits such that all samples are left 

out exactly once (s=3). Furthermore the classification of geographical origin was also 

predicted for a number of test samples with a similar identity to the ones used for FTIR 

Analysis.  Mean centring was applied in the first mode of the multi-way array which 

corresponds to the sample mode prior to N-PLS analysis and all missing values were 

set to have a 0 value. 
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2.2.12 Seed oil Adulteration experiment 
 

Fresh extra virgin olive oil (EVOO), which had been previously analysed for 

its peroxide value, free acidity, K232 and K270 in order to establish its quality, was 

obtained from a small-scale local press. Samples of six commonly used adulterants, 

namely sunflower (SFO), peanut (PO), soya bean (SBO), linseed (LSO), corn (CO) 

and rapeseed (RSO) oil, were purchased from local supermarkets. Solutions of olive 

oil, pure, and adulterated with increasing levels of seed oil up to a composition of pure 

seed oil, were prepared and diluted 50% in spectrophotometrically pure 2,2,4-

trimethylpentane (Sigma- Aldrich). A three-dimensional (3D) matrix excitation-

emission matrix (EEM) was obtained for each sample using a Jasco FP-8300 

fluorescence spectrophotometer, with both the excitation and the emission bandwidths 

set at 5 nm for a measurement range between 210 to 750 nm. The acquisition interval 

and the integration time were maintained at 0.5 nm and 10 ms, respectively, with a 

scan speed of 5000 nm·min-1. The oil samples were examined by means of right-angle 

geometry. Synchronous fluorescence spectra were acquired by simultaneous scanning 

of the excitation and the emission monochromators, with a constant distance, ∆λ, of 

24 nm. All analyses were carried out in duplicates, and the results reported as mean 

values. Fluorescence intensities were plotted as a function of the excitation 

wavelength. 

2.2.13 Thermal oxidation Studies.  
 

Oil samples (14 mL) were poured into 15 mL amber glass bottles and capped tightly. 

A small headspace was used in order to account for the volumetric expansion of the 

oil during the heating process, preventing excessive build up of pressure. 12 amber 

bottles for each cultivar were prepared and placed in a small oven at 56°C. The oven 

window was covered with aluminium foil in order to further mitigate light exposure. 

The study took place over a period of 12 weeks whereby one sample for each cultivar 

was withdrawn from the oven on a weekly basis and frozen until analyzed. 
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2.2.14 Application of chemometrics models for the geographical 
discrimination of origin.  

 
Traditionally, analytical methodology involving the analysis of a complex 

mixture compounds involved the identification of each and every individual 

compound followed by the quantification of the predefined specific chemical marker. 

However, this methodology has a number of disadvantages, as it involves the 

identification of a sufficiently adequate number chemical marker form a very complex 

signal, which would later enable the correct of identification of the sample. Modern 

techniques in the field of chemometrics offer another solution to the problem, by 

attaining a more holistic view, through the analysis of the complete set of unidentified 

and unquantified markers a “fingerprint” of the material under investigation is 

obtained. This allows the determination geographical origin without the prior need to 

identify and quantify the specific markers since the specificity lies within the 

complexity of the signal obtained. Taking a more practical scenario from the field of 

chromatography, the identification of a particular mixture of compounds can be 

tackled by considering the chromatographic profiles as continuous and non-specific 

signals, avoiding a priori identification of compounds.  As a result, one analysis of one 

single sample can easily yield megabytes of data. 

  

Chemometrics can be defined as a chemical discipline that employs the use of 

statistical and mathematical methods, designed to select an optimum number of 

variables in order to provide maximum chemical information with the aid of 

multivariate analysis. The use of multivariate analysis provides a more realistic 

approach for data analysis and thus gains a new and higher quality of data evaluation. 

There are two different approaches for multivariate analysis one which is model driven 

and one which is data driven. The model-driven statistical approach is generally 

preferred by statisticians whereby the data is seen as a realization of random variables 

with an underlying statistical model. The data-driven approach is on the other hand 

preferred by the chemometricians whereby the multivariate statistical tools are seen as 

algorithms that can be applied to the data available. This data-driven approach is 

adopted due to the type of data which is handled, whereby the number of variables are 

much higher than the number of observations, making the application of standard 
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classical statistics to fail. Figure 2.8 shows a typical workflow which is carried out by 

chemometricians in order to identify the origin of different samples.  

 

 
 

Figure 2.8 Flow diagram showing the major steps which enabled the use of chemometrics for the 
determination of geographical origin   

 

 The aim of the present study lies in identifying a series of chemical markers 

by using data obtained from different analytical techniques including spectroscopic, 

spectrophotometric and chromatographic data in order to discriminate geographical 

origin of olive oils. This was achieved through the development of a strategy based on 

the analysis of the available data using multivariate analysis, in order to work directly 

with the whole raw data. The raw data was treated in different ways depending on the 

number of variables which contained.  
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2.2.14.1 Preliminary data treatment   
 

In order to preliminary reduce the number of variables in order to allow for 

downstream multivariate data processing, in some cases the data was trimmed whereby 

the uninformative parts of the spectra or chromatograms were removed. Other 

preliminary data reduction involved the maximum or average integration at certain 

intervals whereby only maximum or average values were obtained at constant intervals 

(Binning). Baseline removal was also employed in order to further reduce the number 

of variables. In case that the number of variables was still large and the computing 

power was not enough in order to allow for multivariate statistics to be carried out the 

data was bucketed. Data bucketing involves subdividing the number of variables into 

different groups and subjecting each individual bucket to multivariate statistics. This 

allowed a more focused variable extraction within each bucket. Once that all the 

buckets were treated and the variables which showed the highest discriminatory power 

were obtained the multivariate methods were repeated once again this time using all 

the selected variables from each bucket. The bucketed data does not require to be the 

same size and thus buckets containing a different number of variables were sometimes 

employed depending on the nature of the data.  

  

2.2.14.2 Multivariate and Univariate normality testing  
 

Normality testing is one of the most neglected tests found in the scientific 

research a review paper published by Curran-Everett and Benos in 2004 stated that at 

least 50% of the published literature had one statistical error. The most commonly used 

statistical procedures which are used in any form of research include correlation, 

regression, t-tests, and analysis of variance. All the aforementioned test are parametric 

tests which are based on the assumption that the data follow a normal distribution or a 

Gaussian distribution. In order to draw accurate and reliable conclusions for the 

statistical tests, normality and other assumptions need to be taken into consideration 

(Field, 2009). However, with large sample sizes (> 30 or 40), any violation of 

normality should not cause major problems (Pallant, 2007). This implies that 

parametric procedures can be employed even when the data are not normally 

distributed (Elliott 2007). This done according to the according to the central limit 

theorem, which states that if the sample data are approximately normal then the 
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sampling distribution will so be normal furthermore the sampling distribution for a  

large sample size (>30) tends to be normal regardless of the shape of the data (Field, 

2009). Although normality tends to be overlooked in this study even though a large 

sample size (≈ 70 samples) both univariate and multivariate normality tests were 

carried out. In this study of univariate normality, testing was carried out using Shapiro-

Wilk test (SPSS Inc). In the case of, where the null hypothesis was rejected (p-value < 

0.05) non-parametric tests were carried out.  

 

Similar to univariate analysis some multivariate statistical methods, such as 

linear discriminant analysis (Venables and Ripley 2002), and principal component 

analysis (Husson et al., 2014) require multivariate normality (MVN) assumption. The 

performances of these methods dramatically decrease if they are applied to datasets 

which are non-multivariate normal. Thus, prior conducting this statistical analysis an 

MVN testing is usually carried out in order to determine the suitability of the data for 

a particular test. According to the review by Mecklin and Mundfrom (2005), more than 

fifty statistical methods are available for testing MVN. Mecklin and Mundfrom (2005) 

stated that there is no single test which excels in both type I (incorrect rejection of the 

null hypothesis) and type II (incorrect acceptance of the null hypothesis) error. The 

authors suggested using Henze-Zirkler’s and Royston’s tests among others for 

assessing MVN because of their good type I error control and power. Moreover, they 

suggested that the use of Mardia’s test should be used in order to diagnose the reason 

for deviation from multivariate normality.  In this study, Henze-Zirkler’s and 

Royston’s test were used in order to detect any deviations from normality. This was 

done through the use of web-friendly interface created by Korkmaz, Goksuluk and 

Zararsiz (2014) available at http://www.biosoft.hacettepe.edu.tr/MVN/. 

 

In the case of MVN, this was restricted linear discriminant analysis (LDA) 

since it is not a strict requirement for PCA since it was only used for exploratory 

purposes and is not a p-value driven technique, similarly MVN testing was not used 

for PLS regression since it is not a strict requirement (Sawatsky et al., 2015). In case 

of LDA, when the data was multivariate normal a Bayes LDA or QDA was carried 

out, if on the other hand that data was not multivariate normal a Fisher LDA was used. 

Such an approach was gave very good results when it came to the analysis of the 

PARAFAC results, however when it came to the other methods, the Fisher LDA 
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models obtained for non-normally distributed data were highly over fitted. Such 

models, were able to predict the geographical origin of EVOOs for the training set but 

failed completely when it came to the testing set (predictability of the model) thus 

Bayes LDA was carried out since it proved better results even if the data was not 

normally distributed. Appendix 19 shows some of the results obtained which support 

the aforementioned statement.  

 

2.2.14.3 Multivariate statistical techniques    
 

A number of different multivariate techniques have been used in this study, 

these can be broadly be divided into two supervised and unsupervised statistical 

techniques.  Unsupervised statistical techniques are able to extract regularities and 

identify the natural clustering pattern on the basis of similarities among the samples 

directly from the input data without referring to classes known in advance. The most 

commonly employed unsupervised statistical techniques for pattern recognition and 

discrimination between samples of different geographical origin include cluster 

analysis (CA), principal component or coordinate analysis (PCA, PCoA). 

 

2.2.14.3.1 Unsupervised multivariate statistical techniques   
 

2.2.14.3.1.1 Principal component analysis  
 

PCA is primarily a dimension reduction technique method used for extraction 

of variations in one data set (Kettaneh et al., 2005). PCA pursues a linear combination 

of variables in order to extract the maximum variance from the variables. It then 

eliminates the extracted variance and pursues a second linear combination which 

explains the maximum proportion of the remaining variance, and so on. PCA can be 

used to determine which variables (for spectral data, wavelengths) describe the 

differences between samples, which of these variables contribute most to an observed 

difference and which variables are correlated to each other and thus are contributing 

to the same apparent variation. Although it is not the main aim of PCA it also enables 

the detection of sample patterns and possible clustering of observation and to detect 

outliers.  

In matrix representation, the model with a given number of components has 

the following equation: 
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𝑋 = 𝑇𝑃 + 𝐸 

where T is the scores matrix, P the loadings matrix and E the error matrix. The 

combination of both the scores and loadings provides the most informative part of the 

data. The remaining part which cannot be modelled well E is known as the error or 

residual.  

In order to fully interpret the PCA an inspection of the loadings is usually 

carried out. Loadings provide information on how the variables vary along a specific 

model component.  In the case of spectroscopy, the loadings need to have a “spectral 

characteristics” about that show minimal noise characteristics. Given that principal 

components have an orientation which links the samples to the variables by means of 

scores and loadings. Loadings can be either negative or positive value; so can scores. 

In general variables with a very small loading, indicate that these are not accounted by 

that principal component and thus they are not contributing to the observed variation 

in the data. On the other hand, if the variables exhibit a  positive loading, samples with 

positive scores have higher than average values for that particular variable and vice 

versa.  

Some of the assumptions which need to be taken into consideration in PCA 

include the normality of data. Unlike factor analysis, the principal component analysis 

does not make any assumption about an underlying causal model whereby each 

observed variable is assumed to be normally distributed. However when the sample 

size is larger than 25 the model obtained is still robust against violations of normality 

(Hatcher and Stepanski, 1994).  Apart from normality PCA assumes random sampling 

whereby each observation will contribute one score on each observed variable.  

 

2.2.14.3.1.2 Principle component regression (PCR) 
 

PCR is a two-step process, the first step which consists of a PCA on the x-

variable set, in order to reduce the reduce dimensionality and extract the set of the 

uncorrelated scores. In the second step, involves the application of a standard multiple 

linear regression analysis (MLR) using principal component scores as the x-variable 

set (Esbensen, 2002). MLR is an extension of a univariate regression with the 

difference being that in MLR one y-variable is regressed against several x-variables 

through the use of least squares fitting. The critical drawback of this method is that all 

x-variables must be linearly independent, that is no significant X-variable collinearity 
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is allowed, the use of principal component scores avoids this problem when PCR is 

applied. Furthermore the number of X-variables must be smaller than the number of 

samples this is further avoided through the application of PCA which is in itself a 

dimensional reduction technique, outlier can also affect the accuracy of MLR 

(Esbensen, 2002; Naes et al., 2002) which were previously detected and removed 

through the application of PCA.  

 
MLR can be expressed in the following matrix form  

 

𝑦 = 𝑋𝑏 + 𝑓 

The overall aim is to determine the vector of regression coefficients b that 

minimizes f, the error term, this is done through the application of the least squares 

method. The assumptions of PCR are the same as those used in regular multiple 

regression: linearity, constant variance (no outliers), and independence. Since PC 

regression does not provide confidence limits, normality need not be assumed. 

 

2.2.14.3.1.3 Soft independent modelling of class analogies 
(SIMCA)  

 

In SIMCA each class model is defined on the basis of a principal component model 

which is previously built, in order to reduce the dimensionality of the data but at the 

same time retaining the maximum information defining the class. For instance, the 

model of class “Maltese” can be assumed to be described by a principal components 

model, according to: 

𝑋 = 𝑇 𝑃 + 𝐸 

Where similar to the equation used in PCA  XMaltese is the submatrix of the original 

data set generated by means of selecting only the samples from Maltese, TA and PA are 

the matrices containing the first A scores and loading vectors, respectively, and E are 

the residuals. The same process repeated for the “Foreign” EVOOs.  Prior developing 

a SIMCA model an overall PCA was carried out in order determine if the data under 

study exhibits any tendency to cluster by the classes furthermore it also enabled the 

identification of outliers, which were removed prior further analysis. The application 

of PCA on the individual categories enables the determination of the directions of 

maximum variance in the class space. Consequently, no attempt is made separate 
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classes, on the opposite of, partial least squares discriminant analysis (PLS-DA), which 

directly models the classes on the basis of the descriptors (Marengo et al., 2006). 

In the SIMCA model, the score matrix TA and the residual matrix E are used to 

compute the probability distributions for the distances within the model space (T2 

statistics) and for the orthogonal distance to the model space (Q statistics), 

respectively. Threshold values for the probability distributions of the distances within 

the model space and for the orthogonal distance to the model space is selected as a 

percentile of the distributions (usually 95%, however, depending on the sensitivity 

required this can be decreased to 75%). It is done by computing the T2 and Q ratio for 

each sample which is defined as a distance to the class model in terms of reduced 

variables. 

𝑑 =  (𝑇 , ) − (𝑄 , )  =  (
𝑇

𝑇
)  +  (

𝑄

𝑄
)    

Where T2
red and Qred represent the distances within the reduced model space and the 

orthogonal distance to the reduced model space respectively, whilst T2
lim

 and Qlim 

represents the threshold values for the two statistics corresponding to a selected 

percentile of the distributions. Commonly, if the reduced distance of a sample (T2
red 

and Qred) exceeds new classification, the sample is considered as an outlier and rejected 

by the class model, if the distance is lower than this value, it is accepted and recognized 

as being part of that class. SIMCA it is defined ‘soft’ since no hypothesis on the 

distribution of variables is made, and ‘independent’ since the classes are modelled one 

at a time-independent for each other. 

 

One of the major outputs of SIMCA is a Coomans plot which takes the form of a graph 

where the two axes represent the distance of the samples to each of two class models. 

The horizontal and vertical lines corresponding to the threshold distances also known 

as the significance limit can be adjusted up depending on the sensitivity required. 

These lines divide the Coomans plot into four different regions: the uppermost left and 

the lowermost right which correspond to unmistakeable acceptance by a single 

category model, the lowermost left to acceptance by both classes while the uppermost 

right to rejection by both category models. Under certain condition, a third line which 

dissects the Coomans plot diagonally is sometimes employed when there is an overlap 
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between the two classes and the threshold limits fail to separate the two individual 

classes (Bevilacqua et al., 2012 and Vitale et al., 2013) . The diagonal line bisecting 

the plot represents the discriminant classification boundary so that all the samples lying 

above are classified as being part of one class, while all the samples lying below are 

predicted to belong to another class.  

 
  
 
 
Figure 2.9: Coomans Plot showing the different regions which are employed in the discrimination of 
observations. Blue and red areas represent the unmistakable acceptance of observations by model 1 and 
model 2 respectively. The orange represent the area where the samples can be accepted by both model 1 and 
model 2, whilst the green represent the area where the samples are rejected by both the models. The diagonal 
dissecting purple line represent a new classification boundary which is sometimes added when the model 
fails to discriminating between the different classes.  
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2.2.14.3.2 Supervised multivariate statistical techniques   
 

In the case of principal components analysis, major objective is to 

dimensionally reduce the data into a series of components constructed for the sole 

purpose to explain as much of the variation of the observed data as possible, without 

taking account of the important variable to the response. On the other hand, the 

application of supervised methods enables the construction of components which are 

able to model both the X (predictors) and Y (response) matrices in order to maximize 

the covariance between the responses and the predictors. The application of supervised 

methods is preferred since there is no theoretical basis why the constructed 

components explaining large predictor variation only, should also have a predictive 

ability with respect to the  of the response (Nguyen and Rocke, 2002). 

 

A number of supervised statistical techniques have been used in this study these 

include partial least squares regression analysis (PLS), artificial neural networks 

(PNN) and stepwise linear canonical discriminate analysis (SLC-DA).  Supervised 

statistical technique both (both classification and regression) attempt to discover the 

relationship between input independent variables and the target dependent variable. 

The main objective of supervised techniques is to discover relationships between the 

two variables by the aid of complex algorithms in order to obtain a model which can 

predict future observations.  These techniques have been successfully been employed 

to extract variables and identify samples from different geographical origin, studies 

involving the use of soft independent modelling of class analogy (SIMCA) and support 

vector machine classification and regression have also been employed.  
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2.2.14.3.2.1 Partial least squares regression analysis (PLS) 
 

PLS is a supervised learning technique which is based on the relationship 

between the signal intensity and the geographical origin of the sample (Martens et al., 

1979).  PLS is used when working with highly dimensional data such as spectra and 

we want to conduct multiple linear regression with the aim to estimate unknown values 

of the response y. PLS works by extracting successive linear combinations of the 

predictors, called factors (also called components, latent vectors, or latent variables), 

which optimally address one or both of these two goals—explaining response variation 

and explaining predictor variation. This sophisticated technique allows for the 

interference and overlapping of the spectral information (Fuller and Griffiths, 1978; 

Haaland and Thomas, 1988), furthermore, it can take in consideration the full or partial 

spectral region rather than unique and isolated analytical bands. The algorithm 

obtained is based on the ability to mathematically correlate spectral data to a property 

matrix of interest in this case being the geographical origin of the cultivar (Dupuy et 

al., 2005).  

 

Samples of known origins are used as calibration samples, and then the origins 

of unknown samples are directly calculated using the resulting equation under the same 

conditions. In this study the performance of the PLS model was evaluated on using the 

complete spectral or chromatographic profiles information and also using an adjusted 

(cropped) PLS analysis whereby regions of the spectrum or chromatogram which had 

a variable importance factor (VIP) less than 0.8 were eliminated and the performance 

of the model was evaluated again. For a further interpretation of the models obtained 

an inspection of the VIP scores was carried out. The VIP of a predictor is a value that 

expresses the contribution of the individual variable in the definition of the latent 

vector model. In particular, it is defined according to the formula: 

𝑉𝐼𝑃 = 𝑁
∑ (𝑏  𝑡 𝑡)

𝑤
𝑊

∑ (𝑏 𝑡 𝑡)
 

 

where tk is the vector of sample scores along the kth latent variable, bk is the 

coefficient of the kth PLS inner relationship, Nvars is the number of experimental 

variables and wjk and Wk are the weight of the jth variable for the kth latent variable  and 
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the weight vector for the kth latent variable respectively. A VIP score is a measure of 

a variable’s importance in modelling both X and Y. If a variable has a small coefficient 

and a small VIP, then it is a candidate for deletion from the model (Wold, 1994) a 

value of 0.8 is generally considered to be a small VIP (Eriksson et al, 2006). However 

Bevilacqua et al., 2012 stated that since the average of squared VIP scores equals 1, 

they employed ‘greater than one rule’ as a criterion to identify the most significant 

variables. 

 

The goodness of fit of the PLS regression model obtained was evaluated using 

% of variability explained in terms of X and Y which give an indication of the portion 

of the data explained by means of the fitted algorithm. In general, the higher the 

number latent of variables extracted from the regression analysis obtained the higher 

is the % variability explained in terms of X and Y. For a specific number of latent 

variables, the prediction error sum of squares is found by comparing the value obtained 

from the prediction formula to the observations found in the validation set. The smaller 

the value of PRESS, the better the prediction for a random effect model, with a value 

of 0 indicating perfect prediction.  

 

Other statistical details which were taken into account in order to determine the 

goodness of fit of the model are the van der Voet T2 and the Prob > van der Voet T2. 

Van der Voet T2 is a statistical test which determines whether the model obtained with 

a specific number of extracted latent variables differs significantly from an optimum 

model. The test is constructed on the null hypothesis defined as the squared residuals 

for both the model obtained and the model have the same distribution. In simpler terms, 

the null hypothesis states that both models have the same predictive ability. A common 

practice is to extract the smallest number of latent factors, in order to prevent the model 

from overfitting, for which the Prob > van der Voet T2 level exceeds 0.10.  

 

Application of PLS regression for discrimination or classification purposes is 

possible through the application of PLS-DA whereby a discriminate analysis (LDA or 

CDA) is carried out on the reduced data matrix. Through the application of The 

Unscrambler® PLS-DA is not listed as a separate method and employed the same 

algorithm as the one used during PLSR. Although the latter works with a continous 

response, the geographical origin of the EVOOs needs to be transformed in such a way 
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that it appears to be a numerical variable response rather than a categorical one. 

Although this might seem to be inappropriate it has been employed throughout the 

literature (Alonso-Salces et al., 2010ab; De Luca et al., 2011; Karim et al., 2015; Rezzi 

et al., 2005;  Mannina et al., 2010;  Longobardi et al., 2012 and much more) which 

employed the same statistical program. The geographical origin is transformed in 

suitably designed dummy response vectors so that, traditional regression methods can 

be used also to tackle classification problems. In particular, when dealing with a 

classification problem involving 2 classes, as in our case, one can build a dummy 

binary- coded one-dimensional response vector, so that, if a sample belongs to the class 

“Maltese”, it will be described as 0, while if it belongs to class “Foreign” (other 

origins), it will be coded as 1. Under these assumptions, to compute a classification 

model corresponds to calculating the regression vector between the data matrix and 

this dummy vector of responses (Bevilacqua et al., 2012).  

 

Since a non-conventional PLS-DA was carried out but rather a PLS regression 

was carried flowed by a discriminate analysis on the actual output, it is assumed that 

both the input and output variables (geographical origin) are continues. The actual 

discriminate part was carried out through the use of 0.5 cutoff point. Although this is 

not true it needs to be assumed as being as such in order to carry out the regression. 

Samples having a regression output higher than 1 were classified as foreign EVOOs 

whilst samples with a negative regression output were classified as 0 (Maltese EVOO). 

The cutoff point was used to classify the remaining samples, an output smaller than 

0.5 were classified as 0, conversely, output at 0.5 or higher was classified as 1. In 

comparison, to other methods, PLSR requires fewer assumptions, these include the 

normality of the data.  Although not imperative, the data should be relatively normally 

distributed and prior any form of regression, the data were screened for influential 

extreme outliers prior to analysis. Outlier analysis was carried out using both PCA, 

however it is acknowledged that other methods such as Mahalanobis distances and 

adjusted quantile of the chi-square distribution methods exist and enable a more direct 

way for the identification of outliers. Prior carrying out PLS regression analysis the 

data was centred and scaled prior to analysis to ensure that each variable has an equal 

opportunity to influence the model.  
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Although it was not the main aim of the study for certain techniques a second 

classification system was employed  in order to determine the complete classification 

of olive oils depending on the country of origin using the following a five binary 

coordinate numerical assignment, whereby the origin of the olive oil was defined by 

five numbers depending on the geographic origin: indigenous Maltese cultivars 

(0,0,0,0,0); foreign locally grown cultivars (1,0,0,0,0); Italian cultivars (0,1,0,0,0); 

Spanish cultivars (0,0,1,0,0); French cultivars (0,0,0,1,0) Greece cultivars (0,0,0,0,1). 

 

2.2.14.3.2.2 Predictive Artificial neural networks (PNN)  
 

Artificial neural network (PNN) is a mathematical algorithm with the 

capability of relating the input and output parameter, learning from examples through 

iteration without requiring a prior knowledge of the relationships between the process 

variables (Cevoli et al., 2011). The main advantage of a neural network model is that 

it can efficiently model different response surfaces due to its nonlinearity, allowing a 

better fit to the data given enough hidden nodes and layer, providing an accurate 

prediction for kind of data. Unlike other modelling  and discriminate methods 

(SIMCA, LDA, PLS) the main disadvantage of a neural network model is that the 

results are not easily interpretable, due to presence of intermediate hidden layers which 

direct path from the X variables to the Y variables, as in the case of regular regression 

but cannot be fully interpreted.  

In this study, TanH activation function was employed as the standard neuron 

activation function in JMP software. TanH function transforms values to be between -

1 and 1, acting like the centred and scaled version of the logistic function.  In general, 

PNN techniques are a family of mathematical models that mimic the human brain 

function. PNN methods share the same common concepts these include the use of 

“neurons” (also called “hidden layers”). Each neuron represents a synapse which is 

controlled by activation functions. Once the threshold of these activation functions is 

reached propagation of neuron signal to the next layer can occur. A hidden layer is 

composed of a regression equation which is able to processes the input information 

into a non-linear output data. The larger the number of hidden layers (neuron) the 

larger number of non-linear correlations can be treated at once. 
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There are two types of PNN, the feed-forward networks which are composed 

of unidirectional connections between network layers, where the connection flow from 

the input to output direction. On the other hand the feedback PNNs, where the 

connections among layers occur in both in the forward and backward directions 

(Zurada, 1992; Zupan and Gasteiger, 1999; Gasteiger and Zupan, 1993). In this study,  

the use of feed-forward PNN’s was used, where the input supplied by the spectral data 

(factors) in order to develop an algorithm which predicts the country of origin 

(response).  

 

  X1 

   

  X2     Y1 

  

  X3 

 

 

 

 

 

 

  

 

Figure 2.10 Top Scheme of synaptic connections in a node or unit within a multilayer perceptron (MLP). 
Bottom General Scheme of a MLP with multiple input variables two hidden layers (red and yellow circles) 
and output response (purple boxes).   

  

Three different cross-validation techniques can be employed in order to 

prevent model overfitting; the k-fold, holdback and excluded rows.  For the k-fold 

cross-validation, the original data were randomly divided into k equivalent 

subsamples, and a single subsample retained as the validation data for testing the 

model, while the remaining k − 1 subsamples were used as training data. Similarly, 

holdback validation was carried out by randomly selecting a portion of the data for 

training whilst 0.33% of the data was used as a holdback portion for testing. Unlike 

the other cross-validation techniques whereby the testing and training portions were 

randomly selected, in the case of the excluded row holdback the testing portion of data 

is chosen by the user, approximately 40% of the observations were excluded, the 

algorithm was fitted and cross-validated with the excluded samples.   
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2.2.14.3.2.3 Discriminate analysis.   
 

Discriminant analysis enables the classification and predictions of distinct 

observations into groups or categories which best describe the membership of the 

observation based on observed values of several continuous variables. Like the rest of 

the supervised techniques, the identity of the group membership must be known prior 

carrying out discriminate analysis. The difference between discriminant analysis and 

logistic regression is that in logistic regression, the classification variable is random 

and predicted by the continuous variables. On the other hand discriminant analysis, the 

classifications are fixed, and the covariates (Y) are realizations of random variables. 

However, in both cases, the categorical value is predicted by the continuous variables.  

 

Discriminant analysis refers to a multivariate technique for classifying a set of 

observations into a previously identified set of groups. In the case of PCA whilst the 

sole scope is to reduce the dimensionality of the data through the use of highly variable 

predictors. In the case of discriminate analysis is like PCA, reduces data 

dimensionality but the main goal is to maximize the separability between the two 

different classes. The discriminate analysis employs the use of predictors in order to 

create a new axis and projects the observation onto the new axis in such a way to 

maximize the separation between the different classes. The new axis is built using two 

criteria which are considered simultaneously, the first is the maximization of the 

distance between the means of the two groups (), the second criteria is the 

minimization of the variation within each category also known as the ‘scatter’ (S2).  

These are considered simultaneously through the use of the equation below; 

 − 
𝑆 + 𝑆

 

 

Where  and 𝑆  represent the mean distance and the scatter respectively of 

one group whilst   and 𝑆  represent the mean distance and scatter of the other class. 

In an ideal separation the mean distance between the groups is large whilst the scatter 

between the observation is minimal. Similar to PCA discriminate analysis rank the 

new axes which are generate in the order of importance comparable to the principal 

components in which PC1 and PC2 account for the most variation in the data whilst 

axis generated in DA are ranked in order to account for the most variation between the 
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different categories. Furthermore, whilst in PCA an inspection of the loading scores 

provide information on which predictor is accounting for the majority of the variation, 

in discriminate analysis predictors which are the most significant are given in terms of 

correlations.    

 

In this study, two types of discriminate analysis were carried out using two 

statistical software JMP (SAS) was used for stepwise linear discriminate analysis 

(SLC-DA) whilst The Unscrambler 10.3 (Camo) was used for the conventional linear 

discriminate analysis (LDA) on the most in informative variables. The stepwise 

analysis allows the manual selection of variables, each time that a variable is selected 

the F ratios and p-values are updated. Selection of predictors to be included in the LDA 

models was performed by using the JMP stepwise algorithm. According to this 

algorithm, a predictor is selected when a reduction of the Wilks Lamda (w) is 

produced after its inclusion in the model. Variables were selected on the bases of F 

Ratio and Prob>F given, variables which have the lowest p-value for the Prob>F and 

the highest F-ratio are the first to be selected. The entrance of a new predictor modifies 

the significance of those predictors, which are already present in the model and those 

which are not yet included in the model. The process terminates when there are no 

predictors entering or being eliminated from the model so that the all the remaining 

variables will have an F-Ratio and Prob>F equivalent to 0 and 1 respectively. However 

since SLC-DA was also used to extract the minimum number of the most important 

variables the model was terminated as soon as the Prob > F reached 0.05 representing 

the last significant variable to be included in the model at the 95% confidence level.  

 

Similar to a PCA, canonical discriminate analysis is also represented by a 

biplot where the axes are the first two canonical variables. The first two canonical 

variables provide the maximum separation among the different groups into a two-

dimensional space. Each observation within the biplot is represented in terms of 

canonical variables and the covariate which contributes more to that specific canonical 

function. Covariates are represented as rays on the biplot, the direction towards which 

they point indicates the degree of association of that covariate with the first two 

canonical variables. A good discriminatory model will classify observations belong to 

same group-very closely to the mean centroid group. Eigenvalues in canonical 

discriminate analysis are the product of the between matrix and the inverse of the 
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within matrix. The larger the eigenvalue the larger is the amount of variance explained 

by its associated discriminant function. Canonical correlation values are the result of 

correlation analysis between the covariates and the groups defined by the category. 

The larger the value of the correlation the more close are the covariates as one set of 

variables and the indicator variables representing that category.  

 

Unlike other supervised methods LDA comes with a number of assumptions 

which need to be satisfied these include independent observations and that the 

predictors need to have a multivariate normal distribution. The latter was checked 

through the use of Henze-Zirkler’s and Royston’s multivariate normality tests. 

Another important assumption in LDA is the within-group covariance should be equal 

across groups. The latter assumption was checked using Box’s M test. Under Box's M 

test the null hypothesis is that the observed covariance matrices of the dependent 

variables are equal across groups, thus a p-value smaller than 0.001 indicates a non-

homogenous dataset. In the case of normally distributed data set a non-homogenous 

data set a quadratic discriminate (QDA) analysis was carried out. If on the other hand 

the data was neither normal nor homogenous a Fisher LDA was used since the 

departure from normality overrides the need of homogeneity. The last assumption of 

an LDA is that the group membership is mutually exclusive, that is there is no 

significant overlap between the different classes as they are truly categorical.  
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2.2.14.3.2.4 Support vector machines (SVM) 
 

Support vector machines (SVMs) have been developed by Vapnik (Vapnik, 

1998) and extensive details about the SVM algorithm is beyond the scope of this study 

however these can be found in literature (Amendolia et al., 2003; Cristianini and 

Shawe-Taylor, 2000). The basic idea behind SVM is to obtain an optimal hyperplane 

which enables the separation of linearly separable observations. However, SVM can 

also be extended to non-linearly separable observations through the use of Kernel 

functions which modify the 3D space of the hyperplane in order for non-linearly 

separable observations to become separable.  SVM employ the use of support vectors 

which can be defined as data points which are found very close to hyperplane and thus 

they are the most difficult to classify but on the other hand they provide a direct bearing 

to the optimum location of the decision surface. The overall aim of SVM is to 

maximize the separation margin between the different classes using a small subset of 

the training samples as support vectors to obtain a decision function.  

 

Without going into extensive detail, in order for SVM to find the optimal 

hyperplane employs the use of an optimization problem which employs the use of 

Lagrange multipliers () and dot products that transform the  problem in a format that 

can be solved analytically and in a linear fashion. It is the modification of the dot 

product function which enables it to be replaced with a Kernel type function () in 

order to obtain a higher dimensional non-linear function.  

 

 In order for SVMs to maximize the margin of separation between the two 

classes and at the same time reduce the overall error (empirical risk) a new trade-off 

parameter between the two objectives is introduced (commonly known as the C 

parameter). If the C parameter is very low then the errors produced during the training 

stage become less important thus risking the model to become overfitted. Unlike LDA, 

SVM and the inclusion of any form of kernel implicitly for a non-linear transformation, 

requires no assumptions regarding the functional form of the transformation that is 

whether it is normal or homogenous. 
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2.2.14.3.2.5 Assessment of model performance  
 

The prediction values obtained for the numerical coordinate system were round 

up to the nearest integer and then compared to the actual previously assigned values. 

In the case of negative values these were assigned a value of zero whilst those which 

had a higher value than unity were assigned a value of one, this method for assessing 

misclassifications. In case of classification methods such as PNN, LDA, SVM and 

SIMCA there was no need to round up the predicted numerical coordinates and were 

used without any subsequent modification.  The % misclassification was determined 

accordingly  

% 𝑚𝑖𝑠𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑡𝑖𝑜𝑛 =  
𝐾  

𝐾
 𝑥 100 

Where Km is the number of misclassified observations and Kt is total number 

of observations used to generate the prediction model.  In the case of PLS an inspection 

of PRESS was also carried out in order to provide an indication about the sensitivity 

(the variation from their actual true value) of the model under different spectral 

transformations and variable selection methods. 
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Results and Discussion     
 

3. Bimolecular analysis  
 

3.1.1 Morphological diversity  
 

During sample collection it was noted that whilst for trees belonging to the 

‘Bidni’ cultivar the overall morphological appearance was constant, in the case of the 

‘Malti’ cultivar/s this was found to be highly varied. Throughout the collection at least 

five different morphotypes were noted and collected, as illustrated in Figure 3.1. 

Preliminary morphological analysis showed that the individual morphotypes had 

pronounced differences in the shape and size of the fruit, which are reflected in their 

common Maltese nomenclature, nonetheless they are still classified as ‘Malti’. For the 

purpose of this study, it was sufficient to identify the individual morphotypes using 

the drupe morphology. However it is acknowledged that morphological differences in 

the inflorescence and in the leaf morphology need to be taken into consideration for a 

more accurate botanical description. This was however outside the scope of the study. 

 

 

Figure 3.1: Five different types of morphologies commonly referred to as ‘Malti’ cultivar/s found across the 
Maltese islands. Commonly all classified as ‘Malti’ but are known by different names (Left to right) l-irqiqa, 
tawwalija, żengulija, mezzana, il-ħoxxna. 
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The first morphotype, known by the common name ‘irqiqa’ (literally translated 

to “thin one”), had small spherical to slightly elongated fruits ranging from 0.5 - 0.7 

cm which turn to dark purple during maturation. The fruits also had a slight 

asymmetrical shape with a pointed apical tip and rounded base, together with a tenuous 

nipple. The fruit had a very high endocarp to mesocarp ratio, as the spherical endocarp 

was very prominent once the fruit was dissected. The presence of a higher 

stone/mesocarp ratio and relatively low oil content, suggests that this morphotype 

could either be related to the wild type olive cultivar Olea europaea var. sylvestris 

which is also characterised by a similar fruit and endocarp morphology, or is a feral 

form. Feral forms are olive cultivars that have escaped from orchard cultures and 

become established in wild eco-systems where they revert back to their wild 

morphological traits generating a continuity in the morphological variation, making 

the distinction between the wild and feral communities more difficult (Besnard et al., 

2001 Breton et al., 2006).  

The second morphotype, known by the common name ‘tawwalija’ (translated 

to “elongated one”). As the name suggests the fruits of this morphotype are elongated, 

ranging from 1.5-1.8 cm in length and 0.5-0.7 cm in width, and turn purple on 

maturation. The fruits are asymmetrical, with a pointed apex and a truncated base with 

a tenuous nipple. The endocarp to mesocarp ratio is slightly smaller than the former 

morphotype however it is still small when compared to other cultivate olive cultivars. 

The endocarp is elongated, asymmetrical and pointed at the apex.  

The third morphotype, known by the name ‘żengulija’ (translated to “ovoid 

one”) is characterised by small ovoid fruits ranging from 1.0-1.5 cm in length and 0.5-

0.7 cm in width, and which turn purple on maturation. The fruits are symmetrical with 

a round apex, a rounded base and an absent nipple. The endocarp to mesocarp ratio is 

smaller than the first morphotype and resembles more the second morphotype. The 

endocarp is spherical with a rounded, slightly asymmetrical and with a round apex.  

The fourth morphotype reported in this study is known by the name ‘mezzana’ 

(which translates to “middle one”). The morphotype resembles traits derived from both 

the first and the last morphotypes. The ‘mezzana’ fruits have symmetrical, spherical 

shape with a slightly pointed base, central apex position and a tenuous nipple. The 
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endocarp to mesocarp ratio is small, similar to other cultivated olive trees. The 

endocarp is ovoid, slightly asymmetrical and with a round apex.   

The last morphotype identified in this preliminary study is known by the name 

‘ħoxxna’ (translated to the “fat one”). As the name implies the endocarp to mesocarp 

ratio is smaller than the first morphotype and it is one of the distinguishing 

characteristics. The fruit are predominantly spherical, slightly asymmetrical, ranging 

from 1.5-1.7 cm in diameter and 1.8-2.0 cm in length. The fruits have a slightly pointed 

base, central apex position and a prominent nipple. The endocarp is ovoid, slightly 

asymmetrical and with a round apex. Although the application of morphological 

parameters enabled the distinction between the different ‘Malti’ cultivar/s, the 

observed morphotypes can be the result of a spectrum of a single cultivar which is the 

result of intercrossing between the wild and domesticated O. europaea. Furthermore a 

number of different studies have shown that different cultivars are able to display 

different morphologies based on geographical locations and under different growth 

management practices (Grati et al., 2002, 2009; Youssefi et al., 2011).  In order to 

determine whether the ‘Malti’ cultivar/s consist of one cultivar which displays multiple 

morphologies or else is composed of a number of different cultivars which are 

conveniently grouped under one cultivar, genetic analysis was carried out in this study 

and metabolic profiling proposed as a supplementary study that needs to be conducted.  

3.1.2 Primer identification 
 

Genomic DNA from the leaves of different cultivars found within the Maltese 

islands was extracted and subjected to purity testing. Samples were then analysed 

using a battery of SSR primers in order to identify primers which were able to amplify 

with the majority of the cultivars and gave the most consistent. The genomic DNA was 

amplified in the presence of SSR markers and visualised on a 2.5-3% agarose gel. 

Figures 3.2-3.4 display the most promising SSR primers which were identified. The 

majority of the SSR primers that were tested were able to amplify easily with the 

‘Bidni’, ‘Bajda’ and the rest of the Italian cultivars, resulting in sharp, easily 

distinguishable amplicons. However very few of the primers which were used were 

able to produce sharp distinct amplicons with both the ‘Malti’ cultivars and the wild 

type Olea europaea var. sylvestris under the same PCR conditions. In order to fully 

distinguish between all the cultivars which were taken in consideration during this 
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study only two primers, DCA-3 and GAPU-101, provided sufficient results which 

enabled the inclusion of the ‘Malti’ cultivar within the study. The recalcitrance of the 

majority of the ‘Malti’ cultivar and the wild type to amplify with the tested primers 

can be due to two main reasons. The first reason may be that, the ‘Malti’ cultivar had 

a higher degree of inhibitors present within the extracted genomic DNA as shown by 

the lower 260/230 ratio, indicating the presence of residual sugars and phenolic 

compounds. Phenolic compounds and residual polysaccharides are known to inhibit 

the activity of DNA polymerases and provide irregular PCR amplifications (Testolin 

and Lain, 2005). Although CTAB and PVPP, which are the most commonly used 

reagents to remove these contaminants, were used, negligible changes to the purity 

were seen with the ‘Malti’ cultivars. 

The second possible reason for the reduced amplification may be due to the 

presence of a different base pair sequence found within the flanking region where the 

primer attaches. This would prevent the primer from annealing with the genomic DNA, 

resulting in either inconsistent amplification causing the formation of smears or else 

no amplification (Figure 3.2). Smears were produced from an erratic, inconsistent 

binding of the primer to the DNA during the PCR reaction. If this is the case, one 

possible explanation may be that the ‘Malti’ and the wild olive trees share a common 

ancestor, suggesting the ‘Malti’ cultivar is the product of the domestication of the wild 

oleaster community found in the Maltese islands. Terral (1997) showed that cultivation 

and domestication of the oleasters broadly increases drupe size and pruning of 

oleasters triggers the production of larger fruits whilst the ratio length/diameter of the 

fruit is retained. This suggested that cultivation causes an increase in the size of the 

fruit. Considering the five previously identified ‘Malti’ morphotypes, the increase in 

the fruit size might the result of the pruning and domestication of one or more wild 

olive trees present within Maltese islands in ancient times. The domestication 

technique enabled the formation of a whole spectrum of drupe sizes for the same 

cultivar which is linked with the wild olive trees.  In the absence of an amplification 

based method that can distinguish between the different morphotypes, genome 

skimming technology needs to be carried out in the future as it is the most cost-

effective technique, and is not dependent on the sequence homology which is currently 

present.  
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Cultivar 
Well number 

GAPU 101 DCA-4 DCA-9 GAPU 103 
‘Bajda’ 2 9 16 23 

Pendolino 3 10 17 24 
‘Bidni’ 4 11 18 25 
Frantoio 5 12 19 26 
Carolea 6 13 20 27 
‘Malti’ 7 14 21 28 

-ve Control 8 15 22 29 
 

 

Figure 3.2: Gel electrophoresis using 2.5% agarose, showing SSR amplification for seven commonly found 
cultivars in the Maltese islands for 4 SSR primers, GAPU 101, DCA-4, DCA-9 and GAPU 103. Lane 1 
represent the 100 bp ladder of  DNA digested with HindIII. 
 

 

Cultivar 
Well number 

DCA-3  DCA-16 GAPU 59 
‘Bajda’ 2 9 16 

Pendolino 3 10 17 
‘Bidni’ 4 11 18 
Frantoio 5 12 19 
Carolea 6 13 20 
‘Malti’ 7 14 21 

-ve Control 8 15 22 

Figure3.3: Gel electrophoresis using 2.5% agarose, showing SSR amplicons obtained using three SSR 
primers DCA-3, DCA-16 and GAPU 59. Lane 1 represent the 100bp ladder of  DNA digested with HindIII. 
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Cultivar 
Well number 

UDO-99-12 EMO-30 UDO-99-19 UDO-99-39 
‘Bajda’ 2 9 16 23 

Pendolino 3 10 17 24 
‘Bidni’ 4 11 18 25 
Frantoio 5 12 19 26 
Carolea 6 13 20 27 
‘Malti’ 7 14 21 28 

-ve Control 8 15 22 29 
 

Figure 3.4: Gel electrophoresis using 2.5% agarose, showing SSR amplicons obtained using four SSR 
primers UDO-99-12, EMO-30, UDO-99-19 and UDO-99-39. Lane 1 represent the 100bp ladder of  DNA 
digested with HindIII. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Cultivar 
 Well number 

DCA-4 DCA-9 UDO-99-24 UDO-99-39 UDO-99-12 
‘Malti’ BZ 2 12 22 32 42 

‘Malti’ BZ2 3 13 23 33 43 
‘Malti’ RBT 4 14 24 34 44 

‘Malti’ Fawwara 5 15 25 35 45 
‘Malti’ Kornja 6 16 26 36 46 
‘Malti’ Wardija  7 17 27 37 47 

‘Malti’ Wardija 1 8 18 28 38 48 
‘Malti’ Wardija 2 9 19 29 39 49 
‘Malti’ Wardija 3 10 20 30 40 50 
‘Malti’ Wardija 4 11 21 31 41 51 
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Figure 3.5: Gel electrophoresis using 3.5% agarose, showing SSR amplicons obtained using four SSR primers 
DCA-4, DCA-9, UDO-99-24, UDO-99-39 and UDO-99-12 on different ‘Malti’ cultivars. Lane 1 represent the 
100bp ladder of  DNA digested with HindIII. 
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3.1.3 Sizing  
 

The set of 16 SSR markers employed were chosen based on literature data (Sefc et 

al., 2000; Cipriani et al., 2002; Carriero et al., 2002; De la Rosa et al., 2002) ) that 

allowed amplification of a single locus. Nonetheless, after the initial screening of the 

different primers, sizing of the amplicons was carried out using Gel Analyser. 15 out 

of the 31 the samples and two primers were chosen and sized using a more accurate 

capillary electrophoresis method performed using the Applied Biosystems 3130 

Genetic Analyzer at MLS BIODNA. Cultivars showing only one amplified allele per 

primer pairs were conventionally considered to be homozygous at that locus. One of 

the main limitations of homozygous cultivars is the underestimation in the genetic 

diversity, especially if null alleles occur. In a single case, the ‘Bajda’ cultivar showed 

three amplified alleles for the GAPU 101 locus; these multi-locus patterns were not 

considered during the calculation of the observed heterozygosity and expected 

heterozygosity, as segregation data was not yet available. Similar to what was observed 

by Rallo et al., (2000) and other researchers who worked with olive SSR markers 

(Pasqualone et al., 2004, 2007) a high frequency of multiple unspecific products were 

found during SSRs amplification. These unspecific products are probably the result of 

multiple priming sites along the genome, together with primer dimmer amplification 

which results in small > 100bp fragments observed in all the presented gels (red box 

in Figure 3.2-3.4). Apart from small fragments, larger fragments (500-700bp) were 

observed during the amplification with UDO 99-39 and these were attributed to the 

amplification of two different loci as suggested by Cipriani et al. (2002) as a result of 

genome duplication. According to Poljuha et al., (2008) this phenomenon is relatively 

common in species having a multiple genome origin, although this was not clearly 

demonstrated in olive and may be due to genome fusion and chromosome duplication 

events during evolution (Alba et al., 2009).  

The two SSR primer pairs produced polymorphic and reproducible amplification 

fragments on all the 15 cultivars, allowing discriminate amongst them. A total of 19 

alleles, with an average of 9.5 alleles per primer pair was scored; 7 alleles were 

determined using DCA-3 whilst GAPU 101 revealed the presence of 12 alleles per 

locus (Table 3.1). The most common allele (frequency 0.37), which was found at the 

DCA-3 locus, had a size of 231 bp whilst the least common alleles were 236 bp and 

244 bp alleles, which belonged to Pendolino and one ‘Malti’ sample from Rabat 
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sample respectively. For the GAPU 101 locus the most common allele (frequency 

0.20) was found at 212 bp, whilst a number of unique alleles were found at this locus 

namely the 218 bp and the 226 bp alleles which both belong to the ‘Bajda’cultivar, 

which is thought to be indigenous to the Maltese islands and the 194bp allele which 

was found in one ‘Malti’ sample from Wardija.  

Table 3.1 Table showing the size of different alleles and there corresponding frequency, determined at two 
loci, DCA-3 and GAPU 101 

 

Allele Size bp Frequency Allele Frequency 
Locus DCA-3 

242 6 0.20 
231 11 0.37 
236 1 0.03 
244 1 0.03 
252 4 0.13 
248 5 0.17 
239 2 0.07 

Locus GAPU 101 
212 6 0.20 
200 2 0.07 
206 2 0.07 
267 1 0.03 
208 4 0.13 
218 1 0.03 
222 2 0.07 
226 1 0.03 
185 4 0.13 
190 2 0.07 
192 4 0.13 
194 1 0.03 

 

Table 3.2 Table showing the number of different alleles, observed and expected heterozygosity and the 
fixation for the different loci which were studied.  

DCA-3 GAPU-101 

Na 7 12 

Ho 0.60 1.00 

He 0.77 0.88 

RP 3.06 3.20 

PIC 0.73 0.89 

FI 0.22 -0.13 
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Table 3.2 illustrates the different genetic parameters which were determined for 

the two different loci that were selected. The measure of heterozygosity enables the 

determination of the genetic diversity within a population. In general, in this study, 

high values of observed (Ho) and expected heterozygosity (He) were recorded for the 

two SSR markers investigated, with average values consistent to those reported in 

literature (Ganino et al., 2007; Poljuha et al., 2008). For the DCA-3 locus, Ho was 

lower than He whilst for the GAPU 101, Ho was higher than He as the cultivars were 

found to be heterozygotes with respect to the GAPU 101 locus. Thus GAPU 101 

revealed a higher genetic variability among the cultivars screened. The high % of 

heterozygous varieties and the higher values of the Ho compared to He were previously 

described by Diaz et al., (2006). According to these authors the SSRs in the medium 

to high levels of heterozygosity in olives are the results of out-crossing of species 

which are clonally propagated. It was observed that for the DCA-3 locus all the ‘Bidni’ 

samples which were tested were revealed to be homozygous with respect to the allele 

found at 231 bp, which was also common to Frantoio, one of the Italian cultivars which 

was tested, whilst the majority of the ‘Malti’ cultivars were found to be heterozygous 

for the DCA-3 locus.  

The presence of a high degree of heterozygosity found within the ‘Malti’ variety 

supports the hypothesis that this cultivar is derived from the domestication of multiple 

wild oleaster trees found within the Maltese islands. Mazzitelli et al., 2015 postulated 

that the ‘Malti’ cultivar was remnant of olive trees that were propagated and 

domesticated by individual farmers for the production of oil and table use. Furthermore 

since the majority of the trees are more than 100 years old it is unlikely that genetic 

exchange with newly imported varieties has occurred, thus retaining the high degree 

of heterozygosity which reflects their oleaster origins but at the same maintain at the 

degree of genetic distance from the Italian varieties imported in the past to meet the 

demand for olive oil production. Contrary to the ‘Malti’ cultivar, the ‘Bidni’ cultivar, 

which is also thought to be indigenous to the Maltese islands, was found to be 

homozygous with respect to the DCA-3. Furthermore no allelic difference was found 

for all the samples of ‘Bidni’ with respect to GAPU 101. This suggests that the original 

ancient ‘Bidni’ trees, which are a secluded grove of 26 massive trees, are reminiscent 

of a larger population which dominated the Maltese islands prior the Arab period. 

During the Arab period the majority of these ancient trees were cut down for the supply 
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of wood and to provide space for the cultivation of cotton and citrus. This abrupt 

change in the population number may have resulted in the formation of a bottleneck. 

The limited genetic exchange caused the inevitable loss in genetic diversity. Since 

most olive trees are wind pollinated, this demographic isolation reduced cross-

pollination, increasing the rate of inbreeding between the trees and causing an increase 

in homozygosity. This strengthens the identity of the cultivar but reduces genetic 

variation putting the population in the risk of extinction. Such a paradox is known as 

the ‘through increased identity by descent’.  

Application of the fixation index (FI), also known as the inbreeding coefficient, 

for all the samples tested enables the extraction of information about selection. A 

positive value very close to zero was observed indicating that random cross-

fertilization was occurring; conversely a negative value close to zero was obtained 

indicating that the population structure was subjected to an excess of heterozygosity 

which might be due to the natural selection for heterozygotes. Analysis of the ‘Bidni’ 

subpopulation with respect to the DCA-3 showed that all the individuals tested were 

homozygotes thus the fixation index was equivalent to 1 further confirming inbreeding 

or undetected null alleles, whilst the ‘Malti’ subpopulation had a value of -0.08 

indicating random cross fertilisation within the subpopulation.  

3.1.4 Classification 
 

From the selected and sized SSR markers, a contingency table consisting of 

presence and absence of the different alleles was constructed. The data was analysed 

by means of hierarchal cluster analysis using unconstrained Jaccard’s genetic distances 

(Figure 3.6.) The dendrogram was characterised by a wide range of genetic differences 

among the different genotypes with similarity coefficients ranging from 0.1 to 0.72. 

The lowest level of similarity (0.1) was observed between the indigenous ‘Malti’ 

cultivars and the ‘Bidni’ cultivars. These results contradict the results which were 

previously obtained using RAPD analysis whereby it was shown that these so-called 

‘native’ cultivars separated into a single cluster.  The largest similarity was found 

between the individual old ‘Bidni’ samples derived from a secluded grove of 26 

massive trees, presumed to be over 1,500 years old, which were showed to be identical 

clones of each other. These results suggest that these trees were propagated by means 

of grafting which preserved their genomic integrity.  
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Figure 3.6: Dendrogram based on presence and absence of alleles between the different olive samples, and 
constructed by hierarchical cluster analysis using Jaccard’s unconstrained method. 

 

Similar to results reported by Mazzitelli et al. (2015), the greatest similarity was 

observed between ‘Malti’ trees derived from the same geographical location. In this 

study ‘Malti’ samples derived from Wardija formed a single cluster. There appeared 

to be a clustering trend according to the drupe size where the ‘Malti’ from Wardija, 

known by the common name ‘żengulija’, clustered together, as did the ‘Malti’ from 

Fawwara and one of the Birżebbuġa samples which belonged to the ‘mezzana’ 

morphotypes, whilst the ‘Malti’ samples belonging to the ‘ħoxxna’ morphotypes 

clustered with the Italian cultivars. These results may support the hypothesis that the 

‘Malti’ cultivar is in fact a series of  clusters of different cultivars which are grouped 

together under the same common name. Furthermore some of the ‘Malti’ cultivars, 

especially those exhibiting an enlarged drupe, might be of a foreign origin.   

 

The ‘Bajda’ cultivar is an example of a variety exhibiting Leucocarpa. The 

peculiarity of Leucocarpa is that during ripening stages the drupe, rather than turning 

purple-black colour due to anthocyanins synthesis, attains a white colour colouration 

due to the silenced anthocyanin producing genes (Lavee, 1986). Although it is often 

referred to as a Maltese cultivar, similar to previous results obtained by RAPD 

analysis, it was shown that this cultivar is highly similar (0.36) to Carolea - a foreign 

cultivar. This similarity is derived from the shared alleles at the DCA-3 locus with 

MW= Malti Wardija (Zengulija) 

MF = Malti Fawwara (Mezzana) 

BZ2= Malti Birzebbuġa (Mezzana) 

Malti BZ 1 = Malti Birzebbuġa (Hoxxna)  

Malti RBT= Malti Rabat (Hoxxna) 

BD = Bidni Bidnja  
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Carolea 242 bp and 251 bp, whilst differing at the GAPU 101 locus. The latter allele 

appears to be useful to completely distinguish this cultivar from the rest of the 

cultivars. SSR analysis conducted by Pasqualone et al. (2012) on Leucocarpa cultivars 

grown in Italy showed the same allele pattern with respect to the DCA-3 locus. These 

results provide the confirmatory evidence that the ‘Bajda’ cultivar it not an indigenous 

species but was imported as an ornamental plant in the past, as originally proposed by 

Borg in 1922. These results suggest that the ‘Bajda’ may be an olive cultivar occurring 

in Southern and central Italy reported as early as at the end of 19th century (Società 

Botanica Italiana, 1894), known also with the synonyms of Morachia, Cannellina, 

Bianca, and Chiarita (all meaning “white”) (Bartolini, 2008) which is thought to be of 

Greek origin.  

 

3.1.5 Application of SSR for the classification of the Maltese olive 
cultivars with respect to other Mediterranean cultivars.    

 
Simple sequence repeats or microsatellites are the most interesting for 

genotype identification since they are co-dominant, highly informative and 

reproducible tools. Being highly specific and reproducible, they enabled the 

comparison of the Maltese cultivars with respect to other Mediterranean cultivars. For 

this part of the analysis, a small set of cultivars derived from different regions of the 

Mediterranean were used, for which the allele sizes were obtained from a molecular 

database (http://www.oleadb.it/) at the two most discriminate loci GAPU 101 and 

DCA 3. A number of different cultivars were used for comparison: these included 

Tunisian, Italian (North and South), Greece and Spanish cultivars. The choice of these 

cultivars was based first of all on the proximity of these cultivars to the Maltese islands 

(Tunisia and Southern Italy) but also with respect to historical records of past colonies 

that settled in the Maltese islands (Spanish). The aim of this part of the study was to 

try and link the existing cultivars found in the Maltese islands and their genetic 

similarity with other cultivars found in the aforementioned Mediterranean countries, 

in order to provide insights about their past origin.  

Application of UPGMA cluster analysis revealed the existence of two major 

clusters - one which contained the cultivars of Tunisian (Red) and Greek (Yellow) 

origin and one which contained Spanish, Northern and Southern Italian cultivars (Blue 

and Green). The similarity of these clusters can be explained in terms of history. The 
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close similarity of the greek and Tunisian cultivars is expected since several authors 

have claimed that the olive was introduced to North West Africa and possibly in Libya 

and Tunisia by the Phoenicians (14th-12th century BC) during the foundation of 

Carthage in the 9th century BC. However, it does not exclude the introduction of other 

cultivars from Greece during the 8th-7th century BC during the foundation of 

Cyrenaica, which constitutes of modern-day Libya and Tunisia. In the case of the 

‘Bidni’ cultivar, it was found to be very similar to the Tunisian cultivars Chemlali de 

Sfax, Chemlali de Zarzis and Zalmati, which are the main oil varieties of the Zarzis 

region which is found in the 200 km away from the Maltese islands. Inspection of the 

typical morphological characteristics revealed that they are very similar to the ‘Bidni’ 

cultivar. These cultivars are produced small round drupes with an average weight of 

1.1 g, which are typically very rich in oil with a low pulp/seed ratio Grati Kamoun et 

al. (2001).  

In the case of some of the ‘Malti’ cultivars, including those found in the 

Wardija, Zebbug, and Lija, these were found to be very similar to the southern Greek 

cultivars, namely Koroneiki, Mastoiditis, and Kerkiras. Although morphologically 

they are very different, they still show some degree of similarity to the ones found in 

the Maltese islands. The ‘Malti’ from Zebbug tends to be morphologically similar to 

‘Koroneiki’ having a very small weight (0.5 g), with a mastoid shape and ending in a 

teat with a leaf length of 4.5–5.2 cm and the ratio of length: width of 4.2–5.5:1. 

Comparison of morphological studies carried out in another study (Aquilina 2017) 

showed that the length to width ration of the adult leaves of this particular cultivar was 

5.35:1, suggesting a close similarity to the quoted values for ‘Koroneiki’. In the case 

of the ‘Malti’ cultivar from Lija and Wardija, these tended to have larger drupes (1.4–

2.2 g) with a cylindroconical (slightly elongated) shape and a prominent teat very 

similar to ‘Mastoidis’ and ‘Kerkiras’. Leaf morphological characteristics were also 

similar in the case of ‘Mastoidis’, with a quoted value of  6–7  cm in length and 1.1  

cm width, whilst for ‘Kerkiras’ a leaf length to width ration of 5:1 is quoted. From our 

studies it was found that the leaves of the ‘Malti’ cultivar derived from Waridja had a 

leaf length of 7.88±0.62 and a width of 1.29±0.32, very similar to ‘Mastoidis’. In the 

case of ‘Malti’ cultivars obtained from Lija, a leaf length/width ratio of 4.85:1 was 

obtained which is very similar to that of ‘Kerkiras’.  
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Figure 3.7: Hierarchal cluster analysis using Jaccards method based on the presence, absence data for alleles 
found in the DCA-3 and GAPU 101 loci, for a selected number of cultivars typically grown in the 
Mediterranean area.   
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The second major cluster contained the Spanish cultivars Picudo, Manzanilla, 

Hojiblanca and Cornicabra, and the Southern Italian cultivars namely Zaituna and 

Nocellara del Belice together with the rest of the Italian cultivars. The close 

similarity of the Italian cultivars with respect to the Greek cultivars can be 

attributed to the spread of Greek colonies, which replaced the ‘paleo-Italic’ 

Phoenician colonies. Furthermore it is well documented that the Etruscans, in 7th – 

6th century BC, imported olive oil from Greece to the Italian peninsula (Heurgon, 

1961). By the 2nd century BC olive growing progressed throughout the Italian 

peninsula in the regions of Calabria, Basilicata, Campania and Puglia, collectively 

known as the Magna Greca (Arambarri 1992). With regards to the Spanish 

cultivars’ close similarity to the Italian cultivars it is difficult to evaluate the 

evolution of these cultivars due to the historical records. Nonetheless, Acerbo 

(1937) claimed that it was the Phenicians which brought olive trees to the Iberian 

peninsula, while others tend to believe that it was the Romans (Patac et al., 1954; 

Arambarri 1992) and Arabs (Caruso 1883; De Candolle 1883) which introduced 

the olive cultivars. From the analysis of the cluster analysis it seems that there is 

no definitive answer for the introduction of Spanish cultivars. Whilst Hojiblanca 

and Cornicabra showed very similar allelic patterns with Greek and Southern 

Italian cultivars suggesting a more likely introduction by Phoenician colonies, 

Manzanilla and Picudo tended to show allelic patterns similar to Northern Italian 

cultivars suggesting a more likely Roman introduction.  

The ‘Malti’ cultivars, namely the ones obtained from Fawwara and 

Birzebbugga, tended to cluster with the Spanish and Southern Italian cultivars. The 

‘Malti’ cultivar obtained from a century-old tree in Fawwara showed an exact 

allelic pattern to that displayed by the indigenous Sicily Zaituna. As the name 

implies it is Arabic for Zejtun, meaning olive tree, and suggesting most probably 

an Arabic influence on this particular cultivar. Morphological analysis of the 

‘Malti’ tree from the Fawwara cultivar revealed a very high similarity to that 

described in the literature with an elliptic-lanceolate leaf having blade length of 

5.5 ± 0.5 and width of 1.3±2 cm, with an ovoid slightly asymmetric fruit without 

any prominent nipple. The results obtained tend to suggest that the ‘Malti’ tree 

from Birzebbugga and Fawwara are in fact cultivars of Southern Italian origin 

which easy adapted to the Maltese islands, favoured by similar pedo-climatic 
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conditions. The ‘Malti’ cultivar obtained from another century-old tree in Rabat 

showed very similar allelic patterns to two Spanish cultivars Manzanilla and 

Picudo, suggesting a more likely relatively recent Spanish importation during the 

Spanish colony establishment in the Maltese islands. Presence of Sicilian and 

Spanish cultivars in the Maltese islands is expected since Malta was part of 

the Kingdom of Sicily for nearly 440 years. It is during this period that Malta was 

sold and resold to various feudal lords and barons including the Crown of Castile . 

Eventually Malta became part of the Spanish empire in 1479.  

Similar to what was observed before, the Maltese cultivar ‘Bajda’ was found 

to be the most dissimilar cultivar from the ‘Bidni’ cultivar as it clustered along the 

major Italian cultivars namely, Carolea, Coratina and Leccino. Whilst Carolea and 

Coratina are highly diffused along the Italian peninsula especially in the regions 

along the lower Adriatic Sea, namely Puglia and Calabria, Leccino is mainly 

diffused along the Northern regions especially in the regions of Toscana. 

Nonetheless these three cultivars showed a high similarity at the two loci which 

were studied, confirming their Italian origin. With regards to the actual ‘Bajda’ 

cultivar this was found to be very similar with another Leucocarpa cultivar grown 

in southern Italy. These findings further indicate that this particular cultivar and 

some of the “‘Malti’” cultivars might not be actually indigenous to Malta, due to 

the high allelic similarity which they share with both Italian and Spanish cultivars. 

These findings suggest that these cultivars were most probably introduced within 

the Maltese islands through the course of history.  
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In conclusion, with respect to genetic analysis the results obtained are still not 

definitive as there is a potential application for the analysis of alleles at a number 

of different loci which were identified but not pursued in this study. However the 

application of DCA-3 and GAPU 101 provided a preliminary overview of the 

different cultivars present within the Maltese islands, which respected the 

historical events which occurred within the Maltese islands. In the case of the 

‘Bidni’ cultivar this was found be highly homozygous and share a very similar 

allelic pattern with other Tunisian cultivars suggesting a more likely introduction 

through the establishment of Phoenician and Greek colonies. In the case of the 

‘Malti’ cultivar the results indicate that this is not a single cultivar but a number of 

different cultivars, some of which are coined under the same name. Some of the 

‘Malti’ cultivars tend to have an allelic pattern very similar to Greek and Tunisian 

cultivars whilst others share allelic similarity to Southern Italian and Spanish 

cultivars, the latter suggesting a rather more recent introduction than the former. 

In the case of the ‘Bajda’ the similar allelic pattern found with another Leucocarpa 

cultivar found in Southern Italy suggests that this cultivar is most likely not 

indigenous to the Maltese islands but rather a case of importation during 1130 to 

1816, during which period Malta was part of Italy under the rule of  Roger II. 

Given that during this period Northern Tunisia was also a part of the Kingdom of 

Sicily, it is also legitimate to assume that the ‘Bidni’ and some of the ‘Malti’ 

cultivars could also be a case of importation however such statement would only 

hold true if the age of the ‘Bidni’ trees, claimed to be over 2,000 years old, is 

similar to the ‘Malti’ cultivars which share allelic similarities to Greek cultivars, 

and this still needs to be investigated. 
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4. Chemical Analysis  
 

4.1.1 Assessment  of quality  
 

A number of different quality parameters were determined for monocultivar 

EVOOs obtained from the Maltese islands and compared to the limits set by European 

legislation of the European Economic Community (EEC). For all the checked 

parameters it was shown that the Maltese EVOOs could perfectly classify as EVOOs 

due to their very low oxidation parameters 

Table 4.1: Summary of the quality parameters tested for different olive oils derived from the Maltese islands. 
Mean values are represented in the table below accompanied by 1SD n =3.   

 FFA 
Peroxide 

(mEpO2/Kg) 
p-

Anisidine 
I2 K273 K270 ∆k 

‘Bidni’ 
2013 

0.42±0.01 10.28±1.23 3.32±0.24 81.01±0.23 1.128±0.198 0.114±0.015 0.001 

‘Bidni’ 
2014 

0.35±0.04 11.54±1.02 4.54±0.15 80.45±0.12 1.258±0.187 0.089±0.025 0.004 

‘Bidni’ 
2015 

0.28±0.12 8.94±2.12 3.12±0.22 81.20±0.18 1.894±0.012 0.087±0.025 0.005 

‘Malti’ 
2012 

0.32±0.05 11.24±0.98 6.15±0.47 82.12±1.11 1.125±0.065 0.098±0.014 0.005 

‘Malti’ 
2013 

0.48±0.15 10.28±1.23 6.02±0.28 81.56±0.28 1.784±0.087 0.095±0.012 0.002 

‘Malti’ 
2014 

0.56±0.09 8.94±0.97 3.45±0.47 80.47±0.23 1.894±0.102 0.102±0.026 0.001 

‘Malti’ 
2015 

0.21±0.04 6.64±0.47 4.52±0.45 81.23±0.58 1.238±0.119 0.115±0.014 0.000 

Carolea 0.48±0.11 10.29±1.32 6.10±0.23 82.09±0.56 1.287±0.014 0.084±0.018 0.002 

Pendolino 0.45±0.10 11.25±1.47 5.89±0.18 81.23±0.78 1.964±0.108 0.114±0.014 0.001 

Panadina 0.68±0.08 12.08±1.62 3.33±0.18 82.03±1.12 1.965±0.141 0.089±0.025 0.002 

Frantoio 0.49±0.04 10.56±1.29 5.89±0.26 80.96±0.98 1.994±0.064 0.097±0.012 0.008 

‘Bajda’ 0.89±0.14 17.01±0.89 6.67±0.27 81.25±1.25 2.011±0.051 0.198±0.024 0.009 

 
One of the most important oxidation parameters is the acid, value of which gives 

an indication of the amount of free fatty acids (FFA) present in the oil. FFAs are 

formed during both oxidation and thermal degradation of unsaturated fatty acids. 

These processes cause the hydrolysis and pyrolysis of fatty acids, which result in 

cleavage of triglycerides causing the release of FFA. Thus, measuring the amount of 

FFA allows rapid assessment of the degree of degradation of the oil. FFAs accelerate 

the rate of oil oxidation and thus low levels of FFAs are crucial to prevent the oxidation 

of fats. The pro-oxidant effect of FFAs is derived from their free carboxylic group, 
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which speeds up the decomposition rate of hydroperoxides, shifting the equilibrium of 

the reaction towards the formation of new hydroperoxides (Frega et al., 1999).  

According to the IOC, extra virgin olive oil is defined as a virgin olive oil which has 

a free acidity, expressed as oleic acid, of not more than 0.8 gram per 100 gram.  From 

the results obtained for the majority of the monocultivars tested a FFA< 0.8 was 

obtained with the exception of the ‘Bajda’ EVOO. This was attributed to the extensive 

damage to the drupe caused by the Bactrocera oleae during the time of study. 

 

The peroxide value PV was determined as an indicator of the initial stages of 

oxidative change, since in these stages there is formation of hydroperoxides measured 

by PV. In general, a low PV indicates an oil of a good quality according to the EEC, 

since for an olive oil to be classified as virgin it must have a PV < 20 mEq O2/Kg. 

Although a low PV is desirable, it is important to note that PV decreases as secondary 

oxidation products appear. Thus oils with significant levels of peroxides may still be 

odourless if secondary oxidation has not begun. If oxidation is more advanced, the PV 

may be relatively low but the oil would have become rancid. The primary oxidation 

involves the production of hydroperoxides and is measured using the PV. However, 

hydroperoxides are unstable and are susceptible to decomposition, causing the 

formation of a complex mixture of volatile, non-volatile, and polymeric secondary 

oxidation products. A major form of secondary oxidation products include aldehydes 

and ketones, but can also include volatile organic acids, and epoxy compounds. These 

are responsible for the rancid smell of the oil, and they are measured by the p-AnV. 

Although this parameter is not specified either by the EEC or by the IOC, the lower 

the p-AnV, the better the quality of the oil, with a p-AnV of 10 being required for the 

market. The extent of the damage caused by the B. oleae on the ‘Bajda’ EVOO also 

reflected in the high PV and p-AnV obtained when compared to the other monocultivar 

EVOOs. 

Other parameters used for the assessment of the quality of the extracted oil were 

K232 and K270 which determine the amount of conjugated dienes and trienes 

respectively. The oxidation of polyunsaturated fatty acids is accompanied by an 

increase in the UV absorption of the products. In fact fatty acids containing methylene-

interrupted dienes and trienes show a shift in their double-bond position during 

oxidation due to isomerization and conjugate formation. The resulting polyunsaturated 
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oxidised compounds exhibit an intense absorption at 232 nm for dienes, while 

conjugated trienes absorb at 270 nm. Since the products of oxidation of dienes are 

usually aldehydes and ketones, these also tend to absorb at wavelengths of 270, 266 

and 274 nm. This fact is taken into account when using ΔK. According to the EEC for 

an olive oil to classify as virgin K232 nm and K270 nm should be less than or equal to 

2.50 and 0.22 respectively, whilst the ΔK should be equal or less than 0.01.  Analysis 

of the K parameters showed that all the monocultivar EVOOs tested could pass as 

EVOOs, however if one takes in consideration FFA and the other parameters it is clear 

that the ‘Bajda’ olive oil borders the EVOO classification.  
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5. Elemental analysis via X-ray fluorescence (XRF) 
 

Although the overall quality of olive oils is generally defined by both its 

organoleptic properties and oxidation parameters defined in Section 5.2.1, the 

inorganic content of olive oils has a very important role in terms of food safety and 

shelf-life. Trace heavy metals in vegetable oils are known to have an effect on the rate 

of oil oxidation. Oxidation of olive oil leads to the development of unfavourable 

odours and taste causing deterioration of olive oils. The major factors that affect the 

rate of oxidation are the degree of unsaturation, the amount of oxygen, temperature, 

light and the presence of metals (mainly transition metals such as Fe and Cu) (Meira 

et al.,2011; Sikwese and Duodu, 2007). Benedet and Shibamoto (2008) showed  that 

trace amounts of Fe, Cu, Cr, Pb and Cd contribute oxidative effects to lipid 

peroxidation (Benedet and Shibamoto, 2008).The presence of these trace metals 

enhanced the rate of oxidation of edible oils by increasing the generation of free 

radicals from fatty acids and hydroperoxides.  

The presence of metals in vegetable oils can be attributed to two major uptake 

pathways which can be endogenous or exogenous. Endogenous pathways, are 

connected with the plant metabolism whereby inorganic constituents are incorporated 

into the oil through the natural uptake and preconcentration of the element by the plant. 

Exogenous pathways are attributed to contamination during the production and the 

collection of olives and seeds during the oil extraction and treatment processes, (by 

processing actions such as bleaching, hardening, refining and deodorization) 

(Leonardis, Macciola and Felice, 2000). They may also arise from systems and 

materials of packaging and storage (for example, from foreign bodies during 

harvesting or wear metals in the press) (Coco et al., 2003 and Dantas et al., 2003). The 

determination and the analysis of trace metals offers a challenge mainly because of the 

hard organic content of the oil matrix. A number of analytical techniques have been 

employed for the determination of metal in oils relying on both emission and 

absorption spectrophotometric techniques as well as electroanalytical techniques. 

(Hendrikse et al., 1991; Coco et al., 2003; Buldinia Zeiner et al., 2005 Benincasa et 

al., 2007). Traditional methods for elemental analysis include inductively coupled 

plasma optical emission spectroscopy (ICP-OES), atomic absorption spectrometry 

(FAAS/GFAAS), and ion chromatography (IC). The application of XRF has been 
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shown to be very important for the determination of trace, minor and major elements 

in a large variety of matrices (Jenkins, 1999). XRF has a number of advantages over 

other techniques; it uses very small amounts requires minimal sample preparation and 

offers a non-destructive quantification method. On the other hand, the determination 

of organic content by XRF is still considered a difficult task since the X-ray cross-

sections for light elements are very low (Bortoleto et al., 2005). 

In the present work, X-ray scattering processes, resulting from the interaction 

of the sample with X-ray beams, was used for the discrimination of different vegetable 

oils using multivariate statistical analysis – specifically, principal component analysis 

(PCA) and stepwise linear canonical discriminate analysis (SLC-DA). Furthermore the 

application of XRF for the identification of geographical origin of olive oils was also 

assessed. The hypothesis behind the application of elemental analysis of olives and its 

direct reflection of the corresponding geographical origin is based on the different 

mineral content of soils which are later incorporated into the plant tissues and 

ultimately in the oils.  

5.1 Matrix Correlation analysis  
 

Clustered correlation analysis showed the existence of two major elemental 

positively correlated clusters found in oils. The first cluster consisted of Si, P, S, Al, 

Mg and Ca which are most likely to be derived from pedological and biological 

sources. The second correlation cluster consisted of heavy metal elementals including 

Fe, Cr, Zn, Cu, Ni and Co (Figure 5.1). The significant positive correlation between 

each element suggests that they tend to originate from a source, in which the 

concentration of these elements has a fixed composition. However one must exclude 

that the plant is simultaneously bioaccumulating these elements at different rates, 

irrespective of the individual concentration in the soil.  Many species of plants have 

been shown to be capable of taking up heavy metals from soils which are essential for 

plant growth (Fe, Mn, Zn, Cu, Mg, Mo, and Ni) and other metals with unknown 

biological function (Cd, Cr, Pb, Co, Ag, Se, Hg) have been also found to accumulate 

(Cho-Ruk et al., 2006). Only very few bioaccumulation experiments have been 

performed using Olea europaea, mainly because research is focused on the use of non-

edible crops for the extraction of heavy metals from contaminated soils. A study 

conducted by Aghabarati, Hosseini and Maralian (2006) demonstrated that olive trees 



 Results and Discussion   

128 
 

irrigated with municipal effluent, increased the levels of  Zn, Pb, Cr and Ni in soil and 

plant, but were below the permissible limits. Similar results were observed by Llorent-

Martínez et al., 2011, whereby the positive correlation between the concentration of 

Cr and Fe was attributed to the fact that the production procedure can involve stainless 

steel mechanisms containing the two elements, however in the study by Llorent-

Martínez et al., 2011 no correlation was seen between the concentration of Cr, Fe with 

other heavy metal elements present in oils such as Mn and Cu.  

  
 

Figure 5.1: Clustered correlation analysis of elemental analysis present in olive oils and other seed oils. 
Common earth elements; sulphur, phosphorous, silicon, aluminium, magnesium and calcium show a positive 
correlation with each other. Similarly heavy metals including iron, copper, zinc, chromium, nickel and cobalt 
tend show a positive correlation with each other  
 
 

5.2 Determination of geographical origin using elemental analysis.  
 

The determination of geographical origin of extra virgin olive oils in order to 

assess traceability can be affected by chemical species that are linked to the production 

area. The hypothesis is that the transfer of elements from the soil to the olive tree and 

later to the oil is subject to minor variations, and thus the elemental composition of 

EVOOs is a direct reflection of its geographical origin. The minor variations in the 

elemental constituents could provide information that can be used for geographical 

traceability (Benincasa et al., 2007; Zeiner, Juranovic-Cindric and Skevin, 2010). 

Trace element analysis also plays an important role as a basis for oil adulteration 

detection and oil quality control (Marfil et al., 2008; Llorent-Martínez, Ortega-
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Barrales, Fernándezde Córdova, Domínguez-Vidal, and Ruiz-Medina, 2011). Kruskal 

Wallis one way ANOVA revealed significant differences in the percentage abundance 

of the Ba, Cl, Ti, Co, Sn and P across olive oils of different geographical origin and 

other refined oils used in this study. Figure 5.2 shows the mean percentage abundance 

of the aforementioned elements for the different olive oils and refined oils. Mann 

Whitney pairwise comparison showed that % abundance of titanium was significantly 

higher in refined oils when compared to EVOOs. This was attributed to the extensive 

treatment and processing to which refined oils are subjected, including bleaching, 

refining and deodorization. These treatment processes could increase risk of heavy 

metal incorporation in the oil matrix. In this study no significant difference was 

observed in the percentage abundance of other heavy metals which are typically used 

in the seed oils refining processes such as copper and nickel which are typically used 

as hydrogenation catalysts, (Zeiner et al., 2005) or chromium and iron as potential 

contaminants of the oil deriving from the processing equipment (Jacobs and Klevay, 

1975). 

 It was also shown that olive oils derived from both indigenous and local 

cultivars had a significantly higher percentage abundance of barium and phosphorus, 

this observation suggests that the concentration of these elements can be used as a 

typical marker for the determination of origin. The presence of a significantly higher 

barium content in olive oils of Maltese origin can be attributed to pedological effects. 

Barium is not very mobile in most soil systems, due to the formation of water-insoluble 

salts and an inability of the barium ion to form soluble complexes with fulvic and 

humic acids. The presence of organic material, calcium carbonate, chlorides and soil 

pH affects the availability of barium. In soils with a high organic matter content barium 

mobility is limited (Bates 1988; Kabata-Pendias and Pendias 1984). High CaCO3 and 

sulphate salts content also limit mobility, by precipitation of barium carbonate and 

sulphate (Lagas et al. 1984, Bodek et al. 1988). However in the presence of chloride 

ions, barium is more mobile and is more likely to be incorporated into the plants due 

to the high solubility of barium chloride as compared to other chemical forms of 

barium (Bates 1988; Lagas et al. 1984). The availability of barium in Maltese soils is 

thus dependent on two opposing effects, the moderately alkaline (pH between 7.3 and 

8.5) and the high calcareous content which reduce the mobility of barium whilst the 

low organic content (MALSIS, 2004) and relatively high concentration of chloride 
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ions derived from marine origin increase the mobility of barium. Although the 

presence of calcium carbonate reduces the availability of barium to the plants, its 

presence fixes the barium content in Maltese soils preventing it from leaching out in 

solution.  

In the study carried out by Camilleri and Vella in 2010 it was shown that the 

aerial barium concentration in the Maltese islands significantly increases during July 

and August. This seasonally-dependent emission was attributed to the burning of 

fireworks during the summer period which also coincides with the olive fruit 

maturation stage.  Camilleri and Vella (2010) also showed that the content of Ba 

persists even during the latter part of the summer. Barium from fireworks is expected 

to be particularly bioavailable since it consists of water-soluble species such as BaCl2, 

BaO, Ba(OH)2 and residual Ba(NO3)2 (Steinhauser et al., 2008). 

The significantly higher concentration of phosphorus in olive oils of Maltese 

origin may be related to a number of different effects mainly the extensive use of 

fertilizers (Sillanpää and Jansson, 1992 ) and the high pH of the soil. Similar to barium, 

the presence of calcium and the moderately alkaline pH across all the Maltese soils 

prevents phosphorus compounds from leaching. Unlike barium, in the case of 

phosphorus the incorporation in the plant material is an active process requiring an 

energy-driven transport mechanism to move P through the membranes into the plant 

root cells via phosphate transporters. Thus although the phosphorus might be 

chemically fixed, the plant might still be able to strip phosphorous compounds from 

the surrounding soil.   
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 Figure 5.2: % abundance of 6 elements which were found to vary significantly across the four classes of oils. 
0= indigenous (n=8), 1= local imported cultivars (n=8), 2= foreign olive oils (n=18) and 3= refined seed oils 
(n=6). 

 

The application of multivariate analysis showed the spatial distribution for both 

olive oils derived from different origins and an ability to discriminate between extra 

virgin olive oils and other refined seed oils. Figure 5.3a shows the results obtained on 

using stepwise linear canonical discriminate analysis SLC-DA; the model obtained 

was based on excluding the % abundance K, Ca, Mg and Br whilst retaining all the 

other elements. The model was able to explain 90.59 % of the observed variance over 

two canonical functions resulting in an overall 2.17% misclassified observations. The 

model was able to fully discriminate between olive oils and refined oils, as well as 

olive oils of different geographical origins. Figure 5.3b shows the major elements 

which contributed to the observed variation, with Ba, Si, Ag and Cl contributing to the 

first canonical function and Cu, Zn, Ti and Ni to the second canonical function.  
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Figure 5.3 3D canonical score plot obtained for the elemental analysis using SLC-DA.  Values next to the 
canonical function represent the eigenvalue and the corresponding % of variation explained. (Right) 
canonical scores for each element, blue bars correspond to the canonical scores obtained for the 1st canonical 
function whilst the red bars represent the scores obtained for the 2nd canonical function.  Red (*) represents 
the olive oils derived from indigenous cultivars, Green (+) represents locally derived foreign olive oils, Blue 
() represents foreign olive oils whilst orange () represents oils derived from other seed oils.  
 

 

Principal component analysis revealed a similar clustering pattern as that 

obtained on using SLC-DA. However unlike SLC-DA the % explained variance 

(28.17% over two principal components) was very low further confirming that the use 

of supervised techniques is far more informative. Nonetheless on analysis of the 

principal component scores Figure 5.4 it was observed that heavy metal content 

namely Co, Ni, Cu and Zn had the highest Eigenvectors in the first principal 

component indicating that the % abundance of these elements in oils offers the largest 

explanation of covariance. Similarly Ba and Ag offered the highest % of covariance 

explained in the 2nd principal component scores.  
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Figure 5.4: Principal component analysis (left) of the elemental analysis of oils derived from different sources 
and olive oils of different geographical origin. Markers represent the same data presented in the previous 
figure. (Right) Eigenvector loading scores for each element for the 1st principal component (blue bars) and 
the 2nd principal component (red bars). 
 

In this study, a multivariate discriminant analysis has been performed to 

develop a discriminating function which can help predict olive oil origin based on the 

% abundance of elements. Similar studies conducted by Cabrera-Vique et al., (2012) 

have shown that elemental analysis of extra virgin olive oil from PDO’s of Granada 

and Jaén had a significantly different concentration in the Ni, Mn, Cu, Cr and Fe 

content. Furthermore in this study the values of the five trace elements had the highest 

potential as predictor variables in the model built using multiple linear analysis. The 

importance of these heavy metal elements in the discrimination of olive oils of 

different geographical origin is concordant with the results obtained by other authors 

Benincasa et al. (2007) and Zeiner et al. (2010). Zeiner et al., (2010) reported that the 

determination of the trace metal pattern of olive oils by atomic spectrometric methods 

showed that the concentrations of Cu, Mn, and Ni vary significantly by geographical 

origin of olive oils obtained from Croatia and can be used for geographical 

characterisation of the oils. Similar to the presented study the concentrations of Fe, 

Mg, Na, and Ca in the samples, showed no significant differences according to the 

geographical origin of the oils. Zeiner et al., (2010) further reported that higher metal 

levels in olive oils may be an indication of improper production of extra virgin olive 

oils and therefore jeopardize the results for a certain geographical region. Benincasa 

et al., (2007) used linear discriminant analysis (LDA) in order to distinguish between 

olive oils derived from three Italian geographical locations for two different cultivars 
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Coratina and Carolea.  Similar to our study, from the available data it appears that the 

inter-cultivar variation and olive oils derived from indigenous and imported, locally 

grown cultivars cannot be distinguished by elemental composition since they are 

grown under the same geographical conditions. This suggests that the terroir has a 

large effect on the elemental composition of the olive oil rather than the cultivar itself. 

Furthermore this also suggests that imported olive cultivars have adapted to the 

Maltese pedological elemental content.  

In this study semi-quantitative techniques were used, whereby the % 

abundance of each element in the sample was determined in EVOOs. The use of XRF 

for the determination of the elemental composition of EVOOs proved to be an effective 

alternative to conventional absorption spectrometry. The additional advantages of 

XRF lay in the simplicity of the spectra obtained, minimal sample preparation and its 

non-destructive nature of analysis. In the study a significant positive correlation 

between elements of pedological origin and heavy metal elements which can be both 

of botanical origin or derived from anthropological sources, was shown. This study 

suggest that based on the elemental composition especially the concentration of Ba, P, 

Co, Ni, Cu and Zn can be employed for the discrimination of olive oils of Maltese 

origin.  
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6. Quantification of minor constituents 
 

6.1 Chlorophyll and carotenoid content  
 

The natural colour of virgin olive oil is attributed to the presence of liposoluble 

chlorophylls and carotenoids present in the fresh fruit. Chlorophyll and carotenoid 

pigments are highly appreciated as functional components both for their colouring 

properties, affecting the consumer preference and acceptance together for their health 

benefits. Carotenoids, impart a yellow colouration to the fruits, vegetables and oils, 

furthermore they are bioactive compounds, as apart from having a provitamin A 

function they exhibit strong cellular antioxidant activity, preventing age-related 

molecular degeneration and cataract formation (Seddon et al., 1994). Similarly, 

chlorophyll pigments apart from imparting a green colouration, exhibit a series of 

biological activities in both in vitro and in vivo animal model assays, ranging from 

antioxidant to antimutagenic activities, responsible for the prevention of degenerative 

diseases (Ferruzzi and Blakeslee, 2007).  

The analysis of chlorophylls and carotenoid pigments can be divided into two. 

The first method involves the analysis of pigments within the lipid matrix without the 

need of prior extraction, the other method is more laborious and targets the profiling 

of the individual compounds present in the oil by the use of liquid chromatography on 

a purified pigment fraction. Although the latter method is far more informative, the 

extraction process invariably causes a considerable loss of pigmentation, particularly 

within the chlorophyll fraction due to structural transformation caused by the liberation 

of acids and oxidation (Minguez Mosquera et al., 1990). A number of different 

methods have been developed in the past in order to assess and quantify the amount of 

pigments present in olive oil without the need for extraction. Papaseit (1986) 

implemented the bromothymol blue (BTB) index through the comparison of the oil 

with visual standards. In this experiment the method employed by Psomiadou and 

Tsimidou, (2001) was used, where the absorbance of previously diluted sample of 

olive oil was determined at three wavelengths 670 nm, 630 nm and 710 nm. The 

carotenoid content was determined by measuring the absorbance at 470 nm as 

previously determined by Minguez Mosquera et al., (1990).  
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Figure 6.1 : (Left) Bar graph showing the distribution of different pigments present in olive oils of different 
geographical origin (0 = indigenous cultivars, 1 = locally grown foreign cultivars 2 = foreign cultivars) 
expressed in terms of the standardised absorption and different wavelengths. Standard error bars represent 
 1SD. (Right) Box plot representing the quantified amounts of different pigments present in olive oils. 1st 
and 2nd row show the distribution of chlorophyll pigments 3rd and 4th row represent the total carotenoid and 
anthocyanin pigments present across cultivars of different origins.  
  

Figure 6.1 (left) shows the standardised absorbances at different wavelengths, 

for olive oils derived from different geographical origins. The quantified chlorophyll, 

carotenoid and anthocyanin content are shown in Figure 6.1 (right). As expected the 

presence of anthocyanin pigments was minimal and results were expressed in µg/kg 

in malvidin equivalents (Francis, 1982). Use of the Kruskal Wallis one way ANOVA 

showed that olive oils derived from locally grown foreign cultivars had a significantly 

higher pigment content when compared to olive oils derived from indigenous cultivars 

(p-value of 0.031 chlorophyll, 0.003 for carotenoid and 0.026 for anthocyanin pigment 

content) and from olive oils derived from foreign cultivars (p-value of 0.001 

chlorophyll, 0.011 for carotenoid and 0.001 for anthocyanin pigment content). 

However, this might be due to the presence of the Leucocarpa cultivar which was 

classified as an indigenous cultivar. The absence of chlorophyll pigments within this 

particular cultivar might have caused an underestimation of the chlorophyll content for 

either group.  In comparison, the pigment content of olive oils derived from indigenous 

and foreign cultivars did not seem to be significantly different. There are a number of 

different studies that show quantitatively that the pigment content of olive fruit and 

virgin oils varies among different olive cultivars (Gandul-Rojas and Minguez-

Mosquera, 1996; Psomiadou and Tsimidou, 2001; Roca and Minguez-Mosquera, 

2001) and can be used to establish taxonomic affinities and/or differences.  Ranalli and 

Modesti (1998) showed that the effect of genetic and olive variety on olive oil colour 

is more important than that of the extraction technology used.  
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The amount of pigments present in olive oils is determined by a number of 

different factors related to both the amount of pigments present within the fruit, the 

extraction process and the storage conditions to which the oil was subjected.  

Degradation during storage might have caused the loss of certain pigments. In the 

future a forced degradation experiment should be conducted in order to assess the 

changes of the pigment content. It is well known that these compounds tend to undergo 

a series of chemical transformation resulting in a discolouration of the olive oil during 

storage or heat treatment. Carotenoids tend to undergoing trans-cis isomerization and 

5,6-epoxide groups to 5,8-furanoxide rearrangement reactions (Mínguez-Mosquera 

and Jarén-Galán, 1999; Pérez-Gávez, Jarén-Galán, and Mínguez-Mosquera, 2000; Shi 

and Le Maguer, 2000; Sanchez, Carmona, Ordoudi, Tsimidou, and Alonso, 2008; 

Zhao, Kim, Pan, and Chung, 2014), while chlorophyll tends to undergo 

decarbomethoxilation and allomerization of the isocyclic ring (Mínguez-Mosquera, 

Gandul-Rojas, Gallardo-Guerrero, Roca, and Jarén- Galán, 2007). Aparicio-Ruiz and 

Gandul-Rojas (2014) showed that in the absence of oxygen degradation of pigments 

in olive oils undergoes a first-order kinetic mechanism with the carotenoids being more 

susceptible than chlorophylls to oxidation, which is attributed to the more stable 

structure of the latter.  

6.1.1 Determination of geographical origin and cultivar influence 
on olive oil pigment content. 

  

The application of pigment content for the determination of geographical 

origin of olive oils was assessed using SLC-DA, shown in Figure 6.2. It was observed 

that on the basis of the standardised absorbances a spatial clustering resembling the 

actual geographical origin was obtained, however the model obtained had a high 

percentage of misclassification (14.63%), furthermore the Eigenvalues for the 1st and 

2nd canonical functions were both less than 1 (0.89 and 0.50 respectively). This 

suggests that although there is a potential for using the pigment content in order to 

determine the geographical origin, this part of the study requires further investigation 

in order to fully optimise the method of classification. Moreover, additional seasonal 

variation and maturity of the olive fruits at the time of harvest must also be taken in 

consideration in order to build a more rigorous model.  
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Figure 6.2: CDA biplot show the spatial distribution of olive oil samples derived from different geographical 
origins (Black (+) represent indigenous cultivars n=12 Green (x) = locally grow cultivars n=8 Red (*) = 
foreign cultivars n= 24) based on the standardised absorbance of the different pigments. 

In order to assess the effect of geographical location on cultivar pigment 

content, pairwise comparisons between olive oils derived from imported cultivars 

grown in the Maltese islands and the same cultivar not grown in Malta were carried 

out using Kruskal Wallis one way ANOVA for all pairwise comparisons. Figure 6.2 

summarises the results obtained. It was shown that in general imported cultivars grown 

in the Maltese islands had no significant difference in the pigment content, for both 

the chlorophyll and carotenoid content, with the exception of ‘Picholine’ and 

‘Pendolino’, whereby the olive oils derived from the Maltese islands showed a 

significantly higher pigment content when compared to olive oils derived from France 

and Italy respectively. This considerable difference in the pigment content of the two 

cultivars was attributed to the fact that at the time of harvest the two cultivars had a 

very low index of maturation. Immature olive fruits have a green colouration attributed 

to the presence of chlorophyll pigments, as the fruits mature and the photosynthetic 

activity decreases the chlorophylls disappear. In some olive cultivars the carotenoids, 

secondary photosynthetic pigments may also disappear at the same time. At the end of 

670 nm 

535 nm 

710 nm 
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the maturation process, anthocyanin and belatins pigment production takes over giving 

a violet or purple colour to the olive fruit (Roca and Minguez-Mosquera, 2001). These 

changes in olive fruit with ripening are directly reflected in the pigment composition 

of the olive oil as virgin oils. However in certain cultivars the concentration of 

carotenoid pigments is retained, and furthermore certain cultivars synthesise new 

carotenoids during maturation. These are known as carotenogenic fruits in which the 

typical pattern of chloroplast carotenoids does not change during ripening. The 

qualitative distribution of the chloroplast pigment pattern and the rate of movement or 

interchange are what distinguish genera and varieties. For example, in olives of 

Manzanilla, Gordal, and Hojiblanca varieties (Miguez-Mosquera and 

GarridoFernandez, 1989; Mınguez-Mosquera and Gallardo Guerrero, 1995), the 

qualitative pattern of chloroplast pigments does not vary with ripening, but in general 

matches that of the fruits, the final coloration of which is due to the synthesis of 

compounds of a different nature, such as the anthocyanins, which may even mask the 

presence of chlorophylls and carotenoids.   

 

Figure 6.3: (Left) Pairwise comparison of the chlorophyll, carotenoid and anthocyanin content of the 
different cultivars grown in the Maltese islands and those derived from other Mediterranean countries. 
(Right) Table illustrating the p-values obtained for each cultivar on using Kruskal Wallis One way ANOVA. 
(*) indicate a significant difference at the 90% CL whilst (**) indicate a significant difference at the 95% 
CL. 

  

Cultivar 
Chlorophyll 

Content 
Carotenoid 

Content 
Anthocyanin 

content 

Picholine 0.094* 0.017** 0.001** 

Carolea 0.502 0.364 0.364 
White 
Olive 

0.403 0.073* 0.473 

Pendolino 0.020** 0.017** 0.176 

Croatina 0.073* 0.702 0.473 

Frantoio 0.550 0.720 0.359 
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Although the individual concentrations of chlorophyll and carotenoid pigments 

did not seem to vary significantly between cultivars which are locally grown and those 

grown in other countries in the Mediterranean, the chlorophyll: carotenoid ratio was 

found to be significantly different for the same cultivar grown in different locations. 

In general it was observed that both imported and indigenous cultivars had a 

significantly (p-value < 0.001 for both pairwise comparisons) higher chlorophyll: 

carotenoid ratio (Ch/Cr) when compared to foreign cultivars, however there was no 

significant (p-value 0.752) difference in the Ch/Cr between the imported locally grown 

cultivars and the indigenous cultivars. Figure 6.4 shows that the higher Ch/Cr was also 

consistent on analysing each individual cultivar. This suggests that olive fruits derived 

from the Maltese islands are subjected to higher light intensities than those grown in 

other regions of the Mediterranean. This is because unlike chlorophylls, carotenoid 

compounds are not the primary photosynthetic compounds and their production is 

upregulated when photosynthesis by chlorophyll is not sufficient.  

 

 

Figure 6.4: (Left) Pairwise comparison of the chlorophyll /carotenoid ratio of the different cultivars grown 
in the Maltese islands (red bars) and those derived from other Mediterranean countries (Blue). (Right) Table 
illustrating the p-values obtained for each cultivar on using Kruskal Wallis One way ANOVA. (*) indicate a 
significant difference at the 90% CL whilst (**) indicate a significant difference at the 95% CL. 
 

  

Cultivar p value 
Carolea 0.125 
Croatina 0.089* 
Frantoio 0.089* 

Oliva Bianca 0.007** 
Pendolino 0.002** 
Picholine 0.085* 
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The production of chlorophyll and carotenoid pigments is affected by a number 

of different factors, including light, temperature and water stress. A large number 

of studies conducted on a number of different higher plants have shown that plants 

subjected to drought exhibited a decrease in the chlorophyll content and 

photosynthesis (Kuroda et al., 1990, Sairam, 1994; Kraus et al., 1995; Pastori and 

Trippi, 1992, Zobayed et al., 2005). Plants grown under drought condition have a 

lower stomatal conductance in order to conserve water, causing a decrease in CO2 

fixation, resulting in less production and yield of plants. Under drought conditions 

the decline in the chlorophyll a and b is the result of oxidative damage (Maniannan 

et al., 2007; Smirnoff, 1995). Apart from water, salinity has also been found to 

negatively affect the pigment concentration and photosynthesis in higher plants. 

There is strong evidence that salt affects photosynthetic enzymes, chlorophyll and 

carotenoids (Stepien and Klobus, 2006). 

 Light intensity might be also responsible for the variation in pigment content 

in plants the increased exposure to harmful UV radiation causes degradation in 

chlorophyll pigment Conversely, lately a number of different studies suggest that 

exposure to UV-B suppress chlorophyll degrading enzymes such as chlorophyllase 

and chlorophyll peroxidase and Mg-dechelatase (Aiamla-or et al., 2010; Srilaong 

et al., 2011; Kaewsuksaeng et al., 2011).  

Since the Maltese islands are characterized by very dry summers, drought stress 

conditions are inevitable, and thus it is expected that olive oils found in the Maltese 

islands would have a lower chlorophyll and carotenoid content however in this 

study the contrary was shown. These unexpected results suggest that there are other 

factors rather than the abiotic stress conditions which are affecting the 

concentration of these pigments. Furthermore most of the available research 

present on the effects of stress on pigment content is associated with leaves since 

they are the major organs responsible for photosynthesis. At the time of study very 

limited research targeted the effect of stress on pigment concentration in olive 

fruits. The presence of a thick waxy cuticle, reduced amount of stomatal apertures 

and their transient existence within the plant suggests that the factors governing 

the rate of degradation and biosynthesis of these compounds is different from that 

of the leaves.  
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Furthermore, presence of antioxidative and secondary metabolites which are 

produced under levels of abiotic stress conditions could explain the increased or 

comparable pigment content present in olive oils of Maltese origin. One of such 

compounds is proline. Research has shown that the proline content increases under 

drought and thermal stress (Sanchez et al., 1998; Alexieva et al., 2001; Verbruggen 

and Hermans 2008). Proline does not interfere with normal biochemical reactions 

but allows the plants to survive under stress (Stewart, 1981). Other compounds 

which can be produced under stress conditions and enable the plant to survive 

under drought stress include mannitol, sucrose and raffinose oligosaccharides, and 

nitrogen-containing compounds, such as amino acids and polyamines (Bohnert et 

al., 1995). The presence of alternative fluorophores has been shown to present in 

Maltese olive oils (Section 11.3) and might also contribute to the observed Ch/Cr.  

However the presence of these compounds as a clear indication of stress has not 

been determined in olive oils, and needs to be further addressed in future studies.  
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6.2 Phenolic constituents    
 

6.3 Phenolic constituents    
 

Total phenolic constituents of olive oils derived from different geographical 

origins were evaluated using microtiter methods. The total phenolic content was 

determined using Folin-Ciocalteu reagent and gallic acid as standard, an established 

method for the determination of phenolics described in the literature (Slinkard and 

Singleton, 1977). The Folin-Ciocalteu reagent is sensitive to reducing compounds such 

as, but not exclusively, polyphenols, as it also reacts with other reducing substances 

including sugars, aromatic amines, and organic acids. Thus the presence of these 

compounds within the hydro-alcoholic extracts might lead to an overestimation of 

polyphenols. However, this method has the advantage that it is reproducible, quick, 

inexpensive and particularly helpful for a large number of samples and therefore was 

adopted as the method of use. The problem with this method is that it can only be 

performed in the aqueous phase, thus not being applicable for lipophilic 

compounds/matrices. Thus phenolic compounds present in olive oils required a 

preliminary extraction process in order to isolate phenolic compound from the lipid 

matrix. Flavonoid content was determined using the aluminium chloride assay as 

described by Mabry et al., (1970). The reaction relies on the complexation of 

flavonoids with an Al3+ to give the characteristic red complex, however coordination 

of flavonoids is dependent on the size, large flavonoids compounds tend to form 1:1 

complexes with Al3+ ions as higher coordination around the centred aluminium ions 

are hampered by steric interactions. In the case of ortho diphenolic compounds these 

were determined using Arnow’s reagent as described by Arnow (1937) which relies 

on the oxidation of ortho-diphenols to a red stable quinone chromophore. The 

limitation of this assay is the relatively low detection limit as side chains containing a 

catechol might not be easily oxidisable, resulting in an underestimation of the total 

amount of ortho diphenolic compounds present in the extracts.  

Overall, analysis (Figure 6.5) of the data obtained for different olive oils showed a 

significant variation in the concentration of phenolic compounds depending on the 

geographical origin. Use of Kruskal Wallis one way ANOVA showed that olive oils 

derived from indigenous cultivars had a significantly lower total phenolic compared 

to olive oils derived from foreign cultivars (p-value of 0.018 TPC and 0.002 for TFC). 
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In comparison, the total phenolic and flavonoid content of olive oils derived from 

locally grown imported cultivars and foreign cultivars did not seem to be significantly 

different (p-value 1.00 for TPC and 0.291 for TFC). The concentration of phenolic 

compounds present in olive oils is a result of a mix of the multitude of factors that 

influence both the olive fruit and production process. Cultivar is the most important 

factor followed by fruit maturity and processing techniques (Kalua et al. 2007). The 

results obtained during this study ranged between 150 – 300 ppm which are in the 

range to those determined by other studies (García-González et al., 2010; Tura et al., 

2007; Uceda et al., 2005; Tous et al., 2005 and Pannelli et al., 2001).  These studies 

showed that olive oils derived from a number of different cultivars produced in various 

countries around the world had a TPC ranging between 182 to 1,240 ppm. Even though 

these studies used minor adjustments to the standard method of phenolic compound 

determination, the general rankings of the varieties by total polyphenol content is 

consistent. Thus although the results obtained in this study might not be fully replicated 

by minor adjustment to the methods, the general trend that the indigenous cultivars 

have a mean lower phenolic content when compared to the mean of  other cultivars 

locally grown and cultivars of different geographical origin would still be consistent.  

 
 
Figure 6.5: Box plot representing the quantified amounts of different phenolic classes present in olive oils. 
1st , 2nd and 3rd row show the distribution of the total phenolic content, total flavonoid content and total 
diphenolic content  present in olive oils of different geographical origin (0 = indigenous cultivars n=12, 1 = 
locally grow cultivars n=8,  2 = foreign cultivars n= 24).  Statistical analysis showed that both the TPC and 
TFC varied significantly form olive oils derived from different geographical origin whilst the o-diphenolic 
did not show any significant variation across olive oils of different origins (p-value 0.074).   
  

 



 Results and Discussion   

145 
 

This lower phenolic content can be mainly attributed to the different genotypes 

that make the Maltese indigenous cultivar unique in terms of their phenolic content.   

A study conducted by Romani et al.,(1999) showed that the phenolic content and the 

flavour profile of five different olive oils obtained from different Italian cultivars is 

more dependent on the genotypes rather than on external factors such as climate, 

irrigation, and harvesting. Analysis of the individual indigenous cultivars found that 

olive oils derived from the ‘Malti’ cultivar had the lowest TPC whilst ‘Bidni’ cultivar 

had the highest TPC from the indigenous group. Comparison of the TPC, TFC and 

TdPC obtained from the ‘Bidni’ EVOOs to the foreign EVOOs showed no significant 

difference between the two groups (p-value 0.07, 0.102 and 0.407 for TPC, TFC and 

TdPC respectively). This observation suggests that although classifying EVOOs 

according to their origin could provide insights for an overall comparison, the huge 

heterogeneity of the groups, due to the large variation in phenolic content of the 

cultivars, does not necessarily represent the overall class distribution and individual 

cultivars need to be compared. 
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6.3.1 Environmental effects on the total phenolic contents  
 

Although the genotype, might be most determining factor affecting the total 

phenolic content in olive oils, other factors such as temperature and altitude need to be 

taken in consideration. It was shown that the warmer the temperature and the higher 

the altitude at which the olive trees are grown the lower the phenolic content of the oil 

(Osman et al., 1994). The high temperatures which characterise the Maltese islands 

during summer might also explain the lower phenolic content found in the indigenous 

cultivars, however this does not explain why the imported cultivars did not show a 

phenolic content comparable to the indigenous cultivars, further corroborating that the 

phenolic content is more determined by the genotype. These observations seem to be 

in line with the results obtained by Mousa and Gerasopoulos (1996) whereby very little 

or no differences was observed in olive oils derived from cultivars grown under 

different temperatures and altitudes. The effect of irrigation and water stress on the 

phenolic content was determined by Berenguer et al. (2006) In their study it was 

concluded that the olive trees which are cultivated in a high and moderate irrigation 

regime tend to have a lower phenolic content than those obtained from non-irrigated 

olive trees. This was attributed to the decrease in both the synthesis of polyphenols 

and their dilution in within the fruit itself. Similar results were obtained by Gomez-

Rico et al., (2007) and Servili et al., (2007). In fact the activity of enzymes responsible 

for phenolic compound synthesis, such as L-phenylalanine ammonialyase activity is 

greater under higher water stress conditions (Morello, Romero, Ramo, and Motilva, 

2005). Applying this study, to the presented data, it seems that the results obtained are 

not consistent with the existing literature mainly because most of the olive trees 

cultivated in the Maltese islands are not irrigated and thus it is expected to have a 

higher phenolic content than those obtained from other Mediterranean countries. Since 

the method for determination of the phenolic content is not specific, the possible 

increase in these stress metabolites cannot be fully accounted for by means of 

microtiter methods. However, the aforementioned studies just consider the total 

phenolic content whilst, as will be shown in the latter stages of this study, the complete 

phenolic profile must be taken in consideration. Since phenolic compounds are 

secondary metabolites which are produced by the plants in response to herbivory and 

water stress, there is a possibility that the indigenous cultivars are producing phenolic 
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compounds which would not react with Folin’s reagent and thus are not quantified 

during this experiment.   

The effect of salinity, can also affect the concentration of phenolic compounds in 

olive oils, although studies conducted by Grattan et al. (2006) , Ramos and Santos 

(2010) and Wiesman et al. (2004) showed an increase in the production of antioxidant 

compounds in olive trees irrigated with saline water. Studies also showed that salinity 

effectively reduces the phenolic content in plants. Telesiński et al. (2008) and Noreen 

and Ashraf (2009). Telesiński et al., (2008) demonstrated that salinity, apart from 

causing a decrease in the phenolic content, increases the production of other phenolic 

compounds such as flavonoids. However the data obtained from the presented  study 

shows that the total flavonoid content of olive oils derived from indigenous cultivars 

was found to be significantly lower than that of foreign olive oils.   

6.4 Antioxidant activity  

A number of microtiter assays were carried out in order to determine the antioxidant 

activity of the olive oil phenolic extracts. These can be broadly be divided into two: 

the antioxidant capacity assays and radical scavenging activity assays. The chemistry 

involved in order to distinguish between the two kinds of assays employed in this study 

can be either reactions which involve hydrogen atom transfer reaction-based assays or 

single electron transfer reaction-based assays. In this study, the antioxidant activity of 

phenolic compounds in olive oils was determined by the use of electron transfer -based 

assays, that include the DPPH, ABTS and NO assays. These involve a redox reaction 

with the oxidant which is also the probe for monitoring the reaction as an indicator of 

the reaction endpoint. These antioxidant capacity assays tend to follow the same 

pattern whereby the probe itself is an oxidant that abstracts an electron from the 

antioxidant, causing colour changes of the probe, the extent of the colour change is 

proportional to the antioxidant concentrations. Unlike hydrogen atom based assays, in 

the assays which were  used there is no competitive reaction involved. Furthermore 

there is no oxygen radical in the assays, and the antioxidant capacity of a sample is 

taken to be equivalent to its reducing capacity.  

Figure 6.6 and Table 6.1 summarise the results obtained from the different 

antioxidant assays. The results were divided in three classes that reflect the 

geographical origin of the olive oil. Similar trends observed from the analysis of the 
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phenolic compound present in olive oil were observed. A Kruskal Wallis one way 

ANOVA revealed a significant difference in the observed antioxidant activity of 

phenolic extracts from olive oils derived from different geographical origins. 

.       

 

Figure 6.6: Box plot representing the antioxidant activity of the polar phase of olive oils under different 
assays. 1st row represent the total antioxidant assays carried, 2nd row represent the ferric reducing activity, 
whilst 3rd and 4th represent the free radical scavenging activity against ABTS and DPPH radicals using 
phenolic fractions derived from olive oils of different geographical origin (0 = indigenous cultivars, 1 = locally 
grow cultivars 2 = foreign cultivars).   
 
 

Table 6.1: The mean antioxidant activity 1SD on using different assays. Superscript letters in the same 
column represent statistically distinct homogeneous subsets as determined by Kruskal Wallis ANOVA a 5% 
confidence level. 

 TAC FRAP NO DPPH ABTS 
Indigenous 278.05  94.77a,b 7.19  2.41a 61.01  12.55a 5.39  4.47a 4.85  1.86a 

Local 233.21  104.12a 7.02  1.53a 62.62  14.37a 6.72  4.36a 6.61  3.08a 

Foreign 307.40  84.17b 13.93  1.55b 67.54  9.30a 10.20  2.46b 8.40  0.92b 
 

Table 6.1 shows pairwise comparisons between each subset; it was found that in 

general both the indigenous and the locally grown imported cultivars showed a 

significantly lower antioxidant activity when determined by the different methods. In 

the case of the total antioxidant activity (TAC) of extracts, this was evaluated by the 

phosphomolybdenum assay method (Prieto et al., 1999) which is based on the 

reduction of Mo (VI) to Mo (V) by the sample and the subsequent formation of green 

phosphate/Mo (V) complex in the acidic environment. This method is quantitative 

since the total antioxidant activity is expressed as equivalents of ascorbic acid (Prieto 
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et al., 1999). The ferric reducing activity (FRAP) of the extracts was determined by 

using the assay described by Yen and Chen adjusted for microtiter plating. The results 

obtained showed that on comparing the olive oils derived from foreign locally 

cultivars, these had a significantly lower reducing activity towards Mo (VI) and Fe 

(III), when compared to olive oils derived from other countries in the Mediterranean.  

In the case of Mo (VI) it was observed that whilst the imported olive oil cultivars 

had a lower reducing activity when compared to foreign cultivars, there was no 

significant difference in the reducing potential of the indigenous cultivars when 

compared to the foreign cultivars. This variation in the trends can be explained in terms 

of the different electrode potentials between the Mo (VI) and Fe (III): the former has 

an Eº of 0.70 V whilst the latter has an Eº of 0.77V. The slightly higher electrode 

potential of Fe (III) indicates that the reduction is more easily achieved when compared 

to Mo (VI), thus phenolic compounds of a lower reducing activity are able to reduce 

Fe (III) but not Mo (VI). Different classes of phenolic compounds show a structure 

relationship which affects the antioxidant activity. In the case of phenolic acids the 

antioxidant activity is affected by  the number of hydroxyl groups in their molecules 

and on the steric effects (Leja et al., 2007). The position of hydroxyl groups, as well 

as the type of substitution on the aromatic ring, influences the antioxidative activity of 

these compounds. The antioxidative activity of phenolic acid increases with increased 

number of hydroxyl groups together with the presence of additional methoxy group in 

the ring (Cuvelier et al., 1996). Furthermore, cinnamic acid derivatives display better 

antioxidative properties than benzoic acid derivatives (Siquet et al., 2006). The 

introduction of an ethylene group between the phenyl ring containing a hydroxy group 

in the para-position and a carboxyl group, increases reductive properties. In the case 

of flavonoids, the number and location of the phenolic OH groups affect the reducing 

potential and the radical scavenging activity, however the presence of a 3’, 4’-

dihydroxy (catechol structure) and the 3-OH moiety of the C ring are considered the 

most important factors affecting the reducing capability of flavonoids (Yokozawa et 

al., 1998; Lien et al., 1999; Heijnen et al., 2001). Whilst the structure-antioxidant 

activity of phenolic acid and flavonoids have been extensively studied the antioxidant 

activity of specific hydrophilic compounds of olive oils such as 3,4-DHPEA and p-

HPEA is very limited namely because of their complexity and standard unavailability, 

furthermore studies are based on doping refined seed oils with olive phenolic 



 Results and Discussion   

150 
 

compounds rather than microtiter assays. Baldioli et al., (1996) showed that 3,4-

DHPEA, 3,4-DHPEA-EDA and 3,4-DHPEA-EA possess much higher antioxidant 

activity than p-HPEA and -tocopherol; this was attributed to the complex structures 

of secoiridoids and the huge number of derivatives in natural unrefined extracts.  

The NO-scavenging activity (NOS) of each of the phenolic extracts was 

determined by the method of Tsai et al., (2007) with minor modifications. The results 

obtained showed no significant variation in the radical scavenging activity of nitrous 

oxide radicals across phenolic extracts derived from olive oils of different 

geographical origins. These results suggest that the phenolic extracts were equally 

effective in scavenging the formation of nitrous oxide radicals. This also suggests that 

the scavenging of nitrous oxide radicals is not dependent on either the concentration 

or the reducing activity of the different phenolic compounds present in olive oil. 

Compared to the other radical scavenging activity assays, NOS is carried out in a 

medium phosphate buffered saline (PBS) whilst both DPPH and ABTS are carried out 

in polar protic solvents such as methanol. The type of solvent and polarity may affect 

the single electron transfer and the hydrogen atom transfer, which are key aspects in 

the measurements of antioxidant capacity (Perez-Jimenez and Saura-Calixto, 2006). 

Similar to the previous experiments carried out by Fernandez-Pachon et al., (2004), 

Villano et al., (2005), Perez-Jimenez and Saura-Calixto (2006) showed that the higher 

the concentration of the polar protic solvents (methanol or ethanol) the higher is the 

antioxidant activity of the same extract compared to the antioxidant activity displayed 

if the assay was carried out in water. Strong hydrogen bonding in water may induce 

dramatic changes in the H-atom donor activities of phenolic antioxidants, reducing the 

antioxidant capacity of phenolics (Pedrielli, Pedulci, and Skibsted, 2001; Pinelo et al., 

2004). The study carried out by Perez-Jimenez and Saura-Calixto (2006) also showed 

that in the case of highly water soluble phenolic acids and flavonoids, the changes 

between methanol and water did not show any dramatic changes in the displayed 

antioxidant activity, suggesting that the solvent affects different compounds in 

different ways. From the results obtained in this study it can be concluded that changes 

in solvent polarity had a marked effect on the radical scavenging activity of the 

extracts. The presence of a mixture of both hydrophilic and relatively lipophilic 

compounds such as phenolic acids and secoiridoid compounds respectively within the 

extracts suggests that in aqueous conditions, the combined effect of the more soluble 
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phenolic compounds had the most prominent effect on radical scavenging towards 

nitrous oxide radicals. Thus, the observed antioxidant activity was not inclusive for all 

the different classes of phenolic compounds present within the extracts 

The radical scavenging activity of olive oil extracts against DPPH and ABTS was 

assesed. The DPPH and ABTS assays are simple, but have some disadvantages and is 

limited in its applications.  The reaction mechanism carried out by DPPH and ABTS 

is different from the hydrogen atom transfer reaction that normally occurs between 

antioxidants and radicals as the mechanism involves the transfer of a single electron 

from the stable DPPH radical or ABTS radical cation (which is also the probe for 

monitoring the reaction) to the oxidant. The model of scavenging the stable DPPH 

radical and  ABTS radical cation is a widely used method to evaluate the free radical 

scavenging ability of various samples (Ebrahimzadeh et al.,2008). In this experiment 

the total antioxidant activity (Table 6.2) of the phenolic extracts against DPPH radical 

and ABTS radical cation was expressed as GAE mg/mL. In conjunction the kinetics 

of the reaction were also studied as shown in Figure 6.7 and in Table 6.2, where one 

can see the different EC50s obtained.  

Similar trends to those observed with the other antioxidant assays were observed, 

the indigenous and local imported cultivars showed a significantly lower antioxidant 

capacity when compared to olive oils derived from other countries. Radical-

scavenging activities of all extracts were found to increase with increasing 

concentration. On examining the EC50s obtained for the two radical scavenging assays 

it was also found that for DPPH assay the indigenous cultivars had a significantly 

higher EC50 when compared to both the imported local cultivars and to foreign 

cultivars. This observation further confirms the significantly lower antioxidant activity 

of the indigenous cultivars. DPPH and ABTS radical-scavenging activity was found 

that usually, higher total phenolic and flavonoid contents lead to better scavenging 

activity (Ebrahimzadeh et al., 2009). This is line with the results obtained.  
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Figure 6.7: Free radical scavenging activity of olive oil phenolic extracts: Graph shows the % inhibition of 
ABTS (Right) and DPPH (Left) radicals against extract concentrations derived from olives oils of different 
geographical origins; foreign (Red), imported (Green) and indigenous (Black) cultivars. The dotted line 
represent 50% inhibition of radicals, the corresponding effective concentration is known as the EC50. 
 

With regards to the EC50 for the ABTS radical cations, the trend observed was 

similar to that observed for the total antioxidant capacity. Whilst the imported cultivar 

olive oils had a lower EC50 activity when compared to foreign cultivars, there was no 

significant difference in the EC50 of the indigenous cultivars when compared to the 

foreign cultivars. Since for the determination of EC50 the same concentrations of 

phenolic extracts were used, after a stock solution was adjusted to 500 mg/mL GAE, 

the observed variation between each extract might be dependent on the concentration 

of different types of flavonoids and phenolic compounds present within the induvial 

extracts. This hypothesis was later tested when examining the phenolic profile for each 

cultivar. 

Table 6.2: The mean EC50 1SD of olive oils phenolic extracts from different geographical origins. 
Superscript letters in the same column represent statistically distinct homogeneous subsets as determined 
by Kruskal Wallis ANOVA a 95% confidence level. 

 EC50_DPPH EC50_ABTS EC50_DPPH (Intrinsic) 

Indigenous 143.61  76.48a 37.04  12.63ab 0.18 0.11a 
Local 87.41   37.92b 31.07  13.87a 0.23   0.04a 

Foreign 71.86  21.09b 40.95  11.21b 0.16  0.03b 
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6.4.1 Intrinsic DPPH radical scavenging activity   
 
Measuring the intrinsic antioxidant activity of olive oil or any other oil presents a 

number of different challenges, where the main challenge is the solvent of choice. The 

solvent must be strong enough to dissolve the oil and the stable radical probe, but on 

the other hand it must not be toxic. It is also ideal that the solvent chosen does not 

dissolve the microtiter plate which is used for the examination. There are very few 

studies which target the development of microtiter plate methods in order to determine 

the intrinsic antioxidant activity of oils as the use of Rancimat methods are generally 

preferred.  Whilst the Rancimat methods provide very good results in terms of the oil 

oxidative stability they do not provide insights on the actual antioxidant activity of the 

oils in presence of radicals. 

 In this part of the study, a variety of different solvents were used in order to 

assess both the solubility of the oil and the stable radical probe. In previous studies 

carried out by Lia and Buhagiar (2014) and Ismail et al., (2010) the use of toluenic 

DPPH rather than methanolic DPPH as previously described by Ramadana and 

Moersel (2006) was applied in order to determine the intrinsic antioxidant activity of 

various seed oils, including grapeseed oils and cantaloupe seed oil respectively. 

Toluene allowed the complete dissolution of the oil while also allowing the oil to come 

in direct contact with DPPH radicals, however these studies did not employ the use of 

microtiter assays. In the present study, the use of isoamyl alcohol was employed, as 

this solvent proved to be most ideal for the determination of the intrinsic antioxidant 

activity of olive oils.  Isoamyl alcohol (3-methyl-1-butanol) allowed the complete 

dissolution of both the DPPH radicals and the oil, however unlike toluene it did not 

react with the methacrylate 96- well plates; this allowed the use microtiter plate 

methods. From the preliminary study carried out on ABTS, results suggest the use of 

mixture of isoamyl alcohol and dimethyl sulfoxide in order to allow the dissolution of 

the ABTS radical cation. Unlike DPPH, ABTS radical cation is more polar; 

furthermore its in situ generation employs the use of persulfate, a rather ionic 

compound. The ideal solvent mixture thus needs be polar enough to dissolve the ionic 

compound but not so polar that will cause emulsion formation on addition of the oil. 

In future the use of organic soluble radical generators and the use of external radical 

generators could be investigated.       
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A Kruskal Wallis one way ANOVA performed on the data obtained from the 

EC50s of the different olive oils shown in Table 6.2, corroborated the results obtained 

in the previous experiments. Olive oils derived from indigenous and locally imported 

cultivars had a significantly higher EC50 when compared to olive oils derived from 

foreign cultivars whilst no significant difference was observed between the indigenous 

and the locally derived olive oils. The intrinsic antioxidant activity of the olive oil can 

be related to a number of different constituents present within the oil such as pigments, 

sterols, squalene and other minor compounds. The ability of carotenoids to quench 

reactive singlet oxygen has been linked to the conjugated double bond system, the 

maximum efficiency being shown by carotenoids with nine or more conjugated double 

bonds (Foote et al., 1970).The electron rich conjugated double bond structure is 

primarily responsible for the excellent ability of β-carotene to physically quench 

radicals without degradation. It is also responsible for the chemical reactivity of β-

carotene with free radicals, and for its instability towards oxidation (Britton, 1995; 

Krinsky, 1994). There are two possible explanations for the antiradical activity 

mechanism of carotenoids and chlorophylls. The presence of an electron rich 

conjugated double bond system within the unsaturated molecules allows easy donation 

of electrons to the DPPH radicals, forming radically stable species. Endo et al., (1985) 

showed that chlorophyll can deliver hydrogen for DPPH radical reduction, as well as 

scavenge the fatty radicals formed during lipid oxygenation. In 2005, Lanfer-Marquez 

et al. showed that the metabolic products derived from the degradation of chlorophyll, 

including phaeophorbide b and pheophytin b, were stronger natural antioxidant 

compounds than chlorophyll itself, further confirming that carotenoids and chlorophyll 

and its derivatives show antioxidant properties. However, even though the chlorophyll 

content increases the radical scavenging activity of DPPH radicals it can also have a 

pro-oxidant effect on the oil itself causing the oil to become oxidised.  

The results obtained from analysing the pigment concentration of olive oils 

derived from different geographical origin showed that the local and the indigenous 

cultivars had a higher concentration of pigments when compared to olive oils derived 

from other geographical locations, thus if it is assumed that the major antioxidant 

compounds present in olive oils are due to these pigments, olive oils from the Maltese 

islands would have the higher intrinsic antioxidant activity. However, the opposite was 
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observed. This unexpected result suggests that the intrinsic antioxidant activity of the 

olive oils is related to other compounds present in olive oils rather than the pigments.  

 

Figure 6.8: intrinsic free radical scavenging activity of olive oils: Graph shows the % inhibition of DPPH 
radicals against olive oil concentrations different geographical origins; foreign (Red), imported (Green) and 
indigenous (Black) cultivars. The dotted line represent 50% inhibition of radicals, the corresponding 
concentration is known as the IC50. 

 

Apart from the presence of carotenoid pigments, phenolic compounds might also 

contribute to the radical scavenging activity of the oil. It is generally assumed that due 

to their low solubility, compared to pigments and other lipophilic compounds, the main 

radical scavengers present within the oil are those which have a higher lipophilic 

nature however studies done by Schwarz et al.,(2000) tend to disagree. Schwarz et al., 

(2000) introduced the concept of the ‘polar paradox’’ which states that lipophilic 

antioxidants are more effective in polar media, while polar antioxidants are more 

active in lipophilic media, thus although phenolic compounds might be considered as 

a minor constituents in olive oils their presence can greatly affect both its stability 

towards oxidation and antioxidant activity. 

Given the results obtained from the previous experiments, it was confirmed that 

the indigenous cultivars had a significantly lower phenolic content when compared to 

olive oils of different geographical origins. The marginally lower intrinsic radical 

scavenging activity, can either be attributed to phenolic compounds present in much 

higher concentration in the foreign cultivars or else to the presence of higher lipophilic 

antioxidant compounds. Lipophilic phytosterols in the oils can also be considered as a 

source of antioxidant compounds. The antioxidant activity of phytosterols has been 
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attributed to the formation of an allylic free radical and its isomerization to other 

relatively stable free radicals (Warner and Frankel, 1987; Wang et al., 2002).  

Furthermore the presence of polar lipids, especially phospholipids, which are present 

in crude, unrefined olive oils are usually considered as free radical scavengers and 

antioxidant synergists (Hildebrand et al., 1984; Jung et al., 1989). The emulsifying 

action of phospholipids due to their amphipathic nature can play an important role by 

increasing the contact between the antioxidant.  

6.4.2 Assessing the effect of phenolic content on the antioxidant 
activity  

 

Figure 6.9 shows the results obtained from the correlation analysis made using 

nonparametric Spearman's rho in order to assess the relationship between the observed 

antioxidant activity for different assays and the content of different classes of phenolic 

constituents present in olive oil. The results obtained show that the observed 

antioxidant activity determined by different methods showed a correlation with the 

different phenolic compounds. The table on the right-hand side of the figure shows the 

correlation values between the different phenolic classes and the antioxidant assays. 
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Figure 6.9: Correlation analysis between the observed total phenolic content (1st row), total flavonoid content 
(2nd row) and total diphenolic content (3rd row) against the observed antioxidant activity determined using 
ABTS+. (1st column), DPPH (2nd column), NO. (3rd column), FRAP (4th column) and TAC (5th column). 
(Right) Table represent the correlation coefficient using Pearson’s correlation analysis. 

 

The TAC, NOS, FRAP, ABTS and DPPH methods are mainly single electron 

transfer assays which operate on the same principle as the determination of  total 

phenolic content by the Folin-Ciocalteu reagent method. The difference in the extent 

of correlation among the different methods is mainly attributed to the pH of the 

reaction medium (Ballus et al., 2015). Total phenolic content is measured under basic 

conditions to allow the phenolic proton to dissociate, leading to a phenolate anion, 

which is capable of reducing Folin-Ciocalteu reagent. In comparison, both the total o-

diphenolic and flavonoid content are determined under acidic pH, in order to fully 

oxidise the diphenolic compounds and allow for the formation of acid stable 

complexes with aluminium.  The NOS, DPPH and ABTS method are performed at 

neutral pH, whereas the FRAP assay is performed under acidic (pH 3.6) conditions. 

The effect of pH and medium can explain the difference between the observed absolute 

values obtained for the different assays since different antioxidant assays operate under 

different mechanisms. In the case of DPPH the mechanism is thought to involve a 

 TPC TFC TdPC TAC FRAP NO DPPH ABTS  
TPC 1.0000 0.7671 0.4799 0.6710 0.3685 0.6785 0.7314 0.7842  
TFC  1.0000 0.4403 0.6616 0.4750 0.7599 0.8189 0.8528  
TdPC   1.0000 0.6738 0.3100 0.3825 0.4182 0.4208  
TAC    1.0000 0.4154 0.6782 0.6540 0.6928  
FRAP     1.0000 0.3913 0.6974 0.6281  
NO      1.0000 0.7725 0.7256  
DPPH       1.0000 0.9108  
ABTS        1.0000 
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hydrogen atom transfer reaction, but it studies done by Huang et al., (2005) showed 

that the rate-determining step involves a fast electron transfer process from the 

phenoxide anions to DPPH. The hydrogen atom abstraction from a phenolic compound 

by DPPH becomes a negligible reaction path as it occurs very slowly in strong 

hydrogen-bond-accepting solvents, such as methanol and ethanol (Huang et al., 2005). 

Thus, it is easy to understand why the results of all of the antioxidant methods 

displayed the same trends, despite having different absolute values. The differences in 

the absolute values is dependent on the reaction type, rate of reaction, medium and 

also because the structures of the compounds and their ease of reduction under a single 

electron transfer reaction as discussed by Ballus et al., (2015). The application of 

correlation between the different phenolic classes and each of the antioxidant capacity 

methods provides a more empirical and holistic evidence rather than comparing each 

individual assay on its own.  

Ballus et al., (2015) presented results similar to this study, whereby the phenolic 

extracts of different olive oils derived from different cultivars was correlated to 

different antioxidant assays.  Ballus et al., (2015) showed there was a high and 

significant positive correlation between the total phenolic contents and FRAP (R2 = 

0.8904), ABTS (R2 = 0.7837) and DPPH (R2 = 0.7908). In a similar study carried out 

by Samaniego Sánchez et al., (2007) the correlations of the total phenolic content with 

the observed antioxidant activity determined by ABTS and DPPH were 0.8586 and 

0.7914, respectively. Comparable values were obtained for the same antioxidant 

assays in this study as a positive significant correlation was conserved for both DPPH 

(R2=0.7314) and ABTS (R2= 0.7842) whilst a lower correlation was obtained for 

FRAP (R2=0.3685). Comparing the results obtained to those present in the literature, 

TPC seems to express a higher correlation with ABTS rather than DPPH; this can be 

attributed to the different mechanisms under which radical stabilisation takes place. 

The significantly lower correlation observed in the present study between the TPC and 

FRAP assay was attributed to the different methodologies which were employed in the 

determination of ferric reducing potential of the extracts. Results for the correlation 

analysis of flavonoids and o-diphenolic content to antioxidant were not available in 

the existing literature.    

Figure 6.10 shows the correlation analysis obtained on comparing the EC50 

obtained from examining the intrinsic antioxidant activity of olive oils. The results 
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obtained showed a lower correlation value with respect to TPC and TFC when 

compared to those obtained using the hydrophilic extracts. Furthermore, the intrinsic 

antioxidant activity of olive oils showed no correlation with the o-diphenolic content. 

Similar results were obtained by Minioti and Georgioua (2010) whereby the EC50 

obtained from DPPH of lipophilic olive oil fraction correlated poorly with the phenolic 

constituents. The lower correlation between the intrinsic antioxidant activity and the 

phenolic constituents might be due to a synergistic relationship between the 

tocopherols and phenolics (Espin et al., 2000).  

 

The results are presented by Ballus et al., 2015 whereby, similar to this study the 

phenolic extracts of different olive oils derived from different cultivars was correlated 

to different antioxidant assays.  Ballus et al., 2015 showed there was a high and 

significant positive correlation between the total phenolic contents and FRAP (R2 = 

0.8904), ABTS (R2 = 0.7837) and DPPH (R2 = 0.7908), in a similar study carried out 

by Samaniego Sánchez et al., (2007) the correlation of the total phenolic content with 

the observed antioxidant activity determined by ABTS and DPPH was 0.8586 and 

0.7914. Comparable values were obtained for the same antioxidant assays in this study 

as the positive significant correlation was conserved for both DPPH (R2=0.7314) and 

ABTS (R2= 0.7842) whilst a lower correlation was obtained for FRAP (R2=0.3685). 

Comparing the results obtained to those present in the literature TPC seems to express 

a higher correlation with ABTS rather than DPPH, this can be attributed to the different 

mechanisms under which radical stabilisation takes place. The significantly lower 

correlation observed in the presented study, between TPC and FRAP assay was 

attribute to the different methodologies which were employed in the determination of 

ferric reducing potential of the extracts. Results for the correlation analysis of 

flavonoids and o-diphenolic content to antioxidant were not available in the existing 

literature.    

Figure 6.10 shows the correlation analysis obtained on comparing the EC50 

obtained from examining the intrinsic antioxidant activity of olive oils. The results 

obtained showed a lower correlation value with respect to TPC and TFC when 

compared to those obtained using the hydrophilic extracts. Furthermore, the intrinsic 

antioxidant activity of olive oils showed no correlation with the o-diphenolic content. 
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Similar results were obtained by Minioti and Georgioua 2010 whereby the EC50 

obtained from DPPH of lipophilic olive oil fraction correlate poorly with the phenolic 

constituents. The lower correlation between the intrinsic antioxidant activity and the 

phenolic constituents might be due to a synergistic relationship between the 

tocopherols and phenolics (Espin et al., 2000).  

 

 

Figure 6.10: Correlation analysis on the intrinsic antioxidant activity of olive oils and the 
different classes of phenolic compounds present within the hydroalcoholic phase. Figures 
in each box represent the R2 value obtained on using Pearson’s correlation analysis, 
followed by the p-value.   
 

 

It was observed that, irrespective of the method used to determine the 

antioxidant activity, it is the total flavonoid content of the extract rather than its total 

phenolic content which is mostly correlated to the antioxidant activity, whilst the total 

o-diphenolic content showed the lowest correlation with the observed antioxidant 

activity. The higher correlation of antioxidant activity to the flavonoid content was 

also observed by other authors, who worked with phenolic extracts derived from other 

botanical origins. Sung and Lee (2010) reported a higher positive correlation between 

radical scavenging activity and TFC found in phenolic extracts of grape seeds. The 

higher correlation observed between the TFC and the antioxidant activity, when 

compared to TPC,  is due to the low specificity of the Folin-Ciocalteu method, as the 

colour reaction can occur with any oxidizable phenolic hydroxy group (Capannesi et 

al.,2000; Hrncirik et al.,2004).  In the case of flavonoids, the free radical scavenging 

activity is related to their ability to donate hydrogen atoms to free radicals. As 

reviewed by Pietta et al., (2000) various authors have examined the radical scavenging 

activity of flavonoids, and numerous attempts have been made to establish the 

relationship between flavonoid structure and their radical-scavenging activity. The 

    R2=0.006, 0.95 R2=0.499, 0.001 R2=0.397, 0.001 
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radical-scavenging activity of flavonoids is influenced by the molecular structure and 

the substitution pattern of hydroxyl groups, depending on the flavonoids' ability to 

donate phenolic hydrogen and on the stability of phenoxyl radicals formed after the 

donation of hydrogen. The catechol structure is the main target for free radicals due to 

its ability to donate electrons (van Acke et al., 1996).    

From the correlation analysis, it was shown that the phenolic compounds in 

olive oil are efficient electron donors, regardless of the reaction medium conditions 

and the compounds to be reduced. Similar correlation values were observed between 

the total phenolic contents and ABTS and DPPH for EVOO polar extracts in the study 

of Ballus et al., 2015 and Samaniego Sánchez et al., (2007) suggesting that these 

methods have a similar extrapolative capacity of olive oil antioxidant activity.  The 

high correlations between the TPC, DPPH and ABTS methods indicate that the total 

phenolic content can be used as an indicator for olive oil antioxidant activity assessed 

in the hydrophilic fraction however it seems that the more functionally active 

flavonoids seems to provide the best indicator for the antioxidant activity.  

6.4.3 Assessing the effect of phenolic content and antioxidant activity 
on the geographic origin of olive oils  

 
In this study the use of phenolic content and the observed antioxidant activity 

towards different target molecules were used in order to provide information for their 

potential use as markers to identify the geographical origin of the olive oil. This was 

assessed using supervised and unsupervised techniques. Figure 3.21 shows the 

principal component analysis carried out on the results obtained from the 

aforementioned parameters. The PCA plot was used in order to assess natural variation 

within the data, and the results obtained showed that the use of only two principal 

components explained 79.2% of the variance of the data based on the total number of 

different phenolic constituents and the observed antioxidant activity. The score plots 

obtained classified the oils into at least 2 distinct areas; the indigenous and the local 

imported cultivar subset, and the locally imported and the foreign olive oils. This 

suggests that locally imported cultivars display characteristics which resemble both 

the indigenous cultivars and the foreign cultivars. These results further highlight the 

effect of the environment and how it modifies the phenolic content and the antioxidant 

activity of the oils. The indigenous cultivars which have been in the Maltese islands 

for a longer period of time display characteristics that implicate that they are fully 
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adapted to the local conditions, whilst the imported cultivars are still in the process of 

adapting the local environment. 

 The EC50 obtained against DPPH radicals had the largest influence of the 

separation of the two subsets in the 1st principal component, which accounted for 

66.3% of the observed variation, whilst the total o-diphenolic content, FRAP and 

radical scavenging activity against ABTS radical cations had a large influence on the 

separation of the two subsets in the 2nd principal which accounted for 12.9% of the 

observed variation.  

 

Figure 6.11: Principal component analysis showing clustering of the different 
monocultivar olive oils based on their phenolic content and observed antioxidant activity.   

 

The use of supervised techniques in order to classify the different geographical 

origins of olive oils was assessed by the use of canonical discriminate analysis (CDA) 

(Figure 3.22). The results obtained showed that CDA was able to fully distinguish 

between the different subsets with a low % misclassifications (2.174%) and 

furthermore the model was able to fully explain the observed variation by the use of 2 

discriminate functions, a 1st discriminate function that explained 81.0 % of variation 

whilst the 2nd discriminate function explained 19.0% of the variation. X and Y fitting 

obtained by plotting the scores obtained from the 1st discriminate function showed that 

the projected formula was able to fully separate the olive oils of foreign origin from 

those obtained locally whilst by the 2nd discriminate function the indigenous cultivars 

were fully separated from both the foreign and the imported cultivars. The results 
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obtained from the FRAP and the EC50 against ABTS radical cations had the highest 

scoring coefficients and were the most discriminate parameters.  

 

 

 

Figure 6.12: Biplot obtained using SLC-DA showing clustering of the different monocultivar olive oils based 
on their phenolic content and observed antioxidant activity.  Black(x) represent the olive oils derived from 
indigenous cultivars, Green (*) represent locally derived foreign olive oils, Red (+) represent foreign olive 
oils 
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7. Application of high performance chromatography for the 
determination of geographical origin of olive oils 

 
Analysis of the phenolic compounds in virgin olive oil is mainly performed 

using reverse phase-HPLC, however due to the complexity of the phenolic mixture, 

the chemical nature has not been completely elucidated. However with advances in the 

field of liquid chromatography especially with the introduction of ultra-high pressure 

liquid chromatography, the study of these compounds has registered a significant 

improvement (Capriotti et al., 2014 Cao et al., 2013; Alarcón Flores et al., 2012). A 

large number of studies have focused on the relationship between the phenolic content 

and the oxidative stability of the oil (Tsimidou et al.,1999; Montedoro et al.,1992; 

Mateos et al.,2001; Papadopoulos et al.,1991) and on different factors which may alter 

the phenolic composition such as the extraction process (De Stefano et al.,1999; Garcia 

et al.,2001; Vierhuis et al.,2001; Perez et al.,2003), the producing cultivars (Aparicio 

and Luna 2002 ; Luna et al., 2006 ; Kalua et al., 2005 ), the environmental factors (Paz 

Aguilera et al., 2005 ; Mousa and Gerasopoulos 1996 ; Ranalli et al. 1999 ; Ripa et al. 

2008 ; Servili et al., 2004 ; Tous et al., 1997 , 1999 ; Tura et al., 2008, Berenguer et 

al.,2006 ), degree of ripeness (Dag et al., 2011 ; Famiani et al., 2002 ; Gómez-

González et al., 2011 ; Lazzez et al., 2008 ; Mailer et al., 2010 ; Varzakas et al., 2010 

) and storage (Li,X et al.,2014; Fregapane et al.,2006 and 2013; Migliorini, et 

al.,2013).  

Very few studies have been published that go deeply into the effect of the olive 

variety on the composition of the phenolic profile or the use of chemometrics as a tool 

to classify olive oil varieties according to their geographical origin, although it has 

been suggested by a number of studies (Mateos et al., 2001; Garcia et al., 2001). 

Recent studies have shown that these minor constituents of the olive oil can used in 

the characterization and authentication with respect to geographical origin and 

cultivars (Petrakis et al., 2009 ; Lerma-Garcia et al., 2009; Ocakoglu et al., 2009 ; 

Ouni et al.,2011; Alkan et al.,2012). These studies showed that with the combination 

of specific quantified phenolic compounds, different analytical techniques, in 

conjunction with chemometric analysis, it is possible to obtain a classification system 

which reflects the geographical origin of the olive oils. 

The aim of this study was to establish the use of phenolic profile as a tool for 

the determination of geographical origin, focusing mainly on the discrimination of 
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Maltese olive oil from other extra virgin olive oils (EVOO) derived for other countries 

in the Mediterranean. The classification of olive oil samples according to their 

phenolic profiles was performed by the application of both supervised and 

unsupervised techniques namely principal component analysis (PCA), hierarchical 

cluster analysis (HCA), partial least square regression (PLS) and stepwise linear 

canonical discriminate analysis (SLC-DA). The findings of this study can provide 

ways for the varietal authenticity of Maltese olive oil according to their phenolic 

profiles as the geographical indicators, therefore they can be used in PDO or PGI 

labelling of Maltese EVOOs. The novelty of this study is the development of a strategy 

based on the analysis of the whole phenolic profile in collaboration with multivariate 

analysis. The fingerprint phenolic profile was treated as a continuous form of non-

specific variables which change in terms of absorbance and retention time. The 

identification of phenolic profiled related to the geographical origin of EVOOs through 

the blind analysis of chromatographic profiles has not been previously reported. The 

majority of the research published aims to identify the individual peaks and the 

resulting compounds. The different composition based on the analysis of specific 

quantifiable peaks is currently used in order to assess differences in the phenolic 

profiles.   The novelty about this study was to develop a technique which is able to 

operate on the whole phenolic profile, rather than on distinct peaks (compounds) 

without the need of previous identification of the chemical marker.   

7.1 Application of Univariate Analysis of peaks  
 

In the first part of this study, the use of typical chromatographic data processing 

was employed. The chromatograms were first integrated using Empower and their 

corresponding peak area was obtained, each peak area and its corresponding retention 

time were aligned and subjected to univariate analysis. The purpose of this part of this 

study was to compare the results obtained from the traditional chromatographic data 

handling to the proposed chemometric methods.  

Figure 7.1 shows the major peaks which were obtained - a total number of 28 

peaks. Comparison to the existing literature enabled the identification of more peaks, 

notwithstanding minor changes to the pH of the mobile phase and to the gradient 

elution program. The use of a smaller %v/v of acetic acid in solvent A effects the extent 

of phenolic compound ionisation; under reverse phase conditions, the ionised form is 
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more polar and thus less well retained. Thus the use of less acidic pH ensured that 

phenolic compounds were less ionised in order to increase their interaction time with 

the stationary phase and thus favouring separation. The use of a longer gradient time 

also improved the separation, however this came at the cost of more solvent and longer 

analysis times.  

Peaks were identified (Figure 7.1) on the bases of their retention times in 

comparison to the available standards. In the case of unavailable standards peak 

identification was carried out by comparison of the relative retention time with respect 

to syringic or hydroxytyrosol to those present within the literature. The use of typical 

response parameters, elution patterns and absorption parameters were also taken into 

account in the identification of peaks where standards were not available. However a 

total number of 9 peaks were still not identified - the future use of UPLC-MS/MS 

should enable both the identification of the unknown peaks obtained and confirm the 

identity of peaks which were identified via the relative retention times (Appendix 19 

shows the preliminary work which was done).  Quantification of the individual peaks 

is currently carried out and thus statistical analysis presented is given in terms of peak 

areas. The dialdehydic form of elenolic acid linked to tyrosol (p-HPEA-EDA) was 

generally the main phenolic compound followed by the dialdehydic form of elenolic 

acid linked to hydroxytyrosol (3, 4-DHPEA-EDA). p-HPEA-EDA was found in all 

samples analysed whilst 3, 4-DHPEA-EDA was not found and this was mainly 

attributed to its high oxidability and ultimately its degradation. Other derivatives of 

hydroxytyrosol and tyrosol were found in relatively high concentrations including 

oleuropein (3, 4-DHPEA-EA) and ligstroside aglycones (p-HPEA-EA). 
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Peak15* 42.8-43.1 3,4 DHPEA-EDA 
Peak16* 44.7-45.5 Unk1 Hydroxy-decarboxymethyl oleuropein aglycone 
Peak17* 47.3-47.8 p-HPEA-EDA 
Peak18 48.9-49.6 Cinnamic Acid/Acetoxypinoresinol  
Peak19 51.7-52.3 Pinoresinol 
Peak20 53.1-53.5 Luteolin 
Peak21 53.8-54.1 Unk3 Decarboxymethyl-ligstroside aglycone 
Peak22 54.5-55.5 3,4 DHPEA-EA 
Peak23 56.7-57.3 Unk4 Hydroxy-decarboxymethyl-ligstroside aglycone 
Peak24 57.6-58.3 p-HPEA-EA 
Peak25 59.0-61.0 Unk6  
Peak26 61.5-62.1 Unk7 10-Hydroxy-oleuropein aglycone 
Peak27 62.5-62.8 Unk8  
Peak28* 63.4-64.3 Unk9 Aldehydic form of oleuropein aglycone 
Peak29 65.5-66.6 Unk10 

 

 

 

 

    

 

 

 

 

 

 Figure 7.1: Phenolic chromatogram observed at 280 nm obtained for all the monocultivar EVOOs studied 
different colours represent olive oils derived from different geographical origin.  Black = Indigenous Maltese 
cultivars; Green = Foreign cultivars which are locally grown; Red = Italian cultivars Blue = Greece origin; 
Purple= French origin and Yellow = Spanish origin. The peaks are labelled accordingly and identified in the 
table.  
   

Peak1 3.0-3.45 Gallic Acid/ Quinic Acid 
Peak2 4.0-4.27 Hydroxytyrosol 
Peak3 4.9-5.06 Protocatechuic acid 
Peak4 5.3-5.9 2,4-hydroxyphenlyethanol 
Peak5 7.0-7.51 Syringic Acid 
Peak6* 8.89-9.0 p-coumaric acid 
Peak7 10.9-11.5 Vanillin 
Peak8 11.8-12.2 o-coumaric acid 
Peak9 13.1-13.6 Ferulic acid 
Peak10* 14.8-15.2 Tyrosol Acetate 
Peak12 19.2-19.9 3- methoxycinnamic acid 
Peak13 24.9-25.5 Verbascoside 
Peak14 39.1-41.0 Oleuropein  
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The main simple phenols found in the EVOO were hydroxytyrosol and tyrosol; 

from all the samples tested the presence of the oxidised corresponding hydroxyphenyl 

acetic acid was not found. Chlorogenic acid, first reported to occur in leaves of Olea 

europaea, was found for the first time in olives by Ryan et al. (2002) and was later 

confirmed by Vinha et al., 2005 and Dagdelen et al., 2013. Other phenolic acids 

including p-hydroxybenzoic, o-coumaric, hydroxy caffeic, p-hydroxyphenylacetic, 

and syringic acids synaptic, were very low and in the majority of cases undetectable 

which is consistent with reports by other authors for other olive oil varieties (Baldioli 

et al., 1999, Gómez et al., 2002, Montedoro et al., 1992, Gómez-Alonso et al., 2002). 

Although these phenolic acids have been found in literature, these were not found in 

this study mainly due to the different extraction procedure which was carried out.  The 

use of solid phase extraction over the conventional liquid-liquid extraction could have 

caused the loss of some phenolic acids, especially during the washing step involving 

the 85:15 hexane/ethyl acetate mix.  

  In general the concentration of tyrosol was higher than that of hydroxytyrosol 

and was found in all of the samples analysed. These results are similar to those reported 

by several authors for other olive oil varieties (Tsimidou et al., 1992; Baldioli et al., 

1999; De Stefano et al., 1999 and Gómez et al., 2002). The tyrosol/ hydroxytyrosol 

ratio was very similar to extra virgin olive oils obtained from other Mediterranean 

countries. The reason for the wide distribution of these two phenols is attributed to the 

partial hydrolysis of their derivatives releasing hydroxytyrosol and tyrosol (Montedoro 

et al., 1992; Cinquanta, et al., 1997). In addition, the higher antioxidant activity of 

hydroxytyrosol when compared to tyrosol (Papadopoulos et al., 1991) makes it more 

susceptible to degradation and disappearance.  

The presence of pinoresinol and acetoxypinoresinol could not be fully identified 

furthermore the presence of trans-cinnamic acid was found to coelute with 1-

acetoxypinoresinol. According to Owen et al. (2000) these compounds are the main 

components of the phenolic fraction which is derived from the olive seed as they are 

practically absent from the pulp, leaves, and therefore their presence in the oil must be 

due to breaking of the pits when the olives are crushed. The presence of these 

compounds could be potentially be used as an index of the crushing conditions and of 

the fruit pulp/seed ratio during olive processing as suggested by (Gómez-Alonso et 



 Results and Discussion   

169 
 

al.,2002). With respect to luteolin and apigenin, the flavone compounds were 

identified in the majority of the samples in substantial amounts.  

Table 7.1: Peak areas and their corresponding compounds which were found to vary significantly under 
ANOVA statistical test across the three classes of EVOOs studied.  

 

 Peak6 
p-coumaric 
acid  

Peak10 
Tyrosol 
Acetate 

Peak15 
3,4 DHPEA-
EDA 

Peak16 
Unk1  

Peak17 
p-HPEA-
EDA 

Peak28 
Unk9 

Indigenous 3.81x1005a 1.20x1005a 2.62x1006a 1.81x1006a 1.56x1006a 1.00x1006a 
Local 9.80x1005b 3.57x1004c 4.27x1006b 2.12x1006b 1.37x1005c 6.26x1005b 
Foreign 9.30x1004 a* 2.95x1004c 1.16x1006a 8.57x1005b* 1.23x1005c 2.84x1005b 

 

Superscript letters in the same column represent statistically distinct homogeneous subsets as 
determined by ANOVA post hoc Tukey analysis at a 5% confidence level, same letters followed by 
an * indicate homogeneous subsets at 10% confidence level 

 

The application of univariate statistical analysis on the distinct peak areas showed 

a significant difference in the concentration of individual compounds between the 

different EVOO’s derived from different geographical locations. Table 7.1 illustrates 

the peaks which showed a significant difference under the application of ANOVA, 

Tukey post hoc hypothesis testing for the analysis of variance within the between the 

different groups is also shown. The results obtained showed that EVOOs derived from 

locally grown cultivars and indigenous cultivars had a significantly higher 

concentration of p-coumaric acid when compared to EVOOs derived from other 

Mediterranean countries, the observation was significant at the 95% confidence level 

when comparing local to foreign EVOO and significant at the 90% confidence level 

when comparing the indigenous to the foreign EVOOs.  

 

In the case of tyrosol acetate EVOOs derived from indigenous cultivars had a 

significantly higher concentration when compared to EVOOs derived from both 

foreign and imported cultivars. Similar results were obtained on comparing the content 

of the unknown peak 1 which was tentatively assigned as hydroxy-decarboxymethyl 

oleuropein aglycone; unknown peak 9 (tentatively identified as aldehydic form of 

oleuropein aglycone) and 3, 4-DHPEA- EA.  

 

In the case of p-HPEA-EDA it was found that the EVOOs derived from imported 

cultivars had a significantly higher concentration when compared to both the EVOOs 

derived from indigenous cultivars and foreign grown cultivars. It is quite difficult to 
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compare the results of phenolic concentrations provided by different studies owing to 

the great variety of factors which affect the individual components of phenolic 

compounds present in EVOO including genetic, pedo-climatic, geographical origin, 

agronomic and technological factors. El Riachy et al., 2012 showed that the influence 

of the genotype seems to be greater than that of the ripening index and interaction on 

both total phenols content and individual phenols content was the main contributor for 

the spatial separation of the different cultivars, however certain compounds including 

tyrosol, luteolin and apigenin were not affected by neither the genotype nor the index 

maturity. Similar results further confirmed that the genotype is the main contributor 

for the phenolic difference have been observed by Montedoro and Garofolo, 1984 and 

Brenes et al., 1999. On the other hand Skevin et al. (2003) showed that ripeness of 

olive fruits exerts greater effect than cultivars on the total phenolic profile of olive oils. 

The differences among the cultivars was significant only at the initial stages of 

ripening, when the phenolic content was higher, than at the end of the ripening process, 

when the differences between the cultivars were not significant. This decrease was 

most likely correlated with the increased activity of hydrolytic enzymes observed 

during ripening which alters both the total phenolic content and the individual phenol 

concentration.  

 

The evolution of individual phenols throughout the ripening period of olive fruits 

has been studied by several authors. The decrease in the 3, 4-DHPEA-EDA is 

generally accompanied by an increase in hydroxytyrosol content with ripening, which 

is attributed to gradual hydrolysis of oleuropein first to the aglycone form and then, to 

hydroxytyrosol (Brenes et al., 1999; Baccouri et al., 2008; Jemai et al., 2009). 

However, other studies have shown that both 3, 4-DHPEA-EDA and hydroxytyrosol 

decreased during ripening (Morelló et al., 2004; Damak et al., 2008). This is due to 

polymerization reactions which transform these two compounds into phenolic 

oligomers, as described by Cardoso et al. (2006). Phenolic acids have also been found 

to vary with respect to the degree of ripeness with a general decrease in sinapic and o-

coumaric acids, and an increase in the contents of p-coumaric and syringic acids. From 

the results obtained the high concentration of p-coumaric acid present in the 

indigenous cultivars and the imported cultivars compared to foreign EVOOs might be 

due to difference in ripening stages of the different olives, however the differences in 

the ripening stages does not explain the significantly higher concentration of 3,4-
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DHPEA-EA in the indigenous cultivars but not imported cultivars. The significantly 

higher concentrations of 3, 4-DHPEA-EA, hydroxy-decarboxymethyl oleuropein 

aglycone and aldehydic form of oleuropein aglycone in the indigenous cultivars can 

only be attributed to a combination of the genotype and pedo-climatic factors.  

 

The significantly higher concentration of 3, 4 DHPEA-EDA, p-HPEA-EDA, 

secoiridoid compounds present in the indigenous cultivars has very important 

implications. Secoiridoid compounds are not soluble in oil and, after the process of 

mechanical extraction, only a small portion is recovered in the oil, and thus it can be 

assumed that since the oils were extracted by the same mechanical process. The 

concentration of these compounds within the actual drupe is higher in the indigenous 

cultivars than both the imported cultivars and foreign grown cultivars.   These 

compounds also contribute to the quality of olive oil influencing the oil oxidative 

stability (Servili et al., 2004) and the organoleptic properties, being responsible for 

bitter and pungency sensory. Several authors suggested that secoiridoid derivatives of 

oleuropein and demethyloleuropein such as 3, 4-DHPEA-EDA and 3, 4-DHPEA-EA 

are the main contributors to VOO bitterness (García et al., 2001; Kiritsakis, 1998). 

Tovar et al. (2001) moreover showed a strong correlation between the bitter and 

pungent tasty notes and the p-HPEA-ED. Andrewes et al., 2003 concluded that the p-

HPEA-EDA is the phenolic compound solely responsible for the majority of the 

burning-pungent tasty note in EVOO.  

 

On the other hand the antioxidant activity determined by Rancimat test, which 

evaluates the time (hours) of resistance of the oil samples exposed to a stream of dry 

air at a temperature of 120 °C to oxidation, showed that 3,4-DHPEA, 3,4-DHPEA-

EDA and 3,4-DHPEA-EA possess much higher antioxidant activity than p-HPEA and 

- tocopherol (Baldioli et al.,1996). Artajo et al., 2006 showed that 3, 4-dihydroxy and 

3, 4, 5-trihydroxy structures linked to an aromatic ring such as oleuropein, 3, 4-

DHPEA-EDA, and the methylated form of 3, 4-DHPEA-EA are the main functional 

groups responsible for the antioxidant activity of these compounds. Although in this 

study it was shown that the antioxidant activity of the phenolic fractions derived from 

indigenous and imported EVOOs were significantly lower than the foreign EVOOs , 

this does not imply that the effective shelf-life of the Maltese EVOO’s would be 

shorter. As previously stated, similar to the determination of phenolic compound the 
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methodologies employed do not reflect the actual matrix in which the phenolic 

compounds are found. Furthermore these methods are oversimplified as they tend to 

oversensitive to certain classes of phenolic compounds.  Obied et al.,(2007) showed 

that linear structured phenolic compounds found in olive mill waste, such as 

hydroxytyrosol acylclodihydroelenolate, are more efficient radical scavengers than 

3,4-DHPEA and oleuropein. This was attributed to the linear structure which makes it 

more accessible to the sterically hindered DPPH radical (Obied et al.,2007). 

Furthermore, even though it was observed that the Maltese indigenous cultivars had a 

significantly higher concentration of tyrosol acetate, the observed antioxidant activity 

was still very low. Studies done by Chen et al., 2013 showed that tyrosol acetate had 

a significantly lower antioxidant activity towards ABTS FRAP and DPPH when 

compared to tyrosol. The derivatization of tyrosol effectively lowers its antioxidant 

behaviour however in the same study it was shown that tyrosol acetate had comparable 

and sometimes even higher antiosteoporotic effects than tyrosol. These results can be 

explained in terms of compound bioavailability, increased lipophilicity of tyrosol 

acetate increased its cellular uptake and membrane crossing abilities (Grasso et al., 

2007). 

  



 Results and Discussion   

173 
 

7.2 Statistical correlation between phenolic compounds, microtiter 
assays and antioxidant activity. 

 

Comparison to the results obtained by the microtiter assays using Folin-

Ciocalteu reagent, it was found that total phenolic content obtained from these assays 

does not necessarily reflect the phenolic profile of the EVOOs. It was shown that 

indigenous cultivars had a significantly higher concentration of certain phenolic 

compounds when compared to EVOOs derived from imported and foreign cultivars. 

The determination of phenolic compounds by Folin-Ciocalteu only measures the 

number of potentially oxidizable phenolic groups. The number of phenolic groups per 

molecule will vary greatly both within and among different phenolic compound 

classes, thus this method is subject to both over and underestimation of phenolic 

classes. The use of Folin-Ciocalteu provides a very useful index for phenolic content, 

but it would not be expected to correlate with the actual weight of the individual classes 

of phenolics compounds present.   

From the correlation analysis shown in Figure 7.2 it can be seen that total 

phenolic flavonoid and o-diphenolic content showed a significant positive correlation 

with respect to a number of different distinct peaks namely, peak 23 (Unk 4, Hydroxy-

decarboxymethyl-ligstroside aglycone), peak 24 (Unk 5), and peak 20 (p-HPEA-EA) 

however a significantly negative correlation was found with respect to peak 15 (p-

HPEA-EDA) and peak 28 (Aldehydic form of oleuropein aglycone) for TPC and TdPC 

and peak 6  (p-coumaric acid) with respect to TFC and TdPC.  Peak 23 also showed a 

significantly high positive correlation with the observed total antioxidant activity (R2= 

0.685 p-value <0.05) whilst the ferric reducing activity of the phenolic extracts seems 

to be more positively correlated with the presence of minor phenolic acids present 

synaptic acid (R2= 0.545 p-value < 0.05). The nitrous oxide radical scavenging activity 

was found to be significantly moderately correlated to the peak 21 (Unk 3 

Decarboxymethyl-ligstroside aglycone R2 = 0.419 p=value < 0.05).  

The observed antioxidant activity was also significantly negatively correlated 

to number of peaks depend on the antioxidant assay used. The total antioxidant activity 

and ferric reducing activity were found to be negatively correlated to the peak 6 (p-

coumaric acid) (R2= -0.5612 and -0.532 respectively and p-value < 0.05 for both), the 

nitrous oxides scavenging activity was only negatively correlated to peak 10 (tyrosol 
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acetate R2= -0.352, p-value < 0.05). These results suggest that the observed antioxidant 

activity is dependent on the concentrations of different compounds furthermore the 

results obtained illustrate the existence of both synergistic and antagonistic 

interactions of phenolic compounds found in olive oil phenolic extracts which are 

dependent on the antioxidant activity assay.  

The combinations of antioxidants can result in larger overall effects compared 

to the effect expected from a simple addition of the effects of the individual 

antioxidants entailing synergism (Uri, 1961). Several studies have shown that plant 

polyphenols have a synergistic effect with other antioxidants present in plant material 

(Graversen et al., 2008; Miller and Rice-Evans, 1996; Roberts and Gordon, 2003). 

Several hypotheses have been proposed in order to explain synergistic and antagonistic 

effects of antioxidant compounds in both their pure state and in extracts. Peyrat 

Maillard and others (2003) proposed that synergism in a combination of a weak 

antioxidant and strong antioxidant can occur, whereby the weak antioxidant may 

restore the strong antioxidant, improving overall radical quenching ability of the 

combination. Conversely, antagonism may be explained by the regenerating the weak 

antioxidant from the strong antioxidant, which in turn reduces the radical scavenging 

activity.  Other hypothesises proposed to explain the interactions of antioxidants are 

based on changes in the rate reaction, polarity, and the effective concentration of the 

antioxidants at the site of oxidation (Frankel et al., 1994; Koga and Terao, 1995; 

Cuvelier et al., 2000).  

 
 

Figure 7.2: Heat map comparing on the Pearson’s correlation R2 value obtained on comparing the individual 
peaks to the microtiter assays. A positive correlation is shown as red shades, whilst a negative correlation is 
shown as blue shades, the intensity of the colour represents the strength of the correlation. No correlation is 
shown as a grey shade.   
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Figure 7.3: Scatter plot showing the most significant correlations observed on comparing the individual peak 
areas to the observed phenolic content obtained by microtiter plate assays     
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7.3 Statistical correlation between phenolic compounds  
 

Considering the data set formed by comparing the peak areas of the individual 

phenolic compounds in the different monovarietal EVOOs used, a Pearson 

correlational analysis was carried out to find statistical correlations between the 

individual phenolic compounds. Few studies have focused on correlation analysis 

among phenolic compounds present in VOO. Pérez et al., 2014 studied the relationship 

among four groups of phenols in VOOs from Picual/Arbequina crosses. However, this 

statistical evaluation has not been applied to different monovarietal VOOs. The recent 

study conducted by Sánchez de Medina et al., 2015 applied the use of correlation 

analysis for EVOOs phenolic compounds derived from seven Spanish cultivars 

analysed by LC-MS/MS. In the present work, several correlations were found between 

pairs of phenols with p-value < 0.05 and correlation coefficient R2 >0.60, which are 

indicative of at least a moderate relationship between them.  

A significant positive correlation (R2= 0.632 p-value = 0.02) was found 

between the amount of gallic acid and protocatechuic acid in the phenolic extracts. 

These correlations could be tentatively explained according to the main pathways 

involved in the biosynthesis of phenolic compounds. Multiple studies have suggested 

the presence of two potential pathways for gallic acid synthesis (Figure 7.4). It could 

either be formed from phenylalanine or from an initial shikimate intermediate via the 

3-dehydroshikimate (3-DHS) (Neish et al., 1964; Kato et al., 1968). However, the 

carboxylic group of gallic acid has been found to be biosynthetically equivalent to the 

carboxylic group of shikimate, rather than to the phenylalanine side chain (Werner et 

al., 2004). This suggests that gallic acid is formed from 3-DHS (Werner et al.,2004; 

Ossipov et al.,2003) either by direct dehydrogenation or via protocatechuic acid as an 

intermediate (Kambourakis et al.,2000).  
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Figure 7.4: Propose biosynthetic pathway linking protocatechuic acid and gallic acid. The biosynthetic 
pathway illustrated 3-DHS as the primary compound which is oxidised to -dicarbonyl species which is then 
reduced back to protocatechuic acid and ultimately to gallic acid.  

 

3-dehydroshikimate (3-DHS)   -dicarbonyl species     protocatechuic acid               gallic acid 
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Furthermore it was observed that protocatechuic acid was significantly 

positively correlated (R2= 0.616 p-value 0.03) to 3-Hydroxy-4-methoxycinnamic acid. 

3-Hydroxy-4-methoxycinnamic acid can be transformed into hydroxybenzoic acids 

via a first conversion to the glucose esters which serve as activated intermediates in 

the side chain shortening reaction (Funk and Brodelius, 1990).  
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Figure 7.5: Propose biosynthetic pathway linking protocatechuic acid and 3-Hydroxy-4-methoxycinnamic 
acid. The 3-Hydroxy-4-methoxycinnamic acid undergoes chain shorting reactions via the formation of 
glycoside, which results in the formation of isovanillic acid intermediate. The hydroxybenzoic acid is tend 
transformed to protocatechuic acid. 
 

A significantly positive correlation (R2= 0.602 p-value 0.001) was observed 

between ferulic acid and the verbascoside content in the EVOOs phenolic fraction. 

This correlation suggests that the two compounds share a common biosynthetic 

pathway. Verbascoside is a complex ester composed of hydroxytyrosol, caffeic 

acid and the sugar alpha-L-rhamnopyranosyl. The presence of the caffeic acid moiety 

with the molecule suggests that the biosynthesis of verbascoside requires the presence 

of phenolic acids. However both caffeic and ferulic acid share the same biosynthetic 

pathway. Caffeic acid is biosynthesized by hydroxylation of the coumaroyl ester 

of quinic acid, which in turn is formed from the caffeic acid ester of shikimic acid, 

which converts to chlorogenic acid. The latter acts as the precursor for the formation 

of ferulic acid catalysed by the enzyme caffeic acid-O-methyltransferase (Boerjan et 

al., 2003). Figure 7.6 shows the proposed biosynthetic pathway linking the production 

of ferulic acid and verbascoside.  

 

 

              3-Hydroxy-4-methoxycinnamic acid       Glycoside Intermediate                      isovanillic acid          protocatechuic acid 
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Figure 7.6: Simplified pathway for verbascoside biosynthesis, showing the links between the phenolic acids, 
simple phenols and verbascoside (modified after Ellis, 1983; Saimaru and Orihara, 2010; Alipieva et al., 
2014). 

 

Apart from ferulic acid, verbascoside was found to be positively correlated 

(R2= 0.795 p-value < 0.01 ) to peak 16 which was assigned as hydroxy-

decarboxymethyl oleuropein aglycone. Although the two are not structurally related, 

it is proposed that since the two molecules share the same hydroxytyrosol side group, 

the two molecules are dependent on the rate of biosynthesis of hydroxytyrosol. In the 

case of verbascoside the biosynthesis begins with the generation of phenylalanine and 

tyrosine precursors by the shikimate pathway. The hydroxytyrosol moiety of 

verbascoside and hydroxy-decarboxymethyl oleuropein aglycone is biosynthesized 

from tyrosine either through tyramine and/or dopamine (Ellis, 1983). There was no 

significant correlation between verbascoside and hydroxy-decarboxymethyl 

oleuropein aglycone to the amount of free hydroxytyrosol present within the EVOOs 

phenolic extracts. This is because the presence of free hydroxytyrosol is the result of 

the degradation of a multitude of compounds which contain hydroxytyrosol as a 
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moiety and no single molecule can be attribute to be the sole source of hydroxytyrosol 

within the phenolic fraction.  

A significant positive correlation was observed in a number of identified 

secoiridoids, oleuropein and unidentified peak 24, identified as 3, 4 DHPEA-EDA 

(R2= 0.668 p-value 0.021), p-HPEA-EDA and hydroxy-decarboxymethyl oleuropein 

aglycone (R2= 0.614 p-value 0.034), p-HPEA-EA and decarboxymethyl-ligstroside 

aglycone (R2 = 0.699 p-value < 0.01). The observed correlation can be explained in 

terms of both the biosynthesis of phenolic compounds within the olive fruit and in 

terms of their degradative pathways during olive oil production.  

The synthesis of oleosides and ligstroside into oleuropein derivatives involve 

a hydroxylation step (Damtoft, et al., 1996). This process is quite active at the early 

stages of fruit maturation, which is dominated by high concentration of oleuropein. 

During the ripening stages, as well as during crushing and malaxation of olive fruits 

during oil production, the release of β-glucosidases degrades the glycoside to the 

aglycones,  forming  ligstroside and oleuropein aglycones (p-HPEA-EA and 3,4-

DHPEA- EA) (Ryan et al.,2002 ). Demethyloleuropein derived from the esterase 

activity may also act as a substrate for endogenous β-glucosidases. The aglycones 

which are formed are then hydrolyzed by action of a decarboxymethylase, which via 

a ring opening reaction, forms the dialdehydic form of secoiridoids (p-HPEA-EDA 

and 3,4-DHPEA- EDA) or else the corresponding dihydroxy open ring form. In the 

presence of an aprotic solvent the dialdehydic form of secoiridoids undergoes keto-

enol tautomerism, forming the more stable corresponding aldehydic form. These 

biosynthetic pathways tentatively justify the positive correlation found for the different 

secoiridoid forms identified in this study. Similar results were observed by Sánchez de 

Medina et al., (2015) who showed a strong positive correlation between p-HPEA-EA 

and 3,4-DHPEA-EA (R2= 0.93) as well as between p-HPEA-EDA and 3,4- DHPEA-

EDA (R2 =0.89, p-value). The lower correlation values obtained in this study were 

attributed to the different methodologies.  
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Figure 7.7: Synthesis of oleosides and ligstroside into oleuropein and ligstroside derivatives via enzymatic 
hydrolysis.  (*) indicates the presence of chiral carbons within the molecule.  
  

R = OH: Oleuropein glycoside 
R=H: Ligstroside glycoside  

R = OH: Oleuropein aglycone: 3, 4-DHPEA- EA 
R=H: Ligstroside aglycone: p-HPEA-EA 

R = OH: 3, 4-DHPEA- EA carboxilade dihydroxly open ring 
R=H:  p-HPEA-EA carboxilade dihydroxly open ring 

R = OH: 3, 4-DHPEA- EA carboxilade dialdehydic open ring 
R=H:  p-HPEA-EA carboxilade dialdehydic open ring 

R = OH: 3, 4-DHPEA- EA closed ring carboxilade aldehyic 
R=H:  p-HPEA-EA closed ring carboxilade aldehyic open ring 

R = OH: 3, 4-DHPEA- EA carboxilade dialdehydic open ring enol 
form  
R=H:  p-HPEA-EA carboxilade dialdehydic open ring enol form 
 

R = OH: 3, 4-DHPEA- EA methoxy-carboxilade Aldehydic open ring  
R=H:  p-HPEA-EA methoxy carboxilade Aldehydic open ring  
 

* 

* 
* 

* 
* 

* 

* 
* 

* * 

* 
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7.4 Chemometric analysis of Phenolic profiles  
 

Since the proposed strategy was based on the application of blind multivariate 

analysis of chromatographic profiles, areas of chromatographic peaks were not 

integrated, however assignment of the peaks to its corresponding available standards 

and relative retention times to those quoted in the literature was carried out as 

presented in the sections before. 

 A minimum of 30 resolved peaks were observed including, hydroxytyrosol, 4-

hydroxybenzoic acid, tyrosol, 2,3-dihydroxybenzoic acid, caffeic acid, vanillic acid, 

vanillin, syringic acid, p-coumaric acid, ferulic acid, cinnamic acid, elenolic acid, 

apigenin and luteolin were identified. It is well known that sensorial perception of 

olive oils is determined by the phenolic composition. Although this study does not aim 

to generate a tasting perception panel for the Maltese EVOO’s it is known that the 

‘Bidni’ has a more pungent bitter taste whilst the ‘Bajda’ has a more fruity sweeter 

taste.  According to Kiritsakis, (1998) amongst all phenols, hydroxytyrosol, tyrosol, 

caffeic acid, coumaric acid, and p-hydroxybenzoic acid exhibit the greatest effect on 

the sensory characteristics of olive oil. Bitterness is closely related to the presence of 

oleuropein and ligstroside derivatives (Andrewes et al. 2003 ; Cerretani et al. 2008 ; 

Gutiérrez-Rosales et al. 2003 ; Mateos et al. 2004 ; Siliani et al. 2006 ; Esti et al. 2009 

).  The difference in the sensorial perception of bitterness and astringency is derived 

from the presence of catecholic groups present within the phenolic molecules and there 

interaction with the salivary proteins. Nevertheless there are studies (Favati et al., 

1995) which suggest that the bitterness and astringency do not always coincide with 

the total polar phenol content.  

Figure 7.9 shows the major identified peaks, however due to the unavailability of 

standards some of the peaks were not identified. Preliminary assessment of the 

chromatographic profile already indicated a variation in the amount of different 

compounds present within EVOOs of the Maltese origin; these are marked with an 

arrow on Figure 7.9. Although these differences would directly discriminate between 

the local EVOO’s and the foreign it was chosen to subject the data to a subsequent 

chemometric treatment, in order to attain a more holistic less biased analysis. 
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Figure 7.8: HPLC chromatogram of olive oil phenolic fraction observed at 280 nm (Top) 
and 320 nm (Bottom) different colours represent olive oils derived from different 
geographical origin.  Black = Indigenous Maltese cultivars; Green = Foreign cultivars 
which are locally grown; Red = Italian cultivars Blue = Greece origin; Purple= French 
origin and Yellow = Spanish origin 
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7.4.1 Preliminary data handling 
 

The extracted data for each phenolic profile consisted of 48000 variables. Due to 

this large number of variables preliminary data treatment was necessary in order to 

reduce the amount of data, while at the same time retaining the maximum information. 

The data was subjected to four different kinds of variable reduction techniques. The 

first one involved the integration of maximum peak heights at specific time intervals 

across all the cultivars phenolic profile followed by the removal of redundant peaks 

corresponding to the injection and the post equilibration peaks. This preliminary data 

treatment reduced the phenolic profile to a more manageable 310 variables. Although 

this huge change in variable numbers might give the impression of huge data loss, this 

was not case, in fact this data type reduction technique not only reduced the number 

of variables and retained the same phenolic profile but also compensated for small 

changes in the retention times and lowered the baseline which is typically associated 

with a gradient flow. Thus such data reduction methodology allowed one to reduce the 

data and synchronise retention times before applying the multivariate chemometric 

approach.  

Data reduction is an essential step in building a pattern recognition technique as it 

is generally not statistically accepted that the number of variables exceed the number 

of samples. Since the present work involves a profile study, the number of variables is 

much larger than the number of objects and therefore, three other different strategies 

were considered to achieve a reduction in the dimensionality of the data and to remove 

redundant variables. In the first attempt, SLC-DA was performed in order to select the 

number of significant most discriminatory variables. A second attempt was done by 

the application of PLS to select the most suitable variables in order to optimize the 

discrimination and correct classification. In the third step a combination of the two 

techniques was employed whereby variables which had both a VIP>0.8 and a p-value 

< 0.05 in the SLC-DA were used.  The data was bucketed into different buckets in 

order to determine which bucket was the most discriminatory. The phenolic profiles 

observed at 280 nm and 320 nm were bucketed into five different buckets. The three 

remaining data reduction techniques were applied on each bucket and then recombined 

in order to obtain a reduced highly discriminatory phenolic chromatogram. 
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7.4.2 Phenolic profile preliminary assessment.   
 

 Figure 7.10 shows the principal component analysis on the preliminary 

unbucketed chromatograms obtained at 280 nm and 320 nm. The results obtained 

showed a spatial clustering resembling the geographical origin of   EVOO, the biplot 

obtained explained 46.7% and 54.3% of the total variability respectively. From the 

loading score plots, it was shown that retention times between 43-72 min were the 

most responsible for the observed variation between the phenolic profiles observed at 

280 nm. This region of the chromatogram corresponded to peaks related to the least 

hydrophilic phenolic constituents present in olive oil. These correspond to oleuropein 

aglycones and ligstroside aglycone and their corresponding derivatives, however due 

to the complexity and possible isomers, peak identification was not fully possible. In 

the case of the phenolic chromatograms observed at 320 nm, spatial distribution was 

dependent on a number of different peaks mainly those obtained at a retention time 

(Rt) of 9 minutes which had the highest separatory power in the 1st principal 

component, which explained 39.9% of the total 54.3% variability explained. Peaks 

obtained between 43-64 minutes seemed to also provide a high degree of variation in 

the chromatogram observed at 320 nm in both the 1st and the 2nd principal component. 

The strong peak obtained at Rt 9min was attributed to p-coumaric acid; unlike other 

phenolic acids, which are easily observed at 280 nm, p-coumaric acid displays a 

second absorption maxima 320 nm. This bathochromic shift is attributed to the 3-

methoxy and 4-hydroxy group. The compounds present between Rt 43-64 min 

correspond to flavonoids mainly luteolin, apigenin and their corresponding glycosides, 

together with lignans, mainly pinoresinol and acetoxypinoresinol, and other oleuropein 

and ligstroside derivatives including 3, 4 DHPEA-EDA and their corresponding 

glycoside.   

The application of canonical discriminant analysis showed that use of this 

supervised technique enabled the complete discrimination between the EVOO’s of 

different geographical origin. The X-Y fit on the scores obtained from the 1st canonical 

function which corresponded to 68.7% and 97.7% of the total variability explained for 

the phenolic chromatograms observed at 280 and 320 nm respectively, showed that in 

the former case the EVOOs derived from foreign cultivars were completely 

discriminated from those cultivars which are locally grown, however at the 1st 

canonical function the chromatograms obtained at 280 nm did not manage to fully 
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Canonical [1] 97.7% 

discriminate between the indigenous and the locally grown cultivars. On the other hand 

the high % variability explained in the chromatograms observed at 320 nm is reflected 

in its ability to fully discriminate between the three different classes.   
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Figure 7.9: Preliminary chemometric analysis of phenolic profiles obtained from HPLC chromatogram at 
280 nm (Left column) and 320 nm (Right column) different marker and colours represent olive oils derived 
from different geographical origin.  Black () = Indigenous Maltese cultivars; Green (*) = imported cultivars; 
Red (+) = foreign.  Summary of the chemometric analysis include PCA biplot (1st row) PCA variable score 
plot (2nd row), CDA biplot (3rd row) and One way ANOVA plot on the canonical scores (4th row), highlighting 
clustering and discrimination of the different monocultivar olive oils based on their phenolic profile.  
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Figure 7.10 shows the hierarchal cluster analysis done on the chromatograms, 

without any previous variable selection. Although clusters were observed these did not 

reflect the geographical origins of the EVOOs and thus a variable selection procedure 

was carried out. Variable selection procedures enable the determination of the most 

discriminate variables, those which are able improve the classification which 

resembles the geographical origin.  

 

 

280 nm 320 nm 

 

Figure 7.10: Cluster analysis of phenolic profiles obtained from HPLC chromatogram at 
280 nm (Left column) and 320 nm (Right column) different colours represent olive oils 
derived from different geographical origin.  Black () = Indigenous Maltese cultivars; 
Green (*) = imported cultivars; Red (+) = foreign. The spectral heatmap represent the 
intensities at the corresponding wavelength varying across the chromatogram.     
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Figure 7.11 and Figure 7.12 shows the subdivision of the chromatograms 

obtained into the different buckets, each bucket was subjected to both supervised and 

unsupervised chemometric techniques. From the results obtained it was shown that the 

3rd bucket which corresponded to peaks observed between 20-42 minutes was the least 

informative in both the chromatograms observed at 280 nm and 320 nm. The PCA 

obtained showed very little spatial separation between the different samples 

furthermore the X-Y fit score plot of the 1st canonical function did not manage to fully 

separate between the indigenous cultivars and the imported cultivars. In the case of the 

5th bucket for the chromatograms observed at 280 nm, the X-Y fit score plot of the 1st 

canonical function did not manage to fully separate between the imported cultivars and 

the foreign cultivars however the PCA showed distinct spatial clustering resembling 

the geographical origin of EVOOs. From the results obtained using both the PCA and 

CDA, it was shown that 4th 1st and 5th bucket correspondingly seem to be more 

informative buckets for the clustering and discrimination of samples, based on the 

phenolic profiles observed at 280 nm. These data buckets were chosen on the bases of 

the % variability explained in 1st and 2nd PC, 1st canonical function and the low Wilk’s 

lambda value.  
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Figure 7.11: The HPLC chromatogram at 280nm bucketed into 5 data bucket (rows), 
each data bucket was subjected to individual chemometric analysis in order to 
determine which part of the chromatogram offered the highest discriminatory 
power. PCA (2nd column), SL-CDA (3rd column) and X-Y Fit on Canonical Scores 
obtained from the 1st canonical function (4th column) were carried out on the 
individual buckets. Indigenous Maltese cultivars (Black  ); imported cultivars 
(Green *); Foreign cultivars (Red +). 
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Figure 7.12: The HPLC chromatogram at 280 nm bucketed into 5 data bucket (rows), 
each data bucket was subjected to individual chemometric analysis in order to determine 
which part of the chromatogram offered the highest discriminatory power. PCA (2nd 
column), SLC-DA (3rd column) and X-Y Fit on Canonical Scores obtained from the 1st 
canonical function (4th column) were carried out on the individual buckets. Indigenous 
Maltese cultivars (Black  ); imported cultivars (Green *); Foreign cultivars (Red +). 
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Comparing the data buckets of the phenolic profiles observed at 320 nm, all of the 

five buckets managed to explain a higher % variability in the 1st and 2nd principal 

component. However once again it was shown that the 3rd bucket was the least 

informative as very little spatial clustering was observed, and furthermore it was the 

only data bucket which at 320 nm did not manage to fully discriminate between the 

local indigenous and imported cultivars at the 1st canonical function. The results 

suggest that whilst the rest of the data bucket are highly discriminatory in the 

determination of geographical origin the 3rd bucket contains phenolic compounds 

which are either present in very low concentration or whose presence does not reflect 

the geographical location and tend to be more cultivar selective, however such a 

hypothesis requires further testing.    

7.4.3 Application of PLS  
 

The application of PLS analysis was used in order to determine a regression 

model built using the phenolic chromatograms and the geographical origin of the 

EVOOs. PLS was applied to the individual buckets and to the whole chromatogram, 

using two different validation methods. The first validation method, the leave one out, 

was integrated within the software used, the second cross-validation method was done 

externally, whereby 40% of the observations were forcefully omitted. The PLS model 

was built on the remaining 60% of the observations and later cross-validated against 

the omitted data. The overall % misclassified for both the cross-validation are 

represented in Table 7.2. In the PLS model, goodness of fit was also assessed in terms 

of the number of factors extracted, the % of variability explained in terms of X and Y 

and the predicted root mean square error (PRESS). The ideal model should have a 

small number of extracted factors, and a high % of variability explained coupled with 

a low PRESS, however model overfitting needs to be assessed. In this study model 

overfitting was avoided by the use of two different cross-validation techniques.  
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Table 7.2: PLS compiled statistical data obtained from the analysis of the whole chromatogram obtained at 
280 nm (top) and 320 nm (bottom) using two validation methods; indicating the number of extracted factors 
in the PLS which had the lowest Root Mean PRESS (predicted residual sum of squares), the % variation 
and the % misclassified observations.   

 

Analysis of the results obtained from Table 7.2 show that data buckets obtained 

from the phenolic chromatogram observed at 280 nm exhibited minor differences in 

the % of variability explained in terms of X and Y. Furthermore the % classification 

did not change on changing the cross-validation method. This suggests that the 

regression models built for each bucket did not show any form of overfitting. Contrary 

to what was expected it was found that the 3rd bucket had the highest % variability 

explained and the lowest % misclassification from all the buckets obtained at 280 nm. 

Similarly the 3rd bucket observed at 320 nm showed 0% misclassification under the 

internal validation method however, this was a case of model overfitting as % 

misclassifications drastically increased on using the external cross-validation method.   

The 2nd and 4th bucket had comparable % misclassifications to those obtained on 

analysing the full chromatogram at 320 nm under both cross-validation methods with 

the 2nd bucket being the most promising.  However, from the results obtained none of 

the buckets seemed to be more informative than the whole chromatogram, neither 

those obtained at 280 and 320 nm, irrelevant of the cross-validation method used.  This 

suggests that data buckets for the analysis of phenolic profiles is not justified, and the 

whole chromatogram must be taken in consideration. Furthermore this suggests that it 

is not just one peak or a small number of peaks which are able to discriminate between 

EVOOs of different geographical origins but it is the multitude of signals obtained 

Internal Validation Whole Data Set at 280nm 
Data Bucket No. Factors % X % Y PRESS % 

Misclassified 
1st  3-10 min 2 42.85 58.14 0.902 17.5 
2nd 10-20 min 3 49.95 46.99 0.942 20 
3rd  20-42 min 7 89.94 68.34 0.895 10 
4th 42-56 min 2 65.33 32.7 0.977 30 
5th 56-70 min 1 34.05 30.71 0.921 30 
6th 70-80 min 2 59.28 43.1 0.873 22.5 

Full 2 43.96 55.66 0.817 9.76* 
External Validation Whole Data Set at 280nm 

Data Bucket No. Factors % X % Y PRESS % 
Misclassified 

1st 3-10 min 2 44.31 64.86 0.81 17.5 
2nd 10-20 min 3 38.75 53.14 0.941 20 
3rd 20-42 min 4 76.57 57.92 0.898 10 
4th 42-56 min 2 65.96 35.13 0.963 30 
5th 56-70 min 3 60.39 55.65 0.884 30 
6th 70-80 min 8 94.05 84.67 0.717 22.5 

Full 4 58.96 84.25 0.766 7.50* 
 

External Validation Whole Data Set at 320nm 
Data 

Bucket No. Factors % X % Y PRESS % 
Misclassified 

1st 3-10 min 1 42.25 49.22 0.788 20 
2nd 10-20 min 10 95.41 49.22 0.909 0.0* 
3rd 20-42 min 14 98.16 89.16 0.876 0.0* 
4th 42-56 min 6 86.55 81.59 0.763 8.9 
5th 56-72 min 1 30.22 30.5 0.907 20 

Full 5 67.84 86.31 0.741 2.22* 
External Validation Whole Data Set at 320nm 

Data 
Bucket No. Factors % X % Y PRESS % 

Misclassified 
1st 3-10 min 1 38.47 53.32 0.753 20 

2nd 10-20 min 13 99.11 94.23 1.018 6.67* 
3rd 20-42 min 1 43.02 15.86 1.009 22.22 
4th 42-56 min 5 84.73 84.86 0.652 6.67* 
5th 56-72 min 1 84.72 29.9 0.943 17.77 

Full 5 68.08 91.56 0.835 4.44* 
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across the whole chromatogram which enables the best classification and provides the 

possibility of geographical discrimination.   

PLS analysis was repeated once again using only variables which had a VIP 

larger than 0.8. The results obtained in Table 3.8 showed an improvement in the 

majority of the buckets, in both the % variability explained in terms of X and Y and in 

the % of misclassification for both the cross-validation methods. The improvement in 

the regression analysis was also extended to the whole chromatogram analysis 

obtained at 280 nm. The adjusted PLS analysis did not show any significant 

improvement when the whole chromatogram obtained at 320 nm was considered. This 

suggests that in the latter case PLS analysis without variable selection was sufficient 

in the identification of EVOO’s using the phenolic chromatograms obtained at 320 

nm, indicating that the chromatograms obtained at 320 nm are the most informative 

and require minimal variable selection procedures. Analysis of the individual buckets 

showed that the 5th bucket observed at 280 nm provided the lowest % of 

misclassification under the two cross-validation methods used. Similarly the 1st and 

the 4th buckets observed at 320 nm seemed to be most informative in the discrimination 

of EVOOs. However, data bucketing with regards to chromatographic data was still 

not justified as none of the buckets achieved a lower misclassification rate than the 

whole chromatogram.   

  Figure 7.13 shows the VIP which were selected in the analysis of the adjusted 

PLS analysis, using these selected variables the PCA showed a slight improvement in 

the % of variance explained in the 1st and 2nd principal component. This shows that 

although the number of variables were reduced the PCA did not change as the same 

spatial distribution of the clusters was obtained. The increased in the % variance 

further indicates that the removed variables were not significantly affecting the 

variation of the EVOOs and consequently these variables were ignored as they were 

redundant.          



 Results and Discussion   

193 
 

Table 7.3: PLS compiled statistical data obtained from the analysis using only the VIP>0.8 chromatogram 
obtained at 280 nm and at 320 nm using two validation methods; indicating the number of extracted factors 
in the PLS which had the lowest PRESS, % variation and the % misclassified observations.   

 

 

 
 

  
 

Figure 7.13: (Left) Red points indicate the variables which were had a VIP> 0.8 during the PLS analysis of 
chromatograms obtained at 280 nm. The selected variables were then subjected to PCA (Right) showing 
clustering of the different monocultivar olive oils based on the PLS selected variables.  Indigenous Maltese 
cultivars (Black ); imported cultivars (Green *); Foreign cultivars (Red +).  
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Internal Validation Using VIP’s 280nm 
Data Bucket No. Factors % X % Y PRESS % 

Misclassified 
1st 3-10min 2 54.43 56.21 0.849 17.5 

2nd 10-20min 3 59.16 49.68 0.877 20 
3rd 20-42min 7 94.37 68.1 0.822 7.5 
4th 42-56min 2 68.72 35 0.922 25 
5th 56-70min 4 65.31 61.38 1.074 7.5* 
6th 70-80min 2 71.5 43.98 0.876 22.5 

Full 4 60.45 80.21 0.727 2.5 
External Validation Using VIP’s 280nm 

Data Bucket No. Factors % X % Y PRESS % 
Misclassified 

1st 3-10min 2 53.69 63.8 0.824 17.5 
2nd 10-20min 3 55.3 51.94 0.921 17.5 
3rd 20-42min 7 95.19 70.53 0.905 12.5 
4th 42-56min 2 69.53 36.1 0.938 25 
5th 56-70min 4 66.06 64.64 0.957 7.5* 
6th 70-80min 2 82.39 67.89 0.747 7.5 

Full 4 62.52 83.92 0.703 5* 

Internal Validation Using VIP’s 320nm 
Data Bucket No. Factors % X % Y PRESS % Misclassified 

1st 3-10min 9 97.16 83.79 0.861 2.22* 
2nd 10-20min 9 96.33 81.93 0.866 2.22 
3rd 20-42min 2 68.97 43.49 0.871 20 
4th 42-56min 6 87.68 78.22 0.779 8.89 
5th 56-72min 4 69.68 64.77 0.84 11.11 

Full 5 72.78 86.9 0.651 2.22 
External Validation Using VIP’s 320nm 

Data Bucket No. Factors % X % Y PRESS % Misclassified 
1st 3-10min 7 94.07 86.12 0.691 6.66* 

2nd 10-20min 1 42.13 30.18 1.05 24.44 
3rd 20-42min 1 48.51 17.36 1.011 22.22 
4th 42-56min 5 84.73 85.12 0.673 8.88* 
5th 56-72min 1 38.95 29.68 0.947 17.77 

Full 5 73.17 91.41 0.811 4.44* 
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7.4.4 Application of SLC-DA 
 

Since the result obtained from the preliminary variable selection analysis did not 

justify the use of data buckets for the analysis of phenolic chromatograms, variable 

selection using SLC-DA was carried out on the full chromatogram. 

 Figure 7.14 shows the variables which were selected during the SLC-DA. The 

application of SLC-DA enabled the identification of which Rt were the most 

discriminate. These Rt were selected on the basis of their ability to minimize the 

Wilks’ lambda, λw. In the stepwise algorithm a predictor is selected when the reduction 

of λw produced after its inclusion in the model exceeds the entrance threshold of a test 

of comparison of variances or F‐test. Variables were selected on the bases of F Ratio 

and Prob>F given, variables which have the lowest p-value for the Prob>F and the 

highest F-ratio are the first to be selected. The entrance of a new predictor modifies 

the significance of those predictors, which are already present in the model and those 

which are not yet included in the model. The process terminates when there are no 

predictors entering or being eliminated from the model so that the all the remaining 

variables will have an F Ratio and Prob>F equivalent to 0 and 1 respectively.  

Similar to the PLS, VIP scores, the SLC-DA eliminates redundant variables, 

however PCA analysis revealed a slight reduction in the % of variability explained by 

the 1st and 2nd principal component. This was attributed to a lower amount of variables 

which were selected during the SLC-DA causing an inevitable loss in the explained 

variation. SLC-DA had a pronounced increase in the spatial clustering of samples at 

280 nm, but this spatial separation was less prominent in the chromatograms observed 

at 320 nm.  This observation further corroborated the analysis of hierarchal cluster 

analysis which showed a significant improvement when compared to the cluster 

analysis obtained without variable selection (Figure 7.11).    
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Chromatogram at 280 nm Chromatogram at 320 nm 

  

  

  
 
Figure 7.14: Variables selection using SLC-DA (1st row) for the chromatograms obtained at 280 nm (Left) 
and 320 nm (Right). PCA (2nd row) showing clustering of the different monocultivar olive oils based on the 
SLC-DA selected variables. The clustering concordant to the origin of olive oils was further confirmed by 
hierarchical cluster analysis using Ward's minimum variance method 
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Application of PLS analysis on the variables selected only from the SLC-DA 

for the phenolic chromatogram observed at 280 nm showed a lower % 

misclassification, when compared to both the non-pre-treated data set and to the 

reduced data set containing only VIP>0.8, whilst no significant improvement was 

found in the phenolic chromatogram observed at 320 nm. These observations further 

confirm that chromatograms observed at 320 nm are the most informative and require 

minimal variable selection procedures. 

Combining the variable selection process obtained from both the PLS and 

SLC-DA it was shown that the subsequent application of unsupervised statistical 

techniques namely PCA and HCA showed a notable improvement both in the spatial 

separation and clustering resembling the true geographical origin but also in the % of 

variability explained in terms of 1st and 2nd PC.  

 

In the case of the phenolic chromatograms obtained at 280 nm the PCA 

managed to explain a total of 54% variability compared to the full chromatogram 

(46.7%), VIPs (51.0%) only and SLC-DA (41.0%) variables only, furthermore the 

spatial separation between the different origins was highly improved. However in the 

case of phenolic chromatograms obtained at 320 nm the application of PLS and SLC-

DA common variables did not show any improvement on the % variability explained 

in the PCA (54.0%) compared to the untreated chromatogram (54.3), VIPs (55.8%) 

and SLC-DA (52.3%) selected variables only.  

 

HCA on the chromatograms observed at 280 nm showed almost a complete 

spatial clustering of the EVOO’s which resembles their geographical origins. The 

HCA cluster analysis also shows minor clustering which reflects the cultivar from 

which the EVOO was derived and the geographical location. These results further 

confirm that the phenolic profile is the result of a very complex multivariate interaction 

between genotype and environmental factors (Montedoro and Garofolo, 1984; Lavee 

and Wodner, 1991). In fact, drastic variability between cultivars was recorded by 

Baccouri O. et al.,2007; Montedoro et al.,2007; Tura et al.,2007; Baccouri et al.,2008; 

Issaoui et al.,2010, similarly by several environmental factors can considerable effect 

EVOO phenolic profile (Yousfi et al.,2006; Baccouri et al.,2007; Damak et al.,2008; 
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Gómez-Rico et al.,2008).  Comparing the cluster analyses for the chromatographic 

data obtained at 280 nm and 320 nm, the results suggest that compounds which absorb 

at 280 nm have a greater potential in the discrimination of both the EVOOs producing 

cultivar and the geographical origin.  The application of PLS regression showed no 

significant improvement in the % misclassification in comparison to the results 

obtained on using variables selected from PLS and from SLC-DA. This was attributed 

to the inevitable loss of variables.  

Table 7.4: PLS compiled statistical data obtained from the analysis using SLC-DA variables for 
chromatograms obtained 280 nm and 320 nm using two validation methods; indicating the number of 
extracted factors which had the lowest PRESS, % variation and the % misclassified observations.  The 
goodness of fit was determine by the van der Voet T2 and the Prob > van der Voet T2 

 
 SLC-DA PLS and SLC-DA 

 
280 nm 320 nm 280 nm 320 nm 

Internal External Internal External Internal External Internal External 
No. Factors 15 15 15 15 3 3 5 3 

% X 91.86 93.52 91.86 93.52 63.99 58.59 72.62 57.46 
% Y 98.63 99.52 98.63 99.52 74.39 73.79 87.48 78.85 

PRESS 0.826 0.993 0.826 0.993 0.810 0.806 0.618 0.698 
VVT2 0.00 4.75 0.00 4.75 5.68 0.00 0.00 0.00 

p> VVT2 1.00 0.05 1.00 0.05 0.05 1.00 1.00 1.00 
% Misclassified 0.0 2.5 0.0 2.5 2.5 5.0 5.0 2.5 
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Chromatogram at 280 nm Chromatogram at 320 nm 

  

  

  
 

Figure 7.15: Variables selection using common variables selected from both PLS and SLC-DA (1st row) for 
the chromatograms obtained at 280 nm (Left) and 320 nm (Right). PCA (2nd row) showing clustering of the 
different monocultivar olive oils based on the SLC-DA selected variables. The clustering concordant to the 
origin of olive oils was further confirmed by hierarchical cluster analysis using Ward's minimum variance 
method 
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8. Application of Fourier Transform Middle Infra-Red 
Attenuated Total Reflectance (FT-MIR-ATR) analysis for the 
determination of the geographical origin of olive oil. 

 

 Vibrational molecular spectroscopy techniques, including FT-Raman, FT- IR 

and NIR, are emerging analytical techniques that have shown great potential in the 

determination of adulterant concentrations (Rohman & Che Man, 2012), fatty acid and 

triacylglycerols composition (Galtier et al., 2008; Inarejos-Carcía et al., 2013), 

oxidised fatty acids (Lerma-García, Simó-Alfonso, Bendini, & Cerretani, 2011), 

sensory characteristics, phenolic and volatile compounds (Lerma-García et al., 2011), 

geographical and botanical origins (Lerma- Garcia, Ramis-Ramos, Herrero-Martinez, 

& Simo-Alfonso, 2010) as well as providing insights into the overall quality of olive 

oil including peroxide value (Bendini, Cerretani, Carrasco-Pancorbo, et al., 2007; 

Bendini, Cerretani, Di virgilio, et al., 2007) and acidity (Lerma-García et al., 2011).  

These techniques  tend to be used in conjunction with  chemometric procedures which 

enable both the identification and quantification of adulterants and quality parameters, 

but also enable classification of virgin olive oils according to their geographical and 

botanical origins ( Baeten et al., 1996, 1998 ; Marigheto et al., 1998 ; Bertran et al., 

2000 ; Mannina et al., 2001 ; Downey et al., 2003 ; Marquez et al., 2005 ; Yang et al., 

2005 ; Wang et al., 2006 ). Thus, FTIR spectroscopy combined with chemometric 

methods offers non-destructive techniques which enable direct and fast determination 

of different properties of EVOO’s in particular when it is used in conjunction with 

Attenuated Total Reflectance (ATR), which enables direct measurement without any 

form of sample pre-treatment (Pasquini, 2003). 

The aim of this part of the study was to use FTIR–ATR spectroscopy associated 

with chemometrics in order to differentiate the Maltese EVOO’s from other EVOO’s 

derived from other countries within the Mediterranean region, thus developing a quick, 

easy and cost-saving verification of the origin of EVOOs from the Maltese islands, 

which is a key aspect of  the path for the application of protected designation of origin. 

In this study, the spectroscopic data were processed both by a discriminant 

chemometric tools including PLS, SVM, and LDA but also using modelling 

chemometric tools such as SIMCA and PNN. Moreover, different forms of signal 

pretreatment were employed in order to enhance the potential of FTIR as a tool for 

authentication purposes. 
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8.1  MIR peak identification  
 

The FTIR spectra of the majority of vegetable oils in the MIR region display a 

high degree of similarity, since the majority of the plant oils are mainly composed of 

triacylglycerols together with di- and monoacylglycerols, which constitute up to 90–

95% by weight of the oils, the remaining 5% include minor components including 

waxes, sterols, and plant secondary metabolites. The vast majority of the research 

carried out throughout the years has been focused on the authentication using FTIR 

and chemometric tools, to detect and quantify refined seed oils, added fraudulently to 

EVOOs. There is very small amount of research which involves the use of NIRS for 

the determination of both the botanic origin and the geographical origin of EVOO’s.   

 

  

 

Figure 8.1: The major peaks of interest obtained using FTIR of EVOOs 

 

Figure 8.1 shows a typical EVOO NIR spectrum, the maxima obtained at an 

absorbance of 3006 cm-1is attributed to the stretching vibration of (=C–H) of oleic acid 

acyl groups and linoleic and linolenic acyl groups.  The strong band absorptions 

observed in the region of 3000-2800 cm-1corresponds to the (-C–H) stretching 

vibrations of methylene (–CH2–) and methyl (–CH3) groups which are observed at 

frequencies of 2922 and 2853 cm−1, respectively. The bending vibrations of the 

methylene and methyl groups are observed at 1465 cm-1and 1377 cm-1,which 

correspond to C=H scissors deformation vibration and bending vibration of CH2 
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groups respectively. The sharp intense peak around 1740 cm-1 is attributed to the 

presence of carbonyl groups which corresponds to the (-C=O) double bond stretching 

vibration of the ester carbonyl functional group of the triglycerides. The medium 

intensity peaks observed at 1160.74 cm-1 and 1236.86 cm-1 is assigned to the vibration 

of the C-O ester groups and CH2 groups respectively. Small intensity peaks observed 

at 1117 cm -1 are associated with the stretching vibration of the C-O ester group. The 

low-intensity peak observed at 722 cm-1 correspond to the cis-CH=CH– bending out 

of plane. (Guillen and Cabo, 1997; Lerma-Garcia et al., 2010). 

 

8.3 Application of chemometrics to Middle Infra-Red Spectra  
 

As previously stated the aim of this study was to build reliable classification 

models for the traceability of EVOOs from Malta by coupling near-infrared 

spectroscopic techniques and chemometrics. To this purpose, MIR spectra of olive oil 

samples from the Maltese islands and from other Mediterranean countries were 

collected as described in Section 2.2.1 and analyzed as described in Section 2.2.6.3. In 

order to obtain spectral fingerprints corresponding to the origin of the sample, 

discriminant (PLS, LDA) and modelling (SIMCA, PNN) classification approaches 

were used and compared.  

 

8.3.1 Unsupervised chemometric techniques – PCA 
 

Different kinds of spectral pretreatments were tested and compared in order to 

overcome the instrumental limitation and account for scattering and other minor 

variations which would hinder the performance of the classification models. A total of 

12 spectral pretreatment methods were used, in each case, after pretreatment a 

principal component analysis was carried in order to dimensionally reduce the number 

of variables into a small set of principal components whilst retaining the information 

of the larger set. PCA enabled the preliminary identification of which pre-treatment 

method offered the highest variability and possible clustering.  Figure 8.2 shows the 

different forms of spectral pretreatments employed and the corresponding PCA plot 

for the first two principal components.  From the % variability explained it was found 

that 5 points smoothing enhanced the variability explained by the 1st principal 
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component when compared to the ATR correction. This was attributed to the improved 

signal to noise ratio especially in the 1550-1650 cm-1 region, thus this observation 

justified the use of smoothing prior to other spectral pre-treatment methods. Whilst the 

other spectral pretreatment methods displayed an improvement in the variability 

explained after smoothing, quantile normalization (QN), multiplicative scatter 

correction (MSC), and Standard Normal Variate (SNV) showed a lower % variability 

when compared to the basic ATR correction and smoothing. In the case of QN, this 

was expected as, unlike the other pretreatment methods it aims to achieve the same 

distribution of intensities of all spectra, making it not particularly useful when dealing 

with spectra of a continuous nature.   
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Figure 8.2: FTIR spectral transformations and the corresponding PCA biplot obtained. EVOOs of Maltese 
origin are represent as black dots whilst non-Maltese EVOOs are represented as red squares. 

 

The next step was to divide the whole dataset into training and test sets (the 

former to build the model, the latter to validate it). In order to preserve the diversity in 

the training and test sets and to account for the fact that different pretreatments had to 

be tested a unique sample splitting scheme was required. The following method was 

adopted in order to cover as such variation in the two sets and at the same time being 

able to compare the outcomes after the different pretreatments. The Maltese and the 

non-Maltese samples were grouped in an ascending way so that the first 35 samples 

would represent Maltese EVOO’s whilst the rest corresponded to non –Maltese 
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EVOO’s. A stratified random sampling method was used in order to exclude 20% of 

the observations so that they would be retained as the testing set. The remaining 80% 

of the observation were used as to build the training set. Similar studies using FTIR 

employ the use of other statistical methods such as the Duplex algorithm as employed 

by Bevilacqua et al. (2012) was used to split the data set. The Duplex algorithm 

involves the consecutive selection of observations which how the highest 

dissimilarities according to their Euclidean.  

8.3.2 Supervised chemometric techniques – PLS-DA 
 
After splitting the data according to the procedure described above, 

chemometric classification models were built and tested on all the MIR spectral 

pretreatment using a PLS regression algorithm using JMP 10 and its inbuilt leave one 

out cross-validation method (LOOCV). Table 8.1 shows the number of latent variables 

extracted, the predicted root mean square error and the % variation explained in terms 

of X and Y for the different spectral pretreatment methods. The % accuracy (correct 

classification), showed that with the exception of normalization all the other spectral 

treatments had the same effectiveness in correctly classifying the geographical origin 

of EVOOs. Another PLS algorithm was used using only 80% of the data and LOOCV, 

and the obtained regression formula was then used to project the classification of origin 

on the remaining 20% test subset as shown in Table 8.1. From the results obtained it 

was observed that the Savitzky Golay, 1st derivative, MSC, OSC, and detrending 

showed consistently higher explained variation in % Y (the geographical origin), lower 

PRESS and a higher % accuracy and % predictability. On the other hand normalisation 

seem to be negatively affecting the amount of variability of the data, in fact from the 

PCA analysis it was shown that majority of the explained variation was due to the 1st 

PC and very little variation was explained by the remaining components, suggesting 

that normalization reducing the overall variation in the data reducing its ability when 

it comes to the determination of geographical origin of EVOOs.       
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Table 8.1 PLS-DA analysis using the whole FTIR data. (Top) the results obtained using LOOCV on the 
training dataset. (Bottom) the results obtained using LOOCV and 20% of the data as the validation group 

 

FTIR Spectroscopy Whole Data internal validation  

Pre-treatment Latent Variables % X %Y PRESS % Accuracy 

Raw 7 97.65 80.10 0.81 100.00 

Smoothing 1 99.55 80.34 0.80 98.53 

Baseline 15 99.96 91.14 0.74 100.00 

Normalized 1 93.84 2.86 1.01 48.53 
Quantile 

normalized 
8 89.13 86.42 0.81 98.53 

Detrend 15 99.10 99.19 0.54 100.00 

Deresolve 15 99.81 90.39 0.77 100.00 

SNV 15 99.81 96.14 0.61 100.00 

MSC 15 99.84 97.23 0.59 100.00 

OSC 15 99.29 98.32 0.62 100.00 

SG 3 36.46 88.44 0.68 100.00 

1st 3 36.46 88.44 0.68 100.00 

2nd 3 35.87 91.27 0.83 100.00 

FTIR Spectroscopy Whole Data internal validation  

Pre-treatment Latent Variables % X %Y PRESS % Accuracy % Predictability 

Raw 5 96.81 78.09 0.79 92.65 100.00 

Smoothing 15 99.75 69.35 0.73 91.18 100.00 

Baseline 8 99.64 71.49 0.75 89.71 84.62 

Normalized 1 96.04 2.48 1.02 50.00 61.54 
Quantile 

normalized 
5 83.74 68.99 0.88 85.29 92.31 

Detrend 15 99.22 99.62 0.49 94.12 100.00 

Deresolve 15 99.8 95.62 0.71 92.65 100.00 

SNV 9 99.42 79.77 0.68 91.18 100.00 

MSC 15 99.88 98.45 0.65 94.12 100.00 

OSC 15 99.26 99.28 0.56 92.65 100.00 

SG 9 56.73 100 0.65 97.06 100.00 

1st 9 56.73 100 0.65 97.06 100.00 

2nd 13 56.39 100 0.8 92.65 100.00 
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In order to fully interpret the PLS models obtained, an inspection of the VIP 

scores was used in order to determine which predictors (variables) are mainly 

influencing the latent vectors obtained. VIP is an index of how much a single variable 

contributes to the bilinear model and it is scaled in such a way that indices having VIP 

larger than 0.8 are considered to be significantly contributing to discrimination.  VIP 

scores > 0.8 for the PLS models built on the different pretreated MIR data are reported 

in the first column of Figure 8.3.   As shown in the figure, the VIP > 0.8 identified 

relevant features in the spectra, particularly, stretching vibration of (=C–H) of acyl 

groups 3006 cm−1, (-C=O) double bond stretching (around 1700 cm−1) and C-H 

bending in the fingerprint region (650–750 cm−1) appear to be the regions contributing 

the most to the bilinear model. Additionally, C-H stretching (2800–3100 cm−1) and C-

O single bond stretching (1100 cm−1) also show a VIP value significantly larger than 

0.8. The next step was to build another PLS model this time using only variables which 

had a VIP score > 0.8. Table 8.2 shows the results obtained on using the adjusted PLS 

model. Comparing the models obtained using variable selection to that previously 

obtained without any variable selection, no noticeable differences were observed in % 

accuracy and predictability of the model. Nonetheless a lower PRESS was observed 

for the majority of the pretreatments. This observation suggests that in the case of 

ATR-FTIR data no need of extensive variable selection is required to obtain a very 

good classification method with the use of PLS models. 
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Table 8.2 PLS-DA analysis using the VIP>0.8 dataset. (Top) the results obtained using LOOCV on the 
training dataset. (Bottom) the results obtained using LOOCV and 20% of the data as the validation group 

FTIR Spectroscopy VIP > 0.8 Data internal validation  

Pre-treatment Latent Variables % X %Y PRESS % Accuracy 

Raw 5 91.26 75.16 0.86 97.06 

Smoothing 13 99.07 86.92 0.78 100.00 

Baseline 2 98.55 3.77 1 97.06 

Normalized 11 99.72 73.56 0.76 57.35 
Quantile 

normalized 
8 90.11 86.57 0.74 98.53 

Detrend 14 98.67 96.86 0.58 100.00 

Deresolve 15 99.49 88.82 0.73 100.00 

SNV 15 99.59 93.66 0.59 100.00 

MSC 15 99.73 93.27 0.61 100.00 

OSC 15 98.43 99.89 0.13 100.00 

SG 5 46.68 96.62 0.46 100.00 

1st 5 46.68 96.62 0.46 100.00 

2nd 8 61.24 99.96 0.53 100.00 

FTIR Spectroscopy VIP > 0.8 Data internal validation  

Pre-treatment Latent Variables % X %Y PRESS % Accuracy % Predictability 

Raw 5 91.79 78.63 0.85 97.06 100.00 

Smoothing 15 99.29 95.98 0.72 91.18 100.00 

Baseline 1 97.16 2.44 1.01 88.24 84.62 

Normalized 5 82.33 72.38 0.79 50.00 61.54 
Quantile 

normalized 
10 99.72 72.45 0.76 86.76 92.31 

Detrend 14 98.72 98.67 0.46 94.12 100.00 

Deresolve 15 99.53 93.69 0.72 92.65 100.00 

SNV 13 99.59 90.36 0.66 91.18 100.00 

MSC 13 99.67 92.45 0.66 92.65 100.00 

OSC 15 97.85 99.92 0.19 100.00 100.00 

SG 5 43.85 98.65 0.43 98.53 100.00 

1st 5 43.95 98.38 0.43 97.06 100.00 

2nd 8 61.47 99.99 0.53 98.53 100.00 
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8.3.3 Modelling Chemometric techniques – SIMCA 
 
The classification analysis of EVOOs FTIR data was then repeated using a 

modelling approach based on the SIMCA algorithm. The latter is a class modelling 

algorithm that allows the analysis one class at a time. For SIMCA analysis two PCA 

were built for each spectral pretreatment one for the EVOOs of Maltese origin and the 

other one for the EVOOs of non-Maltese origin. In each case, the optimal number of 

principal components were chosen in order to obtain optimal model complexity in 10-

fold row-wise cross-validation. The use of a two-stage model, one for each category,  

allowed the comparison between the two categories, thus this allowed us to check 

whether samples are accepted by one, both or none of the modelled classes. The output 

of SIMCA analysis was assessed by the use of Coomans plot shown in Figure 8.3. 

 A Coomans plot takes the form of a graph where the two axes represent the 

distance of the samples to each of two class models. The horizontal and vertical lines 

corresponding to the threshold distances also known as the significance limit can be 

adjusted up depending on the sensitivity required. One of the major disadvantages of 

using SIMCA is that one has to set a confidence level, α. If the data are normally 

distributed, α % (e.g. 5%) of objects belonging to the class will be considered as not 

belonging to it. For this experiment given that the FTIR data was highly similar and 

no significant difference in variance was observed (PCA analysis revealed no 

significant clustering resembling the origin of EVOOs) the significance limit was 

increased up to 25% rather than the default 5%. These lines (blue) of significance 

divided the Coomans plot into four different regions: the uppermost left and the 

lowermost right will correspond to unmistakeable acceptance by a single category 

model, the lowermost left to acceptance by both classes while the uppermost right to 

rejection by both category models. From a preliminary survey of the Coomans plot 

outcome at the 25% level of significance, very few samples showed an unambiguous 

acceptance by a single category. The SIMCA analysis classified the majority of the 

EVOO’s in the lowermost left part suggesting that the samples were accepted by both 

classes and thus failing to discriminate between the two classes. Thus a diagonal 

(green) line bisecting the plot corresponding to discriminant classification boundary 

was built in order to represent a new significant boundary so that all the samples lying 

above are classified as being Maltese, while samples lying below are predicted as from 

other origins.  
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Figure 8.3: (Left) illustrates the variables which had a VIP score > 0.8 (Red dots) for the different spectra 
pretreatments which were selected for an adjusted PLS-DA and SIMCA. (Right) Coomans plot obtained 
using SIMCA on the selected variables only. The blue dotted lines represent the 25% confidence level whilst 
the green dotted represent the discriminant classification boundary decision boundary employed. 
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Table 8.3: Results obtained for SIMCA modelling for the different spectral pretreatments using the only the 
variables having a VIP > 0.8. The values recorded in the table represent the % sensitivity of the different 
models towards the two classes using the discriminant classification boundary decision boundary.  

 

Application of SIMCA on the VIP>0.8 Data Set  
Pre-

treatment 
%Sensitivity  

Maltese EVOOs 
% Sensitivity 

 Non-Maltese EVOOs 
Overall % Accuracy 

Raw 93.94 88.57 89.66 

Smoothing 72.73 97.14 82.76 

Baseline 81.82 97.14 87.93 

Detrend 78.79 97.14 86.21 

Deresolve 84.85 91.43 86.21 

Normalized 18.18 100.00 53.45 
Quantile 

normalized 
93.94 88.57 89.66 

MSC 90.91 94.29 91.38 

SNV 81.82 91.43 84.48 

OSC 93.94 91.43 91.38 

1st  96.97 100.00 98.28 

2nd  93.94 97.14 94.83 

SG 100.00 100.00 100.00 

 

The results shown in Table 8.3 summarize the classification obtained on using 

SIMCA model using the discriminant classification boundary as the major divider as 

the boundary. Similar to what was observed in the PLS-DA the different pretreatment 

methods have a great effect on the sensitivity of the model. Spectra pretreated using 

MSC, 1st, 2nd and Savitzky Golay derivation showed a consistently higher sensitivity 

towards the Maltese and non-Maltese EVOOs with an overall % accuracy of 91.38, 

98.28, 94.83, and 100.00 % respectively. As observed in the PLS analysis spectra, 

pretreatment using a normalisation procedure showed a very low sensitivity towards 

the Maltese EVOOs (18.18%) as the majority of the Maltese samples were classified 

with the foreign EVOOs, thus although a 100% sensitivity is obtained with regards to 

the non-Maltese samples this value does not take in consideration the Maltese EVOOs 

classified in the same region, a more realistic approach is to take the overall % 

accuracy 53.45%. This suggests that the model obtained seemed to be overfitted and 

thus it is unable to fully discriminate fully the two classes. Comparing the results 

obtained from the two classification models, it was shown that in cross-validation 

methods, the sensitivity obtained from SIMCA model was significantly lower for 

many of the pretreatments considered when compared to PLS-DA counterparts. These 

results corroborate the result obtained by Bevilacqua et al., (2012) whereby it was 
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shown that SIMCA and PLS-DA models have different sensitives in classifying the 

Sabine PDO EVOOs, with SIMCA showing a lower sensitivity. The difference 

between the two model sensitivity was attributed to the fact that the two methods are 

affected in a different way by the shape of class distributions and the presence of high 

leverage points, characteristics that, in turn, can be severely affected by the chosen 

pretreatment (Bevilacqua et al., 2012). However unlike the study carried out by 

Bevilacqua et al., (2012), the trend in the different kind of spectral pretreatments was 

conserved when on a comparison between the SIMCA and PLS-DA.  

In order to obtain a more robust method of classification with the use of a 

smaller number of variables, the VIP data set obtained from the previous analysis was 

subjected to a stepwise linear canonical discriminate analysis SLC-DA. SLC-DA was 

performed on the MIR data from all the pretreatment methods in order to extract only 

a small amount of highly discriminate variables which would enable an easier and 

faster discrimination between the origins of EVOOs. This strategy involved a 

substantial reduction of the dimensionality of the data in such a way that only the 

variables shown in Figure 8.4 were retained. In order to further reduce the number of 

variables selected from the SLC-DA analysis, a minimum of 14 variables was selected 

in order to carry out a conventional LDA. During the SLC-DA the variables were 

chosen by applying a forward stepwise variable selection algorithm using JMP 10 

using a Wilks’ Lambda as a selection criterion and an F-statistic factor to determine 

the significance of the changes in Lambda when the influence of a new variable is 

evaluated. The most significant variables were then extracted and their canonical 

scoring coefficients were plotted as shown in Figure 8.5. The main advantage of using 

SLC-DA over the conventional LDA is the ability to perform a feature selection. 

Regarding this fact, only those variables which helped to improve classification 

performance were used whereas variables without discriminant information were 

discarded. Figure 8.4 shows that the variables selected during SLC-DA for all spectral 

pretreatments were mainly concentrated in the 600-500 cm-1 range which corresponds 

to the C-H bending in the fingerprint region. Shouldering peaks next to the stretching 

vibration of (=C–H) of acyl groups at 3006 cm−1 and (-C=O) double bond stretching 

(around 1700 cm−1) also appear to be the regions contributing the bilinear model. 
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Figure 8.4: (Left) illustrates the variables which were selected in the SLC-DA and had a VIP score > 0.8 (Red 
dots) for the different spectra pretreatments which were selected for an adjusted PLS-DA and SIMCA. 
(Right) Coomans plot obtained using SIMCA on the selected variables only. The blue dotted lines represent 
the 25% confidence level whilst the green dotted represent the discriminant classification boundary decision 
boundary employed.  
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Table 8.4: PLS-DA analysis using common variables selected from both SLC-DA and having a VIP>0.8. 
(Top) the results obtained using LOOCV on the training dataset. (Bottom) the results obtained using 
LOOCV and 20% of the data as the validation group 

 

Once the variables were selected for each spectral pretreatment a PLS-DA 

model was applied in order to determine whether variable selection using the linear 

method provided ways for a better form of classification. Table 8.4 shows the results 

obtained from the PLS using the data set composed of variables which had a VIP score 

> 0.8 and were selected during the SLC-DA analysis. The results show that with the 

exception of the non-treated raw data and normalization the models obtained from 

PLS-DA the % accuracy in the training set was in the range of 100-91% whilst 100% 

FTIR Spectroscopy VIP > 0.8 & SLC-DA Data internal validation  

Pre-treatment Latent Variables % X %Y PRESS % Accuracy 

Raw 10 88.26 86.08 0.89 100.00 

Smoothing 15 99.52 90.06 0.63 100.00 

Baseline 15 96.17 97.80 0.37 100.00 

Normalized 1 89.82 3.14 1.01 52.94 
Quantile 

normalized 
14 99.90 81.72 0.67 100.00 

Detrend 15 99.42 96.26 0.44 100.00 

Deresolve 15 99.75 90.44 0.55 100.00 

SNV 15 99.84 93.29 0.57 100.00 

MSC 13 99.88 92.13 0.48 100.00 

OSC 15 98.84 100.00 0.01 100.00 

SG 15 66.76 99.88 0.10 100.00 

1st 15 66.76 99.88 0.10 100.00 

2nd 15 59.80 99.98 0.05 100.00 

FTIR Spectroscopy VIP > 0.8 & SLC-DA Data internal validation  

Pre-treatment Latent Variables % X %Y PRESS % Accuracy % Predictability 

Raw 4 78.55 66.38 0.99 91.18 84.62 

Smoothing 15 99.59 92.92 0.70 95.59 100.00 

Baseline 1 91.80 2.46 1.01 91.18 100.00 

Normalized 15 96.69 97.83 0.46 52.94 61.54 
Quantile 

normalized 
14 99.94 87.47 0.63 98.53 100.00 

Detrend 15 99.43 98.05 0.44 98.53 100.00 

Deresolve 15 99.78 94.89 0.45 95.59 100.00 

SNV 14 99.86 93.55 0.60 97.06 100.00 

MSC 15 99.94 96.50 0.46 100.00 100.00 

OSC 15 98.88 100.00 0.01 100.00 100.00 

SG 15 68.91 99.86 0.15 100.00 100.00 

1st 15 68.91 99.86 0.15 100.00 100.00 

2nd 15 64.19 99.91 0.16 100.00 100.00 
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accuracy was obtained in the validation set of corrected, suggesting that a variable 

selection using the two techniques greatly improves the modelling power. 

Furthermore, a higher number of latent variables were extracted for the majority of the 

spectral pretreatments resulting in a higher % of variance explained in terms of X and 

Y. A marked decrease in the PRESS was also noted with OSC, 1st, 2nd, and Savitzky 

Golay derivatives having a PRESS lower than 0.2 (Table 8.4), indicating that a very 

strong and robust classification was obtained even when 20% of the data was omitted 

and a leave one out cross-validation was applied.   

Table 8.5 Results obtained for SIMCA modelling for the different spectral pretreatments using the only the 
variables selected using SLC-DA and having a VIP > 0.8. The values recorded in the table represent the % 
sensitivity of the different models towards the two classes using the decision boundary.  

Application of SIMCA on the VIP>0.8 & SLC-DA Data Set  

Pre-treatment 
% Sensitivity  

Maltese EVOOs 
% Sensitivity 

 Non-Maltese EVOOs 
Overall % Accuracy 

Raw 96.97 100.00 98.28 

Smoothing 96.97 91.43 93.10 

Baseline 84.85 91.43 86.21 

Detrend 93.94 88.57 89.66 

Deresolve 75.76 100.00 86.21 

Normalized 18.18 100.00 53.45 

Quantile normalized 100.00 94.29 96.55 

MSC 90.91 94.29 91.38 

SNV 100.00 82.86 89.66 

OSC 93.94 94.29 93.10 

1st  100.00 100.00 100.00 

2nd  100.00 94.29 96.55 

SG 100.00 100.00 100.00 

 

The data sets obtained using common variables selected using the SLC-DA 

algorithm and those having a VIP>0.8 were subjected to SIMCA analysis in order to 

determine whether the reduction of data will improve the classification models 

obtained. Table 8.5 shows the results obtained. Although a higher sensitivity was 

obtained for both classes for the majority of the spectral pretreatments, the results 

obtained using Savitzky Golay and 1st derivative reached a 100% accuracy and 

sensitivity towards the two classes. On comparison with the results obtained by using 

only variables which had a VIP score > 0.8, it was found that spectral pretreatments 

carried out using ATR correction, 5 point smoothing, baseline correction, SNV and 

OSC also showed a marked improvement in the classification carried out using 

SIMCA on variable selected both using SLC-DA and VIP>0.8. These observations 
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suggest that the two-fold variable selection process employed in this study was not 

only able to remove large amounts of redundant data but at the same, it preserved the 

discriminatory power and sensitivity of the variable combinations which are retained.    

8.3.4 Supervised chemometric discriminate analysis techniques – 
LDA 

 
In comparison with SIMCA, LDA avoids the normality problem and 

confidence interval adjustment making it a more reliable method for classification. The 

LDA method employs linear decision boundaries, which are defined in order to 

maximize the ratio of between-class to within-class dispersion (Fisher, 1936). It has 

been successfully applied to a number of classification problems (Gambarra Neto et 

al., 2009; Gori et al., 2012; Riovanto et al., 2011; Sinelli et al., 2010; Souto et al., 

2010). When compared with SIMCA and PLS-DA, the LDA method has the 

disadvantage that the number of training samples must be larger than the number of 

variables included in the LDA model. In order to fully satisfy this constraint a smaller 

number of variables were selected based on the standardized scoring coefficients 

obtained from the SLC-DA. The standardized scoring coefficients of the variable 

selected during the SLC-DA were obtained and plotted as shown in Figure 8.5.  The 

importance of these coefficients lies in their use to compute canonical scores in terms 

of the standardized data often referred to as loadings. They are highly informative 

when it comes to comparing the relative importance in their discriminatory power of 

the independent variables.  

In order to build the LDA, the selected variables obtained in SLC-DA were 

arranged in ascending order in terms of their scoring coefficients. A smaller set of 

variables were selected which consisted of 14 variables which corresponded to the 7 

most positive and 7 most negative standardized scoring coefficients. An LDA was 

carried out on the training set using only the small set of variables which were selected. 

The results obtained for the training samples were visualized on an LDA biplot 

samples as shown in Figure 8.5 whereby each sample was projected as the scores 

obtained for the first two discriminate functions.  
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Figure 8.5: (Left) Bar graph showing the standardised scoring coefficients of the variables selected in the 
SLC-DA for some of the different spectra pretreatments, 14 of which were selected for LDA. Results of the 
LDA are shown on the right, the green dotted lines represent decision boundary.  

 

From Table 8.6, it can be seen that during the training phase the LDA models 

obtained for all the pretreatments ranged from 81-100% accuracy. The classification 

model obtained was then repeated on the testing data set; with the exception of OSC 

and quantile normalization the validation accuracy ranged from 70-100%. From the 

results obtained it was shown that 1st, 2nd and Savitzky Golay derivatisation of the 

spectra had the highest % accuracy in both the training and validation dataset (100% 

for both), these corroborate the results obtained using PLS-DA and SIMCA. In the 

case of normalization spectral pretreatment, a higher rate of % accuracy (100% 

training 95% validation set) was obtained when compared to both the PLS-DA and 
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SIMCA models previously obtained.  In the case of SIMCA pre-treating the spectral 

data so that to become normally distributed samples belonging to one class will be 

considered as not belonging to it due to the inherited loss of variation which the 

normalization procedure causes. The difference also dissent from the fact that in that 

SIMCA is a soft classification method and thus allows a single object to belong to 

more than one class, whilst LDA is a more robust form of classification as the objects 

are either classified in either one or the other class.    

8.3.5 Supervised discriminate chemometric techniques – Support 
Vector Machine (SVM) 

 
The dataset containing only variables which were selected using SLC-DA and 

having a VIP score > 0.8 were subjected to another classification method, known as 

support vector machine (SVM). SVM is similar to PLS and can be used for both 

classification and regression (Christianini and Shawe-Taylor 2000; Vapnik 1995). 

During this part of the experiment, SVM was used in the context of classification. 

Classification methods based on SVM employ the use of linear boundaries which are 

produced between discrete groups in a transformed space. The space in which the 

groups are projected is in terms of the x-variables which is usually of much higher 

dimension than the original space generated by the x-variables. The increase in the 

dimensional space allows the groups to become more linearly separable. The boundary 

(hyperplane) that separates the two classes projected into this higher dimensional space 

is known as the maximum margin classifier. Comparison of SVMs with other 

classification and regression methods has shown that they exhibit mostly good 

performances, although other methods proved to be very competitive (Meyer et al. 

2003). Table 8.6 shows the results obtained on using SVMs using different Kernel 

tricks including radial, polynomial and sigmoidal types however only radial kernel 

tricks seemed to have any significant use for the FTIR data.   

Kernel tricks (functions) were employed in order to account for linearly 

nonseparable classes in which the groups overlap in the transformed space. The kernel 

function allows for modifications in hyperplane in order to increase the sensitivity and 

the configuration of the hyperplane. Unlike PLS-DA and LDA, the SVMs decision 

boundary is mainly oriented at samples that show no clear classification whether they 

belong to one or the other class. Although SVM and Kernel functions seem to provide 

answers for data sets in which the class membership is difficult to obtain, SVMs tend 
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to be more greatly affected by the presence of outliers in the data set causing 

instabilities in model generated, especially if data outliers are used as support vectors 

(Steinwart and Christmann 2008). 

Table 8.6: Comparison of the % accuracy and predictability of LDA models generated and SVM using a 
linear hyperplane and a radial Kernel trick.  

Classification FTIR Spectroscopy VIP>0.8 & SLC-DA Dataset 

 
Pre-treatment 

LDA 
SVM 

Kernel Type Linear Kernel Type Radial 

% 
Accuracy 

% 
Predictability 

% 
Accurac

y 

% 
Predictabilit

y 

% 
Accurac

y 

% 
Predictabilit

y 

Raw 97.92 95.00 100.00 70.00 100.00 80.00 

Smoothing 87.50 70.00 100.00 100.00 89.58 80.00 

Normalized 100.00 95.00 97.92 90.00 95.83 75.00 
Quantile 

normalized 
81.25 65.00 91.67 75.00 97.92 70.00 

Baseline 100.00 85.00 100.00 60.00 100.00 65.00 

Detrend 91.67 85.00 100.00 70.00 93.75 70.00 

Deresolve 100.00 95.00 97.92 65.00 91.67 100.00 

SNV 97.92 85.00 100.00 95.00 100.00 60.00 

MSC 100.00 95.00 100.00 95.00 95.83 90.00 

OSC 83.33 30.00 100.00 80.00 79.17 60.00 

Savitzky Golay 100.00 100.00 100.00 100.00 100.00 95.00 

1st Derivative 100.00 100.00 100.00 100.00 100.00 95.00 

2nd Derivative 100.00 100.00 16.67 35.00 100.00 95.00 

 

 Results obtained from SVM classification are presented in Table 8.6. High 

rates of accuracy and predictability were obtained for the majority of the spectral 

pretreatments further validating that SVM classification is highly adaptable to the kind 

of data used. In the case of linear SVM, the best classification was obtained on using 

5 point smoothing, 1st and Savitzky Golay derivatization techniques as 100% accuracy 

and predictability were obtained. Unlike what was observed in PLS-DA, SIMCA and 

LDA, spectra pretreated with 2nd order derivatisation had the lowest % accuracy in the 

training set (16.17%) and % predictability (35%) when compared to the rest of the 

spectral pretreatments under the linear type SVM. Unlike the rest of the other spectral 

pretreatments, the 2nd order derivatisation showed an increase in accuracy and 

predictability on the use of a radial type Kernel function.  The 2nd order derivatisation 

reach a 100% accuracy and a 95% predictability on the use of a radial type Kernel 

function, suggesting that the group projected in the higher dimensional space cannot 
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be separated using a linear hyperplane but a spherical hyperplane formed from the used 

of the radial Kernel type function.  

8.3.6 Application of hierarchical cluster analysis  
 
 Application of hierarchical cluster analysis using Ward’s method was used on 

the variables selected using SLC-DA and VIP>0.8 for Savitzky Golay derivatization 

which most consistently showed higher rates of % accuracy and % precision. The 

cluster analysis revealed that very few (4 samples) of the EVOOs of Maltese origin 

were classified incorrectly. The dendrogram obtained showed the presence of 3 major 

clusters (marked, Red, Blue and Green), where the red cluster contained exclusively 

EVOO’s of Maltese origin, whilst the Blue and Green clusters contained almost 

exclusively samples of non-Maltese origin. The overlaid data are the standardised  

coefficients obtained from PLS-DA analysis. From the figure it can be seenthat certain 

regions within the spectra are highly variable between the different classes, and such 

variables would contribute more (terms of  coefficient magnitude) to the prediction 

formula. The most informative ranges which enable the highest discrimination 

between EVOOs of Maltese origin from those of non-Maltese origin included 851-922 

cm-1 and  1044 – 1088 cm-1 which fall in the known region (1,500 –900 cm-1) or 

“fingerprint region” because the pattern of the bands is particularly characteristic of 

molecular composition and can be used to identify minor substances.  
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Figure 8.6. Application of hierarchal cluster analysis using Wards methods on the SLC-DA and VIP > 0.8 
variables for the Savitzky Golay spectral pretreatment. The dendrogram shows three major clusters (Red) 
which contained exclusively EVOOs of Maltese origin (0) whilst the Blue and Green cluster contained mainly 
EVOOs of non-Maltese origin (1). (Top) The  coefficient scores obtained from the PLS-DA analysis of the 
selected variables.  
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8.3.7 Whole FTIR modelling using feed-forward predictive artificial 
neural networks.  

 
The use of feed-forward predictive neural networks on the FTIR data as a 

method for classification was assessed using three different forms of validation, 

namely 33.3% of data holdback, CV-10 k-fold and excluded row validation. Artificial 

neural network (ANN) is a mathematical algorithm with the capability of relating the 

input and output parameter, learning from examples through iteration without 

requiring a prior knowledge of the relationships between the process variables (Cevoli 

et al., 2011). The main advantages of ANN are its nonlinearity, allowing better fit to 

the data; noise insensitivity, providing accurate predictions. The algorithm fitted on 

the training set was later tested on the validation data and % predictability of the model 

was obtained. Table 8.7 shows % accuracy and % predictability for the different forms 

of cross-validation. Similar, to what was observed in the PLS-DA and SIMCA, spectra 

treated using normalization had the lowest accuracy and predictability. Conversely the 

results obtained from the Savitzky Golay derivatization had the highest rates of 

accuracy and predictability, when compared to the other spectral pretreatments over 

the different forms of cross-validation used.  

Comparison to the PLS-DA models obtained without any form of variable 

selection (Table 8.2), FF-ANN had a lower performance especially when it comes to 

the testing phase. The lower % precision recorded in the FF-ANN is coherent with a 

number of other studies which showed that PLS-DA has a higher sensitivity and 

performance (Khanmohammadi et al., 2011; Efstathios et al., 2011; Sampson et al., 

2011) when compared to FF-ANN. FF-ANNs work better if they deal with non-linear 

dependence between input and output vectors and generally are more efficient in 

modelling classes separated with non-linear boundaries, however from the 

experimental data it has been shown that FTIR data for the different EVOO origins 

attains a more linearly discrimination as shown by SVM, and LDA results. 

Nonetheless ANN can provide a substantially good corroboration of PLS-DA without 

the excessive need of variable selection.    
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Table 8.7. Results summarizing the FF-PNN model performance with no variable selection for three 
different cross-validation methods. 

 

FF-PNN FTIR Spectroscopy Whole Dataset 

CV Type 
Pre-treatment 

Hold back K-fold Excluded Row 
% 

Accuracy 
% 

Predictability 
% 

Accuracy 
% 

Predictability 
% 

Accuracy 
% 

Predictability 

Raw 100.00 100.00 85.51 92.31 85.51 92.31 
Smoothing 97.10 92.31 97.10 92.31 94.20 76.92 
Normalized 81.16 76.92 91.30 92.31 53.62 61.54 

Quantile normalized 92.75 92.31 100.00 100.00 91.30 92.31 
Baseline 63.77 69.23 98.55 100.00 68.12 69.23 
Detrend 100.00 100.00 98.55 92.31 98.55 92.31 

Deresolve 97.10 97.10 94.20 97.10 97.10 94.20 
SNV 94.20 100.00 100.00 100.00 82.61 84.62 
MSC 98.55 100.00 100.00 100.00 84.06 76.92 
OSC 92.75 61.54 92.75 61.54 95.65 92.31 

Savitzky Golay 95.65 92.31 100.00 100.00 91.30 100.00 
1st Derivative 97.10 100.00 98.55 92.31 98.55 92.31 
2nd Derivative 92.75 92.31 100.00 100.00 97.10 84.62 

 

In conclusion, it was shown that FT-MIR-ATR spectra in conjunction with a 

number of chemometric methods, provided a cheap, fast and reliable way for the 

determination of the geographical origin of EVOOs, especially when it comes to 

discrimination of Maltese EVOOs from non-Maltese EVOOs. From the preliminary 

assessment using only unsupervised PCA models no significant clustering occurred. 

This was attributed to the high levels of similarity between the two classes of EVOOs 

studied. Therefore such a method was deemed to be unsatisfactory when it comes to 

discrimination of geographical origin.  Application of supervised methods of 

classification namely PLS-DA, FF-PNN, LDA and SVM were shown to be highly 

effective in classifying local and non-local EVOOs samples. The use of the variable 

selection methods significantly increased the effectiveness of PLS-DA models when 

compared to no variable selection. FF-ANN, SVM and LDA models were also shown 

to offer similar classification rates to PLS-DA models and thus corroborated the results 

obtained from the PLS-DA models and put confidence in the use of FT-MIR-ATR 

methods in conjunction with spectral transformation for the classification of Maltese 

and foreign EVOOs samples.  
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9 Application of direct infusion mass spectrometry for the 
determination of geographical origin of olive oils 

 
Direct infusion electrospray ionization mass spectrometry (DI-MS) is a fast 

analytical approach in which complex mixtures of different compounds are resolved 

into components differing in ion mass. Traditional methods which are used to establish 

the authenticity of olive oils require the separation and the analysis of a single class of 

compounds which are treated separately from each other. Typical traditional analysis 

ranges from fatty acid profiling (Aranda et al., 2004; Bucci et al., 2002; Caponio, 

Alloggio, and Gomes, 1999; D’Imperio et al., 2007 and many other) to phenolic 

compound profiling (Caponio et al., 1999; Go´mez-Alonso, Salvador, and Fregapane, 

2002; Krichene et al., 2007). All these techniques require the identification and 

resolution of compounds by the use of classical separation methods like GC and 

HPLC. Compared to the above methods DI-MS requires little or no sample preparation 

providing almost instantaneous information about the composition of a given sample, 

without any preliminary chromatographic separation.  

The use of DI-MS has been proposed as a very fast, versatile, reproducible, and 

sensitive technique, which is capable of ionizing a wide range of molecules, especially 

polar ones without the need of chemical derivatization or extraction from the matrix 

(Alves et al., 2010). A number of different studies have been published regarding the 

use of this methodology for seed oil and olive oil authentication (Alves et al., 2010; 

Catharino et al., 2005; Lerma‐García et al., 2008ab and 2011; Goodacre et al., 2002). 

The main aim of this part of the study was to investigate the ability of direct infusion 

electrospray ionization mass spectrometry, without prior chromatographic separation, 

to produce information-rich and informative mass spectra from extra virgin olive oil 

and its application in the determination of geographical origin via the application of 

supervised statistical techniques.  

 

 

 

 



 Results and Discussion   

224 
 

9.1 DI-MS peak identification  
 

 

[M-X]+ m/z [M-X]+ m/z 
OLL + 3K 994 OLn+K-C12 489 

OOO+3K- H2O 986 OO-C12 474 
OLP+2K 972 Ln+K-H2O/ olivil 374 
OOP+2K 937 oleuropein derivative [M-H]+ 366 
LLL+K 916 ligstroside [M-H-glu] 361 

OOO 865 
demethyl ligstroside [M-H-

glu] 
347 

OLL-C10 739 
oleuropein derivative fragment 

[377-CO2]+ 
332 

OLL-C12 712 Olivin [M-H-H2O-CH2O] 326 
OO+2K-H2O 680 Verbascoside( M-H-Rham)+ 316 

OO+2K 672 Ligstroside [[M-H-glc-C4H6O] 292 

OO+K 667 
closed ring carboxilade 

hidroxilade  form –MeOH 
272 

LnLn+K 654 O-H2O 263 

OO/ verbascoside 623 
ligstroside/ oleuropein 

fragment or methoxyluteolin 
fragment 

226 

LnLn 617 
open ring decarboxilade 

aldehydic form 
217 

LnLn-H2O 597 p-coumaric acid 194 
PP-H2O+K 587 Caffeic acid 178 
oleuropein 539 Oleosides 140 

OO-C9 496 tyrosol fragment/ glycerol 94 
 

Figure 9.1. The major peaks of interest obtained using DI-MS of a typical EVOOs.  
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 Figure 9.1 shows a typical DI-MS spectrum of EVOO in methanolic KOH. A 

total of 36 peaks were tentatively identified, full identification using MS2 

fragmentation studies as a confirmatory method for peak identification was not carried 

out, however, it is being proposed as a confirmatory study for a more comprehensive 

method. 

The DI-MS spectrum can be simplified into four regions, the 1000-700 m/z 

range in which different molecular ions corresponding to triglycerides are expected to 

be found. In this region four different triglycerides were identified on the basis of their 

molecular weight and these included, oleic acid triglyceride OOO, oleic acid palmitic 

acid triglyceride OOP, oleic linoleic palmitic acid triglyceride OLP, linoleic acid 

triglyceride LLL, and oleic linoleic acid triglyceride OLL. Although the molecular ion 

corresponding to the exact expected molecular ion was observed for OOO the rest of 

the triglyceride compounds were mainly observed in the combination of potassium 

([LLL+K]+), derived from the methanolic KOH Furthermore, the presence of multiple 

potassium ions in conjunction with the triglycerides was also postulated on the basis 

of  the constituents molecular masses, [OLL + 3K]3+,  [OLP+2K]2+ and [OOP+2K]2+. 

These compounds could not be fully identified due to their metastable nature, whereby 

their existence is attributed to the presence of high degree of unsaturation in the fatty 

acid chain which stabilises the extra positive charges on the molecular ion.  In the case 

of an oleic linoleic acid (OLL 880 m/z), triglycerides fragments corresponding to the 

loss of C10 and C12 were observed at 739 m/z and 712 m/z. This was attributed to the 

combination allylic cleavage without the double bond migration, a typical 

fragmentation pattern displayed by straight chained alkenes of both linoleic and oleic 

acid. Although allylic cleavage without the double bond migration is plausible, alkenes 

can undergo another a major type of fragmentation which leads to alkyl radical loss 

whereby the double bond migrates before fragmentation thus the observed of ions of 

this type have little structural value. The combination of the two forms of 

fragmentation makes the identification of the fragmentation pattern of triglycerides 

fairly complicated and far beyond the scope of the study. Figure 9.2 shows the 

fragmentation pattern for linoleic acid in which the loss of C4 and C11 can occur prior 

to the double bond rearrangement. Figure 9.3 shows the different forms of oleic acid 

double bond migrations undergone in MS conditions giving rise to different 

fragmentation patterns.  
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Figure 9.2. Allylic fragmentation pattern of linoleic acid without double bond rearrangement.  
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Figure 9.3. Allylic fragmentation pattern of oleic acid with double bond rearrangement.  
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The second region of the mass spectrum is the diglyceride region which occurs 

between 680-474 m/z. Similar to what was observed in the triglyceride region, this 

region was dominated by the diglycerides of oleic and linoleic acid, observed both in 

their free form (OO and LL) or else conjugated with single or multiple potassium ions. 

Fragments of the corresponding diglycerides were also observed as C9 and C12 

fragments from oleic acid. Furthermore, the combination of potassium ions and loss 

of water molecules were also observed, however their presence is only tentative. In 

this region two high molecular weight phenolic compounds were identified, these 

included verbascoside and oleuropein, a presence which was also identified during the 

HPLC analysis of the phenolic fraction. Although their abundance was expected to be 

low the DI-MS was able to identify m/z values corresponding to the minor 

unsaponifiable fraction of EVOOs. This was further corroborated in the third region 

(380-220 m/z) of the spectrum which contained almost exclusively phenolic 

compounds and free fatty acids present in EVOOs. In this region of the spectrum the 

most abundant m/z value was obtained at 347 m/z which was tentatively identified as 

linoleic acid monoglyceride derivative, however, the presence of olivil could not be 

dismissed. Olivil is a dilignols which are exudates of the olive fruit responsible for the 

bittersweet taste and acid properties. The presence of this compound was further 

confirmed by the 326 m/z which correspond to olivil fragment after the loss of and 

CHOH.  

Oleuropein and ligstroside derivatives and their corresponding fragments 

dominated this region. Figure 9.4 shows the major forms of these compounds and 

fragments observed. The presence of verbascoside previously identified at 623 m/z 

was further confirmed at 316 m/z which corresponds to the loss of the rhamnose sugar 

moiety. The presence of flavonoid compounds was not very compelling as only a 

tentative fragment observed at 226 m/z was observed corresponding to methoxy 

luteolin. This suggests that under the specified cone voltage flavonoid compounds 

present in EVOOs, namely luteolin and apigenin could not be fully observed as these 

compounds were easy fragmented or masked by more prominent stable mass 

fragments. Minor signals were observed at 299 m/z 285 m/z, and 269n/z which 

correspond to luteolin, apigenin, and methoxy luteolin.  The last region (200-95 m/z) 

of the MS spectrum included the presence of simple phenolic compounds namely 

caffeic and p-coumaric acid together with tyrosol and glycerol as fragments from 
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complex phenolic compounds and glyceride fatty acids respectively. The prominent 

peak observed at 40 m/z was attributed to potassium which was used during the 

experiment.  

m/z Name Compound Structure  

347 
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aglycone 

demethlyated 
derivative 

 
OH
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O OH

OH

O

CH3  

226 
 

After 
rearrangement of 
Decarboxylated 

Form of 
Ligstroside 

aglycon 
 

OH

O

O

O

CH3

OH

OH

OH

O

O

O

OH

OH

CH3

OH

O

O

O

CH3

O

OH

 

272 
 

Closed ring 
carboxilade 

dihydroxilade 
form formed 

after 
rearrangement 

reaction 
 

O

OH

O

OH

OH

O
CH3

O

OH

O

OH

O OH
O

O
CH3

O

OH
O OH

O

O
CH3

O

OH

OH

O

 

366 
266
217 

Open ring 
Decarboxilade 

Aldehydic form 
of Oleuropein 

 
 

OH

O

O

CH3

O
CH3

O

OH

OH

 

361 
292 

Ligstroside 
 [M-H-glu] 

and 
Ligstroside [[M-
H-glc-C4H6O] 

OH

O

O

CH3

OH

O

O

O
CH3

O

OH
H

H
H

H

H

OH

OH
OH

 

326 
Olivin  

[M-H-H2O-
CH2O] 

OH OH O

OH

O
CH3

O
OH

CH3 OH

OH

 

316 
Verbascoside  

( M-H-Rham)+ 

O

OHO

OH

O

O

OH

OH

OH

O OH

O
OH

OHCH3

OH

 

 

Figure 9.4. Phenolic compounds and their corresponding fragments tentatively identified using DI-MS
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9.2 Application of chemometrics to Direct infusion mass spectroscopy 
 

As previously stated the aim of this study was to build reliable classification 

models for the traceability of EVOOs from Malta by coupling electrospray ionization 

direct infusion mass spectroscopy and chemometrics. To this purpose, DI-MS spectra 

of olive oil samples from the Maltese islands and from other Mediterranean countries 

were collected as described in Section 2.2.1 and analyzed as described in Section 

2.2.6.3. To identify the spectral fingerprints corresponding to the origin of the sample, 

discriminant (PLS, LDA) and modelling (SIMCA, PNN) classification approaches 

were used and compared.  

9.2.1 Unsupervised chemometric techniques – PCA 
 

Different kinds of spectral pretreatments were tested and compared in order to 

overcome the instrumental limitation and account for scattering and other minor 

variations which would hinder the performance of the classification models. A total of 

12 spectral pretreatment methods were used, where in each case, after pretreatment a 

principal component analysis was carried. Principal component analysis is a variable 

reduction procedure. Although preliminary variable reduction was carried out in order 

to reduce the amount of data, PCA enables visualization of data in a smaller number 

of principal components (artificial variables). Principal components will account for 

most of the variance in the observed dataset thus avoiding redundancy in original 

variables. The mass spectra obtained are expected to have a very high amount of 

redundancy due to the nature of fragmentation as some of the variables would be 

inheritably correlated with one another. PCA enabled the preliminary identification of 

which pre-treatment method offered the highest variability and possible clustering. 

Figure 9.5 shows the different forms of spectral pretreatments employed and the 

corresponding PCA plot for the first two principal components. 

Preliminary assessment of the score plots obtained for the first two principal 

components and the majority of the spectral pretreatment resulted in a low % 

variability explained. This was attributed to the presence of a high degree of 

redundancy in the MS data, furthermore, mixing the variables (m/z) with a different 

meaning is likely to create blocks of very weak correlations making it difficult for any 

principal component to capture a large share of the variability. In addition, it was found 

that the majority of the observations fell into a straight line on the first principal 
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component suggesting that the first principal component was highly correlated to all 

the variables in the mass spectrum, failing to identify any variations between actual 

peaks and the instrumental noise.  

From the results (see Figure 9.5) obtained it was found that for the raw data, 

baseline correct, resolved and orthogonality corrected spectra a higher % variation was 

explained in the first principal component, furthermore the biplot indicated a sample 

distribution which seemed to be reflecting the geographical origin, as EVOOs of the 

Maltese islands tended to cluster separately from those obtained from other 

Mediterranean countries. Figure 9.5 also shows the loading plots observed for the 

aforementioned data sets. As expected the loading of the first principal component 

seemed to be equally affected by the entire spectrum and failed to pick out peaks of 

relevant importance for the observed variation. However, with the use of higher order 

components 3-7 which were not plotted in Figure 9.5, a pattern resembling the major 

peaks obtained in the MS started to emerge, giving a further confirmation that the use 

of just two components is not enough to describe the variation in the dataset. Data 

obtained using mass spectrometry is highly dimensional, requiring much more than 

two or three PCs to get close to capturing most of the variation making PCA unsuitable 

for such data set.    

Similar to what was carried out in the other techniques, the next step was to 

divide the whole dataset into training and test sets (the former to build the model, the 

latter to validate it). The Maltese and the non-Maltese samples were grouped in an 

ascending way so that the first 15 samples would represent Maltese EVOO’s whilst 

the rest correspond to non –Maltese EVOO’s. A stratified random sampling method 

was used in order to exclude 20% of the observation so that they would be retained as 

the testing set. The remaining 80% of the observation were used as to build the training 

set.  
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Figure 9.5: DI-MS spectral transformations PCA biplot obtained for EVOOs of Maltese origin (black spectra 
and black dots) and non-Maltese (red spectra and red squares) and there corresponding loading plots for 7 
principle components. 231 
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9.2.2 Supervised chemometric techniques – PLS-DA 
 

After splitting the data according to the procedure described above, 

chemometric classification models were built and tested on all the MS spectral 

pretreatment using a PLS regression algorithm using JMP 10 and its inbuilt leave one 

out cross-validation method (LOOCV). Partial least squares regression combines 

features from and generalizes principal component analysis (PCA) and multiple linear 

regression. Its goal is to predict a set of dependent variables (geographical origin) from 

a set of independent variables or predictors (m/z). This prediction is achieved by 

extracting from the predictors a set of orthogonal factors called latent variables which 

have the best predictive power.   

Table 9.1 shows the number of latent variables extracted, the predicted root 

mean square error and the % variation explained in terms of X and Y for the different 

spectral pretreatment methods. Unlike what was observed in other spectroscopic 

methods, with the exception of OSC in all the other spectral pretreatment methods PLS 

managed to extract only one latent variable. Similar to what was observed in PCA 

analysis this was attributed to the high level of data collinearity, making the extraction 

of orthogonal latent variables from the predictors difficult. This is one major limitation 

of PLS, that occurs when the number of predictors is large compared to the number of 

observations, having a singular nature, the regression approach tends to fail. This form 

of data is often referred to the ‘small N large P problem.’ It is typical of recent data 

analysis areas such as bioinformatics and genomics. Several approaches have been 

developed to overcome the multicollinearity problem these included the elimination 

of some predictors through the use of stepwise methods, and the use of ridge regression 

such as called principal component regression (PCR), both of which will be presented 

at a later stage in this study. 

Further indications that the PLS models obtained were not suitable to model 

the entire MS spectrum come from the van der Voet T2 test.  The van der Voet T2 test 

enables the determination of whether the PLS model obtained with a specified number 

of extracted factors differs significantly from a proposed optimum model. The test the 

null hypothesis states that both models have the same predictive ability. From Table 

9.1 it was shown that only models obtained using raw data, deresolve, SNV, MSC and 
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OSC had a probability > van der Voet T2 test p-value > 0.05 indicating that there was 

no significant difference between the model obtained and a proposed optimum model.  

 

Table 9.1 PLS-DA analysis using the whole DI-MS data. (Top) the results obtained using LOOCV on the 
training dataset. (Bottom) the results obtained using LOOCV and 20% of the data as the validation group. 

  DI-ES+ Mass Spectrometry Whole Spectrum Internal Validation   

Pre-treatment Latent Variables % X %Y PRESS T2 p>T2 % Accuracy 

Raw 1 13.54 55.39 0.84 0.00 1.00 93.48 

Normalized 1 3.10 90.06 1.02 2.63 0.10 69.57 

Quantile normalized 1 2.54 93.80 1.02 1.41 0.25 100.00 

Baseline 1 27.51 20.17 1.06 0.63 0.42 100.00 

Detrend 1 3.43 87.71 1.14 3.14 0.09 100.00 

Deresolve 1 36.08 41.23 0.84 0.00 1.00 80.43 

SNV 5 12.40 100.00 1.02 0.00 1.00 100.00 

MSC 2 49.36 37.48 1.01 0.00 1.00 80.43 

OSC 15 56.88 100.00 0.57 0.00 1.00 97.83 

Savitzky Golay 1 3.62 81.27 14.02 4.92 0.20 100.00 

1st Derivative 1 3.51 82.38 1.18 3.51 0.82 97.83 

2nd Derivative 1 3.52 85.87 1.11 1.38 0.25 100.00 

DI-ES+ Mass Spectrometry Whole Spectrum External Validation 

Pre-treatment Latent Variables % X %Y 
PRES

S 
T2 p>T2 % Accuracy % Predictability 

Raw 1 13.54 58.35 0.87 0.00 1.00 93.48 90.00* 

Normalized 1 3.70 90.63 1.19 4.09 0.04 69.57 50.00 

Quantile normalized 1 3.07 93.45 1.12 4.70 0.03 93.48 70.00 

Baseline 1 28.31 24.52 1.03 0.00 1.00 95.65 80.00* 

Detrend 1 4.01 89.00 1.23 4.53 0.02 93.48 70.00 

Deresolve 1 35.85 40.27 0.87 0.00 1.00 82.61 90.00* 

SNV 1 3.24 92.04 1.08 1.25 0.28 95.65 80.00* 

MSC 1 14.90 33.68 1.03 0.00 1.00 76.09 70.00* 

OSC 13 58.17 100.00 0.71 0.00 1.00 95.65 90.00* 

Savitzky Golay 1 9.51 82.71 1.16 2.84 0.02 91.30 70.00 

1st Derivative 1 4.10 84.51 1.24 4.13 0.02 93.48 80.00 

2nd Derivative 1 4.32 88.59 1.08 0.41 0.55 93.48 70.00* 

 

 

From the chosen PLS models obtained which had a probability, > van der Voet 

T2 test p-value > 0.05 the % accuracy (correct classification) obtained in the training 

test ranges from 76-95% with an overall validation accuracy of 70-90%. Of the 

selected PLS models, MS spectra pretreated using OSC had the best performance 

followed by the untreated raw data. This might suggest that rather than improving the 

model performance the application of spectral pretreatment methods on MS data is, in 

fact, hindering the performance of PLS. This could be due to the amplification of 
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multicollinear data during the spectral transformations which aim to increase the signal 

to ratio.   

In order to fully interpret the PLS models obtained, an inspection of the VIP 

scores was used in order to determine which predictors (variables) are mainly 

influencing the latent vectors obtained. VIP is an index of how much a single variable 

contributes to the bilinear model and it is scaled in such a way that indices having VIP 

larger than 0.8 are considered to be significantly contributing to discrimination.  VIP 

scores > 0.8 for the PLS models built on the different pretreated MS data are reported 

in the first column of Figure 9.6.    

As shown in the figure, the VIP > 0.8 identified relevant features in the spectra, 

particularly, peaks which corresponded to previously identified compounds, however 

some noise data was also selected. The next step was to build another PLS model this 

time using only variables which had a VIP score > 0.8. Table 9.2 shows the results 

obtained on using the adjusted PLS model. A marked improvement from the 

previously obtained PLS models was observed indicating that the variable selection 

procedure removed some of the redundant collinear data, enhancing the performance 

of the PLS models. The VIP score is a measure of a variable’s importance in modelling 

both response (geographical origin) and the predictors (m/z). If a variable has a small 

coefficient and a small VIP, then it is a candidate for deletion from the model 

(Wold,1995). A value of 0.8 is generally considered to be a small VIP (Eriksson et al, 

2006) thus it is assumed that variables having a value less than 0.8 are not informative 

and are mainly attributed to noise. 
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Figure 9.6: The variables which had a VIP score > 0.8 (Red dots) for the different spectral pretreatments 
which were selected for an adjusted PLS-DA  
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Table 9.2: PLS-DA analysis using the DI-MS data having a VIP>0.8. (Top) the results obtained using 
LOOCV on the training dataset. (Bottom) the results obtained using LOOCV and 20% of the data as the 
validation group 

DI-ES+ Mass Spectrometry VIP>0.8 Spectrum Internal Validation  

Pre-treatment Latent Variables % X %Y PRESS % Accuracy 

Raw 1 18.36 61.16 0.71 93.48 

Normalized 2 9.36 97.20 0.57 69.57 

Quantile normalized 2 7.91 99.06 0.55 100.00 

Baseline 1 34.77 21.52 1.00 100.00 

Detrend 1 6.39 86.83 0.61 100.00 

Deresolve 1 38.96 46.04 0.79 84.78 

SNV 4 13.40 99.96 0.53 100.00 

MSC 3 63.37 61.56 0.86 86.96 

OSC 15 59.34 100.00 0.51 100.00 

Savitzky Golay 1 6.86 80.75 0.67 97.83 

1st Derivative 1 6.44 81.59 0.70 97.83 

2nd Derivative 1 6.80 84.93 0.61 100.00 

 DI-ES+ Mass Spectrometry VIP>0.8 Spectrum External Validation 

Pre-treatment 
Latent 

Variables 
% X %Y 

PRES
S 

% 
Accura

cy 
% Predictability 

Raw 1 18.29 61.90 0.73 93.48 100.00* 

Normalized 2 10.49 97.73 0.65 71.74 60.00 

Quantile normalized 1 5.60 92.14 0.63 100.00 100.00 

Baseline 1 36.44 24.83 0.99 100.00 100.00 

Detrend 2 10.98 97.44 0.67 100.00 100.00 

Deresolve 1 38.67 44.62 0.83 84.78 90.00 

SNV 11 35.29 100.00 0.63 100.00 100.00 

MSC 1 14.84 36.56 0.98 76.09 80.00 

OSC 13 60.30 100.00 0.64 100.00 100.00 

Savitzky Golay 1 7.87 80.77 0.72 95.65 90.00 

1st Derivative 1 6.80 82.47 0.79 97.83 100.00 

2nd Derivative 1 7.77 87.05 0.60 95.65 80.00 

 

Comparing the models obtained using variable selection to that previously 

obtained without any variable selection a noticeable difference was observed in % 

accuracy and predictability of the model. Furthermore all the models obtained had a 

probability > van der Voet T2 test p-value > 0.05 indicating that the models obtained 

did not vary significantly from an optimal model. Furthermore, a lower PRESS was 

observed for the majority of the pretreatments. This observation suggests that unlike 

the case of ATR-FTIR data MS data require an extensive variable selection, is required 

to obtain a very good classification method with the use of PLS models. 
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9.2.3 Modelling Chemometric techniques – SIMCA 
 

The classification analysis of EVOOs MS data was then repeated using a 

modelling approach based on the SIMCA algorithm. The latter is a class modelling 

algorithm that allows the analyses one class at a time. For SIMCA analysis two PCA 

were built for each spectral pretreatment one for the EVOOs of Maltese origin and the 

other one for the EVOOs of non-Maltese origin. In each case, the optimal number of 

principal components were chosen in order to obtain optimal model complexity in 10-

fold row-wise cross-validation. The use of a two-stage model, one for each category,  

allowed the comparison between the two categories, thus this determined whether 

samples are accepted by one, both or none of the modelled classes. The output of 

SIMCA analysis was assessed by the use of Coomans plot shown in Figure 9.7. Similar 

to the FTIR experiment for this experiment given that the MS data was highly similar 

the significance limit was increased up to 25% rather than the default 5%. 

 From a preliminary survey of the Coomans plot outcome at the 25% level of 

significance, it was shown that the SIMCA models obtained were highly specific to 

the Maltese EVOOs whilst less specific to the non-Maltese EVOOs. This can be 

observed for the majority of the spectral pretreatments whereby the majority of the 

Maltese EVOO samples clustered in the lowest right region whilst the rest of the non-

Maltese EVOOs clustered on the lowest side of the Coomans plot indicating that these 

samples were expected by both the Maltese and non-Maltese EVOO models built. 

Although in previous chemometric analysis using different spectroscopic methods, a 

new line bisecting the plot corresponding to discriminant classification boundary was 

built in order to represent a new significant boundary in order to overcome the ubiquity 

of the non-Maltese EVOOs this could not be applied to MS data thus the results 

presented in Table 9.3 are given only in terms of the specificity of the model towards 

the Maltese EVOOs. The table shows the % sensitivity and % specificity of the models 

obtained towards the Maltese EVOOs. Sensitivity is the percentage of samples from 

the modelled class (Maltese EVOOs) that are accepted by the class model, while 

specificity is the percentage of samples from other classes (Non-Maltese EVOOs) 

which are rejected by the class model. It was observed that SIMCA models obtained 

from 2nd order derived spectra and multiple scattering-corrected spectra failed to 

produce any form of classification, whilst MS raw data, baseline corrected, and 

resolved spectra obtained 100% sensitivity and 100 % specificity towards the Maltese 
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EVOOs.  These results corroborated the results previously obtained using PLS 

analysis.  

Table 9.3: Results obtained for SIMCA modelling for the different spectral pretreatments using the only the 
variables having a VIP > 0.8. The values recorded in the table represent the % sensitivity and % specificity 
of the different models towards the two classes using the 25% decision boundary.  

Pre-treatment % Sensitivity % Specificity 

Raw 100.0 100.0 

Normalized 93.3 100.0 

Quantile normalized 60.0 100.0 

Baseline 100.0 100.0 

Detrend 73.3 93.5 

Deresolve 100.0 100.0 

SNV 60.0 100.0 

MSC 13.3 0.0 

OSC 80.0 100.0 

Savitzky Golay 80.0 100.0 

1st Derivative 86.7 87.1 

2nd Derivative 0.0 0.0 

 

Figure 9.8 shows the discriminatory power of the variables used for the mass 

spectra obtained using raw data (black), baseline corrected (red) and detrending 

function (green). Discriminatory Power computes the standard deviation of residuals 

for all samples (EVOOs) of a specific class after being fitted to the model of another 

class and then compares this standard deviation with those calculated for samples fitted 

to their own class model. The plot shows how much each variable contributes to 

separating two models. It was shown that certain peaks tend to show a common 

contribution for the three most sensitive models these include the peaks observed at; 

326 m/z, 347 m/z, 374 m/z, 462 m/z, 527 m/z, 575 m/z, and 757 m/z.  
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Figure 9.7: The discriminatory power of the DI-MS variables used for the mass spectra obtained using raw 
data (black), baseline corrected (red) and detrending function (green). 
 

 
Figure 9.8: The modelling power of DI-MS variables for the Maltese EVOOs class, for the mass spectra 
obtained using raw data (black), baseline corrected (red) and detrending function (green). 
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Figure 9.9 shows the modelling power for the Maltese EVOOs class, modelling 

power is used to assess the ability of a variable to model the data in a specific class in 

PCA based models. Variables with a modelling power near one are important for the 

model. From the modelling distribution, it was shown that raw data and detrending 

function had a higher number of important modelling variables in the 716-998 m/z 

range the baseline corrected spectra displayed that m/z values with a high modelling 

power in the range of 425-700 m/z.  In the case of raw data the most important 

modelling variables which enabled the classification of Maltese EVOOs include; 263 

m/z, 409 m/z (closed ring carboxilade hydroxilade oleuropein form), 713 m/z, 739 

m/z. In the case of  baseline corrected spectra the 149 m/z (oleuropein fragment [M-

H-glc-CH2CHPh(OH)2-CH3COOH-CH3OH]+), 226 m/z, 292 m/z,  425 m/z ( [LP–

C16]K+ ), 496 m/z, and 654 m/z offered the best modelling power for the Maltese 

EVOO class. The detrended MS data showed that 366 m/z, 758 m/z, 810 m/z (PPP+), 

896 m/z ([OOP]K+) and 972 m/z offered the best modelling power.  

In order to obtain a more robust method of classification with the use of a 

smaller number of variables, the VIP data set obtained from the previous analysis was 

subjected to a stepwise linear canonical discriminate analysis SLC-DA. SLC-DA was 

performed on the MS data from all the pretreatment methods in order to extract only a 

small amount of highly discriminate variables which would enable an easier and faster 

discrimination between the origins of EVOOs. This strategy involved a substantial 

reduction of the dimensionality of the data in such a way that only the variables shown 

in Figure 9.10 were retained. In order to further reduce the number of variables selected 

from the SLC-DA analysis, a minimum of 14 variables was selected in order to carry 

out a conventional LDA. During the SLC-DA the variables chosen by applying a 

forward stepwise variable selection algorithm using JMP 10 using a Wilks’ Lambda 

as a selection criterion and an F-statistic factor to determine the significance of the 

changes in Lambda when the influence of a new variable is evaluated. The most 

significant variables were then extracted and their canonical scoring coefficients were 

plotted as shown in Figure 9.11. The main advantage of using SLC-DA over the 

convention LDA is the ability to perform a feature selection. Regarding this fact, only 

those variables which helped to improve classification performance were used whereas 

variables without discriminant information were discarded. The PCA, SIMCA and 

PLS analysis were carried out on the reduced data, as shown in Appendix 15.  
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Figure 9.9: (1st column) illustrates the variables which had a VIP score > 0.8 and selected in the SLC-DA 
(Red dots) for the different spectral pretreatments which were selected for an adjusted PLS-DA and SIMCA. 
(2nd column) Coomans plot obtained using SIMCA on the selected variables only. The blue dotted lines 
represent the 25% confidence level. 
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Figure 9.9 shows that the variables selected during SLC-DA for some of 

spectral pretreatments were not the major most abundant peaks which would 

correspond to molecular fragments of the different fatty acids but rather peaks which 

show a very low intensity but are yet differentiated from the instrumental noise and 

offer the highest discriminatory power.  

Table 9.4: PLS-DA analysis using common variables selected from both SLC-DA and having a VIP>0.8. 
(Top) the results obtained using LOOCV on the training dataset. (Bottom) the results obtained using 
LOOCV and 20% of the data as the validation group. 

DI-ES+ Mass Spectrometry VIP>0.8 & SLC-DA Spectrum Internal Validation 

Pre-treatment Latent Variables % X %Y PRESS % Accuracy 

Raw 15 69.52 99.92 0.51 100.00 

Normalized 13 57.57 99.84 0.35 100.00 

Quantile normalized 15 61.45 99.87 0.52 100.00 

Baseline 15 82.14 99.89 0.44 100.00 

Detrend 12 52.98 99.69 0.48 100.00 

Deresolve 15 76.54 99.91 0.27 100.00 

SNV 3 18.25 93.45 0.54 100.00 

MSC 4 66.98 72.10 0.88 95.65 

OSC 15 78.90 99.98 0.15 100.00 

Savitzky Golay 15 73.84 99.72 0.21 100.00 

1st Derivative 15 67.71 99.80 0.49 100.00 

2nd Derivative 15 64.47 99.83 0.44 100.00 

 DI-ES+ Mass Spectrometery VIP>0.8 & SLC-DA Spectrum External Validation 

Pre-treatment Latent Variables % X %Y PRESS % Accuracy 
% 

Predictability 
Raw 6 44.91 99.06 0.66 100.00 100.00 

Normalized 2 14.19 92.95 0.58 95.65 80.00 

Quantile normalized 5 28.99 97.85 0.71 100.00 100.00 

Baseline 15 84.56 99.96 0.58 100.00 100.00 

Detrend 15 66.55 99.97 0.59 100.00 100.00 

Deresolve 15 80.23 99.94 0.48 97.83 90.00 

SNV 1 10.58 76.14 0.64 100.00 100.00 

MSC 1 16.38 33.06 0.99 73.91 70.00 

OSC 15 82.72 99.89 0.28 100.00 100.00 

Savitzky Golay 15 78.37 99.83 0.45 100.00 100.00 

1st Derivative 1 10.12 78.36 0.70 93.48 70.00 

2nd Derivative 2 13.61 93.02 0.62 97.83 90.00 
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Once the variables were selected for each spectral pretreatment a PLS-DA and 

a SIMCA model was applied in order to determine whether variable selection using 

the linear method provided ways for a better form of classification. Table 9.4 shows 

the results obtained from the PLS using the data set composed of variables which had 

a VIP score > 0.8 and were selected during the SLC-DA analysis. The results show a 

marked increase in the performance, in terms of the number of latent variables 

extracted, PRESS, % accuracy and % predictability of the PLS models obtained using 

the reduced variable date set, suggesting that a variable selection using the two 

techniques greatly improves the modelling power. Furthermore, a higher number of 

latent variables were extracted for the majority of the spectral pretreatments resulting 

in a higher % of variance explained in terms of X and Y. A marked decrease in the 

PRESS was also noted with the orthogonal signal corrected MS data having a PRESS 

lower than 0.3, indicating a very strong and robust classification was obtained even 

when 20% of the data was omitted and leave one out cross-validation was applied. The 

PLS models obtained for the majority of the spectral pretreatments showed a 100% 

accuracy during the training phase and 100% predictability during the validation 

phase.  

 

Table 9.5: Results obtained for SIMCA modelling for the different spectral pretreatments using the only the 
variables having a VIP > 0.8 and selected in SLC-DA. The values recorded in the table represent the % 
sensitivity and % specificity of the different models. 

Pre-treatment 
Maltese EVOOs Maltese Non-EVOOs 

% Sensitivity % Specificity % Sensitivity % Specificity 
Raw 73.3 100.0 0.0 100.0 

Normalized 100.0 100.0 96.8 100.0 
Quantile normalized 93.3 100.0 61.3 100.0 

Baseline 86.6 100.0 90.3 100.0 
Detrend 66.6 100.0 96.8 100.0 

Deresolve 60.0 100.0 22.6 100.0 
SNV 53.3 100.0 54.8 100.0 
MSC 26.7 100.0 22.6 100.0 
OSC 100.0 100.0 51.6 100.0 

Savitzky Golay 86.7 90.9 6.5 100.0 
1st Derivative 93.3 100.0 3.2 100.0 
2nd Derivative 73.3 100.0 12.9 100.0 
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The results obtained showed that all the models obtained using SIMCA on the 

different spectral pretreatments showed a very good specificity indicating that the two 

classes can be modelled separately and no sample was misclassified, however for the 

majority of the models the sensitivity is much lower indicating that whilst the different 

classes can be discriminated the model failed to completely model the classes 

separately as some of the samples were still accepted in both the classes. This is mainly 

attributed to the fact that there are very few signals which can actually discriminate 

between the different classes compared to a large number of the signal which is present 

in both of the classes making the models built by SIMCA less sensitive for a particular 

class. Although the variable selection was carried out in order to maximize the 

discrimination between the two classes, analyzing each and every variable on its own 

will increase the sensitivity of the SIMCA, however, it will rout the overall aim of the 

experiment.  From the results obtained it was shown that baseline corrected and 

normalized MS spectra gave the most promising results in terms of sensitivity and 

selectivity towards both the Maltese and non-Maltese EVOOs.  

9.2.4 Supervised chemometric discriminate analysis techniques – 
LDA 

 
In order to build the LDA, the selected variables obtained in SLC-DA were 

arranged in ascending order in terms of their scoring coefficients. A smaller set of 

variables were selected which consisted of 14 variables which corresponded to 7 of 

the most positive and 7 most negative standardized scoring coefficients. An LDA was 

carried out on the training set using only the small set of variables which were selected. 

The results obtained for the training samples were a visualized on an LDA biplot 

samples as shown in Figure 9.11 whereby each sample is projected as the scores 

obtained for the first two discriminate functions. In comparison with SIMCA, LDA 

avoids the normality problem and confidence interval adjustment making it more 

reliable methods for classification. The LDA method employs linear decision 

boundaries, which are defined in order to maximize the ratio of between-class to 

within-class dispersion (Fisher, 1936). It has been successfully applied to a number of 

classification problems (Gambarra Neto et al., 2009; Gori et al., 2012; Riovanto et al., 

2011; Sinelli et al., 2010; Souto et al., 2010). When compared with SIMCA and PLS-

DA, the LDA method has the disadvantage that the number of training samples must 

be larger than the number of variables included in the LDA model. In order to fully 
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satisfy this constraint a smaller number of variables were selected based on the 

standardized scoring coefficients obtained from the SLC-DA. The standardized 

scoring coefficients of the variable selected during the SLC-DA were obtained and 

plotted as shown in Figure 9.11.  The importance of these coefficients lies in their use 

to compute canonical scores in terms of the standardized data often referred to 

as loadings. They are highly informative when it comes to comparing the relative 

importance in their discriminatory power of the independent variables. Tentative 

identification of the most informative peaks was carried out for baseline, detrend, 

quantile normalized, OSC Savitzky Golay and 1st order derived spectra which gave the 

most consistent discriminatory models during the LDA. 

Table 9.6: Tentative identification of the most informative peaks obtained during the LDA. 

Baseline 
926 [OSL-2H2O]+ or [OOO-2H2O]+ 
900 [OLL-H2O]+ 
884 [OOO]+ 
787 [OOO-H2O-C14]+ 
770 [OOP-H2O-C5] 
762 [OOO-2H2O-C12] 
687 [PLn]+2K+ 
418 [PP-C12]+ 
118 Oleoside-11-methylester fragment 

Quantile Normalisation 
787 [OOO-H2O-C14]+ 
770 [OOP-H2O-C5] 
323 Conidendrin fragment 
340 Conidendrin fragment 
107 Vanillic acid fragment 

Detrend 
926 [OSL-2H2O]+ or [OOO-2H2O]+ 
687 [PLn]+2K+ 
418 [PP-C12]+ 

369 
Open ring decarboxilade aldehydic ligstroside 

oxidized form  

237 
Open ring decarboxilade aldehydic oleoside oxidized 

form  
127 Oleoside-11-methyl-ester fragment 

OSC 
876 [LLO-2H2O]K+ 
852 [OOO-H2O-CH2] 
699 [OL-CH2]2K+ 
652 β-methoxy verbascoside  
150 Hydroxytyrosol 

Savitzky Golay 
631 [PL-H2O]K+ 
550 Oleoside glycoside 
454 [mO-H2O]+ 
129 Luteolin fragment  

1st Derivative 
773 [OOO-H2O-C15]K+ 
706 [OOO-H2O-C11]+ 
643 [PO-H2O]2K+ 
210 Closed ring carboxilade aldehydic form- CH3OH   
209 Oleoside fragment 
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Figure 9.10:(Left) Bar graph showing the standardised scoring coefficients of the variables selected in the 
SLC-DA for the different spectra pretreatments,  which were selected for LDA (Right). 
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From the Table 9.7, it was shown that during the training phase the LDA 

models obtained for all the pretreatments ranged from 87-100% in accuracy. The 

classification model obtained was then repeated on the testing data set, with the 

exception of raw data and MSC the validation accuracy ranged from 84-100%. From 

the results obtained it was shown that 1st order and Savitzky Golay derivatisation of 

the spectra had the highest % accuracy in validation data set (100% for both). Whilst 

during the PLS analysis and SIMCA both Savitzky Golay and 1st order derivatisation 

achieved appreciably good prediction models, the models obtained using normalized 

and OSC data from MS achieved better model performances. These result further 

confirm that model performance, is highly dependent on the number of the redundant 

variables and the technique which is used.  LDA and PLS models obtained had a higher 

classification and discriminatory power when compared to SIMCA model. This 

difference stems from the fact that SIMCA is a soft classification method and thus 

allows a single object to belong to more than one class, whilst LDA, PLS  are a more 

robust form of classification as the objects are either classified in either one or the 

other class.    

9.2.5 Supervised discriminate chemometric techniques – SVM 
 

The dataset containing only variables which were selected using SLC-DA and 

having a VIP score > 0.8, were subjected for another classification method, known as 

support vector machine (SVM). SVM similar to PLS can be used for both classification 

and regression (Christianini and Shawe-Taylor 2000; Vapnik 1995). During this part 

of the experiment, SVM was used in the context of classification. Comparison of 

SVMs with other classification and regression methods found out that they show 

mostly good performances, although other methods proved to be very competitive 

(Meyer et al. 2003). Table 9.7 shows the results obtained on using SVMs using no 

Kernel tricks. 
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Table 9.7: Comparison of the model performance between LDA and SVM  

Classification DI-ES+ Mass Spectrometry VIP>0.8 & SLC-DA Dataset  

Pre-treatment 
LDA SVM 

% Accuracy % Predictability % Accuracy % Predictability 

Raw 100.00 76.92 100.00 92.31 

Normalized 100.00 92.31 100.00 46.15 

Quantile normalized 100.00 92.31 100.00 92.31 

Baseline 100.00 84.62 100.00 84.62 

Detrend 100.00 92.31 100.00 76.92 

Deresolve 97.83 84.62 100.00 92.31 

SNV 95.65 84.62 100.00 84.62 

MSC 86.96 76.92 100.00 76.92 

OSC 100.00 92.31 100.00 92.31 

Savitzky Golay 97.83 100.00 100.00 92.31 

1st Derivative 97.83 100.00 100.00 76.92 

2nd Derivative 100.00 92.31 100.00 92.31 

 

Results obtained from SVM classification are presented in Table 9.7. High 

rates of accuracy and predictability were obtained for the majority of the spectral 

pretreatments further validating that SVM classification is highly adaptable to the kind 

of data used. In the case of SVM, the best classification was obtained using, raw data, 

quantile normalized data, detrend, OSC, Savitzky Golay, and 2nd order derived spectra 

with a training accuracy of 100% and a validation predictability of 92%.  The trend 

observed was very similar to both the LDA and PLS models. Similar to LDA and PLS 

models SVM is also affected by small N large P problem of data sets thus the similarity 

between the different modelling methods can be attributed to the use of the same 

starting that set. Furthermore, since no obvious difference was observed when the three 

different methods were compared, these methods seemed to be equally effective in 

discriminating the Maltese EVOOs from the non-Maltese EVOOs.  
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9.2.6 Application of hierarchical cluster analysis  
 
 Cluster analysis is a simple yet powerful method to organize samples in the 

dataset into clusters based on the similarity of their abundance mass profiles. The 

method follows an agglomerative approach in which the most similar abundance mass 

profiles are joined together to form a group. These are further joined in a tree structure 

until all data forms a single group. Application of hierarchical cluster analysis using 

Ward’s method was used on the variables selected using SLC-DA and VIP>0.8 for 

raw data.  

 

 

 

 
 
 
 
 
 
 

Figure 9.11:. Application of hierarchal cluster analysis using Wards methods on the SLC-DA and VIP > 0.8 variables for 
the raw DI-MS data. The dendrogram shows three major clusters (Blue) which contained exclusively EVOOs of Maltese 
origin (0) whilst the Blue and Green cluster contained mainly EVOOs on non-Maltese origin (1). (Top) The  coefficient 
scores obtained from the PLS-DA analysis of the selected variables.  
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Cluster analysis using the raw MS data using only the EVOOs derived from 

monocultivars revealed that very few (2 samples) of the EVOOs of Maltese origin 

were classified incorrectly. The dendrogram obtained showed the presence of 3 major 

clusters (marked, Red, Blue, and Green), the blue cluster contained exclusively 

EVOO’s of Maltese origin, whilst the red clusters contained almost exclusively 

samples of non-Maltese origin, and the green cluster which contained very few 

samples was composed of both Maltese (‘Bajda’ and some of the ‘Malti’) and non-

Maltese EVOOs. The standardized  coefficients obtained from PLS-DA analysis are 

also shown in Figure 9.11. These regression coefficients for the standardized data 

provide information about the contribution of each predictor, small coefficients make 

a small contribution to the response prediction. From the Figure 9.11 it was shown that 

certain regions of the spectra are highly variable between the different classes, such 

variables would contribute more (terms of  coefficient magnitude) to the prediction 

formula. The most informative ranges which enable the highest discrimination 

between EVOOs of Maltese origin from those of non-Maltese origin include 161-323 

m/z and the 723-809 m/z which correspond to molecular masses and fragments of 

minor constituents present EVOOs and diglyceride and triglyceride compounds. This 

suggests that even though minor unsaponifiable constituents are present in very small 

amounts, not only the DI-MS was sensitive enough to detect them but also they offered 

a significant contribution in the discrimination of the Maltese EVOOs.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 Results and Discussion   

251 
 

9.2.7 Whole MS modelling using feed-forward predictive artificial 
neural networks.  

 
The use of feed-forward predictive neural networks on the MS data as a method 

for classification was assessed using three different forms of validation, namely 33.3% 

of data holdback, CV-10 k-fold and excluded row validation. For all the different 

forms of cross-validation 5 folds were used for 25 iterations, the best models obtained 

are presented in Table 9.8. The algorithm fitted on the training set was later tested on 

the validation data and % predictability of the model was obtained. Although PNN was 

employed as a classification for the geographical origin using FTIR and NMR data, 

the method employed the use of back propagation artificial neural networks (BP-PNN) 

rather than feed-forward predictive artificial neural networks (FF-PNN). 

Backpropagation (BP)  works on the principle that after the information has gone 

through the network in a forward direction and an output has been produced, the error 

associated with this output is reorganized backwards through the model and weights 

are adjusted accordingly (Ham and Kostanic, 2001).  

Table 9.8 shows % accuracy and % predictability for the different forms of 

cross-validation. Similar to what was observed in the PLS-DA and SIMCA, spectra 

treated using MSC had the lowest accuracy and predictability. Conversely the results 

obtained from the normalized, deresolved baseline corrected and OSC had the highest 

rates of accuracy and predictability when compared to the other spectral pretreatments 

over the different forms of cross-validation used. Comparison to the PLS-DA models 

obtained without any form of variable selection (Table 9.1), FF-PNN had a lower 

performance especially when it comes to the testing phase, and this observation was 

similar to the FF-PNN obtained using FTIR data. The lower % precision recorded in 

the FF-PNN, this observation is coherent to a number of other studies which showed 

that PLS-DA has a higher sensitivity and performance (Khanmohammadi et al., 2011; 

Efstathios et al., 2011; Sampson et al., 2011) when compared to PNN. The form of 

cross-validation had a great effect on the performance of the model obtained especially 

during the validation step. Holdback and k-fold validation methods are random when 

compared to the excluded row validation, thus testing models obtained using these 

forms of cross-validation tend to be overfitted namely due to the small sample size 

which was used in this part of the study.  
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Overfitted models tend to have a very good performance during the training 

phase but they can fail to predict the origin of the sample during the testing phase. The 

use of excluded row validation, on the other hand, is not random as the experiments 

defines the testing and training the group thus the model built can be adjusted to cover 

an equal distribution of samples which belong to different geographical origins in so 

doing improving not only the models obtained during the training step but also 

increasing the predictability of the model obtained. in the case of the excluded row 

validation, it was found that spectra obtained using only raw data had the best model 

performance reaching a 100% accuracy and predictability none of the other spectral 

pretreatments reached this level of performance. This is attributed to the higher 

sensitivity of the FF-PNN, which were able to fully recognize the signal from the 

instrumental noise, furthermore, although spectral transformations which enable the 

removal noise including normalization procedures and baseline corrections might have 

removed minor peaks which are informative than the larger more abundant peaks 

causing a reduced model performance. On the other hand, derivatisation procedures 

were found to negatively affect the MS data in the majority of the models obtained not 

only in FF-PNN, this is mainly attributed to the mixing of noise and signal making it 

hard for sample discrimination.   

Overfitted models tend to have a very good performance during the training 

phase but they can fail to predict the origin of the sample during the testing phase. The 

use of excluded row validation, on the other hand, is not random as the experiments 

defines the testing and training the group thus the model built can be adjusted to cover 

an equal distribution of samples which belong to different geographical origins in so 

doing improving not only the models obtained during the training step but also 

increasing the predictability of the model obtained. in the case of the excluded row 

validation, it was found that spectra obtained using only raw data had the best model 

performance reaching a 100% accuracy and predictability none of the other spectral 

pretreatments reached this level of performance. This is attributed due to the higher 

sensitivity of the FF-PNN, which were able to fully recognize the signal from the 

instrumental noise, furthermore, although spectral transformations which enable the 

removal noise including normalization procedures and baseline corrections might have 

removed minor peaks which are informative than the larger more abundant peaks 

causing a reduced model performance. On the other hand, derivatisation procedures 
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were found to negatively affect the MS data in the majority of the models obtained not 

only in FF-PNN, this is mainly attributed to the mixing of noise and signal making it 

hard for sample discrimination.   

Table 9.8:  % accuracy and % predictability obtained using PNN under different forms of cross-validation. 

 
  

PNN DI-ES+ Mass Spectrometry Whole Dataset 

CV Type 
Pre-treatment 

Hold back K-fold Excluded Row 

% 
Accuracy 

% 
Predictability 

% 
Accuracy 

% 
Predictability 

% 
Accuracy 

% 
Predictability 

Raw 69.57 66.67 93.48 66.67 100.00 100.00 

Normalized 93.48 77.78 97.83 100.00 97.83 100.00 

Quantile normalized 82.61 44.44 91.30 55.56 97.83 88.89 

Baseline 89.13 77.78 89.13 55.56 91.30 100.00 

Detrend 82.61 44.44 93.48 66.67 93.48 66.67 

Deresolve 93.48 100.00 97.83 88.89 97.83 88.89 

SNV 84.78 66.67 95.65 77.78 95.65 77.78 

MSC 91.30 66.67 89.13 55.56 89.13 55.56 

OSC 89.13 100.00 95.65 77.78 95.65 77.78 

Savitzky Golay 95.65 77.78 95.65 77.78 93.48 66.67 

1st Derivative 100.00 100.00 86.96 44.44 89.13 44.44 

2nd Derivative 89.13 77.78 93.48 66.67 93.48 77.78 
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9.3 Application of DI-MS ESI+ for higher order geographical 
classification  

 
The use of SLC-DA/PLS variable selection was also applied to a more detailed 

classification of origin, one which is based on the individual country of origin. 

Preliminary results shown in Figure 9.13 revealed that the variable selection method 

employed was able to fully discriminate between different samples of based on their 

producing country. The canonical discriminant analysis showed very high eigenvalues, 

and by the 3rd canonical function, the model was able to explain 85.85% of the 

variability with a Wilk’s lambda value of 3.39x10-7. 

 

 

 

Figure 9.12: (Top) SLC-DA 3D-plot obtained using specific variables. The model obtained was able to 
classify the olive oils by their country of origin; Maltese indigenous (Red/0); imported cultivars (Green/1); 
Italian origin (Blue/2); Greek origin (Orange/3); French origin (Turquoise/4) and Spanish origin (Black/5). 
(Bottom) X-Y fit using the canonical scores obtained for the 1st 2nd and 3rd discriminate function showing 
that by the 1st function the model was able to almost fully separate olive oils based on their country of origin.  
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Figure 9.13: Score plot for specific variables (m/z). Blue bars represent the scores obtained in the 1st 
discriminate function and red bars represent the scores obtained in the 2nd discriminate function. 
 

From the canonical score plot it was observed that the indigenous cultivars 

were projected very near to cultivars which were derived from Greece and Crete, 

although the geographical discrimination between the two was possible in the 3rd 

canonical function, the close proximity between the two countries could provide 

insights into the history and origin of the indigenous cultivars found in the Maltese 

islands. Although it is thought that the Phoenicians were the first settlers to introduce 

olive cultivation within the Maltese islands, very few is known about the presence of 

olive trees prior that period. Although Malta was never a Greek colony the 

archaeological records show the introduction of Hellenistic features in architecture and 

pottery. In the addition, the Greek influence can be further be joined to the name of 

the island Melite a derivative of the Greek word for honey. In order to provide a 

definite answer for the geographical origin of the indigenous cultivars samples derived 

from Middle East are required, nonetheless, it was shown that the indigenous cultivars 

are not related to the Italian, France and Spanish cultivars, as these were completely 

discriminated by the 1st canonical function.   

  Application of One-way ANOVA using Tukey post hoc hypothesis testing on 

the extracted Mahalanobis distances from the canonical biplot, it was shown that there 

was a significant difference between the spatial distributions in the geographical origin 

of the EVOOs. Figure 9.14 shows the p-values obtained for all the pairwise 

comparisons, the results showed that on the basis of the previously selected m/z values, 

EVOOs derived from the indigenous cultivars were significantly different from 

EVOOs derived for other neighbouring countries (France, Italy, Greece and Spain) and 

from locally grown foreign cultivars.  
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Comparisons 
Test 

Statistic 
Std. 

Error 
Std. Test 
Statistic 

Sig. 
Adjusted 

Sig. 
Greece-Italian 256.84 24.62 10.43 0.000 0.000 

Spanish-Indigenous 146.00 26.34 5.54 0.000 0.000 
Greece - Indigenous 146.00 26.33 5.54 0.000 0.000 

Spanish - Italian 256.84 24.62 10.43 0.000 0.000 
French- Italian 261.30 24.62 10.61 0.000 0.000 

Local Foreign - Italian -185.84 19.82 -9.38 0.000 0.000 
Italian - Indigenous -110.84 15.26 -7.26 0.000 0.000 
French- Indigenous 150.47 26.34 5.71 0.000 0.000 

Local Foreign - Indigenous 75.00 21.91 3.42 0.001 0.009 
French- Local Foreign 75.48 29.22 2.58 0.010 0.147 

Spanish - Local Foreign 71.00 29.22 2.43 0.015 0.227 
Greece - Local Foreign 71.00 29.22 2.43 0.015 0.227 

French- Greece 4.47 32.67 0.14 0.891 1.000 
French- Spanish -4.47 32.67 -0.14 0.891 1.000 
Greece -Spanish 0.00 32.67 0.00 1.000 1.000 

 
Figure 9.14: Kruskal-Wallis one-way ANOVA revealed a significant difference in the spatial distribution of 
observations based on the Mahalanobis distances. Significant difference for pairwise comparisons using post 
hoc Tukey hypothesis testing are drawn using yellow lines, whilst non-significant differences are shown as 
black lines.  
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With regards to the locally grown foreign cultivars, it was shown they were 

only significantly different from EVOOs derived from Italian countries, whilst no 

significant difference was found when compared to EVOOs derived from France, 

Spain and Greece. This observation further highlights the effects of the terroir on the 

EVOOs. EVOOs derived from locally grown Italian cultivars namely Carolea, 

Frantoio and Pendolino tend to be significantly different from EVOOs of the same 

cultivar grown in Italy. Pairwise comparison between EVOOs derived from Spain, 

Greece, and France showed no significant difference between each pairwise 

combination, however, this was attributed to the small sample size which was used in 

order to represent the country of origin. Although a small sample size was used from 

the aforementioned countries, these were still significantly different from EVOOs 

derived from indigenous cultivars, indicating that in this case, the differences observed 

were due to genetic variations within the cultivars.  Potential of DI-MS for predicting 

the genetic variety from which the EVOO was derived was first discussed by Lerma-

García et al., (2008). In their study genetic varieties of Spanish extra virgin olive oils 

(Arbequina, Hojiblanca, and Picual) were predicted by direct infusion of the samples 

in the electrospray ionization source of a mass spectrometer, followed by linear 

discriminatory analysis. In this study, the same sample preparation method employed 

by Lerma-García et al., (2008) was adopted in order to assess the possibility of 

predicting and discriminating between EVOOs of different geographical origins. The 

application of different variable selection techniques revealed that the use of SLC-DA 

was the most applicable for the extraction of discriminate variables. Coupling of 

variables extracted by both SLC-DA and PLS showed an improvement on the 

prediction model generated. 
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9.3.1 Identification of discriminatory peaks for higher order 
discrimination 

 
Peak identification was not the primary objective of the study and it was only 

applied to m/z values which had both a PLS VIP>0.8 and a significant p-value in the 

SLC-DA. Peaks were identified on the basis of their molecular weight by comparison 

with the existing literature. Due to MS conditions which were employed, 

fragmentation of the parent molecular ion was kept to the minimum and fragments 

smaller than 200 m/z were not considered, however, smaller ions will be considered at 

a later stage in the study is required. Spectra were recorded under both ESI negative 

and ESI positive, however, ESI negative mass spectra were dominated by the 

deprotonated forms of oleic, 281 m/z, and palmitic, 255 m/z which represent the major 

components of EVOOs. The presence of these dominate peaks reduced the 

discriminatory power of the analysis. Although Lerma-García et al., 2008 employed 

ESI negative the subsequent data analysis required further processing in order to 

account for the dominant fatty acid peaks. Similar to the method employed by Alves 

et al., 2010, in this study only positive ion ESI-MS was used in order to yield 

fingerprints that could distinguish between the geographical origins of EVOOs.    

The peaks which were identified can be divided into four major classes, 

phenolic compounds, tocopherols, fatty acids and their corresponding glycerides. 

Table 9.9 illustrates the identified peaks and their corresponding molecular ion from. 

In general, the molecular ion form of free fatty acids and their corresponding tri and 

diglycerides was observed as their corresponding potassium salt derived from the 

addition of 40mM KOH to the EVOOs during sample preparation. In the case of 

phenolic compounds, since most of the compounds present in EVOOs do not readily 

form potassium salts these were observed as the corresponding parent molecular ion 

subject to the loss of water. The presence of an aromatic ring and hydroxyl groups 

which characterize the phenolic structure favours the loss of water from the parent 

molecular ion in order to yield a positive radical cation. In the case of tocopherols, the 

molecular ion was observed as the hydride loss molecular fragment. The presence of 

both an aromatic group and the extended conjugation in the tocopherol molecule 

highly favours the loss of hydrides from neighbouring saturated carbons in order to 

allow rearrangement reactions driven by the stability of the extended conjugated 

radical cation which is formed.   
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The most informative peaks can be divided into four different mass ranges 

protonated triacylglycerols potassium salts (TAGs, m/z above 800), diacylglycerols 

(DAGs, m/z range of 600–650), free fatty acids and simple phenols (m/z range 200-

300), and tocopherols and complex phenolic compounds (m/z range 400-600). The 

most informative peaks extracted from the 1st canonical discriminate function (68.98% 

of the total variation) corresponded to m/z 223, attributed to the open ring 

decarboxilade dialdehidic form of elenolic acid, minor free fatty acids including lauric 

acid m/z 237, stearic acid 329 m/z together with triglyceride compounds namely PPLn 

Palmitoleic and Linolenic acid (835 m/z), OOP Oleic Palmitoleic triglyceride (851 

m/z), and OOO Oleic acid triglyceride (919 m/z). In the case of the 2nd canonical 

discriminate function oleuropein aglycon, decarboxymethyl dialdehydic form (3,4 

DHPEA-DEDA 623 m/z) and the diglyceride of oleic acid (659 m/z) were found to be 

the most discriminant compounds.  

From Table 9.9 a number of minor compounds present within the 

unsaponifiable fraction of EVOO were selected, these include; tyrosol acetate; 

acetoxypinoresinol; ligstroside glycoside derivative and oleuropein aglycon 

decarboxymethyl dialdehydic form (3, 4 DHPEA-DEDA) as potential compounds that 

enabled the discrimination of EVOOs on the basis of their geographical origin. These 

results further corroborate the results obtained during the analysis of phenolic extracts 

by means of HPLC, whereby it was shown that it was shown that both tyrosol acetate 

and a number of secoiridoid compounds had a high discriminatory potential. The 

results reported in this study are similar to those reported by Lerma-García et al., 2008, 

whereby the presence of a dialdehydic form of deacetoxy ligstroside and 10-

hydroxyoleuropein aglycone had a significantly higher predictive power in the 

discrimination of three Spanish cultivars.  
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Und1: unidentified compound assigned as a possible oleuropein or ligstroside glycoside derivative or  

Table 9.9: The identification most discriminate m/z values which were identified during variable selection 
their corresponding parent molecular ion form.  

 

m/z Name 
Molecular ion 

form 
213 Shikimic acid [M+K+]+ 

217 Caprylic acid [M+K+]+ 

223 Open ring decarboxilade dialdehydic form of elenolic acid [M+K+]+ 

228 Eleanolic acid fragment [M+K+]+ 

234 Tyrosol acetate [M+K+]+ 

237 Lauric acid [M+K+]+ 

267 Myristic acid [M+K+]+ 

309 Closed ring carboxilade form elenolic acid [M+K+]+ 

325 Linoleic acid [M+K+]+ 

329 Stearic acid [M+K+]+ 
414 - tocopherol [M-H]+ 
431 -tocopherol [M-H]+ 

437 Acetoxypinoresinol [M+K+-H20]+ 

 499 Und1  

505 Ligstroside glycoside derivative [M-H20]+ 

517 Loganic acid glucoside [M-H20]+ 

526 Oleuropein glycoside derivative [M-H20]+ 

623 Oleuropein aglycone decarboxymethyl dialdehydic form (3,4 DHPEA-DEDA) [M-H20]+ 

641 OO oleic acid diglyceride [M+K+-H20]+ 

659 OO oleic acid diglyceride [M+K+]+ 

709 Phosphatidic acid [M+K+]+ 

721 Steroidal acid ester [M+K+]+ 

724 Octanedioic ester [M+K+-H20]+ 

810 PPL Palmitoleic and linoleic acid triglyceride [M-H20]+ 

820 PPP Palmitoleic triglyceride [M+K+-H20]+ 

831 PPLn Palmitoleic and Linolenic acid triglyceride [M+K+]+ 

835 SSM Stearic acid triglyceride [M+K+]+ 

839 PPP Palmitoleic triglyceride [M+K+]+ 

851 OOP Oleic Palmitoleic triglyceride [M+K+]+ 

919 OOO Oleic acid  triglyceride [M+K+]+ 

929 SSS  Stearic acid triglyceride [M+K+]+ 
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In conclusion, the application of DI-MS fingerprinting in conjunction with 

multivariate statistical techniques provided a simple, rapid and accurate way to 

discriminate EVOOs of Maltese origin from non-Maltese EVOOs. From the 

preliminary assessment using only unsupervised PCA models, significant clustering 

was observed in the majority of the spectral pretreatments, however, the % variation 

explained by the first two principal components was very low this was attributed to 

the high levels of redundant variables.  Application of supervised methods of 

classification namely PLS-DA, FF-PNN, LDA, and SVM were highly effective in 

classifying local and non-local EVOOs samples. The discrimination of power of the 

different models obtained was greatly enhanced through the use of a two-stage variable 

selection procedure. The discrimination of geographical origin using DI-MS under 

positive ionisation has never been achieved although it was proposed by a number of 

different authors in the past, including Alves et al., 2010; Catharino et al., 2005; 

Lerma‐García et al., 2008 and 2011; Goodacre et al.,2002, however it was never 

carried out. The combination of variable selection techniques namely PLS and SLC-

DA proved to be ideal statistical techniques which enable the extraction of discriminate 

m/z values. The application of DI-MS ESI (+ve) enabled the extraction of discriminate 

variables belonging to different chemical classes without the need to preliminary 

extraction.  
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10. Application of Proton Nuclear Magnetic Resonance (1H-NMR) 
spectroscopy for the determination of the geographical origin of olive 
oil. 
 

During the last decade, nuclear magnetic resonance spectroscopy (NMR) has been 

shown to be highly effective in the study of properties of oils of vegetable origin 

(Frankel, 2010; Cañabate-Díaz et al., 2007; Murkovic et al., 2007; Suárez et al., 2008 

and Morales et al., 2010. The main methods used in NMR include  the 1H and 13C 

NMR spectroscopy as reviewed by Sacchi et al., (1997) Vlahov (1999), Guillen et al., 

(2001), Hidalgo et al., (2003) and Mannina et al.,(2003 & 2010)  together with 31P 

NMR as  Dais et al., (2010). Apart from target-based analytical approaches, NMR 

metabolic fingerprinting (Rezzi et al., 2005; Alonso-Salces et al., 2010 and 

Longobardi et al., 2011) employs the use of whole 1H spectral data to classify a 

relevant number of samples according to their origin, harvesting, and ageing. In the 

majority of cases, fingerprinting analysis is used in conjunction with computer-aided 

sophisticated statistical and mathematical procedures. Although these methods offer a 

fast, reliable measure for the determination of origin, such methods have been 

criticized for their complexity by Frankel (2010) due to the necessity of many samples 

for statistical elaborations and the ensuing difficulty in interpretation of the results. 

The combination of 1H NMR fingerprinting with multivariate analysis provides a 

promising approach to study the profile of olive oils in relation to its geographical 

origin. The aim of this study was to use two different pulse sequence acquired 1H NMR 

spectroscopy (1H zg30 and 1H NOESY) in conjunction with chemometrics in order to 

differentiate the Maltese EVOO’s from other EVOO’s derived from other countries 

within the Mediterranean region. In this study, the spectroscopic data were processed 

both by a discriminant chemometric tools including PLS, SVM, and LDA but also 

using modelling chemometric tools such as SIMCA and PNN. Moreover, different 

forms of signal pretreatment were employed in order to enhance the potential of 1H 

NMR as a tool for authentication purposes. The present work aims at using the NMR 

profile of olive oils taken as a whole in combination with multivariate statistics to 

discriminate Maltese EVOOs from EVOOs of various Mediterranean areas. A 

methodological approach based on the high throughput acquisition of NMR profiles 

statistically processed in a holistic way in order to provide information regarding the 

geographical origin was therefore developed. 



 Results and Discussion   

263 
 

10.1  1H NMR peak identification  
 

 

Figure 10.1: The major peaks of interest obtained using NMR of EVOOs using zg30 pulse sequence (Black) 
and NOESY pulse sequence (Red)  
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The advantage of 1H NMR compared to other spectroscopic techniques is that 

it provides sharp spectral signals which are a direct reflection of the different chemical 

environment of the hydrogen isotope. The chemical shifts of the distinct spectral lines 

are related to the chemical environment of the hydrogen atoms, whilst the intensities 

of the lines directly correspond to the number of hydrogens (Guillén et al., 2001; 

Mannina and Segre, 2002). Although the quantitative analysis carried out using NMR 

has been extensively studied, especially regarding the quantification of fatty acids 

(Sacchi et al., 1997; Sacchi et al., 1996), the main interest, of this study was to apply 

chemometric methods using the entire NMR signal. The observed major chemical 

shifts can be expected to be attributed to triglycerides as these constitute up to 98% of 

the fraction. These differ in their substitution patterns in terms of length, degree, and 

kind of unsaturation of the acyl groups resulting in different chemical shifts (Harwood 

& Aparicio, 2000). The major chemical signals obtained for EVOOs included 4.541 

ppm 3.988 ppm 3.636 ppm 2.710 ppm 2.746 ppm 1.244 ppm 1.197 ppm 0.910 ppm  

and 0.843 ppm which arise from the following functional groups having different 

number of protons, respectively:  methylenic protons in α-glycerol moiety of sn-1,3 

diglycerides; methylenic protons in α-glycerol moiety of sn-1,2 diglycerides diallylic 

protons of linolenic fatty chains; diallylic protons of linoleic fatty chains; methylenic 

protons of all unsaturated fatty chains; methylenic protons of palmitic and stearic fatty 

chains; methyl of linolenic fatty chains; methyl of linoleic fatty chains; (Alonso-Salces 

et al., 2010a; Alonso-Salces et al., 2010b; Sacchi et al., 1996; Mannina and Segre, 

2002; Sacco et al., 2000).  

Whilst the chemical shifts of their 1H signals for the major constituents are well 

known and very easily identified. The 1H signals of the minor oil components, are only 

observed by 1H-NMR when their signals do not overlap with those of the main 

components and their concentrations are high enough to be detected (Guillen & Ruiz, 

2001). Minor constituents which are expected to give NMR signals include; mono- 

and diglycerides, sterols, tocopherols, aliphatic alcohols, hydrocarbons, fatty acids, 

pigments and phenolic compounds (Harwood & Aparicio, 2000), Figure 10.1 shows 

the most common 1H-NMR signals of the major and some minor compounds together 

with their chemical shifts and their assignments to protons of the different functional 

groups. 
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Several NMR signals of minor compounds can be observed in 1H-NMR spectra 

since they did not overlap with those of the triglyceryl protons. The main identified 

compounds include; cycloartenol at 0.318 ppm and 0.543 ppm, β-sitosterol at 0.669 

ppm, stigmasterol at 0.687 ppm, waxes at 0.978 ppm, squalene at 1.662 ppm, sn-1,2 

diglyceryl group protons at 3.71 ppm and 5.10 ppm, and three unknown terpenes at 

4.571 ppm, 4.648 ppm and 4.699, hexanal at  9.704 ppm and phenolic protons at 5.73, 

5.99, 6.55, and 6.75 ppm. These compounds have been as already observed and 

identified by other authors (Alonso-Salces, Heberger et al., 2010; Alonso-Salces, 

Moreno-Rojas et al., 2010; D’Imperio et al., 2007; Guillen & Ruiz, 2001; Mannina, 

Sobolev, & Segre, 2003; Sacchi et al., 1996).In the study carried out by Alonso-Salces 

et al., 2010 on the different fractions of unsaponifiable constituents of EVOOs for the 

determination of geographical origin gave a highly detailed NMR analysis for each 

unsaponifiable fraction. The fractions studied included the alcohol fraction, sterol 

fraction, tocopherol fraction, and hydrocarbon fraction each one of them had a distinct 

chemical signal shown in Table 10.1. 

Table 10.1 Chemical shifts observed in 1H NMR for isolated minor EVOO fractions 

Fraction  Chemical Shift (ppm) 

Alcohols 0.141, 0.333, 0.38-0.40, 0.55-0.57, 0.558, 

0.615, 0.715, 0.747, 0.97, 1.01-1.04, 3.10-

3.17, 3.26-3.33, 3.284, 3.293, 3.315, 3.641, 

3.723, 4.157, 4.310, 4.65–4.76, 5.256, 7.05, 

9.1. 

Sterols  0.529, 0.556, 0.683, 0.702, 0.77-0.78, 0.826, 

0.834, 0.848, 0.91- 0.94, 0.921, 0.934, 

1.009, 1.80-1.88, 2.27-2.31, 2.336, 2.470, 

3.49-3.58, 4.771, 4.821, 4.964, 5.30-5.43, 

6.92. 

Tocopherols 0.156, 0.881, 0.894, 2.131, 2.603, 3.302, 

3.330, 3.416, 3.433, 4.099, 4.840, 4.875, 

4.836, 4.872, 4.938, 5.53-5.63, 5.988, 6.367 

Hydrocarbons 0.884, 1.431, 2.269, 3.287, 3.662, 4.060, 

4.539, 4.690, 4.98-5.01, 5.020, 5.703, 5.745, 

5.87– 5.98, 6.439, 6.975, 9.365, 9.37–9.41, 

9.762. 
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10.2 Application of chemometrics to NMR Spectra  
 

As previously stated the aim of this study was to build reliable classification 

models for the traceability of EVOOs from Malta by coupling NMR spectroscopic 

techniques and chemometrics. To this purpose, NMR spectra of olive oil samples from 

the Maltese islands and from other Mediterranean countries were collected as 

described in Section 2.2.1 and analyzed as described in Section 2.2.6.3. In order to 

obtain spectral fingerprints corresponding to the origin of the sample, discriminant 

(PLS, LDA) and modelling (SIMCA, PNN) classification approaches were used for 

two pulse sequences (zg30 and NOESY) and compared.  

10.2.1 Unsupervised chemometric techniques – PCA 
  
Different kinds of spectral pretreatments were tested and compared in order to 

overcome the instrumental limitation and account for scattering and other minor 

variations which would hinder the performance of the classification models. A total of 

12 spectral pretreatment methods were used, in each case, after pretreatment a 

principal component analysis was carried in order to dimensionally reduce the number 

of variables into a small set of principal component whilst retaining the information of 

the larger set. PCA enabled the preliminary identification of which pre-treatment 

method offered the highest variability and possible clustering.  Appendix 16 shows the 

different forms of spectral pretreatments employed and the corresponding PCA plot 

for the first two principal components for the 1H NMR acquired using zg30 and 

NOESY respectively.  Results showed a significantly high total explained % 

variability ranging from 73-83% for the zg30 pulse sequence and slightly lower 69-

79% for the NOESY pulse sequence for first two principal components for the 

pretreated spectra. For the zg30 spectral deresolvation and 2nd order, derivatisation had 

the highest % variability explained whilst for the NOESY experiment the multiple 

scatter correction of spectra seemed to improve the total % variability.  Whilst the 

some of the spectral pretreatment methods displayed an improvement in the variability 

explained from the binned raw data, normalization, detrending, orthogonal signal 

correction (OSC) and standard normal variate (SNV) showed a lower % variability 

when compared to the raw data for the zg30 and NOESY experiment.  . 
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Although clustering was observed in the majority of the spectral pretreatments, 

the obtained clustering did not fully discriminate between the EVOO’s of Maltese 

origin from those obtained for other Mediterranean countries. Only a weak clustering 

resembling the geographical origin was observed on using PCA. From PC loading 

(Figure 10.2) it was observed that the chemical shifts observed at 0.8 and 1.2-1.25 ppm 

for the zg30 and 0.5-1.25 ppm for the NOESY experiment seem to have a larger 

influence on the first and second principal component separation. These observations 

suggest that the phytosterol content namely -sitosterol, campesterol, cyscloartenol 

together with 1-eicosanol and -tocopherol which show chemical shifts between 0.5-

1.25 ppm have a greater influence on the variation observed along the first two 

principal components. These signals of minor compounds were found in 1H-NMR 

spectra recorded because they did not overlap by those of the triglyceryl protons 2-2.4 

ppm which contributed far less to the variation observed in the two PC. In the case of 

zg30 other peaks observed in the 4.7-4.9 ppm range seem to be also influential 

especially in the 1st PC, these peaks correspond to terpenic compounds present in 

EVOOs. Alonso-salces et al., (2012) identified 3 peaks at 4.571 ppm, 4.648 ppm and 

4.699 ppm which were attributed to unknown terpenes during their study on the 

unsaponifiable fraction of EVOOs.      
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Figure 10.2: PCA biplots (black dots = Maltese red boxes = non-Maltese) and loading plots for PC1 
(black line) and PC2 (red line) for the untreated raw data for the zg30 (Top) and NOESY (bottom) 
NMR spectra.   

 
10.2.2 Supervised chemometric techniques – PLS-DA 

 

In the subsequent step  the whole dataset was divided into training and test sets 

(the former to build the model, the latter to validate it). In order to preserve the 

diversity in the training and test sets and to account for the fact that different 

pretreatments had to be tested a unique sample splitting scheme was required. The 

following method was adopted in order to cover as such variation in the two sets and 

at the same time being able to compare the outcomes after the different pretreatments. 

The Maltese and the non-Maltese samples were grouped in an ascending way so that 

the first 35 samples would represent Maltese EVOO’s whilst the rest corresponded to 

non –Maltese EVOO’s. A stratified random sampling method was used in order to 

exclude 20% of the observation so that they would be retained as the testing set. The 

remaining 80% of the observation were used to build the training set.  

After splitting the data according to the procedure described above, 

chemometric classification models were built and tested on all the NMR spectral 

pretreatment using a PLS regression algorithm using JMP 10 and its inbuilt leave one 

out cross-validation method (LOOCV). Table 10.2 and Table 10.3 show the number 
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of latent variables extracted, the predicted root mean square error and the % variation 

explained in terms of X and Y for the different spectral pretreatment methods for the 

zg30 and NOESY pulse sequence respectively. In the case of the zg30, it was observed 

that there was a significant drop when the % accuracy (correct classification) between 

the use of the entire dataset using only LOOCV (Top) and using the 20% cross-

validation method. These observations suggest that the model obtained using only 

LOOCV tended to be overfitted and thus the 20% CV is deemed to be the most reliable 

method for cross-validation, similar results were also observed in the NOESY 

experiment.  

For the zg30 NMR spectra obtained after detrending, SNV and quantile 

normalization showed the best model performance with a % accuracy ranging from 

93.1-87.9 % and % predictability ranging from 72.2 -81.8%, whilst for the NOESY 

experiment spectra treated using quantile normalization, orthogonal signal correction, 

and 1st derivative showed the best performance with an accuracy 77.5-94.8% and 

predictability of 83.3%. In the case of the zg30 experiment all the spectral 

pretreatments showed an improvement in the % predictability when compared to the 

raw data, whilst in the NOESY experiment spectra treated using SNV, MSC and 

detrending functions showed a lower % predictability and % accuracy when compared 

to actual non-pretreated raw data. This observation suggests that in the case of NOESY 

the signal suppression of the major peaks improves the signal to noise ratio, the 

resulting spectra obtained can be used without the need of extensive pretreatments. 

Results obtained by Longobardi et al., (2012) showed that the presaturation of the 

dominating lipid signals resulted in increased receiver gain which in turn resulted in a 

signal-to-noise gain close to 10 compared to the zg30 spectra.  
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Table 10.2:  PLS-DA analysis using the whole NMR data using zg30 pulse sequence. (Top) the results 
obtained using LOOCV on the training data set and (Bottom) the results obtained using LOOCV and 20% 
of the data as the validation group 

zg30 Whole Spectrum Internal Validation   
Pre-treatment Latent Variables % X %Y PRESS % Accuracy 

Raw data 5 72.00 62.81 0.99 89.66 
Normalized 5 70.60 71.45 0.90 94.83 

Quantile normalized 3 30.03 77.16 0.91 93.10 
Detrend 3 84.52 25.78 0.97 74.14 

Deresolve 6 77.32 67.45 0.97 87.93 
SNV 1 74.83 4.47 1.10 58.62 
MSC 4 84.63 59.48 0.92 89.66 
OSC 5 66.18 70.06 0.95 89.66 

1st Derivative 1 17.44 31.06 0.96 75.86 
Savitzky Golay  8 41.04 96.48 0.97 98.28 
2nd Derivative 1 18.94 28.98 0.97 72.41 

zg30 Whole Spectrum External Validation 
Pre-treatment Latent Variables % X %Y PRESS % Accuracy % Predictability 

Raw 4 67.12 61.41 1.05 77.59 27.27 
Normalized 9 82.31 94.76 0.85 91.38 63.64 

Quantile normalized 4 39.71 91.28 0.89 93.10 72.73 
Detrend 8 81.42 85.94 0.93 70.69 36.36 

Deresolve 3 86.09 33.62 0.95 87.93 63.64 
SNV 8 91.10 86.56 0.92 93.10 81.82 
MSC 7 89.93 80.64 0.97 91.38 81.82 
OSC 2 51.69 39.14 0.97 72.41 45.45 

Savitzky Golay 1 16.92 33.01 1.00 74.14 54.55 
1st Derivative 1 19.45 33.61 0.95 68.97 45.45 
2nd Derivative 1 17.48 32.08 1.02 77.59 63.64 

 

 

Table 10.3 PLS-DA analysis using the whole NMR data using NOESY pulse sequence. (Top) the results 
obtained using LOOCV on the training data set and (Bottom) the results obtained using LOOCV and 20% 
of the data as the validation group 

NOESY Whole Spectrum Internal Validation 
Pre-treatment Latent Variables % X %Y PRESS % Accuracy 

Raw 2 28.06 51.77 0.88 93.45 
Normalized 2 31.95 48.59 0.91 84.48 

Quantile normalized 6 50.12 93.64 0.89 98.28 
Detrend 2 84.71 21.08 0.94 65.52 

Deresolve 9 77.50 91.60 0.89 94.83 
SNV 1 71.24 10.69 0.98 65.52 
MSC 2 92.57 19.65 0.99 72.41 
OSC 15 78.18 96.57 0.85 94.83 

Savitzky Golay 2 19.36 77.23 0.87 96.55 
1st Derivative 2 23.56 72.33 0.81 93.10 
2nd Derivative 2 20.16 74.92 0.88 98.28 

NOESY Whole Spectrum External Validation 
Pre-treatment Latent Variables % X %Y PRESS % Accuracy % Predictability  

Raw 7 66.13 92.76 0.92 93.10 75.00 
Normalized 1 23.57 27.85 0.95 79.31 75.00 

Quantile 
normalized 

1 15.01 38.59 0.93 77.59 83.33 

Detrend 2 85.01 26.68 0.94 65.52 58.33 
Deresolve 9 79.19 93.04 0.87 89.66 75.00 

SNV 1 71.00 11.60 0.98 68.97 66.67 
MSC 2 92.86 20.93 1.00 65.52 58.33 
OSC 7 65.43 93.02 0.87 94.83 83.33 

Savitzky Golay 3 27.58 89.06 0.88 89.66 75.00 
1st Derivative 6 49.03 95.22 0.85 94.83 83.33 
2nd Derivative 4 37.67 91.67 0.91 89.66 75.00 
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In order to fully interpret the PLS models obtained, an inspection of the VIP 

scores was used in order to determine which predictors (variables) are mainly 

influencing the latent vectors obtained. VIP is an index of how much a single variable 

contributes to the bilinear model and it is scaled in such a way that indices having VIP 

larger than 0.8 are considered to be significantly contributing to discrimination.  VIP 

scores > 0.8 for the PLS models built on the differently pretreated NMR data are 

reported in the first column of Figure 10.5 and Figure 10.6 which for the zg30 and 

NOESY experiment respectively.    

As shown in the Figure 10.3 and in Appendix 16, the VIP>0.8 

identified relevant features in the spectra, particularly those centred around the major 

peaks which were identified in Section 10.2. Furthermore the VIPs also highlight 

regions in the spectra in which unless magnified no peaks are observed, especially the 

regions 0-0.9, 2-3.8 ppm, 4-4.4 ppm, 5-6.9 ppm and 7.3-10 ppm, which corresponds 

to minor unsaponifiable constituents found in EVOOs.  Alonso-Salces et al., (2015) 

identified a number of unsaponifiable EVOO constituents which show chemical shifts 

in the aforementioned regions including: terpenes (4.609 ppm, 4.648 ppm, 4.694 ppm), 

phenolic compounds (3.487 ppm, 3.855 ppm, 3.950 ppm, 4.125 ppm, 4.55–4.61 ppm, 

5.851 ppm, 6.515 ppm, 6.559 ppm, 6.89 ppm, 6.95 ppm, 7.03 ppm, 7.09– 7.21 ppm, 

7.165 ppm, 7.185 ppm, 7.32 ppm, 7.53 ppm, 7.69–7.73 ppm, 7.81 ppm, 7.84 ppm), 

aldehydes (6.02–6.18 ppm, 8.025 ppm, 9.383 ppm, 9.539 ppm, 9.739–9.755 ppm, 

9.581 ppm, 9.762 ppm, 9.845 ppm, 9.849 ppm, 9.853 ppm, 9.875 ppm, 9.962 ppm, 

9.999 ppm); sterols such as cycloartenol (0.333 ppm, 0.558 ppm, and 0.974 ppm), β-

sitosterol (0.826 ppm, 0.834 ppm, 0.848 ppm, 0.921 ppm, and 0.934 ppm), 

stigmasterol (0.702 ppm). 

This step was then followed byd another PLS model this time using only 

variables which had a VIP score > 0.8. Table 10.4 and 10.5 shows the results obtained 

on using the adjusted PLS model for the zg30 and NOESY experiments respectively.  

On comparing the models obtained using variable selection to that previously obtained 

without any variable selection, an improvement in the overall % accuracy and 

predictability of the model, was obtained indicating that although binning of data was 

carried out in order to remove redundant variables the data set obtained still contained 

an appreciable amount of uninformative variables. These variables were omitted once 

the corresponding VIP scores from the preliminary PLS model was obtained and the 
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data set trimmed in such a way that only variables having a VIP score larger than 0.8 

were selected. The models obtained using only VIP>0.8 variables showed an increase 

in both the  % X and % Y explained variation together with a lower PRESS indicating 

an enhanced model performance. In the case of the zg30 experiment it was found that 

normalized spectra and those pretreated using Savitsky-Golay provided the best 

results, whilst detrending and SNV which had the lower performance even when 

compared to the raw data. Furthermore the aforementioned spectral transformation 

showed a significant decrease in model performance when the VIP > 0.8 data set was 

used.  

In the case of the NOESY experiment the models obtained using VIP > 0.8 

showed an increase in the performance when compared to those obtained whole data, 

however similar to the zg30 experiment SNV and MSC which showed an optimal 

performance when the whole data set was used, showed a appreciably lower 

performance when only VIP > 0.8 dataset was used. These observations are indicative 

that different spectral pretreatments are affected differently to variable selection 

techniques since each one of them attempts to maximize spectral variations and 

corrections, thus removal of a small number of predictors can have a devastating effect 

on the model performance. 
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Table 10.4 PLS-DA analysis using the VIP>0.8 datasets. (Top) the results obtained using LOOCV on the 
training dataset. (Bottom) the results obtained using LOOCV and 20% of the data as the validation group  

Zg30 VIP>0.8 Spectrum Internal Validation 
Pre-treatment Latent Variables % X %Y PRESS % Accuracy 

Raw 6 78.46 71.20 0.93 93.10 
Normalized 5 70.60 71.45 0.90 94.83 

Quantile normalized 13 69.92 96.50 0.78 98.28 
Detrend 4 92.38 33.51 0.95 72.41 

Deresolve 6 77.85 66.83 0.94 87.93 
SNV 3 91.69 57.33 0.91 86.21 
MSC 4 66.15 60.47 0.91 91.38 
OSC 4 57.94 65.13 0.89 89.66 

Savitzky Golay 6 52.17 95.16 0.71 98.28 
1st Derivative 3 42.95 79.69 0.78 96.55 
2nd Derivative 4 45.97 88.43 0.77 98.28 

 Zg30 VIP>0.8 Spectrum External Validation 
Pre-treatment Latent Variables % X %Y PRESS % Accuracy % Predictability  

Raw 4 65.34 62.41 0.94 82.76 45.45 
Normalized 4 65.80 71.14 0.97 94.83 90.91 

Quantile normalized 12 70.18 99.99 0.77 94.83 72.73 
Detrend 2 76.70 33.90 0.91 68.97 36.36 

Deresolve 4 62.92 59.40 0.98 82.76 45.45 
SNV 1 90.28 8.72 1.00 60.34 36.36 
MSC 1 33.18 16.33 1.00 67.24 63.64 
OSC 10 83.45 93.88 0.91 94.83 72.73 

Savitzky Golay 7 55.48 99.61 0.64 98.28 90.91 
1st Derivative 8 57.90 99.87 0.66 94.83 72.73 
2nd Derivative 12 63.58 100.00 0.65 93.10 63.64 

 

Table 10.5 PLS-DA analysis using the VIP>0.8 datasets. (Top) the results obtained using LOOCV on the 
training dataset. (Bottom) the results obtained using LOOCV and 20% of the data as the validation group  

NOESY VIP>0.8 Spectrum Internal Validation 
Pre-treatment Latent Variables % X %Y PRESS % Accuracy 

Raw 9 71.79 95.73 0.78 98.28 
Normalized 2 42.38 50.34 0.87 81.03 

Quantile normalized 6 58.62 93.51 0.66 98.28 
Detrend 4 88.49 53.30 0.90 86.21 

Deresolve 15 88.33 96.42 0.78 94.83 
SNV 2 91.52 25.90 0.94 74.14 
MSC 1 54.89 12.47 0.96 70.69 
OSC 9 72.59 95.37 0.74 100.00 

Savitzky Golay 5 50.07 93.77 0.64 98.28 
1st Derivative 7 61.79 95.78 0.61 98.28 
2nd Derivative 3 40.88 81.89 0.68 98.28 

 NOESY VIP>0.8 Spectrum External Validation 
Pre-treatment Latent Variables % X %Y PRESS % Accuracy % Predictability  

Raw 12 80.34 99.96 0.71 93.10 75.00 
Normalized 2 91.72 25.85 0.95 94.83 83.33 

Quantile normalized 6 60.23 93.17 0.73 96.55 91.67 
Detrend 4 93.77 42.07 0.94 74.14 66.67 

Deresolve 13 87.78 95.54 0.77 94.83 83.33 
SNV 7 73.50 92.57 0.88 70.69 75.00 
MSC 1 58.34 12.21 0.96 68.97 75.00 
OSC 6 62.91 91.55 0.79 96.55 83.33 

Savitzky Golay 4 47.89 91.78 0.63 89.66 75.00 
1st Derivative 6 59.23 94.99 0.60 93.10 91.67 
2nd  Derivative 3 43.05 84.49 0.67 93.10 91.67 
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10.2.3 Modelling Chemometric techniques – SIMCA 

The classification analysis of the EVOO NMR data was then repeated using 

a modelling approach based on the SIMCA algorithm. The latter is 

a class modelling algorithm that allows the analyses of one class at a time. For 

SIMCA analysis two PCA models were built for each spectral pretreatment one for 

the EVOOs of Maltese origin and the other for the EVOOs of non-Maltese origin. In 

each case, the optimal number of principal components were chosen in order to obtain 

optimal model complexity in 10-fold row-wise cross-validation. The use of a two-

stage model, one for each category,  allowed the comparison between the two 

categories, thus this permitted the control as to check whether samples are accepted by 

one, both or none of the modelled classes. The output of SIMCA analysis was assessed 

by the use of Coomans plot shown in Figure 10.3 and in Appendix 16 for the zg30 and 

NOESY experiment respectively. 

For this experiment given that the NMR data was highly similar and no 

significant difference in variance was observed (PCA analysis revealed 

no significant clustering resembling the origin of EVOOs) the significance limit 

was increased up to 25% rather than the default 5%. These 

lines (blue) of significance divided the Coomans plot into four different regions: the 

uppermost left and the lowermost right corresponded to unmistakeable acceptance by 

a single category model, the lowermost left to acceptance by both classes while the 

uppermost right to rejection by both category models. From a preliminary survey of 

the Coomans plot outcome at the 25% level of significance, very few samples showed 

an unambiguous acceptance by a single category.  

The SIMCA analysis classified the majority of the EVOO’s in the lowermost 

left part suggesting that the samples were accepted by both classes and thus failing to 

discriminate adequately between the two classes. Thus a diagonal (green) line 

bisecting the plot corresponding to new classification was built in order to represent a 

new significant boundary so that all the samples lying above are classified as being 

Maltese, while samples lying below are predicted as from other origins.  Table 10.6 

and Table 10.7 show the results obtained on using SIMCA modelling chemometric 

techniques for the classification and discrimination of EVOOs.  
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Table 10.6:  Results obtained for SIMCA modelling for the different spectral pretreatments using the only 
the variables having a VIP > 0.8 for the zg30 NMR. The values recorded in the table represent the % 
sensitivity of the different models towards the two classes using the new classification decision boundary.   

 
 

Application of SIMCA on the VIP>0.8 Data Set for the zg30 NMR 

 % Sensitivity Maltese 
EVOOs 

% Sensitivity Non-Maltese 
EVOOs 

Overall % 
Accuracy 

Raw 76.0 100.0 88.0 
Normalized 76.0 88.9 82.4 

Quantile 
normalized 

88.0 33.3 60.7 

Detrend 100.0 38.9 69.4 
Deresolve 88.0 50.0 69.0 

SNV 100.0 88.9 94.4 
MSC 92.0 38.9 65.4 
OSC 92.0 38.9 65.4 

Savitzky Golay 100.0 38.9 69.4 
1st Der 92.0 33.3 62.7 
2nd Der 100.0 44.4 72.2 

 

Table 10.7:  Results obtained for SIMCA modelling for the different spectral pretreatments using the only 
the variables having a VIP > 0.8 for the NOESY. The values recorded in the table represent the % sensitivity 
of the different models towards the two classes using the new classification decision boundary.   

 

Application of SIMCA on the VIP>0.8 Data Set for the NOESY  NMR 

 % Sensitivity Maltese 
EVOOs 

% Sensitivity Non-Maltese 
EVOOs 

Overall % 
Accuracy 

Raw 88.0 66.7 77.3 
Normalized 80.0 77.8 78.9 

Quantile 
normalized 

80.0 80.6 80.3 

Detrend N/A N/A N/A 
Deresolve N/A N/A N/A 

SNV 100.0 88.9 94.4 
MSC 84.0 50.0 67.0 
OSC 100.0 61.1 80.6 

Savitzky Golay 100.0 33.3 66.7 
1st  Der 96.0 61.1 78.6 
2nd  Der 100.0 33.3 66.7 
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Figure 10.3:(Left) Variables having a VIP score > 0.8 (red dots) for the different spectra 
pretreatments carried out on zg30 (Top) and NOESY (Bottom) methods. (Right) Coomans plot 
observed for the corresponding selected variables. The blue dotted lines represent the 25% 
confidence level whilst the green dotted represent the new classification decision boundary 
employed 
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On comparison of the results obtained from using modelling SIMCA to 

discriminate PLS-DA models obtained, it was found that in general, the SIMCA model 

had a significantly lower performance when compared to the discriminate models. 

Although the new classification decision boundary was used, which in its self-provides 

an overestimation of the model performance, certain spectral pretreatments still failed 

to fully distinguish between the two classes. It is well known that SIMCA modelling 

tends to fail when it comes to distinguishing classes in which the data is very similar. 

Similar results were obtained by Alonso-Salces et al., (2012) where it was shown that 

although good sensitivities were obtained by SIMCA the models obtained had a very 

low specificity. This can be explained in terms of the fundamental concepts of SIMCA. 

This technique employs the use of two PCA one for each class, which aims to identify 

the directions of maximum variability for each class. Since from the preliminary PCA 

analysis, very few pretreatment models showed signs of clustering based on NMR 

variability reflecting the geographical origin. Therefore, the hyper-ellipsoids modelled 

by SIMCA for each class were oriented in similar directions and overlapping, which 

results in low specificities as explained in Alonso-Salces et al., (2012).  

 NOESY spectra obtained using detrending and deresolve functions were 

completely overlapping and thus no separation between the different classes was 

observed. From the results obtained using Standard Normal Variate (SNV), spectral 

pretreatment method seemed to be the most effective method which enabled an overall 

accuracy of 94.4% for both the zg30 and NOESY NMR experiments. This can be 

explained in terms of the actual pretreatment, SNV effectively removes scatter effects 

by centring and scaling each individual spectrum. The practical difference between 

SNV and MSC is that each spectrum is standardized using only the data from that 

spectrum and not the mean spectrum obtained from the entire data set, thus variations 

belonging to each homologous class are conserved and amplified resulting in a higher 

variability between the two groups. The increased variability between the two classes 

enables a more accurate modelling of each class when it comes to SIMCA. The same 

logic can be used to explain the overall higher % accuracy of the raw data which was 

observed in the zg30 NMR experiment when compared to the rest of the other spectral 

pretreatments. Whilst for discriminate analysis obtaining an overall averaged spectrum 

seemed to be beneficial, the conservation of the sample variation seems to be more 

beneficial when it comes to modelling with SIMCA, as this variation enables each 
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class to be modelled separately from the other aided by the increase variation between 

each sample, which altogether increase the variation of the class.    

10.2.4 Application of SLC-DA for variable selection  
 

In order to obtain a more robust method of classification with the use of a smaller 

number of variables, the VIP data set obtained from the previous analysis was 

subjected to a stepwise linear canonical discriminate analysis SLC-DA. SLC-DA has 

performed on both the zg30 and NOESY NMR data from all the pretreatment methods 

in order to extract only a small amount of highly discriminate variables which would 

enable an easier and faster discrimination between the origins of EVOOs. This strategy 

involved a substantial reduction of the dimensionality of the data in such a way that 

only the variables shown in Figure 10.4 and those in Appendix 16 Section 16.2 were 

retained. In order to further reduce the number of variables selected from the SLC-

DA analysis, a minimum of 14 variables was selected in order to carry out a 

conventional LDA. During the SLC-DA the variables chosen by applying a forward 

stepwise variable selection algorithm using JMP 10 using a Wilks’ Lambda as a 

selection criterion and an F-statistic factor to determine the significance of the changes 

in Lambda when the influence of a new variable is evaluated. The most significant 

variables were then extracted and their canonical scoring coefficients were plotted as 

shown in Figure 10.5 and 10.6. The main advantage of using SLC-DA over the 

convention LDA is the ability to perform a feature selection. Regarding this fact, only 

those variables which helped to improve classification performance were used whereas 

variables without discriminant information were discarded.  
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Figure 10.4 shows that the variables selected during SLC-DA for some of the 

spectral pretreatments obtained from the zg30 NMR experiment. It was observed that 

NMR spectra pretreated using; normalization, SNV, MSC and OSC, the majority of 

the variables selected using the stepwise algorithm seem to be concentrated between 

3-7 ppm. This suggests that for these spectral pretreatments peaks corresponding to 

alcohols, glyceryl groups, terpenes, tocopherols, cis, trans conjugated dienediene 

system and phenolic compounds. These compounds seem to have a significant effect 

on the linear discrimination of the two classes. Similarly, NOESY NMR spectra 

derived from MSC and detrending functions seem also to have a high proportion of 

variables which are centred in the aforementioned region.  On the other hand, spectra 

obtained from the zg30 experiment derived after detrending and 2nd derivation seem 

to have a large portion of the selected variables in the 8-10 ppm region which 

corresponds to hydrocarbons and aldehydes, hexanal in particular. Whilst quantile 

normalization, deresolvation, 1st and Savitzky Golay derivation of the zg30 

experiment, significant variables were picked up along all the chemical shifts.    
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Figure 10.4:(Left) variables which had both a VIP score > 0.8 and selected during the SLC-
DA (Green dots) for the different spectra pretreatments carried out on zg30 (Top) and NOESY 
(Bottom) methods. (Right) Coomans plot observed for the corresponding selected variables. The 
blue dotted lines represent the 25% confidence level whilst the green dotted represent the new 
classification decision boundary employed 
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Table 10.7: PLS-DA analysis using the VIP>0.8 datasets. (Top) the results obtained using LOOCV on the 
training dataset. (Bottom) the results obtained using LOOCV and 20% of the data as the validation group  

zg30 VIP>0.8 & SLC-DA Spectrum Internal Validation 
Pre-treatment Latent Variables % X %Y PRESS % Accuracy 

Raw 6 83.43 80.24 0.67 100.00 
Normalized 15 97.25 93.21 0.6 100.00 

Quantile normalized 7 59.83 93.27 0.58 100.00 
Detrend 15 99.92 90.01 0.89 100.00 

Deresolve 9 90.59 85.24 0.65 100.00 
SNV 10 92.22 84.39 0.77 98.28 
MSC 4 65.17 61.76 0.83 91.38 
OSC 9 72.59 95.37 0.74 100.00 

Savitzky Golay 15 73.15 95.22 0.41 100.00 
1st Derivative 12 73.91 94.27 0.41 100.00 
2nd Derivative 13 58.88 95.27 0.45 100.00 

 zg30 VIP>0.8 & SLC-DA Spectrum External Validation 
Pre-treatment Latent Variables % X %Y PRESS % Accuracy % Predictability  

Raw 15 97.21 97.66 0.49 91.38 54.55 
Normalized 15 97.62 98.09 0.58 98.28 90.91 

Quantile normalized 7 60.46 97.79 0.57 98.28 90.91 
Detrend 3 72.99 41.38 0.88 74.14 36.36 

Deresolve 9 91.57 88.96 0.74 96.55 81.82 
SNV 15 97.83 93.19 0.65 68.97 54.55 
MSC 1 26.70 25.74 0.98 93.10 63.64 
OSC 1 26.31 40.49 0.87 74.14 54.55 

Savitzky Golay 15 76.64 99.77 0.26 98.28 90.91 
1st Derivative 15 83.52 99.55 0.33 98.28 90.91 
2nd Derivative 15 68.04 99.89 0.27 98.28 90.91 

 

Table 10.8 PLS-DA analysis using the VIP>0.8 datasets. (Top) the results obtained using LOOCV on the 
training dataset. (Bottom) the results obtained using LOOCV and 20% of the data as the validation group  

 

NOESY VIP>0.8 & SLC-DA Spectrum Internal Validation 
Pre-treatment Latent Variables % X %Y PRESS % Accuracy 

Raw 5 60.88 88.13 0.65 100.00 
Normalized 9 77.32 92.71 0.78 96.55 

Quantile normalized 5 48.30 90.93 0.55 100.00 
Detrend 15 99.62 82.82 0.75 98.28 

Deresolve 15 88.77 93.52 0.71 100.00 
SNV 6 91.76 67.49 0.77 93.10 
MSC 10 91.17 78.59 0.88 98.28 
OSC 15 88.52 96.10 0.47 96.55 

Savitzky Golay 11 56.83 95.43 0.52 100.00 
1st Derivative 6 44.73 92.13 0.56 100.00 
2nd Derivative 8 55.06 90.72 0.81 100.00 

 NOESY VIP>0.8 & SLC-DA Spectrum External Validation 
Pre-treatment Latent Variables % X %Y PRESS % Accuracy % Predictability  

Raw 10 75.36 94.01 0.68 94.83 75.00 
Normalized 2 57.35 50 0.86 84.48 75.00- 

Quantile normalized 6 51.65 92.25 0.61 93.10 83.33 
Detrend 15 99.78 83.97 0.79 96.55 91.67 

Deresolve 13 86.64 93.67 0.72 96.55 83.33 
SNV 4 88.19 57.74 0.85 89.66 91.67 
MSC 1 39.75 17.25 0.96 70.69 83.33 
OSC 6 68.91 88.28 0.69 100.00 100.00 

Savitzky Golay 3 31.15 87.05 0.59 100.00 100.00 
1st Derivative 4 37.89 88.8 0.64 100.00 100.00 
2nd Derivative 2 31.72 65.96 0.86 87.93 66.67 
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Once the variables were selected for each spectral pretreatment another PLS-

DA and SIMCA models were carried out in order to determine whether variable 

selection using the linear method provided a better form of classification. 

Table 10.9 and Table 10.10 show the results obtained from the PLS using the data set 

composed of variables which had a VIP score > 0.8 and were selected during the SLC-

DA analysis, for the zg30 and NOESY NMR spectra respectively. The results show 

that with the exception of spectra treated with MSC for the zg30 NMR data, 

normalization and 2nd order derivation for the NOESY NMR data all the models 

obtained from PLS-DA showed a noticeable improvement in the % accuracy and 

predictability. Notably, the spectra derived after orthogonal signal correction, Savitzky 

Golay and 1st derivation of the NOESY NMR data reach 100% accuracy in the training 

model and 100% predictability in the validation dataset. Although improvements were 

observed in the zg30 spectra none of the spectral pretreatment methods managed to 

achieve such high levels of performance. These observations suggest that a variable 

selection using the two techniques greatly improves the modelling power and that 

NOESY NMR data enables a much more accurate discrimination of the Maltese 

EVOOs. Similar to what was observed in other spectral techniques which were carried 

out during this study the PLS-DA models obtained by combining two different types 

of variable selection procedures ensured a higher number of extracted latent variables 

resulting in a higher % of variance explained in terms of X and Y and marked decrease 

in the PRESS.  
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Application of SIMCA to the data set containing common predictors which 

had VIP >0.8 and significant effect on the SLC-DA model showed that for the zg30 

experiment an improvement in the classification was observed when compared to the 

VIP>0.8 datasets. On the contrary in the case of NOESY experiment an evident 

decrease in the classification power was observed when compared to the VIP>0.8, as 

none of the spectral pretreatments were able to model the two classes separately, thus 

the Commas plot obtained showed indistinguishable overlapping classes. In the case 

of NOESY since the NMR data obtained had an increase signal to noise ratio, the 

removal of a significant number of variables could reduce the ability of the modelling 

methods to fully discriminate the two classes. 

   These observations suggest that the application of modelling methods for 

classification highly depends on a number of variables and can differ substantially 

from discriminating models as observed in the case of the PLS-DA.  In the study 

carried out by Galtier et al., (2011), it was shown that PLS-DA discrimination was 

better than SIMCA in classification performance for the classification of EVOOs 

according to their geographical origin. Galtier et al., (2011) further state that the main 

difference between SIMCA and PLS-DA is the criterion which is employed during the 

model building. In the case of SIMCA PCA submodels are computed with the ultimate 

the goal of capturing variations within each class, on the other hand, PLS-DA tries to 

identify the directions in the data space that discriminate classes directly. Due to these 

fundamental differences SIMCA classification always provides worse results than 

methods based on PLS analysis.  SIMCA performance may be improved when the 

spectral region is reduced to a small number predictors (Galtier et al., 2011), in this 

experiment it was shown that it also highly dependent on the type of spectral data.  
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Table 10.9: Results obtained for SIMCA modelling for the different spectral pretreatments using the only 
the variables having a VIP > 0.8 for the zg30 NMR. The values recorded in the table represent the % 
sensitivity of the different models towards the two classes using the new classification decision boundary.   

 
 

Application of SIMCA on the VIP>0.8 Data Set for the zg30 NMR 

 % Sensitivity Maltese 
EVOOs 

%Sensitivity Non-Maltese 
EVOOs 

Overall % 
Accuracy 

Raw 76.0 100.0 88.0 

Normalized 76.0 88.9 82.4 
Quantile 

normalized 
88.0 33.3 60.7 

Detrend 100.0 38.9 69.4 

Deresolve 88.0 50.0 69.0 

SNV 100.0 88.9 94.4 

MSC 92.0 38.9 65.4 

OSC 92.0 38.9 65.4 

Savitzky Golay 100.0 38.9 69.4 

1st  Der 92.0 33.3 62.7 

2nd  Der 100.0 44.4 72.2 

 

Table 10.10: Results obtained for SIMCA modelling for the different spectral pretreatments using the only 
the variables having a VIP > 0.8 for the NOESY. The values recorded in the table represent the % sensitivity 

of the different models towards the two classes using the new classification decision boundary.   
 

Application of SIMCA on the VIP>0.8 Data Set for the NOESY  NMR 

 % Sensitivity Maltese 
EVOOs 

%Sensitivity Non-Maltese 
EVOOs 

Overall % 
Accuracy 

Raw 88.0 66.7 77.3 

Normalized 80.0 77.8 78.9 

Quantile 
normalized 

80.0 80.6 80.3 

Detrend N/A N/A N/A 

Deresolve N/A N/A N/A 

SNV 100.0 88.9 94.4 

MSC 84.0 50.0 67.0 

OSC 100.0 61.1 80.6 

Savitzky Golay 100.0 33.3 66.7 

1st Der 96.0 61.1 78.6 

2nd Der 100.0 33.3 66.7 
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10.2.5 Supervised chemometric discriminate analysis techniques 
– LDA 

 

The data sets obtained from using common variables selected using the SLC-

DA algorithm and those having a VIP>0.8 were subjected to LDA analysis in order to 

determine whether the reduction of data will improve the classification models 

obtained using NMR data.    

In comparison with SIMCA, LDA avoids the normality problem and 

confidence interval adjustment making it a more reliable method for classification. 

When compared with SIMCA and PLS-DA, the LDA method has the disadvantage 

that the number of training samples must be larger than the number of variables 

included in the LDA model. In order to fully satisfy this constraint a smaller number 

of variables were selected based on the standardized scoring coefficients obtained from 

the SLC-DA. The standardized scoring coefficients of the variable selected during the 

SLC-DA were obtained and plotted as shown in Figure 10.5 and Figure 10.6.  The 

importance of these coefficients lies in their use to compute canonical scores in terms 

of the standardized data often referred to as loadings. They are highly informative 

when it comes to comparing the relative importance in their discriminatory power of 

the independent variables.  

In order to build the LDA, the selected variables obtained in SLC-DA were 

arranged in ascending order in terms of their scoring coefficients. A smaller set of 

variables were selected which consisted of 14 variables which corresponded to 7 of 

the most positive and 7 most negative standardized scoring coefficients. An LDA was 

carried out on the training set using only the small set of variables which were selected. 

The results obtained for the training samples were a visualized on an LDA biplot 

samples as shown in Figure 10.5 and Figure 10.6 for the zg30 and NOESY experiment 

respectively. Within each plot, each sample is projected as the scores obtained for the 

first two discriminate functions.  
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 zg30 Standardised Scoring Coefficients Linear Discriminate Analysis  Standardized Scoring Coefficients Linear Discriminate Analysis 
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Figure 10.5 (Left) Bar graph showing the standardised scoring coefficients of the variables selected in the SLC-DA for the different zg30 NMR spectral pretreatments, 14 of which were 
selected for LDA.  
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 NOESY Standardised Scoring Coefficients Linear Discriminate Analysis  Standardised Scoring Coefficients Linear Discriminate Analysis 
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Figure 10.6:(Left) Bar graph showing the standardised scoring coefficients of the variables selected in the SLC-DA for the different NOESY NMR spectral pretreatments, 14 of which 
were selected for LDA. 
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From the Table 10.11, it was shown that during the training phase the LDA 

models obtained for all the pretreatments ranged from 86-100% accuracy for both the 

zg30 and NOESY NMR data. In the case of the zg30 experiment, it was noted that all 

the spectral transformations achieved a higher % accuracy during the training phase 

when compared to the raw data. In the case of the NOESY experiment previously 

discussed, the actual raw data without the use of spectral transformation yielded a 

higher discriminatory power. During the validation phase, in the zg30 experiment, only 

Savitzky Golay derivatization achieved a higher discriminatory power whilst 2nd order 

derived and quantile normalized spectral had an equivalent discriminatory power to 

those obtained from using the raw data alone. From the standardized coefficient plot, 

it can be deduced that compounds having chemical shifts at 1.55, 2.82, 6.2-7.36, and 

9.8 ppm have a high discriminatory power and thus offer a more direct form of the 

discrimination of Maltese EVOOs.  

 In the case of the NOESY experiment only OSC, 2nd order and Savitzky Golay 

derived spectra had a higher % accuracy when compared to the raw data, whilst a lower 

model performance was obtained for the rest of the spectral pretreatments. In the case 

of OSC, chemical shifts obtained at 1.63, 3.13, 5.50, 6.71, 9.19-9.40 ppm seem to have 

the highest discriminatory power whilst for the 2nd order derived spectra chemical 

shifts obtained at 1.25, 2.96-3.10, 4.76, and 9.9 ppm together with chemical shifts 

observed at 0.49, 2.79, 4.23, 4.85 and 6.45 ppm for the Savitzky Golay derived spectra 

from being more effective in discerning the Maltese EVOOs from the non-Maltese 

EVOOs in the NOESY experiment. 

Table 10.11: Comparison of the % accuracy and predictability of LDA models for the different spectral 
pretreatments for zg30 and NOESY NMR. 

Linear Discriminate Analysis 

 
zg30 NOESY 

Training  Validation  Training  Validation  
Raw 86.05 93.33 100.00 93.33 

Normalized 97.67 80.00 95.56 66.67 
Quantile 

normalized 
97.67 93.33 97.78 86.67 

Detrend 97.67 73.33 88.89 80.00 
Deresolve 88.37 73.33 100.00 86.67 

SNV 100.00 86.67 86.67 86.67 
MSC 97.67 73.33 93.33 86.67 
OSC 95.35 80.00 100.00 100.00 

Savitzky Golay 97.67 100.00 100.00 100.00 
1st Der 97.67 86.67 97.78 66.67 
2nd Der 97.67 93.33 100.00 100.00 
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Nonetheless, it was shown that overall, all the models obtained had a high level 

of discrimination, in the case of the zg30 experiment 86.6-100% of the excluded 

samples were successfully classified whilst 66.7-100% accuracy was obtained for the 

NOESY experiment.     

10.2.6 Application of hierarchical cluster analysis  
 

Clustering of samples was carried out using their hierarchical aggregation. The 

samples are combined according to their distances or similarities to each other. In this 

experiment, Ward’s minimum variance method was used whereby, the distance 

between two clusters is the equivalent of the ANOVA sum of squares between the two 

clusters added up over all the variables. Ward’s method tends to join clusters with a 

small number of observations and is strongly biased toward producing clusters with 

approximately the same number of observations nonetheless it is very sensitive to 

outliers (Milligan, 1980). Application of hierarchical cluster analysis using Ward’s 

method was used on the variables selected using SLC-DA and VIP>0.8 for Savitzky 

Golay derivatization was carried out. Savitzky Golay derived spectra were used since 

they showed the most consist higher rates of % accuracy and % precision through both 

the zg30 and NOESY experiment as illustrated in Figure 10.7. The cluster analysis 

carried out on the zg30 Savitzky Golay derived spectra revealed three major clusters 

as marked in Figure 10.7. The first cluster (Red) was composed mainly of non-Maltese 

EVOOs however, five Maltese EVOOs were found in this cluster, the second cluster 

(Green) contained exclusively EVOOs of Maltese origin whilst the last cluster (Blue) 

contained exclusively non-Maltese EVOOs. Similarly, in the case of NOESY, the first 

cluster (Green) contained almost exclusively EVOOs of Maltese with the exception of 

one non-Maltese sample, the second cluster (Blue) and third cluster (Red) contained 

almost exclusively EVOOs of non-Maltese origin, with the exception of four Maltese 

EVOOs.  These results indicate that although hierarchal cluster analysis might not be 

an appropriate method for discrimination of EVOOs based on the geographical origin 

the results obtained offer a confirmation of the results obtained using PLS-DA and 

LDA.   
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Figure 10.7. Application of hierarchal cluster analysis using Wards methods on the SLC-DA and 
VIP > 0.8 variables for the Savitzky Golay spectral pretreatment on the zg30 (Top) and NOESY 
(Bottom) NMR.  
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10.2.7 Supervised discriminate chemometric techniques – SVM 
  

The dataset containing only variables which were selected using SLC-DA and 

having a VIP score > 0.8, were subjected to another classification method, known as 

support vector machine (SVM). SVM similar to PLS can be used for both classification 

and regression (Christianini and Shawe-Taylor 2000; Vapnik 1995). During this part 

of the experiment, SVM was used in the context of classification. Table 10.12 and 

Table 10.13 shows the results obtained on using SVMs using different Kernel tricks 

including radial, polynomial and sigmoidal on the NMR data obtained from the zg30 

and NOESY experiment respectively. The application of kernel functions in SVMs 

seems to be an advantage, in contrast with other discriminate methods like LDA and 

PLS-DA where information from all data points is incorporated in order to form the 

decision boundary, by using the pooled covariance matrix. Unlike PLS-DA and LDA, 

the SVMs decision boundary is mainly oriented at samples that show no clear 

classification whether they belong to one or the other class. Although SVM and Kernel 

functions seem to provide answers for data sets in which the class membership is 

difficult to obtain, SVMs tend to be more greatly affected by the presence of outliers 

in the data set causing instabilities in model generated, especially if data outliers are 

used as support vectors (Steinwart and Christmann 2008). 
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Table 10.12: Summary SVM models obtained for the zg30 NMR data  

Zg30 
SVM Type 1 

Kernel Type Linear 
Normalized QNorm Detrend Deresolve SNV MSC OSC Savitzky Golay 1st  Derivative 2nd  Derivative 

Training Accuracy 100.00 83.72 90.70 86.05 74.42 100.00 97.67 88.37 32.56 97.67 
Validation 69.77 69.77 67.44 76.74 69.77 51.16 67.44 74.42 62.79 74.42 

Predictability 66.67 60.00 80.00 73.33 66.67 80.00 40.00 93.33* 40.00 73.33 
 Kernel Type Polynomial 

Training Accuracy 62.79 55.81 76.74 55.81 90.70 100.00 100.00 74.42 72.09 76.74 
Validation 60.47 51.16 67.44 60.47 62.79 58.14 55.81 65.12 65.12 62.79 

Predictability 53.33 60.00 80.00 66.67 53.33 33.33 60.00 80.00 66.67 73.33 
 Kernel Type Radial Baised 

Training Accuracy 67.44 97.67 74.42 76.74 100.00 100.00 100.00 90.70 97.67 100.00 
Validation 55.81 72.09 69.77 65.12 67.44 46.51 76.74 83.72 65.12 72.09 

Predictability 66.67 60.00 80.00 80.00 53.33 46.67 46.67 80.00* 53.33 66.67 
 Kernel Type  Sigmoid 

Training Accuracy 81.40 88.37 76.74 95.35 76.74 93.02 90.70 72.09 25.58 97.67 
Validation 67.44 62.79 67.44 72.09 72.09 58.14 81.40 74.42 69.77 69.77 

Predictability 53.33 66.67 80.00 80.00 66.67 93.33 80.00 93.33* 46.67 73.33 

Table 10.13: Summary SVM models obtained for the zg30 NMR data  

NOESY 
SVM Type 1 

Kernel Type Linear 
Normalized QNorm Detrend Deresolve SNV MSC OSC Savitzky Golay 1st  Derivative 2nd  Derivative 

Training Accuracy 77.78 82.22 93.33 82.22 95.56 97.78 80.00 60.00 93.33 60.00 
Validation 77.78 75.56 75.56 68.89 62.22 57.78 77.78 60.00 82.22 62.22 

Predictability 66.67 73.33 60.00 73.33 60.00 66.67 40.00 60.00 80.00* 53.33 
 Kernel Type Polynomial 

Training Accuracy 77.78 82.22 73.33 66.67 88.89 95.56 80.00 55.56 82.22 68.89 
Validation 77.78 68.89 64.44 60.00 77.78 66.67 55.56 53.33 60.00 68.89 

Predictability 80.00* 60.00 60.00 53.33 73.33 53.33 53.33 60.00 53.33 66.67 
 Kernel Type Radial Biased 

Training Accuracy 73.33 73.33 80.00 97.78 84.44 88.89 80.00 97.78 86.67 84.44 
Validation 66.67 71.11 68.89 62.22 64.44 66.67 77.78 57.78 75.56 64.44 

Predictability 60.00 60.00 86.67* 60.00 60.00 53.33 80.00 60.00 80.00 60.00 
 Kernel Type  Sigmoid 

Training Accuracy 88.89 68.89 93.33 91.11 75.56 84.44 82.22 66.67 82.22 62.22 
Validation 80.00 71.11 73.33 75.56 68.89 66.67 73.33 66.67 80.00 60.00 

Predictability 86.67* 73.33 80.00 80.00 80.00 73.33 60.00 60.00 73.33 66.67 
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In the case of SVM, the models were built using different cross-validation 

forms. In training set which constituted of 80% of the samples was used to build the 

SVM models. These models were segment validated, whereby the training data set was 

first partitioned into 10 equally (or nearly equally) sized segments. Subsequently, 10 

iterations of training and validation were performed such that within each iteration a 

different segment of the data was held out for validation while the remaining 9 folds 

are used for learning. The data matrix was stratified prior split into segments to ensure 

each segment is a good representative of the whole data set. Once that the model was 

fitted the % accuracy in the training and validation can be derived. In this experiment, 

although segment cross-validation is a very good cross-validation method, a second 

cross-validation method was employed whereby the models fitted on the 80% of the 

training set were tested on the remaining 20% of the data so that % predictability for 

each model is obtained.      

Table 10.12 shows the SVM results obtained for the zg30 NMR experiment for 

the four kernel types. In the case of the zg30 experiment, the application of a linear 

hyperplane, with the exception of 1st order derived spectra the rest of the spectral 

pretreatments had a training accuracy 74.4-100% which decreased to 51.6-74.4 % in 

the validation and a predictability in the range of 40-93.3%. It was shown that Savitzky 

Golay derived spectra had the highest % predictability throughout all the four kernel 

type functions indicating that the form and shape of the hyperplane do not affect the 

discriminatory power. Furthermore, it was shown that different pretreatment methods 

differ in performance depending on the Kernel type function used. In the case of the 

zg30 experiment, it was found that the detrending and 2nd order derived spectra reached 

optimal performance using a linear hyperplane, whilst quantile normalized and 1st 

order derived spectra reach optimal performance using radial baised kernel type. 

Spectra obtained using deresolve, SNV, MSC, and OSC reached optimal performance 

under a sigmoidal type kernel-type function. It was noted that polynomial based kernel 

type was not suitable for none of the zg30 derived spectra.  

In the case of the NOESY, it was found that none of the spectral pretreatments 

had a consistent higher model performance throughout all the different kernel type 

functions used. For the linear type kernel function, it was found that 1st order derived 

spectra had the optimal model performance, whilst normalized spectra reached an 

optimal model performance under the polynomial and sigmoidal type kernel function. 
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In the case of the radial basis kernel type, spectra pretreated using detrending function 

reached an optimal performance. On a comparison of the different kernel functions, it 

was found that the sigmoidal type displayed a generally higher % accuracy in both the 

training (66.7-93.3%) and validation (66.7-80%) phase together with a higher % 

accuracy in the predictability (60-86.7%) of the excluded samples.   

10.2.8 Application of feed-forward predictive neural networks  
 

The use of feed-forward predictive neural networks on the NMR data as a 

method for classification was assessed using three different forms of validation, 

namely 33.3% of data holdback, CV-10 k-fold and excluded row validation. The 

algorithm fitted on the training set was later tested on the validation data and % 

predictability of the model was obtained. Table 10.14 shows % accuracy and % 

predictability for the different forms of cross-validation. Similar, to what was observed 

in the PLS-DA and SIMCA, NMR raw data derived from the NOESY experiment gave 

a higher model performance throughout the three different validation methods used. It 

was shown that whilst the spectral transformation was applied to zg30 NMR data a 

better model performance was obtained on the use of 33.3% holdback validation with 

the exception of detrending and OSC. In the case of FF-PNN, matrix scattering-

corrected zg30 NMR spectra had the most consistent optimal model performance, 

followed by the 1st order derived spectra which on the other hand failed in the 

predictability under the excluded row validation method possibility due to model 

overfitting.  

 

In the case of NOESY application of FF-PNN to untreated raw data showed a 

very good model performance as 93.3% of accuracy was observed during the training 

phase and 91.7% of accuracy was observed during the validation stage. From the 

results obtained it was shown that only very few spectral pretreatments had a 

considerable improvement on the FF-PNN models obtained for NOESY data. The only 

quantile normalized and 1st order derived NOESY NMR spectra showed a consistently 

higher PNN model performance throughout the three different validation methods 

used.       
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Comparison of the zg30 and NOESY PLS-DA models obtained using the 

whole NMR spectrum, FF-PNN showed a higher model performance. This 

observation was attributed to the higher flexibility and modelling power of PNNs when 

compared to PLS-DA. Although PNN is highly flexible and enables the classification 

of a large number of classes, PNNs often converge on local minima rather than global 

minima, increasing the risk of overfitting if the training iterations go on too long. In 

such case the model obtained might start to consider the noise as part of the pattern, 

this fact could explain the lower % predictability during the validation stage observed 

when the detrending and 1st order derivatization were applied to zg30 NMR data but 

not to NOESY data. This observation further confirms that zg30 NMR data to have a 

lower signal to noise ratio when compared to NOESY.  

 

Table 10.14: Application of FF-PNN on the NMR data using three forms of cross-validation  

FF-PNN 
 HoldBack CV-10 Excluded Row 
 Training Validation Training Validation Training Validation 

zg30 
Raw 81.03 81.82 96.55 81.82 86.21 90.91 

Normalized 94.83 81.82 94.83 100 81.03 63.64 
Quantile 

normalized 
98.28 90.91 98.28 90.91 82.76 81.82 

Detrend 77.59 54.55 91.38 90.91 75.86 45.45 
Deresolve 91.38 90.91 93.1 90.91 79.31 81.82 

SNV 96.55 90.91 98.28 100 74.14 72.73 
MSC 98.28 100 96.55 90.91 93.1 90.91 
OSC 77.59 36.36 89.66 63.64 84.48 81.82 

1st Der 96.55 90.91 98.28 100 86.21 45.45 
2nd  Der 84.48 90.91 98.28 90.91 81.03 63.64 
Savitzky 

Golay 
91.38 81.82 98.28 90.91 85 90.91 

NOESY 
Raw 93.33 91.67 93.33 91.67 93.33 91.67 

Normalized 95 91.67 95 100 93.33 100 
Quantile 

normalized 
98.33 100 98.33 100 93.33 100 

Detrend 70 83.33 96.67 91.67 95 83.33 
Deresolve 96.67 100 96.67 100 91.67 83.33 

SNV 93.33 91.67 98.33 100 98.33 100 
MSC 93.33 100 93.33 83.33 95 91.67 
OSC 81.67 75 91.67 75 90 91.67 

1st Der 96.67 100 98.33 100 96.67 91.67 
2nd Der 93.33 91.67 98.33 100 93.33 100 

Savitzky 
Golay 

88.33 100 98.33 100 90 91.67 
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In conclusion, it was shown that NMR in conjunction with a number 

of chemometric methods, provided a cheap, fast and reliable way for the determination 

of geographical origin of EVOOs, especially when it comes to discrimination of 

Maltese EVOOs from non-Maltese EVOOs. From the preliminary assessment using 

only unsupervised PCA models no significant clustering was observed it was 

attributed to the high levels of similarity between the two classes of EVOOs studied, 

such method was deemed to be unsatisfactory when it comes to discrimination of 

geographical origin.  Application of supervised methods of classification namely PLS-

DA, FF-PNN, LDA and SVM showed to be highly effective in classifying local and 

non-local EVOOs samples. The use of the variable selection 

methods significantly increased the effectiveness of PLS-DA models when compared 

to no variable selection. FF-PNN, SVM and LDA models were also shown to offer 

similar classification rates to PLS-DA models and thus corroborate the results obtained 

from the PLS-DA models and put confidence in the use of NMR methods in 

conjunction with spectral transformation for the classification of Maltese and 

foreign EVOOs samples. Results showed that different NMR pulse methods can 

greatly affect the discrimination of EVOOs. NOESY pulse sequence and suppression 

of strong signal greatly improved the signal to noise ratio and the raw data obtained 

was more informative when compared to the conventional zg30 pulse sequence. NMR 

data acquired using zg30 pulse sequence required an extensive spectral elaboration in 

order to obtain comparable model performance to that of NOESY.  
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11. Application of spectrofluorometric analysis for the 
determination of geographical origin of olive oils 

 

Fluorescence spectroscopy is an emergent analytical technique, which presents 

good sensitivity, with minimal sample preparation. In the case of spectrofluorometric 

analysis, molecules exhibiting a fluorescence nature are analysed through the 

simultaneous scanning of the excitation and emission wavelengths resulting in an 

excitation-emission matrix, known also as a total luminescence spectrum or 

fluorescence landscape.  Rather than using the whole excitation-emission matrix 

(EEM) adjusting both excitation and emission monochromators to scan in the same 

instant with a constant wavelength interval between excitation and emission a 

synchronised excitation-emission spectrum is obtained, this allows narrowing the 

spectral bands and allows data to handled much easier. Although the SEEFS contain 

less information than the EEM, they are potentially more informative than single 

excitation and emission spectra. The selection of an appropriate offset between 

excitation and emission wavelengths, allows the study of singled out fluorophores, in 

so doing increasing the sensitivity and selectivity. Coupling this technique to 

chemometrics enabled the distinction of commercially available samples of virgin 

olive oils, pure olive oils, and olive pomace oils (Kyriakidis and Skarkalis, 2000; 

Guimet et al.,2004) and determine the overall quality of the olive oil (Guzmána et 

al.,2015) 

 

The aim of this study was to use synchronised excitation-emission 

spectroscopy associated to chemometrics to differentiate the Maltese EVOO’s from 

other EVOO’s derived from other countries within the Mediterranean region. In so 

developing a quick, easy and cost-saving verification of the origin of EVOOs from the 

Maltese islands paving the path for the application of protected designation of origin. 

In this study, the spectroscopic data were collected in the region of 240-700 nm with 

the wavelength intervals of 10, 30, 60, 80 120 and 185 nm, were processed both by a 

discriminant chemometric tools including PLS, SVM, and LDA but also using 

modelling chemometric tools such as SIMCA and PNN. Moreover, different forms of 

signal pretreatment were employed in order to enhance the potential of FTIR as a tool 

for authentication purposes.   
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11.1 Identification of fluorescent peaks  
 

Figure 11.1 shows the full EEM obtained from olive oil dissolved in iso-octane, 

purified olive oil phenolic extract dissolved in methanol and refined seed oil dissolved 

in iso-octane, and their corresponding SEEF at different . The total fluorescence 

spectrum of diluted extra virgin olive oils, measured with the use of right angle 

geometry, exhibits two intense bands, one with excitation at about 270-330 nm and 

emission at about 295-360 nm and the second with excitation at about 330-440 nm and 

emission at about 660-700 nm. In the case of refined seed oil a band located in the 

intermediate range, with excitation at 280-330 nm and emission at 372-480 nm was 

observed. The different peaks obtained at the different synchronised spectra were 

attributed to different fluorophores present within the olive oil.  

 

Similar to the previous studies carried out by Sikorska et al., (2004) and (2005) 

the results obtained did not show an intense peak at 284 nm as later reported by the 

same authors in 2008. Analysis of the complete olive oil SEEFS did not reveal the 

presence of shouldering peaks to the tocopherol peak attributed to the presence of 

phenolic compounds. However, extraction and analysis of pure phenolic fractions 

from olive oils displayed a peak maxima centred at around 284 nm which was masked 

by the prominent tocopherol peak in the complete olive oil, similar results were 

obtained by Dupuy et al., (2005).   

 

Another important factor which could have masked the fluorescence of the 

phenolic peak is the solvent effect. Phenolic compounds are poorly soluble in nonpolar 

solvents (iso-octane), thus the spectrum that was recorded in the iso-octane is different 

from the spectrum recorded in n-hexane–ethanol mixture as studied by Sikorska et al., 

(2008). Although phenolic compounds such as caffeic acid and p-coumaric acid are 

insoluble in non-polar solvents, the emission observed in olive oils may originate from 

oleuropein and secoiridoids derivatives, which have slightly different emission 

properties and are slightly more soluble in non-polar solvents.   Sikorska et al., (2008) 

showed that the resolution of the phenolic and tocopherol band in the short-wavelength 

region relying on visual analysis of the three-dimensional EEM is very difficult. 
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Examination of the total synchronous fluorescence spectra of diluted oils 

showed dependence of spectral shape and intensity on the wavelength interval () 

used in the measurements, with the presence of particular bands dependent on . At 

lower values of  the bandwidths are reduced and the spectrum is simplified as 

compared to the total fluorescence spectra. The spectra of the virgin olive oil recorded 

at 10 nm show two major bands with their maxima at around 310 and 680 nm. These 

peaks were previously identified by Sikorska et al., (2004, 2005) to be attributed to the 

presence of tocopherol and the chlorophyll related compounds. These conclusions 

were further supported by the same authors in 2008 by comparison with respective 

standards.   

 
EVOO Olive oil phenolic fraction Refined seed oil 

10 nm 30 nm S60 nm 

   
80 nm 120 nm S185 nm 

   
Figure 11.1 : The full EEM obtained for extra virgin olive oil, the phenolic fraction of olive oil and refined seed oils. The 
corresponding SEEFS measured at  10, 30, 60, 80, 120, 185 nm using right angle geometry were obtained. The solid black 
line corresponds to the refined seed oil, the dotted black line corresponds to complete olive dissolved in iso-octane, whilst 
the solid red line corresponds to olive phenolic fraction dissolved in methanol.  
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Appearance of new bands or splitting of existing bands is typically observed 

with increasing wavelength interval.  Emission bands are present in the excitation 

region below 310 nm, 310-350 nm, 350-380 nm, and above 550 nm in spectra of virgin 

olive oils (Sikorska et al., 2011). Similar spectral characteristics for virgin olive oil 

were reported by Poulli et al., (2006). Through the use of mathematical 

transformations these changes are further amplified as shown Figure 11.2. From the 

results obtained it was shown that whilst the 10 nm showed only emission bands at 

310 nm and 670 nm, a bathochromic shift of the 310 nm peak was observed as the  

was increased. At 30 nm two major peaks were observed one at 335 nm and another 

one at 380 nm as highlighted through the use of quantile normalization and 2nd order 

derivatisation which corresponds to same peak which was observed for the SEEFS 

obtained at 10 nm. This peak was attributed to the presence of tocopherol whilst the 

peak centred 650 nm was attributed to the presence of chlorophyll compounds. Moving 

to 60 nm three major peaks were observed, in the region 385-440 nm whilst at 

80nnm only two peaks observed at in this region 405 nm and 440 nm, however as 

highlighted by the different normalization processes including quantile normalization 

and SNV two peaks were observed emitting at high wavelengths, 675 nm and 685 nm 

rather than a single peak as previously observed at 10 and 30 nm.  

 

At 120 nm and 185 nm the bathochromic shift of lower wavelength is further 

accentuated as three peaks could be observed at 440, 445 and 470 nm which at 185 

nm these three peaks shift to 510, 540, 555 nm respectively. Furthermore at 185 nm 

peaks observed at higher wavelengths split further and become more distinguishable 

as two maxima were observed 645 nm and 700 nm.  The distinct peaks observed at 

different  cannot be attributed to one single compound. One of the pioneering papers 

published by Kyriakidis and Skarkalis, (2000) showed that this intense peak was 

attributed to different forms of tocopherols present within olive oil   and their 

corresponding oxidised derivatives.  However, it is still not completely understood 

what the individual peaks correspond to, since it was later shown that the oxidised 

derivatives of tocopherols are non-fluorescent compounds (Pollok and Melchert 

2004).   On examination of synchronous spectra of refining seed (Figure 11.1) oils the 

peaks are more defined and do not reveal more than one maxima, this suggests that the 

different emission maxima obtained in the range 350-550 nm can be attributed to both 
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the tocopherol compounds, but most importantly to phenolic compounds which are 

present in olive oil and almost completely absent in refined seed oils. The broad peak 

obtained for the SEEFS of pure olive oil phenolic fraction corroborates these findings.  

 

A number of different studies have been performed in order to fully identify 

the different peaks observed on the use of SEEFs. The identification of the origin of 

the particular emission bands rely mainly on comparison to the spectra of chemically 

pure fluorescent components. The short wavelength band in total fluorescence spectra, 

which covers the region of 270–330 nm in excitation and 295–360 nm in emission, 

corresponds to the band at 280–310 nm in the synchronous fluorescence spectra and 

is mainly assigned to tocopherols and phenols. This assignment has been confirmed 

by several observations and further confirmed during this study. (Sikorska et al., 

2004). The presence of a similar peak observed in refined seed oils which do not 

contain phenolic compounds can be observed at higher . This observation seems to 

confirm that tocopherols also contribute to the emission observed in this wavelength 

range but at a higher wavelength when compared to phenolic compounds.  The 

tocopherols found in the majority of seed and olive oils includes four natural 

tocopherols (-, - , -, -) and there corresponding unsaturated counterparts 

tocotrienols (T3, T3, T3, T3). Since both tocopherols and tocotrienols share the 

same basic structure they tend to exhibit very similar UV-absorption spectra and 

fluorescence properties individual identification is hampered.   

 

The peaks observed at higher wavelengths 525 nm have been attributed to be 

partly originating from compounds of the vitamin E group, or their derivatives formed 

upon oxidation (Kyriakidis & Skarkalis, 2000). However the known products of 

oxidation of --, - , -,  tocopherols, the -, - , -,  tocopherolquinones, are all 

nonfluorescent substances (Pollok & Melchert, 2004) just the identification of these 

peaks is still not fully understood. Overlapping with this region are phenolic 

compounds as phenolic acids, phenolic alcohols, hydroxyisochromans, secoiridoids, 

lignans, and flavonoids which are present in virgin olive oils in very low quantities but 

given the sensitivity of the instrument their fluorescence contribution could not be 

excluded (Servili et al., 2004). Most of the polyphenols are fluorescent substances, 

absorbing in the 260-310 nm range and emitting in the near-UV range, with their bands 
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centred at 310-370 nm (Zandomeneghi and Zandomeneghi, 2005). These phenolic 

compounds have been detected and identified through the application of HPLC in 

conjunction with a fluorescent detector by Dupuy et al., (2005).  Tena et al., (2009) 

recently reported that the fluorescence typical for phenolic components of olive oils 

showed and emission in the 362-420 nm range. 

 

Analysis of the different spectral pretreatment methods on the different SEEFS it 

was noted that EVOOs of Maltese origin had more intense peaks observed in the 395-

445 nm region at 60 nm and 645-680 nm as observed at 120 and 185 nm. These 

observations suggest that the EVOOs of derived from the Maltese islands have a higher 

phenolic/ tocopherol and a higher chlorophyll content. These results corroborate the 

results obtained using high performance liquid chromatography whereby it was shown 

that EVOOs of Maltese origin had a significantly higher concentration of secoiridoids 

and those obtained using UV/Vis absorption analysis for the determination of 

chlorophyll and carotenoid content.     

 

11.2 Application of chemometrics to SEEFS 
 

As previously stated the aim of this study was to build reliable classification models 

for the traceability of EVOOs from Malta by coupling synchronised excitation-

emission spectroscopy to chemometrics. To this purpose, SEEF spectra of olive oil 

samples from the Maltese islands and from other Mediterranean countries were 

collected as described in Section 2.2.1 and analyzed as described in Section 2.2.6.3. In 

order to obtain spectral fingerprints corresponding to the origin of the sample, 

discriminant (PLS, LDA) and modelling (SIMCA, PNN) classification approaches 

were used and compared. 
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11.2.1 Unsupervised chemometric techniques – PCA 
 

Different kinds of spectral pretreatments were tested and compared in order to 

overcome the instrumental limitation and account for scattering and other minor 

variations which would hinder the performance of the classification models. A total of 

11 spectral pretreatment methods were used, in each case, after pretreatment a 

principal component analysis was carried in order to dimensionally reduce the number 

of variables into a small set of principal component whilst retaining the information of 

the larger set. PCA enabled the preliminary identification of which pre-treatment 

method offered the highest variability and possible clustering.  Figure 11.2 shows the 

different forms of spectral pretreatments employed and the corresponding PCA plot 

for the first two principal components. For the majority of the SEEFs spectral 

pretreatments, a clustering resembling the geographical origin emerged when the 

biplot for the first two principal component was analyzed, with 30 and 60 nm 

showing the least clustering. On the other hand synchronized spectra obtained using a 

10, 120 and 185 nm wavelength interval showed clustering of data resembling the 

geographical origin for the majority of the spectral pretreatments.  From the % 

variability explained it was found that for the majority of the SEEFs, the spectra 

pretreated using the deresolve and the detrending function showed a higher % 

variability explained for the first two principal complements.  

 

Analysis of the loading plots of the aforementioned spectral pretreatments 

revealed spectral areas of significant importance which were responsible for the 

clustering observed in the corresponding biplot. Figure 11.3 shows the variable loading 

plots for the different SEEFs. In the case of 10 nm is was shown that peaks obtained 

at 320 nm and 680 nm corresponding to phenolic and chlorophyll compound 

fluorescence respectively, had the highest loadings, with the chlorophyll peak being 

responsible for the majority of the explained variance, whilst the phenolic peak was 

responsible mainly for the second principal component.    For the 30 nm it was found 

that the short wavelength emitting compounds 320-360 nm had a higher loading when 

compared to longer wavelength emitting compounds such chlorophylls are there 

corresponding derivatives.  
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Figure 11.2: Principal component analysis biplot for the different pretreatments obtained for the different 
SEEF obtained at δ10, 30, 60, 80, 120, 185 nm. EVOOs of Maltese origin are represent as black spectra and 
black dots whilst non-Maltese EVOOs are represented as red spectra and red squares. 
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Within the 320-360 nm region compounds namely tocopherols and there 

corresponding tocotrienol derivatives are expected to emit fluorescent light in the 320-

325 nm range which corresponds to the maxima obtained under the 1st principal 

component, however phenolic compounds namely hydroxybenzoic and 

hydroxycinnamic acids which emit at slightly higher wavelengths (349-361) explained 

the remaining variability in the 2nd principal component.  Whilst in the case of the 30 

nm the lower wavelength emission compounds had the highest loading in the case of 

the 60 nm SEEF, compounds emitting in the 380-420 nm region where responsible 

for the majority of the explained variation, whilst compounds emitting at lower 

wavelengths 350-365 nm only contributed to 6% of the explained variation in the 2nd 

principal component. 

 The emission of phenolic compounds 349-457 nm was found to be responsible 

for the majority of the variability explained for the SEEFs at 80 nm, as two major 

peaks obtained at 405 nm and another one at 457 nm, possibly corresponding to the 

emission of p-coumaric and caffeic acid respectively had the largest loadings. 

Furthermore, the 2nd principal component revealed a shorter wavelength shouldering 

peak to the 405 which possibly corresponded to gallic acid with emission maxima 

observed at 382 nm. The importance of the phenolic components present in EVOOs 

was further emphasised upon examination of the SEEFs obtained at 120 nm loading 

plots as compound having a fluorescence in the 435- 500 nm corresponding to 

nicotinamides (NADPH, NAD) and phenolic compounds namely hydroxycinnamic 

acids were showed to have the highest loadings in both the 1st and 2nd  principal 

component. The presence of flavin-containing compounds namely FAD, Flavin 

mononucleotide (riboflavin vitamin B2 derivatives), flavonoids and terpenoids, which 

emit in the 500-585 nm range showed the highest loadings in the SEEFs obtained at 

185 nm. The emission obtained at 648 nm which corresponds to the emission of 

chlorophyll b was also evidenced at 185 nm, however, its loading was lower than 

those corresponding to flavin, flavonoid, and terpenoid compounds.  
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Figure 11.3: Loading plots obtained for the most informative spectral pretreatments obtained for SEEFs at 
different δnm. 
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Similar to what was carried to in the other techniques, the next step was to 

divide the whole dataset into training and test sets (the former to build the model, the 

latter to validate it). The Maltese and the non-Maltese samples were grouped in an 

ascending way so that the first 35 samples would represent Maltese EVOO’s whilst 

the rest correspond to non –Maltese EVOO’s. A stratified random sampling method 

was used in order to exclude 20% of the observation so that they would be retained as 

the testing set. The remaining 80% of the observation were used as to build the training 

set.  

11.2.2 Supervised chemometric techniques – PLS-DA 
 

After splitting the data according to the procedure described above, 

chemometric classification models were built and tested on all the SEEFs spectral 

pretreatment using a PLS regression algorithm using JMP 10 and its inbuilt leave one 

out cross-validation method (LOOCV). Partial least squares regression combines 

features from and generalizes principal component analysis (PCA) and multiple linear 

regression. Its goal is to predict a set of dependent variables (geographical origin) from 

a set of independent variables or predictors (nm). This prediction is achieved by 

extracting from the predictors a set of orthogonal factors called latent variables which 

have the best predictive power.  Table 11.1 and Table 11.2  show the number of latent 

variables extracted, the predicted root mean square error and the % variation explained 

in terms of X and Y for the different spectral pretreatment methods for each SEEF. 

From the results obtained with was shown that SEEFs obtained using 30 and 60 nm 

had the lowest performance under both cross-validation methods for the majority of 

the spectral pretreatments on the other hand it was found that SEEF obtained at 80 

nm had the highest performance. Furthermore it was observed that the PLS-DA models 

obtained differed not only form SEEF nm but each SEEF nm had different model 

performance depending on the spectral pretreatment used. In the case of 10 nm it was 

observed that the model reach optimal performance (100% accuracy and 

predictability) using the 2nd order derived spectra. At 80 nm it was found that Savitzky 

Golay, 1st and 2nd order derivatization were equally effective in predicting the 

geographical origin of EVOOs, as the models obtained using these functions obtained 

100% accuracy and predictability. 
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Table 11.1: PLS-DA model performance using internal validation for the whole SEEF spectrum recorded at different δ nm under different pretreatments.  

 
  

 Sync 10 nm  Sync 80 nm 
 LV %X %Y PRESS %Ac  LV %X %Y PRESS %Ac 

Raw 5 77.02 77.87 0.70 98.21  7 91.89 78.39 0.73 100.00 
Normalized 5 76.50 81.52 0.61 100.00  4 82.63 66.40 0.76 92.86 

Quantile normalized 4 63.11 85.66 0.66 100.00  2 68.69 47.48 0.87 76.79 
Baseline 13 98.87 92.56 0.67 100.00  10 98.62 82.45 0.64 100.00 
Detrend 4 73.57 71.82 0.78 96.43  9 96.09 80.35 0.73 100.00 

Deresolve 12 97.35 91.84 0.65 100.00  11 99.50 83.60 0.65 100.00 
SNV 9 92.65 90.34 0.65 100.00  6 94.43 70.48 0.74 92.86 
MSC 9 93.32 89.91 0.61 100.00  7 98.95 69.03 0.76 92.86 
OSC 5 66.18 70.06 0.95 100.00  11 95.69 47.48 0.77 98.21 
SG 3 42.36 80.93 0.64 98.21  3 64.69 71.32 0.72 96.43 
1st 3 51.67 72.48 0.68 98.21  3 64.69 71.32 0.72 96.43 
2nd 4 46.66 85.96 0.62 98.21  2 42.39 64.41 0.79 96.43 

 Sync 30 nm  Sync 120 nm 
Raw 1 30.79 20.94 0.96 75.00  4 85.13 63.16 0.77 94.64 

Normalized 1 40.42 20.25 0.97 73.21  4 80.52 61.66 0.79 94.64 
Quantile normalized 2 58.93 41.08 0.95 69.64  4 73.04 69.16 0.76 94.64 

Baseline 13 99.22 84.20 0.90 94.64  5 92.89 68.08 0.79 94.64 
Detrend 4 77.69 55.66 0.96 91.07  7 93.83 75.58 0.77 96.43 

Deresolve 15 99.35 88.25 0.77 96.43  4 45.8 56.13 0.79 89.29 
SNV 6 92.68 66.07 0.85 94.64  6 96.52 69.19 0.81 94.64 
MSC 8 97.68 72.91 0.81 92.86  8 99.09 75.33 0.78 96.43 
OSC 10 95.57 81.93 0.75 96.43  5 86.86 72.11 0.74 98.21 
SG 3 54.52 61.70 0.83 92.86  3 65.01 60.95 0.81 91.07 
1st 2 30.38 62.91 0.83 98.21  3 65.01 60.95 0.81 92.86 
2nd 4 46.66 85.96 0.62 98.21  3 53.7 65.81 0.82 98.21 

 Sync 60 nm  Sync 185 nm 
Raw 4 81.53 64.15 0.75 96.43  2 66.27 43.49 0.91 87.50 

Normalized 4 79.65 69.58 0.72 94.64  1 45.68 26.30 0.94 78.57 
Quantile normalized 5 77.44 77.14 0.84 98.21  3 54.65 65.44 0.83 96.43 

Baseline 13 99.32 89.73 0.82 100.00  6 93.27 64.14 0.84 96.43 
Detrend 4 82.37 62.59 0.76 94.64  6 88.99 61.15 0.77 92.86 

Deresolve 14 99.43 90.71 0.69 100.00  2 81.30 34.96 0.89 87.50 
SNV 3 76.65 60.82 0.77 92.86  7 94.02 70.77 0.86 96.43 
MSC 9 98.38 80.84 0.80 96.43  8 95.82 74.51 0.80 98.21 
OSC 8 87.17 83.52 0.72 98.21  4 78.21 63.49 0.85 94.64 
SG 9 82.77 90.44 0.75 100.00  14 91.53 89.72 0.88 94.64 
1st 3 69.04 62.31 0.78 92.86  3 62.98 56.99 0.82 91.07 
2nd 1 18.12 27.99 0.99 100.00  1 34.09 29.25 0.97 82.14 
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Table 11.2: PLS-DA model performance using internal validation for the whole SEEF spectrum recorded at different δ nm under different pretreatments.  

External Validation Whole Spectrum 
 Sync 10 nm  Sync 80 nm 
 LV %X %Y PRESS %A %P  LV %X %Y PRESS %A %P 

Raw 3 64.29 74.02 0.77 98.21 100.00  4 84.44 58.58 0.87 98.21 100.00 
Normalized 5 75.96 84.55 0.68 96.43 81.82  4 82.82 62.78 0.82 92.86 100.00 

Quantile normalized 4 63.79 88.34 0.66 98.21 90.91  1 43.91 24.03 0.98 89.29 100.00 
Baseline 4 86.13 68.35 0.78 91.07 90.91  2 41.37 41.73 0.83 89.29 90.91 
Detrend 3 65.35 68.98 0.80 94.64 90.91  15 99.22 89.37 0.80 94.64 100.00 

Deresolve 3 64.99 58.53 0.77 85.71 72.73  5 90.72 64.36 0.82 98.21 90.91 
SNV 5 88.09 76.52 0.77 94.64 72.73  5 93.65 60.96 0.82 91.07 100.00 
MSC 2 53.27 48.48 0.82 85.71 81.82  7 99.07 66.07 0.90 92.86 90.91 
OSC 3 57.81 75.63 0.71 98.21 90.91  3 66.00 55.40 0.88 92.86 100.00 
SG 3 43.99 81.32 0.71 98.21 100.00  3 60.89 72.08 0.83 100.00 100.00 
1st 3 52.97 71.89 0.78 96.43 90.91  3 60.89 72.08 0.83 100.00 100.00 
2nd 4 47.97 85.69 0.68 100.00 100.00  3 52.27 74.31 0.87 100.00 100.00 

 Sync 30 nm  Sync 120 nm 
 LV %X %Y PRESS %A %P  LV %X %Y PRESS %A %P 

Raw 1 36.28 20.37 0.98 75.00 63.64  5 87.79 69.98 0.87 98.21 100.00 
Normalized 3 74.48 51.72 0.86 87.50 90.91  5 83.76 70.24 0.76 94.64 100.00 

Quantile normalized 1 48.63 18.86 0.98 82.14 90.91  3 66.78 63.77 0.78 89.29 81.82 
Baseline 1 42.65 16.43 1.02 75.00 63.64  6 94.68 75.53 0.79 100.00 100.00 
Detrend 2 60.19 39.81 0.97 75.00 63.64  5 98.16 60.49 0.82 98.21 100.00 

Deresolve 1 37.34 19.75 0.98 87.50 90.91  6 93.27 69.88 0.80 96.43 100.00 
SNV 2 66.93 27.09 0.98 80.36 81.82  5 93.10 68.30 0.74 94.64 100.00 
MSC 3 88.12 30.95 0.96 76.79 81.82  8 99.13 76.68 0.74 96.43 100.00 
OSC 1 38.09 20.94 0.98 73.21 63.64  4 78.30 71.08 0.78 100.00 100.00 
SG 3 49.80 68.16 0.84 96.43 90.91  3 64.11 67.31 0.85 96.43 90.91 
1st 3 49.80 68.16 0.84 96.43 90.91  3 64.11 67.31 0.85 96.43 90.91 
2nd 1 20.44 39.81 0.96 78.57 72.73  3 58.39 69.36 0.90 96.43 100.00 

 Sync 60 nm  Sync 185 nm 
 LV %X %Y PRESS %A %P  LV %X %Y PRESS %A %P 

Raw 4 83.26 65.69 0.79 96.43 100.00  1 55.19 19.24 0.97 69.64 63.63 
Normalized 4 83.25 65.69 0.79 92.86 81.82  1 49.92 21.61 0.97 73.21 72.73 

Quantile normalized 5 80.31 72.42 0.78 96.43 81.82  1 37.90 27.40 0.95 78.57 81.82 
Baseline 3 83.60 46.05 0.95 83.93 72.73  1 44.98 19.59 0.94 76.79 81.82 
Detrend 7 95.85 79.68 0.77 94.64 90.91  2 80.42 31.25 0.96 87.50 81.82 

Deresolve 4 84.24 64.25 0.77 98.21 90.91  6 88.74 58.71 0.87 87.50 100.00 
SNV 3 77.51 63.95 0.76 91.07 72.73  1 55.93 21.52 0.94 73.21 72.73 
MSC 14 99.62 92.03 0.78 94.64 90.91  1 58.48 25.66 0.91 83.93 81.82 
OSC 4 75.04 73.35 0.87 92.86 81.82  1 50.56 26.94 0.94 80.36 90.91 
SG 1 30.43 35.56 1.02 82.14 90.91  1 40.00 26.77 0.96 73.21 63.64 
1st 3 70.29 63.59 0.79 91.07 81.82  2 53.19 45.68 0.93 91.07 100.00 
2nd 9 80.93 93.33 0.82 92.86 72.73  1 37.41 25.13 1.01 76.79 63.64 
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For the 120 nm it was observed that spectra pretreated using baseline and 

orthogonal signal correction functions at 100% accuracy and predictability were 

obtained on the other hand SEEFs obtained at 185 nm reached optimal performance 

after deresolve and 1st order derivatization.  

In order to fully interpret the PLS models obtained, an inspection of the VIP 

scores was used in order to determine which predictors (variables) are mainly 

influencing the latent vectors obtained. VIP is an index of how much a single variable 

contributes to the bilinear model and it is scaled in such a way that indices having VIP 

larger than 0.8 are considered to be significantly contributing to discrimination.  VIP 

scores > 0.8 for the PLS models built on the different pretreated SEEFs are reported 

in Figure 11.4.    

As shown in the figure, for the majority of the SEEFs, the VIP > 0.8 identified 

relevant features in the spectra, particularly, peaks which corresponded to previously 

identified compounds. In the case of SEEFs obtained at 10 nm using baseline, 

detrending, deresolve, MSC and SNV pretreatments selected variables were mainly 

concentrated in the 300-400 nm and 600-700 nm region corresponding to 

phenolic/tocopherol and pigment fluorescence. On the other hand Savikty Golay, 1st  

and 2nd  order derived spectra picked up variables throughout the entire spectrum even 

between 400-600 nm range, in which no fluorescent compounds were observed using 

10 nm, whilst spectra pretreated using OSC showed that variables were mainly 

concentrated in the 300-400nnm range. Variables selected in the SEEF obtained at 30 

nm showed that for the majority of the spectral pretreatments were selected throughout 

the entire spectrum rather than being focused on particular fluorescent peaks.  

However, spectra pretreated using Savitzky Golay, 1st and 2nd order derivatisation, 

almost completely exclude variables in the 300-400 nm range. In the case of SEEFs 

obtained at 60 nm and 80nnm only detrended and baselined corrected spectra 

showed more specific variable selection focused around 350-450 nm and 650-700 nm 

which correspond to major fluorescent peaks, the other spectral pretreatments had a 

rather non-specific variable selection.  
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Analysis of variables selected for the SEEFs obtained at 120 nm and 185 nm 

revealed that even though the major fluorescent peak obtained was centred around 

400-500 nm, in the majority of the spectral pretreatments, variable were also selected 

between the 600-700 nm which correspond to shouldering peaks of chlorophyll 

pigments and their corresponding derivatives.   

 

 

Figure 11.4: Selected variables having a VIP score > 0.8 for the different spectra pretreatments obtained for 
the different SEEF obtained at δ10, 30, 60, 80, 120, 185 nm 
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The next step was to build another PLS model this time using only variables 

which had a VIP score > 0.8. Table 11.3 and Table 11.4 show the results obtained on 

using the adjusted PLS model for SEEFs. In general comparison of the model 

performance obtained for the majority of SEEF spectral pretreatments no marked 

improvements throughout the entire models was observed, furthermore, in certain 

instances the model performance was in fact lower when compared to the previous 

models obtained without any variable selection. In the case of SEEF obtained 10 nm 

and 185 nm spectra pretreated using deresolve, detrend, SNV, MSC and OSC 

functions obtained a higher model performance when compared to those obtained 

without variable selection however the rest of the spectral pretreatments had 

comparable or even lower performance. Similar results were obtained for SEEFs 

obtained at 30 nm as only spectra obtained after Savitzky Golay, 1st and 2nd order 

derivatisation showed a marked improvement on using variable selection process. For 

the SEEFs obtained at 80 nm and 120 nm only a marginal improvement was 

observed for all the spectral pretreatments, however it was only restricted to the 

training data set (% accuracy) as in the majority of cases the % predictability did not 

improve, furthermore under certain spectral pretreatments, it actual decreased, upon 

variable selection. The combined effect of preprocessing and variable selection 

methods on chemometric model performance may be detrimental to the overall 

information contained in the data. Appropriate preprocessing selection is therefore a 

major issue in chemometrics. It is well documented that preprocessing and variable 

selection approaches are seriously lacking and likely lead to a suboptimal selection of 

a preprocessing strategy (Engel et al., 2013). 
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Table 11.3: PLS-DA internal validation model performance using the selected VIP>0.8 variables for the SEEFs recorded at different δ nm under different pretreatments 

Internal Cross-validation VIP > 0.8  
Sync 10 nm  Sync 80 nm 

  LV %X %Y PRESS %Ac   LV %X %Y PRESS %Ac 
Normalized 5 80.12 79.82 0.62 96.43   6 93.25 80.13 0.65 94.64 

Quantile normalized 4 70.87 85.11 0.60 98.21   2 55.27 51.36 0.88 89.28 
Baseline 12 98.26 91.40 0.59 100.00   8 97.74 83.43 0.57 100 
Detrend 2 50.59 60.77 0.76 94.64   10 98.83 88.55 0.59 89.28 

Deresolve 12 98.75 87.90 0.67 100.00   4 84.05 50.91 0.9 100 
SNV 10 92.65 90.72 0.58 100.00   7 96.15 80.57 0.67 94.66 
MSC 10 96.22 88.48 0.56 98.21   7 98.28 75.4 0.72 94.66 
OSC 10 95.23 89.41 0.65 100.00   15 97.42 91.14 0.69 98.29 
SG 3 55.12 81.34 0.61 98.21   3 71.17 80.09 0.58 94.66 
1st 2 48.40 69.18 0.66 98.21   7 71.17 80.09 0.58 94.66 
2nd 4 46.64 85.97 0.62 98.21   9 85.18 84.27 0.84 98.29 

Sync 30 nm  Sync 120 nm 
Normalized 15 99.94 82.78 0.69 98.21   4 84.59 54.5 0.85 89.29 

Quantile normalized 3 73.55 55.05 0.86 89.29   4 75.16 66.68 0.81 94.64 
Baseline 9 98.36 69.18 0.78 92.86   7 95.81 83.02 0.59 100.00 
Detrend 13 99.4 87.46 0.6 89.29   15 99.94 91.2 0.61 100.00 

Deresolve 11 99.85 78.06 0.65 94.64   6 94.04 78.15 0.62 100.00 
SNV 8 96.48 75.34 0.76 96.43   10 98.71 88.88 0.6 100.00 
MSC 5 95.74 61.52 0.78 91.07   12 99.4 89.73 0.63 100.00 
OSC 10 93.53 84.23 0.73 96.43   4 84.25 60.08 0.82 96.43 
SG 15 98.37 83.81 0.6 94.64   10 92.6 92.04 0.62 98.21 
1st 7 82.76 77.94 0.61 96.43   10 92.6 92.03 0.62 98.21 
2nd 10 86.65 81.85 0.57 98.21   3 64.79 75.91 0.65 96.43 

Sync 60 nm  Sync 185 nm 
Normalized 5 89.38 70.96 0.7 94.64   15 99.69 89.5 0.58 100.00 

Quantile normalized 5 79.61 73.09 0.82 92.86   3 66.99 63.16 0.78 96.43 
Baseline 1 33.06 27.51 1.01 78.57   9 98.02 83.02 0.68 100.00 
Detrend 7 94.45 77.36 0.74 100.00   10 99.1 84.62 0.65 89.29 

Deresolve 9 98.59 76.55 0.75 100.00   4 85.96 55.18 0.81 100.00 
SNV 11 98.99 85.23 0.75 98.21   7 95.22 78.88 0.8 94.64 
MSC 9 97.91 82.09 0.8 96.43   6 93.11 77.91 0.71 96.43 
OSC 8 91.55 75.53 0.79 94.64   4 85.07 61.31 0.86 91.07 
SG 14 95.18 95.97 0.74 98.21   1 38.38 32.27 0.92 82.14 
1st 7 76.05 61.68 0.75 91.07   3 69.78 66.4 0.7 89.29 
2nd 10 82.52 93.76 0.85 100.00   5 83.89 77.2 0.71 96.43 
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Table 11.4: PLS-DA external validation model performance using the selected VIP>0.8 variables for the SEEFs recorded at different δ nm under different pretreatments 

External Validation VIP > 0.8 
 Sync 10 nm  Sync 80 nm 
 LV %X %Y PRESS %A %P  LV %X %Y PRESS %A %P 

Normalized 4 68.63 80.39 0.61 96.43 90.91  6 93.13 78.36 0.72 94.64 100.00 
Quantile normalized 4 70.88 85.9 0.63 98.21 90.91  2 68.11 44.51 0.9 89.29 100.00 

Baseline 9 96.54 84.3 0.75 96.43 81.82  2 63.61 39.41 0.89 80.36 72.73 
Detrend 10 98.48 86.28 0.71 96.43 90.91  13 99.74 93.27 0.87 89.29 90.91 

Deresolve 3 60.4 70.2 0.74 100.00 100.00  4 86.04 50.8 0.89 98.21 90.91 
SNV 6 87.82 81.87 0.77 100.00 100.00  5 93.96 70.6 0.74 91.07 100.00 
MSC 7 93.09 81.8 0.71 100.00 100.00  12 99.75 87.69 0.8 100.00 100.00 
OSC 3 67.87 73.88 0.67 98.21 90.91  2 54.98 45.18 0.9 89.29 100.00 
SG 2 48.41 74.68 0.63 98.21 100.00  3 69.48 80.26 0.6 98.21 100.00 
1st 2 49.1 67.37 0.73 96.43 90.91  3 69.48 80.26 0.6 98.21 100.00 
2nd 3 40.95 80.54 0.71 98.21 100.00  5 71.84 76.25 0.92 94.64 81.82 

 Sync 30 nm  Sync 120 nm 
Normalized 7 98.11 69.42 0.84 92.86 72.73  4 86.61 61.23 0.75 96.43 100.00 

Quantile normalized 2 69.84 42.1 0.88 76.79 72.73  3 69.28 60.81 0.8 91.07 90.91 
Baseline 1 43.27 16.64 1.02 75.00 72.73  6 94.89 80.38 0.69 98.21 100.00 
Detrend 2 49.42 42.86 0.96 75.00 72.73  9 99.44 82.02 0.72 92.86 81.82 

Deresolve 1 34.79 23.16 0.95 89.29 90.91  5 91.61 72.22 0.79 100.00 100.00 
SNV 2 63.78 27.08 0.97 78.57 81.82  5 90.41 76.87 0.64 94.64 100.00 
MSC 1 42.35 17.58 0.96 71.43 81.82  10 99.03 87.23 0.71 100.00 100.00 
OSC 1 36.13 22.12 0.98 75.00 72.73  3 75.44 64.08 0.74 96.43 100.00 
SG 4 68.66 74.81 0.81 98.21 100.00  12 95.39 95.95 0.63 96.43 81.82 
1st 3 64.87 69.57 0.71 94.64 100.00  12 95.39 95.95 0.63 96.43 81.82 
2nd 2 46.22 69.46 0.68 98.21 100.00  3 65.51 77.2 0.73 98.21 100.00 

 Sync 60 nm  Sync 185 nm 
Normalized 3 80.77 66.12 0.76 91.07 72.73  14 99.36 90.62 0.68 96.43 81.82 

Quantile normalized 4 77.78 70.23 0.84 91.07 72.73  3 68.06 61.31 0.87 96.43 100.00 
Baseline 1 34.80 28.76 1.02 80.36 81.82  7 95.7 78.67 0.78 96.43 90.91 
Detrend 7 94.39 79.02 0.75 94.64 90.91  10 99.47 84.83 0.72 92.86 100.00 

Deresolve 4 85.88 60.54 0.75 98.21 90.91  4 86.67 52.03 0.87 98.21 90.91 
SNV 3 79.47 64.91 0.74 92.86 81.82  1 47.9 32.79 0.89 83.93 81.82 
MSC 13 99.43 90.58 0.84 96.43 90.91  7 96.44 77.12 0.72 94.64 100.00 
OSC 4 77.89 65.04 0.76 91.07 72.73  12 98.73 83.91 0.88 94.64 100.00 
SG 9 86.64 92.46 0.83 96.43 90.91  1 42.11 26.9 0.96 78.57 81.82 
1st 3 77.63 62.56 0.76 89.29 90.91  2 60.92 55.99 0.82 87.50 100.00 
2nd 9 82.06 93.59 0.83 98.21 90.91  5 82.49 79.58 0.75 98.21 100.00 
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 This is mainly attributed to the fact that application of PLS models on a 

smaller number of variables increases the chances of model overfitting, resulting in 

models which are able to correctly predict the geographical origin of the training data 

set but attain a lower model performance when it comes to predicting the geographical 

origin of the excluded samples. Evidence of this, comes from analysing the models 

obtained using LOOCV, a less rigorous cross-validation method. Comparison of the 

PLS models obtained from LOOCV showed a higher performance when compared to 

those obtained using external cross-validation method, indicating that the models 

obtained after variables selection a more susceptible to overfitting. However, as it will 

be demonstrated further on in this study the application of a combined variable 

selection processes can greatly reduce the chances of overfitting.   

11.2.3 Modelling Chemometric techniques – SIMCA 
 

The classification analysis of EVOOs SEEF data was then repeated using a 

modelling approach based on the SIMCA algorithm. The latter is a class modelling 

algorithm that allows the analyses one class at a time. For SIMCA analysis two PCA 

were built for each spectral pretreatment one for the EVOOs of Maltese origin and the 

other one for the EVOOs of non-Maltese origin. In each case, the optimal number of 

principal components were chosen in order to obtain optimal model complexity in 10-

fold row-wise cross-validation. The use of a two-stage model, one for each category,  

allowed the comparison between the two categories, thus this allowed us to check 

whether samples are accepted by one, both or none of the modelled classes. The output 

of SIMCA analysis was assessed by the use of Coomans plot shown in Figure 11.5. A 

Coomans plots take the form of a graph where the two axes represent the distance of 

the samples to each of two class models. The horizontal and vertical lines 

corresponding to the threshold distances also known as the significance limit can be 

adjusted up depending on the sensitivity required. One of the major disadvantages of 

using SIMCA is that one has to set a confidence level, α. If the data are normally 

distributed, α % (e.g. 5%) of objects belonging to the class will be considered as not 

belonging to it. For this experiment given that the SEEF data was highly similar the 

significance limit was increased up to 25% rather than the default 5%
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Table 11.5: SIMCA performance given in terms of % sensitivity and % specificity towards the different classes using SEEFs recorded at different δ nm under different pretreatments 

 % Sensitivity Maltese 
% Sensitivity 
Non-Maltese 

% Specificity Maltese 
% Specificity 
Non-Maltese 

 % Sensitivity Maltese 
% Sensitivity 
Non-Maltese 

% Specificity  Maltese 
% Specificity 
Non-Maltese 

 

 Sync 10 nm  Sync 30 nm 
Normalised 87.0 15.2 100.0 100.0  65.2 3.0 97.0 100.0 

Quantile normalized 73.9 12.1 100.0 100.0  60.9 9.1 100.0 100.0 
Baseline 43.5 27.3 100.0 100.0  21.7 6.1 100.0 100.0 
Detrend 78.3 36.4 100.0 100.0  47.8 12.1 100.0 100.0 

Deresolve 91.3 24.2 97.0 95.7  56.5 15.2 97.0 95.7 
SNV 65.2 9.1 100.0 100.0  60.9 12.1 93.9 100.0 
MSC 65.2 12.1 100.0 100.0  47.8 0.0 93.9 100.0 
OSC 73.9 33.3 100.0 100.0  52.2 15.2 100.0 100.0 

Savitzky Golay 73.9 54.5 100.0 100.0  60.9 6.1 100.0 100.0 
1st Der 73.9 15.2 100.0 100.0  43.5 24.2 100.0 100.0 
2nd Der 78.3 3.0 100.0 100.0  60.9 36.4 100.0 100.0 

Sync 60 nm Sync 80 nm 
Normalised 78.3 21.2 97.0 100.0  69.6 15.2 97.0 100.0 

Quantile normalized 87.0 6.1 100.0 100.0  69.6 3.0 100.0 100.0 
Baseline 30.4 15.2 100.0 100.0  13.0 9.1 100.0 95.7 
Detrend 60.9 12.1 100.0 100.0  43.5 6.1 100.0 100.0 

Deresolve 60.9 15.2 84.8 95.7  39.1 21.2 97.0 95.7 
SNV 78.3 9.1 97.0 100.0  69.6 9.1 100.0 100.0 
MSC 87.0 6.1 100.0 100.0  17.4 0.0 100.0 100.0 
OSC 65.2 18.2 100.0 100.0  56.5 27.3 100.0 100.0 

Savitzky Golay 60.9 6.1 100.0 100.0  52.2 3.0 90.9 100.0 
1st Der 73.9 36.4 100.0 100.0  56.5 3.0 90.9 100.0 
2nd Der 78.3 6.1 100.0 100.0  82.6 3.0 100.0 100.0 

Sync 120 nm Sync 185 nm 
Normalised 82.6 6.1 84.8 100.0  69.6 9.1 100.0 100.0 

Quantile normalized 69.6 3.0 100.0 100.0  78.3 3.0 100.0 100.0 
Baseline 30.4 18.2 93.9 100.0  34.8 6.1 100.0 100.0 
Detrend 43.5 27.3 87.9 100.0  73.9 3.0 100.0 100.0 

Deresolve 30.4 9.1 84.8 95.7  56.5 18.2 87.9 100.0 
SNV 87.0 0.0 97.0 100.0  78.3 9.1 100.0 100.0 
MSC 78.3 3.0 97.0 100.0  73.9 9.1 100.0 100.0 
OSC 69.6 6.1 100.0 100.0  43.5 6.1 100.0 100.0 

Savitzky Golay 52.2 12.1 100.0 100.0  82.6 6.1 100.0 100.0 
1st Der 60.9 12.1 97.0 100.0  82.6 18.2 100.0 100.0 
2nd Der 69.6 21.2 93.9 95.7  78.3 0.0 97.0 100.0 
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Figure 11.5: Coomans plot obtained using SIMCA for base line corrected spectra obtained for the different SEEF obtained 
at δ10, 30, 60, 80, 120, 185 nm.The blue dotted lines represent the 25% confidence 
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Although in previous chemometric analysis using different spectroscopic 

methods, a new line bisecting the plot corresponding to discriminant classification 

boundary was built in order to represent a new significant boundary in order to 

overcome the ubiquity of the non-Maltese EVOOs this could not be applied to SEEF 

data thus the results presented in Table 11.5 are given in terms of the specificity and 

sensitivity of the SIMCA models obtained towards both the Maltese and non-Maltese 

EVOOs. Sensitivity is the percentage of samples from the modelled class that are 

accepted by the class model, while specificity is the percentage of samples from other 

classes which are rejected by the class model. It was observed that SIMCA models 

obtained had an overall very high sensitivity and specificity towards the Maltese 

EVOOs, however independent of the spectral transformations and the SEEF nm used, 

the models obtained had a very low sensitivity for the non-Maltese EVOOs. This was 

expected since within the non-Maltese EVOO group, EVOOs from different 

originating countries were used each one of them having a different 

spectrofluorometric fingerprint, increasing the overall variability of the subset, making 

it more difficult to be modelled as a single class. However the results obtained further 

confirm that EVOOs obtained from the Maltese islands tend to be unique in their 

spectrofluorometric profile independent of the originating cultivar, thus enabling the 

EVOOs to be fully modelled into one single class which almost completely 

discriminated from other non-Maltese EVOOs.   

The results obtained further illustrate that the performance of the model 

towards the sensitivity of the Maltese EVOOs is highly dependent on both the spectral 

transformations used and the SEEF nm employed. SEEFs obtained using 10 nm, 

120 nm and 185 nm had a higher sensitivity towards the Maltese EVOOs when 

compared to SEEF spectra obtained at 30 nm, 60 nm and 80 nm. These results 

corroborate the results obtained using PLS-DA. In order to obtain a more robust 

method of classification with the use of a smaller number of variables, the VIP data 

set obtained from the previous analysis was subjected to a stepwise linear canonical 

discriminate analysis SLC-DA.  

SLC-DA was performed on the SEEF data from all the pretreatment methods 

in order to extract only a small amount of highly discriminate variables which would 

enable an easier and faster discrimination between the origins of EVOOs. This strategy 

involved a substantial reduction of the dimensionality of the data in such a way that 
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only the variables shown in Figure 11.8ab were retained. In order to further reduce the 

number of variables selected from the SLC-DA analysis, a minimum of 18 variables 

was selected in order to carry out a conventional LDA. During the SLC-DA the 

variables chosen by applying a forward stepwise variable selection algorithm using 

JMP 10 using a Wilks’ Lambda as a selection criterion and an F-statistic factor to 

determine the significance of the changes in Lambda when the influence of a new 

variable is evaluated. The most significant variables were then extracted and their 

canonical scoring coefficients were plotted as shown in Appendix 17 Section 17.3. The 

main advantage of using SLC-DA over the convention LDA is the ability to perform 

a feature selection. Variables which helped to improve classification performance were 

used whereas variables without discriminant information were discarded. The SIMCA 

and PLS analysis were carried out on the reduced data, as simplified by Figure 11.8.   
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Figure 11.6: Selected variables having a VIP score > 0.8 & selected in the SLC-DA for the different spectra pretreatments obtained for the different SEEF obtained at δ10, 30, 60, 
80, 120, 185nm 
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Figure 11.7: Selected variables having a VIP score > 0.8 & selected in the SLC-DA for the different spectra pretreatments obtained for the different SEEF obtained at δ10, 30, 60, 
80, 120, 185nm 
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Figure 11.6 and Figure 11.7 show the variables selected during SLC-DA for 

all spectral pretreatments. In the case of SEEF obtained at 10 nm it was found that 

the for the majority of the spectral pretreatments the stepwise-linear algorithm 

employed identified variables of significant importance namely in the 300-400 nm and 

600-750 nm, whilst only derived spectra after Savitzky Golay, 1st and 2nd order derived 

10 nm spectra, selected variables in the 400-600 nm range. The remaining SEEFs it 

was found that the 600-750 nm region received less importance as less discriminate 

variables were selected however, similar to what was observed in SEEF 10 nm, 

whereby the derived spectra after Savitzky Golay, 1st and 2nd order derivatisation, 

discriminate variables were selected throughout the entire spectrum.   

Once the variables were selected for each spectral pretreatment a PLS-DA 

model was applied in order to determine whether variable selection using the linear 

method provided ways for a better form of classification. Table 11.6 and Table 11.7 

show the results obtained from the PLS using the data set composed of variables which 

had a VIP score > 0.8 and were selected during the SLC-DA analysis. The results show 

a marked increase in the performance throughout all the spectral pretreatments for all 

the SEEFs. The increased in performance is given in terms of higher the number of 

latent variables extracted, lower PRESS, a higher % of variance explained in terms of 

X and Y together with an increase in both % accuracy and % predictability of the PLS 

models obtained. These results suggesting that a variable selection using the 

combination of two techniques greatly improves the modelling power via the removal 

of collinear and redundant variables. These results further confirm that the SEEF 

obtained at 10 nm have a higher discriminatory power when compared to the other 

SEEFs, as SEEF spectra obtained at 10nm after deresolve, SNV, MSC, 1st and 2nd 

order derivatisation enabled the correct classification of the samples used in both the 

training and in the validation test set.
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Table 11.6: PLS-DA performance using internal cross-validation for the selected variables VIP>0.8 & SLC-DA for the SEEFs recorded at different δ nm under different pretreatments 

Internal Cross-validation VIP > 0.8 & SLC-DA 
sync 10 nm  sync 80 nm 

 LV %X %Y PRESS %Ac  LV %X %Y PRESS %Ac 
Normalized 11 97.14 90.12 0.56 100.00  3 70.74 54.92 0.77 92.86 

Quantile normalized 4 67.83 96.3 0.6 98.21  2 68.7 47.48 0.87 85.71 
Baseline 13 99.65 89.39 0.56 100.00  11 99.41 72.89 0.76 96.43 
Detrend 9 98.89 75.55 0.68 98.21  10 99.69 73.03 0.79 94.64 

Deresolve 14 99.87 90.91 0.46 98.21  15 100 73.35 0.82 94.64 
SNV 10 97.69 86.97 0.52 100.00  5 96.59 59.3 0.81 91.07 
MSC 5 84.38 78.98 0.59 98.21  3 94.64 41.05 0.86 85.71 
OSC 14 98.33 91.4 0.57 100.00  11 95.86 79.68 0.78 94.64 
SG 12 91.03 93.85 0.47 100.00  6 83.81 73.18 0.67 96.43 
1st 15 99.61 89.48 0.54 100.00  6 82.39 74.35 0.69 96.43 
2nd 15 95.24 93.93 0.38 100.00  15 96.69 84.56 0.78 92.86 

sync 30 nm  sync 120 nm 
Normalized 15 99.94 82.78 0.69 100.00  15 99.95 81.79 0.67 94.64 

Quantile normalized 2 70.75 40.43 0.86 82.14  4 78.43 64.85 0.79 89.29 
Baseline 9 98.36 69.18 0.78 92.86  3 87.05 56.59 0.76 92.86 
Detrend 13 99.40 87.46 0.60 100.00  12 99.95 69.25 0.89 73.21 

Deresolve 11 99.85 78.06 0.65 96.43  1 67.92 23.72 0.92 100.00 
SNV 8 96.48 75.34 0.76 96.43  8 98.99 66.24 0.82 92.86 
MSC 5 95.74 61.52 0.78 87.50  1 59.82 34.58 0.85 85.71 
OSC 13 99.08 84.82 0.82 100.00  2 69.49 46.25 0.84 92.86 
SG 15 98.37 83.81 0.60 98.21  15 99.62 77.24 0.82 92.86 
1st 7 82.76 77.94 0.61 98.21  8 96.85 65.44 0.81 98.21 
2nd 10 86.65 81.85 0.57 96.43  14 98.72 80.49 0.77 94.64 

sync 60 nm  sync 185 nm 
Normalized 15 99.9 84.04 0.67 98.21  10 99.69 68.31 0.77 100.00 

Quantile normalized 4 74.94 70.39 0.72 94.64  4 78.43 64.85 0.79 91.07 
Baseline 2 55.11 40.82 0.88 83.93  1 57.54 12.01 0.98 71.43 
Detrend 5 92.36 61.59 0.84 96.43  11 99.89 71.61 0.85 82.14 

Deresolve 14 100 77.96 0.71 98.21  10 99.81 67.79 0.8 98.21 
SNV 3 77.45 58.52 0.78 91.07  1 46.67 35.79 0.86 85.71 
MSC 10 99.17 81.45 0.65 96.43  1 43.61 33.16 0.87 83.93 
OSC 11 95.52 82.41 0.74 100.00  2 69.49 46.25 0.84 91.07 
SG 8 84.19 77.33 0.77 96.43  3 55.99 62.76 0.78 91.07 
1st 6 89.16 69.39 0.71 92.86  2 58.33 49.19 0.81 87.50 
2nd 15 95.94 83.8 0.86 98.21  15 99.86 73.47 0.78 94.64 
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Table 11.7: PLS-DA performance using external cross-validation for the selected variables VIP>0.8 & SLC-DA for the SEEFs recorded at different δ nm under different pretreatments 

External Validation VIP > 0.8 & SLC-DA 
 Sync 10 nm  Sync 80 nm 
 LV %X %Y PRESS %A %P  LV %X %Y PRESS %A %P 

Normalized 3 62.15 77.19 0.61 98.21 100.00  3 73.43 55.39 0.79 91.07 100.00 
Quantile normalized 5 70.87 90.27 0.64 98.21 90.91  2 67.56 16.84 0.92 89.29 100.00 

Baseline 14 99.93 92.06 0.61 98.21 90.91  10 99.33 71.61 0.85 98.21 100.00 
Detrend 15 99.94 92.8 0.6 92.86 90.91  6 97.62 59.16 0.88 89.29 90.91 

Deresolve 3 63.78 65.91 0.77 100.00 100.00  5 93.82 58.02 0.82 98.21 100.00 
SNV 9 97.53 85.71 0.67 100.00 100.00  5 96.67 60.18 0.81 92.86 100.00 
MSC 14 99.79 90.6 0.57 100.00 100.00  3 94.29 40.92 0.89 89.29 90.91 
OSC 6 72.77 83.89 0.67 96.43 81.82  3 61.96 61.18 0.84 98.21 90.91 
SG 2 50.66 75.11 0.61 96.43 100.00  6 83.97 72.82 0.7 98.21 100.00 
1st 15 99.69 88.53 0.72 100.00 100.00  15 99.66 84.17 0.66 92.86 81.82 
2nd 15 96.22 95.21 0.4 100.00 100.00  13 95.48 86.83 0.69 94.64 100.00 

 Sync 30 nm  Sync 120 nm 
Normalized 8 98.97 73.10 0.77 96.43 90.91  13 99.87 81.79 0.71 94.64 81.82 

Quantile normalized 2 69.72 43.64 0.83 78.57 81.82  3 71.15 61.71 0.78 89.29 81.82 
Baseline 7 95.77 63.13 1.03 96.43 100.00  6 99.98 66.97 0.67 98.21 100.00 
Detrend 14 99.49 88.75 0.60 85.71 100.00  11 99.94 76.47 0.8 75.00 63.64 

Deresolve 3 93.17 44.60 0.85 94.64 90.91  1 70.73 27.5 0.91 98.21 100.00 
SNV 9 97.11 46.68 0.91 98.21 100.00  6 97.41 68.41 0.72 92.86 100.00 
MSC 6 96.13 64.62 0.86 96.43 100.00  11 99.74 70.87 0.77 96.43 100.00 
OSC 1 35.00 18.82 1.00 76.79 72.73  2 67.1 56.47 0.75 92.86 100.00 
SG 3 64.56 68.84 0.70 98.21 100.00  2 68.71 54.83 0.76 94.64 90.91 
1st 3 61.69 68.63 0.72 96.43 90.91  8 96.78 73.46 0.72 98.21 90.91 
2nd 7 79.46 81.67 0.65 96.43 90.91  2 66.31 57.28 0.81 91.07 90.91 

 Sync 60 nm  Sync 185 nm 
Normalized 14 99.87 88.03 0.7 96.43 90.91  10 99.8 72.79 0.71 98.21 90.91 

Quantile normalized 5 81.02 77.61 0.75 96.43 90.91  3 71.15 61.71 0.78 87.50 72.73 
Baseline 1 30.89 33.23 0.87 83.93 90.91  10 99.96 64.39 0.89 91.07 90.91 
Detrend 12 99.69 81.06 0.75 98.21 100.00  12 99.94 79.27 0.76 87.50 90.91 

Deresolve 13 99.99 77.54 0.81 98.21 90.91  8 99.27 60.63 0.91 98.21 100.00 
SNV 3 78.05 62.78 0.78 94.64 90.91  11 99.95 67.69 0.8 91.07 90.91 
MSC 10 99.3 82.39 0.67 96.43 90.91  7 99.29 67.49 0.73 96.43 100.00 
OSC 3 61.67 63.38 0.72 91.07 72.73  2 67.1 56.47 0.75 91.07 90.91 
SG 5 74.55 74.91 0.72 96.43 90.91  15 100 81.74 0.8 94.64 100.00 
1st 6 90.17 70.46 0.7 94.64 90.91  2 58.95 44.78 0.88 87.50 90.91 
2nd 9 84.15 84.27 1.06 98.21 90.91  7 93.86 66.12 0.81 96.43 100.00 
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SIMCA analysis was carried out again on the different SEEFs spectral 

pretreatments however the second stage variable selection process negatively affect 

the overall of the models obtained. This was attributed to the loss of variables which 

although they might not be contributing for the discrimination of the two EVOO 

classes, they are responsible for the inherited variation within the subgroup. The loss 

of this variation within each subgroup made modelling the individual groups far more 

difficult, as consequences the majority of the models obtained suffered for a lower 

sensitivity for the respective classes as the majority of the samples could not be 

modelled separately but rather classified as belonging to both Maltese and non-Maltese 

EVOOs.  The only model which showed an increase in performance, in terms of the 

sensitivity towards the individual classes were those obtained using SEEF 10 nm after 

Savitzky Golay derivatisation. For this particular spectrum, the variables selected by 

the combination of the two techniques managed to achieve a sensitivity of 91% and 

97% for the Maltese and non-Maltese EVOOs respectively, whilst retaining a 100% 

specificity for both classes. Figure 11.9 shows the Coomans plot obtained for the SEEF 

obtained 10 nm after Savitzky Golay derivatisation and two-step variable selection. 

 Comparison with the previously obtained spectrum, it was evident that very 

few samples (three in total two Maltese and one non-Maltese) were found to be 

classified as belonging to both classes. Figure 11.8 also illustrates the modelling power 

for each class (red bars for the non-Maltese EVOOs and black bars for the Maltese 

EVOO group). Since as previously demonstrated the SIMCA models are sensitive to 

the quality of the data used to generate the principal component models. Analysis of 

both the modelling power and the discriminatory power of the variables used provides 

a diagnostic assessment of the quality of the data. The modelling power provides 

insights about how well a variable helps the principal components to model variation. 

From the Figure 11.9 it was shown that variables selected in the range 300-450 nm and 

510-650 nm had a higher modelling power for the Maltese EVOOs, whilst those 

obtained in the range 280-350 and 465-490 nm had a higher modelling power for 

modelling the non-Maltese EVOO group. The discriminatory power, which is 

represented as the green line above the bar graph, describes how well the variables 

helps the principal components to classify the samples in the correct data set. It was 

shown that variables selected in the range 345-380 nm and 525-555 nm had a very 

high discriminatory power for SEEF spectrum obtained at 10 nm after Savitzky Golay 
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derivatisation. These ranges correspond to the tocopherol fluorescent peaks and 

shouldering peaks of chlorophyll pigments.  

 

 

Figure 11. 8: (Top) Coomans plot obtained for the Savitzky Golay derived SEEF obtained at 10 nm. (Bottom) 
Modelling power of variables with respect to class, (Black= Maltese, Red = non-Maltese origin), the green 
line represents the discriminatory power for the different variables.  
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11.2.4 Supervised chemometric discriminate analysis techniques – 
LDA 

 
In order to build the LDA, the selected variables obtained in SLC-DA were 

arranged in ascending order in terms of their scoring coefficients. A smaller set of 

variables were selected which consisted of 14 variables which corresponded to 7 of 

the most positive and 7 most negative standardized scoring coefficients. An LDA was 

carried out on the training set using only the small set of variables which were selected. 

The results obtained for the training samples were a visualized on an LDA biplot 

samples as shown in Figure 11.9 whereby each sample is projected as the scores 

obtained for the first two discriminate functions. When compared with SIMCA and 

PLS-DA, the LDA method has the disadvantage that the number of training samples 

must be larger than the number of variables included in the LDA model. In order to 

fully satisfy this constraint a smaller number of variables were selected based on the 

standardized scoring coefficients obtained from the SLC-DA. The standardized 

scoring coefficients of the variable selected during the SLC-DA were obtained and 

plotted as shown in Figure 11.9.   

The importance of these coefficients lies in their use to compute canonical 

scores in terms of the standardized data often referred to as loadings. They are highly 

informative when it comes to comparing the relative importance in their discriminatory 

power of the independent variables. Analysis of the standardised scoring coefficients, 

it was shown that at a SEEF obtained at 10 nm the majority of the discriminate 

variables were found in the 650-750 nm range which is concordant to the results 

obtained using PLS and SIMCA.  In the case of SEEF spectra obtained at 30 nm, the 

majority of the spectral pretreatments had the most discriminate variables located in 

the 300-450 nm range whilst only OSC, Savitzky Golay, 1st and 2nd order derived 

spectra picked up significant variables in the 650-750 nm range. For the reaming SEEF 

spectra the majority of the spectral pretreatments revealed highly discriminate 

variables across the entire spectrum, with an increasing number of highly discriminate 

variables located in 400-550 nm range.     
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Figure 11.9: LDA carried out on a selected number of variables for the different spectra 
pretreatments obtained for the different SEEF obtained at δ10.
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The classification model obtained was then repeated on the testing data set, 

with the exception of the detrended spectrum obtained at SEEF 185, the validation 

accuracy ranged from 66-100%. From the results obtained in Table 11.8 it was further 

confirmed that the SEEF spectra obtained at 10 nm had the best discriminatory power. 

SEEF spectra at 10 nm after pretreatment with SNV, MSC, Savitzky Golay, 1st and 

2nd order derivation obtained the best model performance (100% accuracy and 

predictability) when compared to all the SEEF spectra and there corresponding 

pretreatments.  Comparison of the LDA model performance with those obtained using 

PLS it was found that a similar trend in the overall performance models was observed, 

however for the majority of the spectral pretreatments a slightly lower performance 

was observed for the LDA models. Similar to what was observed in other 

spectroscopic techniques the models obtained using LDA had a higher classification 

and discriminatory power when compared to SIMCA model. This difference stems 

from the fact that in that SIMCA is a soft classification method and thus allows a single 

object to belong to more than one class, whilst LDA, PLS  are a more robust form of 

classification as the objects are either classified in either one or the other class.    

 

Table 11.8: LDA performance given as % accuracy for the training dataset and % predictability for the 
testing dataset. 

 

 

 

 

LDA 
10 nm 30 nm 60 nm 80 nm 120 nm 185 nm 

% A %P % A %P % A %P % A %P % A %P % A %P 

Normalized 100.0 93.3 95.0 73.3 97.5 73.3 95.0 66.7 92.5 73.3 95.0 80.0 

Quantile normalized 97.5 66.7 77.5 53.3 90.0 66.7 85.0 80.0 87.5 80.0 90.0 80.0 

Baseline 100.0 93.3 90.0 80.0 97.5 86.7 92.5 80.0 92.5 86.7 92.5 73.3 

Detrend 97.5 100.0 97.5 80.0 90.0 86.7 95.0 66.7 92.5 66.7 97.5 13.3 

Deresolve 100.0 86.7 97.5 80.0 92.5 66.7 97.5 86.7 92.5 86.7 95.0 73.3 

SNV 100.0 100.0 100.0 93.3 97.5 46.7 92.5 73.3 82.5 66.7 85.0 73.3 

MSC 100.0 100.0 95.0 80.0 95.0 86.7 87.5 86.7 90.0 73.3 95.0 80.0 

OSC 95.0 73.3 87.5 73.3 92.5 73.3 95.0 60.0 85.0 73.3 87.5 73.3 

SG 100.0 100.0 97.5 93.3 95.0 80.0 95.0 66.7 92.5 86.7 85.0 80.0 

1st 100.0 100.0 97.5 86.7 95.0 60.0 95.0 86.7 92.5 93.3 97.5 66.7 

2nd 100.0 100.0 97.5 86.7 97.5 86.7 97.5 80.0 92.5 86.7 97.5 86.7 
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11.2.5 Supervised discriminate chemometric techniques – SVM 
 

The dataset containing only variables which were selected using SLC-DA and 

having a VIP score > 0.8, were subjected to another classification method, known as 

support vector machine (SVM). During this part of the experiment, SVM was used in 

the context of classification. Classification methods based on SVM employ the use of 

linear boundaries which are produced between discrete groups in a transformed space. 

The space in which the groups are projected is in terms of the x-variables which is 

usually of much higher dimension than the original space generated by the x-variables. 

The increase in the dimensional space allows the groups to become more linearly 

separable. The boundary (hyperplane) that separates the two classes projected into this 

higher dimensional space is known as the maximum margin classifier. Comparison of 

SVMs with other classification and regression methods found out that they show 

mostly good performances, although other methods proved to be very competitive 

(Meyer et al. 2003). Table 11.9 shows the results obtained on using SVMs using no 

Kernel tricks. 

Table 11.9: SVM performance given as % accuracy for the training dataset and % predictability for the 
testing dataset. 

 

 

 

 

 

SVM 
10 nm 30 nm 60 nm 80 nm 120 nm 185 nm 

% A %P % A %P % A %P % A %P % A %P % A %P 

Normalized 77.5 73.3 77.5 73.3 85.0 80.0 77.5 80.0 85.0 80.0 80.0 80.0 

Quantile normalized 100.0 80.0 100.0 73.3 100.0 66.7 100.0 66.7 100.0 80.0 100.0 80.0 

Baseline 100.0 100.0 97.5 86.7 100.0 80.0 97.5 60.0 95.0 86.7 87.5 60.0 

Detrend 100.0 80.0 100.0 86.7 100.0 86.7 100.0 66.7 92.5 86.7 100.0 73.3 

Deresolve 100.0 93.3 97.5 80.0 100.0 66.7 100.0 73.3 75.0 60.0 100.0 80.0 

SNV 95.0 80.0 95.0 86.7 92.5 73.3 85.0 86.7 90.0 86.7 92.5 73.3 

MSC 100.0 86.7 100.0 86.7 100.0 80.0 100.0 53.3 90.0 73.3 100.0 60.0 

OSC 100.0 80.0 100.0 66.7 100.0 80.0 100.0 46.7 100.0 66.7 100.0 66.7 

SG 100.0 93.3 97.5 73.3 100.0 80.0 97.5 60.0 92.5 86.7 100.0 73.3 

1st 100.0 80.0 97.5 80.0 97.5 73.3 97.5 80.0 92.5 93.3 92.5 73.3 

2nd 100.0 100.0 97.5 86.7 100.0 73.3 100.0 80.0 95.0 86.7 100.0 66.7 
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Comparison of the SVM models obtained to those obtained using PLS, the 

trends observed were conserved. It was further confirmed that SEEF spectra obtained 

at 10 nm had a higher performance when compared to the rest of SEEF spectra, with 

baseline corrected spectra, detrended, Savitzky Golay and 2nd order derived spectra 

reaching a %100 accuracy during the testing phase and a 93-100% in testing phase. 

For the majority of the SEEF spectral pretreatments a lower predictability was 

observed when compared to PLS and LDA models. In general SVM models obtained 

had a slightly higher % accuracy during the training phase when compared to other 

discriminate methods, especially on comparing the SEEF spectra obtained at 80 nm 

120 nm and 185 nm.  However, when it comes to the validation data set the models 

obtained have a lower predictability (60-80%). This is mainly attributed to the 

technique its self, it is well known that SVMs do not perform well on highly 

imbalanced data sets. These are training data sets in which the number of samples that 

fall in one of the classes far outnumber those that are a member of the other class. 

Although, this was tried to be avoid the slightly higher number of non-Maltese EVOO 

samples might have affected the performance of the SVM models obtained.  

It is proposed that SVMs should be carried out on the entire data set rather than 

a small number of selected variables, this might improve the performance of the 

models, since SVMs are not affected by the dimensionality of the data since unlike 

other discriminatory techniques data having lot of features is overcome by the 

multidimensionality of the SVM models.   
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11.2.6 Whole SEEF modelling using feed-forward predictive 

artificial neural networks.  
 

The use of feed-forward predictive neural networks on the MS data as a method 

for classification was assessed using three different forms of validation, namely 33.3% 

of data holdback, CV-10 k-fold and excluded row validation. PNN have been 

employed successfully in the determination of rapeseed oils in EVOOs using SEEF 

data by Scott et al., 2003, however to date the use of PNN for the discrimination of 

EVOOs has not been employed .The main advantage of a neural network model is that 

it can efficiently model different response surfaces due to its nonlinearity, allowing a 

better fit to the data given enough hidden nodes and layer, providing an accurate 

prediction for kind of data. Unlike other modelling  and discriminate methods 

(SIMCA, LDA, PLS) the main disadvantage of a neural network model is that the 

results are not easily interpretable, due to presence of intermediate hidden layers which 

direct path from the X variables to the Y variables, as in the case of regular regression 

but cannot be fully interpreted. The models obtained for all the different SEEF spectra 

and their corresponding transformations are presented in Table 11.10 The algorithm 

fitted on the training set was later tested on the validation data and % predictability of 

the model was obtained.  

From the results obtained it was shown that the performance of the PNN model 

is dependent not only on the SEEF and the data preprocessing used but also on the 

cross-validation method employed. In general excluded row validation and 5 fold 

cross-validation (CV-10) yielded models with a higher performance. This is 

concordant with other spectroscopic data including FTIR and NMR which was studied 

and presented later on. This constant trend, was attributed to the fact that whilst CV-

10 and excluded row validation rely on, the experimenter to choose the training and 

validation data set, the 33% holdback is purely random, thus increases the chance that 

the model is built using uneven or skewed number of samples belonging to different 

classes. This results in model which is inheritably biased towards one particular class 

and fails to identify samples of the other class when it comes to the validation data set, 

causing a lower % predictability.  

PNN models further corroborate the trends obtained using PLS on the entire 

spectrum without any form of feature selection. It was shown that SEEF obtained at 
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10 nm 80 nm 120 and 185 nm had a higher PNN performance throughout all the 

cross-validation methods used, reaching 100% accuracy and 100% predictability for 

the majority of spectral pretreatments. Nonetheless an overall higher performance was 

observed throughout all the SEEF spectra studied for the different pretreatments, 

independent of the cross-validation method used.   This observation was attributed to 

the higher flexibility and modelling power of PNNs when compared to PLS-DA. 

Similar to what was observed in the PLS models SEEF spectra pretreated using 

detrending function and Savitzky Golay, 1st and 2nd order derived spectra had the 

highest PNN model performance throughout all the cross-validation methods used.   
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  10 nm PNN   30 nm  PNN 

 33% Holdback 10-CV Excluded Row  33% Holdback 10-CV Excluded Row 

 % A %P % A %P % A %P  % A %P % A %P % A %P 
Normalized 92.73 90.91 94.55 90.91 92.73 90.91  94.55 90.91 96.36 90.91 94.55 90.91 

Quantile normalized 94.55 81.82 98.18 90.91 94.55 90.91  87.27 72.73 92.73 81.82 96.36 90.91 
Baseline 100 100 100 100 100 100  96.36 100 90.91 90.91 98.18 100 
Detrend 100 100 100 100 100 100  94.55 100 94.55 90.91 94.55 90.91 

Deresolve 94.55 100 100 100 96.36 100  100 100 100 100 96.36 100 
SNV 98.18 100 100 100 100 100  92.73 81.82 96.36 90.91 94.55 90.91 
MSC 100 100 98.18 90.91 100 100  100 100 98.18 100 92.73 90.91 
OSC 92.73 81.82 98.18 90.91 98.18 100  89.09 81.82 94.55 81.82 96.36 90.91 
SG 100 100 100 100 100 100  94.55 90.91 94.55 90.91 96.36 90.91 
1st 100 100 100 100 100 100  96.36 100 96.36 100 92.73 90.91 
2nd 100 100 100 100 100 100  94.55 90.91 96.36 100 94.55 90.91               

  60 nm  PNN   80 nm  PNN 
 33% Holdback 10-CV Excluded Row  33% Holdback 10-CV Excluded Row 

 % A %P % A %P % A %P  % A %P % A %P % A %P 
Normalized 100 100 98.18 100 92.73 100  94.55 100 100 100 100 100 

Quantile normalized 94.55 81.82 96.36 90.91 98.18 90.91  90.91 90.91 98.18 100 100 100 
Baseline 98.18 90.91 98.18 100 98.18 100  96.36 100 100 100 100 100 
Detrend 100 100 100 100 100 100  100 100 100 100 100 100 

Deresolve 100 100 100 100 96.36 100  100 100 100 100 100 100 
SNV 89.09 72.73 92.73 100 100 100  98.18 100 100 100 100 100 
MSC 98.18 100 100 100 87.27 90.91  92.73 100 100 100 100 100 
OSC 96.36 90.91 98.18 90.91 100 100  98.18 100 100 100 100 100 
SG 100 100 100 100 98.18 100  98.18 100 100 100 100 100 
1st 100 100 100 100 100 100  100 100 100 100 100 100 
2nd 96.36 100 100 100 98.18 100  100 100 100 100 100 100 

              

  120 nm  PNN   185 nm  PNN 
 33% Holdback 10-CV Excluded Row  33% Holdback 10-CV Excluded Row 

 % A %P % A %P % A %P  % A %P % A %P % A %P 
Normalized 96.36 100 100 100 100 100  87.27 100 100 100 100 100 

Quantile normalized 92.73 90.91 94.55 72.73 96.36 90.91  89.09 90.91 96.36 100 98.18 100 
Baseline 100 100 100 100 100 100  85.45 100 100 100 100 100 
Detrend 98.18 100 100 100 100 100  89.09 90.91 100 100 96.36 81.82 

Deresolve 94.55 90.91 100 100 96.36 90.91  100 100 100 100 100 100 
SNV 96.36 90.91 100 100 100 100  94.55 100 100 100 100 100 
MSC 96.36 90.91 98.18 100 100 100  85.45 100 100 100 98.18 100 
OSC 94.55 90.91 94.55 90.91 96.36 90.91  92.73 90.91 96.36 90.91 100 100 
SG 87.27 81.82 100 100 96.36 90.91  90.91 100 100 100 100 100 
1st 94.55 100 100 100 98.18 100  89.09 100 100 100 100 100 
2nd 90.91 90.91 100 100 96.36 100  100 100 100 100 100 100 

Table 11.10:  Results summarizing the FF-ANN model performance with no variable selection using three different cross-validation methods for the different SEEFs pretreatments 
obtained δ10, 30, 60, 80, 120, 185 nm 
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In conclusion, it was shown SEEF spectra in conjunction with a number 

of chemometric methods, provided a cheap, fast and reliable way for the determination 

of geographical origin of EVOOs, especially when it comes to discrimination of 

Maltese EVOOs from non-Maltese EVOOs. From the preliminary assessment using 

only unsupervised PCA models, only very few spectral pretreatments for different 

SEEF spectra managed to identify significant clustering, such method was deemed to 

be unsatisfactory when it comes to discrimination of geographical origin.  Application 

of supervised methods of classification namely PLS-DA, FF-PNN, LDA and SVM 

showed to be highly effective in classifying local and non-local EVOOs samples.  

 

The use of the variable selection methods significantly increased 

the effectiveness of PLS-DA models when compared to no variable selection however 

this was not the case for SIMCA as lower model performance was recorded for all the 

spectral pretreatments for all SEEF spectra. FF-PNN, SVM and LDA models were 

also shown to offer similar classification rates to PLS-DA models and thus corroborate 

the results obtained from the PLS-DA models, assuring that the use of SEEF methods 

in conjunction with spectral transformation enables discrimination of Maltese and 

foreign EVOOs samples. Results showed that different SEEF spectra can greatly 

affect the discrimination of EVOOs. It was shown that independent of the chemometric 

technique used SEEF spectra obtained at 10 nm however a higher model 

performance. It was shown that the most discriminate variables were those attributed 

to different concentration of phenolic, tocopherol and chlorophyll compounds. These 

observations further corroborate the results obtained from using target-specific 

analysis, whereby it was shown that Maltese EVOO had a significantly higher amount 

of different non-reducing phenolic compounds and a higher concentration of 

chlorophyll compounds. The quantification of the individual tocopherol compounds is 

being proposed as a future study, as a target-specific method for further confirmation 

of the results obtained using SEEF spectroscopy.  
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12 Multi-way Data analysis of fluorescence spectroscopic data  
  

Due to the sheer diversity of the fluorophores present in a single olive oil 

sample it is not adequate to simply measure an emission spectrum at a single emission 

wavelength to gather sufficient. This problem can be eased through the use of 

synchronous spectroscopy or multidimensional measurements, assessing the emission 

spectra at different excitation wavelengths. Synchronous fluorescence spectroscopy, 

along with 3D-FS, are nowadays accepted to be more suitable for the analysis of 

complex multi-component samples, than conventional fluorescence spectroscopy. 

SEEF arises from the simultaneous scanning of excitation and emission wavelengths 

(λex, λem) with a constant wavelength interval (Δλ) between them rather than scanning 

the whole EEM as in the case of 3D-FS. The latter method involves scanning a 3-

dimensional landscape consisting of the excitation-emission matrix (EEM) and total 

luminescence (Lenhardt et al., 2015). This technique (3D-FS) provides a more detailed 

and comprehensive description of the numerous fluorophores present (Sergeil et al., 

2014). Complementary to the study carried out using SEEF, 3D-FS was implemented 

in this study along with the appropriate multivariate statistical techniques for 

classification of local and foreign EVOO samples.  

 

In standard multivariate analysis the data is organised in a two-way structure, 

a matrix of observed variables for each sample, such as in analysis of FT-IR, NMR, 

DI-MS and SEEF data where the absorbance is determined at set wavelength intervals. 

This data can be directly analysed through a numerous of bilinear multivariate 

techniques such as PCA, PLSR, LDA, SVM and FF-NNA. Nonetheless there are cases 

where the data is more appropriately represented using an additional dimensions. The 

theory behind the use of 3-way methods like PARAFAC and N-PLS is present in 

Appendix 18. 
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12.1.1 PARAFAC modelling   
 

From the results obtained it was determined that a four-component PARAFAC 

model was the optimum model. This was determined on the basis of explained 

variance, residual variance, core consistency and split similarity. Similar results were 

obtained by Guimet et al., (2004) whereby four-component model (explained variance 

98.7%) was found to be optimal in distinguishing between commercial samples of 

virgin and pure olive oils. Furthermore, studies conducted by the same authors in 2005 

showed that the application PARAFAC as a complementary technique for olive oil 

characterization indicated that the optimal number of factors was three (98.65% of 

explained variance). The difference in the optimal number of PARAFAC components 

obtained by the same authors can be explained in terms of the initial data inputted 

whilst the study focused on the discrimination of pure olive oils the second study 

carried out in 2005 focused mainly on relating the quality parameters of different 

EVOO grades to the EEM.   

 

Table 12.1 showed that on moving further than five components there was a 

decreased improvement with regards to explained variance and residual variance. 

Furthermore there was a sharp decrease in core consistency when more than five 

components were used. A core consistency of zero or lower is a strong indicator that 

PARAFAC models with more than five components were not stable and thus 

inappropriate for modelling the EVOO fluorescence. A low core consistency in fact 

suggests that the components are not just modelling trilinear trends in the data but also 

other random variation within the data array.  Values significantly lower than 100 

frequently suggest that the model is either inconsistent or badly constrained and might 

improve if the model is slightly altered or constrained (Bro, 1998). No improvement 

was observed for the five-component model even after several replicates. The low 

value for split similarity for the five-component was used to discount the model as 

inappropriate and thus the four-component model was chosen as the optimum due to 

the relatively high core consistency and split similarity.  The splits for mode two and 

mode three (Figure 12.1, 12.2 ) were quite similar to the full model however variation 

in the shape of the loadings is expected as fluorophores are very sensitive to slight 

changes in the pH, moisture content and viscosity of the samples (Dufour and 

Riaublanc, 1997) and thus the shape of fluorescence spectra will vary.  
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Table 12.1: Results from non-negative constrained PARAFAC model. The scaled residual 
variance, explained variance, Core consistency and Split similarities are shown from models 
having between 1 and 9 components. The 4 component model was deemed to have the optimum 
number of components. *For presentation reasons the residual variance is scaled to the maximum 
residual variance. 

 

 Core Consistency % Explained Variation % Residual Variation  Split-Half Similarity % 

PC1 100.00 62.86 0.048 98.81 
PC2 98.80 86.42 0.132 97.60 
PC3 90.12 93.12 0.260 96.20 
PC4 91.97 95.21 0.373 88.54 
PC5 83.93 96.47 0.507 59.18 
PC6 -169.51 97.19 0.636 44.40 
PC7 -72.12 97.58 0.739 0.00 
PC8 -699.24 97.83 0.826 0.00 
PC9 -11,859.88 98.21 1.000 0.00 
 

 

 

Figure 12.1:  Mode 1 loadings (relative concentrations y-axis) from non-negative constrained 4 component 
PARAFAC model, and how they vary for the different samples (x-axis). Samples of Maltese origin are 
denoted by the letter M whilst foreign samples are denoted by the letter F.  
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For each component, the PARAFAC modelling was repeated for at least ten 

times in order to determine whether the results obtained were consistent. Repeating 

the modelling process ensures that the results obtained were not as a result of the model 

being stuck at a local minimum.  In order to further prevent the model getting stuck in 

a local minimum, the SVD algorithm was used for initialisation starting the model 

from a random starting point each time. Since PARAFAC is an iterative solution which 

attempts to minimise the sum of squares error it is always advisable to select a random 

starting point in order to check for true convergence (Bro, 1998).  

 

Unlike what was carried out on the use of simpler spectra no form of data pre-

processing apart from trimming was applied before PARAFAC or N-PLS modelling. 

Multi-way data is often difficult to transform and furthermore any transformations 

which change the shape of the spectrum considerably will reduce the interpretability 

of the results. Furthermore, any changes within the profile of the spectra will most 

probably interfere with the non-negativity constraints imposed on the mode. Whilst in 

the case of bilinear methods, it is frequently suggested that data is scaled and centred 

prior to modelling, in the multiway case, centring and scaling are associated with a 

number of difficulties. In this part of the study Multi-way scaling was not applied since 

the data was all from the same source (fluorescence) and does not require scaling.  In 

the case of multi-way centring this was investigated on mode 1 only however, it was 

observed that centring causes the PARAFAC models to perform poorly. In essence, 

centring causes the data to have negative values in order to provide a mean of 0. This 

in turn will interferes with the non-negativity constraint of the model rendering it 

unsolvable. The solution to this is to un-constrain mode 1 in order to allow for 

modelling of negative values however this returned models which were not chemically 

interpretable (Bro, 1997). Although centring and scaling were suggested by Guimet et 

al., (2004) and (2005) these were not carried out for the aforementioned reasons. 

Guimet suggested that if centring is to be applied on a three-way array it needs to be 

applied across all the modes on the unfolded matrix. Similarly scaling, must be done 

on the rows of a matrix and not across the columns of the unfolded matrix, as is the 

case with centring. This involves matrix transformation in order to transpose the 

columns (ex. emission into rows and then scale) however as suggest by Bro, (1997) 

not all combinations between centring and scaling are possible when working with 

three-way data. The use of non-negativity constraints in all modes overcomes the 
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requirement for centring as shown by split half analysis which gave comparable 

spectra in the excitation and emission loading modes for different data splits.  

 

 

 

 

Figure 12.2: Mode 2 (Excitation) and mode 3 (Emission) PARAFAC components from 4 component 
mode represented as an EEM spectrum 
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Figure 12.3: Mode 2 loadings (excitation) from non-negative constrained 4 component PARAFAC model, 
dotted lines represent components from split-half validation models. 1st component (Black), 2nd 
Component (Red), 3rd Component (Green) and 4th Component (Yellow). 
 

 

Figure 12.4 Mode 3 loadings (emission) from non-negative constrained 4 component PARAFAC model, 
dotted lines represent components from split-half validation models. 1st component (Black), 2nd 
Component (Red), 3rd Component (Green) and 4th Component (Yellow). 
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Figure 12.2 shows the four extracted PARAFAC Components on an EEM plot 

while Figure 12.3 and Figure 12.4 show the four components in the excitation and 

emission mode respectively. The component maxima are shown in Table 12.2. 

Assuming that a four-component model is appropriate in describing the data set, it is 

reasonable to assume that these four components have maxima appertaining to a 

particular chromophores found in EVOO. Table 12.2 shows the identified 

chromophores through the observed maxima. The first component was attributed to 

chlorophylls having an emission band with a maximum at 675 nm (λem), which is 

associated with the presence of chlorophyll pigments in the samples (Dupuy et al., 

2005).  The emission profile of second factor showed a band with a maximum at 525 

nm with an excitation at 325 and 340 nm these were, assigned to oxidation compounds 

(Dupuy et al.,2005). This band (λem=450–650 nm) slightly overlaps with the 3rd 

component however it’s completely absent in the emission profile of the 4th component 

and 1st component. These results are consistent with the PARAFAC results obtained 

by Tena et al., (2012) and earlier by Guimet et al., (2004) and (2005). In the results 

obtained by Tena et al., (2012) the remaining 3rd component showed a characteristic 

band with a maximum at 350 nm (λem) and 285 nm (λex), which was collectively 

associated with the presence of tocopherols and phenols as previously identified by 

Sikorska et al., (2005) and Zandomeneghi et al., (2005). However in this experiment 

it was shown that it is possible to distinguish between the 3rd and 4th component.  

 

The 3rd component was identified as belonging to the tocopherols and 

tocotrienols the wide emission band was attributed to the presence of different isomeric 

forms of the different classes namely α-β-δ-γ which as previously identified by 

Eitenmiller et al., (2008.) These compounds have an excitation in the range 290-297 

nm and emission in the range of 320-324 nm. In the case of the 4th component, this 

was attributed to the presence of phenolic compounds present EVOOs, Tena et al., 

(2009) showed that phenolic compounds belonging to the secoiridoid class 

(oleuropein) had an excitation at 270 nm and emission at 310 nm whilst simple 

phenolic acids (gallic, vanillic, caffeic) and simple phenolic alcohols (tyrosols) shared 

the same excitation maxima however the emission spanned from 349-457 nm. In view 

of these results one might think that it is erroneous to assign the 3rd component to 

tocopherols and the 4th component to phenolic compounds on the basis of what is found 

in the literature. However, it is first of all, important to note that the values in the 
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literature were obtained on the analysis of pure compounds alone not in conjugation 

with each other, thus can synergistic or antagonistic effects on the emission and 

excitation could be excluded, secondly these were carried out in the presence of polar 

solvent namely ethanol and methanol. Whilst in this experiment there was no attempt 

to separate the individual compounds, furthermore the EVOO was dissolved in an 

aprotic non-polar solvent. The fluorescence of fluorophores is greatly affected by the 

solvent polarity. Once that the fluorophore has been excited to the first excited singlet 

state (S(1)), any excess  of vibrational energy is lost to surrounding solvent molecules. 

Solvent molecules assist in stabilizing and further lowering the energy level of the 

excited state by re-orienting around the excited. This effect is known as solvent 

relaxation which reduces the energy separation between the ground and excited states, 

which in turn results in a bathochromic shift of the fluorescence emission. Any 

increasing the solvent polarity causes a larger reduction in the energy level of the 

excited state, conversely a decreasing the solvent polarity reduces the solvent effect on 

the excited state energy level (hypsochromic shift). Apart from solvent polarity itself 

the polarity of the fluorophore also exacerbates this effect, polar and charged 

fluorophores exhibit a far stronger effect than non-polar fluorophores. A similar 

conclusion was drawn by Cheikhousman et al. (2005) whereby it was shown that the 

excitation and emission maxima obtained at em=380 nm and ex=295 nm agree very 

well with the respective spectra of -tocopherols, whilst the hypsochromic shift 

compared to - tocopherol observed at em=300 nm and ex=280 nm, these were 

attributed to the phenolic compounds.  

 

Table 12.2: Excitation and Emission maxima obtained from the PARAFAC loadings of 
components 1-4 and the proposed chemical constituents giving rise to the components 

 

 λmax Excitation λmax Emission Chemical Class 

1st Component 
355-400, 480, 
510, 596,640 

676 Chlorophylls 

2nd Component 325,340 434-550 Oxidation Products 
3rd Component 295 386-468 Tocopherols 

4th Component 280 330 
Phenolic 

Compounds 
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12.1.1.1 Statistical analysis of the PARAFAC components. 
 

The relative concentration of each component is represented by the scores 

(mode 1) of the PARAFAC components. These were analysed using both univariate 

and multivariate statistical analysis. Univariate normality testing for the different 

components revealed that whilst the first two components, chlorophyll and oxidised 

by-products concentration in EVOOs had a normal distribution under Shapiro-Wilk's 

Normality Test with a p-value 0.2673 and 0.5886 respectively. On the other had the 

3rd and the 4th component which correspond to the concentration of tocopherols and 

phenolic compounds respectively, had a non-parametric distribution with p-values of 

0.0039 and < 0.0001. Analysis of variance between the Maltese and Foreign EVOOs 

for the first two components was carried out using ANOVA whilst for the 3rd and 4th 

component this was carried out using non-parametric Kruskal-Wallis test. From the 

results obtained it was found that EVOOs of Maltese origin tend to have a marginally 

significantly higher chlorophyll concentration (p-value 0.090* significant at the 0.1 

significance), whilst no significant difference (p-value 0.419) was observed in the 

concentration of oxidized by-products between the Maltese and foreign EVOOs. The 

inference of this results suggest that previous results obtained through the use of simple 

UV-Vis spectroscopy and later by SEEF were once again confirmed using PARAFAC 

model. Furthermore, these results suggest that all the samples obtained were fresh and 

that there were no gross outliers in terms of EVOO oxidation. 

 

 Non-parametric Kruskal-Wallis test revealed that the Maltese EVOOs had a 

significantly lower concentration of both the phenolic compounds and tocopherols (p-

value < 0.001 for both components). In the case of phenolic content, the results 

obtained seem to be conflicting with those obtained using HPLC whilst on the other 

hand they tend to confirm those obtained using microtiter Folin–Ciocalteu assay. This 

suggests that the major fluorescent phenolic compounds are those which show a more 

reducing power rather than the more abundant secoiridoids since the latter were found 

to be significantly higher in Maltese EVOOs. Although, the above hypothesis still 

needs to be tested in detail through the application of fluorescence-HPLC, whereby we 

can obtain a fully fluorescent spectrum of each and every eluting species, the results 

obtained tend to support the aforementioned hypothesis. It was during the application 

of PARAFAC to EEMs of EVOOs that the first results regarding the composition of 
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tocopherols in Maltese EVOOs was encountered. In EVOO, more than 90% of total 

tocopherols are accounted by α-tocopherol, which shows high variation according to 

soil and climatic conditions and agronomic factors, such as area of origin, cultivar, and 

fruit ripening stage (Servili et al. 2009). Kalogeropoulos and Tsimidou (2014) stated 

that as a general rule, γ-T content in EVOO is influenced by the genetic factor more 

than the other tocopherol forms. Furthermore the same authors state that unlike 

phenolic content the tocopherol content and composition is not very dependent on the 

degree of olive ripeness and extraction system. Although, a general decrease in 

tocopherol content was observed during ripening by a number of authors (Solinas 

1990; Di Matteo et al. 1992; Garcia et al. 1996; Gimeno et al. 2002) whilst others 

showed changes in α-tocopherol (Sakouhi et al. 2008). It is well known that the 

EVOOs extracted from olive oils growing at lower altitude and water stressed tend to 

have a higher total tocopherol content (Osman et al. 1994; Mousa et al. 1996; Paz 

Aguilera et al. 2005;  Tovar et al., 2002).  

 

Application of non-parametric correlation analysis on the concentrations of 

phenolic and tocopherol contents obtained through PARAFAC showed that these two 

components had a significantly strong positive correlation with each other (ρ=0.772 p-

value < 0.001) (Figure 12.5 Top). Furthermore it was also found that the tocopherol 

content had a significantly slightly positive correlation (ρ=0.335 p-value = 0.004) 

(Figure 12.5 middle) with the amount of oxidized by-products present in EVOOs.  

There are a number of factors which affect the oxidative stability of vegetable oils 

these include the fatty acid composition and antioxidants, mainly tocopherols but also 

other non-saponifiable constituents. Although tocopherols and tocotrienols, especially 

α- and γ-tocopherols, act as the major antioxidants in vegetable oils. Their antioxidant 

behaviour of tocopherols is a complex phenomenon as they tend to show an efficient 

antioxidants at low concentrations but they gradually lose efficacy as their 

concentrations increase (Kamal-Eldin 2006). This “prooxidant effect”, of tocopherols 

could explain the significant positive correlation that was observed between the 

tocopherol content and amount of oxidised by-products found in EVOO. Kamal-Eldin 

(2006) also states that the presence of other antioxidants in the oils such as phenolic 

compounds, may synergize with tocopherols and minimize this loss of antioxidant 

efficacy. This observation can also explain the significantly slight negative correlation 

(ρ=-0.306 p-value = 0.009) (Figure 12.5 Bottom) which was observed between the 
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tocopherol and chlorophyll content. As shown in the EVOO degradation Section 14, 

during the EVOO degradation process chlorophyll content tend to decrease rapidly 

during the initial stages of degradation, furthermore it was also shown that during the 

degradation process there is in fact an increase in phenolic content derived from the 

hydrolysis complex secoiridoid compounds hence explaining the positive correlation 

between the tocopherol content and phenolic content.  

 

 
Figure 12.5: Correlation analysis between the individual components extracted  
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Application of multivariate statistical analysis, was carried out in order to 

determine whether the components extracted from mode 1 (concentrations) using 

PARAFAC model would enable discrimination between EVOOs of different 

geographical origin and whether or not these are suitable predictors for future 

classifications. A linear discriminate analysis was carried out on the extracted mode 

concentrations obtained. Discriminant analysis enables the construction of a predictive 

model for group membership. The prediction model obtained was constructed using a 

linear combinations of predictor variables. Furthermore, this model also provides 

insights on those predictor variables which provide the best discrimination between 

groups. A number of assumptions are made during the construction of discriminate 

model the main one being that the predictor variables have a multivariate normal 

distribution, in this case  it is know that this is not true since the variables obtained had 

a significant deviation from normality under a number of multivariate normality tests 

(Doornik and Hansen omnibus Test, Mardia’s, Henze-Zirkler, and Royston p-value < 

0.0001). The second most important assumption is that the within-group variance-

covariance matrices should be equal across groups. This assumption was tested using 

Box’s M test which although p-value obtained was lower than 0.0001, on further 

inspection of the log-determinants for the two classes these were found to be equal 

(Maltese origin = 69.57 Foreign origin = 70.89). Thus equality of group variance was 

assumed to be true and that the significant value p-value obtained was attributed to the 

Box’s M susceptibility to non-normal data.  

 

Discriminant function analysis is robust even when the homogeneity of 

variances assumption is not met, provided the data do not contain important outliers.  

However, a QDA was also done in order to compare the unequal group variance senior.  

The discriminate function obtained had an eigenvalue of 0.331, 100 % variance 

explained and a canonical correlation of 0.499. From the results obtained the 

discriminate function obtained seems to be very robust with a large eigenvalue, high 

explained variance in the dependent variable. On further inspection of the Wilk’s 

lambda obtained (0.751, p-value < 0.001) a small significant value was obtained 

indicating that the function obtained has a good discriminatory power and is able to 

separates cases into groups. The significant p-value obtained for Wilk’s lambda 

indicate that the discriminant function does better than chance at separating the groups. 

Figure 12.6 shows the standardized discriminant function coefficients (Black Bars) 
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these indicate the relative importance of the independent variables in predicting the 

dependent variable.  From the results obtained it was shown that the tocopherol content 

had the largest absolute value, suggesting that this particular class of compounds had 

the largest discriminating ability. Figure 12.6 also shows the Pearson’s correlations of 

each variable with the discriminant function (Red Bars) obtained from the structure 

matrix. It was shown that the tocopherol and phenolic content has the largest absolute 

correlations associated with the discriminant function. These results are in agreement 

with the results obtained using univariate statistics.   

 

 

 
 
Figure 12.6 : Standardized discriminant function coefficients (Black Bars) and Pearson’s correlations of 
each variable with the discriminant function (Red Bars) obtained from the structure matrix 

 

Analysis of the discriminate model performance, it was shown that the model 

obtained was able to correctly classified 73.0% of original data and 67.6% of cross-

validated grouped cases were correctly classified. Figure 12.7 shows the plotted 

discriminant scores obtained for each case using the discriminate function obtained. 

Although there is a good % of data which is correctly classified there is still some 

overalap between the two classes and when compared to other methods especially 

FTIR data, the performance obtained tends to be on the low side, thus alternative 

classification methods need to be tested. In order to further assess the ability of 

discriminate analysis for EVOO classification quadratic discriminate analysis (QDA) 

and Mahalanobis distance discriminate analysis (MDA) was carried out. Although the 
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model performance improved on using the latter type of discriminate analysis (QDA 

= 77.46% and MDA =80.28% during the cross-validation stage) it was still lower in 

performance when compared to other methods.  

 

 

 

 

 

 

 

Figure 12.7: Discriminate analysis biplot obtained using different Bayes LDA (Top), QDA (Middle) and non-
parametric Fisher (Bottom). 
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The next multivariate method to which the components in mode 1 were 

subjected was logistic regression. In this form of regression the parameters of the 

model are estimated using the maximum likelihood method. That is, the coefficients 

that make the observed results most likely are selected. Unlike other multivariate 

methods logistic regression does not make many of the key assumptions of linear 

regression and general linear models that are based on ordinary least squares 

algorithms namely regarding linearity, normality, and equal variances. The model 

starts by determining the probability of the outcome without including any of the 

parameters also known as the ‘null model’ (only a constant), thus it is expected that if 

there is an equal chance that the outcome will be 0 (Maltese) or 1 (Foreign), the overall 

% of correct classification should be in the 50% range. From the results obtained a 

57% of correct classifications was obtained for block 0 during the logistic regression 

indicating equal chance of the EVOO being Maltese or foreign when no variables are 

included. The model then compares whether there is a significant difference between 

the null model and the one in which the variables are included.  

 

 From the results obtained tocopherol and phenolic content had a p-value < 

0.001, while chlorophyll content had a p-value of 0.049 indicating that the inclusion 

of these variables cause a significant change in the model predictability when these are 

included. Only the oxidised by-products (p-value 0.636) seem not to be significantly 

affecting the performance of the model. The Omnibus test of model coefficient was 

significant (p-value < 0.001) indicating that there is an effect of the independent 

variables, taken together, on the dependent variable. On the other hand the Hosmer-

Lemeshow Goodness of fit test was not significant (p-value 0.285) this suggests that 

the model is an adequate fit to the data.  

 

Table 12.3 shows the B regression coefficient obtained for all the predictors 

form the results obtained it was shown that the model was mainly based on the 

tocopherol content as it had the largest most significant coefficient. Overall the logistic 

regression model obtained was able to correctly classify 74.3 % of EVOOs of Maltese 

origin and 79.5% of foreign EVOOs.   
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Table 12.3: Logistic regression output on the extracted PARAFAC mode 1 components 

 

B 

     95% C.I.for EXP(B) 

 S.E. Wald df Sig. Exp(B) Lower Upper 

Chlorophyll -6.350 4.978 1.627 1 .202 .002 .000 30.158 

Oxidized.Comp -7.485 2.998 6.234 1 .013 .001 .000 .200 

Tocopherols 6.190 2.018 9.407 1 .002 487.859 9.341 25479.675 

Phenolics -.706 1.470 .231 1 .631 .493 .028 8.803 

Constant 38.748 25.823 2.252 1 .133 6.73x1016   
 
 

12.1.2 N-PLS model 
 
In comparison to the PARAFAC models obtained N-PLS-DA analysis, was 

shown to be quite effective for classification of local and foreign samples as shown in 

Table 12.4. The advantages of using N-PLS are mainly its robustness (Bro, 1998) and 

the high classification rates even when no data pre-treatment or variable selection is 

used. Whilst data pre-treatment might improve the prediction rate by removing 

unnecessary information and instrumental artefacts, transformations of multi-way 

arrays are very complex and most transformations which exist for bilinear data or their 

multi-way equivalents are not readily available for multi-way data.  

Table 12.4 illustrates different model parameters on using different number of 

latent variables, each parameter is represented as an average value and ± 1SD obtained 

from using 3 different splits. The calibration accuracy and RMSEC indicate model 

performance during the calibration (training) stage while validation accuracy and 

RMSECV deal with the model performance of the model with regards to the validation 

samples. These values along with % explained variance, are indicators of the suitability 

of the model for prediction. The 12 component model was chosen to be the most 

suitable model as it had the highest classification rate in the validation stage and a 

relatively low RMSECV and RMSEC. In fact the 12 component N-PLS model showed 

better performance when compared to the PLS-DA models on synchronous spectra 

previously computed using raw data without any form of variable. This is quite 

significant since the validation procedure for this model was more rigorous than the 

validation procedure used in the aforementioned PLS-DA models which were only 
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validated using one split, whilst in the N-PLS models a 3 spilt validation was carried 

out. Although higher the training accuracy of 3 split N-PLS models was observed on 

moving from 13 to 19 component N-PLS models these models tend to be unstable 

(overfitted) as the SD between the different splits tended to increase together with a 

lower model performance was observed during the validation stage.  

Table 12.4: Compiled output obtained from the analysis of the three different splits carried out 
in DN-PLSR. 

No.LV 
% 

Variation X 
% 

Variation Y 
Overall %  
Variation 

Training Validation RMSEC RMSEV 

1 62.16 ±0.57 57.97 ±2.16 69.05 ±9.18 70.21 ±8.74 67.14 ±10.98 0.48 ±0.02 0.45 ±0.06 

2 73.86 ±1.13 68.62 ±2.07 77.14 ±3.78 78.72 ±6.49 74.95 ±7.34 0.43 ±0.02 0.44 ±0.04 

3 77.93 ±1.97 70.60 ±1.96 78.10 ±3.60 78.01 ±6.38 76.21 ±6.17 0.41 ±0.02 0.39 ±0.06 

4 85.18 ±2.90 78.37 ±1.74 80.95 ±5.02 83.69 ±5.38 78.87 ±8.78 0.37 ±0.02 0.40 ±0.07 

5 90.91 ±1.48 81.83 ±4.44 83.81 ±4.36 89.36 ±4.43 81.62 ±10.82 0.33 ±0.04 0.41 ±0.08 

6 93.25 ±1.13 85.38 ±3.55 87.62 ±4.59 92.91 ±4.58 85.45 ±9.33 0.30 ±0.03 0.40 ±0.09 

7 94.66 ±1.24 87.29 ±2.78 87.62 ±5.95 93.62 ±4.84 85.48 ±12.20 0.28 ±0.03 0.39 ±0.08 

8 95.13 ±1.20 88.66 ±2.14 88.57 ±4.29 93.62 ±3.94 86.78 ±6.85 0.26 ±0.02 0.39 ±0.06 

9 95.40 ±1.26 89.67 ±1.87 90.00 ±3.78 94.33 ±3.41 88.37 ±6.85 0.25 ±0.02 0.40 ±0.02 

10 95.67 ±1.23 90.90 ±1.93 91.90 ±5.77 96.45 ±4.29 90.06 ±5.46 0.23 ±0.02 0.40 ±0.02 

11 95.90 ±1.27 91.98 ±1.17 93.81 ±4.36 98.58 ±3.78 91.79 ±5.49 0.22 ±0.02 0.40 ±0.02 

12 96.62 ±1.14 93.00 ±1.15 94.76 ±3.30 98.58 ±2.94 93.18 ±5.19 0.20 ±0.02 0.39 ±0.01 

13 97.12 ±0.64 94.06 ±0.92 93.81 ±2.97 98.58 ±3.24 92.25 ±5.19 0.19 ±0.02 0.40 ±0.00 

14 97.52 ±0.76 94.88 ±0.78 92.86 ±4.29 98.58 ±3.71 91.30 ±5.42 0.17 ±0.01 0.43 ±0.03 

15 97.71 ±0.64 95.77 ±0.45 93.33 ±4.36 99.29 ±3.87 91.76 ±5.66 0.16 ±0.01 0.42 ±0.05 

16 97.86 ±0.60 96.32 ±0.46 92.86 ±2.86 100.00 ±4.76 91.11 ±7.23 0.15 ±0.01 0.42 ±0.06 

17 98.03 ±0.62 96.64 ±0.67 93.81 ±2.18 100.00 ±5.80 92.34 ±6.14 0.13 ±0.01 0.42 ±0.07 

18 98.17 ±0.68 96.89 ±0.71 94.76 ±1.65 100.00 ±4.39 93.51 ±5.16 0.13 ±0.02 0.41 ±0.06 

19 98.40 ±0.45 97.47 ±0.61 93.33 ±3.60 100.00 ±3.99 92.00 ±7.09 0.11 ±0.02 0.42 ±0.03 

20 98.56 ±0.37 97.91 ±0.46 61.43 ±27.22 63.83 ±27.29 66.89 ±25.87 0.10 ±0.01 0.62 ±0.19 

 

The loading components are represented in Figure 12.8, although these did not 

have distinctive similar shapes to fluorescence spectra as previously found during the 

PARAFAC analysis. Te likelihood of a distinct chromophore or a set of chromophores 

which are directly responsible for classification cannot be directly drawn. However, 

on further inspection it can be observed that in the case of excitation the loading tend 

to higher in the region of 260 - 320 nm and 370 - 450 nm, while in the case of emission 

these tend to be centered around 300 – 470 nm and 620 – 680 nm, thus although not 

distinctively these loading are in fact reflecting the 4 different fluorophores present in 

EVOO previously identified using PARAFAC. Whilst in the case of PARAFAC each 

fluorophore was described by a single component in the case of N-PLS each 

fluorophore is described by 2 or more components which when added together these 
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reveal revealed the fluorescent profile of the fluorophore. It is the complex interaction 

of these fluorophores together that is being used for the correct classification of the 

samples. 

 

 

 

 

 

Figure 12.8: Loading obtained for emission (Top) and for excitation (Bottom) using 12 components.  
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Figure 12.9: VIP loading of DN-PLSR highlighting the 4 main regions of importance as previously identified 
through PARAFAC. 

 

Figure 12.9 shows a further inspection of the VIP’s obtained from N-PLS 

revealed, that in fact the most discriminate predictors are those associated with the 

presence of the 4 distinct fluorophores previously determined during the PARAFAC 

analysis. Thus the 3-way methods, although differing in their discriminatory power 

between different EVOOs, the underlying concept of a 4 component fluorophore based 

discrimination tends to be corroborated.
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13 Application of fluorescence spectroscopy for the detection of 
vegetable oil adulterants in Maltese virgin olive oils.  

 
Numerous analytical practices have been established in recent years to 

safeguard the authenticity of olive oil. These include chromatographic techniques 

(Bosque-Sendra et al., 2012; Baccouri et al., 2008) and spectroscopic techniques, such 

as mass spectrometry (Calvano et al., 2012), nuclear magnetic resonance  (Fragaki et 

al., 2005), near-infrared spectroscopy (Mignani et al., 2011), Raman spectroscopy 

(Dong et al., 2012), chemiluminescence (Papadopoulos et al., 2002), UV spectrometry 

(Jiang, Zheng & Lu, 2013),  fluorescence spectroscopy (Sikorska, Khmelinskii & 

Sikorski, 2012), and synchronous fluorescence (Poulli, Mousdis & Georgiou, 2007). 

Compared to the other analytical techniques both UV and fluorescence spectroscopic 

techniques are ideal for the determination of olive oil adulteration, owing to their 

simplicity, cost-effectiveness, rapidity and non-destructive nature of the analysis.  

Fluorescence spectroscopy is more sensitive and selective in terms of organic and 

inorganic compounds than the other spectroscopic methods (Sikorska et al., 2004).  

The fluorescence emission spectra of olive oils reveals five major bands. The 

300–390 nm band provides information about their polyphenolic and tocopherol 

content (Zandomeneghi et al., 2005; Giungato et al, 2004). While the low-intensity 

doublet at 440 and 455 nm corresponds to oxidised fatty acids and phenolic 

antioxidants in virgin olive oils, which provide greater protection against oxidation of 

monounsaturated fatty acids (Kyriakidis and Skarkalis 2000). The strong band at 525 

nm corresponds to the vitamin E content. The medium intensity band at 681 nm 

corresponds to the chlorophyll band which most of the time is absent in the rest of the 

seed oils. 

The aim of this part of this study is to focus on the use of fluorescence 

spectroscopy for the determination of different olive oil adulterants. The aim of the 

study was to determine the potential of fluorescence spectroscopy and the application 

of chemometric models including partial least squares and artificial neural networks 

as a tool for the assessment of olive oil adulterants of Maltese virgin olive oil.  
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13.1 Excitation and emission fluorescence spectra of adulterants and olive oil. 
 

Three dimensional excitation and emission fluorescence spectra showed 

variations in both the excitation and emission wavelengths and their corresponding 

intensity. In general, with the exception of linseed oil, as the concentration of the 

adulterating seed oil increased there was a shifting of the EEM fluorescence towards 

350 nm excitation and 450 nm emission coupled with an increase in the intensity 

Figure 1 illustrates the changes observed from 100% seed oil (left side) to 25% seed 

oil. In the majority of the spectra the decrease in the intensity observed within the 350 

nm (Ex) and 450 nm (Em) was coupled with an increase in the intensity of bands 

appearing at an excitation of 330 to 440 nm and an emission of 660 to 700 nm. This 

peak is attributed to the presence of chlorophyll pigment and their degraded analogue 

pheophytins, present predominantly in olive oil and to some extent also in cold pressed 

linseed oil (Gliszczyńska-Świgło et al., 2007 and Herchi et al., 2012).  

Both the seed oil adulterants and olive oil samples studied displayed a strong 

characteristic band with excitation at 300 to 360 nm and emission at about 350 to 400 

nm. This band has been attributed to tocopherols and tocotrienols (Sikorska et al., 

2004). The maxima of tocopherol emission vary slightly from one oil to another due 

to differences in the tocopherol composition. The intensity in the absorbance reflects 

the amount of tocopherols and tocotrienols present in the oil, with the seed adulterating 

oils showed a much higher concentration of tocopherols, as displayed by the increase 

in the intensity within this region when compared to seed:olive oil mixtures. Since 

tocopherols and tocotrienols are a vast class of compounds their spectral characteristics 

vary. Figures 13.1 and Figure 13.2 show that there are only small changes in excitation 

and emission maxima, which was attributed to the different extraction procedures to 

which the seeds were subjected. However, the EEM spectrum of linseed oil differs 

greatly from the rest of the seed oils; in fact, apart from the emission peak 

corresponding to the tocopherols and tocotrienols a stronger band was observed at a 

longer wavelength of 520 nm, which decreased in intensity as the % content of olive 

oil increased, whilst the peak corresponding to the tocopherols and tocotrienols 

increased. This is probably due to the presence of fluorophores present in linseed but 

not in olive oil. These compounds are most probably omega-3,6,9 fatty acids, present 

in very large amounts in cold pressed linseed oil but that are found at much lower 

concertation in olive oil (Sauci et al., 1994). 
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Corn oil Adulteration 

 

Sunflower oil Adulteration 

 

Soya oil Adulteration 

  
Figure 13.1: 3D EEM’s between 210 to 750 nm excitation (axis z) and 210 to 750 nm emission (x axis) against intensity (y axis) for different levels of olive oil adulteration concentrations, 
100, 75, 50 and 25% (left to right), for corn (1st row), sunflower (2nd row) and soya bean oil (3rd row). 
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Linseed oil Adulteration 

 

Rapeseed oil Adulteration  

 

Peanut oil Adulteration 

 
Figure 13.2: 3D EEM’s between 210 to 750 nm excitation (axis z) and 210 to 750 nm emission (x axis) against intensity (y axis) for different levels of olive oil adulteration concentrations, 
100, 75, 50 and 25% (left to right), for linseed (1st row), rapeseed (2nd row) and peanut oil (3rd row). 
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13.2 Principal component analysis on the adulterated EVOO  
 

Through PCA, it was found that through the use of only two principal 

components explained 91.1 % of the variance of the data for the difference between 

the emission spectra, 99.5% for the excitation spectra and 96.3% for the synchronised 

spectra at 24 nm. The score plots obtained for each analysis classified the oils in four 

distinct areas; olive oil and linseed oil separated from the other seed oils (Figure 13.3). 

This separation is due to the negative scores obtained in PC1, attributed to its high 

content of compounds emitting at 420 to 485 nm and 600 to 700 nm, together with 

compounds excited at 680 to 700 nm.  Apart from chlorophyll pigments, the presence 

of a different fatty acid profile will also contribute to variation in the emission and 

excitation spectra (Maggio et al., 2009; Matthäus and Özcan, 2011). Virgin olive oil 

is rich in oleic acid (55-83%), which is monounsaturated, while corn, soybean and 

sunflower oils predominantly contain polyunsaturated fatty acids. The clustering of 

olive oil and linseed oil is attributed to the higher levels of other fluorophores such as 

tocopherols, β-carotene and phenolic compounds that are refined out of other oils. 

Under both the excitation and emission PCA, peanut and sunflower oil clustered 

together whilst soya and rapeseed oil formed a separate cluster, due to similar classes 

of tocopherols and fatty acids (Kamal-Eldin and Andersson 1997). The pair 

combination of these two types of oils is due to an emission wavelength maxima 

centred at 350 nm and excitation wavelength maxima at 420 nm for soya and rapeseed 

oil, while peanut and sunflower oil showed an emission maxima at a lower wavelength 

of 330 nm and an excitation centred at 410 nm. This hypsochromic shift is attributed 

to the different extraction procedures and refining process (Sikorska et al., 2004).          
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(A) Principal Component Analysis Using Emission Spectral Data  

  

(B) Principal Component Analysis Using Excitation Spectral Data  
 

(C) Principal Component Analysis using Synchronised spectral data at 24 nm 
 

Figure 13.3: PCA scores plots (left column) for the discrimination of EVOO and vegetable oil adulterants 
based on emission spectral data (A),   excitation spectral data (B) and synchronised spectral data at 24 nm 
(C), and their corresponding loading plots (right column). The blue solid lines represent loading scores for 
PC1 while the red dotted line represents loading scores for PC2 for the different wavelengths (x-axis).  
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13.3 Synchronous spectra and partial least squares analysis (PLSR)  
 

PLSR was performed on the oil-adulterant mixture samples synchronized 

spectra. This method models both the dependent (absorbance value at each 

wavelength) and independent (concentration of olive oil present within the mixture) 

variables simultaneously to find the latent variables (wavelengths) that will best 

predict the concentration of olive oil in the mixture. The optimum number of factors 

calculated using the leave-one-out cross-validation varied depending on the seed oil 

adulterant. VIP score values for each wavelength are a measure of a variable’s 

importance in modelling  both wavelength absorbance and % concentration present in 

olive oil (Figure 13.4). A value of 0.8 is generally considered to be a small VIP 

(Eriksson et al, 2006) and a red line is drawn on the plot at 0.8. From the variable 

importance plots one can see that not every wavelength in the spectrum has a VIP > 

0.8, however, there was a small region in all spectra which did not vary by changing 

to a different adulterant. This region was found between 360 to 500 nm and another 

one at 579 – 664 nm; these regions correspond to the tocopherols/tocotrienols band 

and the chlorophylls / pheophytins respectively. The predicted values obtained by 

PLSR (Figure 13.5) were compared to the experimental values. The performance of 

the prediction model varied depending on the choice of the adulterant, the root means 

square error ranging from 7.2 for peanut oil adulteration to 0.7 for soya bean oil (Table 

2). Although the RMSE was acceptable, the PLSR was repeated using only the 

wavelengths which had a VIP score > 0.8. The results showed a great improvement on 

the predicted model and with the exception of peanut oil adulteration, the RMSE was 

decreased by more than 28% for the remaining oil adulterants.    
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Figure 13.4: Synchronised spectra (left column) obtained at 24 nm with increasing concentration of seed adultertaion (solid 
blue lines) and olive oil (black dotted line). Arrows indicate the maxima obatined for the different seed oils. The variable 
importance plots (right column) obtained on using PLSR, where the wavelenghts (x-axis) and their corresponding VIP (y-
axis) are plotted. The red dotted line indictes the VIP at 0.8.  
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Figure 13.5: Predicted values (y-axis % adulterant) obtained from PLSR (purple circles), adjusted PLSR 
(red stars), PNN using k-fold (grey boxes), hold back (yellow diamonds) and excluded row cross-validation 
(blue triangles)  against the experimental values (x-axis) for the different adulterating oils.  
 

 

Table 13.1: Root means square error, root mean standard deviation, R2, and bias error obtained using PLSR 
and adjusted PLSR whereby the model was re-evaluated using only the wavelengths which had a VIP > 0.8.   

 RMSE RMSD R2 MBE 

Oil 
Adulterant 

PLSR 
Adjusted 

PLS 
PLSR 

Adjusted 
PLS 

PLSR 
Adjusted 

PLS 
PLSR 

Adjusted 
PLS 

Sunflower 3.490 0.646 1.028 0.587 0.995 1.000 -0.400 -0.034 
Linseed 3.411 2.453 0.625 2.340 0.995 0.997 0.364 0.417 

Corn 2.928 1.257 0.623 1.661 0.996 0.999 -0.404 -0.127 
Soya 0.773 0.002 1.509 0.002 1.000 1.000 -0.021 0.000 

Peanut 7.665 6.274 2.207 4.732 0.975 0.983 -0.200 -0.327 
Rapeseed 3.349 1.850 1.292 0.108 0.995 0.999 -0.329 -0.105 
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13.4 Predictive artificial neural networks and prediction model 
analysis  

 

Similar to the PLSR, PNN process large amounts of data in order to obtain a 

model with lowest error. PNN starts by input signals; in this experiment, the 

wavelengths were designed to receive various absorbance values from the whole or 

part of the spectrum. The network processed the data in order to give an output signal 

which corresponded to the % concentration of olive oil in the adulterated mixture. In 

this experiment, three different kinds of cross-validation in the neural network. It was 

found that on using wavelengths which had a VIP > 0.8 as previously determined by 

the PLSR, the model reached its optimal performance on using the excluded row 

validation (Table 13.1.). This confirms that the concentrations chosen by the 

experimenter for cross-validation covered a good concentration range for modelling 

and testing. For the majority of the seed adulterants, the excluded row cross-validation 

method showed a lower RMSE, RMSD, MBE and higher R2 when compared to the 

other cross-validation methods. On using the whole synchronized spectrum, the model 

reached optimum prediction on using cross-validated using k-fold or CV-10 rather than 

on using the excluded row holdback (Table 13.2, Table 13.3 and Figure 13.6). This 

indicates that whilst PLSR improved on using variables which could explain the 

maximum variation, in the case of PNN the validation method was more dependent on 

the type of data.   

 
Figure 13.6: Overlaid predicted values (y-axis % adulterant) obtained from using k-fold (grey diamonds), 
holdback (red stars) and excluded row cross-validation (blue circles) against the experimental values (x-axis) 
for the different adulterating oils.  
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Table 13.2: The Root means square error, root mean standard deviation and an R2 value obtained using the 
artificial neural network, constructed on the synchronized spectral wavelengths which had a VIP > 0.8. The 
model was cross-validated using different methods k-fold or CV-10 (k), Holdback at 0.33% (HB) and 
excluded row (ER).  

 
 
 

Table 13.3: The Root means square error, root mean standard deviation and an R2 value obtained using the 
artificial neural network, constructed on the whole synchronized spectrum at 24 nm. The model was cross-
validated using different methods k-fold or CV-10 (k), Holdback at 0.33% (HB) and excluded row (ER).  

 

 

 

In conclusion, it was showed that spectrofluorimetry can be applied to 

distinguish among EVOO and vegetable oil blends, coupled with PCA models using 

the emission, excitation and the synchronized spectra at 24 nm. Fluorescence spectra 

can be measured quickly and easily, without the need for any pre-treatment of the oil 

sample, and could possibly be used to determine the level of adulteration of virgin 

olive oil. The results also show that adjusted PLSR models based on synchronized 

spectra for detecting the % amount of EVOO in vegetable oil blends had a lower 

RMSE (0.02–6.27 %) and higher R2 (0.983–1.000) than those observed on using PLSR 

on the whole spectrum. This study also showed that PNN provides an alternative 

chemometric tool for the detection of olive oil adulteration. The performance of the 

model generated by the PNN is highly dependent both on the type of data input and 

the mode of cross-validation; for spectral data which had a VIP > 0.8, the excluded 

row cross-validation was more appropriate while for complete spectral analysis k-fold 

or CV-10 was more appropriate.       

 

 RMSE RMSD R2 MBE 
Oil 

Adulterant 
k HB ER k HB ER k HB ER k HB ER 

Sunflower 6.803 2.940 1.694 1.004 3.727 0.356 0.984 0.998 0.999 -0.111 0.061 -0.075 
Linseed 1.609 3.231 1.031 1.231 6.043 0.037 0.999 0.996 1.000 -0.015 -0.027 -0.009 

Corn 1.254 1.780 0.420 0.810 2.804 0.003 1.000 0.999 1.000 -0.027 0.217 0.001 
Soya 3.018 3.546 1.330 0.704 7.177 0.007 1.000 0.996 0.995 -0.004 0.379 0.146 

Peanut 6.314 6.808 2.618 3.014 7.411 0.000 0.987 0.980 0.997 -0.088 0.132 -0.171 
Rapeseed 0.001 6.928 1.458 2.967 5.949 0.000 1.000 0.980 0.999 0.000 -0.265 -0.006 

 RMSE RMSD R2 MBE 
Oil 

Adulterant 
k HB ER k HB ER k HB ER k HB ER 

Sunflower 3.202 7.414 3.110 0.066 0.000 4.230 0.997 0.977 0.996 -0.083 -0.098 -0.080 

Linseed 1.655 6.199 7.597 0.017 1.948 2.797 0.999 0.988 0.989 -0.106 0.241 1.468 

Corn 0.090 6.351 1.023 0.007 0.005 1.126 1.000 0.989 1.000 -0.026 -0.096 -0.059 

Soya 0.001 4.478 3.321 0.000 3.332 1.200 1.000 0.995 0.996 0.000 -0.061 -0.372 

Peanut 0.097 11.449 21.201 0.018 5.149 1.195 1.000 0.944 0.789 -0.007 0.087 0.001 

Rapeseed 0.862 5.409 1.658 0.000 1.123 1.624 1.000 0.992 0.999 0.036 1.275 0.062 
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14 Thermal Degradation of Maltese extra virgin olive oil, an 
assessment of stability.  

 

Stability and quality assurance issues of EVOOs are important issues 

concerning both the producers and sellers. The oxidation of fats and oils is one of the 

most fundamental reactions in lipid chemistry and itself is the main cause of quality 

deterioration, determining the shelf life of these products. Unlike, other refined seed 

oils virgin olive oils, are marketed and ultimately consumed without any chemical 

treatment such as bleaching.  Compared to other seed oils EVOOs tend to have a high 

oxidative resistance mainly attributed to the high monounsaturated-to-polyunsaturated 

fatty acid ratio and to the presence of minor polar compounds having powerful 

antioxidant activity among which polyphenols and tocopherols (Kiritsakis et al., 

1990). The refining process under which the majority of the marketed seed oils are 

subjected completely eliminates or drastically reduces the presence of the phenolic 

compounds, consequently, reducing the oxidative stability of refined oils when 

compared virgin oils. However, even though virgin olive oil is generally considered as 

being highly resistant to oxidation, the presence of some minor compounds/ions such 

as free fatty acids and photosensitizers including pigments and metal ions, tend to act 

as pro-oxidants. It is the variability of these minor prooxidants that causes the inherited 

variability in the stability of different virgin olive oils.  

In spite of its high stability, virgin olive oil is also susceptible to different forms 

of oxidative processes. Enzymatic oxidation occurs when the oil is in the drupe and 

during the extraction process, whereby the presence of enzymes namely lipases, 

lipoxygenase and polyphenol oxidase catalyse oxidation reaction responsible for the 

formation of free fatty acids, hydroperoxides, and o-diphenols (further oxidised to o-

quinones) respectively. Photo-oxidation occurs when the oil is exposed to light, unlike 

other vegetable oils EVOOs is consumed containing high amounts of chlorophyll 

pigments (Psomiadou et al., 2001). This is well documented that chlorophyll pigments 

act as photosensitizers due to the ability to transfer energy from light to triplet oxygen, 

producing thus singlet oxygen, which then reacts with the unsaturated fatty acids 

catalysing the hydroperoxide formation. The presence of these pigments makes the 

EVOO notably vulnerable to light exposure on the shelf reducing the overall quality 

of the product. The last form of oxidation which EVOOs undergo is known as 
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autoxidation which mainly occurs during processing and storage when the oil is in 

contact with oxygen (Frankel, 1985). Autoxidation is the main cause of deterioration 

of virgin olive oil during its shelf life. It occurs via the interaction of triacylglycerol 

fatty acids with molecular oxygen in the presence of transition metals or light which 

yields hydroperoxides by a free radical mechanism. High temperatures accelerate the 

process of autoxidation. The reaction proceeds through the formation of 

hydroperoxides, the primary oxidation products, which are unstable and decomposes 

to produce a range of volatile and non-volatile products. Volatile compounds produced 

during the lipid autoxidation reaction are mainly aldehydes and ketones, responsible 

for the rancid defects EVOOs (Angerosa, 2000).  

The purpose of this work was to study the changes undergone by three 

monocultivar EVOOs derived from the Maltese islands namely ‘Bidni’, ‘Malti’ and 

‘Bajda’ when subjected to thermal oxidation conditions. Changes were assessed 

through the study of specific chemical markers of oxidation including free fatty 

acidity, hydroperoxides, and secondary oxidation compounds. A profiling based 

approach was used in order to assess the changes in the phenolic composition for each 

cultivar under study. A fingerprinting based approach in conjunction with 

chemometric methods was also employed to predict the extent of oxidation through 

the use spectroscopic data, including spectrofluorimetry, UV-VIS, FTIR, and NMR 

spectroscopy. Other parameters including the chlorophyll pigment content and colour 

analysis were also assessed. The combination of target based and fingerprinting based 

approach was also combined in order to improve the overall predictability of the extent 

of oxidation.     

14.1 Colour changes during thermal oxidation.   
   

Colour is a sensory property with a strong influence on food acceptance as it 

contributes decisively to the initial perception that one can acquire the condition, 

ripeness, degree of processing, and other characteristics of foods (Alos, et al. 2006). 

Virgin olive oil is a natural product whose colour depends exclusively on biological 

compounds such as the chlorophyll and carotenoid pigments, their identification and 

individual evaluation make it possible to relate oil colour with the content and type of 

these compounds present. EVOOs is a strong indicator of a quality, changes in the 



 Results and Discussion   

368 
 

colour composition can reflect defects that have occurred during blending, storage, 

crushing, and extraction or the refining process.  

  

 

Figure 14.1: Colour systems employed.  
 

The American Oil Chemists’ Society (AOCS) proposed four official methods 

for the determination of colour for fats and oils. These include the Lovibond colour, 

Wesson colour, spectrophotometer colour and chlorophyll colour. In the present study, 

CIE L*a*b*, XYZ and xy were used as alternative colour models that might be used 

in objective oil colour evaluation. L*a*b* is an international standard for colour 

measurements, adopted by the Commission Internationale d’Eclairage (CIE) in 1976. 

Where the L* parameter represents the lightness component ranging from 0 to 100, the 

a* parameter refers to the colour ranges from green to red whilst b* parameter displays 

the colours from blue to yellow. Both the a* and b* chromatic components range from 

-120 to 120. The XYZ is an additive colour scheme also known as tristimulus colour 

space. It works by defining the amounts of three stimuli provided to the eye (l, m, and 

s). Closely related to the XYZ colour scheme is the xy colour scheme which takes 

account of the luminance-chrominance state which is mathematically derived from the 

XYZ colour scheme.  

Colour analysis of the EVOOs through the 12-week thermal degradation 

experiment showed a significant decrease in the L* parameter indicating that in 

general, thermally oxidised EVOOs tend to lose their deep colour and attain a lighter 

transparent hue. Conversely, a significant increase in a* chromatic component was 

observed indicating a transition from the green colour towards a more red colouration, 

together with a significant decrease in the b* chromatic parameter indicating a 
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transition from a blue chromatic component towards a yellower colour. Application of 

the XYZ tristimulus colour space, a significantly moderate negative correlation was 

observed with respect to the X and Y chromatic component suggesting a decrease in 

the absorption between 500-700 nm On the other hand, a weak positive increase in 

absorption in the 400-450 nm range occurs as indicated by the Z chromatic component. 

In the case of the xy colour scheme, a moderate significant decrease in the two 

chromatic components was observed, further indicating the loss of the blue-green hues 

(y) and the red-orange hues (x), resulting in a transparent yellow colouration. From the 

results obtained it was shown that CIE L*a*b*, chromatic system provides a more 

robust correlation when compared to XYZ and xy chromatic systems. Morello´ et al., 

(2004) showed that luminosity values (L*) increased in oils after the 12 months storage 

period, probably as a consequence of the reduction in the pigment content. However, 

unlike what was observed in the presented study, Morello et al., (2004) showed that 

storage did not appear to have a significant effect on the chromatic ordinate b*, which 

corresponds to the yellow zone. This suggests that transition of blue to yellow hues is 

dependent on both the temperature and time rather than time alone.  Ayton et al, (2012) 

showed that L* and a* were in general not significantly affected by the temperature at 

which the oil was stored. Although this observation is not concordant with the results 

obtained in this study, it important  to mention that the maximum temperature to which 

Ayton et al, (2012) subjected the EVOOs was 36°C which was lower than the 

temperature to which EVOOs were subjected in this study. However, similar to the 

presented study b* value decreased significantly. This indicates the colour is slightly 

less yellow than in the initial oil. 
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Figure 14.2: Correlation analysis of the different colour system parameters with the extent of thermal 
degradation. (Top) *L, *a, *b, (Middle) XYZ, (Bottom) xy.  

 

 

 

 

 

Table 14.1: (Top) R2 values (Bottom) gradient obtained from plotting the decrease in color against the extent 
of thermal degradation for the three different cultivars.   

R2 Value 
 L a b X Y Z x y 

‘Bidni’ -0.33 0.81 -0.77 -0.19 -0.34 0.58 -0.69 -0.74 

‘Malti’ -0.29 0.85 -0.80 -0.13 -0.30 0.78 -0.80 -0.82 

‘Bajda’ -0.70 0.76 -0.82 -0.64 -0.70 0.17 -0.80 -0.78 

Gradient 

‘Bidni’ -0.27 1.17 -0.30 -0.10 -0.16 0.14 -118.04 -90.37 

‘Malti’ -0.23 0.95 -0.25 -0.07 -0.14 0.19 -129.99 -91.68 

‘Bajda’ -0.37 0.92 -0.37 -0.21 -0.20 0.06 -248.03 -146.43 
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Table 14.1 shows the individual cultivar colour correlation analysis and 

gradient (as a function of rate). It was observed that the extent of colour changes differ 

for each cultivar. In general, it was observed that ‘Bajda’ cultivar exhibited a stronger 

negative correlation with regards to the L* b*, X and Y chromatic components when 

compared to EVOOs derived from the ‘Bidni’ and ‘Malti’ cultivar. This observation 

indicates that the EVOOs derived from this leucocarpic cultivar tends to display a 

linear decrease in the luminosity and yellow parameter coupled with a decrease in 

absorption 500-700 nm as shown by the X and Y parameters. These results suggest 

that EVOOs derived from Leucocarpa cultivars behave differently than those derived 

from other Olea cultivars. It is well known that EVOOs derived from Leucocarpa 

cultivars tend to have a very low (even absent) concentration of chlorophyll pigments. 

The reduced concentration of chlorophyll pigments enabled almost a linear decrease 

in the aforementioned chromatic parameters. The reduced concentration of these 

compounds makes them more liable to thermal degradation. Furthermore, the rate 

through which changes in the aforementioned chromatic parameters occurs is faster in 

the EVOOs derived from Leucocarpa cultivars. Conversely, EVOOs derived from 

Leucocarpa cultivars had a lower correlation and slower rate in the Z parameter 

indicating that compounds absorbing the 400-450 nm tend to remain stable during the 

thermal oxidation process. 

From the results obtained it was shown that oils stored at higher temperatures 

may display a slight change in colour, with the overall loss of luminosity and blueness 

coupled with an increase in the red hues. Although these changes are difficult to detect 

with the naked eye subjectively the application of CIE L*a*b*, the chromatic system 

provides a more direct and less subjective measure of colour. It was observed that the 

extent of colour change is dependent on the cultivar type, cultivars having a reduced 

amount of chlorophyll pigments tend to undergo a much more linear and rapid loss of 

colour. Due to the complex nature of chlorophyll and carotenoid compounds and the 

complex interaction that occur during the conditions under which they are stored, is 

further investigated using the entire UV-VIS spectrum.  

14.2 Pigment changes during thermal oxidation.   
    

The green-yellowish colour of VOO attributed to different pigments present 

namely chlorophylls, pheophytins and carotenoids (Cichelli and Pertesana, 2004; Del 
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Giovine and Fabietti, 2005; Boskou et al., 2006). The oxidative stability of EVOO is 

affected by the presence of these compounds and their derivatives. In the presence of 

light, chlorophylls and their derivatives are the most active promoters of 

photosensitized oxidation in virgin olive oil contributing greatly to their susceptibility 

to oxidation (Interesse et al., 1971). Since the experiment was carried out completely 

in the dark any changes in the pigment composition and the overall oxidation of the 

oil was solely attributed to thermal decomposition. It is well documented that thermal 

processing induces structural and chemical changes chlorophyll that often results in a 

colour change (Canjura et al., 1991 and Heaton et al., 1996) as shown in the 

previously. The loss of the green colour is mainly attributed to the conversion of 

chlorophylls to pheophytins. Under acidic conditions, magnesium in the chlorophyll 

ring is replaced by two hydrogen ions and green chlorophylls are converted to the 

olive-brown pheophytins (Mangos and Berger, 1997; Van Boekel 2000). It is possible 

that the formation of free fatty acids during the thermal degradation process lowers the 

pH enabling the formation of pheophytins. The second stage of degradation involves 

the formation of pheophytins derivatives known as pyropheophytins formed by the 

loss of the carbomethoxy group from pheophytins as a result of further heating 

(Schwartz and Von Elbe, 1983; Mangos and Berger, 1997).   

Figure 14.2 shows the changes occurred during the thermal oxidation 

experiment to the chlorophyll pigments. Similar to other studies, it was found that 

chlorophyll is heat-labile and severely affected by the extent of heat treatment. Ayadi 

and Grati-Kamun (2009), Malheiro et al. (2009) and Jaber et al. (2012) reported more 

than 90% chlorophyll loss in olive oil samples. From the results obtained it was shown 

that for the three cultivars, chlorophyll degradation showed a three-stage decay 

process, a linear decrease over the first week followed by a stable phase were no 

significant changes in chlorophyll content was observed between six to ten weeks 

followed by a rapid decay. These results can be related to the study carried out by 

Gutiérrez et al.,(1991) whereby it was found out that the addition of chlorophyll to a 

virgin olive oil containing natural pheophytin A did not show any differences in 

oxidation levels or in Rancimat stabilities after a different storage period. These results 

suggest that once the compounds are present in sufficient amounts, the increase in their 

concentration is of minor importance, thus the levels of chlorophylls within the oil tend 

to stabilize as the degradation process continues. Furthermore, these photosensitizers 
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may also show slight antioxidant effects on the oils in the dark probably by donating 

hydrogen to break the free-radical chain reactions (Endo et al., 1984, Gutiérrez et 

al.,1991) preventing further loss of pigments. 

 

Figure 14.3: Changes in the chlorophyll content of the different cultivars (Black= ‘Bidni’, Green=‘Malti’, 
and Red=‘Bajda’) 
 

From the results obtained it was shown that chlorophyll degradation is also 

cultivar dependent. From Figure 14.3 it was observed that whilst the initial amount of 

chlorophylls varied between the different cultivars, however, all the cultivars showed 

that by the end of the 12 weeks thermal degradation period an equivalent amount of 

chlorophyll pigment was present. Indicating that bleaching of chlorophyll pigments 

will occur independent of the cultivar. Furthermore, it was observed that the rate of 

chlorophyll degradation is also cultivar dependent, EVOOs derived from ‘Bidni’ 

cultivar had the highest rate of degradation followed by the ‘Bajda’ cultivar, whilst the 

EVOOs derived from the ‘Malti’ cultivar was more resistant to chlorophyll 

degradation. These results suggest that apart from the initial amount of chlorophyll 

there are other factors which are affecting the susceptibility, further investigation 

regarding the presence of antioxidant phenolic compounds will be discussed later on 

whilst the correlating the observed susceptibility to chlorophyll degradation to the 

presence of tocopherols is proposed as a further study.    

The major carotenoids present in EVOOs are lutein and -carotene, minor 

carotenoids including  -cryptoxanthin and epoxidized xanthophylls such as 

neoxanthin, violaxanthin, antheraxanthin and their furanoid isomers have also be 

determined by Gandul-Rojas and Minguez-Mosquera, (1996).  Along with chlorophyll 
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compounds, carotenoids are responsible for the colour of the virgin olive oil. Changes 

within these compounds tend to occur during inadequate storage conditions with high 

temperatures and/or light. These compounds tend to undergo isomerization or 

discolouration that alter both the quality of the product and their functional properties.  

Aparicio-Ruiz, Minguez-Mosquera, and Gandul-Rojas (2011) show that thermal 

degradation of carotenoids in EVOO flows a first-order kinetic mechanism reactions 

of isomerization and subsequent degradation to colourless products. 

 

Figure 14.4: Changes in the carotenoid content of the different cultivars (Black= ‘Bidni’, Green=‘Malti’, and 
Red=‘Bajda’) 
 

 Figure 14.4 shows the concentration of carotenoids present in EVOOs during 

the 12-week degradation process. Unlike what was observed for the chlorophyll 

content a far less linear degradation was observed for the ‘Bidni’ and ‘Malti’ cultivar, 

this might be due to inferences due to secondary oxidation products that are formed 

during the oxidation results giving erroneous results. Nonetheless, an overall decay in 

the concentration of carotenoid compounds was observed. Comparison of the 

simplified rates of decay (gradient) of carotenoids to those of chlorophyll. Carotenoid 

compounds were found degrade at a much slower rate than chlorophyll pigments. It is 

well known that carotenoids are relatively stable during thermal processing when 

compared with chlorophylls (Kim et al., 2003). However, as the thermal insults are 

sustained a decrease in the carotenoid content was observed, this was attributed to 

oxidation and isomerization (Henry et al., 1998; Speek et al., 1988). The oxidation of 

-carotene is accompanied by a loss in colour (Goldman et al., 1983; Henry et al., 

1998; Anguelova and Warthesen 2000). Furthermore, the formation of oxidized lipids 
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may cause oxidation of carotenoids by their reaction with free radicals (Goldman et 

al., 1983).  

Similar to the chlorophyll content, the degradation of carotenoid compounds 

seems also to be cultivar dependent. As expected, EVOOs derived from the ‘Bidni’ 

and the ‘Malti’ cultivars had the highest initial concentration of carotenoid compounds 

when compared to EVOOs derived from the ‘Bajda’ cultivar. However, it was shown 

that the rate at which carotenoid compounds decay is different. EVOOs containing a 

high amount of carotenoid compounds tend a faster rate of carotenoid decay whilst 

EVOOs containing a smaller amount of carotenoid compounds tend to lose their 

carotenoids at a slower rate. These observations further indicate that the rate of 

carotenoid decay follows a first-order decay kinetics, whereby for a doubling of the 

initial concentration of the reactant a doubling in the rate of reaction is observed. 

Further evidence, can be found by comparing the initial concentration of the 

carotenoids from the different EVOOs cultivars and the gradient of the reaction. 

14.3 Colour differences and the effect of pigment degradation on 
colour. 

 
The oxidation of olive oils leads to the inevitable degradation of natural 

pigments and thus discolouration (Morello et al., 2004). Oxidation products absorbing 

in the visible spectral range may also contribute to colour changes. Therefore, the olive 

oil colour may become a critical tool in quality evaluation (Caponio et al., 2005; 

Ceballos et al., 2003). The colour difference (ΔE) was calculated according to Sikorski 

et al., (2007) using the formula  

ΔE = [(L0-L)2 +(a0*-a*)2 +(b0*-b*)2 ]1/2 

 L0 , a0 *, and b0 * are the colour parameters of the fresh oil samples. Figure 

12.5 shows a graphical representation of the colour changes occurring for each cultivar 

during the thermal degradation period. It was shown that EVOOs derived from the 

‘Malti’ cultivar were lower than those exhibited by the EVOOs derived from the 

‘Bidni’ and the ‘Bajda’. Nonetheless, over 11 weeks the colour changes exhibited by 

EVOOs derived from the ‘Bidni’ cultivar were lower than those observed for the 

‘Malti’ cultivar. In the case of EVOOs derived from the ‘Bajda’ an exponential change 

in colour was observed after eight weeks of degradation, whilst in the case of ‘Bidni’, 

this exponential change in colour was observed only after eleven weeks of degradation. 



 Results and Discussion   

376 
 

These results further corroborate the results which were previously obtained and 

further indicate that other constituents might be affecting the colour change and 

possibly the overall oxidation of the oil.   

 

Figure 14.5: Changes in the colour difference of the different cultivars (Black= ‘Bidni’, Green=‘Malti’ and 
Red=‘Bajda’) 
 

 The relation between colour parameters and chromophore concentrations were 

assessed via the application of regression analysis. Figure 14.6 shows the correlation 

between colour parameters and concentrations of individual pigments in extra-virgin 

oil samples. The correlation coefficients for all of the tested pairs of parameters are 

also shown in Figure 14.6. Higher correlation coefficients were obtained for the 

correlations between the colour parameters and the chlorophyll concentration (1st 

Row), these results are comparable to those obtained by Sikorska et al., (2007). The 

best correlations were found for the a* and b* values with an R2 value of 0.835, 0.840 

(p-value < 0.05 for both). Conversely, a very low correlation was observed between 

the pigment concentration and luminosity (L*) of the EVOOs. These results, contradict 

the results obtained by the Sikorska et al., (2007), whereby it was shown that the 

pigment concentration is also highly correlated to the luminosity of the EVOOs. 

However, the study carried out by Sikorska et al., (2007) was a storage study without 

the application of heat treatment.  

Slightly lower regression coefficients were obtained for the carotenoid 

concentration when compared to the a* and b* colour parameters. This was attributed 

to their larger stability and significantly lower degradation rates. The best correlation 

for carotenoids was obtained with the b* value, similar results were also observed by 

Sikorska et al., (2007). Although, lower regression coefficients were observed 

0

200

400

600

800

1000

1200

1400

1600

1800

0 2 4 6 8 10 12

E



 Results and Discussion   

377 
 

between the carotenoid concentration and the L*, a* and b* colour system, conversely, 

higher regression coefficients were observed between the carotenoid content and the 

Z colour parameter of the XYZ colour system. The results obtained were as expected 

since the Z parameter is responsible for the absorption of compounds in the 400-450 

nm range which coincides to the absorption of carotenoid compounds. 

In the case of the xy colour system, it was observed that the both the 

chlorophyll and the carotenoid concentration were equally positively correlated to the 

xy parameters. These results, indicate that as the concentration of these compounds 

decreases as a result of thermal degradation, a resultant decrease in both the x and y 

parameter occurs. Since the majority of the fresh EVOOs, a yellow/ green colour a 

simultaneous decrease in both x and y colour parameters indicate that the colour 

becomes more centralised with respect to the CIE xy chromatic diagram thus becoming 

whiter (transparent) in colour.       

 
          L     a*           b*                      X                   Y                  Z                     x                y 

 
 

Figure 14.6: Correlation analysis between colour parameters and chromophore concentrations (1st row = 
chlorophyll content; 2nd row = carotenoid content) for the different cultivars (Black= ‘Bidni’, Green=‘Malti’ 
and Red=‘Bajda’) during thermal degradation  
 

14.4 Conjugated Dienes and Trienes during thermal oxidation. 
 

Fatty acids absorb light at particular wavelengths in the UV region and this 

may be used to determine olive oil quality. Refining causes a change in the 

configuration of fatty acids and the formation of conjugated dienes and trienes 

(Angerosa et al., 2006). Increased values of K232 and K268 in olive oil usually indicate 

the presence of refined oils. Furthermore, autoxidation reactions are also associated 

with conjugation, due to the formation of either carbon-carbon bonds or carbon-

oxygen bonds which cause an increase of absorption in the region between 225 and 

325 nm (Boskou, 1996).  
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Before the thermal stress experiment, the initial K232 and K270 values were 

determined and were all below the limits established by the EC Regulation for EVOO 

category (European Union Commission, 2007), which corresponded to 2.50 and 0.22, 

respectively. Only the EVOO-derived from the Leucocarpa variety had a higher K270 

value than the one established by the EC. Similar to other published studies, the 

oxidative status of the samples were evaluated by monitoring the trend of conjugated 

dienes (K232) and trienes (K270) during the thermal stress (Hrncirik and Fritsche, 2005; 

Lerma-García, Simó-Alfonso, et al., 2009; Mancebo-Campos, Fregapane, and Desam- 

parados Salvador, 2008). The similar to other studies it was shown that the three 

samples underwent a significant increase in both the K230 and K270 value with heating 

(Allouche et al., 2007; Bendini et al., 2009). However, unlike for the majority of the 

studies, in this experiment thermal stress was done in order to replicate real situations 

of mishandling, rather than focusing on the thermal stability of EVOO at cooking and 

frying temperatures. Figure 14.7 shows changes in the K230, K270 and K for the 

EVOOs derived from three different cultivars. It was shown that EVOOs derived from 

the ‘Bajda’ cultivar reached the legal limit (blue dotted line) for both the K230 and K270 

faster than the other cultivars, indicating a lower thermal stability. During heating, a 

common trend for k among samples was not evidenced. K232 is related to the 

formation of hydroperoxides, carboxylic acids, conjugated dienes and conjugated 

trienes. These compounds are formed during the process of lipid oxidation (Allouche 

et al., 2007). Although in this experiment the EVOOs were not exposed to oxygen it 

was expected that K232 legal limits will be reached at a slower rate than those quoted 

by other experiments. Whilst K232 is a measure of the primary oxidation products in 

olive oil and thus the results obtained are highly correlated to the accumulation of 

peroxides in the oils. As primary oxidation products are produced they broke down 

into secondary oxidation products such as aldehydes and ketones which were 

measured at K270. These results are very similar to those found by other authors 

(Krichener et al., 2010). The initial lag phase (the slower rate of increase) in the 

peroxide value, K232 and K268 values in the oils during thermal stress can be attributed 

to the antioxidant properties of the polyphenols present. 
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Figure 14.7: Changes in the diene and triene content (Top = K230; Middle = K270, Bottom = K) of the 
different cultivars (Black= ‘Bidni’, Green=‘Malti’ and Red=‘Bajda’) during thermal degradation. The 
dotted line represents the legal threshold for the EVOO to be still considered as extra virgin.  
 

14.4.1 Effects of Chlorophyll pigments on the concentration of 
conjugated dienes and trienes 

 
Correlation analysis between the K values and the pigment content of the oil 

revealed an overall negative correlation. This indicates that these pigments displayed 

an overall antioxidant activity. Table 14.2 shows that stronger negative correlation 

values were obtained when the individual cultivars were compared, indicating that the 

antioxidant activity displayed is dependent on the initial concentration of these 
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pigments. It is well documented that β-Carotene shows antioxidant activity, protecting 

lipids from free radical auto-oxidation by reacting with peroxyl radicals, ultimately 

inhibiting propagation reactions and promoting termination of the oxidative chain 

reactions (Britton et al., 2007). Similarly, the effects of chlorophyll and pheophytin on 

the autoxidation of oils in the dark were investigated by Endo et al., (1984). It was 

shown that both chlorophyll and pheophytin show antioxidant activity retarding the 

oxidative deterioration of triglycerides in rapeseed and soybean oils at 30 °C. Francisca 

and Isabel, (1992) showed that in the absence of light, chlorophylls act as antioxidants 

via the donation of hydrogen radicals.  

Table 14.2: Correlation analysis between the conjugated diene and triene content against chlorophyll and 
carotenoid concentration for EVOOs derived from different cultivars. 

 K270 K230 dk 

Overall 
Ch -0.69 -0.61 -0.45 

Cr -0.42 -0.49 -0.13 

‘Bidni’ 
Ch -0.98 -0.87 -0.83 

Cr -0.74 -0.62 -0.44 

‘Bajda’ 
Ch -0.88 -0.83 -0.39 

Cr -0.73 -0.63 -0.65 

‘Malti’ 
Ch -0.91 -0.43 -0.92 

Cr -0.76 -0.45 -0.73 

 

However, although in this experiment it was shown that these pigments display 

antioxidant activity, in the presence of light these compounds tend to display a 

prooxidant effects. Prooxidant activity can be defined as a component, such as a metal 

ion, able to lower the activation energy for the initiation of lipid oxidation (Labuza, 

1971). In fact, the prooxidant activity of plant pigments, especially chlorophyll, 

pheophytin, and phaeophorbide, within oil is well documented in the literature 

(Shahidi & Wanasundara, 1992). This is attributed to the fact that chlorophylls and 

their degradation products pheophytins and pheophorbide, act as sensitizers to produce 

oxygen radicals in the presence of light and atmospheric oxygen. The presence of these 

compounds increases the rate of oil oxidation (Whang and Peng, 1988). In the presence 

of high concentrations of oxygen, carotenoids act as prooxidants via the generation of 

carotenoid radicals which react with atmospheric oxygen to generate carotenoid-

peroxyl radicals. The latter compounds act as pro-oxidants by promoting oxidation of 

unsaturated lipids. Furthermore, Steensen and Min (2000) found that during auto-

oxidation of soybean oil in the dark, thermal β-carotene degradation products act as 
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pro-oxidants, this could explain the sudden increase in the rate of degradation which 

was observed between 10-12 weeks. 

 

14.5 Application of Chemometrics methods for the evaluation of the 
extent of thermal degradation  

 

A number of spectroscopic techniques were evaluated to establish their potential 

in the determination of thermal degradation. These spectroscopic methods were 

coupled with chemometric methods mainly partial least squares regression (PLSR) and 

principal component regression (PCR). The aims of this research were to compare the 

performance of the different methods for the evaluation of the degree of thermal 

degradation and to develop PLSR and PCR prediction models based on spectrometry 

for the determination of the extent of thermal degradation. In order to obtain more 

information from these spectroscopic methods, the extracted spectral data were 

subjected to mathematical elaboration. In particular, normalization, baseline 

correction, Multiplicative Scatter Correction (MSC), Standard Normal Variate (SNV) 

Orthogonal Signal Correction (OSC) and Derivative elaborations namely Savitzky–

Golay 1st degree derivatization, first and second derivatization were applied (Iñón et 

al., 2003; Maggio et al., 2009).  

Both PLSR and PCR are methods which are used to model a response variable 

in conjunction with a large number of highly correlated or collinear predictors. PCR 

and PLSR construct components by means of linear combinations of the original 

predictor variables, the difference between them is that they construct components in 

different ways. In the case of PCR, the components are generated with the main aim 

of explaining the maximum observed variability in the predictors without considering 

the response variable at all. Whilst in the case of PLSR, the response variable is taken 

into account, and therefore often leads to models that are able to fit the response 

variable with fewer components. In this study, spectral data obtained from the different 

EVOO samples obtained at different time intervals obtained from the thermal 

degradation experiment were used to form the explanatory matrix (X) whilst the extent 

of degradation given in terms of weeks for which the samples were subjected to heat 

was used as the dependent matrix (Y). The development of PLSR and PCR prediction 

models involves two basic steps: training and test phases. In the training phase, 55 % 

of the data were selected to generate the model. In this phase, leave one out cross-
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validation and CV-10 cross-validation was used respectively to choose the optimum 

number of PLSR and PCR components with the smallest prediction error, which 

avoids overfitting of the model. After training models, an independent dataset (45 % 

of the total data) was utilized to test the prediction performance. The residual of the 

difference between experimental value and prediction value was plotted and validation 

of the models was performed by comparing differences in root mean square error 

(RMSE), mean biased error (MBE), mean absolute error (MAE) and coefficient of 

determination (R2), which were calculated as follows: 

𝑅𝑀𝑆𝐸 =  
∑ (𝑥 − 𝑥 )

𝑁
 

𝑀𝐵𝐸 =  
∑ 𝑥 − 𝑥

𝑁
 

𝑀𝐴𝐸 =  
∑ 𝑥 − 𝑥

𝑁
 

𝑅 = 1 − 
∑ (𝑥 − 𝑥 )

∑ (𝑥 − 𝑥 )
 

 

N is the total number of data, xP represents the predicted value from the model, 

whereas xE is the experimental value, xM is the mean of experimental value. The PLSR 

was performed using the software JMP Pro (SAS Institute Inc., Cary, NC, USA) whilst 

PCR was performed using The Unscrambler 10  (CamoCamo Process As., Oslo, 

Norway). MAE and RMSE provide information about the magnitude of the average 

error but provide no information on the relative size of the average difference between 

the predicted and experimental values. On the other hand, MBE describes the direction 

of the error bias. Its value, however, is related to the magnitude of values under 

investigation. A negative MBE occurs when predictions are smaller in value than 

observations.  

14.5.1 Chemometric analysis of UV-Vis changes during thermal degradation 
 

Figure 14.8 shows the absorption spectra of an extra-virgin olive oil in n-

hexane in the visible range obtained after various spectral pretreatment methods as a 

function of the thermal degradation period. The dotted line represents the R2 derived 

from performing a matrix correlation analysis on the entire spectrum in correlation to 

the weeks of degradation. Typical UV-Vis absorption spectrum of EVOOs displays 
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two major maxima, the absorption in the 450-520 nm range is attributed to carotenoid 

pigments. The carotenoid band overlaps with that of the chlorophylls at 380-450 nm, 

while the characteristic band at 650-700 nm belongs exclusively to chlorophylls and 

pheophytins.  As previously observed from the analysis of the individual pigment 

concentration, heating had a detrimental effect on a number of pigments present in 

EVOO. As expected the intensity of the chlorophyll-band decreased to less than half 

of its initial value after 5 weeks with this band eventually disappearing completely 

after the 12 weeks of thermal degradation. In contrast, carotenoids were significantly 

more stable, although their absorption was partially reduced during the thermal 

process. From the correlation analysis, it was evident that these aforementioned peaks 

were most negatively correlated with the time of thermal degradation. From the 

correlation analysis, it was shown that for the majority of the spectral pretreatments 

the carotenoid and chlorophyll peaks observed at 380-500 nm had the most negative 

correlation values when compared to 650-700  nm peak. These results provide the first 

indication that although stable the carotenoid peaks seem to provide a better correlation 

to the extent of degradation than chlorophyll pigments.      

Application of PLSR models for the determination of the extent of thermal 

degradation showed that whilst during the training phase spectra derived using 

detrending and MSC function had the best performance with low RMSE, MBE, MAE 

and high R2 value, these models failed during the validation step as there was an overall 

increase in the RMSE and bias. Spectra obtained using second-order derivatization 

seem to provide the most reliable prediction models as these had the lowest RMSE and 

bias associated errors during the external validation step.  Analysis of the individual 

cultivars performance under PLSR analysis, it was shown that throughout all the 

spectral transformations the PLSR models obtained were able to model the thermal 

degradation of EVOOs derived from the ‘Malti’ cultivar with a higher degree of 

precision. 
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Figure 14.8: Application of different spectral pretreatments on UV-Vis spectra for EVOOs derived from different cultivars (Black= ‘Bidni’, Green=‘Malti’, and Red=‘Bajda’). The 
dotted line represents R2 value obtained from correlating the different nm absorbances with the extent of thermal degradation.  
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In the case of PCR, the models obtained had a lower performance during the 

training phase when compared to those obtained using PLSR, as a higher RMSE and 

MAE were observed during PCR training validation models. However, during the 

testing phase, the PCR models obtained reached a comparable performance to those 

observed for the PLSR models. From the PCR models obtained it was found that 

spectra pretreated using the Savitzky Golay and second order derivatization had the 

optimal performance during the training phase, however, these spectra failed during 

the testing phase as a higher RMSE and MBE were observed. In the case of PCR 

models the optimal performance was obtained using the 1st order derived spectra as 

the errors obtained during the training phase were comparable to those obtained during 

the testing phase indicating that the model obtained during the training phase is also 

able to predict the extent of degradation for EVOOs not included in the training phase. 

 

Table 14.3: Performance of the PCR (Top) and PLSR (Bottom) models obtained using UV-Vis data after 
different spectral pretreatments.  

 

PLSR UV-Vis Training 

 Raw Base Norm DS DT SNV MSC OSC SG 1D 2D 

RMSE 2.096 0.426 0.359 0.501 0.137 0.487 0.275 0.794 0.713 0.863 0.078 

MBE -0.144 0.016 0.002 0.003 0.004 0.015 0.024 0.027 0.000 -0.023 0.005 

MAE 0.355 0.072 0.055 0.073 0.033 0.114 0.059 0.170 0.147 0.162 0.020 

R2 0.681 0.987 0.991 0.982 0.999 0.983 0.995 0.954 0.963 0.946 1.000 

PLSR UV-Vis Predictability 

RMSE 2.280 2.541 2.313 3.323 3.678 2.708 2.451 2.136 1.655 1.539 1.139 

MBE 0.104 -0.114 -0.123 -0.118 -0.116 -0.135 -0.117 -0.064 -0.071 -0.064 -0.048 

MAE 0.241 0.206 0.187 0.271 0.314 0.185 0.194 0.201 0.153 0.145 0.168 

R2 0.651 0.758 0.826 0.684 0.648 0.798 0.747 0.743 0.886 0.917 0.896 
  

PCR UV-Vis Training 

 Raw Base Norm DS DT SNV MSC OSC SG 1D 2D 

RMSE 2.096 2.407 2.096 2.145 1.301 1.471 1.105 2.139 1.009 1.206 1.005 

MBE -0.144 -0.207 -0.181 -0.151 -0.089 -0.107 -0.065 -0.151 -0.041 0.021 -0.043 

MAE 0.355 0.431 0.366 0.387 0.211 0.315 0.229 0.377 0.169 0.252 0.175 

R2 0.681 0.580 0.681 0.666 0.877 0.843 0.911 0.668 0.926 0.894 0.927 

PCR UV-Vis Predictability 

RMSE 2.280 2.235 2.415 2.476 2.820 4.136 1.349 2.370 3.434 0.983 3.546 

MBE 0.104 -0.010 0.034 0.147 -0.224 0.166 -0.140 0.127 -0.173 -0.103 -0.180 

MAE 0.241 0.305 0.299 0.237 0.296 0.424 0.219 0.249 0.233 0.157 0.237 

R2 0.651 0.653 0.554 0.620 0.769 0.061 0.860 0.636 0.816 0.933 0.822 
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Figure 14.9: (Top) 1st regression coefficient (Red line) obtained from the PCR for the 1st order derived 
spectra (black line). (Bottom) 1st -coefficients (Red line) obtained after PLSR for the 2nd order derived 
spectra (black line). 
 

Detailed analysis of the models which had the highest performance was carried 

out.  In the case of PCR, the models obtained using the 1st order derived spectra were 

analyzed whilst in the case of the PLSR models obtained using 2nd order derived 

spectra were analyzed. Figure 14.9 shows the 1st regression coefficient obtained from 

the PCR for the 1st order derived spectra which explained 76% of the total variation. 

Analysis of the - regression coefficients obtained, it was found that the degradation 

model obtained is highly dependent on the variation observed in the 650-700 nm 

reaching a maximum at 670 nm, together with the 400-500 nm reaching a maximum 

at 416 nm, 450nnm and 480 nm. Similar observations were obtained for the analysis 

of the first -coefficients obtained after PLSR for the 2nd order derived spectra. The 

peaks observed were identified as pertaining to - carotene which shows two major 

maxima observed at 450 and 480 nm, the maxima observed at 450 nm could also be 

attributed to the presence of chlorophyll b which absorbs in the same spectral region 

of -carotene. The peak observed at 416 nm was attributed to chlorophyll a which 

under typical UV-Vis conditions it is observed shouldering that of 450 nm as it would 

be masked by the presence of -carotene, however, the application of 1st order 

derivative this peak becomes completely resolved. The peaks observed in the 650-700 

nm region namely at the 670 nm was attributed to the presence of degraded chlorophyll 
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pigments namely pheophytins derived from their chlorophyll pigment counterparts 

after the loss of the central magnesium ion.     

14.5.2 Chemometric analysis of FTIR changes during thermal degradation 
 

In the oxidation experiment EVOOs derived from different cultivars was also 

assessed using ATR-FTIR spectra, their response to thermal stress was evaluated. 

Figure 14.10 shows the changes which were observed in the FTIR spectra using 

different spectral pretreatment methods. It was expected that under thermo-oxidative 

conditions changes within the infrared spectral absorption bands would occur as a 

direct result of lipid degradation. However the changes within the FTIR spectra were 

very subtle, furthermore, no shifts in the exact position of the bands were induced by 

heat treatment. Furthermore, the preliminary chemometric analysis carried out on the 

entire dataset proved but be unsuccessful in determining the extent of thermal 

degradation for the different EVOOs using FTIR spectra, as the performance of both 

the PLSR and PCR models obtained was very low.  

 This suggests that a universal model, which could predict the extent of thermal 

oxidation in EVOOs, could not be applied in the case of FTIR spectra. This was 

attributed to the very sensitivity of the FTIR spectra since each cultivar has a different 

chemical composition it cannot be assumed that the linear thermal degradation would 

be constant throughout, thus the application of a universal spectroscopic method 

coupled with advanced multivariate statistical analysis would fail. The application of 

chemometric models representing the thermal decay for each singular cultivar would 

be more appropriate and thus reduce the chance of model over-fitting.  Table 14.4 

shows the results obtained when each individual cultivar was modelled using both 

PLSR and PCR using FTIR data obtained after different spectral transformations.  In 

general, it was observed that as the harsher pretreatment functions the lower was the 

performance of the models obtained. In fact, for both the PLSR and PCR models 

obtained spectra directly obtained using from the instrument after a basic ATR 

correction yielded the highest model performance for all the three cultivars studied, 

whilst spectra derived after the 2nd order derivatization yielded models with the lowest 

performance. This indicates that in the FTIR spectra the unprocessed raw data could 

yield more information regarding the thermal oxidative state of EVOOs.  
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Figure 14.10: Application of different spectral pretreatments on FTIR spectra for EVOOs derived from different cultivars (Black= ‘Bidni’, Green=‘Malti’, and Red=‘Bajda’).  

-0.1

0.1

0.3

600 1600 2600 3600

ATR Corrected 

-0.2

0

0.2

0.4

600 1100 1600 2100 2600 3100 3600

Smoothing 

-1

0

1

2

600 1600 2600 3600

Normalized

-0.2

0

0.2

0.4

600 1600 2600 3600

Baseline

-0.2

0

0.2

0.4

600 1600 2600 3600

Detrend

-0.2

0

0.2

0.4

600 1600 2600 3600

Deresolve

-10

-5

0

5

10

600 1600 2600 3600

SNV

-0.2

0

0.2

0.4

600 1600 2600 3600

MSC

-0.15

-0.1

-0.05

0

0.05

600 1600 2600 3600

OSC

-0.04

-0.02

0

0.02

0.04

600 1600 2600 3600

Savitzy Golay

-0.04

-0.02

0

0.02

0.04

600 1600 2600 3600

1st Derivative 

-0.02

-0.01

0

0.01

0.02

600 1600 2600 3600

2nd Derivative 



 Results and Discussion   

389 
 

Table 14.4: Performance of the PCR models obtained during training (Top) and testing (Bottom) using FTIR 
data after different spectral pretreatments for the different cultivars. 

PCR FTIR Training  
 Raw Smoothing Base Norm DS DT SNV MSC OSC SG 1D 2D 

 RMSE 
‘Bidni’ 1.328 1.021 3.027 1.117 2.968 0.993 2.887 2.882 0.332 3.083 3.083 3.006 
‘Bajda’ 1.100 0.820 3.402 0.814 4.019 0.934 2.921 2.965 1.245 3.455 3.455 3.085 
‘Malti’ 1.731 1.569 3.775 1.554 3.743 1.554 3.514 3.512 1.265 3.626 3.626 3.245 

 MBE 
‘Bidni’ -0.214 -0.164 -0.136 -0.210 -0.138 -0.160 -0.149 -0.149 -0.088 -0.095 -0.095 -0.171 
‘Bajda’ -0.038 -0.046 -0.183 -0.007 -0.289 -0.082 -0.200 -0.201 -0.030 -0.422 -0.422 -0.380 
‘Malti’ -0.069 -0.093 -0.607 -0.039 -0.625 -0.097 -0.584 -0.585 -0.061 -0.533 -0.533 -0.468 

 MAE 
‘Bidni’ 0.282 0.213 0.477 0.264 0.495 0.209 0.470 0.469 0.117 0.527 0.527 0.497 
‘Bajda’ 0.195 0.151 0.623 0.238 0.859 0.160 0.538 0.546 0.223 0.835 0.835 0.690 
‘Malti’ 0.206 0.221 0.889 0.190 0.909 0.225 0.873 0.874 0.171 0.821 0.821 0.723 

 R2 
‘Bidni’ 0.936 0.966 0.342 0.959 0.366 0.968 0.398 0.400 0.994 0.339 0.339 0.353 
‘Bajda’ 0.913 0.951 0.219 0.952 0.154 0.939 0.546 0.539 0.890 0.147 0.147 0.319 
‘Malti’ 0.786 0.831 0.020 0.839 0.029 0.835 0.126 0.128 0.889 0.089 0.089 0.250 

PCR FTIR Predictability 
 MBE 

‘Bidni’ 0.546 0.770 4.572 0.789 4.841 0.781 4.890 4.887 21.480 5.125 5.125 5.175 
‘Bajda’ 1.636 2.755 2.778 2.420 3.650 2.819 1.162 1.170 5.052 2.280 2.280 3.508 
‘Malti’ 0.643 0.486 2.213 1.291 3.141 4.351 1.763 1.793 11.997 1.536 4.087 1.339 

 MBE 
‘Bidni’ -0.066 -0.087 -0.048 0.030 -0.069 -0.089 -0.061 -0.060 -3.714 -0.070 -0.070 -0.059 
‘Bajda’ -0.054 0.032 -0.259 -0.014 -0.402 0.040 -0.204 -0.206 0.702 -0.186 -0.186 -0.333 
‘Malti’ 0.092 -0.010 0.061 -0.097 -0.127 0.188 0.028 0.031 1.831 -0.008 -0.140 -0.041 

 MAE 
‘Bidni’ 0.078 0.096 0.670 0.104 0.713 0.094 0.702 0.701 3.714 0.748 0.748 0.750 
‘Bajda’ 0.244 0.317 0.529 0.305 0.698 0.319 0.217 0.219 0.702 0.434 0.434 0.660 
‘Malti’ 0.092 0.041 0.332 0.180 0.403 0.201 0.308 0.311 2.142 0.258 0.394 0.199 

 R2 
‘Bidni’ 0.991 0.990 0.186 0.986 0.384 0.991 0.436 0.436 0.989 0.389 0.389 0.408 
‘Bajda’ 0.967 0.542 0.629 0.586 0.529 0.508 0.972 0.972 0.973 0.589 0.589 0.547 
‘Malti’ 0.998 0.984 0.773 0.932 0.740 0.027 0.797 0.796 0.744 0.816 0.739 0.976 

 

Table 14.5: Performance of the PLSR models obtained during training (Top) and testing (Bottom) using 
FTIR data after different spectral pretreatments for the different cultivars. 

PLSR FTIR Training 
 Raw Smoothing Base Norm DS DT SNV MSC OSC SG 1D 2D 
 RMSE 

‘Bidni’ 1.320 1.050 3.037 1.144 2.993 1.023 2.407 2.913 0.389 3.023 3.023 3.154 
‘Bajda’ 0.869 0.869 4.044 0.889 4.199 0.936 3.071 3.121 1.305 3.423 3.423 3.158 
‘Malti’ 1.546 1.452 3.713 1.416 3.719 1.431 3.601 3.599 1.262 3.588 3.588 3.212 

 MBE 
‘Bidni’ -0.201 -0.166 -0.137 -0.211 -0.145 -0.164 -0.086 -0.158 -0.086 -0.126 -0.126 -0.241 
‘Bajda’ -0.052 -0.052 -0.396 0.008 -0.398 -0.059 -0.313 -0.319 -0.102 -0.382 -0.382 -0.377 
‘Malti’ -0.120 -0.079 -0.649 -0.062 -0.663 -0.083 -0.575 -0.576 -0.077 -0.541 -0.541 -0.436 

 MAE 
‘Bidni’ 0.270 0.215 0.488 0.263 0.505 0.211 0.334 0.482 0.132 0.471 0.471 0.675 
‘Bajda’ 0.170 0.170 0.956 0.256 0.993 0.162 0.698 0.713 0.262 0.793 0.793 0.702 
‘Malti’ 0.274 0.213 0.927 0.213 0.946 0.216 0.859 0.861 0.185 0.827 0.827 0.692 

 R2 
‘Bidni’ 0.935 0.963 0.338 0.956 0.355 0.965 0.580 0.388 0.990 0.345 0.345 0.296 
‘Bajda’ 0.945 0.945 0.093 0.944 0.060 0.937 0.416 0.401 0.877 0.202 0.202 0.297 
‘Malti’ 0.829 0.850 0.064 0.861 0.071 0.854 0.120 0.121 0.887 0.120 0.120 0.265 

PLSR FTIR Predictability 
 RMSE 

‘Bidni’ 0.456 0.806 4.602 0.591 4.848 0.827 4.905 4.901 21.392 5.204 5.204 4.914 
‘Bajda’ 1.706 2.539 2.044 2.571 2.087 2.792 1.349 1.372 11.007 2.782 2.782 3.452 
‘Malti’ 0.555 0.529 1.969 1.207 2.978 4.355 1.457 1.494 10.596 1.502 4.100 1.301 

 MBE 
‘Bidni’ -0.056 -0.088 -0.048 0.084 -0.068 -0.092 -0.059 -0.058 -3.698 -0.056 -0.056 -0.093 
‘Bajda’ -0.077 -0.080 -0.117 -0.009 -0.126 0.037 -0.140 -0.140 1.710 -0.255 -0.255 -0.320 
‘Malti’ 0.071 -0.010 0.085 -0.083 -0.103 0.188 0.043 0.046 1.572 0.004 -0.152 -0.045 

 MAE 
‘Bidni’ 0.068 0.100 0.679 0.104 0.715 0.100 0.703 0.702 3.698 0.756 0.756 0.726 
‘Bajda’ 0.122 0.369 0.387 0.319 0.396 0.318 0.241 0.245 1.710 0.537 0.537 0.651 
‘Malti’ 0.072 0.049 0.253 0.164 0.334 0.207 0.242 0.246 1.883 0.250 0.402 0.196 

 R2 
‘Bidni’ 0.994 0.989 0.199 0.996 0.387 0.990 0.449 0.449 0.987 0.424 0.424 0.388 
‘Bajda’ 0.981 0.617 0.643 0.508 0.634 0.513 0.938 0.938 0.894 0.570 0.570 0.545 
‘Malti’ 0.999 0.979 0.857 0.943 0.795 0.024 0.880 0.879 0.756 0.829 0.727 0.982 
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 Analysis of the prediction models for individual cultivars, showed that in general 

the models obtained for the ‘Bajda’ cultivar had a lower performance when compared 

to those obtained for the ‘Bidni’ and ‘Malti’ cultivar for the majority of the spectral 

transformations. This could be indicative that the presence of chlorophyll pigments 

could be affecting the thermal oxidative process, further emphasizing their antioxidant 

effect in this experiment.  The next step in determining the effects of the thermal 

degradation process was to evaluate the changes occurring within the individual peaks. 

The application of β-regression coefficient was used in order to provide a more direct 

assessment of the variables which were offering the most important impact on the 

response variable (thermal degradation). 

 

 

 

Figure 14.11: β-regression coefficients obtained from PCR (Top) and PLSR (Bottom)  models using FTIR 
data for the different cultivars (Black = ‘Bidni’, Green = ‘Malti’, Red = ‘Bajda’).  
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From that analysis of the β- regression coefficients it was evident that the 

models obtained for the ‘Bidni’ cultivar had a lower input of signal noise when 

compared to those obtained from the ‘Malti’ and the ‘Bajda’ cultivar, thus explaining 

the lower model performance for the latter cultivars. Nonetheless for the three cultivars 

the β-regression coefficients revealed that thermo-oxidative stress caused substantial 

changes throughout the entire infrared spectra. The most obvious changes, which 

corresponded to variables with higher β-coefficient magnitude were divided into three 

major regions, 2700- 3006 cm-1, assigned to asymmetric stretching vibration of C–H 

of aliphatic CH3 and CH2 together with C–H stretching vibration of cis double bonds,  

the C=O region observed at 1720–1750 cm-1,  and the fingerprint region (1500−900 

cm-1). Within the fingerprint particular peaks of interest were identified namely the  

967 cm-1 which corresponded to nonconjugated trans double bonds, 987cm-1 of the 

conjugated trans double bonds, together with the  722 cm-1 corresponding to cis double 

bonds of disubstituted olefins. 

The sign of the β- regression coefficient for certain spectral regions, indicates 

changes in the intensity of bands recorded at specific frequencies as a consequence of 

thermo-oxidative degradation. Wavelengths having a negative β- coefficient implies 

that every unit increase in X (absorbance), an expected unit decrease in Y (the extent 

of degradation given in terms of weeks). The negative regression coefficients observed 

for the peaks observed in the 2700- 3006 cm-1 suggest that as the thermal degradation 

process continues the functional groups responsible for the absorbance in this region 

diminish. These changes were attributed to changes in the degree of unsaturation of 

oil samples in response to thermal stress. Changes within the different regions of the 

FTIR can be explained by cis-trans isomerization and conjugation of double bonds of 

PUFAs, the formation of secondary oxidation products and changes in the ratio of CH2 

and CH3 terminal groups (Mallegol et al., 1999 and Gonzaga et al., 2007). 

 The loss of the cis double bonds, was mainly attributed to the isomerization to 

trans groups and/or their breakdown to produce secondary oxidation products, is 

specific to lipids undergoing oxidation processes as a result of heat stress (Van de 

Voort et al.,1994). During heating formation of primary oxidation products at a rate 

lower than that of their decomposition could explain the reduction in the absorbance 

of the cis double bond functional groups. The degradation of hydroperoxides of 

PUFAs, as primary oxidation products, results in a complex mixture of secondary 
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products (aldehydes, ketones, acids and esters) and consequently, leads to a decrease 

in the degree of unsaturation due to the disappearance of double bonds in the cis 

conformation (Moreno et al., 1990). Moharam et al., 2010 also, suggested that the 

decrease in the degree of unsaturation can be associated with a decrease in the level of 

free radicals that contain cis double bonds formed during the heating process. These 

radicals decay as a direct result of scavenging by antioxidant compounds such as 

tocopherols and phenolic compounds, found in oil samples (Moharam et al., 2010). 

Van de Voort et al. (1994), showed that the reduction in the unsaturated fatty acids 

content (18:2 and 18:3 fatty acids) as a result of oxidation.   

It was expected that the progressive decrease in the absorbance at 3006 cm–1 

would be coupled with a decrease in the absorbance at 780 cm–1 which belongs to the 

out of plane cis double bonds bending mode of unsaturated fatty acids. However 

analysis of the β- regression coefficient showed that for the ‘Bidni’ and the ‘Bajda’ 

cultivar a positive correlation exists between the extent of thermal degradation and the 

specific absorbance at this peak whilst in the case of the ‘Malti’ cultivar a negative 

correlation with the extent of degradation exists. This suggests that whilst the cis 

double bond degradation could be visualized by the analysis of the 3006cm-1 peak, this 

could not be fully extended to the 780cm-1 peak. The presence of minor constituents 

presents within EVOOs derived from different cultivars might be affecting the 

susceptibility of the EVOOs to thermal degradation. The difference in the 780cm-1 

peak correlation provides a further corroborating to the fact that a universal model 

explaining the thermal degradation for all the different cultivars could not be built 

using FTIR data.  

Unlike what was observed by Alexa et al., 2007 during the course of thermal 

degradation no increases in the saturation of the substrate because the cis-olefinic 

double bonds of the different acyl groups disappeared during the thermo-oxidation 

process as the peak at 2854 cm–1 corresponding to the symmetric stretching vibration 

of C–H of aliphatic CH2 group still retained at negative β-regression  

The cultivar dependency on the thermal degradation is further highlighted in 

the analysis of the fingerprint region 600- 1200cm-1. The band observed at 987 cm-1 

was associated with bending vibrations of C−H trans, trans and cis, trans conjugated 

diene groups of hydroperoxides, as previously reported by Guillen et al. (2005) and 
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Poiana et al., (2015).  Although studies have shown that this band appears as a result 

of thermal stress, no observable contribution to the regression models obtained using 

both PLSR and PCR were attributed to this peaks. Guillen et al. (2005) showed that 

hydroperoxide groups are associated with conjugated double bonds. However, similar 

to our study, Mallegol et al., (1999) showed that the intensity of the band attributed to 

conjugated trans isomers is more important in the study of oil samples oxidation 

compared to the band assigned to nonconjugated trans isomers groups of 

hydroperoxides. Although the results obtained might not be consistent with the ones 

observed in the literature, these can be explained in terms of the methodology. In the  

literature, in the majority of the thermal degradation studies the oils are exposed to 

oxygen which facilitates the formation of oxygen-containing degradation products 

namely, hydrogen peroxides, and secondary oxidation products such as aldehydes or 

ketones. In this experiment the EVOOs were thermally degraded without the presence 

of oxygen as the samples were sealed prior to the experiment without a headspace, 

thus reducing their aerial exposure, hindering the formation of oxygen-containing 

compounds. Further analysis of peaks corresponding to secondary oxidation products 

observed at 967 cm–1 assigned to aldehydes or ketones that contain isolated trans 

double bonds (Guillen at al., 2005 and Van de Voort et al., 1994).  

It became more noticeable, that the reduction of oxygen during the thermal 

experiment prevented or at least mitigated the formation of these compounds as proven 

by the lack of any significant contribution to the regression models obtained for all the 

cultivars under investigation.  Other peaks which did not show any contribution to the 

regression models include the epoxy peak observed at 885cm-1, where epoxides are 

formed from the thermal decomposition of methyl oleate hydroperoxides (Mallegol et 

al., 1999).  
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14.5.3 Chemometric analysis of fluorescent changes during thermal degradation 
 

There are several studies that employ the use of fluorescence spectroscopy for 

monitoring the degradation of extra virgin olive oil under thermoxidizing conditions 

(Guzmán et al., 2015; Cheikhousman et al., 2005; Poulli, et al., 2009; Tena, Aparicio, 

and García-González, 2012; Tena, García-González, and Aparicio, 2009). There have 

also been studies which focus on the characterization and association of fluorescence 

spectra with quality parameters and typical signals of chemical oxidation including 

peroxide value, K232 and K270 values (Guzmán et al., 2015, Guimet, Boqué, and Ferré, 

2006; Guimet, et al., 2005; Sikorska et al., 2005; Zandomeneghi, 2006). All the 

aforementioned studies have revealed that the application of fluorescence 

spectroscopy provides insights about the quality of EVOOs and its degradation during 

heating, enabling a more direct evaluation of the oxidative status of oils. 

 The aim of this part of the study, therefore, was to determine whether 

fluorescence spectroscopy coupled with three different multivariate regression models 

provides enough information for the development of chemometric models which could 

predict the extent of thermal degradation. Similar to the determination of geographical 

origin synchronous emission spectra were obtained at 6 different wavelength intervals 

in order to obtain models which represent the major parts of the total luminous 

spectrum. Each of the 6 different spectra was treated using 12 different spectral 

transformations and coupled with three multivariate regression models namely PCR, 

PLSR, and linear SVRM. The performance of the models was assessed using RMSE, 

MAE, MBE and R2 values for both the calibration and prediction data sets.  

Figure 14.12 shows the SEEF obtained at different wave interval. The 

fluorescence emission spectra of olive oil show three major peaks corresponding to 

polyphenol and tocopherol which emit in the 300–390 nm range (Zandomeneghi, 

Carbonaro, & Caffarata, 2005; Giungato et al., 2004). Two smooth peaks at 445 and 

475 nm which were identified by Kyriakidis and Skarkalis (2000) as related to the 

oxidation products of fatty acids whilst the peak observed at 525 nm was derived from 

vitamin E. However, the study carried out by  Kyriakidis and Skarkalis (2000)  

revealed that the addition of vitamin E that to virgin olive oil increases the fluorescence 

intensity not only at 525 nm but also at 445 and 475 nm. They suggested that this was 

due to oxidized vitamin E that fluoresces at about this region. Other compounds which 
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emit in the 445-475 nm include monounsaturated fatty acids and phenolic antioxidants. 

The peak at 681 nm is related exclusively to chlorophylls and their corresponding 

degradation products namely pheophytins. 

 

10 nm 30 nm 

60 nm 80 nm 

120 nm 185 nm 

 
 

Figure 14.12: Changes in SEEFs recorded at δ10, 30, 60, 80, 120, 185 nm during thermal degradation. The 
red line represents the R2 value obtained through a correlation analysis carried out on the intensity of 
emission and the extent of degradation.  
 

Figure 14.12 also highlights the major changes in the SEEF of EVOOs during 

the 12-week degradation study. Similar to the studies found in literature the first most 
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obvious change in the SEEF spectra is a bathochromic effect which takes place as the 

oil undergoes oxidation. New peaks start to appear at higher wavelengths especially 

within the 400-600 nm region, these were attributed to a number of different chemical 

constituents which are developed during the course of degradation. The evolution of 

these chemical constituents by time can be further assessed using the coefficient of 

linearity extracted from a matrix correlation which was carried out comparing the 

absorbance observed at a different wavelength to the extent of thermal degradation. 

The 400-600 nm region throughout all the SEEF spectra showed a strong significant 

positive correlation with the extent of thermal degradation. The presence of this peak 

is namely attributed to the evolution of polar compounds namely phenolic compounds 

namely tyrosol and phenolic acid derived from the degradation of conjugated 

secosteroid compounds, which will be presented in the next chapter together with the 

presence of free fatty acids and their corresponding oxidised products.  Poulli, 

Mousdis, and Georgiou, (2005) showed that the amount of free fatty acids derived 

from the corresponding hydrolysis of triglycerides during the process of thermal 

degradation is reflected in the fluorescent component. The free acidity which increases 

during the degradation increases the amount of oleic, linoleic and palmitic acids. 

Whilst butyric acid (palmitic acid analogue) and linoleic acid show fluorescence bands 

at 273 and 325 nm, oleic acid shows a band of fluorescence at 405 nm, thus Poulli, 

Mousdis, and Georgiou, (2005) concluded that the fluorescence intensity observed at  

429–545 nm was due to an increase oleic acid content.  

 Other studies carried out by Tena et al., (2009) showed that the increase in the 

400-600 nm fluorescent intensity could not be solely attributed to the presence of free 

fatty acids formed during the degradation.  Tena et al., (2009) showed that five phenols 

namely tyrosol, o-coumaric, vanillic, syringic, and gallic acids spectra recorded in 

methanol had emission maxima between 349 and 426 nm. Phenolic profiling carried 

out by Tena et al., (2009) on the thermal degraded EVOO samples revealed that after 

36 h of thermoxidation the percentage of polar compounds was higher than 25% thus 

confirming that the peak observed at 400-600 nm could not be solely attributed to the 

formation of free acids. Furthermore in the study carried out by Tena et al., (2009) 

showed that although the second maxima observed at 540 nm which was recorded also 

in this study becomes more pronounced on moving to higher wavelength intervals, 
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was not due to the presence of other compounds but it corresponded to the overtone of 

270 nm and, therefore, was neglected.  

The fluorescence bands observed in the region 300–370 nm were found to 

decrease during oxidation this was marked by the strong negative correlation. This 

peak was attributed to the presence of tocopherols. Non-degraded EVOOs contain 

different tocopherols (α, β, and γ), of which α-tocopherol is found in the highest 

concentration (Uceda et al., 2001), while tocotrienols are absent (Morales and 

Tsimidou 2000). Through the use of matrix correlation Tena et al., (2009) confirmed 

that concentration of α-tocopherol and the fluorescent spectrum showed good 

correlations in the excitation  range of 300-380 nm with the emission range 353-355 

nm being the most significant. The band between 630 and 750 nm is associated with 

chlorophylls and pheophytins according to some authors (Kyriakidis and Skarkalis 

2000; Sikorska et al., 2005), also decreases with the thermo-oxidation time (Figure 

14.12), as pointed out the negative coefficient of linearity these corroborate the 

previous observation carried out using UV-Vis spectroscopy and are concordant with 

the study carried out by Poulli, Mousdis, and Georgiou, (2005) .  

For the six SEEF spectra, three linear regression models were built for 10 

different spectral transformations for a total of  180 regression models. The 

performance of each model was assessed using RMSE, MAE, MBE and R2 values, 

which are summarised in Figure 14.13. In general, it was found that the models 

obtained using support vector machine regression (SVMR) had a very high 

performance during the training phase for all the spectral transformation for all the 

SEEF spectra studied. The SVMR models obtained during the training phase had a 

very low RMSE, MAE and an R2 value very close to unity. In comparison, the training 

models obtained using PLSR and PCR had a lower performance when compared to 

SVMR models, with PLSR showing a general slightly higher performance than PCR. 

It was evident that SEEF obtained at 30 nm after matrix scatters correction yielded 

very poor results during the training phase, this observation was extended to models 

obtained using PCR and PLSR, however, this was not evident in the linear models 

obtained using SVRM.  This can be due to, model overfitting in the case of SVRM or 

else that the SVRM might be actually improving the modelling  power of all SEEF 

spectra. 
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Figure 14.13: Radar plot summarising the performance of the different regression models (PLSR, PCR and SVMR) 
obtained on the different SEEFs subjected to different spectral pretreatments.  
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On analysis of the model predictability during the validation stage it was shown 

the for the majority of the spectral transformation linear regression models obtained 

using PCR, PLSR and SVRM had no major differences in the predictability of the 

testing data set. Detailed analysis of the predictability of the models obtained it was 

found that in general, the model performance is dependent on both the transformation 

employed and to the wave interval at which SEEF is obtained. Similar results were 

obtained during the application of SEEF for the determination of geographical origin, 

this was attributed to the fact that SEEF represents just a very small portion of the total 

luminous spectrum and thus different SEEF might be reflecting different fluorescent 

compounds found in EVOOs. In this case, it was found that models obtained using 

SEEF spectra obtained at 120 nm, had a lower model performance for the majority 

of the spectral transformations. This observation was coherent for all the three 

regression models obtained. On the other hand, SEEF spectra obtained at 30 nm had 

the best modelling  power as very low RMSE and MAE values were obtained for the 

majority of the spectral transformations over the three different regression models. 

This suggests that SEEF obtained at 30 nm reflect a complete overview of the changes 

that occur to fluorescent compounds during thermal degradation.   

 In general, it was observed that 1st order derivatized SEEF spectra had a higher 

PCR and PLSR model performance at SEEF obtained at intervals  60, 80, and 120 

nm, whilst in the case of SEEF obtained at 10 and 180 nm this was restricted to only 

PLSR models. In the case of PCR models obtained for SEEF 10 30 and 180 nm, it 

was found that models reached optimal performance using standard normal variate 

correction, 2nd order and Savitsky-Golay derivatization respectively. In the case of 

SVM models, there was no clear spectral transformation that gave a consist higher 

model performance for the different  SEEF spectra. These observations suggest that 

the model performance was dependent on both the spectral transformation and 

correction to which the SEEF spectrum was subjected and the wave interval at which 

the SEEF spectrum was obtained.  Figure 14.14 shows the -regression coefficients 

obtained for the best spectral transformations obtained for PCR and PLSR regression 

models.  
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Figure 14.14: β-regression coefficients for the best performing PCR (Left column) and PLSR (Right column) 
obtained for the different SEEFs at different δ nm.  
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Detailed analysis of the β-regression coefficients obtained for the best 

performing PCR and PLSR models at different SEEF spectra obtained using different 

wave intervals are shown in Figure 14.14. As expected it was revealed that the peaks 

corresponding to fluorescent compounds in EVOOs had the largest β-coefficient 

magnitude, indicating that the predicted formulas obtained were highly dependent on 

the presence of these compounds and that the model obtained had minimal influence 

due to variation arising from instrumental noise and scattering effects. In the case of 

SEEF spectra in which the optimal models were obtained from one particular spectral 

pretreatment. The regression coefficients obtained had the same spectral profile 

indicating that irrelevant of the regression model, the most significant contribution to 

the regression was due to the same variables. In general as previously expected, 

negative β- regression coefficients were obtained for the wavelengths which 

corresponded to the emission of tocopherol and chlorophyll pigments. This indicates 

that a negative correlation between the emission of these compounds and the extent of 

thermal degradation. On the other hand, a positive correlation was observed for the 

peaks obtained between 400-550 nm, further indicating an increase in the fluorescence 

of these compounds due to degradation. 

 Analysis of the β- regression coefficients obtained for SEEF obtained at δ10 

nm revealed that in fact the peak observed at high wavelengths, which is generally 

attributed to the chlorophyll pigment emission was actually composed of two separate 

peaks, one which had a maximum around 650 nm and another one around 680 nm. 

The presence of these two distinct peaks was further resolved on the application of the 

1st derivative function. From the β- regression coefficients obtained, it was found that 

whilst the peak obtained at 680 nm showed a negative correlation with the extent of 

thermal degradation the peak observed at 650 nm showed a slightly positive correlation 

indicating a potential increase during the thermal degradation process. The most 

plausible explanation for the results obtained was that the peak obtained at higher 

wavelengths was attributed to the presence of chlorophyll pigment which decreases in 

concentration during the thermal degradation thus showing a negative correlation. The 

thermal degradation products obtained from chlorophylls are pheophytins which tend 

to increase during the thermal degradation progress, thus showing a positive 

correlation. However, as the thermal degradation process continues pheophytin 

compounds are a further degraded to non fluorescent pheophorbides and colourless 
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chlorophyllides (Ward et al., 1994). Studies carried out on the degradation of 

chlorophyll pigments showed that non-degraded chlorophylls tend to have emission at 

lower wavelengths (≈ 20 nm) compared their corresponding pheophytin derivatives 

irrelevant of the solvent in which the fluorescence is measured (Ward et al., 1994).  

 

14.5.3.1 Application of Synchronous Fluorescence Spectroscopy as predictors 
for conjugated diene and triene content.  
 

In order to determine the potential use of SEEFs as a measure of conjugated 

diene and triene content in EVOOs, a PLSR model was built using the previously 

determined K-value as the Y response matrix whilst the SEEF obtained at 10 nm was 

used as the predictor X matrix. Figure 14.5 shows the first factor -regression 

coefficients obtained for the different experimentally determined K-values. It was 

shown that for the different K-values (K266, K270, K274, K230 and k) regression 

coefficients were observed across the SEEF spectrum obtained at 10 nm. As 

expected, there was a negative correlation with the 330 nm maxima which corresponds 

to the phenolic and tocopherol content present within the EVOOs, indicating that as 

the K-values increase during the thermal degradation experiment there is a decrease in 

both the phenolic and tocopherol content. Similarly, a negative correlation was also 

observed at the 680 nm maxima which correspond to the chlorophyll to the decrease 

in chlorophyll pigments during the thermal degradation experiment. In line with was 

previously observed the -regression coefficient obtained it was shown the prediction 

formula obtained for the K-values was also dependent on the 350-500 nm region which 

showed a positive correlation with the K-values. As expected, this suggests that 

compounds within this region might be directly related to dienes and trienes which 

also increase during the thermal degradation process. As regards the peak centred at 

666 nm which also showed a positive correlation with the K-values, although this peak 

was not completely identified, the proposed possibility of being related to pheophytin 

compounds which increase in tandem with the K-values, is plausible.  Analysis of the 

PLSR model performance obtained it was clear that the potential application of SEEF 

as predictors of K-values was not equally effective. Table 14.6 summarises the results 

obtained from the PLSR model, whilst during the training, the model obtained was 

highly effective in predicting the different K-values, with the exception of the K230, 
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during the validation phase the prediction of K-values was very effective by the PLSR 

model obtained.  

 

 

Figure 14.15: 1st-factor β-regression coefficients obtained from the application of PLSR on the use of δ 10 
nm as predictors of diene and triene content in thermal degraded EVOO. 

Table 14.6: Performance of the PLSR models obtained during training (Top) and testing (Bottom) using 
SEEFs δ 10 nm data as predictors of diene and triene content. 

 

Training  

 RMSE MBE MAE R2 

K266 0.001 0.000 0.001 0.857 

K270 0.001 0.000 0.001 0.869 

K274 0.001 0.000 0.001 0.869 

K230 0.000 0.000 0.000 0.229 

Δk 0.000 0.000 0.000 0.869 

Testing  

 RMSE MBE MAE R2 

K266 0.005 0.002 0.003 0.724 

K270 0.005 0.002 0.003 0.715 

K274 0.004 0.002 0.003 0.713 

K230 0.000 0.000 0.000 0.762 

Δk 0.000 0.000 0.000 0.810 
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14.5.3.2 Application of Synchronous Fluorescence Spectroscopy as predictors 
of colour parameters.  

 

The potential application of SEEF spectra obtained at 10 nm was extended to 

the prediction of colour parameters previously determined using UV-Vis 

spectrophotometry. The colour parameters determined using the three previously 

described methods namely *L *a *b, XYZ, and xy system were used as the response 

Y matrix whilst the SEEF spectra obtained at 10 nm was used as the predictor X 

matrix. Figure 14.16 and Figure 14.17 shows the first -regression coefficient obtained 

for the different parameters used in the three colour system. In general it was shown 

that the regression coefficient is highly dependent on the colour system employed, 

whilst the parameters present with each colour system tend to follow similar regression 

coefficients, furthermore whilst the -regression coefficients of the XYZ and xy 

system were similar, there was a notable difference in the regression coefficients 

observed for the *L *a *b colour system.   

 

 

 

Figure 14.16: 1st factor β-regression coefficients obtained from the application of PLSR on the use of δ 10 
nm as predictors of colour parameters (Top) *L *a * b (Bottom) XYZ in thermal degraded EVOO. 
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Figure 14.17: 1st-factor β-regression coefficients obtained from the application of PLSR on the use of δ 10 
nm as predictors of colour parameters xy in thermal degraded EVOO. 
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666, a negative correlation with respect to the 680 nm whilst in the case of xy colour 

system the observation was opposite. This observation suggests that as the amount of 

chlorophyll decreases this is coupled with a decrease and the amount of pheophytins 

increases  there is a decrease in both red and green hues corroborating the results 

obtained using   *L *a *b colour system.  

Table 14.7: Performance of the PLSR models obtained during training (Top) and testing (Bottom) using 
SEEFs δ 10 nm data as predictors of different colour parameters. 

Training 
 RMSE MBE MAE R2 

L 5.195 -0.282 4.581 0.644 
a 1.594 2.540 1.203 0.878 
b 6.037 36.445 4.580 0.887 
X 8.022 64.355 7.071 0.657 
Y 9.111 83.012 8.011 0.654 
Z 8.651 74.843 6.666 0.916 
x 0.013 0.000 0.010 0.900 
y 0.017 0.000 0.012 0.904 

Validation 
L 7.256 4.472 5.702 0.368 
a 1.745 -0.978 1.154 0.953 
b 3.394 2.088 2.626 0.985 
X 11.653 6.975 9.068 0.391 
Y 12.902 7.969 10.136 0.359 
Z 10.667 4.476 8.560 0.909 
x 0.008 0.002 0.007 0.973 
y 0.011 0.004 0.010 0.973 

 

Analysis of the model performance towards the different parameters in the 

three colour systems it was shown that SEEF obtained at 10nnm were able to predict 

the xy colour parameters it a higher degree of accuracy when compared to other 

parameters in the other colour systems. Furthermore it was shown that whilst the *L 

parameter was not accurately predicted the *a and *b parameter of the*L *a *b colour 

system were far more accurately predicted indicating that the changes from  green to 

red and blue to yellow provide more information than the actual luminosity parameter. 

In the case of XYZ system the Z parameter was more accurately predicted that the X 

and Y parameter indicating that compounds  absorbing in the 400-500 nm tend to be 

informative when modelled with respect to the SEEF spectra. These observations 

suggest that it is possible to determine the colour parameters of EVOOs through the 

use SEEF, as it is well proven that the main compounds responsible for colour are 

fluorescent chlorophyll pigments responsible for the blue/green colour and having a 

first absorption maxima at 450 nm.   
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14.5.4 Phenolic profile changes during thermal degradation 
 

Changes in the phenolic compounds of virgin olive oils during the accelerated 

thermal degradation experiment were assessed through the use of reverse phase HPLC. 

Details of sample preparation, HPLC conditions and elution program employed are 

given in Section 2.2.3.1.4. Similar to what was observed during the analysis of FTIR 

degradation, a universal chemometric method which could predict the extent of 

thermal degradation could not be developed for HPLC profile data. This was mainly 

attributed to the large differences exhibited within the phenolic profile of the three 

cultivars under study, thus individual prediction models using PCR, PLSR and SVRM 

were built for each individual cultivar. Through the application of HPLC and phenolic 

compound profiles, a large number of studies have reported the discrimination of 

EVOOs according to their cultivar or geographical origin (Allalout et al., 2009). This 

suggests that the antioxidant content and the ability to withstand oxidation is not 

constant but it depends on the cultivar, fruit ripening stage, agroclimatic conditions 

and olive growing techniques (Tovar et al., 2002; Uceda and Hermoso, 2001). 

Therefore, depending on the minor components that are present and their ratio, it could 

not be expected that a model would be able to monitor and predict the changes in the 

phenolic profile of all the cultivars. From Figure 14.18 it was clear that the ‘Bidni’ 

cultivar exhibited a very different phenolic profile when compared to the ‘Malti’ and 

the ‘Bajda’ cultivar. EVOOs derived from the ‘‘Bidni’ cultivar revealed higher 

concentration of compounds eluting at 39.5 and 40.9min in which the latter was 

identified through the use of standards, belonging to oleuropein-glycoside, whilst the 

former was tentatively identified as a dialdehydic form of decarboxymethyl oleuropein 

aglycone. 
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280 nm 320 nm 

‘Bidni’ 

  
‘Bajda’ 

  
‘Malti’ 

  
 

3.8  hydroxytyrosol 47.6 dialdehydic form of oleuropein aglycon 
6  tyrosol 51.2 dialdehydic form of decarboxymethyl oleuropein aglycone 

(3,4-DHPEA-EDA) 
6.8 protocatechuic acid 51.8 dialdehydic form of decarboxymethyl oleuropein aglycone, 
7.2  4-hydrodyphenlyacetic acid 52.1 oxidised form of dialdehydic form of decarboxymethyl 

ligstroside aglycone  
7.6  caffeic acid 52.7 luteion  
9.6  vanillic acid 53.3 dialdehydic form of decarboxymethyl ligstroside aglycone (p-

HPEA-EDA) 
11.5 vanillin 54.6 pinoresinol  
12.4* p-coumaric 55.2 1-acetoxypinoresinol 
13.7 hydroxytyrosol acetate 55.5 trans-cinnamic acid  
15.23 ferulic acid 56.8 5,7,3'-trihydroxy-4'-methoxyflavone, 
18.0* lutenion-glycoside  57.5 Apigenin 
21.7* tyrosol acetate  58.1 oxidised form of oleuropein aglycon (3,4-DHPEA-EA) 
34.0* Verbascoside  61.3 10-Hydroxy-oleuropein aglycone isomer 
36.0* salicylic acid  61.5 10-Hydroxy-oleuropein aglycone 
39.5 olueropein glycoside 62.5* oleuropein aglycon (3,4-DHPEA-EA) 
41.1 Oxidised dialdehydic form of oleuropein 

aglycon 
65.9 oxidised form of aldehydic form of ligstroside aglycone 

  66.1 aldehydic form of ligstroside aglycone 

 
Figure 14.18: Changes in the phenolic profile recorded at 280 nm (Left) and 320 nm (Right) during thermal 
degradation for EVOOs derived from different cultivars. (Bottom) Table of retention times and the 
compounds which were identified.  
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The presence of a 3,4-dimethoxycinnamic acid which elutes at 41.1min could 

not be proven as no absorbance at 320 nm was recorded within the 39-41min region. 

Furthermore, EVOOs derived from the ‘Bidni’ cultivar had a notably higher 

concentration of compounds eluting at 6.1, 53.3, 55.1 and 58.1min which were 

identified through the use of standards and relative retention times as belonging to 

tyrosol, dialdehydic form of decarboxymethyl ligstroside aglycone, 1-

acetoxypinoresinol and oxidised form of oleuropein aglycone respectively. On the 

other hand, both the EVOOs derived from the ‘Malti’ and ‘Bajda’ cultivar had a 

notably higher concentration of compounds absorbing at the 320 nm when compared 

to EVOOs derived from the ‘Bidni’ cultivar, namely those eluting at 12.3, 15.6, 18.1, 

21.7 and 62.5min. These were identified as p-coumaric acid, ferulic acid, luteolin-6-

glycoside, tyrosol acetate and oleuropein aglycon. On further analysis of the 

chromatogram observed at 320 nm a peak eluting at 56.8 min was observed which 

through the use of standards it was identified as 5,7,3’-trihydroxy-4'-methoxyflavone 

also knows as diosmetin. The presence of this compound is most of the time neglected 

in the literature due to its problematic elution with other secoiridoid compounds in 

EVOOs making its investigation futile. The presence of this O-methylated flavone was 

first described by Japón-Luján et al., (2008), where through the use of LC-MS-MS it 

was found that this compound had the similar concentration to apigenin which in this 

experiment was identified at 57.5min.   

Application of chemometric methods in order to develop methods which would 

enable the determination of the extent of thermal degradation of the whole phenolic 

profile was assessed. PCR, PLSR and linear type Kernel SVRM models were applied 

on the phenolic data set for each cultivar, the performance of the models obtained is 

summarised in Table 14.9. In general, it was shown that models obtained using PCR 

and PLSR had a higher performance than those obtained from SVRM when it comes 

to the validation. Similar to what was observed in the earlier sections of this study 

although SVRM models might provide another form of predictive modelling, the 

performance obtained by these models tends to be very high during the training 

however, it tends to fail when it comes to the validation data set. This indicates that 

the models obtained using SVRM tend to be overfitted as higher rates of error are 

obtained when it comes to predicting the extent of thermal degradation of samples not 

included in the training set. It was observed that the phenolic profiles obtained at 280 
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nm tend to be more informative than those obtained at 320 nm. This was mainly 

attributed to the fact that, for the majority of the models obtained using phenolic 

profiles obtained at 280 nm a lower RMSE, MAE and MBE compared to their 320 nm 

counterpart was obtained. Similar results were obtained when the phenolic profiles 

were employed for the discrimination of geographical origin, thus the results obtained 

from both the thermal degradation experiment and the determination of geographical 

origin tend to corroborate each other in that phenolic profiles obtained at 280 nm tend 

to be more informative. Analysis of the model performances through the different 

cultivars it was found that thermal degradation of the ‘Bidni’ cultivar was more 

effective using both HPLC chromatograms obtained at 280 nm and 320 nm. In the case 

of EVOOs derived from the ‘Bajda’ cultivar it was shown that the models obtained at 

280 nm tend to have a lower performance when compared to those obtained at 320 

nm, conversely in the case of EVOOs derived from the ‘Malti’ cultivar only the models 

obtained for HPLC chromatograms obtained at 280 nm were effective in explaining 

the thermal degradation in terms of changes in the phenolic profile. 

Table 14.8: Performance of the PLSR, PCR and SVRM models obtained during training (Left) and testing 
(Right) using HPLC chromatograms observed at 280 nm as predictors of thermal degradation for EVOOs 
derived from different cultivars.  

280 nm 

Training  Validation 

PCR PLS SVM  PCR PLS SVM 

‘Bidni’ 

RMSE 0.920 1.016 0.442  0.654 0.563 0.885 

MBE 0.846 1.032 0.196  0.427 0.317 0.784 

MAE 0.757 0.789 0.385  0.564 0.491 0.749 

R2 0.977 0.971 0.996  0.986 0.988 0.969 
 ‘Bajda’ 

RMSE 1.828 1.846 0.554  1.791 1.691 2.068 

MBE 3.341 3.408 0.307  3.207 2.858 4.277 

MAE 1.389 1.390 0.532  1.571 1.523 2.043 

R2 0.893 0.891 0.991  0.989 0.988 0.991 
 ‘Malti’ 

RMSE 1.244 1.288 0.575  0.524 0.587 0.875 

MBE 1.547 1.660 0.331  0.275 0.345 0.765 

MAE 0.968 1.040 0.566  0.483 0.483 0.776 

R2 0.953 0.950 0.996  0.999 0.999 0.965 
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Table 14.9: Performance of the PLSR, PCR and SVRM models obtained during training (Left) and testing 
(Right) using HPLC chromatograms observed at 320 nm as predictors of thermal degradation for EVOOs 
derived from different cultivars.  

320 nm 

Training  Validation 

PCR PLS SVM PCR PLS SVM 

‘Bidni’ 

RMSE 1.516 1.491 0.580 

 

1.725 1.400 2.352 

MBE 2.297 2.224 0.337 2.974 1.961 5.532 

MAE 1.223 1.381 0.576 1.701 1.321 1.944 

R2 0.929 0.932 0.993 0.811 0.858 0.644 
 ‘Bajda’ 

RMSE 1.360 1.407 0.545 

 

1.073 0.854 2.102 

MBE 1.850 1.980 0.297 1.152 0.730 4.419 

MAE 0.986 1.039 0.523 0.876 0.710 2.065 

R2 0.945 0.943 0.993 0.966 0.983 0.988 
 ‘Malti’ 

RMSE 4.406 4.289 5.160 

 

7.188 6.156 13.379 

MBE 19.409 18.397 26.623 51.671 37.892 179.002 

MAE 3.853 3.648 4.086 5.379 4.712 8.806 

R2 0.116 -0.118 0.370 -0.783 -0.878 -0.875 

 

From the models obtained, analysis of the -regression coefficients enabled a 

more detailed analysis of which compounds had the largest influence on the regression 

formula. A further assessment of the direction of the -regression coefficients enables 

the determination whether which compounds increases or decreases during the thermal 

degradation process. Figure 14.19 shows the -regression coefficients obtained for the 

phenolic profiles observed at 280 and 320 nm, for the EVOOs derived from the three 

different cultivars. It was shown that for both the chromatograms observed at 280 nm 

and 320 nm the regression coefficients vary corresponding to specific compounds but 

also vary from one cultivar to another. This indicates that the degradation of phenolic 

compounds is primarily affected by the originating cultivar. During the thermal 

degradation process, the concentration of one particular phenolic compound is in turn 

affect by the presence or absence of other phenolic compounds. This is indicative of a 

synergistic and antagonistic relationship between the different phenolic compounds. 

The presence of some compounds found at higher concentrations can inhibit the 

antioxidant activity of other compounds, but at lower concentrations, they become less 

prominent and the antioxidant activity of the other compounds is not hindered. The 

synergistic effects of phenolic compounds on the observed antioxidant have been well 

documented however it was never studied in conjugation with its effect on the process 



 Results and Discussion   

412 
 

EVOO degradation. It is well known that the combinations of Vitamin C, -tocopherol 

and phenolic compounds exhibits a strong synergistic effect due to regeneration of the 

-tocopherol (Terao et al., 1994; Nardini et al., 1997; Liao and Yin, 2000). 

Interactions and recycling are very common mechanisms in the action of antioxidants 

which can easily be affected by the thermal degradation process.   

 

280 nm 320 nm 

‘Bidni’ 

  
‘Bajda’ 

  
‘Malti’ 

  
 

Figure 14.19: β-regression coefficients obtained from the application of PLSR (Red dotted line) PCR (Green 
dotted line) on the use of phenolic profile chromatogram (Black solid line) recorded at 280 nm (Left) and 
320 nm (Right) for EVOOs derived from ‘Bidni’ (1st row), ‘Bajda’ (2nd row) and ‘Malti’ (3rd row). 
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The first studies concerning the changes in the phenolic profile of EVOOs 

during storage were carried out by Cinquanta et al., (1997). Through the use of HPLC 

it was shown that in general during storage there is a great increase in the tyrosol and 

hydroxytyrosol contents which was attributed to the hydrolysis of their complex 

derivatives in a first stage. The results obtained from the present experiment show that 

through the use of β-regression coefficients, in the case of the ‘Bidni’ cultivar there is 

a positive correlation with both hydroxytyrosol and tyrosol with the extent of thermal 

degradation, which is linked to a decrease in the dialdehydic form of decarboxymethyl 

ligstroside aglycone, oleuropein glycoside and dialdehydic form of decarboxymethyl 

oleuropein glycone. Furthermore in the case of the ‘Bidni’ cultivar the extent of 

thermal degradation was accompanied by an increase in the concentration of other 

phenolic acids namely p-coumaric acid, trans-cinnamic acid together with an increase 

in oxidized forms of secoiridoid compounds namely oleuropein aglycon and oxidized 

form of aldehydic form of ligstroside aglycone. Similar results but at different 

magnitude were observed for the ‘Malti’ cultivar. 

 In the studies carried out by Brenes et al., (2002) and later by Allouche et al., 

(2007) on the thermal degradation of EVOOs from different cultivars showed that 

during the first process of degradation there is an actual increase of the 3,4-DHPEA-

EDA followed by a later decrease in Picual oils (Brenes et al., 2002) this increase in 

3,4-DHPEA-EDA was later discovered in Arbequina (Allouche et al., 2007). These 

observations are concordant with the results obtained in this study as an overall 

positive -regression coefficient corresponding to 3,4-DHPEA-EDA was observed for 

both the ‘Bidni’ and ‘Malti’ EVOOs. However, this could not be extended to the 

‘Bajda’ cultivar as the concentration of 3,4-DHPEA-EDA was found to decrease with 

the extent of thermal degradation. As suggested by Allouche et al., (2007) and 

proposed by Brenes et al., (2002), the observed increase of 3,4-DHPEA-EDA might 

be explained by a coelution of 3,4-DHPEA-EDA oxidized. Although the results 

obtained are concordant to those obtained by Allouche et al., (2007) and Brenes et al., 

(2002), Carrasco-Pancorbo (2007) showed that the concentration of 3,4-DHPEA-EDA 

and 3,4- DHPEA-EA decreased more quickly with the thermal treatment than other 

phenolic compounds present in olive oil, suggesting a higher antioxidant power. 

Furthermore, it was shown that hydroxytyrosol acetate (3,4-DHPEA-AC) and p-

HPEA-EA were more resistant to heat treatment as their concentration was not affected 
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to the extent 3,4-DHPEA-EDA and 3,4- DHPEA-EA. In this experiment similar 

results were obtained, analysis of the -regression coefficients it was clear that the 

magnitude of the variables corresponding to hydroxytyrosol acetate p-HPEA-EA was 

much lower than those corresponding to 3,4-DHPEA-EDA and 3,4- DHPEA-EA. 

Similar to what was observed by Carrasco-Pancorbo (2007) the amount of (+)-

pinoresinol and (+)-1- acetoxypinoresinol were almost unchanged during the thermal 

degradation process as the peaks corresponding to these had almost zero -regression 

coefficient magnitude.  

In the case of the ‘Bajda’ analysis of the β-regression coefficient revealed no 

apparent increase or decrease in the tyrosol and hydroxytyrosol content. The regression 

models obtained for the thermal degradation of the ‘Bajda’ cultivar were more 

dependent on the decrease of dialdehydic form of decarboxymethyl ligstroside 

aglycone and oleuropein aglycon (3,4-DHPEA-EA). The thermal degradation of the 

EVOOs derived from the ‘Bajda’ cultivar seemed to also be highly dependent on the 

decrease of different flavonoid compounds present within the oil. Both the profiles 

observed at 280 nm and 320 nm revealed a strong negative correlation with peaks 

corresponding to luteion, 5,7,3'-trihydroxy-4'-methoxyflavone, and apigenin.  

The strong dependency of the regression models obtained on these flavonoid 

compounds which absorb at 320 nm could explain the lower rates of errors obtained 

during modelling of the phenolic profile obtained at 320 nm. This indicates that in the 

case of the ‘Bajda’ cultivar the models obtained tend to be more specific towards the 

concentration of flavonoid compounds. The effects of thermal degradation on the 

concentration of flavonoid compounds was studied by Allouche et al., (2007) in  

Arbequina oils whereby it was shown that there was a rapid decrease in the 

concentration of luteolin decreased during heating. Furthermore similar to the results 

obtained by Allouche et al., (2007) it was shown that degradation of luteolin was faster 

than that of apigenin. This was attributed to the higher structural stability than 

apigenin. This difference may be attributed to the structure of these compounds, since 

their antioxidant activity is correlated with the number of phenolic hydroxyls in the 

molecule (Cao et al., 1997). Furthermore Allouche et al., (2007) showed the rate of 

flavonoid degradation is also cultivar dependent as the loss of flavonoid compounds 

was higher in Arbequina oils than in Picual oils.  
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14.5.4.1 Predicting K-values through phenolic profiles 
 

The potential application of phenolic profiles as a measure of oxidative stress 

was extended to the development of regression model for the prediction of K values. 

PLSR regression was carried using the previously observed K-values as the Y matrix 

will the corresponding phenolic profile as the X matrix. The same cross-validation 

methods which were previously applied to the regression models were used for this 

part of the experiment. Figure 14.20 shows the -regression coefficients obtained for 

the different K-values. It was noted that in general in K266, K270 and K274 had very 

similar -regression coefficients, whereby it was identified that there was a strong 

positive correlation between the K-values and the content of different phenolic 

compounds. Compounds corresponding to  tyrosol, 4-hydrodyphenlyacetic acid, 

oxidized form of dialdehydic form of decarboxymethyl ligstroside aglycone, p-HPEA-

EDA and oxidized form of oleuropein aglycon (3,4-DHPEA-EA) all showed a strong 

positive correlation with the K270  whilst compounds such as dialdehydic form of 

decarboxymethyl oleuropein aglycone (3,4-DHPEA-EDA), luteolin, apigenin, 

oleuropein glycoside and aglycon (3,4-DHPEA-EA) showed a strong negative 

correlation with the increase in the aforementioned K-values. In the case of K230 the 

-regression coefficient were similar to those observed for K270, however it was found 

that the concentration of the oxidised form of aldehydic form of ligstroside aglycone 

had the largest contribution, whilst in the case of K the prediction formula was mainly 

dependent on the concentration of luteolin and p-HPEA-EDA.   

 

 

Figure 14.20: 1st factor β-regression coefficients obtained from the application of PLSR on the use of phenolic 
HPLC chromatograms at 280 nm as predictors of diene and triene content in thermal degraded EVOO. 
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Analysis of the prediction models obtained it was clear that whilst the models 

built using the phenolic profiles as a predictors for K-values, were  able to predict the 

K266, K270, K274 and K  values with a appreciably good accuracy whilst the application 

of phenolic profile as a predictor of K230 was less suitable.  

Table 14.10: Performance of the PLSR models obtained during training (Top) and testing (Bottom) using 
phenolic HPLC chromatograms at 280 nm as predictors of diene and triene content in thermal degraded 
EVOO. 

Training 
 RMSE MBE MAE R2 

K266 0.001 0.000 0.001 0.925 

K270 0.001 0.000 0.001 0.939 

K274 0.001 0.000 0.001 0.937 

K230 0.000 0.000 0.000 0.747 

ΔK 0.000 0.000 0.000 1.001 

Testing 
 RMSE MBE MAE R2 

K266 0.005 0.002 0.003 0.828 

K270 0.004 0.002 0.003 0.824 

K274 0.004 0.002 0.003 0.821 

K230 0.000 0.000 0.000 0.755 

ΔK 0.000 0.000 0.000 0.907 
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14.5.5 Application of atmospheric-pressure solids-analysis probe (ASAP- MS) 
for the determination of the extent of olive oil degradation.  

The recent commercial development and availability of ambient mass 

spectrometry techniques has the rapid analysis of chemical residues and contaminants 

in food (Fussell et al., 2010). Furthermore there is an increasing number of ambient-

MS methods reported in the literature. Chen et al., (2009) classified at least 30 different 

Ambient-MS techniques into nine groups on the basis of their desorption/volatilization 

method. All these techniques share the ability to ionize samples under ambient 

conditions outside of the mass spectrometer inlet enabling a wide range of samples to 

be analysed directly without any prior derivatization, separation nor extensive 

preparation.  

McEwen et al. (2005) developed the  atmospheric solids analysis probe 

(ASAP) technique on the original work by Horning in the 1970s this technique is 

equivalent to the use of the traditional vacuum solids probe, with the added advantage 

that the  sample can be introduced at atmospheric pressure without the need for a 

vacuum lock (Fussel et al., 2010). In their original paper McEwen et al. described a 

qualitative detection of a range of chemicals using ASAP, including carotenoids in 

spinach leaves, capsaicin in pepper pods and synthetic compounds used as polymer 

additives. Furthermore, later on Petucci and Diffendal (2008) reported that ASAP was 

able to ionize both polar and non–polar small-molecule drug compounds. A number 

of different ASAP applications that have been reported throughout the fore coming 

years these included the analysis of inhibitors of the biosynthesis of ergosterol in fungi 

(McEwen et al., 2007); determination of the metabolic profile from urine and bile 

fluids of different animals (Twohig et al., 2010) , analysis of steroids (Rayand Major 

2010), determination of tobacco metabolites in urine and saliva (Carrizoa et al., 2016) 

and determination of skin irritants in henna (Chen et al., 2016).  

In the ASAP technique, samples are introduced directly into the mass 

spectrometer using a sealed melting-point glass capillary (probe) approximately 10 cm 

in length. A sample in liquid form (e.g., solvent extract) can be loaded onto the tip of 

the probe (using a microsyringe or dipping the probe into the liquid), or the glass probe 

can simply be wiped across the surface of a solid sample. The probe is inserted into 

the mass spectrometer and the sample is volatilized by heated nitrogen gas as 

illustrated in Figure 14.21. Since the technique is based on atmospheric pressure 
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chemical ionisation (APCI), simple mass spectra that typically show to the molecular 

ion [M+H]+ are produced in positive mode (Cody et al., 2005 and Chernetsova et al., 

2011). The proton source can be water, but methanol or other solvents can be used 

(Carrizo et al., 2015). The production of protonated molecules relies heavily on the 

molecular interaction/charge-transfer process occurring on the sample surface (Chen 

et al., 2016).  

 
 
 
 
Figure 14.21: Schematic diagram of ASAP MS adopted from Twohig et al., (2010) 

There are number of different parameters which need to be optimized for the 

determination of the best total number of ions and the best analyte response include, 

these include the corona current, sample cone voltage and gas desolvation temperature. 

Other important parameters which need to be taken care of include the cleanliness of 

the probe and its position relative to the entrance to the MS inlet. Prior each use the 

probe was cleaned and conditioned to ensure that all previous contaminates have been  

removed this was done by heating the probe at 500ºC for at least 30 s, and/ rinsed  with 

an organic solvent.  

 

ASAP 

Heated 
N2 gas 

Corona 
discharge  

Sample loaded on the tip of the capillary tube  Entrance to Q-TOF-MS  
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Coupling an ASAP to a high resolution -Q-TOF enables the accurate 

determination of mass fragments facilitating the identification of the molecular 

structure of the compounds. This is an important advantage, especially when it comes 

to the analysis of complex matrices without any prior treatment. The identification of 

unknown compounds can be reached with the help of specific software (MassLynx 

and ChemSpider) and specific chemical databases. Whilst the application of ASAP 

creates an opportunity for the direct and faster analysis of samples, there are some 

issues which need to be taken in consideration. The first one being that although it is 

relatively low-cost accessory to a MS instrument currently requires manual operation, 

which impacts on sample throughput. Furthermore the analysis of a very small amount 

of analyte  give to concerns relating to interpretation and robustness of data and 

compliance with EU legislation especially when it comes to the analysis of  

residues/contaminants in food.  

The aim of this study is to enhance the power of ASAP method through 

coupling these methods to chemometeric methods. The objective is that, through the 

use of complex mathematical algorithms specific m/z values can be extracted and 

tentatively identified for a more specific study that would enable the determination of 

the extent of thermal degradation in EVOOs.  

 
 
14.5.5.1 Application of Chemometric Analysis.  

The total ion count was integrated and the resulting mass spectrum was 

obtained from each samples. For each sample a resultant mass spectrum was obtained 

through averaging the three replicate spectra.  The spectra were subsequently reduced 

to 0.5 m/z intervals, baseline corrected and normalized prior any chemometric 

analysis. Two forms of chemometric methods were used in this study PLS and SVM 

regression analysis as described in Section 12.6. Two models were tested, one which 

contained all the samples derived from three different cultivars and another model was 

built focusing on only one cultivar at a time. Through the application of these two 

forms of models, an overall picture of the changes in the MS spectrum during thermal 

degradation could be obtained but also this enabled the identification of difference 

between the individual EVOOs. This was done through the inspection of the 

standardized β-regression coefficients extracted from the PLS regression. The 

magnitude of these coefficients indicates the importance of a particular m/z with 



 Results and Discussion   

420 
 

respect to the extent of degradation whilst the sign (positive or negative) give an 

indication of whether it increases or decrease during the degradation process. in order 

to improve the sensitivity of the model and increase its prediction power, certain m/z 

values which corresponded to the major fractions found in EVOOs were omitted in 

order to reveal other minor compounds which would enable a more accurate prediction 

of the extent of degradation.  

 

 

  
 

  
 
Figure 14.22: Changes in the MS chromatogram of the different cultivars during the 12-week degradation 
study. Top (Red) ‘Bajda’, Middle (Black) ‘Bidni’ and Bottom (Green) ‘Malti’ EVOO. 
 

 

 

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

45000000

50000000

50 150 250 350 450 550 650 750

0 4 8 12

0

1000000

2000000

3000000

4000000

5000000

6000000

50 150 250 350 450 550 650 750

0 4 8 12

0

2000000

4000000

6000000

8000000

10000000

12000000

50 150 250 350 450 550 650 750

0 4 8 12

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

50 150 250 350 450 550 650 750

0 4 8 12

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

50 150 250 350 450 550 650 750

0 4 8 12

0

1000000

2000000

3000000

4000000

5000000

6000000

50 150 250 350 450 550 650 750

0 4 8 12



 Results and Discussion   

421 
 

As shown in Figure 14.22 whilst the major peak identified was that 

corresponding to oleic acid, its intensity differed between the different cultivars and 

during the thermal degradation, suggesting that initial concentration of oleic acid is in 

fact different between the different cultivars but most importantly its concentration 

differed according to the individual cultivars during the thermal degradation process.  

In fact analysis of the PLSR analysis carried out using a universal model showed a 

marked drop in performance when all the cultivars were included in the model. This 

further proves that EVOOs derived from different cultivars degrades at a different rate 

and that different chemical markers are needed to model different EVOOs.  

 

Table 14.11 shows the results obtained on using PLSR modelling on the 

ASAP-MS spectra obtained for the EVOOs derived from the individual cultivars and 

the universal model obtained through the combination of all the cultivars. From the 

results obtained it was shown that the best PLSR models were those applied to applied 

on the thermal degradation spectra for EVOOs derived from the ‘Bajda’ cultivar. The 

differences in model performance further highlights the fact different EVOOs degrade 

at different rates and the model performance is dependent on different chemical 

signatures found in EVOOs. 

 

 

Table 14.11: Performance of the PLSR models carried out on the individual cultivar and on all the cultivars 
(universal) before and after the removal of the major peaks.  

 

No variable Selection 
 RMSEC RMSECV PRESS 

‘Bajda’ 1.762 2.239 2.573 

‘Bidni’ 2.010 2.720 3.047 

‘Malti’ 2.376 2.959 2.327 

Universal 3.662 3.662 2.584 

Removal of major peaks  

‘Bajda’ 0.886 1.812 1.888 

‘Bidni’ 1.624 2.052 1.700 

‘Malti’ 2.321 2.755 1.925 

Universal 3.128 3.374 2.732 
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In order to further determine which the chemical compounds are mainly 

responsible for the EVOO degradation, an inspection of the standardized β-regression 

coefficients extracted from the PLSR model was performed. Figure 14.23 shows the 

standardized β-regression coefficients obtained for the individual cultivar EVOOs.  In 

general throughout all the cultivars the peaks corresponded to the free oleic fatty acid 

tend to dominate the regression coefficient, positive magnitude obtained suggests that 

there is an increase in the amount of this particular fatty acid during the thermal 

degradation process. Other compounds of significant importance in terms of their β-

regression magnitude are those having a m/z of 412, 427,398 and 265. These were 

tentatively identified as belonging to stigmasterol, oxidized form of oleoside 11-

methyl ester, stigmasterol (- CH3) and oleic acid (-H20) respectively. In the case of 

‘Bidni’ and ‘Malti’ EVOOs peak identified as the molecular ion corresponding to 

stigmasterol had a negative regression coefficient indicating that for these two 

cultivars there is a decrease in the amount of this compound, whilst the opposite was 

found in the case of EVOOs derived from ‘Bajda’. Comparison of the regression 

magnitudes corresponding to the oleoside 11-methyl ester (427 m/z), it was found that 

this compound had a significant importance when it came to the modelling the thermal 

degradation of the ‘Bidni’ cultivar whilst in the case of the ‘Malti’ cultivar m/z 

observed at 203 and 310 were highly important in modelling the degradation of this 

particular EVOO. These were tentatively identified as belonging to an aldehydic form 

of ligstroside aglycone fragment and to palmitoleic acid monoacylglycerol-like 

fragment equivalent to an [RCO+74]+. 
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Figure 14.23:   The standardised β-regression coefficients (Red dotted line) obtained from the PLSR model 

for the three individual cultivars, Top (Red) ‘Bajda’, Middle (Black) ‘Bidni’ and Bottom (Green) ‘Malti’. 
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Table 14.12 lists the major m/z peaks identified through the analysis of the β-

regression coefficients and their tentative identification. The arrows in the last column 

indicate the direction of the observed regression coefficient. In general it was observed 

that with the exception of palmitoleic linoleic acid, there was increase in the majority 

of the rest of the identified diglycerides, mainly in those containing an oleic and 

linoleic fatty acid in their structure, the polyunsaturated nature of these fatty acid 

ensures the stabilization of the radical cation formed under the MS conditions.   

 

Although not identified during this study, the increase in the diglycerides was 

mainly attributed to the degradation of triglycerides. Furthermore, apart from an 

increase in the diglycerides content linoleic, oleic and palmitic acid monoglycerides 

were also found to have a positive β-regression coefficient indicative of an increase in 

content during the thermal degradation study. In the case of free fatty acids only three 

fatty acids and one methyl ester were identified, namely, palmitoleic, stearic,  oleic 

acid (major peak) and its methyl ester. The aforementioned were found to also increase 

during the degradation process which is concordant with the increase in free fatty acid 

content as previously determined during this study.  

 

The extent of thermal degradation was also found to affect the minor 

compounds present in EVOO in particular the sterols and the phenolic compounds. In 

the case of sterols were also shown to show some changes during the thermal 

degradation process, in the case of the ‘Bajda’ cultivar the peak obtained at 412 m/z 

which was tentatively identified to belonging to the molecular ion of stigmasterol had 

a positive β-regression coefficient indicating an increase during degradation. Gutierrez 

et al., (2000) showed that storage time and temperature influenced the percentage 

composition of the sterol fraction with a sharper increase in stigmasterol in the oils 

during storage. This was mainly attributed to the hydrolysis of sitosterol during the 

storage. From the analysis of the coefficients obtained it was shown that in fact the 

peak obtained at 414 m/z corresponding to β- Sitosterol had a negative coefficients in 

both the ‘Malti’ and ‘Bidni’ EVOO whilst the stigmasterol content had a positive 

coefficient, indicating that these two compounds could in fact be correlated to each 

other. In the case of the ‘Bajda’ cultivar the β- Sitosterol content did not seem to have 

any importance when it comes to the modelling its thermal degradation. In the study 

made by Gutierrez et al., (2000) also showed that concentration of sitosterol behaved 
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differently in the two varieties studied during storage. In the case of campesterol 

tentatively identified at 397 m/z, no general conclusion could be drawn on analyzing 

the regression coefficient of the cultivar studied as a positive coefficient was obtained 

for the ‘Bidni’ cultivar, a negative coefficient was observed for the ‘Malti’ cultivar 

whilst in the case of the ‘Bajda’ this did not seemed to be effective in modelling the 

regression.    

 

In the case of the phenolic compounds identified, it was found that the major 

secoiridoid compounds namely ligstroside and oleuropein had a negative regression 

coefficient (345 m/z: oleuropein derivative, 363 m/z: dialdehydic form of ligstroside; 

305 m/z: dialdehydic form of deacetoxy ligstroside). Indicating a decrease during the 

thermal degradation process this observation was consistent with the results obtained 

using RP-HPLC presented in the previous section. This observation is also concordant 

with the literature, Krichene et al., (2015) suggested that the ratio of simple to 

secoiridoid phenolics could be used as indices of the oxidative and hydrolytic 

degradation of VOO phenolics.  

 

In the case of flavonoids a negative regression coefficient was obtained for 

both lutein and apigenin, these results further corroborate the results obtained using 

RP-HPLC. Conversely fragments corresponding to tyrosol, hydroxytyrosol and their 

acetate derivatives were found to have a positive regression coefficient, which further 

corroborate the results obtained using RP-HPLC. Further inspection of regression 

coefficients also revealed that increase in oxidized forms of secoiridoid compounds 

namely oleuropein aglycon (335 m/z: oxidized product of dialdehydic form of 

decardoxymethylated oleuropein aglycone) and oxidized form of aldehydic form of 

ligstroside aglycone (321 m/z oxidized product of dialdehydic form of ligstroside 

aglycone fragment). However similar to what was encountered during HPLC the full 

identification of these compounds could not be definitively done due to the postulated 

existence of free fatty acids masking these compounds having the same m/z. A further 

MS/MS study is required in order to fully determine the existence of these oxidized 

complex phenolic compounds in EVOOs, however this was beyond the scope of the 

study.  
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Table 14.12: Tentative identification of the major peaks obtained through the analysis of the β-regression coefficient the arrows indicate the direction of the coefficient. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m/z Name  m/z Name  

120 tyrosol and Hydroxytyrosol fragment  ↑ 351 linoleic acid monoglyceride  ↑ 

155 Hydroxytyrosol-hydroxyphenylacetic acid,p-Anisic acid, vanillin  ↑ 357 Oleic acid monoglyceride  ↑ 

165 Dialdehydic Form of Oleuropein Aglycone Decardoxymethylated fragment ↑ 363 Dialdehydic form of ligstroside  ↓ 

167 Vanillic acid  ↓ 397 Campesterol  ↑ 

183 Oxidized product Dialdehydic Form of Ligstroside Aglycone fragment  ↑ 412 Stigmasterol- ↑ 

194 Ferulic acid  ↓ 414 β-Sitosterol  ↓ 

196 Hydroxytyrosol acetate ↑ 427 oxidized form of oleoside 11-methyl ester  ↑ 

210 Palmitoleic acid  ↑ 540 
Palmitic mytrsic acid  

[M-H20] + 
↑ 

215 
elenolic derivative fragment 

formed by an aldehyde and the COOH group loss. 
↓ 574 Palmitoleic oleic acid  ↑ 

225 cyclic structure of elenolic aldehyde  ↓ 577 Palmitic oleic ↑ 

243 Elenolic acid  ↓ 595 Palmitoleic linoleic acid ↓ 

257 
elenolic acid methylester  

Protonated palmitic acid derived from the thermal degradation of the esters and polyesters. 
↑ 601 Linoleic  oleic acid ↑ 

270 Apigenin  ↓ 603 Oleic oleic acid ↑ 

280 oleic acid ↑    

284 stearic acid  ↑    

287 luteolin  ↓    

297 Oleic acid methyl ester ↑    

305 Dialdehydic form of deacetoxy ligstroside  ↓    

321 
Oleic acid  [M- 2H20]+ 

Oxidized product of Dialdehydic Form of Ligstroside Aglycone fragment  
↑    

329 Palmitic acid monoglyceride  ↑    

335 
linoleic acid monoglyceride [M- H20]+  

Oxidized product of Dialdehydic Form of Decardoxymethylated Oleuropein Aglycone  
↑    

345 oleuropein derivative  [M -H - CH3CH2OH]+ ↓    
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Following the analysis of the major peaks responsible for modelling the 

regression, the PLSR was repeated again without the previously identified peaks. The 

aim was to extract as much information from the MS chromatogram in order to try and 

improve the regression performance. Inspection of the RMSE obtained during the 

calibration and validation but also in the prediction phase quoted in Table 14.11 shows 

that in fact the removal of these peaks improved the performance of the PLSR model.   

This was attributed to the smaller number of variables which were modelled which 

increased the overall sensitivity of the model.  A further inspection of the β-regression 

coefficients obtained after the removal of the major peaks indicated that minor 

compounds which were tentatively identified in Table 14.13 might be as effective if 

not more in modelling the degradation of EVOOs.   

 

As expected the compounds identified through the β-regression coefficients 

belonged mainly to the minor fractions in EVOOs namely phenolic and sterol 

fractions, although diglycerides and free fatty acids of minor form could not excluded. 

Similar to what observed before, the majority of the molecular ions and fragments 

belonging to the aldehydic, oxidized and methylated forms of ligstroside and 

oleuropein had a positive regression coefficients indicating an increase during the 

thermal degradation process for the most of the cultivars studied.    

 

In the case of  the ‘Bajda’ cultivar the regression  model obtained was highly 

dependent on 4 major m/z  which were tentatively identified as belonging to  elenolic 

acid glycoside fragment 223 m/z, desoxy elenolic acid 236 m/z,  oxidized form of 

dialdehydic form of ligstroside aglycon 319 m/z,  and a  nüzhenide fragment (M-

172)m/z.  

 

In the case of the ‘Bidni’ cultivar the regression model was highly dependent 

on the increase in stigmasterol and campesterol fragments identified at 369 and 383 

m/z and in the decrease at 177 m/z which could be related to either a γ-tocopherol 

fragment (403 m/z) or else a β-carotene fragment (537 m/z) most probably attributed 

to the loss of the chain of C16 chain.   In the case of ‘Bidni’ the regression was also 

significantly dependent on the increase of Linoleic- Myristic diglyceride and dimethyl 

oleuropein observed at 545 m/z and 567 m/z respectively. 
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 For the ‘Malti’ cultivar the regression model obtained was mainly attributed 

to an increase in compounds and fragments having a m/z between 200-250, tentatively 

attributed to ligstroside aglycone and elenolic acid fragments. Other compounds 

having a m/z at 495 and 523 belonging to myristic acid diglyceride and ligstroside 

respectively have also been found to have a large positive β-regression coefficient 

magnitude.  
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Figure 14.24:   The standardised β-regression coefficients (Red dotted line) obtained from the adjusted PLSR 
model after the removal of the most abundant peaks for the three individual cultivars, Top (Red) ‘Bajda’, 
Middle (Black) ‘Bidni’ and Bottom (Green) ‘Malti’. 
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Table 14.13: Tentative identification of the minor peaks obtained through the analysis of the β-regression 
coefficient the arrows indicate the direction of the coefficient. 

 
153 dihydroxybenzoic acid or hydroxytyrosol Caffeic acid [- 2H20]+ ↑ 

193 Ferulic Acid- or Elenolic Acid [M-H2O, CH4O] + ↓ 

203 Aldehydic Form of Ligstroside Aglycone fragment ↓ 

223 Elenolic Acid Glycoside- hexose    [M- 179 -CO2] + ↑ 

236 desoxy elenolic acid ↑ 

259 Aldehydic Form of Oleuropein Aglycone  ↓ 

265 oleic acid [M- H2O] + ↑ 

273 ligstroside glycoside [M- 180] + ↓ 

277 linoleic acid ↓ 

291 ligstroside glycoside [M -162] + ↑ 

300 ligstroside glycoside ↑ 

319 
dialdehydic form of oleuropein aglycon  

oxidized form of dialdehydic form of ligstroside aglycon 
↑ 

369 Stigmasterol fragment [M-CH(CH3)2] + ↑ 

377 oleuropein aglycon ↓ 

383 Campesterol [MH-H2O]  + ↑ 

392 methyl oleuropein aglycon  ↑ 

397 sitosterol [M-H2O] + ↓ 

524 ligstroside ↑ 

535 
Myristic-Heptadecanoic 

 methyl ligstroside isomer [M-OH] + 
↑ 

545 Linoleic- Myristic  ↑ 

549 Myristic Oleic or Palmitoleic-Palmitic ↑ 

567 dimethyl oleuropein ↑ 

587 Heptadecanoic- Linoleic  ↑ 

639 
dimmer form dialdehydic form of oleuropein aglycon   

 oxidized form of dialdehydic form of ligstroside aglycon dimmer 
↑ 
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Table 14.14: Performance of SVMR  

 
 ‘Bajda’ ‘Bidni’ ‘Malti’ All 

RMSEC 0.539 0.478 0.535 0.558 

RMSEV 1.559 1.712 1.241 2.473 

RMSEP 0.301 0.930 0.842 0.801 
 
 
Following a PLS regression a support vector machine regression analysis 

SVMR was carried out first on using the combined data set containing all the variables 

for all the three cultivars and then repeated again for each individual cultivar. The 

SVM is a powerful method which can handle nonlinearities, and very good results 

have been reported in the literature. However, it is not so transparent as PCA and PLS 

and the choice of values for input parameters must be decided from cross-validation 

to assure a robust model. For this experiment an epsilon (0.1) type SVM algorithm 

was used together with a linear Kernel type function. A grid search was carried out in 

order to determine the best number of support vectors extracted between a C values of 

log10 -2 to +2 at 5 level intervals. The higher is the C parameter the more robust is the 

regression as errors become more important. From the results obtained it was found 

that SVMR analysis had a higher model performance when compared to PLSR 

analysis, as lower RMSE values were obtained for all the cultivars this was attributed 

to its ability to handle non-linear variables. Nonetheless the same trend was observed 

in SVRM that is modelling the individual cultivars will results in a model with a higher 

performance when compared to analysing all the cultivars in the same model.   

 

In conclusion ASAP-MS process enables rapid analysis of EVOO samples 

although the data generated is not quantitative unlike those obtained using 

chromatographic methods, it enabled the analysis of a large number of samples with 

minimal preparation. The application of chemometric methods revealed a number of 

potential compounds which could be analysed in order to provide insights about the 

extent of EVOO degradation. Furthermore ASAP-MS further showed that the 

degradation of EVOOs is highly dependent on the originating cultivar although general 

method can be built to determine the extent of degradation the performance of this 

model in predicting the extent of degradation would be lower. 
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Conclusions         
 

In general, it was observed that monocultivar OOs derived from the Maltese 

islands had sufficient quality parameters to be classified as extra virgin olive oil as 

defined by the IOC. 

The application of simple sequence repeats screening on genomic DNA 

extracted from leaves of different olive cultivars showed that the DCA-3 and GAPU 

101 primers were enough to distinguish between the different olive cultivars grown in 

Malta. Genetic analysis showed that the ‘Bidni’ cultivar consists of single highly 

homozygous population, similar to the ‘Bajda’ cultivar showed allelic overlap with the 

foreign locally grown cultivars. In comparison the ‘Malti’ cultivar/s consisted of a 

highly heterogeneous population which is distinct from both the ‘Bidni’ and foreign 

cultivar, suggesting that the existing population consists of a number of ancient 

cultivars which are grouped under one single cultivar.  

Elemental analysis using XRF on EVOOs and seed oils revealed the presence 

of two major concentration related clusters one containing elements of pedological 

origin whilst the other consisted of heavy metals. Seed oils were found to contain a 

higher concentration of titanium when compared to EVOOs, whilst EVOOs derived 

from the Maltese islands had a significantly higher concentration of barium and 

phosphorus. Application of SLC-DA was able to distinguish between seed oils from 

EVOOs and distinguish between foreign and locally produced olive oils. 

Spectrophotometric analysis of different pigments found in EVOOs showed 

that in general, the application of pigment concentration for the geographical 

discrimination of EVOOs is not advisable due to the unstable nature of these 

compounds. Nonetheless it was found that foreign cultivars grown in the Maltese 

islands had a significantly higher chlorophyll /carotenoid ratio when compared to 

EVOOs of the same cultivar derived from other Mediterranean countries. This 

unexpected results suggests that there are other factors rather than the abiotic stress 

conditions which are affecting the concentration of these pigments and require further 

study.  

Extraction and quantification of different phenolic classes present in EVOOs showed 

that the indigenous cultivars had a significantly lower TPC and TFC when compared 
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to both foreign locally grown cultivars and EVOOs derived from other cultivars not 

grown in Malta. No significant difference was found in the TdPC between the different 

EVOOs.  

The application of microtiter methods in order to assess the antioxidant activity 

and radical scavenging activity of phenolic extracts from EVOOs, revealed a similar 

pattern to the one observed in the analysis of the phenolic content. In fact a 

significantly strong positive correlation was found between the different TPC and TFC 

to the observed antioxidant and radical scavenging activity exhibited.  

The intrinsic radical scavenging activity of EVOOs was determined via the use 

of newly developed method. Results obtained further confirmed that phenolic 

compounds present in EVOOs are the major antioxidant compounds. The development 

of another method for the determination of the intrinsic radical scavenging activity 

towards ABTS radical cations is currently under investigation.  

Application of PCA using the results obtained from both the antioxidant assays 

and phenolic content showed that geographical discrimination between the different 

EVOOs is possible. This was confirmed using canonical discriminant analysis 

whereby it was shown that with the first canonical function local EVOOs were 

completely separated from the foreign EVOOs whilst the second canonical function 

was able to discriminate between EVOOs derived from the indigenous cultivars from 

EVOOs derived from locally grown foreign cultivars.  

Phenolic profiling carried out using HPLC showed that the EVOOs derived 

from locally grown cultivars had a significantly high concentration of p-coumaric acid, 

tyrosol acetate 3, 4 DHPEA-EDA, p-HPEA-EDA and two unidentified phenolic 

compounds, with p-HPEA-EDA and tyrosol acetate being present in significantly 

higher concentrations in the indigenous cultivars.  

Correlation analysis between the individual phenolic compounds present in 

EVOOs showed that the concentration of gallic acid is positively correlated to that of 

protocatechuic acid, whilst the latter was significantly correlated to the concentration 

of 3-Hydroxy-4-methoxycinnamic acid, these observations were explained in terms of 

the biosynthetic pathways that link the individual phenolic compounds together. 

Significant positive correlations between different secoiridoid compounds was also 
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observed in the study, further highlighting the degradation and synthetic pathways 

which link this class of highly abundant phenolic compounds.  

Application of chemometric analysis on chromatographic data revealed no 

substantial evidence which justifies the use of data bucketing, as the models obtained 

from PLS analysis showed lower misclassification rates when the whole 

chromatographic data is taken in consideration. Application of variable selection 

techniques showed a significant improvement on the models obtained. Cluster analysis 

showed that chromatographic data obtained at 280 nm was able to fully distinguish 

between the different geographical origins of EVOOs. 

The application of spectrofluorimetry was also extended for the development 

of analytical models which enable the identification and quantification of possible 

adulterants present in EVOOs. Adjusted PLS models based on synchronised spectra 

for detecting the % amount of EVOO in vegetable oil blends had a lower RMSE and 

higher R2 than those observed on using PLS on the whole spectrum. This study also 

showed that PNN provide an alternative chemometric tool for the detection of olive 

oil adulteration. 

The application of FT-MIR-ATR spectra in conjunction with a number of 

chemometeric methods, was found to provide a cheap, fast and reliable way for the 

discrimination of Maltese EVOOs from non-Maltese EVOOs. Due to the high level of 

similarity and collinearity in the data the application of unsupervised PCA models was 

deemed to be unsatisfactory when it comes to discrimination of geographical origin. 

Application of supervised methods of classification namely PLS-DA, FF-PNN, LDA 

and SVM showed to be highly effective in classifying and discriminating local and 

non-local EVOOs samples. The use of the variable selection methods significantly 

increased the effectiveness of PLS-DA models when compared to no variable 

selection. FF-PNN, SVM and LDA models were also shown to offer similar 

classification rates to PLS-DA models, giving further confidence in the application of 

FT-MIR.  

The application of DI-MS fingerprinting in conjunction with multivariate 

statistical techniques was successfully employed for both the discrimination of 

EVOOs of Maltese origin from non-Maltese EVOOs and the discrimination of EVOOs 

depending on the country of origin. The application of DI-MS under positive ionisation 
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has never been achieved although it was proposed by a number of different authors in 

the past, including Alves et al., 2010; Catharino et al., 2005; Lerma‐García et al., 2008 

and 2011; Goodacre et al., 2002, however it was never carried out. From the 

preliminary assessment using only unsupervised PCA models, significant clustering 

was observed it was observed in the majority of the spectral pretreatments, however, 

the % variation explained by the first two principal components was very low this was 

attributed to the high levels of redundant variables. Inspection of the scores showed 

that although there was a preliminary clustering based on the geographical origin the 

loading plots relived that the spectral characteristics were only evident on using higher 

principal components. The application of SIMCA for the discrimination between 

Maltese and non-Maltese EVOOs showed that the models obtained under 

normalisation were sensitive and specific for both the classes. Application of 

supervised methods of classification namely PLS-DA, FF-PNN, LDA, and SVM 

showed to be highly effective in classifying local and non-local EVOOs samples. The 

discrimination of power of the different models obtained was greatly enhanced through 

the use of a two-stage variable selection procedure.  

The application of NMR in conjunction with a number of chemometeric 

methods showed that similar to other method the application of unsupervised PCA 

models no significant clustering attributed to the high levels of similarity between the 

two classes of EVOOs studied, such method was deemed to be unsatisfactory when it 

comes to discrimination of geographical origin. Application of supervised methods of 

classification namely PLS-DA, FF-PNN, LDA and SVM showed to be highly effective 

in classifying local and non-local EVOOs samples. The use of the variable selection 

methods significantly increased the effectiveness of PLS-DA models when compared 

to no variable selection. FF-PNN, SVM and LDA models were also shown to offer 

similar classification rates to PLS-DA models and thus corroborate the results obtained 

from the PLS-DA models and put confidence in the use of NMR methods in 

conjunction with spectral transformation for the classification of Maltese and foreign 

EVOOs samples. Results showed that different NMR pulse methods can greatly affect 

the discrimination of EVOOs. NOESY pulse sequence and suppression of strong 

signal greatly improved the signal to noise ratio and the raw data obtained was more 

informative when compared to the conventional zg30 pulse sequence. NMR data 
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acquired using zg30 pulse sequence required an extensive spectral elaboration in order 

to obtain comparable model performance to that of NOESY. 

The application of SEEF spectra in conjunction with a number of 

chemometeric methods, enabled the discrimination of Maltese EVOOs from non-

Maltese EVOOs. From the preliminary assessment using only unsupervised PCA 

models, only very few spectral pretreatments for different SEEF spectra managed to 

identify significant clustering, whilst supervised methods showed to be highly 

effective in classifying local and non-local EVOOs samples.  It was shown that whilst 

variable selection methods significantly increased the effectiveness of PLS-DA 

models it was detrimental for SIMCA as lower model performance was recorded for 

all the spectral pretreatments for all SEEF spectra. FF-PNN, SVM and LDA models 

were also shown to offer similar classification rates to PLS-DA models and thus 

corroborate the results obtained from the PLS-DA models, assuring that the use of 

SEEF methods in conjunction with spectral transformation enables discrimination of 

Maltese and foreign EVOOs samples. Results showed that different SEEF spectra can 

greatly affect the discrimination of EVOOs. It was shown that independent of the 

chemometric technique used SEEF spectra obtained at 10 nm had higher model 

performance. It was shown that the most discriminate variables were those attributed 

to different concentration of phenolic, tocopherol and chlorophyll compounds. These 

observations further corroborate the results obtained from using target-specific 

analysis, whereby it was shown that Maltese EVOO had a significantly higher amount 

of different non-reducing phenolic compounds and a higher concentration of 

chlorophyll compounds. The quantification of the individual tocopherol compounds is 

being proposed as a future study, as a target-specific method for further confirmation 

of the results obtained using SEEF spectroscopy.  

The application of 3D-fluorescence spectroscopy in conjunction with the 3-

way methods has proven to be a useful tool for analyzing and interpreting this kind of 

complex data. Certain identification of the four detected fluorescent components was 

fully achieved offering a cheap, fast and reliable way for the discrimination of Maltese 

EVOOs from non-Maltese EVOOs. Although differing in their discriminatory power 

between different EVOOs, the underlying concept of a 4 component fluorophore based 

discrimination tends to be corroborated. The application of LDA on the 4 component 

PARAFAC model in mode 1 was able correctly classified 73.0% of original data and 
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80.28% of cross-validated grouped whilst the application of 12 latent variable DN-

PLSR model was able to correctly classify 98.58% of the original data and 93.18% the 

cross-validated group, suggest that the latter method offered discriminatory potential 

for the determination of the authenticity of Maltese EVOOs.  

Thermal degradation of EVOOs was studied through the use of an oven 

experiment. Colour analysis of the EVOOs through the 12-week thermal degradation 

experiment showed a significant decrease in the L* and b*parameter and  a significant 

increase in a* chromatic component was observed indicating a transition from the 

green colour towards a more red colouration, together with a transition from a blue 

chromatic component towards a yellower colour. For the three cultivars, chlorophyll 

degradation showed a three-stage decay process, a linear decrease over the first week 

followed by a stable phase were no significant changes in chlorophyll content was 

observed between six to ten weeks followed by a rapid decay. Unlike what was 

observed for the chlorophyll content a far less linear degradation was observed in the 

carotenoid concentration for the ‘Bidni’ and ‘Malti’ cultivar, this was attributed to the 

presence of secondary oxidation products formed during the oxidation. It was shown 

that EVOOs derived from the ‘Bajda’ cultivar reached the legal limit for both the K230 

and K270 faster than the other cultivars, indicating a very lower thermal stability 

suggesting that the higher concentration of phenolic compounds, carotenoids and 

chlorophyll pigments acted as an antioxidant in this experiment. Application of PCR 

and PLSR methods on UV-Vis spectra obtained using second-order derivatisation 

seem to provide the most reliable prediction models with ‘Malti’ cultivar modelled 

with a higher degree of precision.  

 

Application of chemometeric models on the thermal degradation data obtained 

through the use of FTIR revealed substantial changes throughout the entire infrared 

spectra, especially into three major regions, 2700- 3006 cm-1, 1720–1750 cm-1, and the 

fingerprint region (1500−900 cm-1). Analysis of SEEF spectra revealed a 

bathochromic effect e as the oil undergoes oxidation. New peaks appeared at higher 

wavelengths especially within the 400-600 nm region, attributed to the different 

chemical constituents which are developed during the course of degradation. Apart 

from free fatty acids and other oxidation products this peak was also attributed to the 

presence of polar compounds namely phenolic compounds namely tyrosol and 
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phenolic acid derived from the degradation of conjugated secoiridoid compounds. The 

latter observation was confirmed through the analysis of the individual phenolic 

profiles of the cultivars subjected to the thermal degradation study. Similar to what 

was observed during the determination of geographical origin the phenolic profiles 

obtained at 280 nm tend to be more informative than those obtained at 320 nm in 

monitoring the degradation of the ‘Bidni’ and the ‘Malti’ cultivar whilst for the ‘Bajda’ 

cultivar the chromatogram obtained at 320 nm were the most informative. During  the 

degradation process was characterised by  an increase in 3,4-DHPEA-EDA, which was 

attributed to the coelution of 3,4-DHPEA-EDA oxidized, an increase in the tyrosol and 

hydroxytyrosol attributed to the hydrolysis of their complex derivatives and overall 

decrease in flavonoid compounds. Application of ASAP-MS showed that the 

degradation was characterised by an increase in oleic acid and other free fatty acids 

but also other diglycerides, together with an increase of hydrogenated form of fatty 

acids and sterols. ASAP-MS also revealed a decrease in flavonoid compounds and in 

Dialdehydic form of deacetoxy ligstroside whilst an increase in hydroxytyrosol, p-

hydroxyphenylacetic acid, p-anisic acid, vanillin and oxidized product of dialdehydic 

form of ligstroside aglycone which were in line with the result obtained during the 

phenolic profiling.  

 

In this study, it was shown that it is possible to establish the uniqueness of 

Maltese EVOOs, and thus their authenticity for the application of PDO certification, 

through the use of both genetic and chemical methods. The application of genetic 

analysis proved to be quite difficult, time consuming and expensive. Thus, rather than 

providing a cost effective measure to define the authenticity of Maltese EVOOs, its 

value lies in providing a more specific way to identify unique cultivars grown in the 

Maltese islands, shed light on mislabelled cultivars, and providing ways and means to 

identify cultivars which are claimed to be Maltese but in reality they are not. 

Furthermore, it provided insights about the genetic relationship between different 

cultivars, obtaining historical insights on the past olive cultivation in the Maltese 

islands. On the other hand, the application of chemical based methods was very 

effective in defining the authenticity of the Maltese EVOOs, irrespective of the genetic 

makeup of the producing cultivars. Indeed it was possible to discriminate between, and 

thus authenticate, Maltese EVOOs based on the pedoclimatic conditions, which 

change the chemical composition of the EVOOs, providing a chemical fingerprint that 
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cannot be replicated elsewhere. Such a chemical fingerprint was identified through the 

use of a number of different methods targeted to identify markers within both the major 

saponifiable EVOO fraction as well as within the minor unsaponifiable fraction. These 

methods ranged from the use of target based methods, such as the quantification of 

specific phenolic classes using both microtiter based methods and liquid 

chromatography methods, to the use of spectroscopic data analysis including FTIR, 

NMR SEEF and 3D-FS. Coupling such methods to advanced multivariate statistical 

methods not only enabled the discrimination and thus the definition uniqueness of the 

Maltese EVOOs, but also enabled a direct pinpointing at which variables (chemical 

species) are the most informative. Although not all the methods required the same 

extent of manipulation, and the results regarding the sensitivity of the chemical 

methods to discriminate Maltese EVOOs were different, all the methods employed 

within this study provided a cost effective way to define the uniqueness of the Maltese 

EVOO. Furthermore, in some experiments such uniqueness was defined using a 

number of statistical methods ranging from fully unsupervised methods to supervised 

methods all of which further assured the results obtained.  In addition, different 

methods used to measure the same chemical makers such as HPLC, 3D-FS and SEEF 

were concordant with each other in providing a more elegant way to asses such a 

fingerprint, as the same results could be replicated irrespective of the method 

employed.  

In the light of the definition of such uniqueness counter measures which would 

predict typical fraudulent behaviour or else mismanagement of EVOOs were assured. 

This was indeed established through the use of a forced seed oil adulteration study 

simulating blending to Maltese EVOO with cheaper refined seeds, and forced thermal 

degradation experiment simulating mishandling of EVOOs. These experiments 

provided a way to identify and predict both the extent of seed oil adulteration but also 

the extent of thermal degradation of EVOO with the ultimate aim of discouraging any 

future fraudulent behaviour. The effects of these experiments on the previously 

identified chemical markers which defined the Maltese EVOO should be assessed in 

future work.  
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Further Work  
 

The application of UPLC MS/MS will be applied in the future through the 

previously developed HPLC method which will be geometrically transferred for a 

UPLC. The use of selection ion reactions will be used in order to develop a mass spec 

method which enable monitoring the content of selective phenolic compounds present 

in EVOOs. This method aims to identify the peaks which were not previously 

identified from HPLC due to unavailability of standards and identify possible novel 

compounds and intermediates. The potential application of this study has been 

investigated however it was not published as it requires further work, nonetheless a 

number of compounds some of which are novel have been identified through the use 

of MS/MS can be found in Appendix 18 Section 18.5. 

Forced inter/intra-regional adulteration of EVOOs: mixtures of EVOOs 

derived from the same cultivar grown in Malta and other Mediterranean countries, 

furthermore, mixture of EVOOs derived from indigenous cultivars and common non-

indigenous once will be prepared and analysed using NMR, spectrofluorimetry, FTIR, 

and DI-MS with overall aim to develop models and methods capable of determining 

the concentration of the different EVOOs present within the mixture. This proposed 

study has been conducted preliminary in an undergraduate thesis published in the 

chemistry department in 2017 by Ilenia Gatt, however the application of DI-MS or 

ASAP-MS still needs to be carried out. 

Application of SSR markers in the traceability of EVOOs: the first part 

involves the extraction of DNA from the oil samples using the method developed by 

Busconi et al., (2003) and specialised DNA kits. The extracted DNA will be subjected 

to qualitative analysis using gel electrophoresis in order to assess DNA degradation. 

The DNA obtained will be then subjected to the previously identified SSR 

amplification. The conservation of alleles from the trees to the oil will be assessed as 

a potential biomolecular marker for olive oil traceability.  

DNA sequencing: Full genomic next generation HiSeq 2500 v4 DNA 

sequencing using shotgun libraries will carried out in the future, in order to fully 

characterize the indigenous cultivars genome and compare the genome sequences to 

other databases in order to determine the possible origin of these cultivars. 
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