
Macroprogramming
using an Embedded
DSL approach
ADRIAN MIZZI

Supervised by
Dr Joshua Ellul and Prof. Gordon Pace

Department of Computer Science

Faculty of ICT

University of Malta

September, 2019

A dissertation submitted in partial fulfilment of the

requirements for the degree of Ph.D. Computer Sci-

ence.

iii

Statement of Originality

I, the undersigned, declare that this is my own work unless where
otherwise acknowledged and referenced.

Candidate Adrian Mizzi

Signed

Date April 26, 2020

The research work disclosed in this publication is partially funded by the

Endeavour Scholarship Scheme (Malta). Scholarships are part-financed

 by the European Union - European Social Fund (ESF) -

 Operational Programme II – Cohesion Policy 2014-2020

 “Investing in human capital to create more opportunities and promote the well-being of society”.

European Union – European Structural and Investment Funds

Operational Programme II – Cohesion Policy 2014-2020

“Investing in human capital to create more opportunities

 and promote the well-being of society”

Scholarships are part-financed by the European Union -

European Social Funds (ESF)

Co-financing rate: 80% EU Funds;20% National Funds

vi

Acknowledgements

I would sincerely like to thank my supervisors, Dr Joshua Ellul

and Prof. Gordon Pace for their patience, commitment and support

throughout the duration of my studies. Apart from the part they played

in introducing me to the area of Internet of Things, functional program-

ming and blockchain technology, they were also available to provide

guidance and steer me in the right direction when things became un-

clear. They pushed me beyond my limits, and in doing so I feel I have

grown in my capabilities as a researcher and as a computer scientist.

I also thank my close friend Dr Jean Paul Ebejer, who was not only

an inspiration for starting this journey, but also the person whom I

turned to many times for guidance and support. I am indebted to

him for being there during the difficult times that come with such pro-

grammes, but also for taking personal time and interest to discuss, re-

view and suggest ideas around my research work.

I must also thank my immediate family for the unwavering sup-

port they have provided through the duration of my work. This work

would not have been possible without the support from my wife Ruth,

who not only returned back to employment to support the family but

also spent many hours with our daughter Michaela, so I could focus

on my studies. I also thank my parents and in-laws for the long hours

they dedicated to our daughter so I could complete my research.

vii

Abstract

Software applications were traditionally developed using a mono-

lithic approach and developed as a single instance. As distributed sys-

tems emerged, these traditional methods were no longer suitable. In

the domain of wireless sensor networks, an application is developed to

run across multiple nodes, and devices must communicate and collab-

orate together. The general trend is for a software developer to write a

single program which is loaded on all the devices. In the case of het-

erogeneous networks where the systems making up the network vary

in architecture, capabilities and characteristics a different approach is

used — different programs are written and loaded on each different

system. Such an approach requires expertise programming different

systems, and the interactions between disparate systems need to be

explicitly handled by the programmer.

In this thesis, we propose a model for programming heterogeneous

systems using a single macroprogram, thereby achieving a higher level

of abstraction and enabling applications to be described at the macro-

level. We combine techniques from macroprogramming and multi-

target compilation, using an embedded DSL approach to generate target-

specific code for different domains on different ends of the spectrum.

On one end of the spectrum, we apply the model to wireless sensor

networks where challenges exist around optimising code for execution

on heavily resource constrained devices. At the other end of the spec-

trum, we propose a framework for writing smart contracts spanning

multiple diverse blockchain systems. Each domain brings its’ own

challenges, however the model is shown to be applicable to different

domains.

Contents

1 Introduction 1
1.1 Aims and Achievements . 3
1.2 Overview of Subsequent Chapters 7

I Background 9

2 Macroprogramming 11
2.1 Introduction . 11

2.1.1 Hardware/Software Codesign 13
2.1.2 Wireless Sensor Networks 16

2.2 Discussion and Challenges . 25
2.2.1 Code Slicing . 25
2.2.2 Interoperability . 26
2.2.3 Heterogeneity . 27

2.3 Conclusions . 28

3 Embedded Domain Specific Languages 29
3.1 Shallow versus Deep Embedding 30
3.2 Challenges of DSELs in Functional Languages 34

3.2.1 Sharing and Feedback 34
3.2.2 Type Safety . 36

viii

CONTENTS ix

3.3 Conclusions . 38

II Macroprogramming for Wireless Sensor Networks 39

4 Background: Wireless Sensor Networks 41
4.1 Introduction . 41

4.1.1 Structure of a Wireless Sensor Node 41
4.2 Challenges of WSN . 42

4.2.1 Hardware Constraints 42
4.2.2 Programming Challenges 47
4.2.3 Economic Challenges . 49

4.3 Programming Approaches . 50
4.3.1 Node-Level Programming 51
4.3.2 Network-Level Programming 53

4.4 Conclusions . 54

5 D’Artagnan 57
5.1 Introduction . 57
5.2 A Framework for Macroprogramming of WSNs 60
5.3 Interpretations . 62
5.4 D’ARTAGNAN as a language . 64

5.4.1 Stream Operators . 64
5.4.2 Memory Capabilities . 66
5.4.3 Compiler Hints . 68
5.4.4 Stream Tuples . 71
5.4.5 Simulator . 71
5.4.6 Intermediate Code / Device Code 72
5.4.7 Device level code: Contiki 72
5.4.8 Implementation Details 74
5.4.9 Discussion . 75

5.5 Use-case: Smart Rent Management 76
5.6 Use-case: Intelligent Cooling and Lighting Systems 79

x CONTENTS

5.6.1 Stream Handling Components 80
5.6.2 Room Layout Representation 82
5.6.3 Application Implementation 84

5.7 Performance Evaluation . 86
5.8 Related approaches . 88
5.9 Conclusions . 91

IIIMacroprogramming for Blockchain Systems 93

6 Background: Blockchain and Smart Contracts 95
6.1 Introduction . 95

6.1.1 Overview . 96
6.2 Blockchain Technology . 97

6.2.1 Blockchain Architecture 97
6.2.2 Smart Contracts . 99

6.3 Blockchain Systems . 100
6.3.1 Bitcoin . 100
6.3.2 Ethereum . 100
6.3.3 Hyperledger Fabric . 101
6.3.4 Others . 101

6.4 Smart Contract Programming Languages 102
6.4.1 Bitcoin Script . 103
6.4.2 Solidity . 104
6.4.3 Marlowe . 106
6.4.4 Others . 107
6.4.5 Discussion . 112

6.5 Chain Interoperability . 112
6.6 Conclusions . 114

7 Macroprogramming the Blockchain of Things 115
7.1 Introduction . 116

7.1.1 D’ARTAGNAN for Blockchain of Things 117

CONTENTS xi

7.2 Proposed Framework . 118

7.3 D’ARTAGNAN: A Macroprogramming Framework 120

7.3.1 D’ARTAGNAN for IoT 122

7.3.2 Extending D’ARTAGNAN 122

7.4 Use Case: Smart Rent Management 127

7.5 Evaluation . 130

7.6 Discussion and Conclusions . 132

8 Porthos 135
8.1 Introduction . 135

8.2 Porthos Framework . 138

8.2.1 Multi-chain Support . 139

8.2.2 Code Cuts . 141

8.2.3 Coordination Model . 142

8.3 PORTHOS as a smart contract language 142

8.3.1 Implementation Details 148

8.4 Use Cases . 149

8.4.1 Property Sale . 149

8.4.2 Single-shot DAO . 152

8.5 Evaluation . 155

8.5.1 Expressiveness of Abstraction 156

8.5.2 Security Analysis . 157

8.5.3 Extensibility . 158

8.6 Conclusions . 159

IVConclusions 161

9 Conclusions and Future Work 163
9.1 Future Work . 164

9.2 Concluding Thoughts . 166

A Publications 167

xii CONTENTS

References 169

1

Introduction

The first computers were programmed using low-level machine code, but it
did not take long for scientists to realise that this approach was very error-
prone and requiring expert programming skills. To address this and make
programming more accessible to programmers, a higher level of abstraction
was needed — a number of higher-level languages soon emerged making it
easier for programmers to write software applications.

As software applications grew in complexity and spanned across multi-
ple systems, software programs were split in smaller parts, where each part
gets executed on a different system. A typical scenario is that of a client-
server application, where the code of the client is written separately from
that of the server, and both parts need to tackle the communication between
them (see Figure 1.1(a)). Writing applications in this fashion is not straight-
forward, and the programmer needs to be fully aware of the implications of
distributed systems — such as synchronisation of processes, communica-
tion between systems and handling of partial failures. Such an approach is
still commonly used today in many domains, primarily because alternative
approaches are lacking. A possible solution lies in achieving an even higher
level of abstraction such that the complexity of distributed applications is
hidden away from the programmer.

A technique that has emerged from the domain of wireless sensor net-
works is macroprogramming — a single program is written to define the be-

1

2 CHAPTER 1. INTRODUCTION

haviour of tens, hundreds or even thousands of small, heavily resource-
constrained devices. In this domain, several approaches have been pro-
posed. In one approach (see Figure 1.1(b)), a software program is written
from the perspective of the device and this is then uploaded to all the de-
vices in the wireless sensor network. The applications that can be imple-
mented in this manner are somewhat restricted to those where all devices
in the system behave in, more or less, the same way — for example, appli-
cations where sensors detect environmental data (such as devices capable
of sensing seismic activity around a volcano) and forward the information
to a central server.

Program	A System	A

Program	B System	B

Communication	
at	Runtime

Program System	A

System	B

Communication	
at	Runtime

(a)	Separate	programs (b)	Same	program	on	all	systems

System	A

System	B

Communication	
at	Runtime

Program	1

Program	2

Communication

(c)	Single	program	-	explicit	communication

System	A

System	B

Communication	
at	Runtime

Program

(d)	Single	program	-	implicit	communication

Figure 1.1: Programming models

Another macroprogramming approach that has been proposed, and which
can be applied to a wider range of applications, is one where the program is
written from a network-perspective and the behaviour of each system is de-
termined in a centralised manner (refer to Figure 1.1(c)). In this approach,
the communication between different systems is explicitly defined by the
programmer, and communication-handling code is then automatically gen-
erated for the devices. Although such an approach removes the need for the

1.1. AIMS AND ACHIEVEMENTS 3

programmer to write the actual code which handles communication, there
is still the need for the programmer to determine how application logic is
placed on which system as well as define when and how interaction be-
tween systems is made.

A potentially better solution lies in extending the macroprogramming
network-perspective approach in such a way that the communication be-
tween devices does not need to be explicitly defined by the programmer.
By using a higher level of abstraction the programmer does not need to
specify which device must perform which action, but rather, the function of
splitting application logic across different systems and the communication
between them is handled under the bonnet.

A number of challenges exist with such an approach — for example,
determining how application logic is split and placed on the different avail-
able systems is not straightforward. If certain application logic makes use of
functionality which is only available or possible on a specific system, then
that logic must be bound to execute on that system — putting the logic on
a different system would clearly cause the application to fail. Also, other
application logic may exist which is not bound to a single system and this
logic can be freely placed in different locations. In such situations, other fac-
tors may influence where the application logic is placed — for example, the
cost of computation or the performance of execution are important factors
that influence a placement strategy.

1.1 Aims and Achievements

In the domain of wireless sensor networks, macroprogramming is an effec-
tive technique for programming a network of wireless sensor nodes where
the devices are, in general, of the same type (homogeneous). Existing ap-
proaches rely on the programmer to define how the interactions between
devices are made. Whether this technique can be extended further to re-
duce, or remove, the dependency on the programmer to provide placement
and communication directives remains largely unexplored. Also, whether

4 CHAPTER 1. INTRODUCTION

such a technique can be successfully applied to heterogeneous systems,
both in the domain of wireless sensor networks and also beyond, is still
largely unknown. Our aim is to explore how macroprogramming can be
taken further:

� One of the drawbacks of existing macroprogramming techniques is
the general assumption that the systems onto which an application
is implemented are of the same type. Aside from specific wireless
sensor network applications, this is rarely the case and probably the
main reason why the technique has not been widely adopted in other
domains. An aim of this work is to extend the macroprogramming
approach for heterogeneous systems such that the technique can be
applied to new and different domains.

� In existing macroprogramming techniques, the programmer determines
which application logic is placed on which device, and how the in-
teraction between the different systems should be done. This is not
straightforward, and the programmer must have a good understand-
ing of the underlying systems and the functionality available, as well
as how and when these need to communicate with each other. Hav-
ing a solution which removes the need for the programmer to give
placement and communication directives is preferred as it simplifies
the writing of such programs.

To address the above aims, we propose techniques for defining a multi-
system application using a single program description without the need for
explicit information about placement or communication. For heterogeneous
systems, we propose a two-stage compilation process where code is first
generated into existing high-level languages using multi-target compilation
techniques, and then these generated programs are further compiled down
to the target systems using standard compilers. To write programs which
span multiple systems, we identify the need to limit the application domain
and create domain specific languages. Our main contributions are given
below:

1.1. AIMS AND ACHIEVEMENTS 5

Macroprogramming We propose a technique where a single software pro-
gram generates an intermediate representation which can be analysed,
transformed and used for different interpretations, including simula-
tion and the generation of code for different architectures. A frame-
work takes as input a single program written by a programmer which
determines the behaviour of a number of systems. This program gen-
erates an internal representation which can be analysed by the frame-
work itself — for example, to calculate the cost or duration of exe-
cuting a function on a specific system. The framework can transform
the internal representation to place logic on different systems, and to-
gether with the analysis capability, determine an optimal placement
strategy. Finally, once a placement strategy has been chosen, the ap-
plication logic generates custom target code for each device. We also
show that such an approach does not come at the expense of excessive
computation power.

Stream processing domain specific language To illustrate the technique of
macroprogramming, we design and implement a domain specific lan-
guage for macroprogramming stream-processing applications on het-
erogeneous wireless sensor networks. We show how the language and
framework are expressive enough to successfully implement a range
of stream-processing applications — applications where data is con-
tinuously flowing through the system as data is sensed on the sensors
and processed inside the network. We also evaluate how generated
code compares on performance with hand-written code.

Commitment-based smart contract language To further illustrate the ver-
satility of the technique and framework, we also create a language for
writing smart contracts which span across multiple blockchain sys-
tems. We define a simple, yet expressive, language for commitment-
based smart contracts where the interactions between participants and
smart contracts are limited to commitments.

6 CHAPTER 1. INTRODUCTION

To validate the above contributions, we have developed a number of
use-cases across very different domains:

Intelligent Cooling and Lighting System The first use-case is set in the do-
main of wireless sensor networks where a single-program can be used
to generate code for any building layout such that cooling and light-
ing systems are turned on and off according to motion detectors. The
use-case has been successfully implemented and as part of the evalu-
ation, the performance of the resulting code has been compared to a
hand-written version.

Smart Rent Management system The second use-case extends the language
used in the first case study to go beyond the boundaries of wireless
sensor networks and into blockchain systems. The use case shows
how a single-description program can be split to run across wireless
sensor nodes, edge devices and a blockchain system to calculate con-
sumption of electricity and usage of appliances.

Property Sale This use case shifts the domain focus to blockchain systems
where the proposed commitment-based smart contract language is
used to implement a property sale involving three participants (buyer,
seller and notary) and three assets (currency, property and notary vote).
The case study is fully implemented to show how the proposed frame-
work can be used in a completely different setting with blockchain
systems and using a commitment-based smart contract model.

Single-Shot DAO We show how a single-shot decentralised autonomous
organisation (DAO) can be implemented using the commitment-based
smart contract language and the proposed framework. This use-case
shows how the use of a macroprogramming language, the framework
and the underlying network of interconnected blockchain systems, a
DAO can grow beyond the boundaries of a single blockchain system
as participants can interact via different blockchain systems.

1.2. OVERVIEW OF SUBSEQUENT CHAPTERS 7

1.2 Overview of Subsequent Chapters

The thesis has been divided into three main parts. The first part provides
background, and the remaining parts deal with macroprogramming across
different domains.

Part I This part mainly serves to set the scene and provide the background
necessary in later parts.

Chapter 2 gives an overview on macroprogramming, how it origi-
nated and what the main challenges are.

Chapter 3 describes the technique of embedding a domain specific
language in a host language. It starts by describing the different
embedding techniques, and then it is followed by a description
of the respective challenges.

Part II In this part we focus on macroprogramming in the domain of wire-
less sensor networks.

Chapter 4 provides background on the domain of wireless sensor net-
works, starting with a description of the main characteristics of
a wireless sensor node. This is followed by an overview of the
key challenges in this domain, to motivate the use of macropro-
gramming for wireless sensor networks. Finally, a variety of ex-
isting programming techniques is described to give the reader a
broader understanding of the various possible approaches.

Chapter 5 describes an embedded domain specific language frame-
work for macroprogramming heterogeneous wireless sensor net-
works. The language is ideal for stream-processing applications
— a number of simple examples are defined to illustrate the use
of the language. Finally, a couple of use-cases for smart buildings
are used to illustrate the effectiveness of the language at a higher
level of abstraction.

8 CHAPTER 1. INTRODUCTION

Part III In this part, we shift focus on to the domain of blockchain technol-
ogy and smart contracts.

Chapter 6 provides background on blockchain technology and smart
contracts. It starts with an overview of a number of different
blockchain systems and the key characteristics of the smart con-
tract languages used on these platforms.

Chapter 7 extends the heterogeneity aspect of the framework from
Chapter 5 to reach beyond the domain of wireless sensor net-
works by including blockchain and edge systems.

Chapter 8 introduces a new embedded domain specific language and
framework for describing commitment-based smart contracts that
span multiple blockchain systems. Two use-cases (a property sale
and a single-shot decentralised autonomous organisation) with
assets residing on different blockchain platforms, is used to illus-
trate the effectiveness of the language.

Lastly, the ninth and final chapter gives a short summary and critical
analysis of the main contributions given in this thesis and investigates pos-
sible extensions which may prove to be fruitful.

Part I

Background
This part of the thesis sets the scene for the rest of the work by
introducing the background and techniques used. Chapter 2 in-
troduces the notion of macroprogramming. Chapter 3 describes
the techniques of embedding domain specific languages.

9

2

Macroprogramming

2.1 Introduction

In the early days of computing, the first computers had limitations in com-
putational capability and memory capacity so programmers wrote hand-
tuned machine code to program them. It did not take long for scientists
to realise that it required a significant amount of intellectual effort to write
programs in this way, so a number of higher-level programming languages
were soon born. These languages were easier for programmers to reason
with because they were at a higher level of abstraction. The software pro-
grams were then compiled down to the low-level machine code to be exe-
cuted on a computer system.

As software applications grew in complexity, it became increasingly com-
mon for applications to grow beyond the boundaries of a single-system and
to make use of several systems to achieve an application goal. This may
have been needed for a number of possible different reasons — the need for
more computational power than is available on a single system; the need for
specialised functionality only available on specific systems; or simply due
to the nature of the application which may require systems to be physically
placed in different locations.

Developing such multi-system applications meant writing several soft-
ware programs (one for each system, in possibly different languages) and

11

12 CHAPTER 2. MACROPROGRAMMING

the communication between the systems must be explicitly defined by the
programmer — communications channels must be managed, messages are
sent and received over the network, synchronisation between systems must
be handled and so on. This approach significantly increases the level of
complexity and is more error-prone — programmers of these systems must
have expert programming skills.

To alleviate and address this problem, a new technique emerged in the
nineties in the domain of hardware/software codesign — hardware and
software components of electronic systems were designed and described
together using the same language. The use of a common language for both
hardware and software components meant that a single programmer was
able to fulfil the role of both a hardware engineer and a software archi-
tect with the compiler handling the translations to the different compo-
nents [Page, 1996].

A decade later, as the domain of wireless sensor networks gained inter-
est, the term macroprogramming was coined by Newton and Welsh [New-
ton and Welsh, 2004] to describe a technique to write a single program for
a network of tens, hundreds or even thousands of connected devices. Fig-
ure 2.1 illustrates the concept of writing a single program (macroprogram)
to generate programs in a higher level language, which are then compiled
down to machine code to be executed directly on systems.

Throughout this thesis, we use the term node to refer to a single individ-
ual component of a set of systems being programmed and the term network
to refer to the ensemble of the systems. Depending on the domain, a node
may refer to a wireless sensor device in wireless sensor networks or the
hardware component in the domain of chip design. A node is defined as
an entity which has computational capability and which may communicate
with other nodes to exchange information as part of an application.

2.1. INTRODUCTION 13

Machine	code Machine	code

High-level	language High-level	language

Macroprogram

Figure 2.1: Macroprogramming of systems

2.1.1 Hardware/Software Codesign

Hardware/software codesign surfaced in the early 1990s for the concurrent
design of hardware and software components of electronic systems. In this
discipline, the optimisation and synergy of hardware and software compo-
nents is sought. The goal is to optimise on constraints such as cost, perfor-
mance and power utilisation. Codesign refers to the coordination between
interdisciplinary design teams — firmware, operating systems and applica-
tion developers on the software side; chip designers on the hardware side.

Early work in two projects sought to address the challenges from two
complementary approaches. In the Vulcan project [De Michell and Gupta,
1997], solution design started from a hardware-only approach and tasks
were migrated to software to reduce costs as long as performance con-
straints were satisfied. On the other hand, the Cosyma system [Henkel
and Ernst, 1997], which was developed over the same period as Vulcan,
started from a software-only approach and tasks were migrated to hard-
ware to meet performance requirements. One of the major shortcomings of
these early projects, was that both assumed that implementation was single-
threaded. Nevertheless, this early work inspired others to investigate new

14 CHAPTER 2. MACROPROGRAMMING

approaches to design and partition across hardware and software compo-
nents.

To address these requirements, researchers looked into ways to raise the
level of abstraction at which system designers specify their systems. Lan-
guages for defining both the hardware and software parts were needed.
Hardware description languages (HDLs) were suitable for the hardware
component, whereas software designers were more used to programming
languages such as C and C++ instead. Handel [Page, 1996] attempted to
bridge the gap between the two parts, and provided ways to deal with the
concurrency element. Other languages, such as SystemC [Grötker et al.,
2007] and SpecC [Dömer et al., 2008], emerged as extensions of C and C++
to address both the hardware and software elements.

Handel-C

Handel-C is a high-level language designed to compile programs into syn-
chronous hardware and software components. Handel-C has C-like syntax
and is inspired by CSP and Occam. It is ideal for software engineers, with
no or limited hardware background, to implement and translate an algo-
rithm into hardware and software components. The different components
(hardware and software) are written separately by the programmer using
the same language, and a netlist is generated for the hardware component
with which an FPGA can be programmed.

The hardware and software components of a simple Handel-C program
[Page, 1996] are shown in Listings 2.1 and 2.2.

Listing 2.1: Handel-C program for hardware implementation
PROC main_hw (

CPC_Tputer.PAIR.IN : CHAN OF INT16 FromT805,
CPC_Tputer.PAIR.OUT : CHAN OF INT16 ToT805,
CPC_SRam.RAM.ADDR : CHAN OF INT15 SRH_Addr,
CPC_SRam.RAM.IN : CHAN OF INT16 SRH_Din,
CPC_SRam.RAM.OUT : CHAN OF INT16 SRH_Dout)
INT16 a, d:
SEQ

2.1. INTRODUCTION 15

UNTIL a = 32768(INT16)
PAR

SRH_Addr ! a <- 15
SRH_Dout ! 0 (INT16) - a
a := a + 1(INT16)

WHILE TRUE
SEQ

FromT805 ? a
PAR

SRH_Addr ! a <- 15
SRH_Din ? d

ToT805 ! d
:

The example shown is a trivial one, with little usefulness other than to
show the reader how the structure of a program is made. The hardware
part of the system shown in Listing 2.1 first fills the RAM with numbers,
and then listens for requests from the software process (the T805 micropro-
cessor) to lookup and return a value to the software component. The hard-
ware and software components communicate over channels and follow the
occam model.

Listing 2.2: Handel-C program for software implementation
PROC main_sw()

INT s :
INT16 r :
SEQ

s := 0(INT)
WHILE s <= 32768(INT)

SEQ
DPGA.write (INT s)
DPGA.read.16 (r)
so.write.string (fs, ts, "*n result = ")
so.write.int (fs, ts, INT s, 12)
so.write.int (fs, ts, INT r, 12)
s := s + 1 (INT)

:

16 CHAPTER 2. MACROPROGRAMMING

The software component of the example is shown in Listing 2.2, where a
loop iterates through all the RAM locations and requests the value from the
hardware component.

The application is constructed by combining the hardware and software
components. The programmer is explicitly defining which part of the algo-
rithm should be placed on the hardware and which on the software using
the same programming language. The top-level structure, with suppressed
details, is shown here:

PAR
Hardware_Process (in_chan, out_chan)
Software_Process (out_chan, in_chan)

The advantage of using a single framework to define both the hardware
and software components is that less specialised skills (for either software or
hardware) are required. Hardware designers need to become more literate
in programming, and software programmers need to become more familiar
with parallelism concepts.

2.1.2 Wireless Sensor Networks

The term macroprogramming emerged in the domain of Wireless Sensor
Networks (WSNs) and refers to the technique of programming sensor net-
works as a whole, rather than at the individual node level. Figure 2.2 shows
a taxonomy of the different programming models for WSNs — these are
divided between node-level and network-level models. In the domain of
hardware/software codesign (as described in the previous section) program-
mers had to deal with two components — the hardware and software com-
ponents. In WSNs, it is normal to have tens, hundreds and even thousands
of devices, so the challenge of writing a single program for the network of
nodes is even more desirable, but also challenging.

In this section, we will focus on the network-level programming model
and more specifically on macroprogramming.

2.1. INTRODUCTION 17

Programming Models

Network LevelNode Level

OS / Node­Level
programming language

Virtual Machine /
Middleware Database Abstraction Macroprogramming

Sequential Imperative Declarative Functional

Figure 2.2: A taxonomy of programming models for wireless sensor net-
works

Network-level programming of WSNs can be classified into two main
categories — the first is a database abstraction and the second is a macro-
programming technique. In a database abstraction, the network of nodes
is viewed in a similar manner as one would view and query a database for
information. The database abstraction is ideal for a limited range of appli-
cations — applications where the primary focus is to collect and aggregate
readings from a sensor network. The second approach is to use a macropro-
gramming language which provides a global view of the network and more
flexibility, than the database abstraction, for a wider variety of applications.
Macroprogramming languages allow for a range of applications where data
may flow between one node and another, and processed inside the network.

Macroprogramming languages can be further classified into two broad
categories. The first category is for sequential imperative programming
models, which includes the languages Pleiades [Kothari et al., 2007], Kairos
[Gummadi et al., 2005] and COSMOS [Awan et al., 2007]. Pleiades and

18 CHAPTER 2. MACROPROGRAMMING

Kairos are very similar in that they allow the programmer to have a cen-
tralised view of the sensor network and programming is done by giving
instructions in a step-by-step fashion. On the other hand, COSMOS allows
functional components to be wired together to determine the data flow. The
resulting program is then distributed across the network as the runtime
environment instantiates the functional components on the devices. The
second category is a declarative functional approach and includes the lan-
guages Regiment [Newton et al., 2007b], Flask [Mainland et al., 2008] and
Wavescript [Newton et al., 2008]. The programmer describes the applica-
tion at a high level of abstraction, and the compiler breaks it down into node
low-level behaviour — hiding away the details of intra-node communica-
tion or how computation is done across the sensor network. This approach
provides the highest level of abstraction, while supporting the implementa-
tion of a wide variety of applications.

A macroprogram typically involves a two-stage compilation process —
the macroprogram is first compiled into node-level code, and then this is
further compiled into object code to be loaded and executed onto the indi-
vidual nodes.

Macroprogramming Languages

In this section we shall have a closer look at some of the macroprogramming
languages in the domain of wireless sensor networks.

Pleiades [Kothari et al., 2007] provides the programmer with a centralised
view of the sensor network. Implemented as an extension of the C lan-
guage, new constructs allows the programmer to address nodes in the
network and to access local state on the individual nodes. The higher
level of abstraction removes complications of inter-node communica-
tion and node-level resource management. By default, a Pleiades pro-
gram has a sequential thread of control but it introduces a language
construct that allows concurrency of execution across multiple nodes.
The Pleiades compiler analyses the code and determines nodecuts —

2.1. INTRODUCTION 19

a unit of work that can be executed on a single node. The code is
then translated into nesC programs that are executed on the TinyOS
system.

The sample code below, taken from Kothari et al. [2007] is an excerpt
from a street parking application written in Pleiades. The cfor con-
struct is used to run code in parallel over a set of nodes.

while(!reserved && !empty(nToExamine)){
cfor(nodeIter=get_first(nToExamine);nodeIter!=NULL;

nodeIter = get_next(nToExamine)){
neighbors@nodeIter=get_neighbors(nodeIter);
for(neighborIter@nodeIter=get_first(neighbors@nodeIter);

neighborIter@nodeIter!=NULL;
neighborIter@nodeIter=get_next(neighbors@nodeIter)) {

if(!member(neighborIter@nodeIter,nExamined))
add_node(neighborIter@nodeIter,nToExamine);

}

if(isfree@nodeIter){
if(!reserved){

reserved=TRUE; reservedNode=nodeIter;
isfree@nodeIter=FALSE;
break;

}
}

remove_node(nodeIter,nToExamine);
add_node(nodeIter,nExamined);

}
}

Kairos [Gummadi et al., 2005] uses a centralised approach for specifying
the global behaviour of a sensor network. In a similar manner to
Pleiades, Kairos provides the programmer with constructs to access
local state on the nodes and to address arbitrary nodes. Kairos also
provides the programmer with the ability to iterate through the node’s
one-hop neighbours. Using these constructs, the programmer can im-

20 CHAPTER 2. MACROPROGRAMMING

plicitly express the distributed data flow and distributed control flow.
Code generation is implemented as a preprocessor add-on to the com-
piler that generates the binary code. The Kairos model is similar to
a shared-memory based parallel programming model. Shared node
state is kept consistent across the different nodes using a message-
passing approach. Kairos is implemented as an extension of Python.

The following code shows a complete Kairos program for building a
routing tree from a given root node. The program is written in a cen-
tralised fashion, and the use of the function get_neighbours acquires
the one-hop neighbours at each node for the construction of the rout-
ing tree.

void buildtree(node root)
node parent, self;
unsigned short dist_from_root;
node_list neighboring_nodes, full_node_set;
unsigned int sleep_interval=1000;
//Initialization
full_node_set=get_available_nodes();
for (node temp=get_first(full_node_set); temp!=NULL;

temp=get_next(full_node_set))
self=get_local_node_id();
if (temp==root)

dist_from_root=0; parent=self;
else dist_from_root=INF;
neighboring_nodes=create_node_list(get_neighbors(temp));

full_node_set=get_available_nodes();
for (node iter1=get_first(full_node_set); iter1!=NULL;

iter1=get_next(full_node_set))
for(;;) //Event Loop
sleep(sleep_interval);
for (node iter2=get_first(neighboring_nodes); iter2!=NULL;

iter2=get_next(neighboring_nodes))
if (dist_from_root@iter2+1<dist_from_root)

dist_from_root=dist_from_root@iter2+1;
parent=iter2;

2.1. INTRODUCTION 21

Wavescript [Newton et al., 2008] is a domain specific language for stream
processing applications with focus on asynchronous data streams. It is
a functional language with support for type inference, polymorphism
and higher-order functions. Wavescript uses three implementation
techniques. First, a Wavescript program is partially evaluated into
stream dataflow graphs. Second, it uses profile-driven compilation
to enable optimisations and finally includes an extensible system for
rewrite rules to capture and optimise algebraic properties in specific
domains. The code below is an excerpt from a case study for localizing
yellow-bellied marmots taken from Newton et al. [2008].

The same code runs on every node in the network. Each node is
equipped with four sound sensors aimed at different directions for
calculating the direction of arrival (DOA) of the sound of a marmot.

// Node-local streams, run on every node:
NODE "*" {

(ch1,ch2,ch3,ch4) = ENSBoxAudioAllChans(44100);
// Perform event detection on ch1 only:
scores :: Stream Float;
scores = marmotScores(ch1);
events :: Stream (Time, Time, Bool);
events = temporalDetector(scores);
// Use events to select audio segments from all:
detections = syncProject(events, [ch1,ch2,ch3,ch4]);
// In this config, perform DOA computation on the ENSBox:
doas = DOA(detections);

}

Information is then forwarded to the server where data from all nodes
is fused together to determine the likely location of the marmots.

SERVER {
// Once on the base station, we fuse DOAs:
clusters = temporalCluster(doas);
grid = fuseDOAs(clusters);
// We return these likelihood maps to the user:
RETURN grid

22 CHAPTER 2. MACROPROGRAMMING

}

Regiment [Newton et al., 2007b] is a high-level functional language de-
signed for spatiotemporal macroprogramming sensor networks, that
translates global programs into node-level event-driven code. The
programmer sees the network as a set of spatially distributed time-
varying signals, representing individual nodes or regions. Regiment
provides constructs for aggregating streams, and defining and manip-
ulating regions. Compilation changes the program into an intermedi-
ate language called token machines which provides for local computa-
tion, sampling and communication with other nodes. The Regiment
syntax is similar to Haskell, and a complete program to calculate the
average temperature across a sensor network is shown here:

dosum :: float, (float, int) -> (float, int)
fun dosum(temp, (sumtemp, count)) {

(sumtemp+temp, count+1)
}
tempreg = rmap(fun(nd){sense("temp",nd)}, world);
sumsig = rfold(dosum, (0,0), tempreg);
avgsig = smap(fun((sum,cnt)) {sum / cnt}, sumsig);
BASE <- avgsig

The example above illustrates a complete Regiment program. The
program starts with a number of function and variable bindings, fol-
lowed by a single line of the form “BASE <- <expression>”. The last
line in the program determines what information will be returned to
the base station from the sensor network. The program makes use of
a number of language operations such as rmap (map on regions), smap
(map on signals) and rfold (fold on regions with an initial value and
combining function).

Flask [Mainland et al., 2008] is a stream processing DSL embedded in
Haskell. Flask provides a staging mechanism that maintains a clean
separation between node-level code and the metalanguage used to

2.1. INTRODUCTION 23

generate node-level code fragments. Node-level code can be written
in a language called Red, which inherits Haskell syntax but places
some restrictions such as disallowing closures and recursive data types
to ensure that the code can be translated efficiently into node-level
code. Flask places low-level code nesC on equal footing as Red, in
that it uses a technique called quasiquoting [Mainland, 2007] to allow
the interchangeable use of nesC and Red. Quasiquoting is a technique
for the inclusion of code in another language as part of programs writ-
ten in the host language — in this case, the use of nesC and Red can be
included in Haskell programs. Flask uses the term signals for streams
and provides a set of signal combinators that can be used to merge,
filter and aggregate signals. The following is an example program
written in Flask that attempts to detect earthquakes using a ratio of
two low-pass filters approach on a seismometer signal.

detect :: Double -> Double -> Double -> S Double -> S ()
detect low high thresh =

(\sig -> ewma high sig &&& ewma low sig)
>>>
map [$exp | \(hi, lo) -> hi / lo > $flo:thresh |]
>>>
edge

The program takes periodic samples from a seismic sensor and pro-
cesses the data through two exponentially-weighted moving average
(ewma) filters with different gain settings. If the ratio of the filters ex-
ceeds a threshold, this indicates that the seismic signal is significantly
larger than the background noise, and a message is transmitted to the
base station. The program shows the use of combinators for splitting
and merging signals, and the use of quasiquoting for mapping an ex-
pression onto an incoming signal.

COSMOS [Awan et al., 2007] is another architecture for macroprogram-
ming heterogenous sensor networks. COSMOS is made up of a lean
operating system called mOS and an associated programming lan-

24 CHAPTER 2. MACROPROGRAMMING

guage called mPL. A programmer can specify the aggregate system
behaviour in terms of distributed dataflow and processing. Functional
components, written in a subset of the C language, are stand-alone
modules that can be re-used across applications. Through composi-
tion of functional components, COSMOS allows direct specification of
aggregate system behaviour. Contracts are used to affect and influence
the low-level system behaviour and performance without forfeiting
the high level programming interface for the application developer. A
sample macroprogram for a structural monitoring example is shown
below:

//logical instances
accel_x : accel(12);
disp : disp1, disp2;
cpress_fc : cpress;
thresh_fc : thresh(250);
max_fc : max;
fft_fc : fft;
ctrl_fc : ctrl;

// refining capability constraints
@ on_mote = MCAP_ACCEL_SENSOR : thresh, cpress;
@ on_srv = MCAP_UNIQUE_SERVER : ctrl;

IA {
timer(30) -> accel;
accel -> cpress[0];
cpress[0] -> thresh[0], max[0];
thresh[0] -> fft[0];
fft[0] -> disp1;
max[0] -> ctrl[0], disp2 | max[1];
ctrl[0] -> thresh[1];

}

Functional components, such as accel, cpress and thresh above are
defined in C code elsewhere. The program above creates instances of
functional components and the interaction assignments (shown under

2.2. DISCUSSION AND CHALLENGES 25

IA above) describe the dataflow from one component to another.

2.2 Discussion and Challenges

In this section we discuss the key challenges of macroprogramming. Code
slicing determines how application logic is split across the available nodes,
whereas interoperability refers to how nodes communicate with each other
during runtime. The heterogeneity challenge refers to the difficulties of pro-
gramming nodes with different architectures and characteristics.

2.2.1 Code Slicing

A declarative macroprogram defines the behaviour of an application at the
network-level without specifying how the logic should be mapped across
the nodes. This approach raises the level of abstraction and hides away the
detail from the programmer.

The mapping of tasks across a set of heterogeneous nodes was shown
to be an NP-complete problem in Blickle et al. [1998]. The problem is made
up of three parts: (1) selection of the right type of nodes from the available
set; (2) mapping from the application description onto the selected nodes;
and (3) discovery of different placements and implementations that satisfy
a number of constraints. For example, consider a smart building equipped
with hundreds of wireless sensors capable of sensing the environment and
communicating with others. To build an application which uses the tem-
perature in the kitchen, a device with temperature sensing capabilities and
physically located in the kitchen must be used. If that same application uses
readings from several rooms to calculate the average temperature in the
building, the computation for calculating the average can be placed across
the hundreds of devices connected to the network in many different ways.
A placement strategy may be used to optimise the energy consumption of
the network. This may involve reducing the number of radio messages be-

26 CHAPTER 2. MACROPROGRAMMING

tween devices, perform calculations in-network, or utilising devices which
have access to a permanent or renewable power source.

The example described is intentionally simplistic to easily explain this
challenge. Real-world applications have computations which are several
orders of magnitude more complex than the ‘average temperature’ exam-
ple. A placement strategy takes into consideration the trade-off between
speed and accuracy, by using approximation functions to calculate a result
quickly, and deferring to a more powerful node for a more accurate result
only when this is needed. For example, audio-related applications are well
known to make use of computationally intensive functions. In many cases,
approximation functions can be used by nodes placed close to the source
to detect an event, and only information of interest is sent to be processed
centrally (and more accurately) by a more powerful server. In this way, the
energy of the nodes will be preserved as much as possible.

2.2.2 Interoperability

The second key challenge in macroprogramming is the need for a runtime
communication layer. Nodes in the network need the ability to communi-
cate with each other during runtime. The communication layer depends
on the type of network, but can be broadly classified under two categories.
The first is a message-passing model, where information is shared between
nodes through messages passed over a medium (see Figure 2.3). The com-
munication layer takes different forms, depending on the domain at hand.
In hardware/software codesign, the communication between chips and pro-
cessor is held over the system bus, whereas in wireless sensor networks,
nodes communicate with each other over the radio network and messages
from one node to another may be either a singe-hop, if within radio signal
range, or multi-hop via intermediaries. Traditional software applications
may communicate with each other using message queues. At a high level
of abstraction, every node is ‘assumed’ to have connectivity with all other
nodes of the network that it needs to interact with.

2.2. DISCUSSION AND CHALLENGES 27

A
C

B

Communication
Layer

Figure 2.3: Communication layer between nodes

The second model is based on a shared memory approach, where the
nodes in the network conceptually share a part of the memory with other
nodes. A value, flag or instruction can be stored to the local memory which
is then replicated to other nodes. A shared memory approach is a higher
level of abstraction, but still implemented using message-passing.

2.2.3 Heterogeneity

Networks of nodes may be classified in two categories: homogeneous and
heterogeneous. When writing a macroprogramme for homogeneous net-
works, it may be possible to have the same generated code used by all the
nodes of the network. In a case-study for Wavescript [Newton et al., 2008],
the authors investigated the use of a sensor network to localise marmots.
The same generated code was loaded on all the devices in the network,
giving the devices the ability to use sound sensors to detect and identify
marmots and to relay messages to the base station. In a similar manner,
the authors of Flask [Mainland et al., 2008] deployed a sensor network to
detect earthquakes. The devices in the network, equipped with seismic sen-
sors, were programmed with identical code to detect seismic activity and
forward messages to the central server.

The second category involves heterogeneous networks — the nodes in
the network are different from each other. This may include hardware

28 CHAPTER 2. MACROPROGRAMMING

differences (i.e. architecture), software differences (i.e. programming lan-
guages) and differences in capability and functionality. A macroprogram-
ming approach for heterogeneous networks must be aware of the differ-
ences in the target nodes, such that the code slicing and code generation
process is aware of these differences.

2.3 Conclusions

In this chapter we have described macroprogramming — a technique used
to program a network of nodes using a single program description. We have
also outlined the three key technical challenges of the technique. Code slic-
ing determines how the application logic is split and distributed across the
available nodes, interoperability refers to how nodes communicate together
and the heterogeneity challenge relates to the handling of architectural and
functional differences of nodes in the network.

3

Embedded Domain Specific
Languages

A domain specific language (DSL) is a programming language intended
for a particular application domain. In contrast to general-purpose pro-
gramming languages, an effective DSL allows a programmer to develop
applications quickly and easily. It is easier to reason about and modify
when compared to programs written in general-purpose programming lan-
guages, making it possible for non-expert programmers to use it [Hudak,
1998]. A good DSL covers precisely the semantics of the application do-
main — no more and no less, making it a better abstraction [Hudak, 1996].
DSLs are intended to be used by domain experts, rather than expert pro-
grammers.

However, it is often argued that the initial investment cost for creating
the programming environment for a DSL outweighs the benefits reaped [Hu-
dak, 1998]. A solution lies in embedding the DSL in another language,
thus creating a domain specific embedded language (DSEL). The DSEL in-
herits the infrastructure of the host language, tailoring it in ways appli-
cable to the domain of interest. Functional languages are often used as
a host language due to their features which include pattern matching, al-
gebraic data-types, lazy evaluation, higher-order functions, strong typing,
polymorphism and overloading [Gibbons, 2015; Kamin, 1998]. Haskell, a
pure functional programming language, is often the language of choice

29

30 CHAPTER 3. EMBEDDED DOMAIN SPECIFIC LANGUAGES

and has been used successfully in various domains including hardware
description [Bjesse et al., 1998; Pace, 2007], animation [Elliott and Hudak,
1997], digital signal processing [Axelsson et al., 2010a], origami-based ge-
ometry [Caruana and Pace, 2007; Hudak, 1998], graphics [Yates and Yorgey,
2015] and stream processing [Aronsson et al., 2014]. The syntax of Haskell is
lightweight and flexible allowing the creation of a DSEL with syntax which
is close to what one would provide in a corresponding standalone DSL [El-
liott et al., 2003].

3.1 Shallow versus Deep Embedding

There are two main approaches to embedded DSLs — commonly called
shallow and deep embedding [Gibbons, 2015]. In a shallow embedding, the
terms of the DSL are implemented directly as the values to which they eval-
uate. With a deep embedding, the terms in the DSL construct an internal
representation — such as an abstract syntax tree. The result of a computa-
tion inside a deeply embedded DSL is a structure that can be interpreted
in different ways. The structure can be analysed, it can be transformed as
part of an optimisation process and it can be evaluated into a value or cross-
compiled into a low-level language [Gill, 2014] (see Figure 3.1).

Shallow Embedding

Historically, DSELs have been shallow embedded – which is good enough
when there is only one interpretation of a program description. In figure 3.1,
an arithmetic expression is evaluated into a value. No semantic information
is stored about the expression, and the result is calculated using the host
language’s functions. Here we will illustrate using a simple function of
how a simple shallow embedded DSL can be constructed in Haskell.

foo :: Float -> Float -> Float -> Float
foo x y z = (x * y) + z

3.1. SHALLOW VERSUS DEEP EMBEDDING 31

Syntax
(2 * 5) + 3

Evaluate Compile

Structure

Add

Mul Val 3

Val 5Val 2

13

Shallow Deep

Transform

Low Level
Code

Figure 3.1: Shallow and deep embedding

The function foo, used to define a construct in a DSL, multiplies two
numbers and adds the third one using the host language’s native functions
to evaluate to a result. The evaluation of the expression foo 2 5 3 returns
the value 13.

Once evaluated, the structure of the original expression is lost. Shal-
low embedding is ideal when only one interpretation is needed. It has the
added benefits of being fast to evaluate, as it makes use of the host language
functions, and is quick to build up.

Deep Embedding

Deep embedding captures the semantics of the expression in a structure
which can be transformed, analysed and interpreted in different ways. There
are a few downsides for deep embedding – evaluation functions are more
complex, and in general more code is needed. For a simple arithmetic DSL,

32 CHAPTER 3. EMBEDDED DOMAIN SPECIFIC LANGUAGES

we would implement deep embedding in this way:

data Exp = Plus Exp Exp
| Mult Exp Exp
| Val Integer

deriving (Show)

(.+.) :: Exp -> Exp -> Exp
x .+. y = Plus x y

(.*.) :: Exp -> Exp -> Exp
x .*. y = Mult x y

A function which is similar to foo defined earlier is fooDeep, defined as
follows using a deep embedding:

fooDeep :: Float -> Float -> Float -> Exp
fooDeep x y z = (Val x .*. Val y) .+. Val z

An expression can be evaluated in different ways. The arithmetic evalu-
ation is implemented as follows:

eval :: Exp -> Integer
eval (Plus a b) = (eval a) + (eval b)
eval (Mult a b) = (eval a) * (eval b)
eval (Val x) = x

The main advantage of deep embedding is that we have the structure
of expression in an abstract syntax tree. We can analyse the expression or
do transformations – for example, how many Plus operators are present
in (4 .+. 4 .+. 4) or to convert the same expression into a (4 .*. 3). The
deep representation allows us to evaluate the expression in a different way
– for example, to generate low-level highly optimised code to run on an-
other device. Lava uses a deep embedding approach for hardware descrip-
tion [Bjesse et al., 1998].

3.1. SHALLOW VERSUS DEEP EMBEDDING 33

Shallow and Deep Embedding

Shallow embedding is ideal when there is one interpretation of an expres-
sion and a DSL needs to be built and extended quickly. Deep embedding
allows analysis, transformations and multiple interpretations of the same
expression — it significantly improves the ability to manipulate the input
expression. With deep embedding, new interpretations can be added easily,
at the price of having a fixed set of constructs. Adding a new construct to
the language means updating all existing interpretation functions. Feldspar
combines the two approaches, deep and shallow, to attempt to gain the best
of both worlds [Axelsson et al., 2010b]. However, when a shallow embed-
ded construct cannot be translated into a deeply embedded one, the core
language still needs to be extended [Svenningsson and Axelsson, 2012].

The following code, taken from Dévai et al. [2010], gives the reader a
taste of Feldspar for a simple function to calculate the sum of squares.

sumSq :: Data Int -> Data Int
sumSq n = sum (map square (1 ... n))

where
square x = x*x

The code is very similar to a Haskell program. Depending on how it is
interpreted, different outputs can be generated. Feldspar can generate low-
level efficient C code by optimising the function structure before generating
the code. The core program for sumSq is shown below:

*Main> printCore sumSq
program v0 = v11_1

where
v2 = v0 - 1
v3 = v2 + 1
v4 = v3 - 1
(v11_0,v11_1) = while cont body (0,0)

where
cont (v1_0,v1_1) = v5

where

34 CHAPTER 3. EMBEDDED DOMAIN SPECIFIC LANGUAGES

v5 = v1_0 <= v4
body (v6_0,v6_1) = (v7,v10)

where
v7 = v6_0 + 1
v8 = v6_0 + 1
v9 = v8 * v8
v10 = v6_1 + v9

3.2 Challenges of DSELs in Functional

Languages

Functional languages are often used for the embedding of DSLs. The clean
syntax, lazy evaluation, pattern-matching, higher-order functions, polymor-
phism, and strong typing are features which come in useful when creating
a DSL. However, a few challenges still exist which are described in this sec-
tion.

3.2.1 Sharing and Feedback

One main feature of functional languages is referential transparency, for which
the output of an expression is always the same for the same arguments. Ref-
erential transparency is a result of lambda beta reduction, where evaluation
is simply argument replacement [Cordina and Pace, 2006]. Unfortunately
this means that we are unable to detect when a component is used mul-
tiple times leading to multiple evaluations of the same component. Even
more problematic is when feedback loops exist since with lazy evaluation
this translates into a recursive and endless loop. For several applications,
including hardware circuits [Claessen and Sands, 1999] and stream process-
ing [Aronsson et al., 2014], detecting component sharing is a necessity.

Let’s have a closer look at these problems. Consider a simple function,
called nextSquared, which returns the square of the next number.

addI :: Integer -> Integer -> Integer
addI i1 i2 = i1 + i2

3.2. CHALLENGES OF DSELS IN FUNCTIONAL LANGUAGES 35

nextSquared :: Integer -> Integer
nextSquared inp = let x = addI inp 1

in x * x

In typical functional language fashion, the expression x is evaluated
twice, even though the result will be the same. If this (simple) function
had to be translated into a circuit, the resulting circuit would not be very ef-
ficient, as the same calculation is performed twice. Due to referential trans-
parency, the translation process is unable to detect that the two components
(addI) are identical — see Figure 3.2. A more efficient translation detects the
reuse of the output from addI as shown in Figure 3.3.

Input 1

Output

1 addI

pre

*

addI

Figure 3.2: nextSquared (1) – the same calculation (addI) is done twice.

Input 1

Output

1

pre

*addI

Figure 3.3: nextSquared (2) – addI is done once and the output used twice.

The problem is magnified in the case of feedback loops, since this will
create an infinite loop with no terminating condition as the expression is
evaluated to generate a circuit or a C program.

A number of methods have been used to address this problem [Cordina
and Pace, 2006]:

36 CHAPTER 3. EMBEDDED DOMAIN SPECIFIC LANGUAGES

Wire Forking involves the explicit use of a circuit that represents the fork-
ing, or duplication, of an input wire into two or more output wires.
While this addresses the sharing problem, it does not address feed-
back loops and is therefore a partial solution.

Explicit Naming is a better solution where every component is given an
explicit name by the programmer. During the translation phase, the
names are stored and when the same name is encountered the evalu-
ation stops to avoid endless recursion loops. This approach was used
in Hydra for circuit design [O’Donnell, 2002]. The major drawback is
that it relies on the programmer to keep track of names and ensure
that the same label is not used more than once.

Monadic State solves the problem of having the user keeping track of names,
as data is stored during evaluation and to ensure the same component
is not evaluated a second time. The first implementation of Lava used
this approach [Bjesse et al., 1998]. On the downside, it changes the
way the user uses the DSL and introduces special operators that affect
the readability of the code.

Observable Sharing is a technique proposed by Claessen which uses im-
mutable references and a reference equality test [Claessen and Sands,
1999]. The approach is similar to explicit naming, but the naming (or
references) are given to the components in an implicit manner and
hidden from the user. The DSL remains clean and intuitive for the
user.

3.2.2 Type Safety

When a DSL that handles multiple types is embedded in a statically typed
functional language, the resulting DSL is not statically typed. A data decla-
ration is unable to capture type information to ensure type safety and a DSL
may fail horribly – with an incomprehensible error message. This is a com-
mon problem when embedding a DSL in a functional language. One way

3.2. CHALLENGES OF DSELS IN FUNCTIONAL LANGUAGES 37

of addressing this problem is by using a type-checker, however types are
only checked at runtime, rather than at compile time, removing the benefits
of static typing for the DSL.

data Expr = ValI Integer
| ValB Bool
| And Expr Expr
| Plus Expr Expr

deriving (Eq, Show)

iVal x = ValI x
bVal x = ValB x
myAnd x y = And x y
myAdd x y = Plus x y

The data declaration Expr and the constructors iVal, bVal, myAnd and
myAdd can be used as a simple DSL that handles integers and booleans. The
data structure and associated constructors do not restrict the user from cre-
ating ill-typed expressions.

>> myAnd (iVal 5) (bVal True)
And (ValI 5) (ValB True)

>> myAdd (iVal 5) (bVal True)
Plus (ValI 5) (ValB True)

The DSL has allowed us to create incorrectly typed expressions for And
and Plus with an integer and a boolean — And needs two booleans and Plus

needs two integers. At runtime, a type checker must be used to validate the
types of the expression but this defeats the purpose of static typing.

The solution to these problems is to use Phantom Types which allow
static typing in an embedded DSL [Hinze et al., 2003; Leijen and Meijer,
1999] and avoid type safety problems. A phantom type wraps around the
existing data declaration becoming invisible from the user’s perspective.

newtype ExprP a = ExprP Expr
deriving (Eq, Show)

38 CHAPTER 3. EMBEDDED DOMAIN SPECIFIC LANGUAGES

iVal :: Integer -> ExprP Integer
iVal x = ExprP (ValI x)

bVal :: Bool -> ExprP Bool
bVal x = ExprP (ValB x)

myAnd :: ExprP Bool -> ExprP Bool -> ExprP Bool
myAnd (ExprP x) (ExprP y) = ExprP (And x y)

myAdd :: ExprP Integer -> ExprP Integer -> ExprP Integer
myAdd (ExprP x) (ExprP y) = ExprP (Plus x y)

ExprP is introduced and wrapped around Expr, and constructors are
modified to use the phantom type. The changes do not modify how the
DSL is seen by the user, but attempting to create an expression with incor-
rect types (for example myAnd with two integers) will cause the compiler to
report an error.

3.3 Conclusions

In this chapter, we have described embedded domain specific languages.
We outlined the differences between shallow and deep embedding, as well
as described the two key challenges when embedding in a functional lan-
guage — that is, sharing and feedback, and type safety of the DSLs. We also
described techniques to solve these challenges.

Part II

Macroprogramming for Wireless
Sensor Networks

Now that the background for macroprogramming and embed-
ded DSLs has been laid out, we propose a framework for macro-
programming heterogeneous wireless sensor networks. Chap-
ter 4 provides background about the domain of Wireless Sen-
sor Networks. Chapter 5 introduces a framework and language,
called D’ARTAGNAN, for macroprogramming Wireless Sensor
Networks.

39

4

Background: Wireless Sensor
Networks

4.1 Introduction

Wireless sensor networks emerged at the beginning of the 2000s, when ev-
eryday objects started becoming equipped with sensors and microproces-
sors. This domain later became known as the Internet of Things domain,
and a new wave of applications appeared for smart homes and buildings,
environmental monitoring, and many others.

In this chapter, we will start by looking at the structure of a wireless sen-
sor node. We will then describe the different challenges that exist in using
and programming these nodes, before looking at the various programming
models that exist.

4.1.1 Structure of a Wireless Sensor Node

A wireless sensor node is typically made up of a processing unit, a wire-
less communication interface, a number of sensors and/or actuators, and
a limited power source (e.g. battery) — see figure 4.1. A wireless sensor
network (WSN) is made up of a number of nodes and can be considered as
a distributed system with important differences to traditional distributed
systems — the nodes and the overall network are not as reliable, and node

41

42 CHAPTER 4. BACKGROUND: WIRELESS SENSOR NETWORKS

failure and unavailability becomes a normal part of the behaviour of sensor
networks. Many WSN deployments use devices which have constrained
resources. Limited processing capability, limited memory, and limited en-
ergy are three important constraints that have influenced how programmers
implement applications on top of WSNs. The typical amount of memory
(RAM) ranges between 2KB and 256KB, whereas program memory varies
between 32KB and 128KB. Application logic is often written in low-level
C or Assembly code making it quite hard for other programmers to read
and understand code written by someone else, as well as making it difficult
for the author of the same code to detect and fix a bug. Coupled with lim-
ited debugging utilities, which often are limited to a blinking LED, it makes
programming of such devices a significant challenge.

Power Unit

Sensors Microcontroller Transceiver

Figure 4.1: The structure of a wireless sensor node

In this chapter we describe the challenges for programming WSNs (Sec-
tion 4.2) and different programming approaches used (Section 4.3).

4.2 Challenges of WSN

4.2.1 Hardware Constraints

Wireless sensor nodes have very limited resources — memory, processing
and power. The limitations are primarily due to the small size of the de-
vices, as well as to keep production costs low. Typical applications for wire-
less sensor networks often involve the deployment of hundreds (or thou-
sands) of these devices in the area under observation. For example, in a

4.2. CHALLENGES OF WSN 43

smart building, one or more devices with on-board sensors might be placed
in each room of a building. The limited resources influence the design de-
cisions of the application programmer on how these sensor nodes can be
programmed to work together. In this section, we describe the different
limitations of wireless sensor nodes and how they influence program de-
sign.

Power Limitations

Energy consumption is the most important factor that determines the life-
time of a wireless sensor network. A sensor node has limited power supply
from a battery, and in some cases a node may be able to harvest energy
from the environment through seismic, photovoltaic or thermal conversion.
Careful and optimised use of energy determines whether the lifetime of a
WSN is measured in days, months or even years. Several architectural and
algorithmic approaches have been designed to optimise energy consump-
tion. There are three main subsystems in a wireless sensor node which con-
sume energy — radio, processing and sensing.

Energy optimisation can be done on two levels — node-level energy
optimisation and network-wide energy optimisation [Raghunathan et al.,
2002].

Several node-level energy optimisation strategies exist, such as: idle
components are automatically put into sleep mode by power management
schemes; energy aware software can help reduce consumption by being
selective on computation; reduced precision when calculating a result can
translate in energy savings; intelligent radio hardware that forwards mes-
sages received intended for other nodes without waking up other system
components.

For network-wide energy optimisation, there are three main techniques
[Anastasi et al., 2009]:

Duty cycling scheme — nodes alternate between active and sleep modes
depending on network activity. A scheduling algorithm is used to de-

44 CHAPTER 4. BACKGROUND: WIRELESS SENSOR NETWORKS

termine when and which nodes should sleep and wake-up at which
time. In a simplistic scenario, the algorithm may determine that all
nodes switch on the radio receiver/transmitter for a few milliseconds
every minute on the minute for data transfer to be made. If the radio
transceiver is on for just one second in every minute, the lifetime of
the network will be roughly 60 times longer1. Routing techniques are
used to distribute traffic evenly across the network, to avoid the quick
depletion of energy of heavily used sensor nodes. Through topology
management, nodes which are in close proximity take turns being ac-
tive to prolong the longevity of the network. However, duty-cycling
introduces a number of challenges. Firstly, the different devices may
need to have a synchronised time to ensure that wake up and sleep
times are done at the same time for the communication to be success-
ful. Several algorithms and protocols have been designed to specifi-
cally address this challenge [Sundararaman et al., 2005]. Secondly, the
reduced window of radio communication increases the likelihood of
message collision — that is, several nodes may attempt to transmit at
the same time. One solution for collision avoidance is the introduction
of a random delay before communication is attempted again.

Data-driven approach — a trade-off is made between computation and
communication. By utilising the computation capability of the sen-
sor node, the collected information is reduced in size so that less data
needs to be transmitted. Nodes may combine the readings from other
nodes through aggregation, although this may mean less precision in
data. For some applications it may be acceptable to receive aggregated
data and suffer some precision loss as raw data is lost in the process.

Mobility-based schemes — reduction in energy utilisation through the use
of a mobile sink. Depending on the type of application, it may be pos-
sible to reduce radio communication by utilising mobility — such as

1Work in this field typically makes the assumption that the energy consumption of the
device excluding radio is negligible.

4.2. CHALLENGES OF WSN 45

attaching a device to a moving object (e.g. a bus). As a mobile sink
moves around the environment hosting the WSN, the sensor nodes
can transmit information when the sink is close by in short-hop radio
communication. This can help reduce long range or multi-hop com-
munication, and therefore reduces energy consumption. On the other
hand, this increases the latency of data collection as it creates a de-
pendency on the movement of the collector. This approach is typically
limited to a restricted set of applications and can be considered as less
mainstream.

The lifetime of a wireless sensor network, and any application(s) de-
ployed onto it, can be significantly extended once techniques, as described
above, are used when compared to an implementation that does not take
into consideration power limitations.

Memory Constraints

Memory is very scarce on a wireless sensor node. The typical amount of
memory (RAM) is tens of kilobytes, whereas program memory is typically
up to 256KB [Akyildiz et al., 2002]. Programmers who develop applications
for wireless sensor nodes need to be extremely careful on the allocation and
utilisation of memory — in terms of both program space as well as volatile
space used at runtime. An out-of-memory scenario is more likely to happen
than on a normal system as the available space is much smaller. Some WSN
operating systems have developed techniques whereby different threads
use the same limited memory space. For example, data used during compu-
tation of a thread is volatile and lost when the context is switched between
one thread and another.

An out-of-memory error may cause an application running on a wireless
sensor network to fail. Programmers need to be aware of the capacity of
different nodes and tailor their programs accordingly.

46 CHAPTER 4. BACKGROUND: WIRELESS SENSOR NETWORKS

Processing Limitations

Although higher computational power is being made available in smaller
processors (such as microcontrollers), processing remains a scarce resource
in a wireless sensor node. In general, the more powerful the processor, the
more energy will be consumed. Since energy is a finite resource it is better to
have a slow processor that lasts several months, rather than a fast processor
which lasts just days2.

The processing capability on a wireless sensor node can be used to pro-
cess data coming in from the sensors such that only data of interest is trans-
mitted. It is also possible to aggregate information inside the network as it
is collected from the sensors to reduce the amount of information communi-
cated. The processing power available is just enough to do limited amount
of computation.

The microcontroller unit provides the processing capability of a wireless
sensor node. Different microcontrollers have different power consumption
levels. A high-end processor such as the StrongARM may consume around
400mW of power whereas an ATmega103L AVR microcontroller consumes
around 16.5mW with significantly lower performance [Raghunathan et al.,
2002]. The processing requirements of an application, whether heavy or
light on processing, determine what type of microcontroller should be de-
ployed. Tradeoffs need to be made between fast and slow processors. A fast
processor may be more energy efficient if the computation is done faster al-
lowing the microcontroller to sleep for longer periods of time and thereby
saving on energy utilisation.

Sensors and Actuators

Depending on the nature of the application, and the type of sensors used,
the sensing subsystem of a device could also be a significant consumer of
energy. Passive sensors, such as temperature, seismic and humidity con-
sume negligible energy compared to other components of a sensor node.

2Some studies are showing that this trade-off may soon disappear [Ko et al., 2012]

4.2. CHALLENGES OF WSN 47

On the other hand, active sensors such as sonar rangers or radar sensors,
can be large consumers of power [Raghavendra et al., 2006]. Sensors and
actuators must be carefully switched on and off according to need such that
the power consumption is reduced and the lifetime of the network is ex-
tended.

Radio Transceiver

The radio transceiver of a sensor node is a major energy consumer of the
device. The energy cost for transmitting 1Kb a distance of 100 meters is es-
timated to be approximately the same as executing 3 million instructions on
a general-purpose processor [Pottie and Kaiser, 2000]. In general, the radio
operates in one of four modes – transmit, receive, idle and sleep. For short-
hop transmission, the energy consumption for transmitting is equivalent to
receiving. Also, radios consume roughly the same amount of energy when
in listening mode as compared to during the receiving state [Raghunathan
et al., 2002]. Therefore, the radio should be put in sleep mode when not be-
ing used to reduce the amount of energy consumed, while keeping in mind
that significant power may be consumed during the wake-up phase as the
radio transients from one state to another.

4.2.2 Programming Challenges

Hardware limitations and the large variety of platforms present a number
of programming challenges. Applications are not implemented in a man-
ner similar to conventional systems, as the dependencies on the underlying
hardware and the lack of abstraction lead to different programming tech-
niques. In this section we describe the two main aspects that make pro-
gramming of wireless sensor nodes a challenge — heterogeneity and unre-
liability.

48 CHAPTER 4. BACKGROUND: WIRELESS SENSOR NETWORKS

Heterogeneity

IoT applications are currently deployed across multiple architectures and
platforms. There are over 150 WSN platforms from several suppliers —
AdvanticSys3, Shimmer4, Zolertia5, Libelium6 and others, used for both
commercial and research projects creating a highly fragmented landscape7.
Even though the same components are used on different platforms, for ex-
ample most platforms use either a 16-bit Texas Instruments MSP430 micro-
controller or an 8/16-bit Atmel ATMega family microcontroller, the binary
program code for one platform will generally not work on another platform.

Two popular sensor network operating systems, TinyOS [Levis et al.,
2005b] and Contiki [Dunkels et al., 2004], have somewhat managed to im-
prove on the fragmentation problem by being adopted by several platforms.
Still, TinyOS, considered as the leader in this space, is only available, at
best, on half the platforms. Contiki, is even less widespread. Code written
for one platform can theoretically be re-compiled for a different platform
without code changes. In practice, the use of different components, such
as a different type of temperature sensor, may require the use of a different
set of drivers and libraries which leads to some minor code changes and is
therefore not completely platform independent.

Unreliability

Sensor nodes may fail when power runs out or if they become physically
damaged. It is also possible that changes in the environment cause a sensor
node to become disconnected from the rest of the network. The failure of
a node, or a number of nodes, should ideally not impact the overall sensor
network. An adequate level of fault tolerance is needed when using wire-
less sensor nodes. The fault tolerance level may vary depending on where

3https://www.advanticsys.com/
4http://www.shimmersensing.com/
5http://zolertia.io/
6http://www.libelium.com/
7https://en.wikipedia.org/wiki/List_of_wireless_sensor_nodes

4.2. CHALLENGES OF WSN 49

the WSN is being deployed. For example, a sensor network deployed in-
side a house requires a different level of fault tolerance when compared to
a network deployed in a battlefield.

4.2.3 Economic Challenges

Traditionally, WSNs are tailor built for specific applications, with little or
no possibility of using them for additional applications. This approach is
inefficient and often a major financial obstacle when designing a new ap-
plication. It may also lead to redundant deployments which are costly to
implement and maintain. In recent years, a number of studies have been
made to address this restriction, by allowing a WSN to be shared between
multiple applications.

Virtualisation is a concept that allows the abstraction of the underly-
ing physical layer into logical units that can be used by independent users.
This technique has been adapted to WSNs to become multi-purpose, and is
broadly classified into two categories: node-level and network-level [Khan
et al., 2016][Farias et al., 2016][Leontiadis et al., 2012].

Node-Level Sharing

A wireless sensor node can be used by multiple applications by having tasks
(from different applications) run concurrently. There are different ways
of achieving this via existing operating system models — an event-based
model triggers a callback function to handle an event, whereas a thread-
based model allows context switching between one application and another
to run several threads concurrently. The former is a simpler implementation
but may have limitations in that applications may block each other during
the handling of an event. In the thread-based model, the operating system
is more complex to implement due to the limited resources of the devices.
Another approach is the use of a hypervisor on top of which different vir-
tual machines are running [Levis and Culler, 2002]. Each application runs

50 CHAPTER 4. BACKGROUND: WIRELESS SENSOR NETWORKS

in its own virtual machine and the underlying system takes care of the con-
current execution of multiple applications.

Network-Level Sharing

Through network-level sharing the same WSN can be used by different ap-
plications. Virtual networks are formed on top of a network of sensor nodes,
or virtual sensor nodes. Several virtual networks may exist in the same
WSN with different applications making use of different virtual networks.
This is achieved in a similar manner as logical networks are formed over
physical networks. Routing of messages between physical devices takes
into consideration the virtual networks such that the devices can handle
messages coming in from different applications and route them accordingly
to other nodes or to the appropriate thread or virtual machine on the same
node.

When the same WSN is shared between multiple applications, a sepa-
ration of duties and responsibilities is created. A WSN administrator owns
the network infrastructure and performs maintenance of the network and
devices. Application developers develop and deploy their applications in
virtual networks. Application developers would typically pay a usage fee
to the WSN owner/administrator which goes towards the initial investment
of setting up the WSN and the costs for maintaining it. Since the network
is shared between several application developers, the fees paid would typ-
ically be lower than if a dedicated WSN was created and thereby help to
lower the barrier to entry.

4.3 Programming Approaches

Programming wireless sensor nodes is done in a different manner to tra-
ditional applications, and several approaches have been proposed in the
past two decades. The approaches can be generally grouped into two: a
low-level platform-centric approach and a high-level application-centric ap-
proach. Low-level, or node-level, programming models focus on abstract-

4.3. PROGRAMMING APPROACHES 51

ing hardware and allowing flexible control of nodes. High-level, or network-
level, programming models give a global view of the network and focus on
facilitating collaboration among sensors [Sugihara and Gupta, 2008].

In this section we look at a number of the more common different pro-
gramming models.

4.3.1 Node-Level Programming

Node-level programming models are focused on giving fine grain control
on the behaviour of each node where components are carefully switched on
and off to optimise on energy utilisation. The level of systems programming
expertise needed for node-level programming is high.

Operating Systems

Operating systems provide a low-level programming model, where the pro-
grammer determines how a node is to behave. Operating systems for wire-
less sensor nodes need to take into consideration a number of factors [Chien
et al., 2011]. The operating system, together with the program, has to fit on
limited memory and must have a small footprint. Code may need to be
upgraded through reprogrammability capabilities to be able to adjust the
behaviour of individual sensor nodes from time to time. Good process and
memory management mechanisms are needed to allocate processor time
and the limited memory in a fair way, or according to priority. Operating
systems need to be energy aware and have good power management such
that components which are idle are turned off and turned on only when
needed. Access to the underlying hardware is provided to the applications
via a program interface, for example to read a sensor or to change the trans-
mission power of the radio transceiver. Finally, the operating systems need
to be reliable as they need to function well for long periods of time of unat-
tended operation.

A number of operating systems have emerged in the sensor network
community including TinyOS, Contiki, SOS, Mantis OS, Nano-RK, RETOS

52 CHAPTER 4. BACKGROUND: WIRELESS SENSOR NETWORKS

and LiteOS [Chien et al., 2011].

TinyOS [Levis et al., 2005b] and Contiki [Dunkels et al., 2004] are by
far the most popular operating systems for WSNs, and have quite different
characteristics.

TinyOS uses an event-based model to support concurrency. It is a static
system so the application structure needs to be defined at design time,
offering limited reconfiguration capability. TinyOS is a monolithic sys-
tem and applications are compiled with the OS as one monolith bi-
nary. Multi-threading is possible using OS extensions in the form of
thread libraries. TinyOS has a reprogramming capability, which due
to the monolith approach means that applications are loaded with the
OS kernel as a full image. Applications can be run in a simulated en-
vironment (such as TOSSIM) to observe behaviour.

Contiki is a modular dynamic system and is more flexible than TinyOS for
reprogramming as only new or changed modules need to be loaded.
Contiki has different communication stacks: uIP — allowing the node
to communicate over the Internet; Rime — a lightweight communi-
cation stack designed for low power radios. Contiki supports multi-
threading through the use of protothreads. Contiki programs can be
simulated (in Cooja) before deployed in a real environment.

Virtual Machines

Levis et al. [Levis and Culler, 2002; Levis et al., 2005a] argue that users often
do not know what sensor data would look like, and so must be able to re-
program sensor network nodes after deployment. Once a WSN is deployed
with thousands of nodes in the field, it is impractical (or sometimes impossi-
ble) to reprogram them with physical contact. Therefore, the only option is
to reprogram them wirelessly. Conventional approaches of reprogramming
involve transmitting the full image to the node which consumes significant
amount of energy. Using an application specific virtual machine approach,

4.3. PROGRAMMING APPROACHES 53

code is highly condensed reducing RAM requirements, interpretation over-
head and propagation cost – making the approach highly beneficial from a
reprogrammability point of view. The main aim is to reduce the amount of
data that needs to be transferred to reprogram the nodes. Maté [Levis and
Culler, 2002] and ASVM [Levis et al., 2005a] are interpreter-based virtual
machines that run on top of TinyOS [Levis et al., 2005b]. Darjeeling [Brouw-
ers et al., 2009] and TakaTuka [Aslam et al., 2010] are small Java virtual ma-
chines that are optimised to run on resource constrained wireless sensor
nodes. IBM Mote Runner demonstrates that VMs supporting various lan-
guages is doable [Caracas et al., 2009]. Interpreter based systems suffer from
extensive overheads and work from Ellul and Reijers shows that ahead-of-
time compilation techniques can reduce overheads [Ellul, 2012; Ellul and
Martinez, 2010; Reijers and Shih, 2017]. Using virtual machines in the wild
has proven to be a challenge, however recent work, proposing changes for
real-world applications, has shown that it is possible to have a successful
outcome [Reijers et al., 2018].

4.3.2 Network-Level Programming

There are two major approaches for network-level programming. One ap-
proach is a database abstraction, where the network is viewed in a similar
manner as one would view and query a database for information. The other
is to provide a macroprogramming language which provides a global view
of the network and more flexibility for a wider variety of applications.

Database Query-like Languages

TinyDB [Madden et al., 2005] and Cougar [Yao and Gehrke, 2002] are two
examples of a database query style approach. This abstraction allows the
user to query the sensor network in a similar way as one would query a
database.

SELECT AVG(temperature), room FROM sensors

WHERE floor=6

54 CHAPTER 4. BACKGROUND: WIRELESS SENSOR NETWORKS

GROUP BY room

SAMPLE PERIOD 30s

In the example above, a query written in TinyDB, the average temper-
ature from every room on the sixth floor is retrieved every thirty seconds.
Queries are entered by the user on the base station, and they are optimised
for energy consumption by determining where, when and how often data
is sampled. The request is sent to the network where the nodes process the
request, gather readings and send back the result.

Macroprogramming Languages

Macroprogramming languages can be used for a wider range of applica-
tions than the database abstraction — applications where data may flow
between one node and another, and can be processed inside the network.

Macroprogramming languages can be classified into two categories —
the first category is for sequential imperative programming models and the
second category is for a declarative functional approach. The languages
Pleiades [Kothari et al., 2007], Kairos [Gummadi et al., 2005] and COSMOS
[Awan et al., 2007] are examples of sequential imperative programming
models. Regiment [Newton et al., 2007b], Flask [Mainland et al., 2008] and
Wavescript [Newton et al., 2008] are examples of declarative functional pro-
gramming models.

These programming languages have been described earlier and the reader
is referred to Section 2.1.2 for a more detailed description.

4.4 Conclusions

In this chapter we have described wireless sensor nodes and networks —
resource constrained devices which have limited computational power and
can communicate wirelessly. We have described the structure of a wireless
sensor node, as well as the various challenges encountered when program-

4.4. CONCLUSIONS 55

ming and using these devices in practice. We have also outlined different
programming approaches used for these devices.

5

D’Artagnan

5.1 Introduction

Over the past 15 years, there has been a growing trend of embedding sen-
sors and microprocessors in everyday objects so they can communicate in-
formation and interact with their environment [Pottie and Kaiser, 2000].
This domain, now commonly referred to as the Internet of Things, has ex-
perienced great advances in technology such that reductions in the cost and
size of sensors has made it possible to measure and sense information at
high resolution, opening up a new dimension of applications. Environmen-
talists can track seabird populations and nesting behaviours in remote areas
[Mainwaring et al., 2002]. Volcanologists can easily deploy hundreds of sen-
sors to detect explosions and volcanic activity, where information is filtered
at source such that only interesting information is collected and analysed
[Werner-Allen et al., 2005]. Building administrators can place motion, tem-
perature and light sensors in every room in a building, to automatically turn
off lights and cooling systems to optimise on energy consumption [Chen
et al., 2009].

Applications in this domain can be seen as stream processing applica-
tions — a continuous flow of information is filtered, aggregated and acted
upon in real-time. The amount of data and the processing involved may
be substantial and spread across a distributed network of heterogeneous

57

58 CHAPTER 5. D’ARTAGNAN

resource constrained, unreliable, wireless nodes. Developing applications
for a network of such devices is not straightforward, and the skills of ex-
pert low-level systems programmers are required to implement solutions.
Programmers require a good understanding of energy consumption, dis-
tributed systems and intra-node communication, a varied range of devices
and the heavy resource constraints imposed when using such devices. Ra-
dio transmission should be switched on only when needed, nodes need to
be synchronised to communicate together and debugging these tiny devices
is at times limited to a blinking LED. The need for expert low-level sys-
tems programming skills is somewhat slowing down progress and creating
a higher barrier to entry. Ideally, we want to make programming of these
devices more accessible to application programmers.

One way of addressing this difficulty is through the use of a domain
specific language (DSL) [Mernik et al., 2005]. By focusing on the domain, at
the expense of general purpose use, DSLs provide a higher level of abstrac-
tion than general purpose programming languages and are ideal to make it
easier to programme resource constrained devices quickly and effectively.
A DSL can be used with less effort and time, and even less skills. How-
ever, building a DSL may require significant initial investment to build the
right tools for application development [Hudak, 1998]. To overcome this,
and reap the benefits of a DSL early on, one commonly used approach is to
embed a DSL within an existing language — creating a domain specific em-
bedded language (DSEL). This is a powerful concept as the features of the
host language become available to the embedded language, thereby mak-
ing it possible to use a fully-fledged programming language to support the
domain specific notions in the DSL [Claessen and Pace, 2002].

As the level of abstraction is increased through the use of a DSL, the
ability to optimise code may be lost — less low-level control. Good pro-
grammers use knowledge of the environment and how the application is
going to be used to optimise code, however at this high-level, optimisation
is impossible. The use of annotations may help overcome this problem as
the programmer can provide hints to the compiler to be used for optimisa-

5.1. INTRODUCTION 59

tions.

Using the technique of embedding a language, we present a macropro-
gramming framework to describe stream processors. The D’ARTAGNAN

DSL, embedded in Haskell, can be used to analyse, generate, transform and
interpret stream processor descriptions. We take inspiration from the work
done in hardware description with Lava [Bjesse et al., 1998] and in digi-
tal signal processing with Feldspar [Axelsson et al., 2010a]. Our approach
shares similarities with Flask [Mainland et al., 2008] in the generation of
code for resource constrained devices. Our aim is to create a single stream
processor description that can (i) have different interpretations — simulated
or translated (compiled) to low-level code; (ii) be analysed for both func-
tional (e.g. number of times sampling is done) and non-functional aspects
(e.g. memory requirements) and (iii) be optimised through transformations,
such as alternative energy efficient communication strategies.

The research questions that motivate this work are:

� How high can we raise the level of abstraction for developing stream
processor applications on distributed embedded systems? What per-
formance penalty, due to automatic code generation, is incurred as the
level of abstraction is increased? Can such performance penalties be
mitigated?

� Distributed embedded systems are known to be heterogeneous. Can
the same stream processor description be used to generate code for
different architectures? Can the stream processor be also simulated at
the high level of abstraction to observe the behaviour in a simulated
environment and thereby simplifying the test and debug cycle?

� How can the language embedding be enhanced to take hints from the
programmer that influence how the compiler generates more efficient
code based on how the application is going to be used in a real en-
vironment? How can hints or annotations be generalised to apply to
different contexts?

60 CHAPTER 5. D’ARTAGNAN

This chapter describes an overview of our framework and language.
Two use-cases are used to illustrate the proposed model — the first use case
deals with smart rent management, and a second use case example is used
for an intelligent and energy-efficient building cooling and lighting systems
to validate whether the proposed approach can be used effectively in real
scenarios.

5.2 A Framework for Macroprogramming of

WSNs

Sensor networks are traditionally programmed using a low-level program
that is compiled and installed on each individual node. Environment con-
ditions are collected using on-board sensors, data is processed at source and
information of interest is passed on to neighbouring nodes via radio mes-
sages. The programmer defines the behaviour of the nodes under each pos-
sible scenario, taking care of maximising available power by implementing
a synchronised radio duty-cycle across all nodes so that they can communi-
cate with each other in a power efficient manner. In a macroprogramming
model, the network is programmed as a whole and code is automatically
generated for each node in the network. A higher abstraction level can make
sensor network programming more accessible to non-expert programmers.

We propose D’ARTAGNAN— a macro-programming model using an em-
bedded domain specific language (DSEL) approach. Our aim is to increase
the level of abstraction in programming such devices using techniques from
the field of embedded languages. We embed our language in Haskell — a
pure functional language which gives us several features which have been
shown to be useful for this purpose, including higher-order functions, poly-
morphism and a strong type system. We use a data type approach to achieve
deep embedding.

In D’ARTAGNAN, the key feature is a stream processor description that
generates an internal representation that can be (i) analysed (ii) transformed

5.2. A FRAMEWORK FOR MACROPROGRAMMING OF WSNS 61

and (iii) interpreted in different ways. Figure 5.1 illustrates the framework.
The internal representation is in the form of an abstract syntax tree built
from the deep embedding of the D’ARTAGNAN language in Haskell, the
host language.

The programmer can also provide compiler hints to influence how the
internal representation is interpreted for improved code generation.

Stream Processor Description in DSEL

Analysis

Transformations

InterpretationInterpretation

Internal Representation

+

sq +

3 12

Simulator Intermediate Code

Compiler Hints

Node 1

Node 2

Node 3

Load

NodesLow­Level Code

Figure 5.1: A high-level overview of the D’ARTAGNAN framework.

The analysis of a stream processor can be done by the traversal of the in-
ternal representation. The result of the analysis can be used for optimisation
of the stream processor or to calculate and report on metrics. For example,
the number of radio messages that will be used under a certain configura-
tion; the amount of power used; to calculate the lifetime of the network in
a specific configuration. Through analysis, different layouts may be evalu-

62 CHAPTER 5. D’ARTAGNAN

ated to optimise and reduce radio messages.
The internal representation can be transformed in different ways, possi-

bly by using information gathered through analysis. For example, a trans-
formation may move computation across the network to reduce power utili-
sation by bringing computation closer to where data is sampled, thus result-
ing in less radio transmission. The transformations can take hints from the
programmer to transform the stream processor in such a way that is more
applicable to the application environment (Section 5.4.3). For example, if
the network contains a more powerful node with a permanent, renewable
or bigger energy store, the programmer can influence the transformation
such that more computation is done on this node.

The framework supports different interpretations of the stream proces-
sor internal representation. A simulation interpretation allows the pro-
grammer to observe the behaviour of the stream processor under different
conditions — a setup which is not easy to achieve in a real environment.
Further, the same representation can be used to generate node-level code
for different platforms, thereby supporting the heterogeneity aspect of dis-
tributed embedded systems.

The ultimate goal of D’ARTAGNAN is to allow programmers to write
complex stream processing applications using just a few lines of code that
only refers to low-level aspects if required.

5.3 Interpretations

One of the key strengths of our approach is the ability to have multiple in-
terpretations for the same stream processor. At the top-most level there are
two main types of interpretations for a stream processor — see Figure 5.2.
The first type is a simulator, where the stream processor is evaluated accord-
ing to specific input values. As an example, consider the following simple
stream processor — sum:

sum :: (Stream Int, Stream Int, Stream Int) -> Stream Int
sum (input1, input2, input3) = input1 .+. input2 .+. input3

5.3. INTERPRETATIONS 63

Stream Processor

Intermediate Code Simulator

Contiki Code Other Devices

Figure 5.2: Different interpretations of a stream processor

sum takes a tuple of three integer streams and returns their sum in a new
integer stream. The results of this stream processor can be observed under
different conditions by using the simulator interpretation.

> simulate sum [(2,3,1), (4,1,6), (1,3,3)]
[6,11,7]

The second type of interpretation is intermediate code, an abstract repre-
sentation of code, that can then be further translated into code for different
devices and operating systems. The intermediate code is used to generate
device-specific statements, dependent on the actual hardware it is being de-
ployed on. This approach allows the possibility to add new platforms as
and when required without changing the core of the framework.

It is also possible to introduce new interpretation types which are dif-
ferent from simulation or generated code. The approach of multiple in-
terpretations has been used successfully in other fields, such as hardware
description languages, where the output of an internal representation can
generate several different outputs that feed into other tools.

64 CHAPTER 5. D’ARTAGNAN

5.4 D’ARTAGNAN as a language

Since D’ARTAGNAN is embedded in Haskell, a stream processor description
is defined using plain Haskell combined with a number of stream operators.
Operators can be chained together similar to how functions are built. For
example, the average temperature reading from three sensors uses the ad-
dition (‘.+.’) and division (‘./.’) stream operators.

average :: (Stream Int, Stream Int, Stream Int) -> Stream Int
average (input1, input2, input3) = (input1 .+. input2 .+. input3) ./. 3

A stream processor works by taking readings from sensors periodically
— the period can be set at compile time, for example every 5 seconds. We
use the term clock cycle to mean the period between one evaluation of the
stream processor and the next. If we instantiate a simple average stream
processor with three input sensors, a new average value is calculated by
taking new readings from the three sensors with every clock cycle.

This section presents the features of the system starting with basic build-
ing blocks and showing how these can be combined through higher level
abstractions to build more complex operators.

5.4.1 Stream Operators

D’ARTAGNAN contains a number of basic building blocks to read input val-
ues from sensors and perform arithmetic and logical operations. The stream
processor moreThan50 creates a simple stream processor to determine if a
reading from a temperature sensor is higher than 50 degrees Celsius, taking
a stream of integers and outputting a stream of booleans. Whenever the
input exceeds 50, the output is True.

moreThan50 :: Stream Int -> Stream Bool
moreThan50 input1 = input1 .>. 50

Throughout this section we will use a simplified fire alarm system as an
example. Such a system would be made up of a number of temperature sen-

5.4. D’ARTAGNAN AS A LANGUAGE 65

sors and an alarm (e.g. a siren). As a first version, let us build a simple fire
alarm system that alerts us when the temperature is higher than 50 degrees.

We can instantiate moreThan50 as follows:

>> moreThan50 (input (device 1) (sensor 1))

This instantiates a fire alarm system using sensor 1 on device 1 specified
as parameters of the input node. However, moreThan50 is too rigid — it
can only detect temperatures higher than 50. If we wanted to have simi-
lar systems which trigger at different levels, higher or lower temperatures,
then we would need to create similar stream processors such as moreThan45,
moreThan55, etc., which is not ideal. Through a first higher level of abstrac-
tion, thresholds can be passed in as parameters to create a more generic
system such that we can set any limit that we want at instantiation stage,
which is not a stream processor per se, but a whole family of stream proces-
sors generated by different parameters passed to the function.

firealarm :: Int -> Stream Int -> Stream Bool
firealarm threshold sensor1 = sensor1 .>. threshold

Extending the fire alarm system to use two sensors is quite straightfor-
ward. The alarm will sound if any of the two sensors has a reading higher
than the threshold.

firealarm2 :: Int -> (Stream Int, Stream Int) -> Stream Bool
firealarm2 threshold (sensor1, sensor2) =

(sensor1 .>. threshold) .||. (sensor2 .>. threshold)

By defining custom stream handler operators (such as orList below),
a more generic fire alarm system can be built which takes any number of
sensors.

orList :: [Stream Bool] -> Stream Bool
orList ss = foldl1 (.||.) ss

firealarm3 :: Int -> [Stream Int] -> Stream Bool
firealarm3 threshold ss = orList (map (.>. threshold) ss)

66 CHAPTER 5. D’ARTAGNAN

Stream processor descriptions in D’ARTAGNAN are strongly typed. The
types of our DSEL are embedded in Haskell’s type system such that the
compiler does not allow the construction of wrongly typed expressions.
For example, if any of two sensors sensor1 or sensor2 is not a stream of
booleans, the expression (sensor1 .||. sensor2) would be rejected at
compilation stage due to mismatching types. This is one of the most use-
ful features our DSEL inherits from Haskell. Type errors are detected at
compile time, rather than runtime, drastically improving dependability and
reliability.

The structure of the language is shown below in pseudo BNF.

StreamProcessor = input <deviceLocation> <sensorNumber> |
constant <value> |
StreamProcessor InfixOp StreamProcessor |
max (StreamProcessor, StreamProcessor) |
min (StreamProcessor, StreamProcessor) |
if <boolean> then StreamProcessor else StreamProcessor |
pre <init> StreamProcessor |
pull <device> StreamProcessor |
push <device> StreamProcessor

InfixOp = .+. | .-. | .*. | ./. | .||. | .&&. |
.==. | .>. | .<. | .>=. | .<=. |

A stream processor is constructed by combining stream operators to-
gether, including the reading from sensors, as well as mathematical or boolean
operators.

5.4.2 Memory Capabilities

A stream processor is evaluated once with every clock cycle. Without the
ability to use readings or calculated outputs from previous cycles, the stream
processor can only make use of readings taken during the current cycle.
For most applications, this is too restrictive. There are situations where we
would want to use a previous sensor reading to compare it to the current.

5.4. D’ARTAGNAN AS A LANGUAGE 67

For example, consider an enhanced fire alarm system which sends an alert
the moment that the temperature exceeds a specific value, rather than con-
tinuously when the reading exceeds the threshold. Such a system requires
access to previous readings in order to compare them to new ones. In our
DSEL, the pre operator allows the use of a value from a previous clock cycle.

A fire alarm notification, using pre for memory capability is shown by
firealarmNotification in Listing 5.1. A visual representation of the same
system is shown in Figure 5.3.

Listing 5.1: Fire alarm system with notification
firealarmNotification :: Int -> Stream Int -> Stream Bool
firealarmNotification threshold sensor1 =

((pre 0 sensor1) .<=. threshold) .&&. (sensor1 .>. threshold)

Figure 5.3: A fire-alarm notification system

Memory capability is particularly useful when combined with feedback
loops, where the output of the stream processor is required in the following
clock cycle. For instance, a system that outputs whether an input stream
has, at any point in the past, exceeded a threshold, will output False for
as long as the reading is less than the threshold, but outputs True from the
point the reading is higher than the threshold onwards until the system is
reset — even if a new reading is eventually below the threshold. This is
illustrated in the definition of stickyAlarm in Listing 5.2 and visually in
Figure 5.4. Note that the apparently unbounded recursion when defining
the feedback loop is internally handled using Haskell’s lazy evaluation to

68 CHAPTER 5. D’ARTAGNAN

unroll it only until a cycle is detected using observable sharing [Claessen
and Sands, 1999].

Listing 5.2: Fire alarm system - Sticky Alarm
stickyAlarm thresh sensor1 = let x = (pre False x) .||. (sensor1 .>. thresh)

in x

Figure 5.4: A sticky alarm system — once triggered, remains ON until sys-
tem is reset.

5.4.3 Compiler Hints

When a stream processor description is compiled to generate code to run on
different devices, application logic is split and assigned to specific nodes.
By the nature of the devices, certain logic is bound to a specific node — for
example, the code for reading a specific sensor must be placed on the node
where that sensor is located. However, other logic is not bound and this
may be placed on any node in the network.

One way of improving application logic placement is by getting infor-
mation (or hints) from the programmer who has application knowledge and
can guide the compiler to work out an improved placement.

Communication Operators

Applications deployed on WSNs make use of inter-node radio communi-
cation to achieve the desired application goals. Instructions, readings and

5.4. D’ARTAGNAN AS A LANGUAGE 69

calculated values may be passed between one node and another. We sup-
port two forms of point-to-point communication — Pull and Push. Pull is
based on a request and response pair of messages, and makes use of two
radio messages. On the other hand, Push uses one radio message as there is
no request message and information is sent preemptively at regular inter-
vals. The choice between pull and push depends on the application needs.
In situations where information needs to be passed from one node to an-
other continuously on a periodical basis, then push is the preferred option
as it will use one radio message and therefore less energy is consumed. Pull
is used in all other situations as it provides fine grain control on triggering
radio communication between nodes, and no radio messages are wasted
when information may not be required or is discarded.

Figure 5.5: Point-to-point communication models

D’ARTAGNAN allows the programmer to define a stream processor with-
out the need to explicitly specify how communication is to be done be-
tween nodes. This approach makes it easier for the programmer to reason
about stream processors. By default, as part of an automatic transformation,
D’ARTAGNAN introduces pull as a communication operator when infor-
mation is passed between two nodes. Unless explicitly changed, processing
is done on the start node and the communication between nodes is left until
the latest possible point of interaction. The programmer can give explicit
instructions, by using push and pull, to move computation on to different

70 CHAPTER 5. D’ARTAGNAN

nodes — possibly closer to where readings are taken so as to reduce com-
munication and therefore reduce energy consumption.

input1 = input (device 1) (sensor 1)
input2 = input (device 2) (sensor 1)
input3 = input (device 2) (sensor 2)
sp = input1 .+. (push (device 2) (input2 .*. input3))

In the example above for stream processor sp, input2 and input3 are on
the same device — so rather than having readings from the different sensors
transmitted in separate messages, the programmer can use

push (device 2) (input2 .*. input3)

to indicate that the computation (input2 .*. input3) should be processed
on device 2. The result of this is then sent to device1 to be added to input1

— input1 is located on device1.

Placement Strategies

The communication operators push and pull allow the programmer to de-
fine how communication between nodes should occur and also to influ-
ence, to some degree, on which nodes application logic should be placed.
However, in D’ARTAGNAN, we want to provide the programmer with a
higher level of abstraction for placement of application logic through the
use of compiler hints. The use of placement strategies is optional (hence the
term hints) — in the absence of a placement strategy, the default placement
algorithm is used. D’ARTAGNAN supports two placement strategies: (i)
LatestPossible, the default placement strategy, uses communication op-
erators at the last possible moment when data is required from a node (ii)
EarliestPossible instructs the compiler to use communication operators
the earliest possible for the added advantage of in-node data processing so
as to reduce the amount of data transmitted.

In the future, we would like to introduce different strategies such that
communication operators are inserted into the stream processor to min-
imise communication.

5.4. D’ARTAGNAN AS A LANGUAGE 71

5.4.4 Stream Tuples

For most stream processing applications, having just one output stream is
often too restrictive to build interesting applications. For example, in our
fire alarm system earlier on, we needed to choose between one of two ac-
tions — either sound an alarm or else send a notification. We would like our
system to do both. One way of addressing this is by extending our DSEL
with tuples of streams, for example (stream1, stream2).

We can combine the two stream processors firealarmNotification and
stickyAlarm into one description as shown by firealarmPlus in Listing 5.3.

Listing 5.3: Fire alarm system with notification and sticky alarm using tu-
ples
firealarmPlus :: Int -> Stream Int -> (Stream Bool, Stream Bool)
firealarmPlus threshold sensor1 =

let x = (pre False x) .||. (sensor1 .>. threshold)
y = ((pre 0 sensor1) .<=. threshold) .&&. (sensor1 .>. threshold)

in (x, y)

The output of firealarmPlus is a pair of streams. The first element of
the pair represents the sound siren and the second is the alert notification.
Table 5.1 shows an example scenario with input and output values.

Time Sensor Reading Output (Siren, Notify)
t 45 (False, False)
t+1 48 (False, False)
t+2 55 (True, True)
t+3 56 (True, False)
t+4 57 (True, False)

Table 5.1: Example (firealarmPlus) with output tuple of streams

5.4.5 Simulator

D’ARTAGNAN provides a simulator interpretation that calculates the out-
put of a stream processor given input values whilst still in the Haskell envi-

72 CHAPTER 5. D’ARTAGNAN

ronment. This is useful in that it allows the developer to check and test that
the behaviour of the simulator is as intended under certain test conditions
— something which is harder to achieve when the application is running in
a real environment due to the difficulty of setting environment parameters.

We simulate the behaviour of the firealarmNotification stream pro-
cessor by providing concrete inputs coming from sensor1. Such inputs are
given in the form of a list of values with values corresponding to sensor
readings for every clock tick i.e. [v0, v1, v2, . . .].

>> simulate firealarmNotification [45,48,55,56,57]
[False,False,True,False,False]

5.4.6 Intermediate Code / Device Code

One of the main aims of our system is to be able to generate code that can
be readily uploaded onto devices. We do this generation in a two-stage
approach — we first generate intermediate code, effectively an abstract rep-
resentation of the stream processor, from which we specialise this to device-
specific code. This approach has several advantages. First of all, appli-
cations for WSNs are written in the C programming language or a WSN-
specific dialect (e.g. nesC for TinyOS) [Mottola and Picco, 2011]. Our inter-
mediate code allows us to have one common language for different devices
so that we can separate the syntax from the semantics. Secondly, it makes
our approach more extensible, in that generators for other languages can be
easily added on. This two-staged approach has also been used in Feldspar
[Axelsson et al., 2010a] and Regiment [Newton et al., 2007b].

5.4.7 Device level code: Contiki

Translation from intermediate code, which is already in the form of impera-
tive sequences of assignments, to device specific code is relatively straight-
forward. It is a matter of getting the correct syntax for the sequence of
abstract statements. In our current implementation, we generate code for
Contiki as an example. Even with Contiki, different devices may require

5.4. D’ARTAGNAN AS A LANGUAGE 73

slightly different syntax — for example, the use of a different type of tem-
perature sensor, or possibly a slightly different version of Contiki. Our cur-
rent framework generates two types of Contiki; one for the WSN430 nodes
at the FIT IoT-LAB1 test bed and another one for the AdvanticSys CM5000.
Other C variants can be added with relative ease. Listing 5.4 shows the au-
tomatically generated code that can be used in a Contiki implementation.

Listing 5.4: Automatically generated C code
static bool mem0 = False;
static int mem1 = 0;
...
static int x1,x6,x5,x13,x7,x14,x15,x8,x16,

x17,x10,x18,x19,x20 = 0;
static bool x4,x3,x21,x12,x11,x9 = false;
static bool x22[10];
static bool x2[10];
x3 = mem0;
x5 = (int) readTemperature();
x6 = 50;
x10 = mem1;
x4 = x5 > x6;
x20 = x6;
x19 = x5;
x17 = x10;
x16 = x6;
x15 = x5;
x14 = x6;
x1 = x3 || x4;
x9 = x20 > x10;
mem1 = x19;
x11 = x17 == x16;
x12 = x15 > x14;
x13 = x1;
x8 = x9 || x11;
mem0 = x13;
x7 = x8 && x12;

1https://www.iot-lab.info

74 CHAPTER 5. D’ARTAGNAN

x2[0] = x1;
x2[1] = x7;

5.4.8 Implementation Details

D’ARTAGNAN is deeply embedded in Haskell, the host language. A stream
processor description is processed by the framework in a number of steps.

� A pre-processor is first used to detect any recursion in the stream pro-
cessor description. The stream processor is traversed, and each node is
labelled. If a labelled node is encountered a second time in the graph,
then this is replaced with a new type of node (called duplicate) which
links to the original node. This approach ensures the compiler does
not end in an infinite loop when generating target device code or dur-
ing analysis.

� Each node is temporarily assigned to be executed on one of the avail-
able devices. Sensor readings are, by nature, bound to a specific de-
vice, while other operators can be placed on any available node. In
general, nodes are placed on the same device as neighbour operators,
such that the number of radio messages is minimised. This assign-
ment is only an initial placement and can be modified as part of the
transformation phase.

� The transformation phase may optionally take input from the pro-
grammer, in the form of compiler hints, to follow a specific place-
ment strategy. At this stage, the operators may be re-assigned to other
nodes. Analysis is used to find preferred placement options by using
specific metrics (e.g. less radio messages).

� Once placement is finalised, the stream processor is traversed once
again to introduce communication operators where the computation
has to move from one device to another. Where two neighbour oper-

5.4. D’ARTAGNAN AS A LANGUAGE 75

ators are on different nodes, a communication operator is introduced.
This is an instruction for the compiler to create communication code.

� During the generation of intermediate code, the stream processor is
traversed and connected operators running on the same device are
translated to an abstract C-language equivalent. Communication op-
erators determine the start and end of a C-language ’method’. At the
end of a sequence of operators on the same device, a call to a method
on another node is introduced to fetch the result of the computation
of a sub-tree.

� In the final stage, the Abstract C is converted to device specific code.
In general, most devices run some variant of the C-language and this
stage involves generating the correct C dialect.

5.4.9 Discussion

D’ARTAGNAN was designed as a high-level language for describing stream-
processing applications. An application is defined by connecting stream op-
erators which take a number of inputs to generate one or more data stream
outputs. The execution of an application generates an output for that in-
stant. A computation unit is a sequence of operators that are executed to-
gether on the same device. The computation of the application includes
the firing of several computation units, and is considered complete when
all computation units have fired and an output has been generated. If any
computation unit fails, the application computation is considered to have
failed. The result of a computation can be used in the next computation
through the use of memory, thereby enabling a richer set of applications.

In the current version of D’ARTAGNAN, the execution of an application
is triggered by a clock on a root node firing at regular intervals. A mes-
sage is sent to all devices to prime the computation units and execute as
soon as all inputs are received. This approach is suitable for a category of
stream processing applications used for monitoring purposes, where read-
ings from the environment are recorded at regular intervals. The approach

76 CHAPTER 5. D’ARTAGNAN

is less suitable for applications where the execution trigger is determined
from an incoming data source (for example, a push-button). One way of
addressing this is by introducing triggers (from sensors or other timers) as
first-class citizens of the language such that the execution of an application
starts when a sensor detects an event (e.g. a switch is pressed), or when a
timer fires. We consider the addition of triggers as a suitable enhancement
to the language to address a broader range of applications.

5.5 Use-case: Smart Rent Management

As a first use-case to illustrate the use of D’ARTAGNAN, we present an ap-
plication for smart-rent management. Short-term rental sites typically allow
home-owners to rent out their property using a fixed day-rate model. Deter-
mining an optimal day rate is one of the biggest challenges for home-owners
to maximise on profits. A high day-rate may translate in less booked nights,
whereas a low day-rate could possibly lead to low margins, or even losses,
if tenants are high consumers of commodities. An alternative solution may
be a fixed low daily rate to attract budget travellers and increase booked
nights, combined with a variable pay-per-use rate for commodities — elec-
tricity and water consumption is charged at a pre-agreed rate and the use of
appliances, such as a washing machine, dish-washer and air conditioning
attract an additional charge to compensate for the wear and tear of these
appliances.

To illustrate the basic concepts of the D’ARTAGNAN framework, we show
a single-description smart-rent application that calculates meterage of the
usage of appliances inside a home. The same description, in our case the
code describing the stream processor, can be used to generate different tar-
get code depending on utility rates and the devices the application will run
on. The generality of this approach allows the same application to be used
at different homes where the appliances available may vary, and is by far
easier to manage than an equivalent written directly in low-level code.

We identify two primary ways for charging the use of commodities, but

5.5. USE-CASE: SMART RENT MANAGEMENT 77

other creative ways may easily be defined too. The first method is a sim-
ple pay-per-cycle, where a fixed fee is charged for each use of an appliance
— for example, a 2 euro charge is imposed for every washing machine cy-
cle. The second charging method is a pay-by-consumption model, where
a pre-defined rate is used for every unit consumed and can be applied to
electricity, water, soap, fuel and other consumables. Listing 5.5 shows the
definition of these two methods. The function payPerCycle takes a stream
of boolean values to indicate when, for example, a new washing machine
cycle has started and outputs the fee charged in a stream of integers. When
the appliance is not used, a stream of zero values is output, and when the
appliance is used the fee is included in the output feed. On the other hand,
payByConsumption simply multiplies the fee with input units to generate a
stream of fees to be charged. A third function (meter) uses the pre operator
to act as an accumulator for an input stream of integers, by keeping track of
total consumption — this is the equivalent of a metering device.

Listing 5.5: Stream Handlers
payPerCycle :: (Int, Stream Bool) -> Stream Int
payPerCycle (fee, inUse) = ifThenElse (inUse, (liftS fee, liftS 0))

payByConsumption :: (Int, Stream Int) -> Stream Int
payByConsumption (fee, usage) = liftS fee .*. usage

meter :: Stream Int -> Stream Int
meter feed = let x = pre 0 x .+. feed

in x

The D’ARTAGNAN simulator can be used to assist in the writing and
testing of stream processors, including helper handlers as shown in List-
ing 5.5. As part of the simulation, we provide a list of input boolean values
(to represent readings taken from devices), so that we can observe the out-
put for specific inputs and confirm that the behaviour is as expected.

» simulate (payPerCycle 2 [F, F, T, F, T, F, F])

[0, 0, 2, 0, 2, 0, 0]

78 CHAPTER 5. D’ARTAGNAN

Using meter as an accumulator, we can keep track of a running value for
consumption — the last value of the stream is the total consumption since
the initialisation of the system.

» simulate (meter (payPerCycle 2 [F, F, T, F, T, F, F]))

[0, 0, 2, 2, 4, 4, 4]

Now that we have described the utility stream handlers in Listing 5.5,
we can easily construct our smart rent application. The stream processor
smartMeter in Listing 5.6 takes a number of inputs and calculates the fees to
be charged depending on whether a pay-per-cycle or pay-per-usage model
is applicable. Since our language is embedded in a host language (Haskell),
the use of map and fold can be used to increase the expressiveness of the
language — in this example, we apply the same rate to a list of appliances.

Listing 5.6: Smart Rent
smartMeter :: (Int, Int, Int, Int, Int, Int)

-> (Stream Int, Stream Int, Stream Bool, Stream Bool,
Stream Bool, [Stream Bool])

-> Stream Int
smartMeter (elecRate, waterRate, wmRate, dwRate, tdRate, acRate)

(elec, water, washingmachine, dishwasher, tumbledryer, airconList)
= meter inputs

where
inputs = payByConsumption (elecRate, elec) .+.

payByConsumption (waterRate, water) .+.
payPerCycle (wmRate, washingmachine) .+.
payPerCycle (dwRate, dishwasher) .+.
payPerCycle (tdRate, tumbledryer) .+.
foldl (.+.) (liftS 0)

(map (\x -> payPerCycle (acRate, x)) airconList)

A more generic, yet more concise, version of the smart rent application
is shown in Listing 5.7. Any number of appliances can be passed as pa-
rameters, together with the applicable fee rates, into the compilation stage
divided into lists according to the charging model which applies. The use of
Haskell’s zip function takes two lists and creates a list of tuples, which we
can then pass into the stream-handlers payPerCycle and payByConsumption.

5.6. USE-CASE: INTELLIGENT COOLING AND LIGHTING SYSTEMS 79

Listing 5.7: Smart Rent
smartMeter2 :: ([Int], [Int]) -> ([Stream Int], [Stream Bool]) -> Stream Int
smartMeter2 (rateUsage, rateCycle) (appUsage, appCycle) = meter inputs

where
inputs = foldl (.+.) (liftS 0)

(map payPerCycle (zip rateCycle appCycle)) .+.
foldl (.+.) (liftS 0)

(map payByConsumption (zip rateUsage appUsage))

A specific instance of this application is created with fee amounts and
real sensors passed as input parameters such as:

» generateCode (smartMeter2 ([2,1], [10,7,4,3,3]) ([elecMeter,

waterMeter], [washingmachine, dish_washer, tumbledryer, aircon_1,

aircon_2])

Behind the scenes, D’ARTAGNAN creates code that will run on each of
the devices to measure unit consumption or to indicate that an appliance
is being used. The placement of in-network computation and communica-
tion between the devices is determined and handled by D’ARTAGNAN—
thereby hiding away all the complexity from the programmer. Since the
D’ARTAGNAN language is embedded in a host language, functions in the
host language become available in our language to create a richer and more
expressive language for programmers to define stream processors in a con-
cise manner.

5.6 Use-case: Intelligent Cooling and Lighting

Systems

In order to illustrate the effectiveness of D’ARTAGNAN at higher levels of
abstraction, we present an application for smart buildings, building upon
the stream operators described in Section 5.4.1 to construct higher level
components. These components are used at a level of abstraction which
omits internal embedded system details altogether.

80 CHAPTER 5. D’ARTAGNAN

We present a generic solution for smart building management which
can be instantiated for any given room layout plan — supporting automatic
switching on of lights and cooling systems when motion is detected in a
neighbouring room. Further, the lights are only switched on if there is not
enough natural light, and cooling systems are only turned on if the room
temperature is too high. The systems are then switched off when no motion
is detected in the room or neighbouring rooms. The solution takes room
layout information — which rooms are adjacent to which rooms — and,
assuming three types of sensors in every room for motion, light and tem-
perature detection, creates a specific building stream processor tailored to
the specified room layout. Using sensors’ readings as inputs, the building
stream processor can generate code to control lights, cooling systems, etc
(see Figure 5.6). The system can support multiple device and sensors of the
same type in the same room, such that more reliable readings are taken.
In this example, we use sensor readings from rooms, such that whenever
motion detection sensors in a room are triggered, lights are switched on in
the room and neighbouring ones. Figure 5.7 illustrates internal detail of the
building stream processor — a room stream processor.

Figure 5.6: Inputs and outputs of a building stream processor

5.6.1 Stream Handling Components

Higher level stream handling components are needed to transform sen-
sor readings into application specific meaningful information. Listing 5.8

5.6. USE-CASE: INTELLIGENT COOLING AND LIGHTING SYSTEMS 81

Figure 5.7: Internals of a room stream processor

shows custom stream handlers that will be used in building the application.

Listing 5.8: Custom stream handlers
average :: [Stream Float] -> Stream Float
average ss = sum ss ./. consStream (length ss)

minControl min s = s .<=. consStream min

maxControl max s = s .>=. consStream max

When there is more than one sensor in a room, we use average to com-
bine sensors with numeric output (e.g. temperature, light-level sensors) to
obtain a more reliable reading for that room. Similarly we use orList (de-
fined earlier) to combine sensors with boolean readings (e.g. motion detec-
tion sensors placed in the same room). Other such agglomeration combina-
tors can also be defined e.g. a median or majority combinator can be more
effective if some of the devices are known to fail regularly, hence allowing
us to ignore outlier values.

The threshold functions minControl and maxControl are used to deter-

82 CHAPTER 5. D’ARTAGNAN

mine whether to switch on or off lighting and cooling systems based on
whether the combined values fall below or above certain thresholds — in
other words, a behaviour similar to a thermostat.

5.6.2 Room Layout Representation

In order to describe the particularities of a building to generate the code for
all the devices in the different rooms, we provide data structures to repre-
sent which sensors are in which rooms and also room adjacency. Consider
one particular room layout shown in Figure 5.8, which includes information
about devices with on-board sensors in the rooms. Every device is equipped
with three types of sensors — motion, light and temperature — and some
rooms have more than one device. Having multiple devices in the same
room increases the reliability of the application.

Figure 5.8: Room layout with device placement.

The building topology is represented by a graph using the data types
Plan and Room — see Listing 5.9. Plan is an adjacency list of rooms (repre-
sented as a list of pairs of rooms), while Room stores information about the

5.6. USE-CASE: INTELLIGENT COOLING AND LIGHTING SYSTEMS 83

room: its name, and references to the motion, light and temperature sensors
in that room. The instantiation of the example shown in Figure 5.8 is given
in Listing 5.10.

In this specific room layout, when motion is detected in Room 1, lights
and cooling in Rooms 1 and 2 will be switched on — if there is not enough
natural light, and/or temperature is too high. As a person walks into Room
2, the lights and cooling for Room 3 will automatically switch on (if light
and/or temperature conditions are met) — lights and cooling in Rooms 1
and 2 will remain on, as they have already been switched on. As the person
walks into Room 3, lights and cooling in Room 1 are turned off and those in
Room 4 are turned on.

Listing 5.9: Building data types
type Plan = [(Room, Room)] -- list of rooms
data Room = Room {name :: String,

motionS :: [MotionSensor],
lightS :: [LightSensor],
tempS :: [TempSensor]}

deriving (Eq, Show)

Listing 5.10: Instantiation of system
room1 = Room {name="room1", motionS=[motionSensor1, motionSensor2],

lightS=[lightSensor1, lightSensor2],
tempS=[tempSensor1, tempSensor2]}

room2 = Room {name="room2", motionS=[motionSensor3],
lightS=[lightSensor3],
tempS=[tempSensor3]}

room3 = Room {name="room3", motionS=[motionSensor4, motionSensor5],
lightS=[lightSensor4, lightSensor5],
tempS=[tempSensor4, tempSensor5]}

room4 = Room {name="room4", motionS=[motionSensor6, motionSensor7],
lightS=[lightSensor6, lightSensor7],
tempS=[tempSensor6, tempSensor7]}

plan = [(room1, room2), (room2, room3), (room3, room4)]

84 CHAPTER 5. D’ARTAGNAN

5.6.3 Application Implementation

Typically, one would program the devices for a particular topology. Any
changes in sensor deployment requires reprogramming from scratch. Simi-
larly, given a new building, devices for that building need to be programmed
from scratch. With D’ARTAGNAN we can abstract up, and program a generic
solution which works for any given building topology. If a new device is
added to a room, one simply changes the building description passed on to
the generic solution and automatically obtain code which is to be deployed
on the devices. The implementation of such a generic solution can be given
in just 10 lines of code:

automation :: Plan -> [(Stream Bool, Stream Bool)]
automation plan = map (roomAutomation plan) (getRooms plan)

roomAutomation :: Plan -> Room -> (Stream Bool, Stream Bool)
roomAutomation plan room = (autoMinControl motionSensors lightSensors 50,

autoMaxControl motionSensors tempSensors 25)
where

adjRooms = adjacent plan room
motionSensors = msToStream (getMotionSensors adjRooms)
lightSensors = lsToStream (getLightSensors adjRooms)
tempSensors = tsToStream (getTempSensors adjRooms)

The inputs and outputs of the application vary depending on the topol-
ogy used. The inputs are linked to the number of devices present in the
rooms — in the example layout shown in Figure 5.8 with seven devices in
four rooms, the application has 21 inputs — three types of sensors for each
device. The number of outputs of the application is determined by the num-
ber of rooms in the Plan — in the example, the output is made up of eight
boolean streams, one for each of light and cooling controllers in each of the
four rooms. These outputs need to be connected to the light and cooling
controllers for each respective room.

In the simulation interpretation, it is possible to test the behaviour of the
application under different input values.

5.6. USE-CASE: INTELLIGENT COOLING AND LIGHTING SYSTEMS 85

>> simulate (automation plan) simulatedValues

Where simulatedValues is a list of input values for all sensors. In sim-
ulation mode, the output of the application is a list of tuples for the differ-
ent lighting and cooling switches in each room. In this example with four
rooms, there will be four tuples made up of two boolean streams — reflect-
ing whether lighting and cooling is on or off in the respective room.

-- Output format is [(roomN_light, roomN_cooling), ...]
Output at T1 = [(True,True),(True,True),(False,False),...]

At T1, motion was detected in the first room. The lights and cooling
systems for the first and second rooms are turned on.

In a Contiki interpretation, the source code is generated uniquely for
every device. The generated code takes care of communication between the
devices as one device requests information from another.

Discussion

As presented, D’ARTAGNAN is a high level DSL that makes it easier to build
applications for IoT-devices. In this section, we evaluate how an applica-
tion written in D’ARTAGNAN compares to an equivalent application hand-
coded in C for Contiki. In order to evaluate the performance of the two
variants, we performed experimentation on the FIT IoT-LAB2 test bed — a
platform suitable for testing small wireless devices in a real environment.

D’ARTAGNAN Hand Coded

Lines of Code 10 516

Radio Messages 36 36

Lines of Code: As one would expect, significantly fewer lines of code are
required using our framework and DSL, as compared to a hand-coded ver-
sion — plus we have a more general solution. In this example application,
10 lines of D’ARTAGNAN code are enough to create a generic intelligent

2https://www.iot-lab.info/

86 CHAPTER 5. D’ARTAGNAN

and energy efficient cooling and lighting system. The code does not need
to change if different room layouts and additional sensors are introduced.
The room plan is updated to reflect the exact layout, and passed in as input
to the application and node-level code is generated automatically to reflect
the layout. In the specific room layout example with four rooms and seven
devices, the system generates 980 lines of C code. On the other hand, 516
lines of code are required to implement the system directly in C for the cur-
rent configuration. For different layouts, or additional devices, the C code
may need to be modified and size will increase linearly with the number of
rooms and nodes introduced.

Radio Messages: The two implementations generate the same amount
of radio traffic. This is partly due to following the same design concept, in
that point-to-point communication is used with a request/response pattern
and a separate message for every reading. It is however possible to reduce
the number of messages from 36 to 6, where each node transmits its own
three readings (motion, light and temperature) periodically to the master
node in one message without receiving a request (push). This improvement
can be implemented for both versions.

5.7 Performance Evaluation

To assess the performance of our approach versus a hand-coded version in
C, we have implemented the same process intensive task using both ap-
proaches. We use an audio sound soft-clipping algorithm, which for the
limitations of wireless sensor nodes can be considered a processing inten-
sive task. The hand-coded version makes use of a small math library for
arctan approximation used in soft-clipping calculations. The second imple-
mentation is written completely in D’ARTAGNAN, including mathematical
functions for arctan approximations.

For evaluation, we use Contiki on an AdvanticSys CM500 equipped
with an MSP430F1611 Texas Instruments micro-controller, 48KB of program
flash and on-board sensors for temperature, humidity and light. Both im-

5.7. PERFORMANCE EVALUATION 87

plementations were compiled using the MSP430 GCC (v4.6.3) with different
optimisation levels to study how compiler optimisations interact with our
code generation. Optimisation levels range from level 0 (-O0) to level 3 (-
O3).

Optimisation Level
-O0 -O1 -O2 -O3

Implementation 1: Hand-coded C version
Bytes Programmed 41522 28570 27928 39084
Avg Duration (s) 114.44 55.94 55.86 55.84

Implementation 2: Full D’ARTAGNAN

Bytes Programmed 44936 28396 27784 38958
Avg Duration (s) 225.76 56.12 56.08 56.18
% Diff with Impl 1 97.27% 0.32% 0.39% 0.61%

The results in the table above indicate that, as expected, with no com-
piler optimisations (-O0), Implementation 2 — Full D’ARTAGNAN— is sig-
nificantly more inefficient, with the duration of the test nearly double that
of the other two implementations. The footprint (code size) is also bigger.
For this experiment, we did not measure energy consumption since the task
was a computationally intensive one with no use of external peripherals or
communication, therefore the energy consumed is directly proportional to
the time taken by the node to finish the audio clipping task.

The results also show that any inefficiencies introduced by D’ARTAGNAN

during automatic code generation are completely cancelled out when any
level of compiler optimisation is used. This gives us confidence in that our
approach, coupled with standard compiler optimisations, will still produce
compact and efficient binaries — a much desired outcome when program-
ming resource constrained devices.

88 CHAPTER 5. D’ARTAGNAN

5.8 Related approaches

Over the past decade, a number of DSELs for resource constrained devices
have emerged. In this section we describe such frameworks, all of which
have been embedded in Haskell.

Flask [Mainland et al., 2008], already introduced in section 2.1.2, is a stream
processing DSL embedded in Haskell. Flask allows a programmer to
combine stream operators from a pre-defined and extensible library to
define a stream processing application. A Flask program is compiled
into low-level nesC code, and allows functions to be defined in Red
(a Haskell-like language) or nesC using quasiquoting. Low-level code
can be safely embedded in the language and included in the compiled
output. Flask provides a small number of primitive operations and
powerful facilities to combine and create new first class operations –
a technique used in several domain specific languages when embed-
ded in a functional language. The power of abstraction means that the
programmer does not need to worry about low-level details around
how the nodes communicate with each other, or to make efficient use
of available energy. Unlike D’ARTAGNAN, Flask is intended to ex-
ecute on homogeneous networks, where the nodes of a network are
programmed using the same generated code. D’ARTAGNAN does not
have the notion of quasiquoting, as programmes are defined using the
high level language.

Ivory and Tower [Hickey et al., 2014] are two complementary DSELs de-
signed for building applications to run on embedded systems. Both
languages are embedded in Haskell — Ivory compiles to restricted C
code suitable for embedded programming, whereas Tower is an ex-
tension to Ivory designed to deal with the concerns of multithreaded
software architectures. The authors of Ivory claim that one of the
main advantages of their approach is that by embedding the domain-
specific type checker into Haskell’s type system, type safety is guar-

5.8. RELATED APPROACHES 89

anteed throughout the generated code and thereby reducing common
errors made during programming of embedded systems. The over-
all productivity is increased drastically. Ivory includes quasiquoting
allowing C code to be embedded directly. Tower was created to ad-
dress needs that were outside Ivory’s domain – to act as “glue code”
to implement inter-process communication, initialise data-structures,
read system clock, lock the processor, etc. One of the main benefits
of Tower is that it supports multiple interpreters allowing code to be
generated for different embedded systems operating systems, as well
as system descriptions and visualisation graphs with Graphviz. Un-
like D’ARTAGNAN, Ivory and Tower are intended to provide a higher
level of abstraction for writing safe programmes on singular embed-
ded systems. Tower defines inter-process communication, whereas
in D’ARTAGNAN, a single stream processor description is automati-
cally sliced to run on several nodes as required — no explicit defini-
tion is needed, although the use of hints can influence the compiler.
D’ARTAGNAN is a more restricted language, and does not allow the
use of low-level code such that code can be generated according to the
target architecture.

Copilot [Pike et al., 2010] is a DSL embedded in Haskell. It is intended
for use in runtime monitoring (runtime verification) of hard real-time
systems. The DSL is a stream-based data-flow language. Copilot sam-
ples global variables to check that the state of the application is cor-
rect. The DSL can be used to create, as an example, a monitor to en-
sure that the temperature reading does not increase too quickly. The
variable sampling technique is suitable since hard real-time systems
have a strict schedule that is adhered to, and therefore removes the
risk of false positives and false negatives arising from incorrect sam-
pling. Copilot does not change the source program although may
run on a different process on the same device. Since it is constant-
time and constant-space, it can guarantee on finishing on time and
not to interfere with the main application. The DSL is statically and

90 CHAPTER 5. D’ARTAGNAN

strongly typed — which means that incorrect (badly typed) expres-
sions are caught at compile-time. The types are embedded in Haskell’s
type system. Types are lifted into streams, and arithmetic and logical
operators can be used on streams. A monitor specification needs to
be well-defined and well-formed — meaning that circular dependencies
are not allowed and there must be no dependencies on future val-
ues. D’ARTAGNAN is also a statically and strongly type language
for stream-based applications, however circular dependencies are al-
lowed through the use of memory (pre). D’ARTAGNAN is focused on
writing stream-processing applications, whereas Copilot’s main aim is
to monitor other applications. D’ARTAGNAN is also intended to gen-
erate code for heterogeneous networks, whereas Copilot generated C
code to run on a single device.

Feldspar [Axelsson et al., 2010a] is a DSL embedded in Haskell intended
for digital signal processing algorithm design. Unlike the other lan-
guages in this section, it is not intended for resource constrained de-
vices, but rather generates performant C code that manipulates an in-
coming stream of data. The aim of Feldspar is to raise the level of
abstraction at which a programmer works with algorithms to reduce
the development time, and the writing of code is very close to the
mathematical way of writing algorithms. Feldspar uses a deep em-
bedding approach with a two-stage compilation process to generate C
code. The language is extensible through the use of shallow embed-
ding where new language constructs and combinators can be created
with the use of existing ones. D’ARTAGNAN uses a similar approach
as Feldspar with deep embedding and a two-stage compilation to gen-
erate target specific code. Unlike Feldspar, in D’ARTAGNAN we slice
application logic into code to run on multiple devices at the same time
and including intra-device communication.

There are also languages designed with the notion of synchronous data-
flow computation, in the same spirit as D’ARTAGNAN. Lucid [Wadge and

5.9. CONCLUSIONS 91

Ashcroft, 1985] is a general-purpose functional language using this style,
where a programmer would write a program where an endless stream of
values are passed through operators to generate an output. More impor-
tantly, Lustre [Halbwachs et al., 1991] and Signal [Gautier et al., 1987] are
languages which follow in the nature of Lucid but were specifically de-
signed for the control of real-time systems. Unlike D’ARTAGNAN, Lustre
and Signal are not embedded in another language and the main focus is on
reactive systems rather than taking a macroprogramming approach.

5.9 Conclusions

We have proposed D’ARTAGNAN, an embedded DSL framework that brings
functional programming to distributed embedded systems. By using an
internal representation, we can analyse, transform and interpret a stream
processor in different ways. D’ARTAGNAN allows the programmer to use
the power of functional programming to build sensor network applications.
For the use-cases evaluated in this work, we have observed that any over-
heads introduced by D’ARTAGNAN are adequately compensated for by C
compiler optimisations and that the framework can be extended to add
even higher layers of abstraction. Libraries can be created for specific appli-
cation domains to make writing of applications even easier.

The approach which is closest to D’ARTAGNAN is Flask — a stream
processing DSL embedded in Haskell. However, Flask makes use of Red,
a restricted subset of Haskell which lacks support for type classes, disal-
lows recursive data-types and functions, and closures cannot be allocated.
D’ARTAGNAN is different in that it inherits all the features and function-
ality from Haskell, providing greater expressiveness to the programmer.
Also, Flask makes use of quasiquoting to allow code to be written in nesC
and used directly in code generation. In a similar manner to Regiment
and Feldspar, D’ARTAGNAN makes use of an intermediate representation
to convert to low-level device code.

D’ARTAGNAN raises interesting questions in how high can we raise the

92 CHAPTER 5. D’ARTAGNAN

abstraction level of programming such systems. From the smart building
example, it is evident that there is much to be gained with compositional
systems — an observation which coincides with similar languages which
have been defined for other domains [Sheeran, 2005].

Part III

Macroprogramming for
Blockchain Systems

Part II has shown how the technique of macroprogramming can
be applied to stream processing applications on heterogeneous
wireless sensor networks. We now shift focus onto blockchain
systems. First, we extend the D’ARTAGNAN framework and lan-
guage to extend beyond wireless sensor networks by including
blockchain for stream processing applications. Then we propose
a new framework and language called PORTHOS for macropro-
gramming commitment-based smart contracts.

93

6

Background: Blockchain and
Smart Contracts

6.1 Introduction

The recent rise in popularity of cryptocurrencies has attracted widespread
interest to blockchain technology, a type of Distributed Ledger Technology
(DLT). A blockchain is a shared, distributed ledger made up of a log of
immutable and verifiable list of transactions. Transactions are cryptograph-
ically signed instructions by users of a blockchain system. In a cryptocur-
rency application, the user’s instructions indicate the transfer of cryptocur-
rency from one user to another. However, blockchain platforms can be used
beyond transfer of cryptocurrency, as code (smart contracts), can be executed
to perform computation by the blockchain system.

This chapter gives an overview of blockchain technology and smart con-
tracts. This account is intended to equip the reader with the necessary back-
ground information for the other chapters in this Part. Chapter 7 describes
the extension of the D’ARTAGNAN framework to include a blockchain el-
ement. In chapter 8 we shift focus entirely onto blockchain systems and
smart contracts, as we propose a macroprogramming framework to write
applications that span different blockchain systems.

95

96 CHAPTER 6. BLOCKCHAIN AND SMART CONTRACTS

6.1.1 Overview

Blockchain technology originated in Bitcoin [Nakamoto, 2008] in 2008 as the
underlying technology for a cryptocurrency application where transactions
are stored in a ledger shared between all participants and which is not con-
trolled by any single entity. The approach is considered revolutionary in
that it resolves the age-old problem of trust between trustless parties, with-
out the involvement of a central institution. Transactions are stored in a list
of blocks, and cryptographic techniques are used to ensure that the informa-
tion stored is not altered. The chain grows continuously as so-called miners
mine new blocks when new transactions happen on the network. To ensure
that only valid transactions are added to the chain, a consensus algorithm
is used where peers agree to the validity of blocks and transactions.

Since blockchain can be used to perform transactions without a bank or
intermediary, blockchain fits quite well in the domain of financial services.
It also has uses in other fields and applications where immutability, distri-
bution and reliability of data is required. Businesses may use blockchain
technology to remove a single point of failure, or to share data with other
businesses without the need of a central authority to act as intermediary.

Blockchain technology is nowadays widely used for smart contracts —
an agreement between two parties, written in code, which is executed on
the blockchain when certain conditions are satisfied. Smart contracts help
overcome the lack of trust that exists between two or more parties engaged
in a trade — it enables business transactions that would otherwise not hap-
pen without the assistance of a trusted intermediary.

Smart contracts originate in Bitcoin scripts, written in a minimal non-
Turing complete bytecode language. These scripts are mostly too restricted
to be considered full smart contract languages. On the other hand, second
generation blockchain systems such as Ethereum, offer a fully-fledged vir-
tual machine with a Turing-complete instruction set.

Today’s smart contracts are intended to execute on a single blockchain
system. It is expected that the need for multi-chain distributed applications
(DApps) spanning across multiple blockchain systems is going to increase

6.2. BLOCKCHAIN TECHNOLOGY 97

as blockchain technology continues to gain popularity. Different blockchain
systems will co-exist to offer different features, or to provide different ben-
efits. Interactions between blockchains (interoperability) will be needed to
implement new types of applications where assets may be exchanged be-
tween participants across different blockchain systems.

6.2 Blockchain Technology

In a blockchain system, a number of nodes form a peer-to-peer network,
and a consensus algorithm is used to ensure that all nodes have the same
shared ledger information. In this section we describe the architecture of a
blockchain system and we also briefly describe smart contracts. A variety
of smart contract languages are covered in more detail in Section 6.4.

6.2.1 Blockchain Architecture

Blocks in a blockchain are linked together through cryptography — every
block includes the hash of the previous block, such that a chain of blocks
is created. The very first block, called the genesis block, does not have a
parent block and this is usually hardcoded into the software of a blockchain
application. If a transaction in any block is modified, the hash for that block
is modified, affecting all subsequent blocks. This allows tampering with
data to be immediately detected by the peers of the blockchain system. Fig-
ure 6.1 illustrates an example of a blockchain, which is made up of a block
header and a block body.

Block Header Parent Block
Hash

TX

TX TX

TX

TX

TX

Block Header Parent Block
Hash

TX

TX TX

TX

TX

TX

Block Header Parent Block
Hash

TX

TX TX

TX

TX

TX

Figure 6.1: Blockchain architecture

98 CHAPTER 6. BLOCKCHAIN AND SMART CONTRACTS

The header of a block is typically made up of a number of elements,
including:

- A hash of the parent block, creating a chain of connected blocks.

- A merkle tree root hash — a hash value of all the transactions in the
block.

- The block timestamp.

- A version number indicating which blockchain consensus rules are
being followed. The rules of a blockchain may be altered over time,
so validators need to know which rules were applied for appending a
new block to the chain.

- A nonce — a number adjusted by miners such that when included
with all the other information in the block header and hashed, will
generate a hash for the block which is equal to or less than a target
hash value.

A number of different blockchain platforms exist and these differ by a
number of key properties — the consensus protocol, the access policy and
the validation policy.

Consensus Protocol — determines how trust is created among the peers
of a blockchain system. A number of protocols exist, with the pri-
mary two being proof of work and proof of stake. In proof of work, min-
ers spend a significant amount of energy to find a nonce that when
hashed with the block information creates a hash value which satisfies
certain criteria. This protocol was first proposed and used in the Bit-
coin [Nakamoto, 2008] blockchain platform. Due to the nature of the
protocol, this creates performance issues due to the limited through-
put in terms of transactions processed by the blockchain system. Proof
of stake requires nodes to put their own cryptocurrency at stake as a
guarantee against bad behaviour. Proof of stake is used in the Cardano
[car, 2018] blockchain platform. Ethereum [Wood, 2014], probably the

6.2. BLOCKCHAIN TECHNOLOGY 99

most popular blockchain platform, is currently using proof of work,
but is reviewing a proposal to move to proof of stake. Other protocols
include proof of elapsed time, proof of importance, proof of state, raft-based
consensus and stream-processing ordering service.

Access Policy — determines which nodes can participate in a blockchain
network. A public blockchain allows anyone to join and access the
information stored in the blockchain, whereas a private blockchain can
only be accessed by selected nodes.

Validation Policy — used to determine which nodes can participate in the
consensus protocol and to initiate transactions. Permissionless blockchains
allow any node to participate, whereas permissioned blockchains re-
strict these activities to selected nodes only.

6.2.2 Smart Contracts

A smart contract is a program that runs on a blockchain platform. The cor-
rect execution of a smart contract is enforced by the peers of the blockchain
platform by using the agreed consensus protocol. Each blockchain platform
typically supports one or more programming languages that can be used to
write contracts. Rules and events of the contract are encoded in the pro-
gramming language to implement a wide variety of applications.

The code of a smart contract is stored on the blockchain, and it can be
identified and invoked with an address. Users can interact with a smart
contract by invoking functions. Depending on the type of platform, it may
be necessary to send cryptocurrency to pay for the execution of the smart
contract function. This concept is typically referred to as gas, where the
participant invoking the function has to pay for gas needed to execute that
function.

Smart contract languages differ from one another in terms of expressiv-
ity. Some languages are intentionally restricted to reduce the risk of errors
or non-terminating programmes. Other languages are Turing complete, al-
lowing any application to be coded at the expense of increased complexity.

100 CHAPTER 6. BLOCKCHAIN AND SMART CONTRACTS

6.3 Blockchain Systems

In this section we outline a number of popular blockchain systems including
Bitcoin, Ethereum and Hyperledger Fabric and highlight their key charac-
teristics.

6.3.1 Bitcoin

Bitcoin [Nakamoto, 2008], launched in January 2009, was the first applica-
tion to use blockchain technology. Bitcoin’s main purpose is to serve as a
digital currency, and the technology behind it prevents double-spending by
allowing anyone to have a copy of the shared ledger and to validate all past
transactions.

Although still popular today, the Bitcoin blockchain has a number of
limitations. The transaction throughput is low (due to restricted block size)
and the consensus algorithm is expensive based on proof-of-work causing
transactions to take long to be confirmed.

We included Bitcoin in this section because we felt the review would not
be complete without it. However, Bitcoin is only a digital currency appli-
cation and the underlying network cannot be used for other applications as
can be done with other blockchain platforms.

6.3.2 Ethereum

To overcome the limitations in Bitcoin (some of which were intended by de-
sign), a new generation of blockchain systems emerged. The Ethereum Vir-
tual Machine (EVM) [Wood, 2014] is a simple but powerful Turing-complete
virtual machine on which EVM byte code can be executed. Ethereum is
a smart contract platform which supports stateful contracts where values
persist on the blockchain to be used in multiple invocations. To avoid non-
terminating computation, Ethereum introduced the notion of gas (a unit of
consumption), where participants pay for computation performed on the

6.3. BLOCKCHAIN SYSTEMS 101

network. If gas runs out, the transaction is aborted, but fees are retained by
the miners of the network.

As a result of the richer set of operations, Ethereum is much more pow-
erful than Bitcoin and supports a wider range of applications. Ethereum is
a permissionless blockchain system — anyone with access to the network
can validate and submit transactions. A public instance of the Ethereum
blockchain exists, and anyone can connect to it. The same technology can
also be deployed in a private setup (restricted access) such that the informa-
tion in the ledger is only accessible to a private consortium.

6.3.3 Hyperledger Fabric

Hyperledger Fabric [Cachin, 2016] is an implementation of a distributed
ledger platform onto which smart contracts can be executed. It is a permis-
sioned blockchain system with immediate finality — validating peers in the
network are responsible for running consensus, validating transactions and
maintaining the ledger.

Participants interact with Hyperledger through three types of transac-
tions. The deploy transaction installs chaincode (a smart contract) on peers
and makes it ready to be invoked. The invoke transaction invokes previously
deployed chaincode with specific parameters and the result of the execu-
tion is returned. The third type of transaction is a query transaction where
the state and result of a transaction can be retrieved from a peer’s persistent
state.

6.3.4 Others

Several other blockchain platforms exist or are currently in development
stage, and the list continuously grows longer. Some of the more popular
platforms on the list include Cardano, EOS, Tezos, Ripple, R3 Corda, Lisk,
NEO and Stellar. The distinguishing factors between one platform and an-
other may in some cases be quite radical while for others these are minimal
— one blockchain platform soon becomes the predecessor of another as a

102 CHAPTER 6. BLOCKCHAIN AND SMART CONTRACTS

team decides to take the technology in a slightly different direction. For ex-
ample, æternity1 claims to improve a number of shortcomings on Ethereum
including the introduction of state channels, improvement on governance,
a hybrid proof-of-work/proof-of-stake consensus algorithm and the incor-
poration of oracles2.

6.4 Smart Contract Programming Languages

To make it easier and familiar for programmers, the more popular smart
contract languages (such as Solidity3 for Ethereum) use an imperative-style
programming paradigm where contract intermediate state is managed ex-
plicitly by the programmer. Solidity is an unrestricted language and com-
putation is only limited by gas — a unit of consumption, where participants
pay for computation performed on the network. The benefits of using such
a paradigm (i.e. ease of use) are far outweighed by the risk of bugs unknow-
ingly introduced by the programmer — in particular, unhandled scenarios
which the programmer did not expect to happen. This is a risk that exists
also for normal systems, but with smart contracts such risks can have much
bigger impact — the DAO hack and other high-profile heists are evidence
of this [Luu et al., 2016].

Different programming paradigms have emerged to address the risks
associated with unrestricted languages such as Solidity. Explicit state tran-
sition languages, including Scilla [Sergey et al., 2018], Rholang [Meredith
et al., 2018], Bamboo [Hirai, 2018] and Obsidian [Coblenz, 2017], use con-
cepts from finite state machines and automata. Transactions either change
the state of a contract or fail with an error. Re-entrancy is not allowed, and
external calls that change the state are not possible except for tail-calls —
thereby reducing the risk of attacks. Functional programming paradigms
are used in Vyper [Buterin, 2018], Simplicity [O’Connor, 2017], Bamboo [Hi-

1https://aeternity.com/
2An oracle is a third party agent that feeds verified real-world information into a

blockchain system to be used by smart contracts
3https://solidity.readthedocs.io/en/latest/index.html

6.4. SMART CONTRACT PROGRAMMING LANGUAGES 103

rai, 2018] and Pact [Popejoy, 2016]. Functions are designed to be atomic (ex-
ecute in their entirety or revert completely) and can call other pure functions
(i.e. state is not changed).

Other techniques introduced to address the risks of unrestricted lan-
guages include the use of DSLs — a high-level language designed to work
in a specific field or domain. Two main approaches exist (i) an intrepreter-
type approach such as Findel [Biryukov et al., 2017] where an Ethereum
smart contract is used to execute Findel contracts and (ii) a compiler-type
approach, where a contract written in a DSL generates code in existing
smart contract languages as used by Pettersson and Edström [Pettersson
and Edström, 2016], Frantz and Nowostawski [Frantz and Nowostawski,
2016] and in Marlowe [Seijas and Thompson, 2018].

In this section, we will look at a selection of smart contract languages
spanning across a range of different programming paradigms. Since not all
languages offer the same functionality, we use different examples to illus-
trate capabilities.

6.4.1 Bitcoin Script

Bitcoin Script, the programming language used to write smart contracts4

for Bitcoin, has a limited set of operations and was intentionally designed
as non-Turing complete. In Bitcoin, a smart contract is implemented by
defining a set of rules that must be satisfied for a value to be spent — this is
referred to as the Unspent Transaction Output (UTxO) model. For example,
a hash of the spender’s public key must be provided to spend the value
stored. Due to the restricted nature of Bitcoin Script, the applications that
can be implemented on Bitcoin are limited.

Bitcoin Script is a stack-based language similar to Forth [Moore and
Leach, 1970]. The code below illustrates a Bitcoin Script example to pay
to a public key hash (P2PKH) address:

4We use the term smart contract loosely for Bitcoin, due to the restricted set of operators
available in Bitcoin Script.

104 CHAPTER 6. BLOCKCHAIN AND SMART CONTRACTS

Listing 6.1: Pay-To-Public-Key-Hash (P2PKH) in Bitcoin Script
<Sig> <PubKey> OP_DUP OP_HASH160 <PubKeyHash>
OP_EQUALVERIFY OP_CHECKSIG

The code is processed from left to right, with operators added to the
stack in a last-in first-out manner. The signature is first moved to the stack,
followed by the public key. The OP_DUP operator duplicates the top item on
the stack (i.e. the public key) and then the OP_HASH160 function hashes the
same top item on the stack (i.e. hashing the public key). Next, the public
key hash required to unlock the funds is pushed to the top of the stack and
the OP_EQUAL operator checks whether the top two elements of the stack
(i.e. the two hashes) are the same. Finally, OP_CHECKSIG verifies whether the
signature is correct. If the remaining element on the stack is true, then the
funds can be spent.

The example shown for Bitcoin Script is relatively simple due to the re-
stricted nature of the language. While in the other sections we show exam-
ples of auctions or escrow agreements, these type of applications cannot be
expressed with Bitcoin Script.

6.4.2 Solidity

Solidity [sol, 2019], the most popular language on Ethereum, is a high-level
language for writing smart contracts. Similar to object-oriented program-
ming, contracts are like classes — contracts have functions which can call
other functions in the same contract or in other contracts; contracts can be
abstract or can inherit from other contracts; the contract intermediate state
is managed explicitly by the programmer. Solidity compiles to EVM byte-
code — a Turing-complete programming language with a stack, random
access memory and persistent storage. Infinite loops are prevented through
the use of gas, paid for by the participant invoking a function to the miner
who processes the transaction in return for the computation. If gas runs
out, the transaction is discarded, but the miner keeps the gas payment. The
following code shows an auction example written in Solidity.

6.4. SMART CONTRACT PROGRAMMING LANGUAGES 105

Listing 6.2: An auction example in Solidity
contract SimpleAuction {

address public beneficiary;
uint public auctionEnd;
address public highestBidder;
uint public highestBid;
mapping(address => uint) pendingReturns;
bool ended;
event HighestBidIncreased(address bidder, uint amount);
event AuctionEnded(address winner, uint amount);

constructor(uint _biddingTime, address _beneficiary) public {
beneficiary = _beneficiary;
auctionEnd = now + _biddingTime;

}

function bid() public payable {
require(now <= auctionEnd, "Auction already ended.");
require(msg.value > highestBid, "There already is a higher bid.");
if (highestBid != 0) {

pendingReturns[highestBidder] += highestBid;
}
highestBidder = msg.sender;
highestBid = msg.value;
emit HighestBidIncreased(msg.sender, msg.value);

}

function auctionEnd() public {
require(now >= auctionEnd, "Auction not yet ended.");
require(!ended, "auctionEnd has already been called.");
ended = true;
emit AuctionEnded(highestBidder, highestBid);
beneficiary.transfer(highestBid);

}
}

Solidity gained widespread attention in its relatively short history as it
was intentionally designed to look like JavaScript, and was therefore very

106 CHAPTER 6. BLOCKCHAIN AND SMART CONTRACTS

familiar to mainstream developers. On the other hand, the unrestricted na-
ture and ambiguities of the language created opportunity for weaknesses
in smart contracts to be exploited. The language is continuously evolving
with changes being applied to improve the security and auditability aspects
of the language.

6.4.3 Marlowe

Marlowe [Seijas and Thompson, 2018] is a domain specific language em-
bedded in Haskell, intended for the Cardano blockchain platform but can
also be implemented for other blockchain systems including both UTxO or
account-based blockchains. The language is made up of a small set of ba-
sic contract constructs (seven basic constructs) which can be combined with
Haskell primitives for additional expressivity. The language is composi-
tional, in that complex contracts are built by connecting simpler contracts.
Marlowe can be used to create financial contracts, in the style of Peyton
Jones [Peyton Jones et al., 2000].

The following code sample shows the implementation of an escrow agree-
ment in Marlowe.

Listing 6.3: Escrow agreement in Marlowe
escrow :: Contract
escrow = CommitCash iCC1 1 (ConstMoney 450) 10 100

(When (OrObs (two_chose alice bob carol 0)
(two_chose alice bob carol 1))

90
(Choice (two_chose alice bob carol 1)

(Pay iP1 alice bob (AvailableMoney iCC1) 100
redeem_original)

redeem_original)
redeem_original)

Null

In the example above, the primitive CommitCash allows a user to commit
a cryptocurrency amount of 450 (Cardano blockchain uses the ADA cur-

6.4. SMART CONTRACT PROGRAMMING LANGUAGES 107

rency) before block 10, with the promise that money will be released on
block 100 if it is not claimed before that. The next primitive, When, waits for
two out of three participants (alice, bob and carol) to agree on the outcome
— whether the money should be claimed by alice or by bob. If agreement
is not reached by block 90, the money is refunded.

6.4.4 Others

Ivy is a high-level language [ivy, 2017] that allows a programmer to write
smart contracts for the Bitcoin platform. An Ivy programme gives
better form to a smart contract with structured clauses for unlocking
value. A contract written in Ivy can be compiled to Bitcoin Script, to
run on Bitcoin. In Section 6.4.1 we showed the Bitcoin Script code for
paying to a public key hash address. The equivalent contract written
in Ivy is shown here.

Listing 6.4: Pay-To-Public-Key-Hash (P2PKH) example in Ivy
contract LockWithPKH(pubKeyHash: Sha256(PublicKey), val: Value) {

clause spend(pubKey: PublicKey, sig: Signature) {
verify sha256(pubKey) == pubKeyHash
verify checkSig(pubKey, sig)
unlock val

}
}

Simplicity [O’Connor, 2017] is a typed, combinator-based, functional lan-
guage for building smart contracts. It is designed as a low-level lan-
guage to be interpreted by blockchain software. The language is made
up of just nine combinators to build expressions: unit returns the sin-
gular value of the unit type; injl and injr create tagged values while
case is a branching operation; pair, take and drop create and man-
age pairs; iden is the identity function and comp is used for functional
composition. Simplicity is purely functional and has no state so as to
facilitate equational reasoning about the semantics of the expression.

108 CHAPTER 6. BLOCKCHAIN AND SMART CONTRACTS

The language has no bound variables and no function types, hence no
higher-order functions. The language is Turing incomplete, and has
no recursion or loops making it amenable to static analysis to deter-
mine the upper bounds of computation resources required.

Listing 6.5: Basic signature verification in Simplicity
basicSigVerify b c := comp (pair(witness b)

(pair pubKey (comp (witness c)sighash)))
(comp (pair checkSig unit) (case fail unit))

Liquidity [liq] is a high-level language for writing smart contracts on the
Tezos platform. The language is a fully-typed functional language and
compiles to Michelson — a low-level, strongly-typed, stack-based lan-
guage. Values can be stored in local variables, instead of more com-
plex stack manipulations and the language supports high-level types
like sum-types and record-types. The code below shows an example
of an auction smart contract written in Liquidity.

Listing 6.6: An auction example in Liquidity
type storage = {

auction_end : timestamp;
highest_bid : tez;
bidder : key_hash;

}

let%entry main
(parameter : key_hash)
(storage : storage) =

(* Check if auction has ended *)
if Current.time () > storage.auction_end then Current.failwith ();

let new_bid = Current.amount () in
let new_bidder = parameter in
(* Check if new bid is higher that the last *)
if new_bid <= storage.highest_bid then Current.failwith ();

6.4. SMART CONTRACT PROGRAMMING LANGUAGES 109

let previous_bidder = storage.bidder in
let previous_bid = storage.highest_bid in

(* Set new highest bid in storage *)
let storage = storage.highest_bid <- new_bid in
let storage = storage.bidder <- new_bidder in

(* refund previous bid to previous bidder *)
let refund_to = Account.default previous_bidder in
let op = Contract.call refund_to previous_bid () in
([op], storage)

Sophia is a smart contract language for the æternity blockchain. It uses
the functional programming paradigm and is a strongly-typed lan-
guage. Sophia has restricted mutable state for each contract instance
— state is enclosed within the state type. Anything outside this state
is not persisted between contract invocations. A contract initialisation
function is pure, in that it returns the initial state as the return value
and then on, state is accessible through an implicitly bound variable
state. Sophia contracts can call other contracts, and the structure of
a contract is similar to classes in an object oriented language. Con-
tract functions can be abstract, and contracts can inherit from other
contracts.

Listing 6.7: An auction example in Sophia
contract Auction =

type state = { start_amount : int, start_height : int,
dec : int, beneficiary : address, sold : bool }

private function abort(err) = abort(err)
private function spend(to, amount) =

let total = Contract.balance
raw_spend(to, amount)
total - amount

private function require(b : bool, err : string) =

110 CHAPTER 6. BLOCKCHAIN AND SMART CONTRACTS

if(!b) abort(err)

public function init(beneficiary, start, decrease) : state =
require(start > 0 && decrease > 0, "bad args")
{ start_amount = start, start_height = Chain.block_height,

beneficiary = beneficiary, dec = decrease, sold = false }

public stateful function bid() =
require(!(state.sold), "sold")
let cost =

state.start_amount - (Chain.block_height - state.start_height)
* state.dec

require(Contract.balance >= cost, "no money")
spend(state.beneficiary, cost)
spend(Call.caller, Contract.balance)
put(state{sold = true})

Vyper [Buterin, 2018] is a high-level smart contract language for Ethereum,
and like Solidity compiles down to EVM bytecode. Vyper is syntac-
tically similar to Python, and like Solidity, is contract-oriented. How-
ever, Vyper was designed to address specific goals of security and au-
ditability. A number of features were intentionally left out, including
recursive calling and infinite loops such that gas limit attacks are not
possible. Also, modifiers, class inheritance and function overloading
are not possible in order to improve the readability, and hence au-
ditability, of a smart contract. An example of an auction is shown
below.

Listing 6.8: An auction contract example in Vyper
Open Auction

Auction params
Beneficiary receives money from the highest bidder
beneficiary: public(address)
auctionStart: public(timestamp)
auctionEnd: public(timestamp)

6.4. SMART CONTRACT PROGRAMMING LANGUAGES 111

Current state of auction
highestBidder: public(address)
highestBid: public(wei_value)

Set to true at the end, disallows any change
ended: public(bool)

Keep track of refunded bids so we can follow the withdraw pattern
pendingReturns: public(map(address, wei_value))

Create a simple auction with ‘_bidding_time‘
seconds bidding time on behalf of the
beneficiary address ‘_beneficiary‘.
@public
def __init__(_beneficiary: address, _bidding_time: timedelta):

self.beneficiary = _beneficiary
self.auctionStart = block.timestamp
self.auctionEnd = self.auctionStart + _bidding_time

Bid on the auction with the value sent
together with this transaction.
The value will only be refunded if the
auction is not won.
@public
@payable
def bid():

Check if bidding period is over.
assert block.timestamp < self.auctionEnd
Check if bid is high enough
assert msg.value > self.highestBid
Track the refund for the previous high bidder
self.pendingReturns[self.highestBidder] += self.highestBid
Track new high bid
self.highestBidder = msg.sender
self.highestBid = msg.value

112 CHAPTER 6. BLOCKCHAIN AND SMART CONTRACTS

6.4.5 Discussion

The primary differentiator between different smart contract languages is
whether the language is Turing-complete or not. A Turing-complete lan-
guage has more expressivity to define a wider variety of smart contracts, at
the cost of sacrificing readability and thereby security of contracts. This is
an ongoing debate as some languages (such as Solidity) are considered to
be more error-prone and security flaws could lead to big financial losses,
when compared to other languages which are more restricted. In Jansen
et al. [2019], the authors find that only around a third of smart contracts
on the Ethereum blockchain system make use of while-loops, for-loops and
recursion. This indicates that the majority of contracts do not need the ex-
pressivity of a Turing-complete language, but a more restricted language
should suffice.

Other differences between languages include the choice of program-
ming paradigm — whether an imperative sequential paradigm is used, or
a declarative one. The former provides better familiarity with developers
experienced with popular languages such as Javascript, whereas the latter
may be more appropriate for domain-specific areas. For smart contracts,
declarative languages without side-effects (or with controlled side-effects)
may be preferred as these can reduce security risks.

6.5 Chain Interoperability

Today’s smart contracts are intended to execute on a single blockchain sys-
tem, however it is expected that with the proliferation of blockchain sys-
tems, the need for multi-chain distributed applications (applications that
span across multiple blockchain systems) is going to increase. Different
blockchain systems will co-exist to offer different features, or to provide
different benefits. Interactions between blockchains (interoperability) will
be needed to implement new types of applications where assets may be
exchanged between participants across different blockchain systems. A sin-

6.5. CHAIN INTEROPERABILITY 113

gle application may handle payments on the Bitcoin network, Ethereum
for public interactions and Hyperledger Fabric for specific private point-to-
point interactions.

Blockchain interoperability is not straightforward. Vitalik Buterin [Bu-
terin, 2016] identifies three strategies for chain interoperability — atomic
swaps using hashed time-locks, relay chains and centralised or multisig no-
tary schemes.

Hashed time-locks are ideal for the swapping of assets across different
blockchain systems. Operations on two chains use the same trigger — a
hash of a secret, which is then revealed and used to unlock the transactions
in sequence. Strategies involving relays or notaries both rely on the pres-
ence of a trusted entity, or group of entities. With relays, blocks are copied
from one blockchain system to another and the receiving blockchain has
the capability of validating and inspecting incoming blocks to trigger ac-
tions as needed. In notary schemes, a trusted entity triggers an operation
on a blockchain when an event is detected on another blockchain.

Blocknet is a solution for interoperability which makes use of atomic
swaps. The XBridge component enables an exchange functionality between
two blockchains, and the XRouter component enables communication func-
tionality. Solutions based on atomic swaps are not suitable for causality —
for example, when an event on Blockchain A triggers an action on Blockchain
B.

Cosmos [Kwon and Buchman, 2018] and Polkadot [Wood, 2018] are two
of the top contenders in the blockchain interoperability space, aiming to
create a network of blockchains by using a relay-based strategy — blocks
from one chain can be read and verified by another chain. The advantage
of a relay-based approach is that the system is completely trustless — the
relay contract is publicly auditable and anyone can relay blocks. However,
the weakness of the approach is that the amount of data required on the
destination chain may be quite significant and with block size limitations
this may become problematic over the long term.

Aion’s Transwarp-Conduit [Shidokht Hejazi-Sepehr and Sharif, 2019] is

114 CHAPTER 6. BLOCKCHAIN AND SMART CONTRACTS

a notary-based approach for connecting distinct public blockchain systems.
Notary schemes offer better versatility than relay-based schemes, however
the presence of an external entity (or entities) is required and therefore trust
concerns may be introduced.

None of the frameworks mentioned here offer the perfect solution for in-
teroperability, and this remains an active area of research. One of the more
advanced interoperability projects is the Interledger [Thomas and Schwartz,
2015] protocol, which is intended to enable the exchange of value between
different systems. The protocol does not rely on a single system for process-
ing payments, and anyone with accounts on two or more ledgers can act as
a connector.

The scope of blockchain interoperability in this thesis is limited to the re-
quirement of a network layer for communication between different blockchain
systems. We do not attempt to provide a solution to blockchain interoper-
ability, but simply highlight the challenges which are currently present in
this domain and which currently remains an open research question.

6.6 Conclusions

In this chapter we have described blockchain technology and smart con-
tracts. We outlined a number of popular blockchain systems, including
Bitcoin, Ethereum and Hyperledger Fabric, and their key characteristics.
We have also shown a variety of smart contract languages, including short
snippets of smart contracts in different languages. Finally, we described the
challenges and potential solutions for chain interoperability. This chapter
intended to provide the reader with information about blockchain technol-
ogy and smart contracts as background for the next chapters (Chapters 7
and 8).

7

Macroprogramming the
Blockchain of Things

In Chapter 5 we proposed D’ARTAGNAN, an embedded DSL framework
for macroprogramming distributed embedded systems. In this chapter we
extend the heterogeneity aspect of that framework to be able to write stream
processor descriptions including blockchain and edge systems, in addition
to embedded systems.

Blockchain and smart contract technology provide a means of decen-
tralised computational agreements that are trusted and automated. By inte-
grating Internet of Things (IoT) devices with blockchain systems and smart
contracts, agreements can not only be confined to in-blockchain manipu-
lation of state, however can enable agreements to interact on the physical
world. This integration is non-trivial due to the limited resources on IoT
devices and the heterogeneity of such an architecture. Such blockchain con-
nected IoT devices typically require programming of smart contracts, edge
blockchain nodes and the IoT devices.

IoT embedded systems require expertise in low level development. Sim-
ilarly, smart contract programming requires expertise with an extensive at-
tention to detail, as even minor bugs can have catastrophic consequences.
In this chapter, we propose a macroprogramming approach, as an exten-
sion of the D’ARTAGNAN framework, for developing the different system
components required for blockchain connected IoT devices including smart

115

116 CHAPTER 7. MP THE BLOCKCHAIN OF THINGS

contracts, edge nodes and IoT devices from a monolithic description. In this
manner, one can use a higher level of abstraction to develop an application,
while still being able to generate code automatically which can be deployed
on different nodes.

7.1 Introduction

The rise of smart contracts on blockchain or other distributed ledger tech-
nologies have enabled the possibility of regulated interaction and resource
exchange between parties without the need of a trusted entity. With smart
contract technologies such as Ethereum [Wood, 2014], which provide a Tur-
ing complete programming language for the specification of executable con-
tracts, one can encode any complex behaviour between parties within the
contract. A major challenge is, however, that of reaching beyond the con-
fines of the smart contract itself, and interacting with real world systems.
This challenge is particularly acute in cases where external systems are In-
ternet of Things (IoT) devices which are often limited in resources.

One of the hurdles is the fact that programming models (and virtual
machines) developed for smart contracts are not designed to be executed
on systems with limited resources. For instance, the Ethereum Virtual Ma-
chine uses 256-bit instructions and associated stack, which cannot be easily
deployed effectively on most limited resource devices without major over-
heads of space and time. Other work has looked at providing means to
explicitly switch word-size in order to have virtual machine-level code ex-
ecutable across blockchain and IoT devices transparently [Ellul and Pace,
2018].

However, this does not address the other major challenge of developing
applications at a high level of abstraction across the two domains. Partic-
ularly due to the fact that smart contracts regulate transfer of digital assets
(and particularly frequently used to move cryptocurrency), system correct-
ness is critical, as has been shown in cases where the equivalent of mil-

7.1. INTRODUCTION 117

lions of US dollars were lost due to bugs in smart contracts1. The need for
a unified view of the system across the different levels of abstraction and
different locations of deployment (one of possibly many IoT devices, smart
contract or an intermediate blockchain edge node) is crucial, since program-
ming the different layers separately and gluing things together with custom
communication is not straightforward and may easily lead to unforeseen
situations.

On IoT devices, this challenge is typically addressed through the use of
macroprogramming [Newton et al., 2007a] — in which programmers can
focus on the top-level, global view and goal of the application being de-
veloped, hiding low-level details such as deployment location, communi-
cation, etc. In this chapter, we propose to extend such an approach to reach
beyond the computation and sensor data acquisition on IoT devices, thus
enabling parts of the macroprogrammed system to be deployed on edge
devices and beyond — in our case as smart contracts on the blockchain.

A number of application areas have been identified in the literature as
good use-cases for combining blockchain technologies with Internet of Things
devices, including transportation (smart vehicle systems, vehicle-to-vehicle
networking and intelligent transportation systems), transactive energy (mi-
crogrids and energy markets), smart cities and smart homes, communica-
tion between drones and robots, and manufacturing and supply-chain mod-
els [Abadi et al., 2018].

7.1.1 D’ARTAGNAN for Blockchain of Things

D’ARTAGNAN (as proposed in Chapter 5) is a macroprogramming language
aimed at enabling the programming of stream processing systems to be
deployed on heterogeneous devices, primarily targeting low-level devices.
However, nothing prevents it from being extended to high-level systems.
In this chapter, we discuss how D’ARTAGNAN can be extended to push the
limits of heterogeneity to edge devices and even onto smart contracts on the

1See [Atzei et al., 2017] for a list of cases, although since its publication many other high
profile, high loss cases have happened

118 CHAPTER 7. MP THE BLOCKCHAIN OF THINGS

blockchain. We identify a number of challenges which need to be addressed
to make such an approach possible, namely (i) enabling the deployment of
stream processors beyond IoT devices, particularly to enable in-blockchain
computation (in the form of smart contracts), and (ii) incorporating com-
munication between the different levels of abstraction, invisible to the user.
Solutions for D’ARTAGNAN are proposed and a prototype enables us to
evaluate how an end-to-end solution can be programmed for a smart build-
ing rent management use-case.

The rest of this chapter is organised as follows. In Section 7.2 we describe
the architecture and workflow of our proposed solution. Then, in Section 7.3
we present D’ARTAGNAN and how it is extended to enable the framework
proposed. We then present a use-case to illustrate the use of D’ARTAGNAN

in such a context in Section 7.4, an evaluation in Section 7.5 and conclude in
Section 7.6.

7.2 Proposed Framework

Blockchain connected edge IoT devices typically interact with the blockchain
by either having their own local copy of the blockchain or using an interme-
diary node (such as a cloud-based service or edge blockchain node). Writ-
ing code for systems made up of such combinations of devices typically
involves development of: (i) a smart contract, (ii) code to be deployed on
blockchain edge nodes and (iii) code for the IoT devices (which may each
use different technologies due to the heterogeneity of the devices). In addi-
tion, each of these devices has to handle communication with the others in
an explicit manner. In order to reduce the complexity required to develop
such systems, we propose the use of macroprogramming which enables the
use of a single high-level application description (using a domain specific
language approach) ranging over the whole system. Figure 7.1 depicts the
system architecture.

A single macroprogram is written by the system implementer which is
passed through transformations to generate the smart contract, blockchain

7.2. PROPOSED FRAMEWORK 119

Figure 7.1: Proposed macroprogramming blockchain of things architecture

edge nodes and IoT device code. Every participating blockchain node re-
quires a copy of the same blockchain data and is updated when new trans-
actions occur. When a smart contract is to be deployed within the blockchain,
each node will gain a copy of the smart contract. Actions can be initiated
by monitoring smart contract events of interest within the blockchain edge
node (this involves nothing more than monitoring the local state of the
blockchain). Thereafter, the blockchain edge node can perform any required
tasks and propagate messages throughout the different system components
(be it IoT devices, other edge nodes or to the smart contract itself). Simi-
larly, connected IoT devices can perform actions based upon the logic that
is required of them. Such actions may involve propagating data back to the
blockchain edge node in order to update the blockchain state.

120 CHAPTER 7. MP THE BLOCKCHAIN OF THINGS

7.3 D’ARTAGNAN: A Macroprogramming

Framework

As we have shown in Chapter 5, D’ARTAGNAN is a framework for pro-
gramming stream processing applications using a high-level domain spe-
cific language (DSL). The framework automatically translates a stream pro-
cessor description into target code that can be run on a network of heteroge-
neous devices. The generated code is specific to each device in the network
depending on both the intended behaviour and also the target architecture.

The D’ARTAGNAN language is embedded in Haskell — a domain spe-
cific embedded language, effectively a domain specific library developed in
a style such that the use of the library results in parts of a system written in
the host language (Haskell in our case) to resemble programs written in a
DSL for the target domain.

In the case of D’ARTAGNAN, the library allows for stream processors
to be defined as part of (and using) Haskell programs. Haskell primitives
can be used with the DSL to raise the level of abstraction. Consider the
following code snippet:

result = foldl1 combine (map (applyRate 10) eSensors)

A rate is applied to each sensor stream with map, and fold is used to ag-
gregate results by using a specific combine function. For instance, in wire-
less sensor networks, where power utilisation is a precious resource, infor-
mation can be aggregated before sent wirelessly to neighbouring nodes in
order to reduce the amount of data traffic.

Internally, the description of a stream processor results in a representa-
tion which can be (i) analysed; (ii) transformed; and (iii) interpreted in dif-
ferent forms. These are the three key features of the D’ARTAGNAN frame-
work (refer to Figure 7.2).

A stream processor can be analysed by traversing the internal represen-
tation to look for relevant and interesting information. For example, to de-
termine how computation is distributed across the network and whether

7.3. D’ARTAGNAN FRAMEWORK 121

Figure 7.2: The D’ARTAGNAN framework.

one device is more loaded than others. For embedded devices, an even dis-
tribution is desirable as it typically increases the longevity of the application
on these resource constrained systems.

The internal representation can also be transformed in different ways
— for example to evenly distribute the computation across the network (as
a result of the analysis phase) or perhaps to replace a computationally in-
tensive mathematical function with an approximation function. The frame-
work also supports compiler hints — tips supplied by the programmer to
the compiler such that generated code is optimised for the given application
environment. For example, if one of the devices in the network has a more
powerful processor, the compiler attempts to shift computation on to this
device.

The same internal representation can be interpreted in different forms. A
simulator interpretation can be used to observe the behaviour of the stream
processing application in a simulated environment. Perhaps more impor-

122 CHAPTER 7. MP THE BLOCKCHAIN OF THINGS

tantly, another interpretation automatically generates low-level code which
can be loaded onto target devices — the generated code can be specific to
different types of devices.

7.3.1 D’ARTAGNAN for IoT

D’ARTAGNAN was initially designed for IoT devices with limited capabili-
ties and resources. The computation for a stream processor would thus be
spread across different devices based on sensors they possess and compu-
tational power. The approach is that the developer typically partially tags
which parts have to be deployed on which devices (e.g. due to the fea-
tures, or the positioning, of a device — if we require the temperature of
the kitchen, then we can only read it from a device which has a tempera-
ture sensor and which lies in the kitchen). The locality of the rest of the
computation can be left up to D’ARTAGNAN, or directed using code trans-
formation libraries which allow the developer to request certain constraints
or compilation strategies (e.g. to minimise communication, or to put as
much computation as possible on devices connected to a permanent power
source).

The IoT device spectrum is very fragmented with hundreds of hardware
platforms and several operating systems. Code which runs on a specific
device cannot be executed on another device running the same operating
system because the underlying hardware differences cannot be ignored. Be-
cause of these differences D’ARTAGNAN was designed with heterogeneous
networks in mind, where the same logic can be translated into different tar-
get code depending on the target device.

7.3.2 Extending D’ARTAGNAN

The ability to generate code for different targets (heterogeneity) and the
ability to transform and statically move computation logic across the de-
vices in a network is what enables us to extend the D’ARTAGNAN frame-
work to be applicable for applications that span across IoT devices and

7.3. D’ARTAGNAN FRAMEWORK 123

smart contracts technology. Whereas the main concern with IoT devices is
the preservation of energy and load balancing of computation, applications
involved with let’s say the Ethereum blockchain are typically concerned
about gas2 utilisation. The mix of these two concerns together with the
need to have business logic visibility in smart contracts provide an inter-
esting challenge for which we believe D’ARTAGNAN can contribute. Our
framework allows the application logic to be placed in an improved man-
ner according to information provided by the programmer (i.e. hints) and
the target code generated accordingly.

Listing 7.1: D’ARTAGNAN language extensions
transaction :: Stream Int -> Stream Bool -> Stream Bool

native :: StreamType -> String -> Stream a

native1 :: StreamType -> String -> Stream a -> Stream b

In order to adapt D’ARTAGNAN to a wider range of applications, we
have extended the language with new functionality (see Listing 7.1). To be
able to implement blockchain applications, we have added transaction for
the execution of blockchain transactions. Given a condition (in the form
of a boolean stream) and an amount, a transaction is executed on a smart
contract with the amount deducted from a balance. The result of the trans-
action function shows whether the transaction has been successful or not (in
the form of a boolean stream). As an example, consider app below, which
shows the listing of a simple app which given a sensor (e.g. luminosity sen-
sor) will attempt to execute a transaction worth 1 coin3 when the luminosity
is below 150. The result of transaction is then used to turn on a light bulb.

app :: Stream Int -> Stream Bool
app input1 = transaction 1 (input1 .<. 150)

2The cost of running a transaction on the Ethereum blockchain varies according to the
computational resources needed and is referred to as ‘gas’.

3We use coin to mean the quantity or cost associated with the transaction.

124 CHAPTER 7. MP THE BLOCKCHAIN OF THINGS

With the introduction of a wider class of devices, some of which are not
necessarily resource-constrained, new functionality has been introduced to
reflect the new capabilities. For instance, native functions allow the appli-
cation to get access to new functionality which now becomes available as
a result of a wider class of devices. For example, a native function can be
used to retrieve information from a database or a third party service. Native
functions are defined directly inside a stream processor description and are
executed directly on the devices where they will be deployed, an approach
borrowed from a similar one used in Flask [Mainland et al., 2008]. To allow
for a wide range of services, the content of the native function is not evalu-
ated by D’ARTAGNAN. This means that errors may not be caught early and
will be detected during the compilation to target, or possibly even at run-
time. This approach is a compromise to allow for new services to be added
easily without changing the D’ARTAGNAN core.

In addition, we have extended the capability of heterogeneity further
by adding support in D’ARTAGNAN for compiling to Javascript for edge
devices and to Solidity for deployment of parts of the system as smart con-
tracts. These additions further require support for communication between
the different types of devices e.g. through a serial port between an IoT de-
vice and a blockchain edge node, wireless communication between IoT de-
vices running different operating systems, etc.

As mentioned at the beginning of this section and depicted in Figure 7.2,
the D’ARTAGNAN framework allows transformations which also include
placement of logic on specific targets. To illustrate the effect of this, we will
use Listing 7.2 which extends our previous example app with two sensors.
This example is trivial, but sufficient enough to illustrate the concepts of
how different placements work.

Listing 7.2: app2
app2 :: Stream Int -> Stream Int -> Stream Bool
app2 x y = transaction 1 (sAvg (x, y) .<. 150)

>> generateCode (app2 (inputI 1) (inputI 2))

7.3. D’ARTAGNAN FRAMEWORK 125

The application app2 is made up of six steps:

1. Read Sensor 1

2. Read Sensor 2

3. Add the values from the previous two steps

4. Divide by 2 the result from the previous step for average value

5. If the result is less than 150, execute a transaction

6. Transaction to deduct an amount from a balance

The code for reading a sensor is naturally bound to the device where the
sensor is located — Steps 1 and 2 are placed on Devices 1 and 2 respectively.
Step 6, which is used to deduct coin from a balance, is also location-bound
and has to be placed in a smart contract. There is more flexibility in the
placement of the remaining three steps and what goes where may depend
on the application needs and the layout of the devices. We highlight 3 pos-
sible placement options with the respective advantages/disadvantages:

- Placement Option 1 – IoT-focus: In this configuration the code is
placed (wherever possible) on IoT devices to provide in-network pro-
cessing and filtering. In the example above, the code for steps 3, 4
and 5 would be placed on Device 1, such that the device determines
whether to trigger a transaction or not. This approach requires less
communication in the form of radio messages, and gas is only used
when the condition is met. However, trust level is low as application
logic is off-chain. [low comms, low gas, low trust]

- Placement Option 2 – Edge-focus: In this placement option, code
is placed on the edge node where possible. Every time the sensors
are polled, the readings are passed from the IoT devices to the edge
node (2 wireless messages). The edge node then determines whether
a transaction should be executed. The number of radio messages in-
crease as a result, but this approach allows the edge node to do more

126 CHAPTER 7. MP THE BLOCKCHAIN OF THINGS

complex computation that may not be possible or accessible on re-
source constrained devices (e.g. record the information in a database
or convert using a rate-conversion service). [high comms, low gas,
low trust]

- Placement Option 3 – Blockchain-focus: With this option, the appli-
cation logic (steps 3, 4 and 5) is placed in the smart contract for trans-
parency. This setup also utilises two radio messages every time the
sensors are polled. The information is recorded in the smart contract,
but a transaction is only performed when the condition is satisfied.
[high comms, high gas, high trust]

Since different applications may have different requirements, the frame-
work allows the programmer to use placement directives (such as onDevice)
to influence how business logic is placed across the network (see Listing 7.3),
including the smart contract, as shown in the different placement options
above. The different types of communication needed (IoT to IoT, IoT to
Edge, Edge to Blockchain) to connect the logic in a coherent manner is han-
dled under the bonnet.

Listing 7.3: Different placement directives
app2 :: DeviceNum -> Stream Int -> Stream Int

-> Stream Bool
app2 placement input1 input2 = onDevice(placement,

transaction 1 (sAvg input1 input2 .<. 150))

>> app2 IOT (inputI 1) (inputI 2)

In the future, compiler directives may be added, such as low-comms, low-
gas or high-trust, such that the programmer does not need to explicitly indi-
cate where application logic should be placed, but such placement is han-
dled automatically by the framework.

7.4. USE CASE: SMART RENT MANAGEMENT 127

7.4 Use Case: Smart Rent Management

In Section 5.5, we introduced the smart rent use-case where home-owners
wanting to rent out their apartment can calculate a consumption charge
for commodities including water, electricity and home appliances. This
approach allows home-owners to lower daily rental rates to attract more
bookings without being exposed to high utility bills or maintenance costs.
In that Section, we showed how a metering application can be described to
measure and calculate the cost from several home appliances. In this Chap-
ter, we extend and complete that use-case to include a billing mechanism
by deducting funds directly from a wallet residing on a blockchain system.
If funds run out, appliances can be disabled and an automatic lock may
possibly lock out the tenants until funds are replenished.

To illustrate the basic concepts of the D’ARTAGNAN framework we show
a simple smart-rent application that calculates electricity consumption cost
(see Listing 7.4). The same description, in our case the code describing the
stream processor, can be used to generate different target code depending
on utility rates and the devices the application will run on. The generality of
this approach allows the same application to be used at different premises
and where different rates may apply, and is by far easier to manage than an
equivalent version written directly in low-level code.

Listing 7.4: A simple smart-rent application
consumption :: Int -> Stream Int -> Stream Bool
consumption eRate usage =

transaction (liftS eRate .*. usage) true

rate :: Stream Int -> Stream Bool
rate input = consumption 10 input

A specific instance of this application is created with real sensors passed
as input parameters such as:

» generateCode (rate (inputI 1))

Behind the scenes, D’ARTAGNAN creates low-level C code that will run

128 CHAPTER 7. MP THE BLOCKCHAIN OF THINGS

on device 1 for sensing the electricity consumption, generates code that will
run on the blockchain edge node and Solidity for the smart contract. The
complexity of communication between the IoT device, the edge node and
the smart contract, and the placement of in-network computation is deter-
mined and handled by D’ARTAGNAN– thereby hiding away all the com-
plexity of communication and placement from the programmer.

Listing 7.5: Snippet for blockchain edge node
port.on(’data’, function processData(data) {

var usage = data;
var rate = 10;
var costConsumed = usage * rate;

contract.methods.transaction(costConsumed).
send({from:caller}).on(’receipt’,

function (receipt) {
if (receipt.events.TxEvent.returnValues.tx)

console.log("Transaction successful");
});

});

Using the same idea, the application can be further enhanced to also
capture information directly from appliances and apply a charge to ev-
ery washing-machine cycle, per-hour use of air-conditioning and so on.
Listing 7.6 illustrates how such an application would be written. Since
the D’ARTAGNAN DSL is embedded in Haskell, the programmer can use
Haskell constructs, such as fold and map, as part of the stream processor
description. The application can then be instantiated as follows (definitions
for sensors have been omitted for conciseness):

Listing 7.6: Smart rent application with appliance dependent fees
consumption2 :: (Int, Int, Int, Int, Int, Int, Int)

-> (Stream Int, Stream Int, Stream Int, Stream Int, Stream Int,
[Stream Int], [Stream Int])

-> Stream Int
consumption2

(elecRate, waterRate, wmRate, dwRate, tdRate, acRate, tvRate)

7.4. USE CASE: SMART RENT MANAGEMENT 129

(elec, water, wm, dw, td, acList, tvList) = transaction totalCost true
where

totalCost = simpleRateCost elecRate elec .+.
simpleRateCost waterRate water .+.
simpleRateCost wmRate wm .+.
simpleRateCost dwRate dw .+.
simpleRateCost tdRate td .+.
foldl1 (.+.) (map (simpleRateCost acRate) acList) .+.
foldl1 (.+.) (map (simpleRateCost tvRate) tvList)

simpleRateCost :: Int -> Stream Int -> Stream Int
simpleRateCost rate usage = liftS rate .*. usage

rate2 = consumption2 (10, 5, 25, 25, 25, 15, 3)

>> toBlockChain (rate2 (elecMeter, waterMeter, washingmachine,
dishwasher, tumbledryer, [aircon1, aircon2, aircon3], [tv]))

Our example can be enhanced further by applying rates which vary ac-
cording to the time of day. The rates can be stored in a database attached
to one of the blockchain edge nodes, and a conversion service can be used
to convert units to actual cost (e.g. Euros). The sample code below shows
how a database query can be executed on the edge node connected to the
database, and then the conversion service is used to change the units into a
common base currency.

dbResult = onDevice (edgeNodeDB, Pull,
native1 dbQueryType "DBQuery:
SELECT elecRate, currency FROM ElecRates
WHERE timeOfDay=$1" t1)

(elecRateForeign, curr1) = unbundle dbResult

elecRate = elecRateForeign .*.
onDevice (edgeNodeForex, Pull,
native1 IType "Service: forex($1, ’EUR’)" (curr1 :: Stream Int))

130 CHAPTER 7. MP THE BLOCKCHAIN OF THINGS

Consumption rates can be stored in the database and updated by an ex-
ternal party, thus producing a dynamic system which does not require to
recompile and upload new code to the devices every time a rate changes.
Database queries can be defined inside a native function. Similarly, exter-
nal services such as forex rates follow the same pattern.

The function native1 indicates that a native function with one parame-
ter is being defined. Since it is not possible for the macroprogram to stati-
cally determine what the result of a native function is, the return type needs
to be defined in the function definition. In the database example above, the
result of the query is a stream tuple of two integers.

7.5 Evaluation

To assess the performance of D’ARTAGNAN, we compare code generated
automatically against an equivalent version which is manually coded. We
use the application defined in Listing 7.3, which behaves like a thermostat
using two temperature sensors — an amount is deducted from a balance
stored in a smart contract to switch on heating/cooling. We compared the
code generated for each of the three placement options (1) IoT-focus; (2)
Edge-focus; and (3) Blockchain-focus. Our aim is to answer two questions:
(i) how the lines of code compare between hand-coded and automatically
generated versions; (ii) how consumption is affected by the different place-
ment options — gas for smart contracts; and radio messages and clock cy-
cles for IoT devices, which is indicative of power consumption (we do not
measure Edge devices as these are typically computers connected to a per-
manent power supply and computation is not restricted by battery-power
or gas).

One line of D’ARTAGNAN code (specifically app2) generates between
200–250 lines of code (depending on placement) — C for IoT devices, Javascript
for the edge node and Solidity for the smart contract. Table 7.1, as well as
a visual inspection of the generated code, confirms that the automatically
generated version is more verbose than a hand-coded one. However, for IoT

7.5. EVALUATION 131

IoT Edge Blockchain

Placement Option 1: IoT-focus
Manually-Coded 150 25 35
Auto-Generated 200 25 35

Placement Option 2: Edge-focus
Manually-Coded 143 44 35
Auto-Generated 191 65 35

Placement Option 3: Blockchain-focus
Manually-Coded 143 25 48
Auto-Generated 191 25 60

Table 7.1: Lines of code comparison

devices, our evaluation in Chapter 5 had shown that basic GCC compiler
optimisations almost completely eliminate any inefficiencies introduced by
the automatic generation for IoT devices — so this should result in minimal
overhead. On the other hand, at this time, Solidity does almost no optimi-
sation on the generated code which leads to higher gas consumption.

Placement Blockchain IoT Devices
Focus Gas Radio Messages Clock Cycles

IoT 1.114M 150 21,869K
Edge 1.114M 200 21,813K
Blockchain 1.240M 200 21,813K

Table 7.2: Consumption comparison for different placement options

To calculate consumption (Table 7.2), the experiment was designed with
100 iterations of the application for which 50% trigger a smart contract
transaction. For situations where high trust is needed (more transparency
via smart contract), a Blockchain-focus placement moves more code to the
smart contract (see Section 7.3.2) and therefore more gas is consumed —
partly due to more code being executed, as well as some code being ex-
ecuted even when the transaction condition is not triggered. Therefore,
higher trust results in higher consumption for both gas and energy.

132 CHAPTER 7. MP THE BLOCKCHAIN OF THINGS

On the other hand, for lower trust scenarios where application logic can
be placed off-chain, deciding between IoT-focus or Edge-focus depends on
the combined energy utilisation of both radio messages and clock cycles. As
expected, as application logic is placed away from IoT devices, more radio
messages (50) and less clock cycles (roughly 56K) occur. One radio mes-
sage consumes as much energy as 3 million instructions [Pottie and Kaiser,
2000]. In this example, an IoT-focus placement has lower consumption since
application logic is simple. In the case of computationally intensive tasks
(requiring millions of clock cycles per iteration), an Edge-focus placement
will have an overall lower consumption than an IoT-focus — the complex
computation moved away from the IoT devices makes up for the extra ra-
dio messages. In the future, improved placement of application logic across
both IoT and Edge devices (for low-trust scenarios) can be introduced by
taking into consideration both radio messages and computation complex-
ity.

7.6 Discussion and Conclusions

In this chapter we have presented a macroprogramming approach to de-
scribe blockchain connected IoT devices and their interaction with smart
contracts. This is to our best knowledge the first approach to attempt to
provide a single macroprogramming description for such blockchain con-
nected IoT devices. The closest work to that being presented here includes
programmability of blockchain connected edge nodes using a control sys-
tems approach [Stanciu, 2017]. Other related work includes: IoT devices
making use of the blockchain as a means of storing data [Huh et al., 2017];
defining virtual resources within IoT device firmware that can be instructed
to execute a sequence of function invocations [Samaniego and Deters, 2016];
and making use of the blockchain to store IoT firmware [Boudguiga et al.,
2017].

Several macroprogramming solutions for wireless sensor networks have
been proposed over the past decade. Regiment [Newton et al., 2007a], Wave-

7.6. DISCUSSION AND CONCLUSIONS 133

script [Newton et al., 2008] and Flask [Mainland et al., 2008] are closest to
D’ARTAGNAN in that they use a functional programming approach. Our
native functions are inspired from Flask’s quasi-quoting, and Flask, like
D’ARTAGNAN, is a DSL embedded in Haskell. Both Flask and Regiment
are different from D’ARTAGNAN and Wavescript in that a macroprogram is
written from the perspective of an individual node, rather than the network
as a whole. In Wavescript, generated code is the same for all the devices and
suitable for homogeneous networks. In contrast, in D’ARTAGNAN, code
is generated specifically for the target devices according to behaviour and
architecture. This capability is what enables us to generate code for the
blockchain and blockchain edge nodes, in addition to the IoT devices.

Macroprogramming has long been proposed as a solution to program-
ming heterogeneous systems. However, as the degree of heterogeneity in-
creases, being restricted to the least common subset of the devices in the pro-
gramming language can be too limiting. In our extension of D’ARTAGNAN,
the adoption of native code allows access to device-specific capabilities.

D’ARTAGNAN is designed to allow programmers to quickly and eas-
ily build stream processing applications — applications where information
is flowing continuously through the system, as is common in many wire-
less sensor network use cases. However, since D’ARTAGNAN is domain spe-
cific to stream processing applications, it may not be suitable to implement
other types of applications. In the next chapter we shift focus to blockchain
systems — an area where typically applications involve transfer of assets
from one participant to another. In macroprogramming such systems, as-
sets may be traded across different blockchain systems. In this domain,
D’ARTAGNAN is not suitable, so we propose a new model and framework
which has a better fit with smart contracts and the trading of assets across
multiple blockchain systems.

8

Porthos

So far we have shown a macroprogramming framework and language for
stream-processing applications where code is generated for a heterogeneous
network of devices — devices that may be resource-constrained (Chap-
ter 5), and also extending into edge and blockchain systems (Chapter 7).
In this chapter we propose a macroprogramming framework and language
for a different type of application which spans across multiple systems —
commitment-based smart contracts spanning multiple blockchain systems.

8.1 Introduction

Blockchain technology, a type of Distributed Ledger Technology (DLT), has
attracted widespread interest in recent years — different blockchain systems
will co-exist and will be used for different purposes by individuals, busi-
nesses and institutions. A smart contract, which executes on a blockchain
system, helps overcome the lack of trust that exists between two or more
parties engaged in a trade — it enables business transactions that would
otherwise not happen without the assistance of a trusted intermediary. Even
though the use of smart contracts is becoming more mainstream, some lim-
itations still remain. Today’s smart contracts are intended to execute on
a single blockchain system. The need for multi-chain distributed applica-
tions (DApps) spanning across multiple blockchain systems is going to in-

135

136 CHAPTER 8. PORTHOS

crease as blockchain technology continues to gain popularity, and different
blockchain systems will co-exist to offer different features, or to provide dif-
ferent benefits.

Interactions between blockchains (interoperability) will be needed to im-
plement new types of applications where assets may be exchanged between
participants across different blockchain systems. A single application may
handle payments and public interactions on Ethereum [Wood, 2014] and
use Hyperledger Fabric [Cachin, 2016] for specific private point-to-point
interactions. Implementing such multi-chain DApps is non-trivial. Good
knowledge of at least one smart contract language on each of the target un-
derlying blockchain systems is required, together with a good understand-
ing of features and characteristics. Further, blockchain interoperability is
not straightforward and the use of relays, notaries or atomic swaps [Bu-
terin, 2016] is required.

What is currently missing and desirable, is the ability to write a single
smart contract which spans across multiple blockchain systems. This would
replace the need to write several smart contracts (one for each blockchain
system) and the handling of the communication between them.

We propose a way of addressing this gap through the use of macropro-
gramming — a technique often used in the domain of IoT and sensor net-
works [Gummadi et al., 2005; Kothari et al., 2007; Mainland et al., 2008;
Mizzi et al., 2018; Newton et al., 2007b]. With macroprogramming, the
level of abstraction is increased and the network is programmed as a whole
rather than each component individually. The higher level of abstraction
allows the programmer to focus on the logic, rather than the details of com-
munication between components. We propose a domain specific language
(DSL) for defining commitment-based smart contracts [Mernik et al., 2005].
DSLs provide a higher level of abstraction than general purpose program-
ming languages and are ideal to make it possible to write secure smart con-
tracts in a quick and efficient way.

Using a technique of embedding a domain specific language, we present

8.1. INTRODUCTION 137

a framework called PORTHOS1, to define and execute multi-chain smart con-
tracts. In our proof of concept, we show Ethereum and Hyperledger Fabric
as two diverse and interacting blockchain systems — a technique that can
be extended to other systems. The Turing-incomplete language allows a
programmer to describe commitment-based smart contracts that may span
multiple blockchain systems. Our work is inspired from financial contracts
of Peyton Jones et al. [2000] and the work done with Marlowe [Seijas and
Thompson, 2018], but we extend the compilation of contracts to span across
multiple chains.

Our contribution is to provide a model in which a commitment-based
smart contract can be translated to execute safely on one or more interact-
ing blockchain systems. Our aim is to (i) provide a mechanism to split con-
tract logic on different blockchain systems according to asset location (ii)
design a safe and restricted DSL for composing commitment-based smart
contracts (iii) define an extensible mechanism to generate code in different
target smart contract languages (iv) propose a simple runtime framework
to enable chain interoperability.

PORTHOS follows an approach which is similar to D’ARTAGNAN (as
described in Chapter 5), with support for heterogeneous networks. The
generated code is different for every blockchain system and depends on
how assets are used in the application. Unlike D’ARTAGNAN, the com-
munication between nodes (in our case, blockchain systems) requires an
off-chain framework to enable a communication medium between nodes
— this is due to the nature of existing DLTs which are unable to react to
events happening in other systems. Also, in D’ARTAGNAN placement of
code depends on the control flow and sensor node capabilities, whereas in
PORTHOS placement is asset-based.

A requirement that is becoming increasingly important is the ability to
execute DApps across multiple blockchain systems. Different blockchain
systems will co-exist to offer a variety of features and to hold different as-
sets. Some blockchain systems can be used for payments, while others as

1Available at https://github.com/adrianmizzi/porthos-1

138 CHAPTER 8. PORTHOS

Smart Contract
written in Porthos

Static Compilation

On­Chain Runtime

Off­Chain Runtime

Message Routing

 Blockchain System A

Porthos On­Chain Framework

 Blockchain System B

Porthos On­Chain Framework

 Blockchain System C

Porthos On­Chain Framework

Porthos Off­Chain Framework
Blockchain B Extension

Porthos Off­Chain Framework
Blockchain C Extension

Porthos Off­Chain Framework
Blockchain A Extension

Asset Location
Information+

Figure 8.1: Proposed architecture

a register of assets. Vitalik Buterin [Buterin, 2016] identifies three strategies
for chain interoperability — atomic swaps using hashed time-locks, relay
chains and centralised or multisig notary schemes (refer to Section 6.5).

In PORTHOS, we provide a notary scheme type of interoperability where
a trusted group of entities react to events by triggering other smart con-
tracts. In the future, we expect technologies such as Cosmos and Polkadot
to replace our off-chain runtime environment, as these become available.

8.2 Porthos Framework

Smart contracts are traditionally written to be executed on a single specific
blockchain system. Interactions between smart contracts located on differ-
ent blockchain systems require complex mechanisms to be implemented —
including atomic swaps, notary schemes and relays [Buterin, 2016]. Using a
macroprogramming model, we propose to program a network of blockchain
systems as a whole, where code (in the form of smart contracts) is automat-
ically generated to be executed on each blockchain system. A higher level
of abstraction ensures that the programmer needs only focus on the overall
logic of the smart contract using only one programming language.

Similar to D’ARTAGNAN, our aim is to use techniques from the field

8.2. PORTHOS FRAMEWORK 139

of embedded languages to define an embedded domain specific language.
Our language is embedded in Haskell — a pure functional language which
gives us several useful features, such as polymorphism, higher-order func-
tions and a strong type system. Our model supports both the macropro-
gramming aspect of writing smart contracts that run across multiple diverse
blockchain systems, and also inherently the ability to generate code for dif-
ferent target smart contract languages.

Figure 8.1 illustrates our framework. A macro smart contract is written
in our DSEL in a form that can be analysed, translated and deployed to dif-
ferent blockchain systems. The smart contract description first generates an
internal representation of the intended contract. With additional informa-
tion about asset location mapping, the internal representation can be trans-
formed into chunks that need to be placed on the individual blockchain sys-
tems according to the assets being used. A first-stage compilation process
generates code for each of these chunks into a smart contract language sup-
ported by the underlying blockchain system. For example, for Ethereum,
the first-stage compilation process generates Solidity and for Hyperledger,
Go Chaincode is generated. During a second stage process, the standard
compilation and deployment tools for each of the target languages are used
to deploy the generated code to the intended blockchain systems. In our
example, Solidity is compiled to EVM bytecode and then deployed to an
Ethereum blockchain instance, and Go Chaincode is deployed and instanti-
ated on a Hyperledger Fabric instance.

The ultimate goal of PORTHOS is to allow programmers to safely write
multi-chain smart contracts that are easy to read and hide away the com-
plexities of blockchain interoperability.

8.2.1 Multi-chain Support

The proposed macroprogramming approach highlights two key challenges.
Blockchain systems are heterogeneous — they have different characteristics
and not all required functionality may be available on all systems. Secondly,

140 CHAPTER 8. PORTHOS

most of the blockchain systems that we are interested in are passive — they
are unable to react to external events. In this section, we describe how these
challenges can be addressed.

Blockchain Requirements and Extensions

A blockchain system can be supported in PORTHOS if a minimal set of re-
quirements is satisfied:

- Smart contracts must have an address and must be capable of ‘hold-
ing’ assets transferred to them by users

- Participants must be able to interact with a blockchain system through
smart contract functions

- Asset registers must be supported and implementable to track fungi-
ble or non-fungible assets

Blockchain systems such as Bitcoin are not supported in PORTHOS. Bit-
coin follows the unspent transaction output (UTxO) model and a smart con-
tract capable of holding assets is not supported. Blockchain systems which
satisfy the requirements described above can be supported, however, since
different systems have different features a solution is needed to harmonise
these differences. To address this in PORTHOS, we use blockchain exten-
sions — a solution made up of on-chain and off-chain components which
addresses gaps or differences in the required functionality.

The PORTHOS abstraction model requires a callback-on-timeout mecha-
nism to be able to resume execution in case an expected user interaction is
not performed in time. This feature is not natively available on Ethereum
and other target blockchain systems that we are interested in. For some
blockchain systems, third party extensions are readily available to provide
this functionality — for example, on the Ethereum blockchain, the Ethereum
Alarm Clock [eth, 2019] or Oraclize [ora, 2019] provide this functionality. In
our proof-of-concept, we develop our own blockchain-specific extension to
complement natively available existing functionality.

8.2. PORTHOS FRAMEWORK 141

Message Routing

Blockchain systems are unable to communicate in the traditional way as
normal systems do. Due to the nature of being passive, a common char-
acteristic of current DLTs, the blockchain systems that we are interested
in are unable to actively react to events from other systems. The use of
an external party is therefore needed to provide a communication layer
between blockchain systems. The PORTHOS framework makes use of an
external message router to relay messages between one blockchain system
and another. The message router is in the spirit of a notary scheme, where
events of interest are captured and actioned upon. The communication
layer is lightweight in the sense that there is no knowledge of the smart
contract logic being executed — the router listens for events generated by
the blockchain systems and triggers other contract functions as instructed
by these events. The order of the messages is implicit in the contract logic —
messages cannot be received out of order as the progression of the contract
from one stage to another depends on the delivery of such messages. Du-
plicate messages are not processed multiple times, as on receipt of the first
message, the contract progresses to the next state. This mechanism removes
the dependency on the off-chain framework, in that the routing mechanism
can be performed by any intermediary or interested party.

In our implementation we trust the intermediaries relaying messages
from one blockchain system to another. As long as one honest router exists,
then messages cannot be withheld. However, there is a risk that messages
can be forged. To overcome this risk, the current implementation can be en-
hanced such that messages are signed by the originating blockchain system,
and validated by the receiving blockchain system before being processed.

8.2.2 Code Cuts

The ultimate aim of the PORTHOS language is to enable writing a single
contract to describe DApps which make use of blockchain assets, including
both fungible (such as cryptocurrency) and non-fungible assets, residing on

142 CHAPTER 8. PORTHOS

different blockchain systems. Code is sliced into smart contracts, and placed
on one of the underlying blockchain systems.

It may be possible to use different strategies to slice code: (i) an execution-
cost optimised strategy — executing code on some blockchain systems may
be more expensive than others (ii) a location-based strategy — contract logic
is placed on the same blockchain system according to where the asset being
handled is located (iii) a programmer tag-based strategy, where the pro-
grammer instructs which logic should be placed on which blockchain.

In our proposal, we use a location-based placement strategy as this avoids
the added burden on the programmer for tagging code. In the future, we
envisage enhancing the strategy to consider execution cost too and to pos-
sibly allow the user to add compiler hints for optimisation.

8.2.3 Coordination Model

Coordination between interacting smart contracts can be either orchestra-
tion or choreography. In an orchestration model, a centralised entity coor-
dinates the execution of the individual parts, whereas in a choreography
model, the interactions of each contract are spontaneous on cue.

From a higher level of abstraction, our model follows a choreography
model — the message router is enabling a communication medium and
makes it possible for blockchain systems to react to events happening on
other blockchains. As the execution on one blockchain system is completed,
execution starts on cue on another blockchain.

8.3 PORTHOS as a smart contract language

PORTHOS is a domain specific language for composing commitment-based
smart contracts [de Kruijff and Weigand, 2017]. In commitment-based smart
contracts, a contract is viewed as a business exchange of commitments which
are released or cancelled depending on contract criteria. The abstraction
model includes the following concepts:

8.3. PORTHOS AS A SMART CONTRACT LANGUAGE 143

- When a participant makes a commitment of an asset towards another
participant, the ownership of that asset is transferred to a smart con-
tract and held temporarily.

- A commitment is said to be released when the contract transfers the
ownership of the held asset to the intended recipient. This is typically
done when certain contract conditions are satisfied and the commit-
ment is delivered to the intended recipient.

- A commitment is said to be cancelled when the contract returns a com-
mitted asset back to the original owner — that is, the participant who
made the commitment.

These three concepts are depicted visually in Figure 8.2.

Alice

Smart
Contract

Commit

Bob

Release

Cancel

Figure 8.2: Assets are committed by participants, and eventually released
or cancelled by the smart contract

PORTHOS is a continuation-based language embedded in Haskell. Basic
language constructs are connected together to form a contract. Haskell’s
strong type system ensures that only valid contracts can be constructed.
Contracts are made up of other contracts in a compositional manner. The
structure of the language is shown below in pseudo BNF.

Contract = onUserCommit <actionName> (<assetType>, FilterExpr)
Contract (onTimeout <blocktime> Contract) |

repeatCommit <actionName> (<assetType>, FilterExpr)
(onTimeout <blocktime> Contract)|

144 CHAPTER 8. PORTHOS

releaseAll Contract |
cancelAll Contract |
Contract ; Contract |
if <boolean> then Contract else Contract |
fireEvent <message> Contract |
Contract || Contract |
Contract && Contract |
sendAssets <participant> Contract |
end

Commitment = allCommitments |
whereCommitterIs (<participant>, Commitment) |
whereReceiverIs (<participant>, Commitment) |
whereAssetTypeIs (<assetType>, Commitment) |
orderByParticipant Commitment

FilterExpr = isCommitTo <participant> |
isCommitBy <participant> |
isAsset <asset> |
isAssetType <assetType> |
FilterExpr & FilterExpr |
FilterExpr | FilterExpr

As a simple example to introduce the PORTHOS language we show how
a simple savings-plan contract is implemented by composing constructs to-
gether. Such a contract allows an individual to put away assets over a pe-
riod of time in a time-locked savings account. The committed assets are re-
leased after a specific amount of time, thereby helping the individual reach
a savings target.

Listing 8.1: A time-locked savings plan
savings :: Participant -> Time -> Contract
savings recipient expiryTime =

repeatCommit "save" (ETH, isCommitTo recipient)
(onTimeout expiryTime (releaseAll end))

The implementation of the time-locked savings plan (see Listing 8.1) is
made up by combining three basic constructs: repeatCommit followed by

8.3. PORTHOS AS A SMART CONTRACT LANGUAGE 145

releaseAll and finally end. Figure 8.3 shows a visual representation of the
savings contract. Since PORTHOS is embedded in Haskell, contracts look
like Haskell programs. The construct repeatCommit causes the progression
of the contract to suspend to allow contract participants to make commit-
ments. A filter is used to determine which commitments are accepted by
the contract. In this example, valid commitments are in ETH (Ether is the
native currency on the Ethereum blockchain) and must be in favour of a re-
cipient — the identity of the recipient is provided at compilation stage. The
same contract can be recompiled with different parameters (i.e. recipient)
to generate different contracts. Once the defined timeout period elapses, no
more commitments are accepted and the contract execution continues spon-
taneously — in this example, the contract continues with releaseAll, that
is, all commitments held in the contract at that point in time are released.
The contract then ends.

On Timeout

Commitments "save"
 Asset == ETH
 CommitTo == Bob

Release All
End

Figure 8.3: A visual representation of a time-locked savings contract

The language provides two distinct basic constructs for accepting com-
mitments. The first, repeatCommit described earlier, accepts any number of
commitments (zero or more) in a given time-window, and the second ex-
pects one-and-only-one commitment (onUserCommit). In the latter, when
a valid commitment is received, the contract continues execution imme-
diately, or if no commitment is made in time, then the contract resumes
with a time-out continuation. An atomic swap contract (see Listing 8.2
and Figure 8.4) allows two participants to swap assets safely — the assets
are released to both participants once both commitments have been made.
Should any of the participants fail to make a valid commitment in time, then
the contract ends and any commitments made are cancelled. Commitments

146 CHAPTER 8. PORTHOS

are accepted by the contract if they match the filter — in the example, the
commitment from Participant 1 (p1) must be in ether (ETH), the intended re-
cipient needs to be Participant 2 (p2) and the asset quantity committed must
be as specified by a1. Since PORTHOS is embedded in Haskell, operators at
the contract level must be surrounded by dots (‘.’) as in ‘.&.’ to make a
distinction from Haskell’s own operators.

Listing 8.2: An asset swap contract
swap :: (Participant, Asset Currency) ->

(Participant, Asset Currency) -> Contract
swap (p1, a1) (p2, a2) =

onUserCommit "p1Commit"
(ETH, (isCommitTo p2 .&. isAsset a1))
doP2Commit
(onTimeout 10 end)

where
doP2Commit =

onUserCommit "p2Commit"
(XYZ, (isCommitTo p1 .&. isAsset a2))
(releaseAll end)
(onTimeout 20 (cancelAll end))

End

End

On Timeout

Commitment
"p1" Release All

Cancel AllEnd

On Timeout

Commitment
"p2"

Figure 8.4: A visual representation of an asset swap agreement

Commitments are stored in the smart contract state and can only be ac-
cessed via a small SQL-like DSL. Commitments can be filtered, counted and
summed to determine whether enough assets have been committed. Spe-
cific commitments can be cancelled or released — for example, by specific
asset type or for a quantity which is smaller than a specific amount. In a
single-asset crowd funding campaign (see Listing 8.3) we sum up all the

8.3. PORTHOS AS A SMART CONTRACT LANGUAGE 147

assets before deciding whether the campaign has been successful or not. If
the campaign is successful, then commitments are released otherwise can-
celled and refunded to the crowd funding participants. In a multi-asset
crowd funding campaign, where deposits are made with assets located on
different blockchain systems (see Listing 8.4), an exchange rate is used to
determine if the overall total meets the declared target. Contracts can be
composed sequentially — the ‘.>>>.’ (followed-by) operator is equivalent
to the ‘;’ (semi-colon) in sequential programming languages. We use this
symbol due to the embedding of our language in Haskell.

Listing 8.3: A single-asset crowd funding campaign contract
crowdFunding :: Participant -> Asset Currency

-> Contract
crowdFunding p target = repeatCommit "fund"

(ETH, isCommitTo p)
(onTimeout 100 closeC)

where
aType = assetType target
closeC = ifThenElse (sumCommit .>. target)

(releaseAll (fireEvent "Success" end),
cancelAll (fireEvent "Fail" end))

sumCommit = sumC (aType,allCommitments)

Listing 8.4: Crowd funding across multiple assets
crowdFunding :: Participant -> (Currency, Currency, Float) -> Asset Currency

-> Contract
crowdFunding recipient (x, y, f) targetY =

both (campaignX, campaignY) .>>>. closeCampaign
where

campaignX = repeatCommit "fundX" (x, isCommitTo recipient)
(onTimeout 100 end)

campaignY = repeatCommit "fundY" (y, isCommitTo recipient)
(onTimeout 100 end)

closeCampaign = ifThenElse (totalY .>. targetY)
(releaseAll (fireEvent "Campaign Successful" end),
cancelAll (fireEvent "Campaign Failed" end))

sumCommitX = sumC (x, allCommitments)

148 CHAPTER 8. PORTHOS

sumCommitY = sumC (y, allCommitments)
totalY = sumCommitY .+. exchange (x, y, f, sumCommitX)

One of the key benefits of embedding the DSL in Haskell, our host lan-
guage, is that a smart contract can make use of standard Haskell combined
with our contract constructs. In a group pay contract (see Listing 8.5), a
group of participants agree to transfer an agreed amount to one participant.
The funds are released to the recipient only once all commitments have been
made. In the example, Haskell’s map and lambda expressions are used to
concisely build more complex contracts — the use of these techniques is
optional, but more experienced programmers will find that the language’s
expressivity increases even further.

Listing 8.5: Group pay
groupPay :: [(Participant, Asset Currency)] -> Participant -> Contract
groupPay yy recipient =

allOf (userCommits yy) .>>>.
ifThenElse (countC(allCommitments) .==. liftN (length yy))

(releaseAll end,
cancelAll end)

where
userCommits = map (\x -> onUserCommit (name (fst x))

(ETH, txFilter x) end (onTimeout 100 end))
txFilter (a, b) = isCommitTo recipient .&. isCommitBy a .&. isAsset b

allOf :: [Contract] -> Contract
allOf [] = Null
allOf [c] = c
allOf (c:cc) = both (c, allOf cc)

8.3.1 Implementation Details

The implementation of PORTHOS follows an approach which is similar as
that of D’ARTAGNAN described in Section 5.4.8 with the main difference
being that placement is according to the type of asset. In contrast, with

8.4. USE CASES 149

D’ARTAGNAN, operators are bound to an underlying system depending on
the location of the sensor and to minimise radio communication.

PORTHOS is embedded in Haskell as a host language. Haskell’s strong
type system ensures that only valid contracts can be constructed. Con-
tracts are made up of other contracts in a compositional manner. During
the construction of the internal representation, the contract is decomposed
of parts to run on different blockchain systems. Communication between
blockchain systems is handled through events, where an off-chain router
detects events from the blockchain systems. Each event indicates which
blockchain system should continue computation, and the off-chain router
simply triggers the next contract method with the parameters included in
the event.

PORTHOS handles an abstract version of the contracts that need be gen-
erated on the target blockchain systems. A single smart contract is gener-
ated for every blockchain system in a language supported by that target
system. Supporting a new blockchain system involves creating a thin trans-
lation layer.

8.4 Use Cases

8.4.1 Property Sale

To illustrate the effectiveness of PORTHOS as a multi-chain smart contract
language, we present a property sale agreement where a buyer and a seller
make an agreement to transfer property in exchange for payment. As de-
scribed earlier in Section 8.2.1, in PORTHOS, information about asset loca-
tion is kept separate from the smart contract. This means that contract logic
is clearer to the reader, and simpler to write for the programmer. The high
level of abstraction completely omits the details of inter-chain communica-
tion that may be necessary to manage the assets.

In our use-case, the property sale is a two-stage process. During the
first stage, a buyer and a seller engage in a promise-of-sale agreement —

150 CHAPTER 8. PORTHOS

the buyer confirms interest by committing a deposit amount, and the seller
promises to sell the property to the buyer. Within a few weeks or months,
the buyer must obtain funds (in the form of a bank-loan or otherwise) to
be able to pay the remaining balance. If the buyer is unable to make the
payment, the deposit amount is forfeited in favour of the seller and the
seller is freed to find a new buyer. However, before the deed is completed, a
public notary must also conduct a title search and ensure that all is in order
before submitting his approval. Should the notary reject the deed, then the
promise-of-sale is cancelled and the buyer receives back his deposit.

Listing 8.6: A property sale agreement
propSale :: (Participant, Asset Property) -> Participant -> Asset Currency

-> Asset Currency -> Participant -> Contract
propSale (seller, property) buyer deposit balance notary =

onUserCommit "commitProperty"
(getAssetType property, isCommitTo buyer .&.

isCommitBy seller .&. isAsset property)
doBuyerCommit
(onTimeout 10 end)

where
doBuyerCommit = onUserCommit "payDeposit"

(ETH, isCommitBy buyer .&. isCommitTo seller .&.
isAsset deposit)

doBalanceCommit
(onTimeout 20 (cancelAll end))

doBalanceCommit = onUserCommit "payBalance"
(ETH, isCommitTo seller .&. isAsset balance)
(oneOf (notaryApproval, notaryRejection))
(onTimeout 100 sellerTakesAll)

sellerTakesAll = release (whereReceiverIs(seller, allCommitments))
(cancel (whereCommitterIs(seller, allCommitments))

end)
notaryApproval = onUserCommit "approved"

(ApprovedByNotary, isCommitBy notary .&.
isCommitTo notary)

(releaseAll end)
(onTimeout 200 (cancelAll end))

8.4. USE CASES 151

notaryRejection = onUserCommit "rejected"
(RejectedByNotary, isCommitBy notary .&.

isCommitTo notary)
(cancelAll end)
(onTimeout 200 (cancelAll end))

We identify three participants: the buyer, the seller and the public no-
tary; and three types of assets: (i) a currency asset used for making pay-
ments from the buyer to the seller, (ii) a property asset to represent the asset
being transferred from the seller to the buyer, and (iii) the public notary’s
decision of approval or rejection is also modeled as an asset. A complete
implementation of the property-sale smart contract is shown in Listing 8.6.
Asset location information is provided during the compilation stage such
that the contract logic is placed in the generated code according to which
blockchain an asset type is located (see Listing 8.7). Assets may all be lo-
cated on the same blockchain (in that case, only one smart contract is gen-
erated), or alternatively located on different blockchains.

Listing 8.7: Asset location information
data Property = Property
instance AssetType Property where

chainOf _ = "Hyperledger"

data Currency = ETH | XYZ
instance AssetType Currency where

chainOf ETH = "Ethereum_1"
chainOf XYZ = "Ethereum_2"

The contract is instantiated by providing input values for participants
(seller, buyer and notary addresses) and assets traded (property, deposit
and balance). Code generated after first-stage compilation is specific to
those participants taking part and agreed assets. The generated code, in
the form of smart contracts, can then be deployed and instantiated on the
respective blockchain systems. If the same contract is to be reused for an-
other property sale between other participants, then the PORTHOS contract
is re-compiled from first stage with new input values.

152 CHAPTER 8. PORTHOS

During runtime, the smart contract progresses through different states
— the seller commits the property, then the buyer pays the deposit and then
the balance, and finally the notary approves or rejects the transfer. The com-
mitments cannot be made out of sequence or at the wrong time, and once
a commitment is made, it cannot be cancelled by any participant. Timeout
continuations remind the contract programmer to define actions in case a
user commitment is not made in time. In some cases, commitments are can-
celled but in others (e.g. sellerTakesAll) all commitments may be sent to
one participant as a result of the inaction of another participant.

8.4.2 Single-shot DAO

The idea behind a Decentralised Autonomous Organisation (DAO) stemmed
from the desire to enable stakeholders to make decisions about their organ-
isation directly without the involvement of an agent or manager. In a DAO,
a set of rules is encoded in a smart contract to enforce how an organisation
is run. This replaces the need for traditional executive-led organisations
where decisions are typically made centrally by a management team. Par-
ticipants can vote on proposals to determine how held assets are invested
by the organisation.

Once the rules of the DAO are defined, an initial funding period allows
participants to purchase DAO tokens which represent ownership in the or-
ganisation. This period is usually called a crowd-sale or Initial Coin Offer-
ing (ICO). Once the funding period is over, the owners of the DAO tokens
can start making proposals on how funds can be spent. All token holders
can vote for a proposal, and if a proposal is accepted, the rules encoded
within it (in the form of a smart contract) must be adhered to.

Participation models are determined by the rules of the DAO. For ex-
ample, token holders may sell some or all of their tokens on an exchange
to new persons so they too can get voting powers on the DAO. Alterna-
tively, new voting tokens may be minted and given to persons who are ap-
proved by others (through voting) to join the DAO. Such a model is similar

8.4. USE CASES 153

to how companies raise investment through the issue of new shares to new
investors.

Since a DAO is encoded as a smart contract, and smart contracts are
executed on a single blockchain instance, a DAO is confined to the bound-
aries of a single blockchain instance — for example, to run on the Ethereum
blockchain.

In this use-case, we illustrate how a simplified DAO can be implemented
using PORTHOS to be executed in a fully decentralised manner such that
voting and assets may be committed by participants on different blockchain
systems. Our use-case is restricted to a single-fund-single-vote scenario —
which we call a single-shot DAO. The phases in a single-shot DAO are shown
in Figure 8.5.

Funding	Phase

Voting	Phase

Disbursement	Phase

End

Start

Figure 8.5: Phases of a single-shot DAO

A single-shot DAO has three phases:

1. Funding: Participants deposit assets on one of the underlying blockchain
instances linked to the DAO

2. Voting: Once funding is completed, participants can vote how the
deposited assets should be spent

154 CHAPTER 8. PORTHOS

3. Disbursement: As voting concludes, votes are counted and the funds
or assets are transferred to the most-voted recipient

A complete implementation of a single-shot DAO contract is shown in
Listing 8.8.

Listing 8.8: A single-shot DAO
andL = foldl1 (.&&.)

ssDAO :: [(Participant, Currency, DaoVote)] -> Contract
ssDAO pp = (andL (map (\(x, y, _) -> doPayment x y) pp)) .>>>.

(andL (map (\(x, _, z) -> doVote x z) pp)) .>>>.
releaseAll (sendAssets winner end)

where
doPayment x y = onUserCommit ("pay" ++ show x)

(y, (isCommitBy x .&. isCommitTo this)) end
(onTimeout 20 (cancelAll end))

doVote x y = onUserCommit ("vote" ++ show x) (y, (isCommitBy x)) end
(onTimeout 20 end)

winner = maxOf (groupByReceiver (whereAssetTypeIs allCommitments (vote)))

A single-shot DAO can be instantiated by providing a list of participants
and the type of asset that will be used to interact with the system. An ex-
ample instantiation of the contract is shown here:

ssDAO [(alice, Currency ETH1, Vote Ethereum_1),

(bob, Currency ETH2, Vote Ethereum_2),

(charlie, Currency ETH1, Vote Ethereum_2)]

In the example, three participants (Alice, Bob and Charlie) form a DAO
across two blockchain systems (Ethereum_1 and Ethereum_2). Alice and
Charlie will commit funds in a fictitious currency ETH1, located on blockchain
Ethereum_1, and Bob will deposit funds in ETH2 located on Ethereum_2.
The commitments are made in favour of the DAO since the ultimate bene-
ficiary is not yet known. Deposit commitments are accepted in any order,
and if any of the deposit commitments is not made within a specified time

8.5. EVALUATION 155

period, then the agreement aborts and any commitments already made are
cancelled. The agreement progresses to the voting phase only once all three
deposits have been received. The three participants vote by making a com-
mitment in favour of their preferred proposal (an address) — to vote, Alice
and Bob use the same blockchain they used for deposit (Ethereum_1 and
Ethereum_2 respectively), whereas Charlie uses Ethereum_2 to vote rather
than Ethereum_1 used for his deposit. Once the voting period elapses, any
votes received are counted and the proposal with the highest votes receives
the funds (ETH1 and ETH2) stored in the DAO.

The PORTHOS language is expressive enough to define our DAO use-
case with a single-funding stage followed by a single-voting stage. It can
also be used with additional stages (more funding stages and/or more vot-
ing stages), however the number of stages must be known in advance. Since
PORTHOS does not support loops (intentionally by design), the applications
which can be expressed must have a predefined number of stages. To be
able to implement a more enhanced DAO, new concepts would need to be
introduced — the ability to re-initialise a contract from within a contract,
and the ability to create (mint) new tokens. Figure 8.6 shows how an en-
hanced DAO would be built once such new concepts are made available.

This use-case has also shown how participants can commit assets (cryp-
tocurrency in this example) on different blockchain systems. Since assets
are not traded from one blockchain system to another (for example, 1 ETH1
converted to 3 ETH2), recipients, or winning proposals, must have an ad-
dress on each blockchain system to be able to receive funds committed on
that blockchain system. The introduction of an exchange service to the run-
time framework would allow certain assets to be traded, such that recipients
can receive funds in their preferred currency.

8.5 Evaluation

We evaluate PORTHOS in three parts. We first evaluate the programming
abstraction by showing that it is expressive enough to implement a vari-

156 CHAPTER 8. PORTHOS

Vote	Proposal

Funding	Phase

Voting	Phase

Disbursement	Phase

End

Funding
Add	Voter

Start

Voting	Phase

Minting	Phase

Proposal	Phase

Figure 8.6: Enhanced DAO

ety of applications. Then we evaluate the security aspects of the proposed
model and finally, we evaluate the framework’s extensibility.

8.5.1 Expressiveness of Abstraction

We evaluate the expressiveness of the abstraction model by showing that
the language can be used to implement a variety of commitment-based
smart contracts.

In this chapter, we have shown two detailed use-cases and a number of
smaller examples applications: a property sale, a single-shot DAO, group
payments, asset swapping and crowd-funding. The model is suitable for
process-oriented applications with a finite number of steps. Applications
which include a voting element, such as elections, can be implemented by
treating votes in the same way as assets — a participant votes by committing

8.5. EVALUATION 157

a token in favour of a candidate.
In PORTHOS, user interactions with smart contracts are limited to com-

mitments. Other interactions, such as cancelling or redeeming a commit-
ment, are not currently possible. Other languages (such as Marlowe) sup-
port the notion of soft commits — commitments can be cancelled by the
participant directly. We believe our limitation on user interactions is not too
restrictive on the variety of smart contracts that can be described. The lan-
guage is intentionally Turing incomplete, so applications involving loops
are not describable. For example, it is not possible to write an application
that accepts commitments until a specific condition is met, and thereby po-
tentially creating a non-terminating contract. We do not consider this to
be a shortcoming of the model, but rather an intentional design decision to
ensure contracts terminate.

8.5.2 Security Analysis

Blockchain systems have a high level of security due to their decentralised
and immutable characteristics — the consensus algorithm ensures that any
data added to the blockchain is verified by multiple parties, and immutabil-
ity ensures that data is not changed. However, blockchain systems are still
not completely immune to attacks or weaknesses. For example, in an at-
tack where malicious miners obtain 51%+ of the hashing power of the net-
work may create the possibility that stored data is altered and leading to
situations such as double spending of funds. It is also possible for smart
contracts to behave incorrectly where interaction with the external world is
compromised, in the form of oracles providing false information.

Applications that span multiple blockchain systems may introduce new
attack vectors and security weaknesses — these weaknesses are applicable
to any multi-chain application, however, we felt that this evaluation would
not be complete without mentioning these.

Single Point of Failure — One of the strengths of blockchain systems is
that due to the decentralised nature, no single point of failure (SPOF)

158 CHAPTER 8. PORTHOS

exists. However, when working with multiple blockchain systems
and relying on an intermediary to route and relay messages between
one blockchain system and another, a SPOF can be introduced. To
mitigate this, the communication layer itself must be decentralised
with multiple copies running concurrently. As this may cause the
same smart contract function to be triggered multiple times by differ-
ent intermediaries, a mechanism for filtering duplicate messages (e.g.
nonce) must be used.

Third-Party Interference — Intermediaries route messages between one
blockchain system and another. It may be possible for intermediaries
to withhold, modify or forge messages between blockchain systems.
As long as one honest intermediary is available to relay messages,
then messages cannot be withheld. To mitigate the risk of modify-
ing or forging messages, all communication is signed by the originat-
ing system. During initiation stage, cryptographic keys are exchanged
such that messages can be verified.

Distributed Transactions — Transactions spanning multiple systems are
susceptible to partial failure, causing other parts of the same trans-
action to be reversed on other systems. If the transaction is not re-
versed correctly, the systems may end up with inconsistent state. This
scenario also applies for multi-chain apps. Our framework does not
currently handle such errors in a graceful manner, and this is an area
to be developed further in future enhancements.

8.5.3 Extensibility

The PORTHOS framework is extensible in different directions. Different as-
set types are supported as long as a contract interface is implemented. The
model can also be extended to support new systems by adding code gener-
ation into the target language, and extending the on-chain/off-chain frame-
work. The framework currently generates Solidity code to be executed on

8.6. CONCLUSIONS 159

multiple Ethereum instances, as well as Go Chaincode for Hyperledger Fab-
ric. Blockchain systems can be added to PORTHOS as long as the require-
ments described in Section 8.2.1 are satisfied.

8.6 Conclusions

In this chapter we presented PORTHOS, an embedded DSL framework for
describing commitment-based smart contracts spanning multiple blockchain
systems. This is to our knowledge the first attempt at providing a macro-
level approach for specifying multi-chain smart contracts in a single specifi-
cation. The closest work to that being presented in this chapter include: our
other work with D’ARTAGNAN for programming IoT devices at a network
level (see Chapter 5) and for writing a single macroprogram for blockchain
connected IoT devices (see Chapter 7); Marlowe for specifying financial con-
tracts on Cardano [Seijas and Thompson, 2018].

We have shown through examples that the PORTHOS language is expres-
sive enough to be used to implement a variety of commitment-based smart
contracts across heterogeneous blockchain systems such as Ethereum and
Hyperledger Fabric. The language is designed with safety in mind such
that the smart contract programmer is aware of timeout scenarios and must
define what happens in these situations. Although the language cannot
avoid all types of ‘bugs’, it does help the programmer to significantly re-
duce easy-to-forget cases.

PORTHOS has shown that by raising the abstraction level, it is possible to
separate the complexities of placement and communication from the con-
tract logic such that the programmer needs only to focus on the contract.
Through the use of composition there is much to be gained as complex con-
tracts can be made up of simpler contracts.

Part IV

Conclusions

161

9

Conclusions and Future Work

The main goal of this thesis was to study how the combined techniques
of macroprogramming, multi-target compilation and embedded DSLs, can
be used in heterogeneous networks for domain-specific applications. Our
approach involved the use of an embedded domain specific language tech-
nique to design and implement programming languages with their respec-
tive frameworks, for different application domains. The use of a deep em-
bedding approach allows for the analysis, transformation and multiple in-
terpretations of an internal representation of the application description.

We designed a language and framework (D’ARTAGNAN in chapter 5) for
stream-processing applications in heterogeneous wireless sensor networks.
A stream processor description written in our language generates code to
run on multiple, potentially different, devices. The framework automati-
cally splits application logic to run on the nodes making up the network, al-
though the programmer may optionally provide hints to influence the code
generation. We learnt that code generated by the framework is significantly
less efficient than the hand-written equivalent — however, existing compil-
ers practically eliminate the inefficiencies through optimisation to produce
a version which is at par with the hand-written version on both size and
speed aspects.

We then extended D’ARTAGNAN for applications that extend beyond
wireless sensor networks, into edge systems and blockchain platforms (chap-

163

164 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

ter 7). We found that the framework and techniques can be easily extended
beyond the domain of wireless sensor networks for a truly heterogeneous
network. As blockchain and other concepts were introduced to the frame-
work, the language constructs were easily adapted and enhanced to include
the new functionality.

To further illustrate the flexibility of the proposed approach, we also tar-
geted a radically different application domain — smart contracts that span
multiple blockchain systems. In chapter 8, we proposed a language and
framework (PORTHOS) for a different paradigm, commitment-based smart
contracts — smart contracts between participants were the interactions are
limited to commitments of assets. Although the core concepts around the
framework are similar to D’ARTAGNAN a number of interesting challenges
were encountered. Blockchain interoperability (or the lack of) creates chal-
lenges as the passive nature of popular blockchain systems makes commu-
nication harder to achieve. Also, since existing smart contract compilers
are relatively new and less mature than other domains, generated code is
not optimised to the same levels experienced with D’ARTAGNAN. With
PORTHOS we learnt that by restricting the application domain to commitment-
based smart contracts, the language is still expressive enough to write and
implement a wide variety of examples and applications. For safety rea-
sons, PORTHOS was intentionally designed as non-Turing complete mak-
ing it ideal to describe applications with a predefined and finite number of
steps.

9.1 Future Work

The work done in this thesis can be further developed in different direc-
tions. The implementation of additional use-cases for each framework can
help identify gaps and features that can be used to extend and strengthen
the languages. In addition, in this section we identify other areas that from
our experience can be researched further.

9.1. FUTURE WORK 165

Language evaluation framework — One of the difficulties that we faced
during the evaluation of our work is the lack of a standard approach
for evaluating languages. Different approaches have been undertaken
in the language domain ranging from a questionnaire approach as
user-acceptance with a group of programmers (usually a class of stu-
dents) who assess and compare the language to other languages in a
guided session, to arbitrary quantitative measurements around aris-
ing inefficiencies of the resulting code. A standard framework for
evaluating languages would provide a benchmark and ranking mech-
anism of a language against other languages on different aspects such
as expressivity, performance and safety. It may be possible to define
use-case categories that can be implemented to illustrate the expres-
sivity of a language, as well as guidelines for benchmarking the per-
formance on a set of predefined applications.

Interoperability — As soon as we ventured outside the boundaries of a
wireless sensor network we realised that the communication between
different systems and devices was one of the most significant chal-
lenges to overcome. To communicate between wireless sensor nodes
and a blockchain system, we needed to communicate over three me-
dia: the radio network for wireless sensor nodes; a serial port on a
server where one wireless sensor node acted as a gateway to the wire-
less sensor network; and the blockchain node for communication with
the rest of the blockchain network. When we shifted our attention to
blockchain systems, we found no suitable ready-to-use solution so we
developed our own minimum viable solution to be able to illustrate our
framework and language. There are several gaps in interoperability,
in particular a lack of a standard communication model between dis-
parate systems.

Generalisation of macroprogramming approach — In our work we have
shown how our model can be used effectively in domain specific ap-
plications through the use of a restricted Turing-incomplete language.

166 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

We question whether the model can be used in a more generic setup
by applying it to a general-purpose programming language and to see
how effective that would be. How far can the idea be taken with an
unrestricted language and what difficulties exist to adopting such a
macroprogramming approach?

9.2 Concluding Thoughts

The main aim of this thesis was to study the use of the macroprogramming
technique on heterogeneous networks using an embedded DSL approach.
Through this work, it has been shown that the proposed model can be suc-
cessfully applied to diverse application domains and paradigms, and much
is to be gained by raising the level of abstraction for multi-system applica-
tions. We have shown how the same model can be applied using different
languages to be better suited for different applications.

This work has also shown that when applying the technique to domains
where existing compilers are well matured, the inefficiencies created in gen-
erated code are practically eliminated thereby making the model a serious
challenger to traditional programming methods. We hope that in the future
these results lead to increased adoption of macroprogramming techniques
for the development of multi-system applications.

A

Publications

The work presented in this thesis includes the following published papers.

Published Papers

1. Doctoral Symposium: An Embedded DSL Framework for Distributed
Embedded Systems. Adrian Mizzi, Joshua Ellul and Gordon Pace, in
Proceedings of the 11th ACM International Conference on Distributed
and Event-based Systems, DEBS ‘17, pages 374-377. ACM, 2017.

2. D’Artagnan: An Embedded DSL Framework for Distributed Embed-
ded Systems. Adrian Mizzi, Joshua Ellul and Gordon Pace, in Pro-
ceedings of the Real World Domain Specific Languages Workshop 2018,
page 2. ACM, 2018b.

3. Macroprogramming the Blockchain of Things. Adrian Mizzi, Joshua
Ellul and Gordon Pace, in Proceedings of The 1st International Work-
shop on Blockchain for the Internet of Things, pages 1673–1678.

4. Porthos: Macroprogramming Blockchain Systems. Adrian Mizzi, Joshua
Ellul and Gordon Pace, in Proceedings of the 10th IFIP International
Conference on New Technologies, Mobility & Security.

167

References

Liquidity language. URL http://www.liquidity-lang.org/doc/. [Online; accessed
March-2019].

Ivy language. https://blog.chain.com/announcing-ivy-playground-395364675d0a,
2017. [Online; accessed February-2019].

Cardano. https://www.cardano.org/en/home/, 2018. [Online; accessed October-2018].

Ethereum alarm clock. https://www.ethereum-alarm-clock.com/, 2019. [Online; ac-
cessed January-2019].

Oraclize. https://docs.oraclize.it/, 2019. [Online; accessed January-2019].

Solidity. https://solidity.readthedocs.io/en/latest/, 2019. [Online; accessed
March-2019].

Fthi Arefayne Abadi, Joshua Ellul, and George Azzopardi. The blockchain of things, be-
yond bitcoin: A systematic review. In 2018 IEEE International Conference on Internet of
Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE
Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pages
1666–1672. IEEE, 2018.

Ian F Akyildiz, Weilian Su, Yogesh Sankarasubramaniam, and Erdal Cayirci. Wireless sen-
sor networks: a survey. Computer networks, 38(4):393–422, 2002.

Giuseppe Anastasi, Marco Conti, Mario Di Francesco, and Andrea Passarella. Energy con-
servation in wireless sensor networks: A survey. Ad hoc networks, 7(3):537–568, 2009.

169

http://www.liquidity-lang.org/doc/
https://blog.chain.com/announcing-ivy-playground-395364675d0a
https://www.cardano.org/en/home/
https://www.ethereum-alarm-clock.com/
https://docs.oraclize.it/
https://solidity.readthedocs.io/en/latest/

170 REFERENCES

Markus Aronsson, Emil Axelsson, and Mary Sheeran. Stream processing for embedded
domain specific languages. In Proceedings of the 26nd 2014 International Symposium on
Implementation and Application of Functional Languages, page 8. ACM, 2014.

Faisal Aslam, Luminous Fennell, Christian Schindelhauer, Peter Thiemann, Gidon Ernst,
Elmar Haussmann, Stefan Rührup, and Zastash A Uzmi. Optimized java binary and
virtual machine for tiny motes. In International Conference on Distributed Computing in
Sensor Systems, pages 15–30. Springer, 2010.

Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of attacks on ethereum
smart contracts (sok). In POST, volume 10204 of Lecture Notes in Computer Science, pages
164–186. Springer, 2017.

Asad Awan, Suresh Jagannathan, and Ananth Grama. Macroprogramming heterogeneous
sensor networks using cosmos. In ACM SIGOPS Operating Systems Review, volume 41,
pages 159–172. ACM, 2007.

E. Axelsson, K. Claessen, G. Dévai, Z. Horváth, K. Keijzer, B. Lyckegård, A. Persson,
M. Sheeran, J. Svenningsson, and A. Vajdax. Feldspar: A domain specific language for
digital signal processing algorithms. In Formal Methods and Models for Codesign (MEM-
OCODE), 2010 8th IEEE/ACM International Conference on, pages 169–178, July 2010a. doi:
10.1109/MEMCOD.2010.5558637.

Emil Axelsson, Koen Claessen, Mary Sheeran, Josef Svenningsson, David Engdal, and An-
ders Persson. The design and implementation of feldspar. In Symposium on Implementa-
tion and Application of Functional Languages, pages 121–136. Springer, 2010b.

Alex Biryukov, Dmitry Khovratovich, and Sergei Tikhomirov. Findel: secure derivative
contracts for ethereum. In International Conference on Financial Cryptography and Data
Security, pages 453–467. Springer, 2017.

Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava: Hardware design
in haskell. In Proceedings of the Third ACM SIGPLAN International Conference on Func-
tional Programming, ICFP ’98, pages 174–184, New York, NY, USA, 1998. ACM. ISBN 1-
58113-024-4. doi: 10.1145/289423.289440. URL http://doi.acm.org/10.1145/289423.
289440.

Tobias Blickle, Jürgen Teich, and Lothar Thiele. System-level synthesis using evolutionary
algorithms. Design Automation for Embedded Systems, 3(1):23–58, 1998.

Aymen Boudguiga, Nabil Bouzerna, Louis Granboulan, Alexis Olivereau, Flavien Quesnel,
Anthony Roger, and Renaud Sirdey. Towards better availability and accountability for

http://doi.acm.org/10.1145/289423.289440
http://doi.acm.org/10.1145/289423.289440

REFERENCES 171

iot updates by means of a blockchain. In IEEE Security & Privacy on the Blockchain (IEEE
S&B 2017), 2017.

Niels Brouwers, Koen Langendoen, and Peter Corke. Darjeeling, a feature-rich vm for the
resource poor. In Proceedings of the 7th ACM Conference on Embedded Networked Sensor
Systems, pages 169–182. ACM, 2009.

Vitalik Buterin. Chain interoperability. R3 Research Paper, 2016.

Vitalik Buterin. Vyper, 2018. URL https://vyper.readthedocs.io/en/latest/.

Christian Cachin. Architecture of the hyperledger blockchain fabric. In Workshop on Dis-
tributed Cryptocurrencies and Consensus Ledgers, volume 310, 2016.

Alexandru Caracas, Thorsten Kramp, Michael Baentsch, Marcus Oestreicher, Thomas
Eirich, and Ivan Romanov. Mote runner: A multi-language virtual machine for small
embedded devices. In 2009 Third International Conference on Sensor Technologies and Ap-
plications, pages 117–125. IEEE, 2009.

Gaetano Caruana and Gordon J Pace. Embedded languages for origami-based geometry.
Proceedings of CSAW’07, page 99, 2007.

Han Chen, Paul Chou, Sastry Duri, Hui Lei, and Johnathan Reason. The design and imple-
mentation of a smart building control system. In e-Business Engineering, 2009. ICEBE’09.
IEEE International Conference on, pages 255–262. IEEE, 2009.

Thang Vu Chien, Hung Nguyen Chan, and Thanh Nguyen Huu. A comparative study
on operating system for wireless sensor networks. In Advanced Computer Science and
Information System (ICACSIS), 2011 International Conference on, pages 73–78. IEEE, 2011.

Koen Claessen and Gordon J. Pace. An embedded language framework for hardware com-
pilation. In Designing Correct Circuits ’02, Grenoble, France, April 2002.

Koen Claessen and David Sands. Observable Sharing for Functional Circuit Description, pages
62–73. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999. ISBN 978-3-540-46674-1.
doi: 10.1007/3-540-46674-6_7. URL http://dx.doi.org/10.1007/3-540-46674-6_7.

Michael Coblenz. Obsidian: a safer blockchain programming language. In Proceedings of the
39th International Conference on Software Engineering Companion, pages 97–99. IEEE Press,
2017.

Joseph Cordina and Gordon J Pace. Functional hdls: A historical overview. In Proceedings
of Computer Science Annual Workshop, 2006.

https://vyper.readthedocs.io/en/latest/
http://dx.doi.org/10.1007/3-540-46674-6_7

172 REFERENCES

Joost de Kruijff and Hans Weigand. Ontologies for commitment-based smart contracts. In
OTM Confederated International Conferences" On the Move to Meaningful Internet Systems",
pages 383–398. Springer, 2017.

G De Michell and Rajesh K Gupta. Hardware/software co-design. Proceedings of the IEEE,
85(3):349–365, 1997.

Gergely Dévai, Máté Tejfel, Zoltán Gera, Gábor Páli, Gyula Nagy, Zoltán Horváth, Emil Ax-
elsson, Mary Sheeran, András Vajda, Bo Lyckegård, et al. Efficient code generation from
the high-level domain-specific language feldspar for dsps. In Proc. ODES-8: 8th Work-
shop on Optimizations for DSP and Embedded Systems, workshop associated with IEEE/ACM
International Symposium on Code Generation and Optimization (CGO), 2010.

Rainer Dömer, Andreas Gerstlauer, Junyu Peng, Dongwan Shin, Lukai Cai, Haobo Yu,
Samar Abdi, and Daniel D Gajski. System-on-chip environment: A specc-based frame-
work for heterogeneous mpsoc design. EURASIP Journal on Embedded Systems, 2008:5,
2008.

Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. Contiki-a lightweight and flexible op-
erating system for tiny networked sensors. In Local Computer Networks, 2004. 29th Annual
IEEE International Conference on, pages 455–462. IEEE, 2004.

Conal Elliott and Paul Hudak. Functional reactive animation. In ACM SIGPLAN Notices,
volume 32, pages 263–273. ACM, 1997.

Conal Elliott, Sigbjørn Finne, and Oege De Moor. Compiling embedded languages. Journal
of functional programming, 13(03):455–481, 2003.

Joshua Ellul. Run-time compilation techniques for wireless sensor networks. PhD thesis, Uni-
versity of Southampton, 2012.

Joshua Ellul and Kirk Martinez. Run-time compilation of bytecode in sensor networks. In
2010 Fourth International Conference on Sensor Technologies and Applications, pages 133–138.
IEEE, 2010.

Joshua Ellul and Gordon J Pace. Alkylvm: A virtual machine for smart contract blockchain
connected internet of things. In New Technologies, Mobility and Security (NTMS), 2018 9th
IFIP International Conference on, pages 1–4. IEEE, 2018.

Claudio M De Farias, Wei Li, Flávia C Delicato, Luci Pirmez, Albert Y Zomaya, Paulo F
Pires, and José N De Souza. A systematic review of shared sensor networks. ACM
Computing Surveys (CSUR), 48(4):51, 2016.

REFERENCES 173

Christopher K Frantz and Mariusz Nowostawski. From institutions to code: Towards au-
tomated generation of smart contracts. In Foundations and Applications of Self* Systems,
IEEE International Workshops on, pages 210–215. IEEE, 2016.

Thierry Gautier, Paul Le Guernic, and Loic Besnard. Signal: A declarative language for
synchronous programming of real-time systems. In Conference on Functional Program-
ming Languages and Computer Architecture, pages 257–277. Springer, 1987.

Jeremy Gibbons. Functional programming for domain-specific languages. In Central Euro-
pean Functional Programming School, pages 1–28. Springer, 2015.

Andy Gill. Domain-specific languages and code synthesis using haskell. Queue, 12(4):30,
2014.

Thorsten Grötker, Stan Liao, Grant Martin, and Stuart Swan. System Design with System-
CTM. Springer Science & Business Media, 2007.

Ramakrishna Gummadi, Omprakash Gnawali, and Ramesh Govindan. Macro-
programming wireless sensor networks using kairos. In International Conference on Dis-
tributed Computing in Sensor Systems, pages 126–140. Springer, 2005.

Nicholas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. The synchronous
data flow programming language lustre. Proceedings of the IEEE, 79(9):1305–1320, 1991.

Jörg Henkel and Rolf Ernst. A hardware/software partitioner using a dynamically deter-
mined granularity. In Proceedings of the 34th annual Design Automation Conference, pages
691–696. ACM, 1997.

Patrick C Hickey, Lee Pike, Trevor Elliott, James Bielman, and John Launchbury. Building
embedded systems with embedded dsls. In ACM SIGPLAN Notices, volume 49, pages
3–9. ACM, 2014.

Ralf Hinze et al. Fun with phantom types. The fun of programming, pages 245–262, 2003.

Yoichi Hirai. Bamboo, Nov 2018. URL https://github.com/pirapira/bamboo.

P. Hudak. Modular domain specific languages and tools. In Software Reuse, 1998. Proceed-
ings. Fifth International Conference on, pages 134–142, Jun 1998. doi: 10.1109/ICSR.1998.
685738.

Paul Hudak. Building domain-specific embedded languages. ACM Computing Surveys
(CSUR), 28(4es):196, 1996.

https://github.com/pirapira/bamboo

174 REFERENCES

S. Huh, S. Cho, and S. Kim. Managing iot devices using blockchain platform. In 2017 19th
International Conference on Advanced Communication Technology (ICACT), pages 464–467,
Feb 2017. doi: 10.23919/ICACT.2017.7890132.

Marc Jansen, Farouk Hdhili, Ramy Gouiaa, and Ziyaad Qasem. Do smart contract lan-
guages need to be turing complete? 03 2019.

Samuel N Kamin. Research on domain-specific embedded languages and program gener-
ators. Electronic Notes in Theoretical Computer Science, 14:149–168, 1998.

Imran Khan, Fatna Belqasmi, Roch Glitho, Noel Crespi, Monique Morrow, and Paul Po-
lakos. Wireless sensor network virtualization: A survey. IEEE Communications Surveys
& Tutorials, 18(1):553–576, 2016.

JeongGil Ko, Kevin Klues, Christian Richter, Wanja Hofer, Branislav Kusy, Michael Bru-
enig, Thomas Schmid, Qiang Wang, Prabal Dutta, and Andreas Terzis. Low Power or
High Performance? A Tradeoff Whose Time Has Come (and Nearly Gone), pages 98–114.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN 978-3-642-28169-3. doi: 10.
1007/978-3-642-28169-3_7. URL http://dx.doi.org/10.1007/978-3-642-28169-3_7.

Nupur Kothari, Ramakrishna Gummadi, Todd Millstein, and Ramesh Govindan. Reliable
and efficient programming abstractions for wireless sensor networks. In ACM SIGPLAN
Notices, volume 42, pages 200–210. ACM, 2007.

Jae Kwon and Ethan Buchman. Cosmos White Paper. https://cosmos.network/
resources/whitepaper, 2018. [Online; accessed 30-January-2019].

Daan Leijen and Erik Meijer. Domain specific embedded compilers. In ACM Sigplan Notices,
volume 35, pages 109–122. ACM, 1999.

Ilias Leontiadis, Christos Efstratiou, Cecilia Mascolo, and Jon Crowcroft. Senshare: trans-
forming sensor networks into multi-application sensing infrastructures. In European
Conference on Wireless Sensor Networks, pages 65–81. Springer, 2012.

Philip Levis and David Culler. Maté: A tiny virtual machine for sensor networks. ACM
Sigplan Notices, 37(10):85–95, 2002.

Philip Levis, David Gay, and David Culler. Active sensor networks. In Proceedings of the 2nd
conference on Symposium on Networked Systems Design & Implementation-Volume 2, pages
343–356. USENIX Association, 2005a.

Philip Levis, Sam Madden, Joseph Polastre, Robert Szewczyk, Kamin Whitehouse, Alec
Woo, David Gay, Jason Hill, Matt Welsh, Eric Brewer, et al. Tinyos: An operating system
for sensor networks. In Ambient intelligence, pages 115–148. Springer, 2005b.

http://dx.doi.org/10.1007/978-3-642-28169-3_7
https://cosmos.network/resources/whitepaper
https://cosmos.network/resources/whitepaper

REFERENCES 175

Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. Making
smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pages 254–269. ACM, 2016.

Samuel R Madden, Michael J Franklin, Joseph M Hellerstein, and Wei Hong. Tinydb: an
acquisitional query processing system for sensor networks. ACM Transactions on database
systems (TODS), 30(1):122–173, 2005.

Geoffrey Mainland. Why it’s nice to be quoted: quasiquoting for haskell. In Proceedings of
the ACM SIGPLAN workshop on Haskell workshop, pages 73–82. ACM, 2007.

Geoffrey Mainland, Greg Morrisett, and Matt Welsh. Flask: Staged functional program-
ming for sensor networks. In ACM Sigplan Notices, volume 43, pages 335–346. ACM,
2008.

Alan Mainwaring, David Culler, Joseph Polastre, Robert Szewczyk, and John Anderson.
Wireless sensor networks for habitat monitoring. In Proceedings of the 1st ACM interna-
tional workshop on Wireless sensor networks and applications, pages 88–97. ACM, 2002.

Lucius Gregory Meredith, Gary Pettersson, Jack Stephenson, Michael Stay, Kent Shikama,
and Joseph Denman. Contracts, composition, and scaling: The rholang specification 0.2.,
2018.

Marjan Mernik, Jan Heering, and Anthony M Sloane. When and how to develop domain-
specific languages. ACM computing surveys (CSUR), 37(4):316–344, 2005.

Adrian Mizzi, Joshua Ellul, and Gordon Pace. D’artagnan: An embedded dsl framework
for distributed embedded systems. In Proceedings of the Real World Domain Specific Lan-
guages Workshop 2018, page 2. ACM, 2018.

Charles H Moore and Geoffrey C Leach. Forth–a language for interactive computing. Am-
sterdam: Mohasco Industries Inc, 1970.

Luca Mottola and Gian Pietro Picco. Programming wireless sensor networks: Fundamental
concepts and state of the art. ACM Comput. Surv., 43(3):19:1–19:51, April 2011. ISSN
0360-0300. doi: 10.1145/1922649.1922656.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

R. Newton, G. Morrisett, and M. Welsh. The regiment macroprogramming system. In 2007
6th International Symposium on Information Processing in Sensor Networks, pages 489–498,
April 2007a. doi: 10.1109/IPSN.2007.4379709.

176 REFERENCES

Ryan Newton and Matt Welsh. Region streams: Functional macroprogramming for sensor
networks. In Proceeedings of the 1st international workshop on Data management for sensor
networks: in conjunction with VLDB 2004, pages 78–87. ACM, 2004.

Ryan Newton, Greg Morrisett, and Matt Welsh. The regiment macroprogramming system.
In Proceedings of the 6th International Conference on Information Processing in Sensor Net-
works, IPSN ’07, pages 489–498, New York, NY, USA, 2007b. ACM. ISBN 978-1-59593-
638-7. doi: 10.1145/1236360.1236422. URL http://doi.acm.org/10.1145/1236360.
1236422.

Ryan R. Newton, Lewis D. Girod, Michael B. Craig, Samuel R. Madden, and John Gre-
gory Morrisett. Design and evaluation of a compiler for embedded stream programs.
SIGPLAN Not., 43(7):131–140, June 2008. ISSN 0362-1340. doi: 10.1145/1379023.1375675.

Russell O’Connor. Simplicity: A new language for blockchains, 2017. URL https:
//blockstream.com/simplicity.pdf.

John O’Donnell. Overview of hydra: A concurrent language for synchronous digital circuit
design. In ipdps, volume 2, page 240, 2002.

Gordon J Pace. Hedla: A strongly typed, component-based embedded hardware descrip-
tion language. Proceedings of CSAW’07, page 192, 2007.

Ian Page. Constructing hardware-software systems from a single description. Journal of
VLSI signal processing systems for signal, image and video technology, 12(1):87–107, 1996.

Jack Pettersson and Robert Edström. Safer smart contracts through type-driven development.
PhD thesis, Master’s thesis, Chalmers University, Department of Computer Science and
Engineering, Sweden, 2016.

Simon Peyton Jones, Jean-Marc Eber, and Julian Seward. Composing contracts: an adven-
ture in financial engineering (functional pearl). In ACM SIGPLAN Notices, volume 35,
pages 280–292. ACM, 2000.

Lee Pike, Alwyn Goodloe, Robin Morisset, and Sebastian Niller. Copilot: a hard real-
time runtime monitor. In International Conference on Runtime Verification, pages 345–359.
Springer, 2010.

S Popejoy. The pact smart contract language (2016), 2016. URL http://kadena.io/
try-pact/.

Gregory J Pottie and William J Kaiser. Wireless integrated network sensors. Communications
of the ACM, 43(5):51–58, 2000.

http://doi.acm.org/10.1145/1236360.1236422
http://doi.acm.org/10.1145/1236360.1236422
https://blockstream.com/simplicity.pdf
https://blockstream.com/simplicity.pdf
http://kadena.io/try-pact/
http://kadena.io/try-pact/

REFERENCES 177

Cauligi S Raghavendra, Krishna M Sivalingam, and Taieb Znati. Wireless sensor networks.
Springer, 2006.

Vijay Raghunathan, Curt Schurgers, Sung Park, and Mani B Srivastava. Energy-aware
wireless microsensor networks. IEEE Signal processing magazine, 19(2):40–50, 2002.

Niels Reijers and Chi-Sheng Shih. Ahead-of-time compilation of stack-based jvm bytecode
on resource-constrained devices. In Proceedings of the 2017 International Conference on
Embedded Wireless Systems and Networks, pages 84–95. Junction Publishing, 2017.

Niels Reijers, Joshua Ellul, and Chi-Sheng Shih. Making sensor node virtual machines
work for real-world applications. IEEE Embedded Systems Letters, 11(1):13–16, 2018.

M. Samaniego and R. Deters. Hosting virtual iot resources on edge-hosts with blockchain.
In 2016 IEEE International Conference on Computer and Information Technology (CIT), pages
116–119, Dec 2016. doi: 10.1109/CIT.2016.71.

Pablo Lamela Seijas and Simon Thompson. Marlowe: Financial contracts on blockchain.
In International Symposium on Leveraging Applications of Formal Methods, pages 356–375.
Springer, 2018.

Ilya Sergey, Amrit Kumar, and Aquinas Hobor. Scilla: a smart contract intermediate-level
language. arXiv preprint arXiv:1801.00687, 2018.

Mary Sheeran. Hardware design and functional programming: a perfect match. J. UCS, 11
(7):1135–1158, 2005.

Ross Kitsis Shidokht Hejazi-Sepehr and Ali Sharif. Transwarp-conduit: Interoperable
blockchain application framework. https://aion.network/media/TWC_Paper_Final.
pdf, 2019. [Online; accessed 5-May-2019].

A. Stanciu. Blockchain based distributed control system for edge computing. In 2017 21st
International Conference on Control Systems and Computer Science (CSCS), pages 667–671,
May 2017. doi: 10.1109/CSCS.2017.102.

Ryo Sugihara and Rajesh K Gupta. Programming models for sensor networks: A survey.
ACM Transactions on Sensor Networks (TOSN), 4(2):8, 2008.

Bharath Sundararaman, Ugo Buy, and Ajay D Kshemkalyani. Clock synchronization for
wireless sensor networks: a survey. Ad hoc networks, 3(3):281–323, 2005.

Josef Svenningsson and Emil Axelsson. Combining deep and shallow embedding for edsl.
In International Symposium on Trends in Functional Programming, pages 21–36. Springer,
2012.

https://aion.network/media/TWC_Paper_Final.pdf
https://aion.network/media/TWC_Paper_Final.pdf

178 REFERENCES

Stefan Thomas and Evan Schwartz. A protocol for interledger payments. URL
https://interledger. org/interledger. pdf, 2015.

William W Wadge and Edward A Ashcroft. LUCID, the dataflow programming language,
volume 198. Academic Press London, 1985.

G. Werner-Allen, J. Johnson, M. Ruiz, J. Lees, and M. Welsh. Monitoring volcanic eruptions
with a wireless sensor network. In Proceeedings of the Second European Workshop on Wire-
less Sensor Networks, 2005., pages 108–120, Jan 2005. doi: 10.1109/EWSN.2005.1462003.

Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. Ethereum
project yellow paper, 151:1–32, 2014.

Gavin Wood. Polkadot: Vision for a heterogeneous multi-chain framework. https://
polkadot.network/PolkaDotPaper.pdf, 2018. [Online; accessed 30-January-2019].

Yong Yao and Johannes Gehrke. The cougar approach to in-network query processing in
sensor networks. ACM Sigmod record, 31(3):9–18, 2002.

Ryan Yates and Brent A Yorgey. Diagrams: a functional edsl for vector graphics. In Proceed-
ings of the 3rd ACM SIGPLAN International Workshop on Functional Art, Music, Modelling
and Design, pages 4–5. ACM, 2015.

https://polkadot.network/PolkaDotPaper.pdf
https://polkadot.network/PolkaDotPaper.pdf

	Introduction
	Aims and Achievements
	Overview of Subsequent Chapters

	Background
	Macroprogramming
	Introduction
	Hardware/Software Codesign
	Wireless Sensor Networks

	Discussion and Challenges
	Code Slicing
	Interoperability
	Heterogeneity

	Conclusions

	Embedded Domain Specific Languages
	Shallow versus Deep Embedding
	Challenges of DSELs in Functional Languages
	Sharing and Feedback
	Type Safety

	Conclusions

	Macroprogramming for Wireless Sensor Networks
	Background: Wireless Sensor Networks
	Introduction
	Structure of a Wireless Sensor Node

	Challenges of WSN
	Hardware Constraints
	Programming Challenges
	Economic Challenges

	Programming Approaches
	Node-Level Programming
	Network-Level Programming

	Conclusions

	D'Artagnan
	Introduction
	A Framework for Macroprogramming of WSNs
	Interpretations
	D'Artagnan as a language
	Stream Operators
	Memory Capabilities
	Compiler Hints
	Stream Tuples
	Simulator
	Intermediate Code / Device Code
	Device level code: Contiki
	Implementation Details
	Discussion

	Use-case: Smart Rent Management
	Use-case: Intelligent Cooling and Lighting Systems
	Stream Handling Components
	Room Layout Representation
	Application Implementation

	Performance Evaluation
	Related approaches
	Conclusions

	Macroprogramming for Blockchain Systems
	Background: Blockchain and Smart Contracts
	Introduction
	Overview

	Blockchain Technology
	Blockchain Architecture
	Smart Contracts

	Blockchain Systems
	Bitcoin
	Ethereum
	Hyperledger Fabric
	Others

	Smart Contract Programming Languages
	Bitcoin Script
	Solidity
	Marlowe
	Others
	Discussion

	Chain Interoperability
	Conclusions

	Macroprogramming the Blockchain of Things
	Introduction
	D'Artagnan for Blockchain of Things

	Proposed Framework
	D'Artagnan: A Macroprogramming Framework
	D'Artagnan for IoT
	Extending D'Artagnan

	Use Case: Smart Rent Management
	Evaluation
	Discussion and Conclusions

	Porthos
	Introduction
	Porthos Framework
	Multi-chain Support
	Code Cuts
	Coordination Model

	Porthos as a smart contract language
	Implementation Details

	Use Cases
	Property Sale
	Single-shot DAO

	Evaluation
	Expressiveness of Abstraction
	Security Analysis
	Extensibility

	Conclusions

	Conclusions
	Conclusions and Future Work
	Future Work
	Concluding Thoughts

	Publications
	References

