
Residual-Based
Combination of Static
and Runtime Verification

SHAUN AZZOPARDI

Supervised by Gordon J. Pace

Department of Computer Science
Faculty of ICT
University of Malta

June, 2019

A dissertation submitted in partial fulfilment of the re-
quirements for the degree of PhD in Computer Science.

iii

Statement of Originality

I, the undersigned, declare that this is my own work unless where otherwise
acknowledged and referenced.

Candidate Shaun Azzopardi

Signed

Date June 14, 2019

To my family

vii

Acknowledgements

I would first like to thank Gordon Pace and Christian Colombo, without
whose support and insight the work presented here would not be possible.

This work was initially inspired by Eric Bodden’s work in the combi-
nation of static and runtime verification for finite-state properties. Insights
gained from exploring this work aided me greatly in the contributions pre-
sented here.

Moreover, the prototypes implementing some contributions here depend
on the LARVA and the CONTRACTLARVA tool and their specification lan-
guages. Gratitude goes to contributors to their development, especially
Gordon Pace and Christian Colombo. The Soot framework, developed by
the Sable Research Group and other contributors, was also essential to im-
plement a prototype implementation of our analysis.

I am grateful for my board of examiners including Kevin Vella, Mark
Micallef, Adrian Francalanza, and Borzoo Bonakdarpour for their sugges-
tions and advice, and Stephanie Abood for her help on the administrative
side. I am indebted to the Department of Computer Science’s faculty who
provided feedback and advice during presentation of early versions of this
work at the department’s workshops. I would also like to thank JP Ebejer for
the template1 this document is written in.

I am most of all indebted to my family for their support throughout these
past years, especially my mum Grace and dad Frank, my siblings Stephanie,
Charles, Brandon and Alex, my aunts Margaret and Michelina, and finally
my nanna Carm) .

1https://github.com/jp-um/university_of_malta_LaTeX_dissertation_template

https://github.com/jp-um/university_of_malta_LaTeX_dissertation_template

ix

Abstract

While verification techniques attempt to solve the problem of checking
that a program satisfies a property they can fail and give an indeterminate
verdict. In a survey of literature we identify approaches that improve this
by allowing a verification technique to produce a new proof obligation by
either transforming a property and/or transforming a program. Here we
choose to focus on techniques that transform a property. To reason about
these we present an abstract formal framework that characterises properties
in terms of the programs that satisfy them. In turn we are able to characterise
a residual property that is equivalent to the original property for the program
under verification. We instantiate this approach for both state- and event-
based properties, showing how the conjunction of properties can be wielded
to produce effective residual properties to reduce the verification effort for
subsequent techniques.

We validate further this approach for state-based properties in the con-
text of industrial project involving a payments ecosystem and untrusted
client applications, where a enforced model of behaviour allows us to ver-
ify or partially evaluate at pre-deployment certain regulations specified as
universally quantified propositions.

Our main contribution is an approach for the combination of static
and runtime verification for automata-based properties. Existing such ap-
proaches focus on the reduction of instrumentation of a program, while we
present an approach to the reduction of structural elements of a property.
We focus on dynamic event automata (DEA) as event-based properties that
monitor both the program control-flow and the program data-state. We give
an intraprocedural approach to analysing a property against a program. This
allows us to collect knowledge about the behaviour of each procedure indi-
vidually (ignoring possible outside behaviour) to produce a residual of the
whole-program. The algorithm can easily be adapted to the interprocedural
case. Moreover, by adding an assertion propagation algorithm and the use of
an SMT solver we show how this can be optimised by pruning the possible
behaviour and evaluating property guards. We validated this approach
on both Java programs and Solidity smart contracts, showing moderate
overhead improvements but significant progress in reducing the property.

Contents

Introduction 1
0.1 Motivation . 1

0.1.1 Background . 1
0.1.1.1 Pre-deployment Verification 2
0.1.1.2 Post-deployment Verification 2
0.1.1.3 Combining Verification Techniques 3

0.2 Thesis Contributions . 4
0.3 Outline . 5

I Combining Verification Methods 7

1 Introduction 9

2 Partial Verification in Literature 13
2.1 Preliminaries . 14

2.1.1 Classification . 14
2.2 Description of Approaches . 16

2.2.1 Property Transformation . 17
2.2.1.1 Moving Goalposts with Assumptions 17
2.2.1.2 Pruning Parts of a Property 20

2.2.2 Program State Space Transformation 21
2.2.2.1 Identifying Satisfying States 21
2.2.2.2 Program Transformation 22

x

CONTENTS xi

2.3 Related Work . 24
2.4 Conclusions . 26

3 A Foundation for Residual Analysis 27
3.1 A Formal Theory of Verification . 29

3.1.1 Properties . 29
3.2 Residual Analysis . 32
3.3 Instantiations . 36

3.3.1 State-based Analysis . 36
3.3.2 Event-based Analysis . 38

3.4 Related Work . 42
3.5 Discussion . 43
3.6 Conclusions . 44

4 An Industrial Case Study 47
4.1 Summary . 47
4.2 The Open Payments Ecosystem . 49

4.2.1 Payment Application Models 51
4.3 A Partial Verification Framework 52

4.3.1 Specification Process and Language 52
4.3.1.1 Financial Services Controlled Natural Language . 53

4.3.2 Partial Verification . 55
4.3.2.1 A Partial Verifier for FSRCNL 57

4.4 Discussion and Related Work . 60
4.5 Conclusions . 62

5 Conclusions 63

II Residual Analysis for Automata with Variable State 65

6 Introduction 67
6.1 Context . 67

6.1.1 Existing Literature . 67
6.1.2 Unexplored Research Areas 70

6.2 Contributions . 70
6.3 Outline . 71

7 Properties and Programs 73
7.1 Dynamic Event Automata . 74

7.1.1 Definitions . 77

xii CONTENTS

7.1.2 Structural Analysis . 79
7.1.2.1 Safe Structural Reductions 79
7.1.2.2 Structural Union and Intersection 82

7.2 Control-flow Automata . 83
7.2.1 Definition . 84

7.3 Correctness of Reductions . 90
7.4 Conclusions . 92

8 Residual Analysis 95
8.1 Intraprocedural Abstractions . 96

8.1.1 A Control-flow Abstraction 97
8.1.1.1 Relation to Program 99

8.1.2 A Variable State Abstraction through Propagation 103
8.2 Verification with Residuals . 108

8.2.1 An Abstract Monitored System 108
8.2.1.1 Interprocedural Compliance from Intraprocedural

Analysis . 111
8.2.1.2 Exploiting Variable Abstractions 113

8.2.2 Residual Analysis . 119
8.2.2.1 Reducing Instrumentation 120
8.2.2.2 Property Residuals 123

8.3 Conclusions . 133

9 Evaluation 135
9.1 Methodology . 135

9.1.1 Context . 135
9.1.2 Experimental Setup . 136

9.1.2.1 Java . 136
9.1.2.2 Solidity . 137

9.1.3 Measurements . 138
9.1.3.1 Static Guarantees 138
9.1.3.2 Runtime Overheads 139

9.1.4 Threats to Validity . 140
9.2 Results . 140

9.2.1 Analysis of Java programs 141
9.2.2 Analysis of Smart Contracts 145

9.2.2.1 Courier Service . 145
9.2.2.2 Wallets . 149

9.3 Conclusions . 151

10 Discussion 153

CONTENTS xiii

10.1 Partial Order of Verdicts . 153
10.2 Property Variable State . 154
10.3 Comparison with Existing Work . 154
10.4 DEA Extensions . 155
10.5 Analysis is Harder than Verification 156
10.6 Limitations and Future Work . 157

11 Conclusions 159

Conclusions 161

References 163

List of Figures

2.1 A taxonomy for combinations of verification methods in literature. . 16

3.1 Two properties and their composition (and the residual composition
without the dashed transitions). 41

4.1 OPE business process. 50
4.2 Regulation specification process both without FSRCNL and with au-

tomated executable specifications creation using FSRCNL. 53
4.3 Some example regulations specified in FSRCNL. 55
4.4 High-level view of partial verification process through partial evalua-

tion. 57

6.1 Example property and program automata, with dotted and dashed
transitions representing the effects of existing residual analysis ap-
proaches. 68

7.1 DEA specifying that an iterator over a list should not be queried for
more elements than it has. 75

7.2 hasNext() property as a finite-state automaton and a more powerful
version as a DEA. 76

7.3 DEA before and after optimisations. 80
7.4 Example DEA (assume each transition is tagged with a true condition

and the skip action) with two sub-structures. 83
7.5 Listing. 7.4 as CFA. 85

8.1 Example CFA with abstracted version. 97

xiv

LIST OF FIGURES xv

8.2 Example program with a call state (C) and with different branches. . 100
8.3 CFA representing Listing. 8.1. 104
8.4 DEA specifying that an iterator over a list should only be queried for

the next element when it also signals that it has a next element. . . . 114
8.5 Partial view of the abstract monitored system of Figure 8.3 and Fig-

ure 8.4, with the dotted transition between (B, 1) and (C,×) denoting
the violating transition we wish to prune. 115

8.6 Running example of specification of a transaction system with certain
data security and privacy guarantees. 120

8.7 Example program. 125
8.8 Simple residuals. 126
8.9 Transitions used by each method, and resulting program residual. . . 127

9.1 A blacklisted user cannot transact. 141
9.2 Accounts should have distinct account numbers. 141
9.3 Property that regulates for the risk appetite of a client, with dashed

transitions removed by the first analysis, and dotted by the third. . . 142
9.4 FiTs menu CFG lifted to Gold and Silver users, with respect to the

property in Figure 9.3. 142
9.5 Estimations in terms of percentage of overheads from sample runs for

data property, Figure 8.6, with residual Figure. 8.8(c). 143
9.6 Estimations in terms of percentage of overheads from sample runs for

risk property (Figure 9.3). 143
9.7 Courier service behavioural interface specification. 146
9.8 Courier service specification using property local state. 148
9.9 If a user is given an amount of tokens then the same amount must be

reduced from another user, and vice-versa. 151

List of Tables

2.2 Artifact class of each partial verification approach included in the
review. 17

2.3 Verification aspects of the partial verification approaches reviewed. . 18

4.2 List of UK regulations considered. 54

9.2 Overheads associated with monitoring for Figure 9.1. 141
9.3 Overheads associated with monitoring for Figure 9.2. 141
9.4 Overheads(%) for program before, and after monitoring with residuals

for data property, Figure 8.6, with residual Figure. 8.8(c). 143
9.5 Overheads (%) for program before, and after monitoring with residu-

als for risk property (Figure 9.3). 143
9.6 Solidity case studies added deployment costs of original specification

versus the residual specification. 149
9.7 Solidity case studies added transaction costs of original specification

versus the residual specification. 150

xvi

Introduction

0.1 Motivation

Verification methods attempt to check whether a program satisfies a specification.
However, one is not assured that in general such a method will always succeed
in giving a verdict. There are two main reasons for this:

(i) theoretical limits on what the chosen method can prove; and

(ii) practical limits on the amount of resources (including time and memory)
that are available for verification.

Combining different verification techniques with different power and at different
stages of deployment can push further back these limits. To illustrate this we
give a background of the limitations of different verification techniques at a high-
level, after which we give a summary of existing work in combining different
techniques.

0.1.1 Background

Ideally that a program is proven compliant with a specification is confirmed
pre-deployment to ensure the program’s well-behaviour post-deployment. How-
ever pre-deployment verification can sometimes fail, requiring post-deployment
verification.

1

2 INTRODUCTION

0.1.1.1 Pre-deployment Verification

Two central approaches to pre-deployment verification are model checking and
static analysis of programs.

Model checking attempts to verify that a finite-state representation of a pro-
gram is a refinement of a specification [Andersen, 1992; Vardi, 2007], which can
lead to state explosion problems for large and precise representations of pro-
grams. Although techniques have been employed to safely reduce the state space
that has to be explored (e.g. using partial order reductions [Peled, 1996]), this
remains a problem associated with techniques that attempt both soundness and
completeness.

On the other hand static analysis approaches tend to use abstraction tech-
niques [Cousot and Cousot, 1977] to relax either or both soundness, completeness,
leading to an analysis that is generally less intensive. Relaxing soundness (but
not completeness) allows one to possibly identify true violations, but cannot
allow us to verify the program is fully compliant. Relaxing completeness (but
not soundness) allows one to possibly verify the program is fully compliant but
any identified violations are not assured to be part of the program’s behaviour at
runtime.

Then, while model checking verification can fail because of resource exhaus-
tion, static analysis techniques can also fail because they lack enough precision
for the problem at hand. In some scenarios the program code may not even be
available, thus excluding the possibility of proving the code safe pre-deployment
leaving only the option of post-deployment verification.

0.1.1.2 Post-deployment Verification

Runtime verification is the main approach to post-deployment verification.
Runtime verification (RV) involves monitors that observe a program’s execu-

tion at runtime and attempt to give a verdict about its adherence to a specification.
This however comes with the limitation that there are interesting properties that
are not monitorable (e.g. liveness properties [Bauer et al., 2011; Falcone et al.,
2012b; Francalanza et al., 2017a]). Pure RV only observes the current execution
prefix at runtime, unlike model checking that can analyse all possible executions.

RV techniques can be classified into two kinds, asynchronous and synchronous.
Asynchronous techniques maintain a queue of program events with the monitor
processing these possibly out-of-sync with the program. On the other hand syn-
chronous techniques block the program while the monitor processes a program
event. Working synchronously can affect program performance by adding time
and memory overheads, unlike the asynchronous case. However synchronous
monitoring allows one to detect violations as they occur, which can be useful

0.1. MOTIVATION 3

for the purposes of enforcing a property [Azzopardi et al., 2018b; Falcone et al.,
2012b]. Tweaking and optimising monitor strategy implementations has proven
successful in reducing these overheads (e.g. [Purandare et al., 2012]), however
overheads remain significant (as evidenced by a recent competition for RV tools
[Reger et al., 2016]) and unavoidable to an extent in pure RV.

0.1.1.3 Combining Verification Techniques

Upon a verification method failure then another method can be attempted, e.g. if
static analysis fails to prove a program satisfies a certain monitorable property
then RV can be used. However, instead of simply failing, verification attempts
can be modified to produce artifacts that can be used by subsequent techniques,
avoiding duplicate work. We briefly consider some approaches of this kind.

For model checking we find Beyer [2016]’s conditional model checking. Upon
failure to prove the whole program satisfies the property, Beyer [2016] proposes
modifying a model checker to: (i) return a representation of the program state
space that remains to be proven safe; and (ii) to require as input such a constraint
on the state space. Beyer et al. [2018b] go one step further and slice the program
to produce a reduced program that can be used with off-the-shelf model checkers.

On the other-hand we also find limited combinations of static analysis and
runtime verification. Bodden et al. [2010] analyse an instrumented Java program
and a safety property as a finite-state automaton to identify event instrumentation
sequences that can be removed without having an effect on violation detection.
Another approach by Dwyer and Purandare [2007] instead summarises instru-
mentation sequences that always have the same effect module the specification.
Both these approaches succeed in exploiting static analysis to make the RV prob-
lem more efficient, while also having the potential to prove certain parts of the
program safe. Both of these however have their limitations: they are only val-
idated with finite-state automaton with events corresponding to method calls,
while the utility of the approaches with events that carry program data is unclear.

Another approach in literature attempts to directly prove parts of the property.
Chimento et al. [2015] consider properties as automata with variable state, and
states tagged with Hoare triples (pre- and post-conditions for method calls).
Automated theorem proving is used to prove as many of possible of these method
contracts, while the remainder are checked for at runtime with monitoring. This
approach is data-oriented, unlike that of Bodden et al. [2010] and Dwyer and
Purandare [2007], but however it only attempts to prove the Hoare triples. The
automata used here in fact use transitions that can be guarded by the local and
the program variable state, which are ignored by the analysis.

4 INTRODUCTION

0.2 Thesis Contributions

The general context we are interested in this thesis is then partial verification
techniques that extend verification techniques to return a verification residue or
residual as proposed by Dwyer and Purandare [2008].

We identify several open questions, that we seek to answer:

� How do partial verification techniques report their progress in literature?

� What is a general theoretical basis for the notion of a residual in the context
of partial verification?

� In the context of static analysis and runtime verification, what are appro-
priate residuals of automata-based specification that have both event- and
state-based aspects?

To answer the first question we surveyed literature and identified a trend
in the verification community towards combining verification techniques in
a black-box manner, where a verification technique is not simply expected to
fail when it cannot prove a property, but it is expected to report any progress
it made. This allows one to transform the input problem into an easier one.
We survey literature on such partial verification techniques, focusing on the kind
of residue these techniques output. We classified these approaches based on
different dimensions, including whether they reduce the program or property or
whether they focus on event- or state-based verification techniques.

In response to the second question we give a formal basis for the combination
of different verification techniques by defining precisely the notion of a residual
property. We consider a meta-theory of programs and properties, where we
remain agnostic of any program or property formalisation. Instead we simply
assume a satisfaction relation between programs and properties, and use this
to interpret a property as the set of programs that satisfy it. This allows us to
define a partial order of residuals that captures the notion of when a residual
property is equivalent to the original property modulo some knowledge of the
program. A simple example is that when we want to prove that program P
satisfies property A ∧ B, and we only manage to show that P satisfies A then B
is an appropriate residual property. We instantiate this for both state-based and
event-based verification.

We validate this approach by illustrating our contributions to an industrial
project where the use of residuals added value to the business process in the form
of static guarantees. This case study involved a payments ecosystem, where in
the desire to remain technology-agnostic payment applications can be developed

0.3. OUTLINE 5

in any language and run from external servers. Analysing the application code is
a non-starter here then, since we cannot trust that the code on untrusted servers
will not be modified maliciously at runtime. Instead a model-based approach
is taken, where the developer provides a model of the assured behaviour of
the application at runtime, that will also be enforced by the ecosystem. Our
contribution to this picture involved the verification of regulations represented
in a controlled natural language against these models, leaving any residuals to be
enforced at runtime. This approach allowed us to give static guarantees of the
application pre-deployment, which was integral for the ecosystem to make a
determination on whether an application would be appropriate for deployment.

To answer the third question we fix our properties as Dynamic Event Automata
(DEAs), and our program representation as the respective control-flow automaton
(CFA). DEAs are extensions of finite-state automata with dynamic variable state,
and in fact are a variant of the automata used by Chimento et al. [2015]. DEAs
here are representations of monitors that wait for an event to occur and then act,
while CFAs represent instrumented programs that trigger events. We apply static
analysis in this context in an attempt to prune the required CFAs events, and the
required DEA transitions. The analysis we present can be applied both at the
interprocedural (as done by Dwyer and Purandare [2008]) and the intraprocedural
level (as done by Bodden et al. [2010]).

In our presentation we focus on the latter approach, which allows us to per-
form incremental verification by verifying each program method separately (and
possibly in parallel). By collecting the results for each method we can produce a
result for the whole-program. Our approach involves modeling concretely all
the possible ways a method may exercise the property, soundly abstracting all
the program behaviour occurring outside of that method. This will allow us
to prune DEAs and CFAs, removing any transitions and instrumentation that
are determined to be irrelevant to violation-detection. This analysis for DEAs is
implemented for both Java and the Solidity smart contract language. We evaluate
the approach using several case studies in both these languages.

0.3 Outline

In our presentation of this work we divide this document in two parts. In Part I
we survey partial verification techniques in literature, and formalise an approach
to this in terms of property residuals, while we present an industrial case study
utilising the proposed approach. In Part II we present an implementation of a
residual for properties as dynamic event automata and programs as control-flow
automata, specifying static analyses to reduce both event instrumentation and

6 INTRODUCTION

produce property residuals, leaving a lesser burden on the program at runtime in
terms of overheads.

Part I

Combining Verification Methods

7

1

Introduction

A significant bulk of research in formal verification has been dedicated to tech-
niques that increase the reach and automatibility of model checking and theorem
proving. These powerful techniques are used to attempt to verify exactly the
properties required of a program. However this problem can be hard, and in
fact many such techniques can simply fail after having exhausted the memory
available, or fail to give a result within a reasonable time frame. Meanwhile, there
are further theoretical and business limits on what can be proven by one method.

Model checking of infinite-state systems is undecidable [Uribe, 2000]. While
monitoring is limited to monitorable properties — a property of the kind eventu-
ally the file must be closed cannot be proven satisfied by monitoring the prefixes of
an infinite execution, since after observing an execution prefix the monitor cannot
determine anything about its continuation [Bauer et al., 2011; Falcone et al., 2012b;
Francalanza et al., 2017a]). On the other hand business requirements can further
limit the kind of analysis possible. Some requirements may be subject to change
at runtime (e.g. the limit on a transaction, in an online financial system), requiring
dynamic techniques that can be adapted in real-time to the new specification.
Other requirements may necessarily be required by the client to be guaranteed
pre-deployment, regardless of the difficulty of verification.

Theoretical limitations of a single method have been handled by combining
different verification or analysis techniques in one hybrid algorithm. For example,
Leucker [2013] shows how model checking can be applied at runtime to explore
the possible continuations of a prefix, leading to the possibility of determining
satisfaction of liveness properties for the current execution. Bonakdarpour et al.
[2018] and Stucki et al. [2019] also propose to use such a method to be able
monitor for properties about sets of executions, while Russo and Sabelfeld [2010]

9

10 CHAPTER 1. INTRODUCTION

parametrise monitoring by a control-flow graph, allowing a monitor to detect
when knowledge about high-level variables can escape to low-level locations.
Aceto et al. [2018a] propose a theoretical framework for this kind of parametrised
monitoring. Dually, runtime information can be used pre-deployment, e.g. Grech
et al. [2017] and Grech et al. [2018] collect information about the heap at runtime
to reduce the unsoundness of certain static analyses. These kinds of approaches
use analysis techniques to provide more information to a verification step.

Other approaches combine techniques that are both engaged in the activity of
verification, as opposed to analysis. These techniques are our focus here. This
kind of approach requires self-contained verification techniques that attempt
to prove a program satisfies a specification, and report their progress, pushing
proof obligations onto other verification steps. This ensures that any verification
step has the potential to contribute to the verification effort, even upon failure,
and that the computational effort does not go to waste. Here we survey such
techniques in literature, identifying work that fits in this view from typing, model
checking, static analysis, and runtime verification. We classify these mainly based
on the artifact or residue used to report the work done. At a high-level we classify
these as transformations of the program state space and/or transformation of the
property.

To analyse the notion of when a reduced property is a valid residual, in that it
is equivalent to the original property with respect to the program, we consider an
abstract formal framework for residual analysis, where given an abstraction of a
program we use the notion of quotienting to reduce the property by what is known
about the program. The use of quotienting in the context of program verification
is not new, in fact Andersen [1995] use quotienting to perform incremental verifi-
cation of a program, by reducing a property incrementally by each component
of the system, reducing the problem to showing that residual property holds of
the remaining components. However, here we are applying quotienting in the
context of abstractions of a whole program, that are not necessarily complete, and
such that the verification problem cannot necessarily be reduced to a structural
sub-part of the program. We instantiate this theory for both predicate-based (or
state-based) and event-based theories for verification.

As a case study, we consider an application of residuals in the context of
an industrial project with untrusted code that however comes with a model of
promised runtime behaviour. This model is enforced at runtime, ensuring it is an
abstraction of the program’s runtime behaviour. We show how other required
properties of the system can be checked on this model pre-deployment, possibly
leaving some residual properties to be proven at runtime.

In Chapter 2 we explore how specific instances of these techniques have been
exploited to allow partial verification. In this work we can tie the output of a partial

11

verification technique with the notion of a residual, capturing the remaining proof
obligations. In Chapter 3 we present a foundation for composing verification
methods using property residuals giving instantiations of this framework for both
state- and event-based properties, while in Chapter 4 we present an industrial
case study utilising the notion of residuals for partial verification.

2

Partial Verification in Literature

Verification techniques that simply return a verdict are not very useful when they
fail, as they must do in some cases since the problem of verification is in general
undecidable. Failing can also occur for other reasons, among these because the
method employed has some constraints on precision, or a user set timeout was
reached before a verdict could be given. Then, not reaching a verdict does not
mean the technique did not manage to make some progress towards proving a
property of a program, but only that it did not manage to prove it for the whole
program. Without a verdict then, in the traditional verification context, one is
forced to use other verification methods that hopefully do not suffer from the
same fate. However one can do better.

Techniques exist that allow for partial or gradual verification, where different
methods chip away at a verification problem, exploiting each other’s strengths
in solving a problem that each individual method could not solve. This requires
an extension of the notion of a verifier, where instead of a fail verdict the verifier
returns some representation of the progress that it managed to make. This artifact
would then be usable by other verifiers that can continue refining the problem
in this way, until hopefully the problem is proven or disproven. In effect such
a verifier is transforming the verification problem, reducing it to an easier one
(e.g. one that requires less state space to explore). We call such verifiers partial
verifiers, since they at the very least attempt to solve part of the problem. To our
knowledge there is no published review of such methods.

In this chapter we review partial verifiers that appear in literature. We seek to
answer the following questions:

� What are existing approaches that allow for partial reasoning in verification?

13

14 CHAPTER 2. PARTIAL VERIFICATION IN LITERATURE

� How do partial verifiers communicate their progress in practice?

We start with some preliminaries in Section 2.1, including a description of
the criteria we use for the classification of partial verifiers, while in Section 2.2
we consider the approaches found in literature. We consider related work in
Section 2.3, and conclude in Section 2.4.

2.1 Preliminaries

The focus here is on partial verification methods and their combination with
other (possibly non-partial) methods. We maintain a distance between the notion
of analysis and that of verification, where analysis is the computation of properties
of a program and verification is the problem of deciding whether a program
satisfies a certain property. Although partial verifiers may make use of analysis
techniques (e.g. program abstraction techniques) to attempt to reach a verdict,
the focus here is on the partial verifier as a black box that takes a program and a
property and returns either a verdict or a residual verification problem. The focus
then was on identifying verifiers of this form, and their use with other verifiers,
ignoring tighter combinations of analysis methods.

2.1.1 Classification

To compare and contrast approaches at a high-level we classify them on several
dimensions:

(i) the kind of verification methods they employ;

(ii) the input program and property languages;

(iii) the way they transform the verification problem; and

(iv) the kind verification methods with which they are paired.

Figure 2.1 illustrates the taxonomy we specified to classify the approaches in
this way, of which we now give an overview.

We do not identify verification methods by the specific algorithm used, but
keep to the general kind of an algorithm, including: model checking (MC), static
analysis (SA), runtime verification (RV), testing, and manual code review. This
allows us one to compare the approaches at a high-level based on the limitations
associated with each approach.

We take note of the programming language (concrete or abstract) that each
approach can process. In some reviewed papers the work may be presented in

2.1. PRELIMINARIES 15

terms of some abstract representation of a program, but evaluated in terms of a
certain concrete programming language. In these cases here we list this concrete
language, and list the abstract language only when there is no implementation in
terms of a concrete language.

The specific property languages used vary widely, with little intersection
between the approaches. Then, instead of noting the property language used by
an approach, we consider high-level aspects of the language, on two dimensions.
We consider the kinds of properties specifiable by the language, including asser-
tions (predicates that hold at a certain point in a program), Hoare triples (pre-
and post-conditions around a part of the system), automaton-based properties,
reachability properties (i.e. whether a certain state in the program is reachable
or not), and types. We also include as a kind of properties specialised properties,
since some approaches may have some pre-defined properties they wish to ver-
ify, instead of having a more general property language. We also classify the
property language by the program context the property is talking about, which
includes statement-level (e.g. this point in the program should be reachable, or this
assertion should hold true at this point in the program), module-level (e.g. pre- and
post-conditions over a function), program-level (e.g. the program should never
exhibit this behaviour), and typestate (e.g. objects of a certain type must exhibit this
behaviour).

The main point of comparison between the different methods is the artifacts
they produce. We divide these into two major interrelated kinds: (i) property
transformations; and (ii) program state space transformations.

By property transformations we mean that the original property is in some
way modified. This can include a partial evaluation of the property where proven
parts of the property are pruned away, or the creation of sufficient properties,
termed assumptions, whose satisfaction implies that of the original property.
These two notions are similar, however the latter is a powerful and general
approach. We distinguish between them to distinguish between approaches that
simply structurally prune a property and others that create generate new proof
obligations that are at least semantically sufficient.

Another approach is to consider the program state space and make progress
on proving it safe by incrementally covering more of the space. The approaches
we reviewed approach this by either outputting a representation of the states
proven compliant by a method or dually those states that can still potentially fail.
These are dual approaches, since the compliant set of states can be identified by
the set difference of the set of all states and the potentially failing ones. Other
approaches go further than this by projecting the verification problem onto
smaller parts of the program. These parts can either be structural components or
more a general a slice of the program that represents the yet unproven part of

16 CHAPTER 2. PARTIAL VERIFICATION IN LITERATURE

Partial
Verification

Residual Artifact
Program State Space

Transformation

Transformed Instrumentation Reduction

SummaryProjection onto Program Part

Good States

Potential Points of Failure

Property Transformations Assumptions

Pruning

Property Language Kind

Language Exceptions

Typing Systems

Specialised Properties

Automata-based

Hoare triples

Program State Reachability

Program State Assertions

Context

Program-level

Statement-level

Typestate

Module-level

Program Language

Verification Techniques Employed Techniques

Paired With Techniques

Figure 2.1: A taxonomy for combinations of verification methods in literature.

the program state space. These kinds of approaches are particularly re-usable,
since the residual program can be used with other techniques off-the-self. Other
approaches consider properties about events that a program may trigger. In this
case, the state space to be explored is represented by the possible traces of events
triggered at runtime. We identified some approaches that attempt to prove such
event-instrumented programs safe, while reporting any progress by removing or
summarising sequences of event instrumentation.

The described taxonomy is illustrated in Figure 2.1. In the next section we
consider and classify pertinent literature along these lines.

2.2 Description of Approaches

In this section we describe and discuss published literature about partial verifiers
along the lines of the taxonomy discussed in the previous section. The approaches
discussed are classified according to this taxonomy in Table 2.2 and Table 2.3.
Another distinction is at the level of implementation, which we do not consider
here. For example, some methods are more generally applicable, like those by
Beyer et al. [2018b]; Chebaro et al. [2012]; Czech et al. [2015] and Chimento et al.
[2015], in that they produce immediately a reduced program or property that can
be analysed by subsequent unrelated checkers. While others act as frameworks

2.2. DESCRIPTION OF APPROACHES 17

Table 2.2: Artifact class of each partial verification approach included in the
review.

Approach

Residual Artifact
Property

Transformations
Program State Space

Transformations

Assumptions Pruning Good
States

Potential Points
of Failure

Projection onto
Program Part

Transforming
Instrumentation

Reduction Summary
[Correnson and Signoles, 2012] X - - - - - -

[Christakis et al., 2012] X - - - - - -
[Kanig et al., 2014] X - - - - - -

[Christakis and Wüstholz, 2016] X - - - - - -
CLARA [Bodden et al., 2010] - X - - - X -

STARVOORS [Chimento et al., 2015] X X - - - - -
[Beyer et al., 2012], [Beyer et al., 2018b] - - X - X - -

[Fink et al., 2008] - - - X - - -
[Chebaro et al., 2012] - - - - X - -

[Czech et al., 2015] - - X - X - -
[Lal et al., 2007] - - - X X - -

[Choi et al., 2002] - - - - - X -
[Dwyer and Purandare, 2007] - - - - - - X
[Cartwright and Fagan, 1991] - X - - - - -
[Knowles and Flanagan, 2010] - X - - - - -

[Siek, 2006] - X - - - - -
[Thatte, 1990] - X - - - - -

[Andersen, 1995] X - - - X - -

for algorithms using some internal representation of the transformed property
or state space, for example work by Bodden et al. [2010]; Fink et al. [2008] and
Correnson and Signoles [2012].

2.2.1 Property Transformation

A class of approaches we identified act solely on the property, in that they trans-
form the property that is to be proven by either generating sufficient conditions
for it, or by reducing a property by pruning away parts of it. Subsequent tech-
niques can then focus on the reduced or transformed properties. We describe
several examples of these approaches below.

2.2.1.1 Moving Goalposts with Assumptions

A chosen analysis technique may not always be powerful enough to prove a
property, succeeding for some cases but failing for others. Several techniques
frame these failed cases in terms of assumptions or proof obligations that must
be fulfilled before full compliance is assured. These assumptions then act as the
new transformed property whose verification is attempted by subsequent steps.
Here we consider several applications of this approach to the combination of
verification attempts, describing in the process the environment within which
they are used for a better view of their use.

18 CHAPTER 2. PARTIAL VERIFICATION IN LITERATURE

Table 2.3: Verification aspects of the partial verification approaches reviewed.

Approach Program State Space
Language

Property
Language

Verification
Techniques

Kind Context Employed Paired
With

[Correnson and Signoles, 2012] C
Exceptions,
Assertions,

Hoare Triples
Statement-level SA,

Theorem Proving Testing

[Christakis et al., 2012] .NET Assertions Statement-level SA SA,
Testing

[Kanig et al., 2014] SPARK Specialised,
Hoare Triples Module-level

SA,
Unit Testing,
Code Review

SA,
Unit Testing,
Code Review

[Christakis and Wüstholz, 2016] .NET Assertions Statement-level SA SA,
T

CLARA [Bodden et al., 2010] Java Automata-based Program-level,
Typestate SA SA,

RV

STARVOORS [Chimento et al., 2015] Java Automata-based Program-level,
Typestate SA RV

[Beyer et al., 2012], [Beyer et al., 2018b] C Automata-based,
Reachability Program-level MC,

SA
MC,
SA

[Fink et al., 2008] Java Automata-based Program-level,
Typestate SA SA

[Chebaro et al., 2012] C
Specialised (Division by 0,

Out of bounds
array access)

Statement-level SA DA

[Czech et al., 2015] C Automata-based,
Reachability Program-level MC Concolic Testing

[Lal et al., 2007]
Weighted

Pushdown
Systems

Reachability Program-level SA,
MC

SA,
MC

[Choi et al., 2002] Java Specialised (Data Races) Program-level,
Typestate SA RV

[Dwyer and Purandare, 2007] Java Automata-based Program-level,
Typestate SA RV

[Cartwright and Fagan, 1991] A Functional
Language Typing System Value-level SA RV

[Knowles and Flanagan, 2010] A Lambda
Calculus Typing System Value-level SA RV

[Siek, 2006] A Lambda
Calculus Typing System Value-level SA RV

[Thatte, 1990] Lambda
Calculus Typing System Value-level SA RV

[Andersen, 1995] µ-calculus Logic-based Program-level MC MC

Kirchner et al. [2015] present Frama C, a tool that combines different analysis
techniques all aimed at the verification of C programs. Properties here include
both out-of-the-box common C runtime errors, and custom specifications. the
latter are specified using a first-order logical language [Baudin et al., 2011] for
Hoare-style functional contracts that is also capable of encoding LTL and finite-
state automata [Kirchner et al., 2015]. The specifications are inlined as code
assertions, thus properties here are considered to be pairs of predicates and
program points. Correnson and Signoles [2012] describe how Frama C combines
the results of multiple static analysis techniques in a correct manner allowing for
partial results from one technique to be made complete by another. This is done by
allowing the different techniques to produce results based on certain assumptions
(e.g. when one technique cannot prove that a property holds of a certain pointer,
it assumes it holds so that it can continue, outputting this outstanding proof
obligation to be handled by another technique). These assumptions can also

2.2. DESCRIPTION OF APPROACHES 19

be discharged at runtime using runtime assertion checking. The techniques
combined here are an abstract interpretation based data-flow analysis of the
possible value of memory locations, and a weakest precondition analysis.

A similar approach proposed by Christakis et al. [2012] takes a C# program
instrumented with assertions, and a static checker which marks an assertion as
satisfied, partially satisfied under some assumption, or unknown. Other static
checkers are then proposed try to refine these results through further annotation.
Testing is then directed towards assumptions and unverified assertions by gen-
erating appropriate inputs through symbolic execution. This is implemented in
CodeContracts [Fähndrich et al., 2010]. Assumptions here are also at points in a
function, rather than whole-program conditions.

Kanig et al. [2014] propose that instead of a verification method outputting
simply the verdict, that the results also include the assumptions that this verdict
depends on, and generalise a verdict to a general notion of a claim expressed
as a Horn clause. The assumptions here include both any assumptions that
are taken by the tool to simplify the verification context, and also assumptions
manually included by the developer about components of the system (a difference
from the other approaches we found). The authors use this approach in an
industrial project using SPARK (a subset of Ada). Implementation-wise, they
use parametrised labels to identify properties about the program, while allowing
for assumptions to be discharged either by static analysis, unit testing, or simple
code review.

Lack of adequate precision is not the only reason an analysis may not fully
verify a property, but an analysis may also fail because it exhausts all the available
resources. One approach that deals with this gracefully takes Clousot [Fähndrich
and Logozzo, 2011], an abstract interpretation engine for CodeContracts, and
allows its analysis to be bound (e.g. by time, or memory usage). On the resources
being exhausted partial results are recorded through assertions in the program
[Christakis and Wüstholz, 2016]. This approach then allows for an unsound
limitation of an abstract interpreter (since bounding resource usage results in
an analysis that does not necessarily finish) to be made sound by subsequent
verification steps.

2.2.1.1.1 Gradual Quotienting

Partial model checking was introduced by Andersen [1995] in the context of a
variant of the µ-calculus and finite-state model checking. The problem context
is that of multiple components whose parallel composition must satisfy some
property. Parallel composition easily leads to state-explosions, given the multi-
tude of possible interleavings. Instead of producing the composition explicitly,

20 CHAPTER 2. PARTIAL VERIFICATION IN LITERATURE

Andersen [1995] proposes a quotient operator to reduce a property by a component,
producing a residual specification of the rest of the program. Doing this in turn
for every component but one, transforms the problem into the simpler checking
scenario of needing to check that one sequential component satisfies a property.

2.2.1.2 Pruning Parts of a Property

The techniques considered so far generate assumptions that are sufficient for
compliance with the original property assertions. Instead of proceeding in this
manner, another more limited approach is to prove parts of the specification,
leaving the parts left to prove. This is related to the previous approaches, in
that the reduced property is the assumption that must be proven by subsequent
attempts. However the artifact here is limited to structural reductions of the
previous property with respect to the program, while generated assumptions
may be specialised to different program locations and different cases.

A simple approach by Bodden et al. [2010], included in the CLARA tool (de-
scribed in more detail in the program transformation section), is that of identify-
ing transitions in a finite-state automaton that are tagged by events that never
occur in a given program, leaving a reduced automaton. A more sophisticated
but technique is that of Chimento et al. [2015], where they present an approach
for Java that combines control- and data-oriented analysis in the STARVOORS
tool. This approach combines deductive verification with runtime verification,
for properties as symbolic automata with states possibly labelled with Hoare
triples (pre- and post-conditions for function calls). This approach uses the KeY

theorem prover [Ahrendt et al., 2016] for Java to prove some of these triples safe.
The residual property here then is equivalent to the original property without
the statically proven Hoare triples, and is left for runtime to be monitored for by
the LARVA runtime verification tool [Colombo et al., 2009]. Reducing a property
in this way was shown to significantly reduce overheads in the presented use
cases. STARVOORS is also able to specialise Hoare triples to the program, adding
conditions that prevent runtime checks for already proven cases.

We find similar approaches for static and dynamic typing, where properties
consist of types for certain values or variables at certain points in a program.
Static type systems accept programs that cannot have an execution that respects
typing, providing static guarantees at load-time. On the other hand dynamic type
systems allow all correctly typed executions of a program. Dynamic type systems
thus allow more behaviour, at the expense of pushing analysis to runtime, which
is not ideal. However dynamicity is essential in some cases, e.g. when a program
interacts with another statically unknown program. Meijer and Drayton [2004]
argue for the use of both of these in conjunction, using static typing wherever

2.2. DESCRIPTION OF APPROACHES 21

possible and where it is impossible using dynamic typing. In fact a number of
approaches have been developed to this end.

Cartwright and Fagan [1991] introduce a soft typing system to use static typing
to prove most of the program safe, and instrumenting the parts of the program
that cannot be proven safe or violating statically (since static type checkers are
usually just sound not complete) with dynamic checks (and possibly exception
handlers). Knowles and Flanagan [2010] introduce the notion of hybrid type
checking, which allows one to define a type as a set of values that obey a certain
predicate. Due to the expressiveness of these types a static type checker may
fail in proving type consistency in certain parts of a program. Possibly unsafe
operations can then be instrumented with type casts, to perform type checking
at runtime. Another notable approach is that of gradual typing as introduced by
Siek [2006], which allows functions to be given an implicit dynamic or unknown
type. Then static typing confirms consistency of the statically typed part of the
program, leaving the untyped (or dynamically typed) constructs to be verified
at runtime. The program then is instrumented with appropriate type casts for
terms with a dynamic type. This approach differs from hybrid type checking in
that the latter is fully typed with concrete types, while in gradual typing we have
a dynamic type. A similar approach is quasi-static type checking [Thatte, 1990],
however it compares negatively in the power of static type checking.

2.2.2 Program State Space Transformation

A dual approach to transforming properties is to transform the program, by
producing either: (i) artifacts that identify the parts of the program that have been
determined to satisfy the property; or (ii) transformed programs that exercise
a property in an equivalent manner to the original. These are related, in that
the first kind of artifacts can be used to generate a smaller program exhibiting
only the possibly violating behaviour. However there are approaches that simply
use these artifacts on-the-fly without producing a concrete transformed program.
Both approaches have the effect of reducing the state space that is considered by
subsequent techniques. We describe examples of these below.

2.2.2.1 Identifying Satisfying States

By identifying program states that respect a property, subsequent attempts can
focus on those programs states that have not been determined to respect the
property. A dual way to think of this is to identify the states that can potentially
violate the property and have analyses to prune this set. Here we describe
instances of this approach.

22 CHAPTER 2. PARTIAL VERIFICATION IN LITERATURE

2.2.2.1.1 Conditional Model Checking

Beyer et al. [2012] identify a problem with traditional model checking, namely
that they either return a satisfaction verdict, a violation verdict, or they fail (i.e. an
unknown verdict). However, model checking is time- and memory-intensive and
an unknown verdict results in a waste of these resources. Thus, Beyer et al. [2012]
illustrate how instead model checking techniques can be developed that instead
of an unknown verdict they return a condition φ that represents the states of the
model that satisfy the property. Then other model checkers can be restricted to
reduce the search for compliance with a property to states that do not respect
the condition φ. This approach to model checking is termed conditional model
checking.

2.2.2.1.2 Potential Points of Failure

A similar approach is employed for the static verification of typestate properties
(i.e. properties that objects of a certain type should always satisfy) by [Fink et al.,
2008]. Here multiple static analysis techniques are used successively, with each
technique using a more precise abstract semantics of the programming language.
For example, one analysis relates object pointers together with a may relation,
representing that the pointers may point to the same object; while a more strong
subsequent analysis considers also that some pointers may be related with a must
relation, representing that the pointers necessarily point to the same object. These
different analyses each take as input a verification context, representing a state in
the system and the object that may violate at the state. These are also known
as potential points of failure (PPFs) Each step refines this context, such that if it is
empty then the property has been verified.

2.2.2.2 Program Transformation

Outputting an artifact that represents the satisfied (or potentially violating) states
of a program needs subsequent analysis tools that are tailored to take such an
artifact as an input. However the majority of available established tools do
not allow for such a parameter. To be able to re-use other techniques, while
simplifying the problem, slicing and chopping techniques (see [Tip, 1995] for
a survey of these) can be used to extract a pruned version of the program that
exhibits the possibly violating behaviour.

Other approaches start with an instrumented version of the program, e.g. for
the purposes of runtime verification, and attempt to identify instrumentation
points that can either be removed soundly and completely, or identify a sequence
of these points that can be summarised. Removing all such points means a

2.2. DESCRIPTION OF APPROACHES 23

program satisfies the property, while summaries helps subsequent techniques
avoid re-performing the same work.

2.2.2.2.1 Reducer-Based Conditional Model Checking

Beyer et al. [2018b] extend conditional model checking by showing how even
model checkers not equipped to handle conditional model checking can be
used off-the-shelf. This is done through a pre-processing step that slices the
program, resulting in a residual program that can be inputted to any traditional
model checker. Programs are represented as a variant of control-flow graphs,
specifically as automata with program operations on transitions. Conditions
are also represented as automata that represent covers of certain program paths.
An algorithm is then defined to reduce the program automaton by the already
covered paths, and is implemented using parallel composition and pruning of
the edges of this composition.

Other earlier approaches by Chebaro et al. [2012] and Czech et al. [2015] apply
slicing in a similar manner to extract slices of the program that can possibly be
violated and exercise them using testing to attempt to find counter-examples to
the property in these slices. This reduces the state-space that testing has available,
increasing the probability that a counter-example is found (if present).

2.2.2.2.2 Abstract Error Projection

An interesting related notion that allows different model checking techniques
to be combined is that of an abstract error projection [Lal et al., 2007]. Essentially,
given a property, and a program abstraction then model checking is employed to
partition the abstraction into the set of paths in the abstraction that are compliant
with the property, and the set of paths that are not. The part of the abstraction
for which there may be an error is then characterized by the set of states in the
abstraction that are part of a possibly violating path, i.e. the error projection.
Then, further verification attempts can be focused on this part instead of the
whole program. Lal et al. [2007] use abstraction-refinement techniques to make
the abstraction more precise, and optimise the analysis iteratively by focusing
these refinement techniques on the error projection of the previous abstraction.

2.2.2.2.3 Transforming Instrumentation

Some approaches to verification are event-based, where they used automata
tagged by program events to represent the desired behaviour, and instrumented
the program with these events. The problem is then to show that the event traces
triggered by the instrumented program during each run are traces marked as

24 CHAPTER 2. PARTIAL VERIFICATION IN LITERATURE

compliant by the property automaton. This is a common way to implement
runtime verification, for example. Here we discuss approaches in literature
that prune this instrumentation in the process of proving that certain program
behaviour does not affect compliance of the property.

Bodden et. al. present a framework, CLARA [Bodden et al., 2010], that
analyses Java programs at different levels of precision to determine which parts
of a program cannot violate a finite-state machine equivalent specification. By
removing instrumentation points or sequences of such points that do not affect
the property monitor state, the points left for subsequent analyses (including
monitoring) is reduced.

A similar approach for data race detection is presented by Choi et al. [2002],
where the instrumentation required for data race detection is reduced by using
points-to analysis and escape analysis to identify soundly: (i) when two objects
may access the same memory location; (ii) when these two objects may be in
different threads; and (ii) when they do not have a common lock. Instrumentation
events for objects are then discarded when it is determined statically that they
cannot participate in data races.

A complementary approach instead of simply removing instrumentation is to
summarise parts of the program that always behave in the same manner. [Dwyer
and Purandare, 2007], given a property as a finite-state automaton with method
calls as events, use static analysis over the control-flow graph of a program
to attempt to prove compliance with the property. In the case that not all of
the program is proven compliant, safe regions of the program are identified.
Instrumentation is then changed to summarise the already known effects of these
regions, allowing subsequent analysis to step over these already verified regions.
This involves simulating runtime monitoring statically by running the control-
flow graph and property in parallel, and identifying sequences of statements
that are both never in a bad state of the property and whose single entry and
exit points are always in the same respective property states (qentry, qexit). In
preparation for runtime monitoring, the instrumentation within this region is
removed, and its effect is simply summarised by instrumenting it to trigger a
new unique event (e). The property is then augmented with a transition from
qentry to qexit with the e. This kind of analysis is termed a residual analysis, and the
new property produced the residual property.

2.3 Related Work

We have focused on loosely coupled verification methods that produce partial
results, leaving further proof obligations for other verification methods. Here we

2.3. RELATED WORK 25

briefly consider tangentially related methods that do not fit into our definition of
partial verification but are related in motivation or techniques.

Tighter combinations of analysis and verification methods are also useful.
A notable example of an approach that allows tight combinations of multiple
techniques is that of Beyer et al. [2007] in CPACHECKER. In this approach to
configurable program analysis an analysis over the program is a configurable tuple
of: (i) an abstract domain (the concrete states, a semi-lattice of abstract states,
and a concretization function); (ii) a transfer relation (how abstract states evolve
given a program step); (iii) a merge operator (how two abstract states are merged
into one); and (iv) a termination check (when to stop the analysis). Multiple
analyses can then be composed simply by having multiple abstract domains, and
defining an appropriate transfer relation, merging operator, and termination over
the extended abstract domain. This allows for the combination of analyses with
different abstract domains, including also model checking, as illustrated in Beyer
et al. [2018a]. Tighter combinations of formal methods can create an analysis
that is more powerful than its constituent parts, however it can still benefit from
partial reasoning, given exhaustion of resources or too much abstraction. In fact
conditional model checking [Beyer et al., 2012] has been implemented around
CPACHECKER.

Here we have also not considered approaches that reduce the verification
problem for purposes of optimisation or simplification, since we are interested
in approaches that deal gracefully with failure to prove a property. These kinds
of approaches include: partial order reduction [Peled, 1996] that reduces model
checking to checking only the representatives of an equivalence class, verification
condition generators [Frade and Pinto, 2011] that use program analysis to produce
a logical proposition that is true if and only if the program satisfies the property,
thus combining both program analysis and theorem proving. A notable approach
is that of decomposition or reduction of properties onto components [Lamport
and Abadi, 1994], usually for assume-guarantee reasoning where an abstraction of
a component (perhaps computed automatically, e.g. [Gheorghiu Bobaru et al.,
2008]) is used instead of its implementation in the checking of a whole system.

In the context of time-triggered runtime verification Navabpour et al. [2013]
present RiTHM, an approach for time-triggered monitoring that depends on a
static analysis for correct results at runtime. In this context instrumentation adds
code that keeps a history or record of the program state at some point. This
is necessary since in the time-triggered context a monitor is not activated by
program events but instead polls the program intermittently. Navabpour et al.
[2013] uses static analysis to identify the minimum amount of instrumentation
points required given a certain polling interval to ensure no relevant behaviour
is missed at runtime. Navabpour et al. [2012]; Wu [2013] define further some

26 CHAPTER 2. PARTIAL VERIFICATION IN LITERATURE

heuristics for optimising this kind of monitoring, essentially involving static
analysis of which variables’ values need to be instrumented and buffered for a
near-optimal solution to the problem of reducing overheads with time-triggered
monitoring.

In the context of runtime enforcement, Colcombet and Fradet [2000] exploit
static analysis to reduce the program transformations required to produce a
program that satisfies a separately defined property. This is similar to partial
verification methods, however it differs in motivation – enforcement is the main
aim here as opposed to verification.

Other approaches use static analysis to control overheads. Stoller et al. [2012]
consider systems that may turn off monitoring for some events at runtime to
avoid overheads, but which may affect the verdict given on the execution. Instead
they use statistical methods to be able to give a probability of the verdict given
being correct. Bartocci et al. [2013] optimise this approach with an algorithm that
can calculate the possibly required runtime calculations in this context ahead-of-
time.

2.4 Conclusions

In this chapter we have surveyed the literature and identified several approaches
utilising some kind of partial verification techniques. These approaches either
give a verdict for the verification problem, or encode their progress in verifying
a problem by transforming the verification problem. We have classified them
according to the artifacts they produce, both the programs and kinds of properties
they accept, and the verification methods they both employ and are paired with.

The presented work represents a comprehensive overview of the current work
along the lines of partial verification methods. However, although much of this
work uses or mentions the notion of a residual (of a program or of a property), no
clear general characterisation is given. In the next chapter we discuss this notion,
focusing on the residual of a property.

3

A Foundation for Residual Analysis

In the previous chapters we have motivated the combination of verification
methods to make up for the possible failure of a single verification method
in computing a verdict. We have also reviewed existing methods that use a
verification method to prove part of a property and leaving the remaining part
for other methods. This work lacks a general framework of how and when
this approach works. In this section we tackle this problem, and present a
foundational formal theory for properties and verification which we use to prove
the general correctness of such approaches. This work is based on work published
in [Azzopardi et al., 2016a].

Summary A wide variety of property specification languages exist, corresponding
to some form of logic or automata. Programs similarly can be specified using a
multitude of languages, where they are to be interpreted through some semantics.
By defining a satisfaction condition we can attempt to check whether a program
satisfies a property.

A common approach is to specify properties in some form of temporal logic,
e.g. LTL which can be given semantics in terms of traces or automata [Bauer et al.,
2010], or to specify properties directly as some form of automata. Programs can
similarly be intepreted as a transition system using some operational semantics.
A common satisfaction condition is then simply that the program is a refinement
(or a model) of the property [Vardi, 2007]. Verification methods (such as model
checking, deductive verification, and runtime verification) are an attempt to show
such a satisfaction condition.

In static analysis this is done by abstracting a concrete program, for instance
by using an abstract operational semantics [Cousot and Cousot, 1977] we can

27

28 CHAPTER 3. A FOUNDATION FOR RESIDUAL ANALYSIS

construct a labelled transition system (explicit or implicit) representation (e.g. a
control-flow graph) of the program and compare this against the property. Model
checking on the other hand tends to assume a more exact program representation
[Visser et al., 2003], and explores its state space for possible violations of the
property. In runtime verification (RV) we do not reason about the semantics
of the whole program, but only of the current execution trace. These all have
different power, and attempt to approximate the satisfaction condition at different
levels — RV cannot be used to prove liveness properties in general, while static
analysis is naturally limited by the abstraction it uses and more precise model
checking by the resources (memory and time) available.

To deal with the possible failure to return a satisfaction verdict of any ver-
ification method in this chapter we layout a foundation for the combination
of different verification methods using the notion of property quotients. In this
chapter we remain language-agnostic in that we do not assume any specification
language for properties or programs, nor do we assume any concrete seman-
tics for these. We choose to do this to show how the notion of quotients arises
naturally and easily in the context of verification.

We simply assume a class of programs P , a class of properties Π, and a
satisfaction operator `: P × Π where P ` π means that program P satisfies
property π. This relation does not represent the application of a verification
technique, but the general satisfaction condition that verification techniques
attempt to verify.

We then interpret properties as program acceptors, using the satisfaction op-
erator, i.e. [π] ⊆ P such that P ∈ [π] iff π accepts P iff P ` π. Over this we
can define a lattice corresponding to P ’s subset lattice by defining conjunction,
disjunction, and negation operators for properties corresponding to intersection,
union, and complement in the program space. Properties are related in this lattice
by a refinement operator vv that corresponds to the subset operator in the pro-
gram space. In the context of this simple theory we will consider that verification
methods can fail to return a result but that the analysis used for verification may
still prove something of the program. We can then characterize the notion of a
property quotient as a representation of what remains to be proven.

In Section 3.1 we describe the background theory, while in Section 3.2 we
present the class of quotient properties, with respect to a couple of properties.
We present instantiations of this for state- and event-based theories in Section 3.3,
while we conclude in Section 3.6.

3.1. A FORMAL THEORY OF VERIFICATION 29

3.1 A Formal Theory of Verification

Formal verification is the attempt at showing that a certain program satisfies a
certain property. Within this definition we have three unclear notions: (i) what
are programs? (ii) what are properties? and (iii) what does it mean for a program
to satisfy a property? Here, instead of defining these using a certain formalisation,
we simply assume we have some interpretation of these and use them as the
basic building blocks of our framework.

Definition 3.1.1. A verification context is a tuple 〈P , Π,`〉, where P is a non-empty
set of programs, Π is a non-empty set of properties, and `: P ×Π is a relation that
relates a program with a property if the program satisfies that property. We write P ` π
for (P, π) ∈`, and for (P, π) 6∈` we write P 6` π.

Algorithms do not exist that can compute ` fully for Turing-complete pro-
grams and for all properties (e.g. consider that the Halting problem is undecid-
able), however methods exist that can under-approximate it. We thus define
verification methods as any relation that can do this.

Definition 3.1.2. A verification method `V ⊆ P ×Π, is an algorithm that under-
approximates the verification problem, i.e. `V ⊆`.

Note that here P 6 `V π does not mean that P 6` π, but simply that we have
not been able to prove satisfaction (if we have property negation then P `V ¬π
means that P 6` π).

3.1.1 Properties

We consider a general semantics for properties in terms of the verification relation.
In verification properties are used to be checked against a program. The actual
formal semantics of properties used (e.g. trace semantics) is intended to capture
certain desirable qualities of a program, and then they can be given a semantics
in terms of the programs they accept.

Definition 3.1.3 (Property Verification Semantics). A property π has an associated
set of programs that it accepts, denoted by [π]

def
= {P | P ` π}. We call this the

verification semantics of properties.

Generally, specification languages contain some form of conjunction (e.g. logi-
cal conjunction for logic-based approaches or language intersection for automata),
disjunction (e.g. logical disjunction or language union), and negation (e.g. logical
negation or language complement). We can characterise these operators in terms
of the given semantics.

30 CHAPTER 3. A FOUNDATION FOR RESIDUAL ANALYSIS

Definition 3.1.4 (Property Operators). The semantics of the basic property operators
over Π are defined as follows:

� The conjunction of two properties, ∧∧, creates a property that accepts only the
programs accepted by the two properties conjuncts: [π∧∧π′]

def
= [π] ∩ [π′].

� The disjunction of two properties, ∨∨, creates a property that accepts all the pro-
grams accepted by the two properties disjuncts: [π∨∨π′]

def
= [π] ∪ [π′].

� The negation of a property, ¬¬, accepts any program not accepted by the negated
property: [¬¬π]

def
= P \ [π].

We can then characterise refinement between properties in this semantics,
based on whether satisfaction of a property implies that of another, or whether
the programs accepted by a property are a subset of the other.

Definition 3.1.5 (Property Refinement). A property π′ is said to be a refinement of
a property π if every program π accepts is also accepted by π′: π vv π′

def
= [π] ⊆ [π′].

We use π ≡ π′ to denote π vv π′∧∧π′ vv π.

Proposition 3.1.1. The following propositions hold true of refinement:

1. π∧∧π′ vv π

2. π vv π∨∨π′

Proof This easily follows from Definition. 3.1.4, since ∧∧ and ∨∨ are given seman-
tics in terms of intersection and union respectively.

From the definition of the operators we can immediately deduce some useful
properties, following easily from their encoding as the basic set operators.

Proposition 3.1.2. Conjunction, disjunction, and negation of properties have the fol-
lowing properties:

1. Conjunction and disjunction are idempotent: ⊗ ∈ {∧∧,∨∨} · π ⊗ π = π

2. Conjunction and disjunction are commutative: ⊗ ∈ {∧∧,∨∨} · π ⊗ π′ = π′ ⊗ π

3. Conjunction and disjunction are associative: ⊗ ∈ {∧∧,∨∨} · (π ⊗ π′)⊗ π′′ =
π ⊗ (π′ ⊗ π′′)

4. Conjunction and disjunction are distributive over each other: ⊗,	 ∈ {∧∧,∨∨} ·
⊗ 6= 	 ⇒ (π ⊗ π′)	 π′′ = (π 	 π′′)⊗ (π′ 	 π′′)

3.1. A FORMAL THEORY OF VERIFICATION 31

5. Double negation is equivalent to no negation: ¬¬(¬¬π) = π

Proof These properties follow easily from the definition of the operators in the
basic set-theoretic operators.

We assume that the property space Π is closed under these operators, where
if π and π′ are both in Π then π∧∧π′ and π∨∨π′ are also both in Π, along with
there negations.

Assumption 3.1.1. Π is closed under ∧∧,∨∨, and ¬¬.

Moreover we can easily show how refinement means that the larger property
accepts all programs of the smaller property.

Proposition 3.1.3. P ` π ∧ (π vv π′)⇒ P ` π′

Proof P ` π ⇒ P ∈ [π] by definition of [π′]. But π vv π′ ⇒ [π] ⊆ [π′], by
definition of vv, thus P ∈ [π′].

While, given a program satisfies a certain property, then the same program
violates any other property whose conjunction with the previous property is
empty.

Proposition 3.1.4. P ` π ∧ ([π∧∧π′] = ∅)⇒ P 6` π′

Proof Note how [π∧∧π′] = ∅ implies that P 6∈ π′, since by P 6π we can conlude
that P ∈ π.

Using the definitions of the property operators in terms of their set-theoretic
counterparts in the program space we can easily show the properties form a
lattice induced by the refinement relation.

Theorem 3.1.1. 〈Π,∧∧,∨∨〉 forms a lattice.

Proof Note how each two elements of Π have their conjunction (∧∧) as their
infimum and their disjunction (∨∨) as their supremum.

Property specification languages can allow the specification of the smallest
and largest properties, i.e. the property that accepts no program (e.g. false) or all
programs (true). These correspond to the least and greatest element in the lattice.

Proposition 3.1.5. A property that accepts no programs is a refinement of every program,
while every property is a refinement of the property that accepts every program:

32 CHAPTER 3. A FOUNDATION FOR RESIDUAL ANALYSIS

1. [π] = ∅⇒ ∀π′ · π vv π′

2. [π] = P ⇒ ∀π′ · π′ vv π

Proof This follows from the definition of refinement using the subset relation on
the property semantics.

Moreover, the presence of these properties in the class of properties implies
that it does not just form a lattice but a boolean algebra.

Theorem 3.1.2. Given a property π⊥ that accepts no programs, and a property π> that
accepts all programs then 〈Π,∧∧,∨∨,¬¬, π⊥, π>〉 forms a boolean algebra.

In the next section we give a foundation for residual analysis in terms of this
general semantics.

3.2 Residual Analysis

The problem we want to tackle in this work, as previously described, is to allow
a property to be proven using a combination of multiple verification methods.
We choose to do this by allowing a property to be proven in parts. We will be
using inference rules throughout to illustrate our approach.

In brief, we want some method to check whether a program P satisfies a
certain property π (here we use ? to represent an unknown proof obligation):

?
P ` π

We can do this by using some appropriate verification method V (e.g. some
form of static analysis):

P `V π

P ` π

However, this may fail to prove a property π (given Definition. 3.1.2), but
may instead only prove that some other property π1 holds:

P `V π1
P ` π1 ?

P ` π

3.2. RESIDUAL ANALYSIS 33

Given we have another verification method at our disposal (e.g. RV), a choice
is to then similarly use it to attempt to prove π. However, although we may
be able to fully prove π using this other method, there may be some overheads
associated (e.g. with runtime verification we can prove all safety properties that
we could not prove using static analysis, but it induces undesirable overheads on
the program at runtime).

Thus, to decrease the load on the second verification method we can decrease
the proof obligation, i.e. instead of requiring that π is proven we can instead
find a property π2, such that when both π1 and π2 hold of a program then π
also holds of the program, i.e. the conjunction of π1 and π2 is a refinement of π:
π1∧∧π2 vv π (e.g. π itself is a candidate for π2, but choosing π would not encode
any progress). If we manage to prove that P ` π2 then we can conclude that
P ` π1∧∧π2 and thus by using Proposition. 3.1.3 we can conclude that P ` π:

P `V π1
P ` π1 π1∧∧π2 vv π

P `V′ π2
P ` π2

P ` π

However note that in this case we may choose a π2 such that P ` π2 is not
true, while P ` π is. An example of a valid π2 is the empty property π⊥, however
P ` π⊥ clearly cannot hold. Then here π2 is only sufficient to prove π, but we
are not assured that if π holds of the program then π2 will also hold. Thus when
we attempt to prove π2 we may get a violating verdict but we are not able to
carry this conclusion onto π. To prevent this we strengthen the condition on
π2 to ensure that π2 accepts all programs accepted by π, and since we have the
knowledge that the program we are interested in satisfies π1 we can limit π2 also
to programs of π1.

P `V π1
P ` π1 π1∧∧π2 vv π π1∧∧π vv π2

P `V′ π2
P ` π2

P ` π

We use these conditions to characterise the notion of a property quotient.

Definition 3.2.1 (Residual/Quotient). Given properties π, π1 and π2, property π2 is
said to be a residual or quotient of π with respect to π1, or π2 ∈ π ÷ π1, if:

1. the conjunction of π1 and π2 accepts only programs accepted by π: π1∧∧π2 vv π;
and

2. the conjunction of π with π1 accepts only programs accepted by π2: π1∧∧π vv π2.

34 CHAPTER 3. A FOUNDATION FOR RESIDUAL ANALYSIS

Note we have define a quotient class, where there may be multiple properties
that can function as an appropriate quotient, as opposed to a function. This was
done for two reason. Firstly, note how at the level of the language there may be
different representations for the same property, and thus by defining a class of
quotients we are including all such equivalent properties. Secondly, as we shall
see, there are multiple appropriate quotient properties that accept different sets
of programs but are equivalent modulo the program being verified. For example,
if we want to show that π = A ⇒ B then showing π1 = ¬A ∨ C then both
π2 = ¬A∨ (C⇒ B) and π′2 = (C∧A)⇒ B are appropriate quotients/residuals.
With this definition then we are being as general and opinionated as possible,
rather than choosing just one quotient operator that may not be appropriate in
all cases.

Then the following proof rules are enough for the combination of two veri-
fication methods (here static analysis and runtime verification), respectively to
prove satisfaction and violation:

P `V π1
P ` π1 π2 ∈ π ÷ π1

P `V′ π2
P ` π2QUOTSAT

P ` π

P `V π1
P ` π1 π2 ∈ π ÷ π1

P `V′ ¬¬π2
P 6` π2QUOTVIOL

P 6` π

The correctness of these inference rule is ensured by the following theorem.

Theorem 3.2.1 (Correctness). Given knowledge that program P satisfies property
π1, then checking for a quotient π2 of π with respect to π1 is enough to verify π:
π2 ∈ π ÷ π1 ⇔ ∀P : P · P ` π1 ⇒ (P ` π2 ⇔ P ` π)

Proof Starting from π2 ∈ π ÷ π1, then from π1∧∧π vv π2 and assuming P ` π1
and P ` π we can easily conclude π2, similarly from π1∧∧π2 vv π and
assuming P ` π1 and P ` π2 we can easily conclude P ` π. From the
left-hand side the proof follows easily in a similar manner.

One such quotient is simply the conjunction of π and π1, which follows
almost immediately from the definition of quotients, giving a general approach
to computing a quotient that can be used to combine verification methods.

Proposition 3.2.1. π1∧∧π ∈ π ÷ π1

3.2. RESIDUAL ANALYSIS 35

Proof The required quotient conditions easily follow: (i) π1∧∧(π1∧∧π) vv π fol-
lows from associativity and idempotency of ∧∧, and since ∧∧ computes
a property that accepts the intersection of the two properties; and (ii)
π1∧∧π vv(π1∧∧π) follows immediately.

We call this the smallest quotient of π with respect to π1 since every other
quotient contains it, by the second condition of being a quotient.

Proposition 3.2.2. π2 ∈ π ÷ π1 ⇒ π∧∧π1 vv π2

We can identify another interesting quotient namely the union of π with the
negation of π1.

Proposition 3.2.3. π∨∨¬¬π1 ∈ π ÷ π1

Proof The required quotient conditions easily follow: (i) note how π1∧∧(π∨∨¬¬π1)
can be resolved to (π1∧∧π)∨∨(π1∧∧¬¬π1) using distributivity of ∧∧ over ∨∨,
which can further be resolved to (π1∧∧π) (since the left disjunct corresponds
to the empty property), which is a refinement of π, allowing us to conclude
that π1∧∧(π∨∨¬¬π1) vv π as required; and (ii) π1∧∧π vv(π∨∨¬¬π1) follows
from the fact that π1∧∧π is a refinement of π, and since π is a refinement of
π∨∨¬¬π1.

This can infact be shown to be the largest quotient.

Proposition 3.2.4. π2 ∈ π ÷ π1 ⇒ π2 vv(π∨∨¬¬π1)

Proof Note how from Theorem. 3.2.1 we can conclude that P ` π1 ⇒ (P ` π2 ⇔
P ` π). Then if we assume that P ` π2, there are two cases: (i) P ` π1,
which allows to conclude that P ` π and then we can introduce a disjunct
P ` π ∨ P ` ¬π1 from which we can conclude that P ` π∨∨¬π1 as required;
and (ii) in the case that P ` ¬π1 we can immediately introduce a disjunct,
P ` π ∨ P ` ¬π1, from which we can conclude that P ` π∨∨¬π1.

With these largest and smallest element, the quotient set itself forms a boolean
algebra.

Theorem 3.2.2. 〈π ÷ π1,∧∧,∨∨,¬¬, π∧∧π1, π∨∨¬¬π1〉 is a boolean algebra.

We have defined a notion of quotients, and identified two kinds of quotients
that can be acquired in a property language with conjunction, disjunction, and
negation. In the next section we instantiate this abstract theory and consider
concrete instances of these quotients.

36 CHAPTER 3. A FOUNDATION FOR RESIDUAL ANALYSIS

3.3 Instantiations

In this section we present two example instantiations of this framework, respect-
fully with properties as state invariants of the program and with properties
as sets of event traces. We also give examples of quotient operators for each
instantiation.

3.3.1 State-based Analysis

Consider properties specified in a propositional logic, allowing us to specify pro-
gram invariants. We can then ground programs, properties, and the verification
problem over sentences in this logic.

Definition 3.3.1. Given a set of basic atoms Atoms and a language over them L(Atoms)
with conjunction, disjunction, and negation, then:

� The class of programs is given semantics as traces of sentences in L(Atoms):
P = 2(L(Atoms))∗ .

� The class of properties is given semantics as a proposition: Π = L(Atoms).

� The verification operator is then defined as truth of the property at each program
state: P ` π

def
= ∀ t ∈ P · ∀ 0 ≤ i < length(t) · ti ⇒ π.

We can then show that the usual boolean conjunction operators for proposi-
tions corresponds to conjunction in the property’s verification semantics:

Proposition 3.3.1. P ` π ∧ π′ ⇔ P ` π∧∧π′

Proof Recall that [π∧∧π′] = [π] ∩ [π′], and thus P ` π∧∧π′ ⇔ P ` π∧ ` π′.

Note how if P ` π ∧ π′ then given any proposition trace t in P, any member
of this trace ti satisfies: ti ⇒ π ∧ π′. By the usual definition of boolean
conjunction then ti ⇒ π and ti ⇒ π′. Therefore P ` π ∧ P ` π, and then
P ` π∧∧π. The same argument can be made backwards.

We have similar results for disjunction and negation.

Proposition 3.3.2. P ` π ∨ π′ ⇔ P ` π∨∨π′

Proposition 3.3.3. P ` ¬π ⇔ P ` ¬¬π

While refinement easily corresponds to implication.

3.3. INSTANTIATIONS 37

Proposition 3.3.4. π ⇒ π′ ⇔ π vv π′

In this case then, given knowledge that P ` π′, and the proof obligation
that P ` π we can construct the strict quotient π ∧ π′ and attempt to prove that
instead of π directly. The question here is when this is more efficient to check on
P rather than just checking for π. This depends if the expression π ∧ π′ can be
reduced to a structurally smaller expression.

Example 3.3.1. Consider that π = A∨ B, while π′ = ¬A. Then π ∧ π1 = (A∨ B) ∧
¬A, which can be reduced to B. If B holds then π holds, clearly. 2

Example 3.3.2. With π = A ∧ B, and π′ = C, then it is not clear that attempting to
verify A∧ B∧ C would be easier that simply attempting π with another method. 2

To attempt to create a structurally smaller quotient proposition, we can instead
attempt to simplify π directly: when we already know and have verified π1, we
can analyse π in conjunctive normal form and remove any conjunct that is implied
by π′.

Assume π is in conjunctive normal form: π =
∧

A∈AA, for some set of
proposition A ⊆ L(Atoms). Then we can define the set of basic expressions that
are not implied by π′, and use this create a quotient of of π with respect to π′.

Definition 3.3.2. The set of proposition A reduced by a property π is the set of proposi-
tion in A not implied by π: reduced(A, π) = {A ∈ A | π 6⇒ A}.

We can show that using this to reduce our specification leaves an equivalent
verification problem.

Theorem 3.3.1. Given a proposition expression π, in conjunctive normal form, π =∧
A∈A A, and given a property π′, then the conjunction of the reduced expression set A

with respect to π′ is a quotient of π with respect to π′ :
∧

A∈reduced(A,π′) A ∈ π ÷ π′.

Proof If we assume that P ` π′, then we need to prove that P ` ∧
A∈reduced(A,π′) A⇔

P ` ∧
A∈AA, then we prove this bi-implication from both directions: (i)

assuming P ` ∧
A∈reduced(A,π′) A, then we can add any A ∈ A back since if

they are not present in reduced(A, π′) they are implied by π′, and this is
sound since we know P ` π′; and (ii) for the other direction we can simply
remove A ∈ A already implied by π′, since we know P satisfies it.

Although it may be difficult to compute this set precisely in general, we can
over-approximate it efficiently, e.g. by simply checking for syntactic equality.

38 CHAPTER 3. A FOUNDATION FOR RESIDUAL ANALYSIS

Example 3.3.3. Consider that π = A ∧ B, while π′ = A. Then π ∧ π′ = π, which
does not reduce the expression. However using the previous theorem (and assuming we
have shown π′ to be true) we can easily reduce π to B and monitor just for B. 2

In other cases such a useful transformation may not be clear, e.g. π = A∧ B
and π′ = A ⇒ B. Note that we can define a similar reduction when π is
in disjunctive normal form, by removing any disjunct that contradicts π′, as
illustrated by Example 3.3.1. We consider further partial evaluation of such
expressions in Chapter 4, in the context of an industrial case study.

3.3.2 Event-based Analysis

For runtime monitoring, variations on an event trace semantics are standard. In
this section we discuss the verification problem with programs, and properties
grounded over traces of events.

Definition 3.3.3. Given an alphabet of events Σ:

� The class of programs here is the power set of event traces: P = 2Σ∗ .

� The class of properties is given semantics in terms of event traces: Π = 2Σ∗ .

� The verification operator is then defined as the subset operation between the program
and the property: P ` π

def
= P ⊆ π.

Properties here can be, for instance, automata, regular expressions, or tem-
poral logic expressions, i.e. any formalism that can be interpreted in terms of
traces.

We can define a conjunction operator between properties whose trace seman-
tics is the intersection of the properties’ interpretations.

Definition 3.3.4. An operator ‖t : Π×Π 7→ Π is a trace intersection operator if the
produced property accepts only the traces accepted by both properties: π‖tπ

′ = π ∩ π′.

If the properties are automata then trace intersection here corresponds to stan-
dard parallel composition, while for temporal logics we can use their standard
logical conjunction.

This trace intersection operator corresponds to the conjunction operator de-
fined over the property’s verification semantics.

Proposition 3.3.5. P ∈ π∧∧π′ ⇔ P ` π‖tπ
′

Similarly, we can define a union operator that corresponds to the disjunction
operator in the verification semantics.

3.3. INSTANTIATIONS 39

Definition 3.3.5. An operator bct : Π ×Π 7→ Π is a trace union operator if the
produced property accepts a trace only if it is accepted by at least one of the properties:
Jπbctπ′K = JπK∪ Jπ′K.

Proposition 3.3.6. P ∈ π∨∨π′ ⇔ P ` πbctπ′

Negation corresponds to trace language complement.

Definition 3.3.6. An operator ¬¬t : Π 7→ Π is a trace negation operator if the
produced property accepts a trace if it is not accepted by the input property: ¬¬tπ =
Σ∗ \ π.

Proposition 3.3.7. P ∈ ¬¬π ⇔ P ` ¬¬tπ

Moreover, property refinement can be characterized by the subset relation.

Proposition 3.3.8. π vv π′ ⇔ π ⊆ π′

Then we can easily reproduce the previous results here. In fact given knowl-
edge that a program P satisfies π1 then we can compute the strict quotient of π
with respect to π1 with trace composition (or intersection): π‖tπ1. This property
thus either accepts the same amount of traces as π (if π1 includes all of π, or
possibly when π accepts an infinite amount of traces) or less.

Working with explicit sets of traces however is not very useful, especially
since we may want to specify an infinite set of allowed program traces. Automata-
theoretic methods to verification are a common way to express these event trace
based properties ([Colombo et al., 2008; Vardi, 2007]), while other logics (e.g.
LTL, or regular expressions) can also be expressed as automata. Here then we
consider briefly properties as deterministic finite-state automaton (with bad states
that should not be reached instead of accepting states), and illustrate how their
composition can be wielded to produce a quotient.

Definition 3.3.7. A deterministic finite-state automaton property is a tuple
〈Σ, Q, q0, B,→〉 where Σ is a set of events, Q is a set of states, q0 is the initial state,
B ⊆ Q is a set of bad states, and→⊆ Q× Σ×Q is the total deterministic transition
function, that treats bad states as sink states. We write q e−→ q′ for (q, e, q′) ∈→. We use
⇒⊆ Q× Σ∗ ×Q as the transitive closure of→.

We can then give the semantics of a finite-state automaton property π in terms of
the set of all traces that do not pass through a bad state, i.e. the set of good traces:

G(π) = {t ∈ Σ∗ | @t′ ∈ prefixes(t) · q0
t′
=⇒ q ∧ q ∈ Bπ}, and then a program satisfies

π if it is a subset of this set: P ` π
def
= P ⊆ G(π).

Conjunction of two properties here is then standard synchronous composition.

40 CHAPTER 3. A FOUNDATION FOR RESIDUAL ANALYSIS

Definition 3.3.8. The synchronous composition of two deterministic finite-state automa-
ton properties π1 and π2 is the property π1‖π2 generated with the following rule:

q1
e−→ q′1 q2

e−→ q′2
(q1, q2)

e−→ (q′1, q′2)

The bad states of π1‖π2 are those tuples of states that are made up of at least one bad
state: B(π1‖π2)

def
= (Bπ1 ×Qπ2) ∪ (Qπ1 × Bπ2).

We also have the standard result that synchronous composition results in the
language intersection of the two automata.

Proposition 3.3.9. G(π1‖π2) = G(π1) ∩G(π2)

Proof Note how a trace is in G(π1‖π2) if and only if it does not reach a bad state
either in G(π1) or G(π2).

Then we can show that a program is accepted by this composition only if it is
accepted by the verification semantics composition.

Proposition 3.3.10. P ∈ π∧∧π′ ⇔ P ` π‖π′

Proof This follows from Proposition. 3.3.9 and the definition of ` in terms of the
property’s good traces.

‖ then corresponds to the conjunction operator of the program verification
semantics, and thus we can use it to compute the strict quotient of two properties.

Theorem 3.3.2. π‖π′ ∈ π ÷ π′

Proof In Proposition. 3.3.10 we related π‖π′ to the property intersection, and
such property intersections are quotients, by Proposition. 3.2.2.

Example 3.3.4. Consider that we want to prove that the program never performs event
b after event a, i.e. π as in Figure. 3.1(a). If instead we only manage to prove that c
never occurs, i.e. a property π′ as in Figure. 3.1(b), then we can compute the parallel
composition of π and π′, and create a property that is equivalent to monitor for π, i.e.
Figure. 3.1(c). 2

As in the case with state-based residual verification the residual computed
with conjunction may be further simplified. Consider that if we prove P ` π1
then we are assured that a trace of P will never reach a bad state of π1, and thus
we can remove the states in π‖π1 that are bad in π1. We define such a reduced
version of the synchronous composition.

3.3. INSTANTIATIONS 41

Astart B

b

c

a

c

a

b

(a) π

A1start

b

a

c

(b) π′

(A, A1)start (A,×1)

(B, A1) (×, A1)

b

a

c

b

c

aa

(c) π‖π′

Figure 3.1: Two properties and their composition (and the residual composition
without the dashed transitions).

Definition 3.3.9. The reduced synchronous composition of two deterministic finite-
state automaton property π and π1 is the property πe|π1 generated with the following
rule:

q e−→ q′ q1
e−→ q′1 q′1 6∈ Bπ1

(q, q1)
e−→ (q′, q′1)

The bad states of π‖π1 are those tuples of states that containing a bad state of π1:
B(πe|π1)

def
= (Bπ ×Qπ1).

The reduced synchronous composition of π and π1 can be shown to be a
quotient of π with respect to π1. This follows from the fact that the synchronous
composition is also such a quotient, and that the removed states and transitions
cannot be reached or taken by programs that satisfy π1.

Corollary 3.3.1. πe|π1 ∈ π ÷ π1

Proof Consider that if P ` π1 then no trace of P reaches a bad state of π1, then
any transitions in π‖π1 to a bad state of π1 do not represent any step in a

42 CHAPTER 3. A FOUNDATION FOR RESIDUAL ANALYSIS

trace of P, and can be removed soundly. πe|π1 is then equivalent to π‖π1,
with respect to the chosen P, and since the latter is a quotient of π and π1
then so is its reduction.

For example Figure. 3.1(c) illustrates the reduced synchronous composition
as the automaton without the dashed transitions, when we know π1.

In the worst case however synchronous composition may introduce an expo-
nential blowup of states, since it depends on the powerset construction of states.
Then it may create a much larger property, which is not ideal if one intends to use
it for monitoring. However, since the number states in the property automaton is
usually limited this limits the blowup.

3.4 Related Work

The notion of property quotients have been used elsewhere in literature, here we
discuss these uses in relation to their use in this work.

One use of quotients is in compositional reasoning. In such work programs
are assumed to be made up of different parallelly composed components, i.e.
there is a program composition operator ‖P : P × P → P , and the problem
is verifying that a program constructed from multiple components satisfies a
property: C1‖PC2 ` π. This can be attempted by creating the composed program
C1‖PC2, but it can result in a state-explosion. Instead, Andersen [1995] defines a
quotient operator // : Π×P → Π such that the verification problem C1‖PC2 ` π
can be transformed into the reduced verification problem C2 ` π//C1. Our use of
quotients here can be considered to be more general than this, since we are not
limited to what is known about a component, but the property used for reduction
may be an abstraction of the whole program. A similar use is in interface theories,
where a quotient operator is used to identify the interface specification a specific
component must satisfy, which can be exploited for input-output conformance
testing on that component (examples include work by Luthmann et al. [2017] and
Noroozi et al. [2013]). This allows one to focus the activity of model-based testing
onto components, rather than considering the whole system at once, allowing for
more thorough testing.

Quotients have also proven useful in the field of control theory ([Ramadge and
Wonham, 1989] surveys this area), where quotients are used to identify the part
of a specification not ensured by a program, and for which a controller can be
synthesised. For example, Arnold et al. [2003] use this to adapt the behaviour
of a program to make it compliant with a specification, while Martinelli [2003]
use it to secure a program from an external unknown attacker. In these kinds of
approaches the objective is not verification but control of a program, where the

3.5. DISCUSSION 43

residual specification is not satisfied by the original program and a controller is
synthesised to coax the program into satisfying it. Raclet [2008] go beyond this
and show how an implementation of a component can be synthesised from such
a residual, instead of a controller.

The main difference in application between existing work and our work is
that our quotients decompose the property into a part that has already been
proven and a part that remains to be proven of the program, rather than parts
corresponding to certain structural components. Moreover, here we gave general
conditions for appropriate quotient operators, unlike existing work that use
specific quotients (e.g. Raclet [2008] appear to use a quotient corresponding to
a reduced version of what we identify as the largest quotient, while Luthmann
et al. [2017] use the smallest quotient).

3.5 Discussion

In our foundation we have limited ourselves to two analysis steps, however
Theorem. 3.2.1 can be generalised. Assuming n verification techniques (for
example, n kinds of abstraction techniques at different precision levels), we can
use the following rule:

∀ 0 < i ≤ n · P `Vi πi

∀ 0 < i ≤ n · P ` πi ∀ 0 ≤ i < n− 2 · πi+2 ∈ πi ÷ πi+1 πn−1 = π0
QUOTSAT+

P ` π0

We have also not discussed the possible different power of verification tech-
niques. The rules we defined that combine static analysis and runtime verification
will still fail if the quotient property we attempt to runtime verify is not moni-
torable. Thus this framework in practice requires further analysis, namely some
classification of properties into either monitorable and non-monitorable prop-
erties. Different notions of monitorability exist in literature. Pnueli and Zaks
[2006] characterise monitorability of a property in terms of the existence of an
execution for which a verdict can be given on the property at runtime. Others like
Falcone et al. [2012a] and Francalanza et al. [2017a] take a universal approach and
define monitorability of a property in terms of when all executions can be given a
verdict at runtime. Here we focus on this latter notion of full monitorability. Aceto
et al. [2019a] and Aceto et al. [2019b] describe different historical approaches to
monitorability in more detail.

Non-monitorable properties can then be attempted to be proven using static
analysis tools, along with any monitorable properties. If non-monitorable proper-
ties are left but no further static analysis techniques are left then our attempt at

44 CHAPTER 3. A FOUNDATION FOR RESIDUAL ANALYSIS

verification has failed. However, if we can certify that the residual property is
a monitorable property then runtime verification suffices. For example Alpern
and Schneider [1987] show how a Büchi automata can be decomposed into the
conjunction of a safety and a liveness property, where then if the liveness part
can be proven pre-deployment then the safety part (or a residual of it) can be left
for runtime.

A pertinent aspect of specification logics is the type of semantics chosen for
these, specifically whether it is a linear or branching time semantics. In linear
time logics we are interested in the current execution at runtime (making it more
popular for RV). On the other hand, branching time logics may also be interested
in possible futures, making it a more popular logic for pre-deployment verification
techniques. There is work that explores these two approaches, considering
monitorability in each case [Aceto et al., 2017, 2019a; Francalanza et al., 2017b;
Jantsch et al., 2019].

We leave these considerations in the context of our theory for future work, and
take the approach of simply limiting our specification language to a monitorable
one. The languages we choose in the rest of this work will in fact be limited
to (co-)safety properties, i.e. properties that for each trace have a finite witness
(which are monitorable as shown by Francalanza et al. [2017a] and Aceto et al.
[2019b]).

Here we have limited ourselves to residual properties, while in Chapter 2 we
also identified that a partial verification technique can identify the part of the
program that is left to prove. In an instantiation of the formal theory presented
here this could be encoded as part of the property, where a property can be
instantiated as a pair of items, one identifying the part of the program left to
verify and the other identifying the behaviour this part must satisfy, defining
appropriately the operators piecewise over these.

3.6 Conclusions

In this chapter we have presented an abstract theory for verification, and de-
fined a semantics for properties in terms the programs that satisfy them. We
have shown how this forms a boolean algebra. Using a notion of refinement
of properties corresponding to the subset relation of the programs they respect,
and conjunction in terms of program set intersection, we defined a notion of a
quotient of properties. We showed how this quotient can be used to reduce the
property that remains to be verified of the program, i.e. given knowledge that
program P satisfies π1, then we can find a property π2 that is equivalent to π
when knowing that P is in the program space accepted by π1.

3.6. CONCLUSIONS 45

We instantiated this framework both for state-based properties, and for event-
based properties, exploring the residual analysis that can be made in each case.
Although we showed how π∧∧π1 is the smallest quotient in terms of the program
semantics, in the instantiations considered we illustrated how this does not
ensure that π∧∧π1 is the easiest (the least computationally expensive) quotient to
verify, but that some simplifications can aid in reducing it further.

4

An Industrial Case Study

In this section we describe an application of residuals to a real-world industrial
context, based on work published in [Azzopardi et al., 2016c,d, 2017a, 2018a].

Taking a step back, we claim there are two complementary main uses for
partial verification: (i) providing partial guarantees about a specification; and
(ii) reducing work for subsequent verification attempts. This chapter deals with
a case study that focuses on the first kind, where the primary objective is not
to reduce the overheads of post-deployment analysis (which we deal with in
Part II), but instead to be able to give at least some static guarantees that can
provide some feedback about the program under verification. Thus we will
not be evaluating this approach in terms of how much less computation the
second verification step needs to do, but with a qualitative discussion of the
benefits added by augmenting the business process of the case study with partial
verification.

4.1 Summary

We were engaged by Ixaris Ltd. to develop a compliance engine for an open
payments ecosystem (OPE)1, essentially a server that acts as backend for multiple
applications that wish to perform payments (e.g. create virtual credit cards and
use them). In this context the main issue was how to convince financial service
providers to make their license available for applications wishing to perform

1The Open Payments Ecosystem has received funding from the European Union’s Horizon
2020 research and innovation programme under grant number 666363.

47

48 CHAPTER 4. AN INDUSTRIAL CASE STUDY

some financial service. Nominally this sounds like a job for pre-deployment
verification methods, however this proved impractical for a couple of reasons.

To not limit the number of potential clients, a requirement was to remain
technology-agnostic and not put any artificial limitations on the language an
application could be developed in. Developing analysis tools for each possible
language is not a viable option, given the number of possible languages and
the time constraints of the project. Moreover, at runtime an application merely
communicates with the OPE and may be hosted on a third-party server. This
means that we cannot ensure that the application analysed before deployment
is identical to that executing after deployment. With traditional verification
then the only option here is to runtime verify for well-behaviour. This leaves
us without any static pre-deployment assurances, which increases the risk for
financial service providers and decreases their appetite for taking on low-profit
applications. Moreover misbehaviour of the applications, which cannot always
be prevented at runtime, can have serious legal ramifications for the company.

To mitigate this pre-deployment the developer is required to provide a model
of the assured runtime behaviour of the application. This model acts like a real-world
contract, where different stakeholders evaluate whether they want to support
the application by the appropriateness of the contract, or model. If it is found
appropriate then the application’s behaviour will be controlled for at runtime to
ensure it respects the model. The model language used here is resource-based, and
describes several financial resources used by the application (e.g. credit cards). It
can be used to describe both attributes of these resources, relations between them,
and some temporal properties. This language was judged by the OPE project
team to be sufficient to provide service providers with a description of what the
application’s business process is, at an appropriate level of abstraction.

In the context of financial services the business process is however not the
only concern, there are also the intersecting requirements set by various laws
and regulations. Our task was to enable specification and verification of these
regulations in the described model-based context. At the outset, with traditional
verification techniques, it appears here we have two options, either verify a regu-
lation: (i) against a model; or (ii) against the application’s interactive behaviour
with the OPE at runtime. Verifying against a model is sound here since we know
the it will be enforced at runtime, and thus it is a sound representation of the
interactive behaviour with the OPE at runtime.

Ideally then we are able to verify regulations against a model and commu-
nicate to the service provider what regulations the application will respect and
those it will violate. An issue with this picture is that we found the model lan-
guage to operate at a different level of abstraction than that required for verifying
regulations. This meant that some regulations were independent of the model,

4.2. THE OPEN PAYMENTS ECOSYSTEM 49

i.e. for such a regulation then there are two programs that each satisfy the model
but one which satisfies the regulation and the other that violates it. This meant
that while we could give feedback to the service provider, if the application is
accepted for onboarding then we have to runtime verify (and sometimes enforce)
for these unverified regulations. Moreover, we found that we could also return
a residual regulation by pruning from it parts that could be proven against a
model.

Compliance with relevant legal regulations is one of the criteria for appropri-
ateness of a model, for which we employ residual analysis to both identify when
a model is inconsistent with regulations, when it ensures them, and when it has
no bearing on compliance with the regulations. To specify these regulations we
developed the Financial Services Regulations Controlled Natural Language (FSRCNL)
[Azzopardi et al., 2018a]. This language can be used to specify rules in the form of
quantified propositions, including several payment-related types and predicates
over these. The surface form of the language is a subset of the English language,
allowing for more easy interoperability between quality assurance teams and
legal experts since the specifications act as their own documentation. Specifica-
tions in this language are compiled to a check on the model that either returns a
verdict or a residual runtime monitor specified in either the LARVA [Colombo
et al., 2009] or VALOUR [Azzopardi et al., 2017a] specification language.

We explore further the described approach in the rest of this section, em-
ploying some formal notation where useful for explanation. We start by giving
some background on the OPE in Section 4.2, and describing briefly the promised
models in Section 4.2.1. We then describe our partial verification framework in
Section 4.3. We discuss the work in contrast with related work in Section 4.4 and
conclude in Section 4.5.

4.2 The Open Payments Ecosystem

The OPE’s aim was to bring together different players in the payment services
field, with the ultimate aim of making small-scale payment programmes viable
by automating a large part of the business and compliance processes involved.

Payment programmes here effectively are schemes that involve credit or
debit cards (examples include gift card or corporate payment schemes), whether
physical or virtual. These programmes are expected to be provided through an
application (or app), with the payment aspect implemented through the OPE.
The business process starts with the developer proposing an app that is then
matched with an appropriate programme manager (PM) and service provider (SP).
Certain financial services are heavily regulated and thus cannot be carried out
by anyone, but only by appropriately licensed persons and organisations. The

50 CHAPTER 4. AN INDUSTRIAL CASE STUDY

Developer

 Programme
 Model

OPE
proposed rejected

enforce
Approved

Model

transact

Executable
Application

Transaction
Engine

approved

SP

Figure 4.1: OPE business process.

SP, in particular, either accepts or not to provide the app’s required payment
services under its payment services license. If an appropriate and willing SP is
found for an app (possibly after an iterative process of the proposal’s refinement)
then it can be deployed and its services provided through the OPE. This process
includes legal compliance concerns, since an SP will not willingly take on an app
that violates applicable regulations. Figure 4.1 illustrates this business process.
Our role in this project centered on developing a methodology and associated
tools to verify an app’s compliance with these regulations, to inject quality and
reliability into the ecosystem.

As discussed previously, to remain technology-agnostic the developer is asked
to provide a model of the app’s runtime behaviour, as a behavioral contract. Pre-
deployment we wanted to analyse this model to create a report on the regulations
an app respecting the model would violate. This information can both be used by
the developer in the development phase, and by the SP when judging whether to
accept an app. The specification language for these models (created by the OPE
developers) allows for the promised behaviour to be controlled for at runtime,
guaranteeing the validity of pre-deployment verdicts. For regulations we created
a different more expressive controlled natural language, that maintains a logical
structure and semantics while having a surface form close (to an extent) to the
original regulations. Given this difference in expressiveness, however, not all
regulations turned out to be provable pre-deployment in their entirety, requiring
the use of runtime verification techniques post-deployment. We describe briefly
the model language to motivate the use of a more expressive regulation language.

4.2. THE OPEN PAYMENTS ECOSYSTEM 51

Listing 4.1: PAML to describe a card that can belong to consumers or businesses.

1 − name: defaultCard
2 type: managedCard
3 instanceCardinality: *
4 relations :
5 − name: owner
6 target : defaultConsumerIdentity
7 constraint:
8 − type: if
9 constraints :

10 − type: eq
11 arguments:
12 − ${state}
13 − ACTIVE
14 − type: eq
15 arguments:
16 − ${owner.state}
17 − ACTIVE

4.2.1 Payment Application Models

A developer is required to submit a model of their app written in the Payment
Application Modeling Language (PAML), which describes the payment aspects of
the app as envisaged by the developer in a JSON-like format. This language was
developed in-house by Ixaris Ltd, and is not a contribution of this thesis, but we
describe it briefly for a better understanding of the context.

Listing. 4.1 is an example of the model of a card written in PAML. It specifies
the name of the type of cards being specified (defaultCard, line 1), the type they
inherit (managedCards, line 2), the number of instances there can be of the card
(zero or more instances, see line 3), some attributes (the owner attribute is limited
to be a consumer, see lines 4-6), and with some constraints on its attributes or
those inherited from its supertype (lines 7-17 specify that if the card is active,
i.e. not blocked, then the owner is also active). In the lifecycle of the OPE, such
models go through an iterative process between the developer and SP, possibly
being refined according to SP requirements and may finally be taken on by the
SP or rejected.

Here we do not define this language but it should be clear that a PAML model
defines constraints on basic OPE constructs.

Our analysis rests on the assumption that at runtime the app respects this
model, as performed by the OPE. This controlling was implemented by the
OPE developers, and we assume it is implemented correctly here. For example
considering Listing. 4.1, any attempt by the application to create a defaultCard

for a business owner (instead of a consumer as required by lines 5-6) will fail at
runtime, while the constraint can be enforced by simply changing the card’s state

52 CHAPTER 4. AN INDUSTRIAL CASE STUDY

to an active one once its owner’s state is not active.
This language is aimed at the specific exercise of constraining sets of basic OPE

types to reflect the promised behaviour of the app at runtime. It is appropriate
for this use, and constraints can be used to define a wide range of properties to
identify allowed subsets of type. However PAML is limited and cannot be used to
define interesting temporal properties, and it turns out to not be enough to encode
the regulations we want verify. Moreover PAML is aimed towards developers; it
is not immediately communicable to other non-technical stakeholders who are
interested in the promised runtime behaviour.

Regulations however require temporal notions. To this end we defined a
separate language aimed at regulation specification and verification. Moreover
this language can be more easily used to communicate the behaviour that is
being verified to non-technical stakeholders, since it uses a a subset of the English
language as its surface form. We describe this briefly in the next section, while
describing formally the partial evaluation of this language against a model.

4.3 A Partial Verification Framework

In this section we describe both the design and implementation of a partial
verification framework intended for industrial use. A prototype was developed
and integrated with the OPE. We focus first on the specification process and
language we used. After which we describe the initial approach to pre- and
post-deployment verification. We then finish with an overview of how these
verification stages where combined using partial verification.

4.3.1 Specification Process and Language

This project brought together financial law experts and developers to identify the
applicable regulations that apps must be compliant with. Through an iterative
process with these two stakeholders we identified several of these regulations,
specifying them both in informal English and formally, as illustrated in Fig-
ure. 4.2(a). Logical languages are however not a paradigm of specifications that
lawyers and developers are familiar with, each being respectively used to regula-
tions and specifications in natural language. However formality and preciseness
is essential here, to remove any ambiguity of natural language. To bridge these
two competing interests (precise specifications and understandable specifica-
tions) we constructed a controlled natural language (CNL) (see [Kuhn, 2014] for
a survey of CNLs) — the CNL’s surface form is a subset of English, as are the
regulations we consider, while sentences in it are deterministically translatable
into an executable specification. We call this CNL the Financial Services Regulations

4.3. A PARTIAL VERIFICATION FRAMEWORK 53

(a) Iterative process with legal experts with-
out FSRCNL.

(b) Iterative process with legal experts with
FSRCNL.

Figure 4.2: Regulation specification process both without FSRCNL and with
automated executable specifications creation using FSRCNL.

CNL (FSRCNL), and Figure. 4.2(b) shows the simplified iterative process using
FSRCNL as the base specification [Azzopardi et al., 2018a].

4.3.1.1 Financial Services Controlled Natural Language

We considered several regulations as candidates for automated compliance check-
ing. These ranged from regulations about e-money and payments services, to
acts about money laundering and other criminal activities. Not all the clauses
in these regulations were relevant to the limited scope of the OPE, while other
relevant regulations were not necessarily fully verifiable in an automated man-
ner. For example, we cannot verify fully that the terms and conditions coming
with a programme are properly delivered to a customer, or that they conform to
every legal requirement. However we can verify whether redeeming (or cashing
e-money) occurs within the legally mandated time period. Thus the regulations
we wanted to identify in the iterative processes shown in Figure 4.2 were the
ones that we could map to OPE-specific constructs. Table 4.2 lists the regulations
we considered and the number of verifiable regulations we identified from each.
We identified thirty-one such clauses in all.

These regulations include definitions of payment services specific terminology,
that we replicate in our controlled natural language, ensuring a correspondence
between their definition in the regulations and their semantics with respect to
the OPE. For example, the following regulation defines what e-money is.

EMR2(1) “electronic money” means electronically (including magnetically) stored monetary value as
represented by a claim on the electronic money issuer which (a) is issued on receipt of funds for the

54 CHAPTER 4. AN INDUSTRIAL CASE STUDY

Table 4.2: List of UK regulations considered.

Regulation Acronym Verifiable Clauses
The Electronic Money Regulations 2011 (SI 2011/99) EMR 11
The Payment Services Regulations 2009 (SI 2009/209) PSR 14
The Money Laundering Regulations 2009 (SI 2009/209) MLR 4
European Commission’s Proposal for a Directive Amending MLD4 MLD5 2

purpose of making payment transactions; [. . .]

We use this definition to identify which OPE cards or instruments deal e-
money and those that do not, a distinction that did not exist at the level of the
OPE’s code and structure.

Other clauses set constraints on certain cards on instruments, for example
the following regulation does not allow any benefit to be given on e-money
depending on the length of time the e-money is held.

EMR45 An electronic money issuer must not award (a) interest in respect of the holding of electronic
money; or (b) any other benefit related to the length of time during which an electronic money
holder holds electronic money.

This kind of regulation can be checked for easily by checking whether the
model allows an e-money instrument to have interest or not. To specify these
kinds of regulations then we needed our CNL to be able to refer to common
payment constructs, such as interest, money, cards, and transactions.

More specific regulations layout exact bounds based on some monetary limit,
for some amount calculated over a certain time period, that cannot be expressed
using PAML. For example, the following regulation specifies a limit for reloadable
instruments:

ML13(7)(d)(ii) [. . .] if the device can be recharged, a limit of 2,500 euro is imposed on the total amount
transacted in a calendar year, except when an amount of 1,000 euro or more is redeemed in the same
calendar year by the bearer [. . .]

Our CNL thus was designed to incorporate structures and keywords that
were expressive enough to specify these kinds of regulations. We detail this
language in the next section.

An example of an FSRCNL sentence is the following:

For each programme p and instrument i, where p is regulated in the
UK, i is an instrument of p, and i deals with e-money, then i is prepaid.

Most of the rules defined using FSRCNL are rules specific to a single pro-
gramme (i.e. all the other variables are limited to constructs of one single pro-
gramme), instrument, or transaction, while we have one example of a rule over

4.3. A PARTIAL VERIFICATION FRAMEWORK 55

1. For each programme p, and instrument i, where p is regulated in the UK, and i deals with
e-money, then i does not give time-based rewards.

2. For each instrument i, where i deals with e-money, i has expired less than 12 months ago, then
e-money in i is redeemed without fees.

3. For each programme p, and transaction t, where t is carried out in EUR, t is a cross border
payment, the transfer of t is carried out in EUR, and the destination account owner of t is
a consumer, micro-enterprise, or charity, then the cash of t is available by one business day
after receipt.

Figure 4.3: Some example regulations specified in FSRCNL.

all the programmes supported by one service provider. Figure 4.3 illustrate some
examples of regulations written in FSRCNL.

We gave this language a semantics in terms of runtime monitors. Initially
we compiled FSRCNL sentences into DATEs (the LARVA specification language
[Colombo et al., 2009]), a powerful language and tool that inlines monitors with
code. However, the OPE required the verification process to be implemented in
a microservice, precluding inlining of monitors. The VALOUR RV tool (with
a guarded command language [Azzopardi et al., 2017a]) was developed for
this purpose. Instead of inlining code VALOUR simply processes a stream
of events. For example, Listing. 4.2 is the automatically generated VALOUR
monitor specification of the second regulation in Figure 4.3.

4.3.2 Partial Verification

The target of verification here is the application’s interaction with the OPE’s API,
which as discussed can be observed at runtime. However, we also have available
a promised model of behaviour at runtime, which is actually controlled for by
the OPE. Then we can exploit the model by using it as a sound representation
of the behaviour that will be observed at runtime and try to verify regulations
against it.

For example, if we determine that there are no cards/instruments defined in
a model M that deal with e-money then all the rules but rule 3 in Figure 4.3 can
immediately be determined to hold true for apps controlled for M (consider that
the presence of e-money is required for each of them).

However, since FSRCNL can specify temporal properties of the system and
PAML cannot then not all properties are verifiable in this manner. Consider for
example that rule 2 is dependent on the length of time from when the instrument
expired, while rule 3 sets constraints on the period of time within which the cash

56 CHAPTER 4. AN INDUSTRIAL CASE STUDY

Listing 4.2: Automatically generated VALOUR version of the FSRCNL sentence
For each instrument i, where i deals with e-money, i has expired less than 12 months ago,
then e-money in i is redeemed without fees.

1 declarations {

2 category INSTRUMENT indexed by Integer

3
4 event error(String info) = {

5 monitor trigger error(String info)

6 }

7 }

8
9 replicate {

10
11 }

12 foreach Instrument i {

13
14 declarations {

15 event withdrawalStart(Instrument i) = {

16 system controlflow trigger Instrument i.withdrawalStart()

17 belonging to INSTRUMENT indexed by Integer

18 }

19 }

20
21 withdrawalStart(i)

22 | {{i.isEmoney

23 && !i.noFees

24 && LocalDate.now().minus(Period.ofMonths(12))

25 .compareTo(i.expiryDate) > 0}}

26 -> {error("Reedemal from instrument i is with fees.")}

27 }

of a transaction has to be made available. A traditional approach to verification
would then take a model M and a rule r and try to determine whether the model
satisfies the property, possibly returning the unknown verdict when an FSRCNL
sentence is in the subset not specifiable by a PAML model. However partial
reasoning can aid us here to reduce a rule further.

Consider rule 1 and a model M. Model M represents one programme or
application, and specifies some constraints on the programme and on all the
instruments that will be part of the application at runtime. In rule 1 we are also
talking about all instruments of the programme. Thus if we can match a constraint
of instruments in the model with some of the basic sentences parametrised by
an instrument in rule 1 we can at least resolve their value. For example, if we
resolve the value of i does not give time-based rewards to true for some model M
then we have proven the property follows from the model (consider that if we

4.3. A PARTIAL VERIFICATION FRAMEWORK 57

Model

FSRCNL
Sentence

Analysis Model
Facts

Partial
Evaluation

⊤

⊥

Reduced
FSRCNL Sentence

Figure 4.4: High-level view of partial verification process through partial evalua-
tion.

have a∧ b⇒ c but know c to be true then we can conclude that a∧ b⇒ c holds
true).

This may not necessarily be possible for each basic sentence, since not all basic
sentences directly correlate to a constraint expressible in PAML. And even if a
basic sentence fs is expressible as a PAML constraint, we are not assured that
the model will enforce fs or enforce ¬fs, but it may simply allow apps with both.
Consider the previous example, and that we manage to resolve only p is regulated
in the UK against a model, then the property is still undetermined, but we can
create a residual property instead of simply returning an unknown verdict, i.e.
we can return For each programme p, and instrument i, where i deals with e-money,
then i does not give time-based rewards. We sketch briefly how such a partial verifier
can be constructed next.

4.3.2.1 A Partial Verifier for FSRCNL

Consider that we can infer certain facts from a model that hold universally over
all apps that satisfy the model. We can then partially evaluate an FSRCNL sentence
against the facts computed from model, which we use both as our verification
strategy and to produce a residual FSRCNL sentences, as illustrated in Figure 4.4.

For illustrative purposes and simplicity instead of talking about FSRCNL we
can simply talk about a propositional language. Note how variable declarations
in FSRCNL are not needed since basic sentences are typed and thus we can easily
infer the types of identifiers. We can also infer quantification, since we only have
the universal quantifier.

Then consider a simple language over some set of propositions: P, with
conjunction, disjunction, negation, and implication: L(P). Using AppExec for
the set of possible application runtime executions of the app in question, we
can characterise monitoring as a predicate that evaluates a sentence against an
execution.

58 CHAPTER 4. AN INDUSTRIAL CASE STUDY

Definition 4.3.1. A monitor evaluates sentences against an app execution at runtime:
rv : L(P)×AppExec 7→ Bool.

We can similarly characterise a model as a predicate over application exe-
cutions accepting only those executions that satisfy it. We also assume that the
model can be analysed, returning a set of basic propositions that are true or false
of the applications respecting the model.

Definition 4.3.2. A payment model is a predicate over an application. The set of
payment models is represented by M ⊂ AppExec 7→ Bool, and a payment model by
M ∈M.

An analysis of a model M is a set of proposition, analysis(M) ∈ 2P, that hold on any
app that respects the model: M(exec)⇒ ∀ p ∈ analysis(M) · rv(p)(exec).

We can then define a reduction operator on a sentence from L(P) that partially
reduces/evaluates it according to a model. An example of how this operator
works is illustrated by considering the sentence a∧ b and the set of propositions
{a}, where we can reduce a ∧ b by considering that a is true and thus the truth
of a ∧ b only depends on the value of b. This kind of reasoning can be used to
partially evaluate a sentence pre-deployment leaving either a verdict or a residual
sentence to be verified at runtime.

Definition 4.3.3. The partial evaluation of a sentence from L(P) with respect to a set
of propositions P ⊆ P is the function pv : L(P)× 2L(P) 7→ {>,⊥} ∪ L(P) defined as
follows:

1. s ⇒ s′ is immediately satisfied by P iff either s is violated by P, or s′ is satisfied by
P. It is immediately violated if s is satisfied by P but s′ is violated. Otherwise,
if s is satisfied by P the partial evaluation of s′ is returned, and if not the partial
evaluation continues on both s and s′.

pv(s⇒ s′, P) def
=

> pv(s, P) = ⊥
> pv(s′, P) = >

⊥ pv(s, P) = >
∧ pv(s′, P) = ⊥

pv(s′, P) pv(s, P) = >
pv(s, P)⇒ pv(s′, P) otherwise

2. s ∧ s′ is violated by P iff either s or s′ is violated, and satisfied if both are satisfied.
Otherwise, if only one of s or s′ satisfies, partial evaluation continues in the other
sentence, and if neither is satisfied the partial evaluation continues on both s and
s′.

4.3. A PARTIAL VERIFICATION FRAMEWORK 59

pv(s∧ s′, P) def
=

⊥ pv(s, P) = ⊥
⊥ pv(s′, P) = ⊥

> pv(s, P) = >
∧ pv(s′, P) = >

pv(s′, P) pv(s, P) = >
pv(s, P) pv(s′, P) = >
pv(s, P) ∧ pv(s′, P) otherwise

3. s ∨ s′ is satisfied by P iff either s or s′ is satisfied, and violated if both are violated.
Otherwise, if only one of s or s′ is violated, partial evaluation continues in the other
sentence, and if neither is satisfied the partial evaluation continues on both s and
s′.

pv(s∨ s′, P) def
=

> pv(s, P) = >
> pv(s′, P) = >

⊥ pv(s, P) = ⊥
∧ pv(s′, P) = ⊥

pv(s′, P) pv(s, P) = ⊥
pv(s, P) pv(s′, P) = ⊥
pv(s, P) or pv(s′, P) otherwise

4. If a sentence is just a proposition p, then if it is contained in P the satisfaction verdict
is returned. If the negation of p is contained in P then the violation verdict is
returned. Otherwise p is returned.

pv(p, P) def
=

> p ∈ P
⊥ ¬p ∈ P
p otherwise

Then we can use such a partial evaluator on an FSRCNL sentence and the
analysis of a model, producing a verdict or a smaller property.

For example, assume a model M that contains only cards respecting the PAML
script in Listing. 4.1 and a rule For each instrument i, where the owner of i is a
consumer and CDD is not performed on the user of i, then the amount redeemed from
i within a calendar year is less than EUR 10002. Analysing the model, against the
qualified sentences of the rule, we can conclude that the owner of i is a consumer
is ensured by the model, i.e. the owner of i is a consumer ∈ analysis(M). Then
the partial evaluator will discharge the owner of i is a consumer statically, leaving

2CDD here means customer due diligence, which is a check on the background of the owner of
an instrument

60 CHAPTER 4. AN INDUSTRIAL CASE STUDY

For each instrument i, where CDD is not performed on the user of i, then the amount
redeemed from i within a calendar year is less than EUR 1000 for runtime.

We can then show that this partial verifier gives results that are connected
to the model at runtime. Recall how the model language used here is not able
to represent temporal properties, while the specification language can. Some
propositions in P may then be temporal propositions which we may not be able
to prove from the propositions extracted from the model.

Theorem 4.3.1.

1. If the partial verifier signals compliance then this compliance carries over at runtime
for apps that satisfy the model: pv(fs, M) = > ⇒ (M(exec)⇒ rv(reg, exec)).

2. If the partial verifier signals violation then this violation carries over at runtime
for apps that satisfy the model: pv(reg, M) = ⊥ ⇒ (M(exec)⇒ ¬rv(reg, exec)).

3. If the partial verifier reduces a sentence then monitoring for the reduced sentence is
equivalent to monitoring for the original sentence for apps that satisfy the model:
pv(reg, M) = reg′ ⇒ (M(exec)⇒ (rv(reg, exec)⇔ rv(reg′, exec))).

Proof The result follows easily by case analysis on the definition of pv.

Note how the third point in the theorem corresponds to the notion of a residual
as we define in Chapter 3.

4.4 Discussion and Related Work

In this case study the approach is slightly different from the motivation given in
the previous chapter. Instead of proving a property of a program and using this to
reduce a required specification we are assuming that a certain model (M) will be
verified or controlled for post-deployment, and we exploit this pre-deployment
to decompose other rules (e.g. ρ) with respect to this model so that we do not
replicate work at runtime (i.e. we do not monitor parts of ρ that are already
ensured by M). In the notation used in the previous section, this approach can be
represented as follows (where ÷ corresponds to our partial evaluation):

ρ′ ∈ M ÷ π

P `RV M
P ` M

P `RV π′

P ` π′

P ` π

4.4. DISCUSSION AND RELATED WORK 61

In literature we find similar approaches to deal with un-analysable code.
Model carrying code is presented by Sekar et al. [2003] in the context of untrusted
binary code (as opposed to source code) that is not easily analysable. Instead it is
paired by its developer with a model of behaviour pre-deployment, checked at
the same stage for consistency with certain security policies, and the program
proved to respect the model at runtime. Dragoni et al. [2007] propose a similar
approach, security-by-contract. In the context of mobile applications they propose
that an application is distributed with a certain security policy contract, that can
be enforced at runtime. Aktug and Naliuka [2008] present an automata-based
language to specify such contracts and policies for programs, inlining checks into
the application when its source code is available and assuming appropriate hooks
otherwise. The difference in our case is that the code is simply not available in a
trusted version, while we partially evaluate the required properties with respect
to the assured model, instead of simply attempting to wholly prove or disprove
it. In our context we are also more limited, since we cannot directly instrument
a program, but can only monitor its interaction with a certain interface. This
limits what we can hope to prove, e.g. we cannot detect that two applications
are communicating with each other through some other means, which may be
relevant to detect suspicious behaviour. Our properties then are only contracts
about how the interface should be used and what it should allow, rather than
security policies.

Our approach to partial evaluation here can be applied to any propositional
language with conjunction, disjunction, negation, and/or disjunction. For such
logics we find a more limited notion of partial entailment in literature, characterised
by Zhou and Zhang [2011] as a relation that identifies when a proposition entails
part of another proposition (e.g. x ∧ y partially entails x ∧ z, since x is present
in both). With respect to this work, we can say that partially evaluation has a
reduction effect if the FSRCNL sentence is partially entailed by a fact of the model,
or by the negation of such a fact. The procedure pv is in fact a generalisation
of the semantics of the Kleene three-valued valued logic (the classical Boolean
logic with an unknown truth-value) [Kleene, 1952], where instead of returning
an unknown verdict we return a statement that remains to be proven. In the
temporal world we also similarly find LTL3, a three-valued logic used for runtime
verification, where if a finite trace cannot be given a verdict then an inconclusive
result is given. This method corresponds to partial evaluation of source code
[Jones et al., 1993], where a program is specialised to certain variable assignments,
which can be used to optimise a program for certain environments. In effect
this is the same motivation here, except we are optimising a specification that
corresponds to a first-order propositional language instead of program source
code.

62 CHAPTER 4. AN INDUSTRIAL CASE STUDY

Here we have presented a simplified view of the approach we implement.
Consider that a regulation can quantify over all transactions. In the simple
context presented we are simply declaring an application as violating when it
has one violating transaction, where for verification purposes we can then stop
monitoring since we have shown the application to be violating. However, in a
real-world context a certain level of violations is tolerated, and thus monitoring
continues, detecting any further violations. In fact, upon receiving a request
for a transaction, the OPE blocks it for a set amount of time, and if it receives a
violating verdict from a monitor it cancels the transaction. However, if the set of
time elapses the transaction is allowed to end successfully. Here then optimising
monitoring is a benefit to the system, in that it can lead to more timely evaluations
of transactions. The notion of partial evaluation of regulations presented here is
one approach we took to attempt to reduce the size of such monitors.

This work was developed with the view of being part of the OPE’s business
process. By the time of writing the whole process has not been deployed for
real-world clients, and although we have a working property, we have thus
not had the opportunity to quantitatively evaluate the approach in a real-world
application. However this case study shows how partial verification has valuable
applications in giving partial static guarantees about the behaviour of programs.

4.5 Conclusions

We have illustrated an industrial application of partial verification methods
using residuals. This approach allows us to attempt to provide some static
guarantees without the presence of source code, given a promised model of
runtime behaviour. These pre-deployment conclusions in fact will be used as part
of the iterative process between a service provider and an application developer,
where the service provider is kept abreast of the regulations satisfied, violated or
not ensured by the current iteration of the model. Moreover, the use of residuals
allows us to reduce checks that have to be done at runtime, which is important
given the real-time nature of the environment.

5

Conclusions

We have motivated the need to combine different verification methods, given
limited resources and the suitability of different techniques to handle different
kinds of properties. We reviewed literature presenting approaches that allow
partial reasoning by producing artifacts to signal the progress made towards a
given verification problem. We classified these approaches as either property
transforming or state space transforming, and identified that there is no formal
general characterisation in this literature of the notion of a residual property.

To fill this gap we described an abstract formal framework of properties and
programs, and characterised the notion of residuals in terms of property quotients.
By plugging in different formalisms in this framework (which turns out to be
quite simple for state- and event-based formalisms, as illustrated in Section 3.3)
we have immediately two ways to construct residuals: the smallest quotient
π∧∧π1 and the largest quotient π∨∨¬¬π1. While to show that any other strategy
to construct a quotient is correct we can simply show the residual property
is between (w.r.t. property refinement) these two residuals. In literature we
see examples of use of quotients in the context of interface theory, to identify
the specification required out of unknown components [Luthmann et al., 2017;
Raclet, 2008], while they can also be used to synthesize implementations or
controllers for such components [Costa et al., 2018]. To fill this gap we described
an abstract formal framework of properties and programs, and characterised
the notion of residuals in terms of property quotients. By plugging in different
formalisms in this framework (which turns out to be quite simple for state- and
event-based formalisms, as illustrated in Section 3.3) we have immediately two
ways to construct residuals: the smallest quotient π∧∧π1 and the largest quotient
π∨∨¬¬π1. While to show that any other strategy to construct a quotient is correct

63

64 CHAPTER 5. CONCLUSIONS

we can simply show the residual property is between (w.r.t. property refinement)
these two residuals. In literature we see examples of use of quotients in the
context of interface theory, to identify the specification required out of unknown
components [Luthmann et al., 2017; Raclet, 2008], while they can also be used
to synthesize implementations or controllers for such components [Costa et al.,
2018].

Our framework does not commit itself to a certain formalism, but instead
simply assumes a certain structure out of the property space, namely a boolean
algebra. This allows our arguments to hold over different formalisms with the
required properties. In our use of the identified quotients we have focused on the
smallest quotient π∧∧π1, which for event-based properties simply allowed us to
use standard synchronous composition to compute the language intersection. In
future work we can consider techniques to compute the largest quotient π∨∨¬¬π1
and evaluate how it compares in syntactic size and utility with the smallest
quotient.

Part II

Residual Analysis for Automata
with Variable State

65

6

Introduction

6.1 Context

In literature (see Chapter 2) we found many different approaches that produce
residual verification problems. However these were mostly focused on the state-
based paradigm of verification. Instead we are mainly interested in event-based
verification, for which the approaches we identified were few and each with their
limitations.

To motivate our work we briefly describe existing event-based partial verifi-
cation methods using the example property and program in Figure 6.1, both as
automata. The dashed and dotted transitions represent transformations made by
the methods, as will be described further on. The property here specifies that no
program trace can contain events e, e′, and e′′ in that sequence, possibly separated
by other events. Note how in this toy example we can easily determine that the
program branch leading to state F is violating, and thus RV is not needed in this
case, but this may not be easy to determine for larger programs.

6.1.1 Existing Literature

One of approach is that of Bodden et al. [2010], who present the CLARA tool that
is able to remove or silence event instrumentation that does not affect the verdict
at runtime given at runtime. For example, consider the property specified by
the non-dashed transitions in Figure. 6.1(a), and the program in Figure. 6.1(b).
Consider that the transition from state A to state B in the program never causes
a change in state in the property, but only ever matches the looping transition

67

68 CHAPTER 6. INTRODUCTION

0start

1

2

e’, e”

e

esumm e, e”

e’

e, e’

e”

(a) Monitor automaton specifying as bad
any traces interleaved with the trace
e; e′; e′′; (recall that a crossed state rep-
resents a bad state). The dashed transition
is added after Dwyer and Purandare [2007]
analysis.

Astart

B

C

D

EF

e’ε

e esumm

e’

e”

ε

e’

(b) Automaton representing program be-
haviour. CLARA analysis replaces transi-
tions between A and B, and between D and
E with the dotted transition, while Dwyer
and Purandare [2007]’s analysis replaces the
sub-automaton between A and D with the
dashed transition.

Figure 6.1: Example property and program automata, with dotted and dashed
transitions representing the effects of existing residual analysis approaches.

at state 0 in the property. Then this program transition can be ignored by the
monitor at runtime, since it has no effect on the property. This is represented in
the figure by the dotted transition labeled by with the silent event ε, representing
no event instrumentation. A similar result holds for the transition between states
D and E. This analysis can be lifted to sequences of such transitions, that always
loop to the same state in the property automaton.

A more general approach is that of Dwyer and Purandare [2007] in the same
context of analysis of Java programs, where they propose to summarise sequential
parts of the program that are determined statically to always behave in the
same way. This is a more general approach that takes into account not just
sequences of program instrumentation that have no effect together, but that
enables the determination that the effect of such sequences can be pre-computed
pre-deployment. For example, consider the non-dashed transitions between
states A, B, C, and D in the program Figure. 6.1(b). Note how we can determine
that this sub-automaton always has the same entry property state (i.e. 0), and
the same exit property state (i.e. 2). Then we can encode this statically compiled
information by replacing these program transitions with the dashed transition

6.1. CONTEXT 69

tagged by a new event esumm, and add a similar transition in the property between
the determined entry and exit property states. At runtime then the program
triggers the monitor only once before state D.

Both these approaches are applied to typestate properties, i.e. properties about
objects that can be represented by parametrising the monitors by variables and
instantiating them at runtime. Monitors are then replicated at runtime for each
such instantiation. For static analysis a sound static abstraction of the possible
instantiations is used, to allow for a determination of when events can occur on
the same object (and thus can occur in the same monitor). Another feature of
these approaches is that the kind of events they consider are events corresponding
to method calls, while events in general can also encode some notion of state.

Consider that for a method multiple(int x, int y) we can specify an event
that matches each call of this method, denoted by multiple(x, y). We can also define
an event that matches calls to this method only when one of the arguments is
even, which we can represent with by adding a guard as follows: multiple(x, y) |
x % 2 == 0 ‖ y % 2 == 0. The approaches proposed by Bodden et al. [2010] and
Dwyer and Purandare [2007] are validated with events without such guards,
while in fact adding event guards can decrease their applicability. This is since
in these approaches statically there is no abstraction of the program variable
state that allows us to determine the possible values of a guard at a certain point
in the program. Then, when a program event can activate a monitor transition
associated with a guard we have to branch in two directions in the monitor,
representing the cases that the guard holds (i.e. transitioning to the next state of
the monitor) and that it does not (i.e. staying in the state of the monitor). The
effect these guarded events will have on the monitor at runtime can be more
varied than vanilla events. This reduces the probability of finding corresponding
instrumentation that can be statically determined to always have the same effect
(since the effect of events with guards depends on the program variable state).
Then to analyse properties with such event guards we need further tools that
abstract the program variable state, which Bodden et al. [2010] and Dwyer and
Purandare [2007] do not attempt.

We identified one approach that can resolve such guards, to an extent. Chi-
mento et al. [2015] employ the KeY theorem prover [Ahrendt et al., 2016] in their
STARVOORS tool to prove automata that correspond to functional contracts of
method calls, i.e. pre- and post-conditions of a certain method. These automata

have the following simple form: 0
entry(method)|pre−−−−−−−−−→ 1

exit(method)|!post−−−−−−−−−→ ×, where the
events respectively match the entry into and exit from a method. The analysis
performed is not context-sensitive, i.e. it only looks at the implementation of the
method referenced, ignoring the points in the program that may call it. This
may be enough to prove these automata, while in other cases it may not be. In

70 CHAPTER 6. INTRODUCTION

the latter case the pre-conditions can be made stricter (to identify the cases left
to prove) while the post-conditions can be made weaker (to identify parts of it
that were not proven to always hold). However, this approach is limited, since
the automata considered are very simple. A property can be more sophisticated
and can specify behaviour of different methods in relation to each other, e.g. we
may want to specify post-conditions on a method when it is called by another
method. STARVOORS is then data-oriented, but lacks pre-deployment analysis
of properties with more sophisticated control-flow, leaving them for runtime.
Differently from Bodden et al. [2010] and Dwyer and Purandare [2007], here
STARVOORS reduces the property directly instead acting on the instrumentation
associated with monitoring the property.

6.1.2 Unexplored Research Areas

From this work we can identify two areas for further research:

(i) the residual analysis of other kinds of monitor specification languages; and

(ii) the residual analysis of automata with guarded events combining both
control-flow and data-oriented static analysis.

Other approaches to specifying monitors include regular expressions, and
temporal logic-based approaches. These have intimate connections with au-
tomata, in fact it is a standard result that regular expressions can be translated
into finite-state automata, while Giannakopoulou and Havelund [2001] show
how the standard translation from linear temporal logic (LTL) to Büchi automata
can modified to translate LTL into finite-state automata that are appropriate for
RV. Then, residual analysis for automata can be applied to these approaches by
using such a translation. Another approach to RV is the rule-based one [Barringer
et al., 2007], where a set of facts is maintained about the program and the monitor
is described with a set of rules that possibly activate upon a program event and
act on the set of facts, which is a more general approach than automata with
transitions tagged with guarded events.

6.2 Contributions

Here we will be focusing on (ii), where for properties we consider a slight exten-
sion of finite-state automata with guarded events and with a monitoring variable
state, allowing for transitions tagged by rules similar to those used in rule-based
monitoring. To represent the control-flow of a program we also use automata,
as used in the example here. However to be able to reason about a program’s

6.3. OUTLINE 71

variable state we also extend this representation to make explicit the program
variable state. Moreover we allow transitions to be guarded by conditions on this
variable state (allowing for conditional branching) and to possibly transform it,
while also allowing for calls between such automata (representing method calls).

Our approach combines different aspects of existing approaches:

� event- and state-based verification paradigms;

� static and runtime verification;

� control- and data-based analysis of programs and properties; and

� property and program residuals.

6.3 Outline

We define some formal preliminaries in Chapter 7, by defining the DEA and CFA
formalisms. In Chapter 8 we present our main contribution, the residual analysis,
while in Chapter 9 we evaluate this approach with several programs in both Java
and the Solidity smart contract language. We discuss this approach and conclude
in Chapter 10. This part is based on work published in [Azzopardi et al., 2016b,
2017b,c, 2019, 2020a,b].

7

Properties and Programs

This chapter provides the formal background necessary for the analysis we
present. The view of programs and monitors taken here is that of, respectively,
event producers and event consumers, where a program produces some events that
the monitor consumes while possibly updating its internal state. A monitor is
passive and only acts upon being triggered by the program. In some work a
monitor can also act on the program state to prevent a violation [Azzopardi et al.,
2018b; Easwaran et al., 2006], but here we assume a monitor can only act on its
internal state for simplicity.

We will introduce Dynamic Event Automata (or DEAs) as automata with some
internal variable state, and transitions tagged with events, guards on the internal
and program variable state, and actions on the internal state. These have an
appropriate operational semantics that is used to define what it means for a
program trace to be compliant with a DEA monitor. DEAs correspond to safety
properties of a program, i.e. properties identifying a set of finite traces that should
not be the prefix of any program execution.

We present a generic representation of sequential programs in the form of a
variant of control-flow graphs, which we call control-flow automata (CFAs). These
automata model conditional branching, program statement execution, and event
instrumentation by operations on transitions (in a similar fashion to DEAs), while
they also allow for calls to other CFAs (modeling function calls) and silent events.
These automata allow us to present our program analysis approach in a rigorous
technology-agnostic manner (with the techniques we present applying for any
program that can be represented as a CFA).

Both DEAs and CFAs here are given an operational semantics. The techniques
presented will be agnostic of the specific background theory chosen for the

73

74 CHAPTER 7. PROPERTIES AND PROGRAMS

variable states, in fact we leave these underspecified. We characterise compliance
of a CFA with a DEA in terms of the event traces produced by a CFA not being
included in the bad traces accepted by a DEA. Our main contribution here will
be a residual analysis for properties as DEAs and programs as CFAs. This is
based on the synchronous composition of these two automata, and the fact
that this composition abstracts the monitored system at runtime. By analysing
this composition we can identify the parts of the DEA that can be used by the
CFA to reach a verdict at runtime, enabling us to reduce the DEA appropriately.
Moreover we show how we can dually remove event instrumentation in the CFA.
However, since the composition may be expensive to compute for a flattened
CFA of large programs instead we consider abstractions of these programs based
on their method CFAs, an approach inspired by Bodden et al. [2010]’s approach
and extended here to allow us to reduce the DEA. Moreover, to tackle the data-
oriented aspect of DEAs and CFAs we analyse the composition for transitions
that cannot be taken at runtime through the use of a satisfiability modulo theory
(SMT) solver (to identify DEA guards that cannot hold at a certain program state),
enabling us to further reduce a DEA and also to remove guards from some DEA
transitions.

We introduce DEAs in Section 7.1, and CFAs in Section 7.2. Furthermore, in
Section 7.3 we discuss correctness condition residual property and instrumenta-
tion in this context.

7.1 Dynamic Event Automata

Dynamic Event Automata (DEAs) are extensions of finite-state automata with some
variable state, and with transitions tagged by triples of: (i) program events, (ii)
guards over both the monitor’s and the program’s variable state, and (iii) actions
that can change monitor’s variable state.

DEAs can also include a notion of typestate, which we leave formally unspec-
ified here for simplicity. Figure 7.1 is an example of a DEA, where transitions
are tagged with events, guards, and actions in a pattern e | g 7→ a, and some
object type (representing a variable for which the DEA must be replicated for at
runtime). A brief note on the semantics of DEAs is that each transition triggers on
a program event, where if there is no matching transition then the DEA remains
in the same explicit state.

Figure 7.1 also specifies some local variable state, namely an integer variable
length. The DEA specifies that next() function of the iterator should not be
called more times than the length of the list (i.e. the violating state labeled by ×
should not be reached). This example illustrates how DEAs are infinitely more
succinct that finite-state automata, allowing for an arbitrary number of explicit

7.1. DYNAMIC EVENT AUTOMATA 75

For each: Iterator it
Variable State: int length; 1start

2

it = new Iterator(list) |7→ length := list.length()

it.next() | length > 0 7→ length := length - 1

it.next() | length ≤ 0

Figure 7.1: DEA specifying that an iterator over a list should not be queried for
more elements than it has.

states to be symbolically encoded. Note how Figure 7.1 cannot be expressed
without a monitoring variable state for an a priori unknown length.

Another motivation for DEAs is that they allow us to be more precise in
our specifications. Consider the finite-state property illustrated in Figure. 7.2(a).
This specifies that hasNext() has to be called on an iterator before next() is
called. However, this popular example does not actually capture bad usage of an
iterator. For example, the code in Listing. 7.1 will be judged as satisfying against
Figure. 7.2(a), since hasNext() is called before next(), however the other two
snippets in Listing. 7.2 and Listing. 7.3 will also be judged as satisfying although
they obviously exhibit unwanted behaviour.

The subtle differences between these snippets of code are not captured by
an automaton with vanilla events like Figure. 7.2(a). Using a DEA however
we can also capture these incorrect and dangerous patterns: Figure. 7.2(b) in
fact allows a next() to occur successfully only when hasNext() is true before it,
and detects a violation otherwise. Thus Listing. 7.2 would be classed as unsafe,
since hasNext() always returns false before next() is called, while the safety of
Listing. 7.3 depends on the runtime state of the program.

76 CHAPTER 7. PROPERTIES AND PROGRAMS

For each: Iterator it

1start

2

it.hasNext()it.next()

it.next()

(a) Finite-state automaton specifying
that hasNext() should always be
called before next.

For each: Iterator it

1start

entry(it.next())

| !it.hasNext()

(b) DEA specifying that an iterator
over a list should only be queried for
the next element when it also signals
that it has a next element.

Figure 7.2: hasNext() property as a finite-state automaton and a more powerful
version as a DEA.

Listing 7.1: Snippet
using iterator correctly.

1 if(it.hasNext()){

2 it.next();

3 }

Listing 7.2: Snippet us-
ing iterator incorrectly by
only calling next() when
there is no next element.

1 if(!it.hasNext()){

2 it.next();

3 }

Listing 7.3: Snippet
using iterator danger-
ously by not condition-
ing the call next() on
there being a next ele-
ment.

1 it.hasNext();

2 it.next();

Currently we can give these determinations for compliance with a DEA by
instrumenting the code with the DEA’s logic and returning any determined violat-
ing verdicts at runtime. DEAs as described here are in fact a kernel sub-language
of the monitoring specification languages used for multiple programming lan-
guages in the LARVA suite of runtime monitoring tools [Azzopardi et al., 2018b;
Colombo et al., 2008]. These languages also include: (i) timers and time-triggered
events; (ii) channels that monitors can use to communicate with each other; and
(iii) typestate. Here we ignore these, although we describe informally how they
can be dealt with in Chapter 10.

DEAs are similar to event automata as used by Barringer et al. [2012], except
that here we are leaving the variable state abstract instead of working concretely
with variables. In effect both of these are a form of extended finite-state automata
[Alagar and Periyasamy, 2011].

7.1. DYNAMIC EVENT AUTOMATA 77

7.1.1 Definitions

Dynamic event automata extend finite-state automata with a symbolic monitoring
state and guarded commands on transitions between explicit states. In practice
the variable state is generally some list of assigned variables defined in the
language of the program being monitored, while transition guards and actions
are statement blocks in the same programming language (with the requirement
that guards have no side-effects). Formally guards are represented as predicates
over pairs of program and monitoring variable states, actions as transformations
of monitoring variable states, also parametrised by a program variable state.

Explicit states of a DEA can be accepting or bad, where a monitor in an accepting
states cannot be violated given any continuation, while a monitor in a bad state
signals a violation of the property. The formal definition of DEAs along this
informal description follows.

Definition 7.1.1. A dynamic event automaton (DEA) over a set of system events Σ
and a set of symbolic program variable states Ω is an automaton π = 〈Θ, Q, q0, θ0, B, A,→
〉, where:

(i) Θ is a (possibly infinite) set of symbolic variable states,

(ii) Q is the finite set of explicit monitoring states,

(iii) q0 ∈ Q is the initial explicit state,

(iv) θ0 ∈ Θ is the initial symbolic variable state,

(v) B ⊆ Q is the set of explicit bad states,

(vi) A ⊆ Q the set of explicit accepting states, and

(vii) →⊆ Q× Σ× Guard× Act×Q is the deterministic finite transition function
that is triggered upon some system event, if a guard (Guard def

= Ω×Θ 7→ Bool)
on the program and monitoring variable state holds, while if triggered it performs
an action (Act def

= Ω×Θ 7→ Θ) on the symbolic monitoring state.

We write q
e|g 7→a−−−→ q′ for (q, e, g, a, q′) ∈→, and use ⇒ for its transitive closure.

We write q ⇒ q′ for ∃ t ∈ (Σ×Guard×Act)∗ · q t
=⇒ q′. Moreover we use false and

true respectively for the always false guard (λ ω, θ. false) and the always true guard
(λ ω, θ. true), and skip for the identity action (λ ω, θ. ω).

Throughout we use e for events in Σ, g for guards in Guard, and a for actions in Act,
possibly labeled by some index. We use Π for the class of DEAs.

78 CHAPTER 7. PROPERTIES AND PROGRAMS

We expect that a program will produce event and program variable state
tuples, which upon being received by a DEA will possibly cause it to update its
internal state (explicit and/or symbolic). We call these program traces.

Definition 7.1.2. A program trace is sequence of event and variable state pairs, ews ∈
Σ×Ω.

We then give DEAs an operational semantics with configurations as pairs of
property explicit and variable states, and transitions between these labeled by
pairs of property event and program variable states. This semantics allows for
transitions from non-accepting and non-bad states in the DEA to be taken only if
its guard holds on the program and monitor variable state, with the internal state
evolving according to the transition’s action. Otherwise the transition will have
no effect. Note how this means that any configuration with an accepting or bad
state stops evolving.

Definition 7.1.3. The operational semantics of a DEA is given as a labelled transition
system over configurations of type Q×Θ with transitions labelled by labels from Σ×Ω,
and characterized by the following rules:

(i) Given a transition q
e|g 7→a−−−→ q′, some program state ω and some symbolic monitor-

ing state θ, then if q is not an accepting or bad state, the condition of the transition holds
for ω and θ, (q, θ) transitions to (q′, a(ω, θ)) upon event e with program state ω:

q
e|g 7→a−−−→ q′ q 6∈ A∪ B g(ω, θ)

(q, θ)
e,ω−→ (q′, a(ω, θ))

(ii) if the previous rule does not hold then an event and variable state pair transition
to the same configuration:

(q ∈ A∪ B) ∨ (∀ q′, e, g, a · (q e|g 7→a−−−→ q′)⇒ ¬g(ω, θ))

(q, θ)
e,ω−→ (q, θ)

Note how by the second rule here DEAs are monotonic, i.e. once they give a
verdict it is maintained. Note how by the second rule here DEAs are monotonic,
i.e. once they give a verdict it is maintained.

This operational semantics is a concrete semantics for DEAs as opposed to a
symbolic semantics. Note how the symbolic label ω in our case represents one
value and not multiple values as in other approaches [Calder and Shankland,
2001; Francalanza, 2017].

From this operational semantics we can identify when a trace is compliant
with the property or not by checking whether it reaches a bad state or not.

7.1. DYNAMIC EVENT AUTOMATA 79

Definition 7.1.4 (Program Trace Compliance). The set of violating traces of a DEA
are the set of program traces that reach a bad state: V(π)

def
= {ews | (q0, θ0)

ews
=⇒

(q, θ) ∧ q ∈ B}.
A program trace ews ∈ Σ×Ω is said to satisfy a DEA π if and only if it is not a

violating trace of pi: ews ` π
def
= ews 6∈ V(π).

7.1.2 Structural Analysis

A DEA is not necessarily syntactically optimal, in fact it may have useless (in
terms of the semantics) states and transitions. Figure. 7.3(a) illustrates such a DEA.
It is unlikely that a specification designer would create such a DEA, however the
residual operations we define later on may produce similar DEAs motivating the
need for minimising operations for DEAs.

Here we discuss when structural reductions to DEAs are safe, in that the same
violating traces remain violating, and give examples of such reductions. These
operations will be essential to produce an optimised residual of a DEA against a
CFA.

7.1.2.1 Safe Structural Reductions

To carry out these reductions safely we first give a notion of DEA equivalence —
two DEAs will be considering as semantically equivalent if they are associated
with the same violating traces.

Definition 7.1.5. A DEA π is said to be semantically equivalent to a DEA π′ iff they
have the same violating traces: π ≡ π′

def
= V(π) = V(π′).

Here we will limit ourselves to structural reductions to a DEA, where transi-
tions and states are pruned. We want any such reduction to maintain semantic
equivalence, but also to be structurally equivalent or smaller. Then we first
identify formally when a DEA is a sub-structure of another by considering their
respective states, transitions, and variable state.

Definition 7.1.6. A DEA π is said to be a sub-structure of a DEA π′ iff π is defined
over a subset of the states of π′, botg have the same initial explicit and variable states, the
bad states of π are a subset of those of π′, and the transitions of π are a subset of those of
π′: π v π′

def
= Q(π) ⊆ Q(π′) ∧ q0π = q0

π′
∧ θ0π = θ0

π′
∧ B(π) ⊆ B(π′)∧ →π⊆→π′ .

Note that we do not require that the accepting states of a sub-structure are
a subset of the original DEA, since we will be identifying transformations that

80 CHAPTER 7. PROPERTIES AND PROGRAMS

1start

234

5

6

a

b

c

ef

d

(a) Unoptimised DEA.

1start

2X

a

c

e

(b) Optimised DEA.

Figure 7.3: DEA before and after optimisations.

may bring an acceptance forward, allowing for an accepting verdict to be given
earlier.

We then define structural reductions as reductions of a DEA that preserve this
sub-structure relation, while producing a DEA that is semantically equivalent.

Definition 7.1.7. A structural reduction of DEAs is a semantic-equivalence-preserving
transformation between DEAs where the reduced DEA is a sub-structure of the original
DEA. If SR : Π 7→ Π is a structural reduction then ∀π ∈ Π · π ≡ SR(π) ∧ SR(π) v π.

We can then start identifying some structural reductions to a DEA that allow
us to produce an optimally reduced DEA. The claims made in this section are
quite trivial, and the proof method should be clear from the text.

A simple structural reduction is one for reachability, where we can remove
any state that is not reachable from the initial state. For example, in Figure. 7.3(a)
we can remove state 5 without changing the semantics of the property.

Definition 7.1.8. The reachability reduction of a DEA π, R : Π 7→ Π, removes any
states that are not reachable from an initial state:

QR(π)
def
= {q ∈ Qπ | q0 ⇒ q}

BR(π)
def
= {q ∈ Bπ | q0 ⇒ q}

AR(π)
def
= {q ∈ Aπ | q0 ⇒ q}

→R(π)
def
= {(q, e, c, a, q′) ∈→π| q, q′ ∈ QR(π)}

It easily follows that this is a structural reduction since such states cannot
be reached from the initial state of the property and thus cannot be involved in
identifying a program trace as violating.

Proposition 7.1.1. R is a structural reduction.

7.1. DYNAMIC EVENT AUTOMATA 81

Moreover, consider that the given semantics of DEAs treats accepting and bad
states as sink states, where once a configuration with an accepting or bad state is
reached then it stops evolving. Thus we can ignore any DEA transition outgoing
from an accepting or violating state, and reduce the DEA for reachability. Note
how in Figure. 7.3(a) the transition from the bad state to state 6 will never be
triggered.

Definition 7.1.9. An after-verdict reduction of a DEA π, AV : Π 7→ Π, removes any
transitions and states that are only used or reachable from a violating or satisfied state.

We define an intermediate DEA π′ identical to π′ but without any transitions
outgoing from accepting or bad states, i.e. with the following transition relation:

→π′
def
= {(q, e, c, a, q′) ∈→π| q 6∈ A∪ B}

Then we define AV : Π→ Π as the reachability reduction of π′: AV(π)
def
= R(π′).

Removing these transitions is again a structural reduction, since such transi-
tions from accepting or bad states will never trigger.

Proposition 7.1.2. AV is a structural reduction.

We can also identify states in a DEA that are in effect accepting but are not
marked as such, namely states that cannot reach a bad state, and mark these as
accepting. State 3 is such a state in Figure. 7.3(a), where although there is another
state reachable from it no bad state can be reached.

Definition 7.1.10. An acceptance identification transformation of a DEA π, AI :
Π 7→ Π, marks any state that cannot reach a bad state as accepting:

AAI(π)
def
= A∪ {q ∈ Qπ | @q′ ∈ B · q⇒ q′}

This is clearly a structural reduction since the relevant sub-structures are not
changed, and any state that is made accepting could not cause a violation by
virtue of not being able to reach a bad state1.

Proposition 7.1.3. AI is a structural reduction.

The final reduction we define removes single transition loops on the same
states without actions, since these are already handled implicitly by the DEA
semantics. We can also remove transitions with a false guard. The transition
around state 2 in Figure. 7.3(a) is of this form.

1In some cases we may still want a monitor to be able to log some events even after an
acceptance verdict can be given, however here we simply are interested in violating traces.

82 CHAPTER 7. PROPERTIES AND PROGRAMS

Definition 7.1.11. A no effect reduction of a DEA π, NE : Π 7→ Π, removes any
looping transition that has no effect on the variable state, and any transition with a false
condition:

→NE(π)
def
= (→π \{(q, e, c, skip, q) ∈→π}) \ {(q, e, false, a, q′) ∈→π}

Since both of these transitions never can be used to transition to a new config-
uration then removing them does not affect the semantics of the DEA.

Proposition 7.1.4. NEL is a structural reduction.

We then assume throughout that any given DEA is in optimal form. We use
OR : Π 7→ Π to denote the optimal reduction OR(π) = AV(AI(NE(π))). Apply-
ing this to Figure. 7.3(a) results in the smaller but equivalent DEA illustrated in
Figure. 7.3(b).

7.1.2.2 Structural Union and Intersection

The residuals we produce will be produced piece-wise with respect to each
method of the CFA. To join these residuals into one residual for the whole CFA
we need to define the structural union of two properties, while we further define
the reduced union that ensures two properties are optimally reduced before being
joined. The structurally union of two properties will be defined as the property
constructed from the union of each feature of a property.

Definition 7.1.12 (Structural Union). The structural union of a DEA π′ with a DEA
π′′, where both are sub-structures of a DEA π, is defined as the union of their respective
elements: π′ tt π′′

def
= 〈Θπ ∪Θπ′ , Qπ ∪Qπ′ , q0, θ0, Bπ ∪ Bπ′ , Aπ ∪Aπ′ ,→π ∪ →π′〉.

The reduced union of a DEA π′ with a DEA π′′, where both are sub-structures of a
DEA π is defined as the union of their optimal reductions: π′ t π′′

def
= OR(π′) tt OR(π′′).

We will also illustrate how we can create multiple abstractions of the same
set of executions, from which we may infer different residuals. In this case we
will show how we can consider the common features of each residual rather than
their union, and for this we will require a notion of structural intersection, which
is dual to the structural union.

Definition 7.1.13 (Structural Intersection). The structural intersection of a DEA π′

with a DEA π′′, where both are sub-structures of a DEA π, is defined as the intersection
of their respective elements: π uu π′

def
= 〈Θπ ∩ Θπ′ , Qπ ∩Qπ′ , q0, θ0, Bπ ∩ Bπ′ , Aπ ∩

Aπ′ ,→π ∩ →π′〉.

7.2. CONTROL-FLOW AUTOMATA 83

start

X

a

b

c

d

(a) Original DEA, π (and π′ t
π′′).

start

a d

(b) Sub-DEA, π′.

start

X

b

c

(c) Sub-DEA, π′′.

Figure 7.4: Example DEA (assume each transition is tagged with a true condition
and the skip action) with two sub-structures.

The reduced intersection of a DEA π′ with a DEA π′′, where both are sub-
structures of a DEA π is defined as the intersection of their optimal reductions: π′ u
π′′

def
= OR(π′) uu OR(π′′).

Note that this structural union (resp. intersection) does not necessarily result
in an automaton that accepts the union (intersection) of the violating traces of the
original DEAs. For example, consider the DEAs in Figure 7.4, where π′, π′′ v π.
We clearly have that the trace 〈cad〉 is in the violating traces of π′, but it is not in
the violating traces of π′ t π′′ (which is equal to π in this case).

In this section we have identified some safe structural reductions to DEAs,
and other operations that will be useful for the residual analysis we present. The
reductions identified are general and applicable to an individual DEA, which
is usually limited in size. In the general case we are however interested in
monitoring a DEA in the context a program, and by taking into account the
control-flow of the program we can tailor the DEA monitor for that program. We
formalise a notion of programs as automata in the next section which we shall be
using to this end.

7.2 Control-flow Automata

A natural representations of programs that is used commonly for static analysis is
its control-flow graph (e.g. Beyer et al. [2018b] use control-flow automata with op-
erations on transitions to represent programs in the context of creating a residual
program). Such a graph makes explicit the control-flow between the statements
of a program, creating an abstraction for all its possible executions. Here we
consider a variant of these graphs which we call control-flow automata (CFAs),

84 CHAPTER 7. PROPERTIES AND PROGRAMS

that are similar to DEAs but instead of specifying the disallowed behaviour they
encode the actual behaviour of a sequential program.

CFAs, like DEAs, are extensions of finite-state automata with variable state,
and with transitions tagged by triples of: (i) conditions over the program’s
variable state; (ii) statements that can transform the program’s variable state; and
(iii) an event triggered upon the statement’s execution. At this level, CFAs are
quite similar to DEAs, both having transitions tagged with events, predicates,
and variable state transformers, with the only difference being that CFAs are
self-contained, while DEAs also depend on the state of the CFA. Differently from
DEAs, we allow for CFAs to reference other CFAs at states, encoding method
calls. CFAs will be used to encode to actual behaviour of an implementation, as
opposed to DEAs that explicitly the encode a set of disallowed behaviour. In fact,
a CFA can be encoded as a DEA, if it is flattened and by introducing appropriate
transitions to a bad state, however it easier and simpler to reason about a specific
program’s behaviour by encoding what it does rather than what it does not do.
Calls in a CFA also allow us to define programs piece-wise, which in turn will
allow for piece-wise residual analysis foregoing the need to expend computation
and memory to create a flat representation of a program, as we shall see.

Consider the Java method specified in Listing. 7.4. This method iterates
through an integer List and extracts the even numbers in it. It uses both loops,
if-then-else branching, and calling methods (e.g. the call to the ArrayList con-
structor on line 2). Figure 7.5 illustrates a CFA corresponding to this method,
instrumented for event set Σ = {hasNext, next}, with the silent event ε denoting
no event, and a shaded state denoting a call site with an associated call label. Note
how this CFA models some method calls with call sites while leaving others as
simple conditions or statements (e.g. the constructor new ArrayList<Integer>()

and the iterator method numbers.iterator are both modeled as call sites, while
calls to hasNext are treated as conditions). In general we will only model method
calls with call sites when the called method can activate internally events of
interest. We will be assuming a method call stores the return value to an ap-
propriate location in the variable state (e.g. for the call associated with state A
the associated return value is pointed to by the appropriately typed variable
callsARet used in its outgoing transition.)

7.2.1 Definition

These automata maintain some internal program state, which we leave un-
grounded here, leaving our contributions agnostic of the background theory,
as we do for DEAs. This internal variable state can be updated by statements,
which we model as transformations of the variable state. A control-flow au-

7.2. CONTROL-FLOW AUTOMATA 85

Listing 7.4: Example Java function.
1 public List<Integer> extractEvenNumbers(List<Integer> numbers){

2 List<Integer> evenSubList = new ArrayList<Integer>();

3
4 Iterator it = numbers.iterator();

5
6 while(it.hasNext()){

7 int no = it.next();

8 if(no % 2 == 0){

9 evenSubList.add(no);

10 }

11 }

12
13 return evenSubList;

14 }

A

start

calls(A): new ArrayList<Integer>()

B calls(B): numbers.iterator()

C G

D

EF

. List<Integer> evenSubList = callsARet I ε

. Iterator it = callsBret I ε

it.hasNext() . skip I hasNext

true . it.next() I next

no % 2 != 0 . skip I ε

no % 2 == 0 . evenSubList.add(no) I ε

true . skip I ε

!it.hasNext() . return := evenSubList I hasNext

Figure 7.5: Listing. 7.4 as CFA.

tomaton will have a set of transitions tagged with these statements. To allow for
conditional branching these transitions can also be tagged with predicates on the
variable state, and to mark the points in the program that trigger some property
event we also allow transitions to be tagged by a property event or the silent ε

86 CHAPTER 7. PROPERTIES AND PROGRAMS

Listing 7.5: Example Java code that depends on the runtime state.
1 public void f(Object o1, Object o2){

2 if(o1.equals(o2)){

3 <some-logic>

4 }

5 }

event. We use Σε for this event set, i.e. Σε
def
= Σ ∪ {ε}. Then, CFA transitions are

tagged by a triple c . st I e, where c is a condition on the program variable state,
st is a program statement, and e is the event triggered after st is executed.

Moreover, since in real-world programs methods can call other methods, here
explicit program states can be call states. These call states, at runtime, may call
other control-flow automata. Which automaton called is sometimes a decision
that has to be pushed to runtime — consider the Java method in Listing 7.5,
which accepts two objects and calls the equals method of the first object. The
method call at runtime depends on the dynamic type of o1 rather than the
implementation associated with the Object class. This is an example of a virtual
method, where dynamic dispatch is required to resolve which concrete method is
called at runtime. In our representation thus a call is dependent on the dynamic
variable state at the time of the call. We give a formal definition of these automata
along these lines.

Definition 7.2.1. A control-flow automaton (CFA) parametrised by a set Ω of pro-
gram variable states, and a set of events Σ, is a tuple M = 〈S, s0, E, calls,→〉, where:

(i) S is a finite set of states;

(ii) s0 ∈ S is the initial state;

(iii) E ⊆ S is a set of end states, we use sE for an element of this set;

(iv) calls : S 7→ (Ω 7→ CFA) is a partial function from states to calls; and

(v) →⊆ (S \ E)× Cond× STMT× Σε × S is the transition relation between non-end
states that is activated when the condition holds true (Cond def

= Ω 7→ Bool), where
then the statement is executed (STMT def

= Ω 7→ Ω) and an event possibly triggered (if
the silent event ε is not used).

We write s c . st I e−−−−−→ s′for (s, c, st, e, s′) ∈→, and⇒ for its transitive closure. We use
true for a condition that returns true for every program state (λ ω.true), and skip for
the identity statement (λ ω.ω). s . st I e−−−−→ s′is to be interpreted as s true . st I e−−−−−−−→ s′, and
similarly we write s c . I e−−−−→ s′for s

c . skip I e−−−−−−→ s′.

7.2. CONTROL-FLOW AUTOMATA 87

We use labels P and M, possibly indexed, to refer to elements of CFA.

Here we will be assuming one entry-point into the program for simplicity.
Throughout then we will be assuming a set of methods as a set of control-flow
automata, with a main method that we call the program P. We identify the set of
all methods of a program P, which we require further on.

Definition 7.2.2. The methods of a CFA P is the smallest set including P and the
methods it calls transitively: methodsOf (P) def

= {P} ∪ ⋃
call∈ran(calls)

⋃
M∈ran(call)({M} ∪

methodsOf (M)).

To produce the events required for monitoring and define when a CFA is
compliant with a DEA we define an operational semantics for CFAs. A natural
choice for program configurations are pairs of explicit and variable states. This
is however not fully adequate in the presence of calls. Upon reaching a call
state control must be relinquished to another automaton, until an end state is
reached upon which it must relinquish control back to the caller state. Thus
during the called execution the configurations must keep track of the caller state.
One solution is to use stacks of these explicit-symbolic pairs, popping off the top
pair when an end state is encountered. Another simpler method is simply to step
over, or take a big-step over calls. In practice we have found the latter approach
easier to reason and prove with, and thus this is the choice we take here.

To identify when a call has been entered and when it finishes we augment
explicit states with an arrow denoting whether a call has been entered or not:
S↑↓ def

= S× {↑, ↓}. Then a transition from a configuration (s↓, ω) to a configuration
(s↑, ω′), where s is a call state, will denote that the call has the effect of transform-
ing the variable state from ω to ω′. For non-call states these transitions will not
have any effect on the variable state. This solves the problem without requiring
complex data structures which may be harder to reason about. However it will
make the definition of our operational semantics recursive.

To encode these big-steps over calls we allow for transitions in operational
semantics to be tagged by program traces, rather than a single event and variable
state pair. Transitions in the operational semantics are then of the form: →:
(S↑↓ ×Ω)× (Σ×Ω)∗ × (S↑↓ ×Ω). Moreover, instead of considering the standard
transitive closure of →, which would create a relation of the type (S↑↓ ×Ω)×
((Σ×Ω)∗)∗ × (S↑↓ ×Ω), we consider a flat version of the transitive closure of→.
This corresponds to the usual transitive closure with concatenation of traces.

Definition 7.2.3. The flat transitive closure of a relation→: (S↑↓ ×Ω)× (Σ×Ω)∗ ×
(S↑↓ ×Ω) is the smallest relation ⇒: (S↑↓×Ω)× (Σ×Ω)∗ × (S↑↓ ×Ω) respecting the

88 CHAPTER 7. PROPERTIES AND PROGRAMS

following conditions given s , s1 , s2 , s3 ∈ S↑↓and ω, ω1, ω2, ω3 ∈ Ω: (i) (s , ω)
〈〉
=⇒ (s , ω);

and (ii) ((s1 , ω1)
ews−→ (s2 , ω2) ∧ (s2 , ω2)

ews′
=⇒ (s3 , ω3)) ⇒ (s1 , ω1)

ews++ews′
====⇒ (s3 , ω3).

Note that we are re-using the transition relation symbols used for DEAs,
however it should always be clear from the context of use which instance we are
referring to.

We can then give the formal definition of the operational semantics of control-
flow automata. This semantics takes into account the execution of a CFA transi-
tion and executions of calls.

Definition 7.2.4. The operational semantics of a control-flow automaton is a transition
system over configurations of type S↑↓ ×Ω, and transition labels of the form (Σ×Ω)∗

is characterized as the smallest relation obeying the following rules with⇒ as its flat
transitive closure:

(i) A configuration (s↑1, ω) transitions to a configuration (s↓2, st(ω)) if there is a tran-
sition between s1 and s2 with a condition that holds on ω, and tagged with the
statement st. The transition is tagged by both the event triggered and the program
state after the statement execution:

s1
c . st I e−−−−−→ s2 s1 6∈ E c(ω)

(s↑1 , ω)
〈(e,st(ω))〉−−−−−→ (s↓2 , st(ω))

(ii) If s is not a call state then configuration (s↓, ω) transitions to a configuration
(s↑, ω):

s 6∈ dom(calls)

(s↓, ω)
〈〉−→ (s↑, ω)

(iii) If s is a call state then configuration (s↓, ω) transitions to a configuration (s↑, ω′)
only if the execution of the function called by s ends in an end state with the ω′

variable state:

s ∈ dom(calls) M = calls(s)(ω) ∃ sE ∈ EM, ω′ ∈ Ω · (s0M , ω)
ews
=⇒ (sE, ω′)

(s↓, ω)
ews−→ (s↑, ω′)

The traces of a program P are the traces induced by some variable state from the initial
state to an end state of P: traces(P) def

= {ews | ∃ sE ∈ EP, ω0, ω ∈ Ω · (s↓0 , ω0)
ews
=⇒ (s↑E, ω)}.

7.2. CONTROL-FLOW AUTOMATA 89

Note throughout then we will be assuming that conditions have no side-
effects, which is not generally a condition required out of conditional branching
in real-world programming languages. Any side-effect however can be encoded
in the statement part of the transition label.

We wish to determine whether the traces produced by a CFA satisfy a DEA,
however CFAs include silent events, which are not considered by DEAs. Then
we define a projection operator from traces of (Σε ×Ω) to (Σ×Ω).

Definition 7.2.5. The projection of a program trace of an alphabet Σε ×Ω onto the
alphabet Σ×Ω removes any pairs in the trace with the ε event:

〈〉�Σ
def
= 〈〉

(〈(ε, ω)〉 : ews)�Σ
def
= ews�Σ

(〈(e, ω)〉 : ews)�Σ
def
= 〈(e, ω)〉 : (ews�Σ)

We overload this for sets of traces ewss�Σ
def
= {ews�Σ | ews ∈ ewss}.

We can then finally talk about programs and monitors together by defining
what it means for a CFA to satisfy a DEA, in terms of the CFA not exhibiting
violating traces of the DEA.

Definition 7.2.6. A CFA P is said to satisfy a DEA π iff it cannot generate a violating
trace of π: P ` π

def
= traces(P)�Σ ∩V(π) = ∅.

Note that we may use program traces on the DEA transitive closure, e.g.

(q0, θ0)
ews
=⇒ (q, θ). This should be take as equivalent to (q0, θ0)

ews�Σ==⇒ (q, θ).
As part of our contributions we will be analysing CFAs to identify events that

can be silenced (i.e. replaced with the silent action ε), thus reducing the amount
of times a monitor is called at runtime. The instrumentation transformations we
will consider are reductions, in that they simply silence some events, unlike other
approaches that also summarise sequences of programs [Dwyer and Purandare,
2007].

Definition 7.2.7. A program P′ is said to be an instrumentation reduction of a program
P, written P′ v P, if P′ has the same structure as P while possibly some events are
replaced with the ε event, as captured by the following rules:

(i) A transition is in P iff it is in P′ or it is replicated in P′ with the silent event:
s c . st I e−−−−−→P s′ ⇔ (s c . st I e−−−−−→P′ s′ ∨ s c . st I ε−−−−−→P′ s′);

90 CHAPTER 7. PROPERTIES AND PROGRAMS

(ii) Every call in P is replicated in P′ with an instrumentation reduced version of it: ∀ s ∈
dom(callsP) · s ∈ dom(callsP′) ∧ ∀ω ∈ dom(callsP((s)) · callsP′(s)(ω) v callsP(s)(ω).

This finishes the presentation of the formal objects upon which the presented
residual analyses will be based on.

In Chapter 3 we abstractly identified properties as program acceptors. Here in-
stead we have a concrete notion of properties and programs in terms of automata.
In the next section we discuss the appropriateness of the residual condition in
this context, and motivate the need for it to be strengthened in this context to
give stronger verification guarantees.

7.3 Correctness of Reductions

In Chapter 3 we defined a method to combine verification methods using the
notion of a residual, where given knowledge that a program satisfies a property π,
and another property π1 we wish to prove of the program, then we can construct
another property π2 ∈ π ÷ π1. This π2 will accept all programs that π1 accepts,
while it ideally is smaller and easier to prove at runtime than π1.

In our case we will not be explicitly constructing a model of a CFA (π) as a
DEA, instead we will leave π1 implicit and simply analyse the CFA against π,
producing the residual π2

2. In this section then we consider when a reduced
property is a residual of the property to prove and the program CFA. Moreover,
in Chapter 3 we did not have a concrete notion of a program, to keep the theory
general, however having presented the class of CFAs we can now also discuss
how to un-instrument programs (through some transformation) in a manner that
does not effect the verdict given at runtime. In this section we then give different
equivalence conditions at different levels of strictness, and consider which is
appropriate for our context.

At a high-level we want a property reduction to judge the program under
verification in the same way as the original property. Definition. 7.1.5 gives us
this, by chracterising property equivalence in terms of when properties have the
same violating traces. However, when we are only interested in a single program,
we can weaken this condition, by parametrising this equivalence relation with
respect to the program.

Definition 7.3.1. Two properties π and π′ are said to be P-equivalent if P satisfies π

only if P satisfies π′: π ≡P π′
def
= P ` π ⇔ P ` π′.

2π1 is in effect the CFA and the level of abstraction we are analysing it at.

7.3. CORRECTNESS OF REDUCTIONS 91

An instrumentation reduction should obey a dual condition, in that reducing
instrumentation does not change the way the new program is judged by the
property, ensuring a correct verdict.

Definition 7.3.2. Two programs P and P′ are said to be π-equivalent if P satisfies π

only if P′ satisfies π: P ≡π P′ def= P ` π ⇔ P′ ` π.

At a high-level these conditions work — they ensure verdicts are preserved at
the level of programs. However these conditions only ensure the same verdicts
for a whole program. Consider a program with two branches that both violate the
property. An instrumentation reduction can be defined that silences one branch,
leaving a reduced program that is still violating, but that is not violating in the
same way. Similarly, if the two branches in the program violate the property
in different ways, then the property can be reduced in such a way as to detect
only one type of violation, where now the program is still not compliant with the
property but not in the same way. These issues affect runtime verification, where
without further conditions such a reduced property may give a different verdict
from the original property on the same trace.

Then we define a stricter equivalence condition for both properties and instru-
mentation that checks that compliance is maintained in lockstep by the properties,
i.e. at every time-step the same verdict is maintained. To allow us to define this
we will be using the notation prei(ews) to denote the prefix of length i of the
program trace ews.

Definition 7.3.3. The trace of length i of an execution of an program P given a starting
variable state ω is either: (i) the prefix of length i of the respective finite execution; or (ii)
the empty trace if there is no prefix of such length:

tracei(P, ω)
def
=

{
prei(ews) ∃ω′ ∈ Ω, s∈E, ·(s↓0 , ω)

ews
=⇒ (s↑E, ω′)

〈〉 otherwise

Using this we can then define when two programs are equivalent at the level
of program state, by considering the traces associated with such a state.

Definition 7.3.4. Two programs P and P′ are said to be π-lockstep-equivalent if for
any initial variable state ω and natural number i then the trace of length i with respect to
ω of one program is violating iff the trace of the same length of the other program is also
violating: P π

= P′ def= ∀ω ∈ Ω, i ∈N · tracei(P, ω)�Σ ∈ V(π)⇔ tracei(P′, ω)�Σ ∈ V(π).

Note how this equivalence condition is stricter than the previous.

Theorem 7.3.1. P π
= P′ ⇒ P ≡π P′

92 CHAPTER 7. PROPERTIES AND PROGRAMS

Proof

Consider that P 6` π, then there is a trace of P that is
violating. This means it has a violating prefix, which by
Definition. 7.3.4 means P′ has a trace with a violating prefix,
and then P′ 6` π. Then we can conclude P 6` π ⇒ P′ 6` π.
The same argument can be used to conclude that P′ 6`
π ⇒ P 6` π, and then our result follows by taking the
contrapositive of both of these.

We can define a similar relation for properties, and prove a similar result.

Definition 7.3.5. Two properties π and π′ are said to be P-lockstep-equivalent if for
any starting variable state, the execution prefix of a program is violating in π iff it is also
violating in π′: π

P
= π′

def
= ∀ω ∈ Ω, i ∈ N · tracei(P, ω)�Σ ∈ V(π) ⇔ tracei(P, ω)�Σ ∈

V(π′).

This condition is also stricter than the first condition for property equivalence.

Theorem 7.3.2. π
P
= π′ ⇒ π ≡P π′

Proof

Consider that any π-violating trace of P has a violating
prefix, and then it must also be π′-violating by Defini-
tion. 7.3.5. The argument applies in the other direction.

We will be using the latter stricter correctness conditions for our reductions
of instrumentation and properties, since they ensure instrumentation is not
transformed in a way that affects compliance at runtime, which is a desired
property for us since we want to prove the residual properties at runtime.

7.4 Conclusions

In this section we have presented a view of properties as DEAs, and programs
CFAs, and defined structural reductions of DEAs and instrumentation reductions
of CFAs. We have also explored two correctness conditions for these reductions,
settling on a condition that allows for equivalent verdicts on every program trace

7.4. CONCLUSIONS 93

at runtime. In the next section we presenting our main contribution: a residual
analysis of DEAs as properties and programs as CFAs.

8

Residual Analysis

In this chapter we describe an analysis to produce residuals of both CFA in-
strumentation and DEAs. Our work was inspired by that of CLARA [Bodden
et al., 2010] for typestate properties as finite-state automata, although we take a
different approach in that we focus primarily on producing a reduced DEA but
also in the process remove some event instrumentation. We abstract away from
typestate here, for a simpler and cleaner presentation.

The motivation behind the techniques we present is largely to reduce the
overheads of monitoring by reducing both the points of instrumentation and the
computation that has to be done by the monitor upon being triggered. We also
desired such an analysis to be carried out during the instrumentation process
of monitoring, allowing for smarter instrumentation. This requirement places
constraints on the type of analysis possible — time- and memory-intensive analy-
ses, while useful, would place undue overheads on the instrumentation process.
Thus our motivation was towards automatable and light static analyses that can
be integrated in an almost seamless manner with the process of instrumentation.

To this end the analysis we consider is primarily intended to be intraprocedural,
in that it acts on each method of the program while ignoring the rest of the
program. While this will require us to over-approximate the behaviour possibly
occurring outside a method, this abstraction can be discarded after analysis on
the method finishes. An interprocedural analysis on the other hand would require
more memory at any given point in time. However, our residual analysis can
also be applied interprocedurally, but we leave an implementation of this and
comparison of it with an intraprocedural analysis in terms of computational and
memory expense for future work.

95

96 CHAPTER 8. RESIDUAL ANALYSIS

The analysis we define in effect analyses a method by creating an abstraction
of all the possible program traces that pass through that method. By taking
into consideration these abstractions in synchronicity with the DEA we can
acquire a sound over-approximation of the monitored system at runtime. From
each such system we collect both the transitions of the DEA used locally in the
method (i.e. not at chaotic states) and the useful instrumentation in the method
(instrumentation that can affect a verdict). Then, if the analysis is performed for
all the methods, a new residual DEA can be created by considering the union
of locally used DEA transitions, while instrumentation can be reduced to the
collected useful instrumentation points. This can be iterated until a fix-point
is reached. To optimise this approach we also consider the addition of certain
interprocedural information (e.g. knowledge that a certain event cannot occur
before a method). We further illustrate how an SMT solver can be used to prune
unviable transitions from the abstract monitored system and to identify when
DEA guards must always resolve to true at runtime.

In Section 8.1 we illustrate how we create abstractions from CFAs, inspired by
the work of Bodden et al. [2010], while in Section 8.2 we consider several ways
property residuals and instrumentation reductions can be created from these
abstractions. We conclude the presentation of these contributions in Section 8.3.

Claims made in this chapter with longer proofs are proven in Section ??, while
otherwise shorter proofs or proof sketches are presented here.

8.1 Intraprocedural Abstractions

In this section we describe formally an approach towards creating program ab-
stractions by individually considering methods of the program. This is based on
work by Bodden [2009], who motivates the use of such an analysis in the context
of typestate analysis since it can be enough for a large number of objects that are
local to a single method. The CLARA variant of this abstraction is described using
a worklist algorithm by Bodden [2009], here we describe it in a formal manner
with respect to CFAs.

Consider the simple CFA specified in Figure. 8.1(a). This CFA can represent a
method in a program, possibly called at some point during the execution of the
program. Then, before Figure. 8.1(a) is executed some events may be triggered
(i.e. before state A). Similarly some events may be triggered after the method
finishes executing (i.e. after state D), and during the execution of call sites of
the method (i.e. during the call at state C). This outside behaviour can simply
be over-approximated by making the respective states chaotic, i.e. by adding a
looping transition around each such state for each event from Σ, as illustrated in

8.1. INTRAPROCEDURAL ABSTRACTIONS 97

Astart

B

C

D

c1 . st1 I e

c2 . st2 I ε

c3 . st3 I e′

(a) Method CFA example, with state 3
being a call site.

Astart

B

C

D

c1 . st1 I e

Σ

Σ

ε

ε

c2 . st2 I ε

Σ

c3 . st3 I e′

ε

(b) Method CFA with chaotic outside
behaviour, recursive call site 3, and that
can be re-entered.

Figure 8.1: Example CFA with abstracted version.

Figure. 8.1(b) (the dashed transitions represent the transitions added to model
possible outside behaviour). Moreover, a method may be re-entered more than
once during a single execution or it can be re-entered recursively from a call
site. This is modeled respectively through transitions from the end state to the
start state, and a transition from a possibly recursive call site to the initial state
and another transition from an end state to the call site, simulating relinquish
of control back to the called CFA. This abstraction is very coarse, but does not
require any possibly intensive analysis of the program, satisfying our requirement
for a lightweight analysis.

In Section 8.1.1 we describe formally how this abstraction is created through
an extension of CFAs with an abstract transition function, and relate it to the
behaviour of the program at runtime.

8.1.1 A Control-flow Abstraction

To abstract a CFA M we will be augmenting M with an abstract transition function
999K ∈ S× Σε × S that will be used to model maximally the possible events
occurring outside M as part of an execution of another method.

Definition 8.1.1 (Abstracted CFA). An abstracted control-flow automata is a CFA
augmented with an abstract transition function 99K∈ S× Σ → S. We denote these
automata by the class ACFA def

= CFA× (S× Σε → S). The transitive closure of these
automata, ⇒, also includes the abstract transition function. We refer to the original
transition function of the CFA as the concrete or local transition function.

98 CHAPTER 8. RESIDUAL ANALYSIS

As illustrated in Figure. 8.1(b), such an abstraction is constructed to allow the
behaviour external to M to be chaotic, while taking into account recursive calls
into M from call sites, and multiple calls to M in the same execution. However,
after an iteration of an analysis we may be able to fine-tune this abstraction. For
example, we may be able to conclude that event e only occurs in method M, and
thus an abstraction of M should not include this event e on abstractions modeling
outside behaviour. Then we define the abstraction in a parametric manner by
assuming functions before, after, during ∈ S → 2Σ that respectively answer the
question of what events can occur before, after, and during a method execution.
Moreover we assume a function recursive ∈ S → Bool that indicates whether a
call state can call back into its method, and another function calledMultipleTimes ∈
CFA× CFA→ Bool that indicates when a program P can call a method M more
that once in the same execution. Initially we assume maximally sound values
for these parameters, i.e. before, after, and during respectively associate initial,
end, and call states with Σ, while any call state is assumed to be recursive, and a
method to be called multiple times.

We define formally the parametrised abstraction constructed along these lines.

Definition 8.1.2. The intraprocedural abstraction of a method M in the context of
a program P, denoted by A(P), parameterised by the functions before, after, during ∈
S→ 2Σ, recursive ∈ S→ Bool and calledMultipleTimes ∈ CFA× CFA→ Bool, is the
abstracted control-flow automaton with its transition functions defined as the smallest
transition function obeying the following rules:

1. Any transition in the original automaton is replicated in the abstract model:

s c . st I e−−−−−→ s′

s c . st I e−−−−−→ s′

2. A looping transition is introduced on each call state for each event that can occur
during an execution of a call:

s ∈ dom(calls) e ∈ during(s)

s
e
99K s

3. A looping transition is introduced on the initial state for each event in the alphabet
before the initial state:

e ∈ before(s0)

s0
e
99K s0

8.1. INTRAPROCEDURAL ABSTRACTIONS 99

4. A looping transition is introduced on each final state for each event in the alphabet
after the final state:

e ∈ after(sE)

sE
e
99K sE

sE ∈ EM

5. A transition from a call state to the initial state and from each end state to the initial
state, tagged with the silent event, is introduced for each call state that is recursive:

s ∈ dom(calls) recursive(s)

s
ε
99K s0 sE

ε
99K s

sE ∈ EM

6. If a method M can be called again after being called once in a CFA P then any final
state is allowed to transition back into the initial state:

calledMultipleTimes(P, M)

sE
ε
99K s0

sE ∈ EM

We write s t
=⇒ s′ (t ∈ Σ∗) as the smallest relation such that: (i) if t = 〈〉 then

s = s′ or ∃ s′′ · s ε
99K s′′ ∧ s′′

〈〉
=⇒ s′; (ii) if t = 〈e〉 then ∃ s′′, s′′′ · s 〈〉=⇒ s′′ ∧ s′′ c . st I e−−−−−→

s′′′ ∧ s′′′
〈〉
=⇒ s′; or if t = t′++t′′ then ∃ s′′ · s t′

=⇒ s′′ ∧ s′′ t′′
=⇒ s′.

From such an abstraction we can extract a set of event traces by simply using
the transitive closure of both transitions of the automaton.

Definition 8.1.3. The traces of an abstracted CFA AP are the traces induced by the
transitions of the automaton from the initial state to an end state: atraces(AP) def

= {es |
∃ sE ∈ EAP · s0

es
=⇒ sE}.

In the next section we consider the manner in which these abstractions can be
considered to be over-approximations of the program. In effect we will conclude
that they are not necessarily over-approximations of the whole program, but
only of the executions that include calls to the method being used a base for the
abstraction.

8.1.1.1 Relation to Program

We will be showing that the intraprocedural abstraction of each method, when
considered in conjunction generate a set of traces that abstracts the traces of

100 CHAPTER 8. RESIDUAL ANALYSIS

Astart

B

C D

E F

c1 . st1 I e

c2 . st2 I ε

c3 . st3 I ε

c4 . st4 I e′

c5 . st5 I ε

Figure 8.2: Example program with a call state (C) and with different branches.

the original program. To aid us with the statement of these claims we define a
function that abstracts symbolic event traces into event traces by simply removing
the symbolic states.

Definition 8.1.4. The event abstraction of a program trace is the function that discards
the symbolic states in traces, leaving an event trace:

α(〈〉) def
= 〈〉

α((e, ω) : ews) def
= 〈e〉++α(ews)

We can show that A(M) over-approximates the traces of M, since it contains
all the concrete transitions of M and abstracts any call states of M. We can show
that any transition in the operational semantics of CFAs has a direct abstract
counterpart in this abstraction, which we then can use to prove M abstracts A(M).

Theorem 8.1.1. Any execution of method M, is reflected in its abstraction A(M):

∀ω1, ω2 ∈ Ω, s ∈ sM · (s↓0M
, ω1)

ews
=⇒ (sb, ω2) ⇒ s0

α(ews)
===⇒ s

Proof We can show the result for the general one-step case ∀ω1, ω2 ∈ Ω, s1, s2 ∈
sM · ((sa

1, ω1)
ews−→ (sb

2, ω)) ⇒ (s1
α(ews)
===⇒ s), by considering cases on equality

between s1 and s2:

Case 1: s1 = s2, and then, by the operational semantics of CFAs, either: (i)
s1 is not a call site (from which the result easily follows); or (i) s1 is a call
site. In the abstraction A(M) there are looping transitions around s1
for each event that could possibly be present in α(ews), by the second

rule of Definition. 8.1.2. Then s1
α(ews)
===⇒ s holds in the abstraction A(M).

8.1. INTRAPROCEDURAL ABSTRACTIONS 101

Case 2: s1 6= s2. There are two cases here then, by the operational semantics
of CFAs: (i) either ews = 〈〉 (i.e. no event is activated), and there is
an ε-transition between s1 and s2,from which the result easily follows
by the first rule of Definition. 8.1.2; or (ii) ews = 〈e, ω〉 and there is a
transition s1

c . st I e−−−−−→ s2, from which the result also easily follows by
the first rule of Definition. 8.1.2. 2

This result projects easily onto the transitive closure, giving us the required
result.

If M is not the program then this theorem is not very helpful. We can make
this stronger by considering that the abstraction of a method M is not necessarily
an abstraction of the whole program, but rather an abstraction of the traces of
the program that pass through M. For example, consider Figure 8.2, which has
a call state to some method M at state labelled by C. The abstraction of M will
produce an over-approximation only of the paths of the program through state
C, illustrated by the thicker edge, while the other branch remains unmodeled.
Here then we want identify these exactly these program traces that M over-
approximates.

Given an execution of a program, we can identify when this passes through
a certain method M by considering the operational semantics and looking at
whether the execution passes through a state of M. We formally characterise this.

Definition 8.1.5. A program trace ews passes through a method M in a program P if
either:

(i) M is P and ews is a trace of P: viaP(ews, P) def
= ∃ sE ∈ EM, ω0, ω ∈ Ω · (s↓0 , ω0)

ews
=⇒

(s↑E, ω); or

(ii) ews is a trace of P and can be re-written as ews′++ews′′++ews′′′ such that ews′′

corresponds to a trace induced by a call in P, and ews′′ passes through M in the
called method: viaP(ews′++ews′′++ews′′′, M)

def
= ∃ s ∈ SP, sE ∈ EP, ω0, ω, ω′, ω′′ ∈

Ω · (s↓0 , ω0)
ews′
=⇒ (s↓, ω)

ews′′−−→ (s↑, ω′)
ews′′′
==⇒ (s↑E, ω′′) ∧ viacalls(s)(ω)(ews′′, M).

We define the set of traces via a method M as those traces that pass through M:
tracesVia(P, M)

def
= {ews | viaP(ews, M)}.

The abstraction of a method will then over-approximate exactly those traces
that pass through it. We can show this by considering that any trace that passes
through M can be re-written as trace of M with a certain prefix and suffix, which
are modeled by the chaos at the initial and end states in the abstraction, and
similarly for any call sites.

102 CHAPTER 8. RESIDUAL ANALYSIS

Theorem 8.1.2. With sound abstraction parameter functions, then the set of event-
abstractions of the traces through a method M are approximated by the set of event traces
induced by the abstraction of M: α(tracesVia(P, M)) ⊆ atraces(A(M)).

Proof Consider that any trace in tracesVia(P, M) can be re-written as a trace
st1++st2++st3 by Definition. 8.1.5, where st2 represents one execution of M.
st1 and st3 are modeled by the chaos at the initial and end states of A(M),
reducing the problem to showing that st2 is modeled by A(M), which is
ensured by Theorem. 8.1.1.

Then, a single abstraction is not an abstraction of the whole program, however
we want to be able to make conclusions about the whole program, not just single
methods. We then require an abstraction of the whole traces of a program. A
simple such abstraction is the abstraction of the main method P. In general, we
can create such an abstraction by considering covers of P, i.e. a cover is a set of
methods for which all executions of P pass through at least one method in the
cover.

Definition 8.1.6. The set of covers of P includes a subset of the methods of P such
that if for all executions of P it contains a method that the execution passes through:
coversOf (P) def

= {Ms ⊆ methodsOf (P) | ∀ t ∈ traces(P) · ∃M ∈ Ms, ω ∈ Ω · t ∈
tracesVia(P, M)}.

Then, it easily follows from Theorem. 8.1.2 that a cover of P induces an event
trace set that covers the abstract event traces of P.

Corollary 8.1.1. With maximally sound abstraction parameter functions, and a cover
Ms ∈ covers(P) then: α(traces(P)) ⊆ ⋃

M∈Ms atraces(A(M)).

Proof Consider that each trace in P passes through at least one method in the
cover Ms. Then, since from t ∈ traces(P) we can conclude that α(t) ∈
α(traces(P)) (by Definition. 8.1.4), and by Theorem. 8.1.2 and Definition. 8.1.6
we can conclude that ∃M ∈ Ms · α(t) ∈ atraces(A(M)).

Such covers could be constructed through a depth-first search of the program
automaton (exploring also the possibly called automata), which is known to be
linear in the size of the graph. In this search we would explore every symbolic
path from the initial state of the program and end state of the program and note
the set of methods called by states in that path. Then a cover of the program can
be created by choosing a method from each such set.

Here we have considered a purely control-flow abstraction of a CFA, however
a CFA, like a program, also encodes some variable state. In the next section we

8.1. INTRAPROCEDURAL ABSTRACTIONS 103

Listing 8.1: Example of compliant use of Iterator.
1 public static Integer safeNext(Iterator<Integer> it){

2 int val;

3 if(it.hasNext()){

4 val = it.next();

5 } else{

6 val = -1;

7 }

8
9 return val;

10 }

consider how variable state abstractions can be encoded in our framework, and
define a simple but useful abstraction.

8.1.2 A Variable State Abstraction through Propagation

Consider Listing. 8.1, that returns the next value in an iterator if present, and
−1 otherwise. Figure 8.3 represents a CFA that represents the behaviour of
Listing. 8.1. If we want to be able to verify a property like it.next() cannot be
called unless it.hasNext() is true (as illustrated in Figure. 7.2(b)) here we must be
able to determine that at state B in Figure 8.3 it.hasNext() holds true. This can
be easily concluded by analysing the condition on the transition into B, and the
knowledge that calling it.hasNext() has no side-effects (and thus it continues
holding). Then, to be able to do this automatically we will describe a simple
condition propagation algorithm that associates states with conditions.

Conditions cannot be propagated forward in an unconstrained manner, since
actions may be performed to change the symbolic state in such a way that a
condition no longer holds. For example in Figure 8.3 executing the statement
it.next() possibly affects the value returned by it.hasNext(), i.e. if it is called
again after state B it may return false. Here we assume that we have an operator
⊗ that soundly relates a condition and a statement if execution of the statement
does not affect the condition, or if the statement preserves the condition. We
characterise this in terms of program symbolic states, while we also overload it
for methods and calls to deal with outside behaviour that may affect a condition.

Definition 8.1.7. A condition c is said to be preserved by a statement st if when the
condition holds on a program symbolic state then the state produced by applying the
statement still respects the condition: c⊗ st⇒ (∀ω ∈ Ω · c(ω)⇒ c(st(ω))).

We overload this for methods by considering the set of used by a method’s transitions

104 CHAPTER 8. RESIDUAL ANALYSIS

Astart

B

C

D

E

F

G

it.hasNext() . I

. I before(it.next())

!it.hasNext() . I

. val = it.next() I

. val = -1 I

. I

. return val I

Figure 8.3: CFA representing Listing. 8.1.

(stmts(M)
def
= {st | ∃ s, s′, c, st, e · s c . st I e−−−−−→ s′}), and those on the methods it possibly calls1:

c⊗M⇒ (∀M′ ∈ methodsOf (M), st ∈ stmts(M′) · c⊗ st).
We overload this also for calls: c⊗ call⇒ (∀ω ∈ Ω · c⊗ call(ω)).

The preservation relation defined here abstractly could for example involve
looking at whether a statement modifies variables used in the condition.

More sophisticated analyses consider how a statement affects a condition, e.g.
given a condition x < y and an assignment x = x + 1 the condition could be
transformed into x ≤ y. This can however complicate things, especially with
regards to loops where loop invariants have to be identified for a sound and
finite analysis [Furia et al., 2012]. By only propagating conditions (which act as
state invariants here) until a statement that affects them is executed we avoid this
problem, at the price of weaker state invariants.

We will thus not be encoding the precise effects of statements, however instead
we assume a simple analysis that extracts conditions that always hold true after
the execution of a statement. A simple example is that a statement x = 7 implies
the condition x == 7. We can characterise such an analysis in terms of a relation
by considering the effects a statement has on a symbolic state.

Definition 8.1.8. A condition c is said to be a post-condition of a statement st if it
always holds true after st is applied: ∀ω ∈ Ω · c(st(ω)). We assume an analysis that
produces a subset of conditions related with a statement in this way: post(st) ⊆ {c | ∀ω ∈
Ω · c(st(ω))}.

1Recall this includes itself.

8.1. INTRAPROCEDURAL ABSTRACTIONS 105

This kind of analysis is common in verification, e.g. for the purposes of
symbolic execution Baldoni et al. [2018].

Such an analysis can easily and cheaply be created by analysing the syntactic
structure of a statement, and treating any operations that possibly require more
intensive analysis (e.g. setting the value of a variable to the result of a function)
as simply implying the true condition. Consider a statement block x = 7; x =

x + 1;. We will be able to conclude that x == 7 after the first statement, however
we cannot give a condition that is a post-condition of the second statement,
given the recursive reference. On the other hand, if the program is in single
assignment form, i.e. x0 = 7; x1 = x0 + 1; we would be able to have a more
precise analysis. Here however we remain agnostic of the program form. Then
we shall be annotating each state in a CFA abstraction by condition sets, which
are updated given the conditions and statements with which transitions are
annotated. We define a function to update a condition set based on these.

Definition 8.1.9. A condition set cs is updated given a pair of a condition c and statement
st by adding c to the set and removing from it any condition that is not preserved by st,
and adding any post-condition of st: update(cs, (c, st)) def

= {c′ ∈ cs∪ {c} | c′⊗ st} ∪ post(st).

We can then use these relations to propagate conditions in a CFA abstraction
until a statement is met that affects the condition, while removing conditions at
states modeling behaviour external to the method being abstracted. A variable
abstraction will be represented using a relation ⊆ S× 2Cond, and will be used
to associate states with condition sets. Then, given a configuration of a state at
runtime we will be able to show how at least one of the associated condition sets
will have all its conditions hold true at runtime.

Definition 8.1.10. The simple propagation symbolic state abstraction of an abstract
CFA M, used by a program CFA P, is the pair of smallest relations ⊆ S× 2Cond

obeying the following rules:

1. The initial state is associated with the empty set of conditions.

s0 ∅

2. For a concrete transition from a state s to a non-call state s′, with condition c and
statement st, where s is related to cs, then s′ is related to the update of cs with
(c, st).

s c . st I e−−−−−→ s′ s cs s′ 6∈ dom(calls) s′ 6∈ EM

s′ update(cs, (c, st))

106 CHAPTER 8. RESIDUAL ANALYSIS

3. For a concrete transition from a state s to a call state s′, with condition c and statement
st, where s is related to cs, then s′ is related to the update of cs with (c, st), but
without any conditions not preserved by the calls of s′.

s c . st I e−−−−−→ s′ s cs s′ ∈ dom(calls)
s′ {c ∈ update(cs, (c, st)) | ∀ call ∈ calls(s) · c⊗ call}

4. For a concrete transition from a state s to an end state s′, with condition c and
statement st, where s is related to cs, then s′ is related to the update of cs with
(c, st), but without any conditions not preserved by other methods of the program2.

s c . st I e−−−−−→ s′ s cs s′ ∈ EM

s′ {c ∈ update(cs, (c, st)) | ∀M′ ∈ methodsOf (P), M′ 6= M∧ c⊗M′}

Note that an optimisation here would be to reduce the symbolic state ab-
straction by removing a condition set associated with a state s if there is another
condition set associated with s that is stricter (i.e. that implies it).

Then, we have described a method to associate CFA states with sets of condi-
tions, where given any execution prefix to such a state at runtime then at least
one of the invariant sets will hold true at runtime (e.g. if a state s is associated
with sets {c1, c2} and {c3, c4} then the condition (c1 ∧ c2)∨ (c3 ∧ c4) is always true
for configurations of s during an execution).

Theorem 8.1.3. ∀ω ∈ Ω · (s↓0 , ω0)⇒ (s , ω) ⇒ ∃ s cs · ∀ c ∈ cs · c(ω)

Proof We prove this by induction on the structure of the big-step transition.

For base case the result easily follows by the first rule, since the empty con-
dition set trivially satisfies the right-hand side of the required implication.

For the inductive hypothesis we can assume the required statement up to a
certain transition sequence.

For the inductive case (s↓0 , ω)⇒ (sx, ω)→ (sy
1, ω′) we can take cases on the

values of x, y ∈ {↑, ↓}.

Case 1 : (x, y) = (↑, ↓)
This implies there is a transition between s and s1, by the semantics of
CFAs: s c . st I e−−−−−→ s1. By the inductive hypothesis we can also conclude
there is some css where s css and css(ω).
Consider that s1 is not an end state.
We then consider two further cases, i.e. whether s1 is a call state or not.

2Here we can make this more precise by adding some interprocedural analysis to consider
only the statements possibly executed after a method.

8.1. INTRAPROCEDURAL ABSTRACTIONS 107

Case 1.1 : s1 6∈ dom(calls)
In this case rule 2 applies.
By the semantics of CFAs then we can conclude that ω′ = st(ω′),
and that c(ω). The result easily follows by considering the defini-
tion of update in terms keeping only conditions not affected by st
and adding post-conditions of st.

Case 1.2 : s1 ∈ dom(calls)
In this case rule 3 applies.
The same argument as in the previous case applies here, since the
condition set added by rule 3 is a subset of the condition set added
by rule 2. Note that in this case a call has not been executed yet.

Case 2 : (x, y) = (↓, ↑)
This case implies that s = s1. There are two cases.

Case 2.1 : s 6∈ dom(calls)
In this case then by the semantics of CFAs ω = ω′ and then the
result is exactly the inductive hypothesis.

Case 2.2 : s ∈ dom(calls)
In this case rule 3 is relevant.
Note how the condition set associated with call states by rule 3
removes any conditions possibly affected by th potential calls at
runtime.

We are left to prove the case that s1 is an end state. In that case rule 4
applies. The argument about update as used in Case 1.2 applies, since
we are simply pruning the updated condition set. The point of this
pruning is to remove conditions that do not apply after execution of
the CFA, but that has no bearing on this theorem.

2

This is simply one variable abstraction that we present for both illustrative
purposes and use for its simplicity and lack of computational expense. The basic
framework behind this abstraction (i.e. a relation that associates states with sets
of conditions, and an update function for this) is general enough to record the
information of more powerful data-flow analyses.

In the next section we present a residual analysis based on the synchronous
composition of a CFA abstraction with a DEA. We exploit variable abstractions
to reduce this composition, by removing transitions that are not viable. An
interesting aspect of a residual we present is that it is computed piece-wise over
each method of the program.

108 CHAPTER 8. RESIDUAL ANALYSIS

8.2 Verification with Residuals

In this section we describe and motivate some residual analyses for properties as
DEAs and programs as CFAs. The analysis we present will allow us to check for
compliance of a CFA with a DEA and failing that produce a residual property.

We defined compliance of a CFA against a DEA in terms of the whether any
traces of the CFA are violating traces of a DEA. For simplicity assume a flat CFA
(without call states), then we can soundly check for this compliance by analysing
the synchronous composition of the CFA and DEA. States in this composition are
pairs of CFA and DEA states. Then, if we can determine compliance if no pair
of states where the DEA state is a violating state is reachable in the composition.
However CFAs in general are not flat.

We propose that instead of a CFA we can consider a CFA abstraction, and
compose it in a similar way with the DEA. If we consider the CFA’s main method
in this way we can make conclusions about the program. If instead we consider
a CFA of a method called by the main method we can only make conclusions
about the executions that pass through that method. Here we can use the notion
of covers, to collect conclusions made from each method to a conclusion about
the program, based on the notions presented in Section 8.1.1.1.

The residual analyses we present will proceed in this manner, where we anal-
yse the synchronous composition of an abstract CFA with a DEA, which we term
an abstract monitored system. We choose to focus on each method, instead of a
flattening of the main method CFA, trading a singular, very large but precise
composition for multiple smaller but coarser compositions. Each abstract moni-
tored system can be analysed to identify the CFA and DEA transitions that are
useful to give a verdict, and then dually transitions that are irrelevant to give a
verdict and be ignored. This will allow us to reduce both the property and the
instrumentation.

Here we will first present abstract monitored systems in Section 8.2.1, showing
how these intraprocedural systems can be analysed to conclude compliance of the
whole program and how further analysis using variable abstractions can make
the abstraction finer. We show how these systems can be analysed to identify
instrumentation that can be turned off safely, and to create different property
residuals in Section 8.2.2.

8.2.1 An Abstract Monitored System

Given a method M, and its abstraction A(M) we will be constructing an over-
approximation of its behaviour in synchronicity with a monitor of a property π,
where we call this abstraction the abstract monitored system of M given π.

8.2. VERIFICATION WITH RESIDUALS 109

This system is driven by transitions in A(M), and possibly matches them with
DEA transitions. At this stage matching is only done based on events, and thus
for soundness we must consider both the possibility that a DEA transition guard
matches and the possibility it does not (we shall be using variable abstractions
to prune any non-viable transitions, in Section 8.2.1.2). Each transition in the
abstract monitored system will then be tagged by a pair of labels representing a
concrete CFA transition and a DEA transition, possibly one of these labels can be
the empty label (�) denoting either an abstract CFA transition match, or no DEA
transition match. For example (s, q) c . st I e−−−−−→

e|g 7→a
(s′, q′) represents the execution of the

CFA transition (top) which causes the monitor transition (bottom) to activate also,
while (s, q) c . st I e−−−−−→

�
(s′, q) represents no DEA transition match, (s, q) �−−−→

e|g 7→a
(s′, q′)

represents an activation of the monitor by an abstract transition in the CFA, and
(s, q) �−→

�
(s′, q′) represents an abstract transition in the CFA without a monitor

activation.

Definition 8.2.1. The abstract monitored system of a DEA π and a symbolic control-
flow automaton M, given a program abstraction function A ∈ CFA → ACFA, written
M‖Aπ, is the automaton with states from SM ×Qπ and with transitions tagged by a pair
of CFA and DEA transition labels or a symbol �, →⊆ (SM ×Qπ)× ({�} ∪ (Cond×
STMT× Σ))× ({�} ∪ (Σ×Guard×Act))× (SM×Qπ), and obeying the following rules:

1. Given a configuration (s, q), where s and q have outgoing transitions with the same
event, then they both synchronously evolve together:

s c . st I e−−−−−→ s′ q
e|g 7→a−−−→ q′

(s, q) c . st I e−−−−−→
e|g 7→a

(s′, q′)

2. Given a configuration (s, q), then any transition from s is taken without considering
a DEA transition3:

s c . st I e−−−−−→ s′

(s, q) c . st I e−−−−−→
�

(s′, q)

3. Any abstract transition is taken without tagging the transition with any explicit
labels:

3This models three cases: (i) when there is no transition with the same event from q; (ii) when
e = ε; and (iii) when no property guard matches at runtime.

110 CHAPTER 8. RESIDUAL ANALYSIS

s
e
99K s′

(s, q) �−→
�

(s′, q)

4. Given a configuration (s, q), and s having an outgoing abstract transition with an
event matching a transition from q, the configuration after taking these transitions
is updated appropriately, with the transition only tagged by the DEA label:

s
e
99K s q

e|g 7→a−−−→ q′

(s, q) �−−−→
e|g 7→a

(s, q′)

We use⇒ for the transitive closure of→. We use x to refer to CFA transition labels,
and y to refer to DEA transition labels.

Throughout we will find useful a different transition function, one that given
(s, q)

y
−→
x

(s, q) ensures that (s, q) is reachable from the initial pair of states.

Definition 8.2.2. We write (s, q)
y−→
x
→(s′, q′) for (s0, q0)⇒ (s, q)

y−→
x

(s, q), and use =⇒⇒ for
its transitive closure.

We can then show that any execution step of M, and the corresponding step
in the monitor at runtime is replicated and abstracted in the abstract system.

Theorem 8.2.1. Any execution of method M, inducing a certain property state in a
property π, is reflected in the abstract monitored system M‖Aπ: ∀ω1, ω2 ∈ Ω, θ1, θ2 ∈
Θ, s1, s2 ∈ sM, q1, q2 ∈ Qπ · (sa

1, ω1)
ews
=⇒ (sb

2, ω2) ∧ (q1, θ1)
ews
=⇒ (q2, θ2) ⇒ ((s1, q1) =⇒

(s2, q2)).

Proof First we show this in the case of a small-step:: ∀ω1, ω2 ∈ Ω, θ1, θ2 ∈ Θ, s1, s2 ∈
sM, q1, q2 ∈ Qπ · (sa

1, ω1)
ews−→ (sb

2, ω2) ∧ (q1, θ1)
ews
=⇒ (q2, θ2) ⇒ ((s1, q1) =⇒ (s2, q2))

Recall that while proving Theorem. 8.1.1 we showed (sa
1, ω1)

ews−→ (sb
2, ω2) is

reflected in the abstraction.

Case 1 : s1 = s2.
Then, by the CFA operational semantics there are two other cases.
Either s1 is not a call state and the result follows. Or s1 is a call site,
and has looping transitions for each event.
By induction on the length of ews then we can attempt to prove the
result.

8.2. VERIFICATION WITH RESIDUALS 111

For the base case, consider that ews = 〈〉, then the result easily follows
(since every state is related to itself in the transitive closure).
Then for the inductive hypothesis we assume that the result holds.
For the inductive case consider that ews = ews′++〈e, ω〉, and then we

have to prove that (q1, θ1)
ews′
==⇒ (q′, θ′)

〈e,ω〉−−→ (q2, θ2) ⇒ ((s1, q1) ⇒
(s1, q2)).
By the inductive hypothesis we know that (s1, q1)⇒ (s1, q′), and then
we have to prove that (s1, q′)⇒ (s1, q2). By case analysis of the DEA

operational semantics on (q′, θ′)
〈e,ω〉−−→ (q2, θ2) then either q′ = q2 and

the result follows, or q′ 6= q2 and ∃ e, c, a · q′ e|c 7→a−−−→ q2. By rule 4 of
Definition. 8.2.1 then the result follows (since s1 is a call state and there
is a looping transition for e around it).

Case 2 : s1 6= s.
There are two cases here then, by the operational semantics of CFAs:
(i) either ews = 〈〉 (i.e. no event is activated), from which the result
easily follows (where q = q1) by the third rule of Definition. 8.2.1; or (ii)
ews = 〈e, ω〉. The second case implies there is a transition s1

c . st I e−−−−−→ s,
from which the result easily follows by the first rule of Definition. 8.2.1.

The required results follows easily by definition of transitive closure. 2

This abstract monitored system will be used as the basis of both instrumen-
tation reduction and property reduction. We can use this abstract monitored
system to not only produce results about a method, but when constructing this
for all the methods of a program we can infer properties of the whole program.

Recall that the CFA abstraction approximates the set of all executions through
the abstracted method. Then, if we abstract each method in this way we have an
abstraction of every possible path (in fact we can do better than this by choosing
only one candidate for each symbolic path), and from such a collection we can
produce guarantees about the whole program.

8.2.1.1 Interprocedural Compliance from Intraprocedural Analysis

In this section we are interested in determining whether a program CFA is
compliant with a DEA. We consider several conditions that allow us to determine
this from the abstract monitored system.

112 CHAPTER 8. RESIDUAL ANALYSIS

A simple compliance condition is to simply check if there is any property bad
state reachable in the abstract monitored system. If there is not then clearly the
program cannot ever be in a violating state.

Proposition 8.2.1. @qB ∈ B, sE ∈ EP · (s0M , q0)⇒P‖Aπ (sE, qB))⇒ P ` π

Proof This follows easily from Theorem. 8.2.1. Take the contrapostive of Theo-
rem. 8.2.1, then LHS of the proposition we are trying to prove implies that
any execution at runtime cannot reach a bad state in P, and then by the
definition of the traces of CFAs and ` we can conclude that P ` π.

As alluded to before, we can even formulate a stronger condition by consider-
ing the covers of P, as defined in Definition. 8.1.6, instead of all the methods at
once. Then, since every cover induces an over-approximation of the program, if
we manage to find one such cover where there is no violation we can conclude
that the program does not violate the property.

Theorem 8.2.2. (∃Ms ∈ coversOf (P) · ∀M ∈ Ms · @qB ∈ B, sE ∈ EM · (s0, q0) ⇒M‖Aπ

(sE, qB))⇒ P ` π

Proof Take the contrapositive of Theorem. 8.2.1, then the LHS of the proposition
we are trying to prove implies that any execution at runtime cannot reach a
bad state in any M ∈ Ms, and if the abstract traces of Ms cannot reach a bad
state then neither can the abstract traces of P (since by Theorem. 8.1.1 the
union of all abstracted traces of each method in Ms cover the abstract traces
of P).

However, initial states, call states, and final states allow for very coarse
behaviour, which makes these conditions very weak in practice. There will
be many spurious violations that occur at coarsely approximated states which do
not occur in the actual program at runtime.

Consider then that we are analysing each method in the program in a sound
manner. Then, if the program violates the property there will be some method
for which a state belonging to it is associated with a bad state of the property.
More strongly, since we are analysing all the possible methods called at runtime,
if the program violates the property then some method will induce a property
bad state by taking a concrete transition (as opposed to an abstract transition).
Consider then that if all violations in all method abstractions occur because of
events recorded from the abstract transition function then there is no violation,
since if such violations were real they would also occur using some local concrete
transition in some other method.

Thus a stronger condition for compliance is to simply check that no method
abstraction induces an internal violation.

8.2. VERIFICATION WITH RESIDUALS 113

Theorem 8.2.3. (∀M ∈ methodsOf (P) · @q ∈ (Q \B), qB ∈ B, s, s′ ∈ SM · (s, q) x−→
y
→(s′, qB)∧

x 6= �)⇒ P ` π

Proof We prove this by considering its contrapostive.

Suppose P 6` π, then we have to show that ∃M ∈ methodsOf (P) · ∃ q ∈
(Q \ B), qB ∈ B, s, s′ ∈ SM · (s, q) x−→

y
→(s′, qB) ∧ x 6= �.

Consider P 6` π, this means that there is some trace in P that is violating,
i.e. ∃ ews ∈ traces(P), sE ∈ EP, θB, ω0, ωE · (s↓0 , ω0)

ews
=⇒ (s↑E, ωE) ∧ (q0, θ0)

ews
=⇒

(qB, θB).

Without loss of generality, we can re-rewrite ews to isolate the step that
causes the violation, i.e. ∃ ews′, ews′′, ews′′ · ews = ews′++ews′′++ews′′′, q1 ∈
(Q \ B) · (s↓0, ω0)

ews′
==⇒ (sa

1, ω1)
ews′′−−→ (sb

2, ω)
ews′′′
==⇒ (s↑E, ωE) ∧ (q0, θ0)

ews′
==⇒

(q1, θ1)
ews′′
==⇒ (qB, θB)

ews′′
==⇒ (qB, θ)B.

By Theorem. 8.2.1 in the abstract monitored system we have that (s1, q1)⇒
(s2, qB).

There are two cases here:

Case 1 : s1 6= s2 and then by the operational semantics of CFAs ∃ c, st, e ·
s1

c . st I e−−−−−→ s2, and by the definition of the operational semantics

of DEAs ∃ g, a · q1
e|g 7→a−−−→ qB, and then by rule 1 Definition. 8.2.1

(s1, q1)
c . st I e
====⇒

e|g 7→a
(s2, qB) and then the result follows with M = P.

Case 2 : s1 = s2 and the s1 is a call site. Here we are assuming there is no
infinite string of such calls, and then we can replicate the argument for
the call at s1.

2

The abstract monitored system is however very coarse, since we are branching
on the possibility of a guard holding and not holding for every possible matching
DEA transition. We can make this finer by considering a variable state abstraction,
which we illustrate next.

8.2.1.2 Exploiting Variable Abstractions

Recall Listing. 8.1, a Java method that returns the next value in an iterator, if any,
represented as the CFA Figure 8.3. While a property we desire to prove of this is

114 CHAPTER 8. RESIDUAL ANALYSIS

For each: Iterator it 1start
before(it.next()) | !it.hasNext()

Figure 8.4: DEA specifying that an iterator over a list should only be queried for
the next element when it also signals that it has a next element.

Figure 8.4. For simplicity we assume that operations on the iterator only occur
in Listing. 8.1, and thus there is no behaviour outside the method to abstract
and the abstraction of the CFA is the CFA itself. Consider the corresponding
abstract monitored system in Figure 8.5. If we apply the described control-flow
analysis to this example we would not be able to prove the property (although
it clearly holds) since on the transition between state B and state C in Figure 8.3
we have to take both the transition between 1 and ×, and remain at state 1 in
Figure 8.4. However, if we propagate the condition between state A and state B
of the program then we can conclude that the transition to the bad state in the
DEA cannot be taken.

Given a variable abstraction we then want to be able to detect whether a
guard is contradicted by a condition set or not. Here we do this by employing an
theorem prover, namely an SMT solver [Barrett and Tinelli, 2018]. Here we do
not assume a specific solver or an approach to solving this problem. Instead, we
simply assume such a procedure that checks whether there are symbolic states on
which a guards can be true, where it may signal that this is possible (>), that it is
not (⊥) or that it was not able to make a decision (?). The latter case is possible
since we are not assuming the background theory chosen for the symbolic states
is satisfiable.

Definition 8.2.3 (Guard Satisfiability). We assume a procedure sat ∈ 2Guard 7→
{>,⊥, ?} that:

(i) returns > only when there are symbolic states for which the input guard holds:
(sat(gs) = >)⇒ ∃ω, θ · ∀ g ∈ gs · g(ω, θ), and

(ii) returns ⊥ only when there are no symbolic states for which the input guard holds:
(sat(gs) =⊥)⇒ @ω, θ · ∀ g ∈ gs · g(ω, θ).

We say two guards are compatible if their conjunction is satisfiable.

To be able to compare conditions with guards we then define a lifting from
conditions to guards, by simply adding an unused DEA symbolic state parameter.

8.2. VERIFICATION WITH RESIDUALS 115

(A,1)start

(B,1) (C,×) ...

(D,1) ...

(C,1) ...

it.hasN
ext()

.
I

�

!it.hasNext() . I

�

. I entry(it.next())

entry(it.next()) | !it.hasNext()

.
I

entry(it.next())

�

Figure 8.5: Partial view of the abstract monitored system of Figure 8.3 and
Figure 8.4, with the dotted transition between (B, 1) and (C,×) denoting the
violating transition we wish to prune.

Definition 8.2.4. The lifting of a program condition onto a property guard is the
function �Θ ∈ Cond→ Guard defined as: (λ ω. expr)�Θ

def
= λ ω, θ. expr. We overload this

to sets of conditions, such that cs�Θ
def
=

∧
c∈cs c�Θ.

Given such a lifting procedure we can prune an abstract monitored system,
removing any non-viable transitions. We give a definition for this pruned system
and discuss it afterwards.

Definition 8.2.5. The abstract monitored system with respect to a variable state abstrac-
tion ⊆ S× 2Cond between a CFA M and property π, denoted by M‖ A π, is defined by
the following rules:

1. A transition matching both a DEA and a CFA transition is kept only if the CFA state
associated with its source configuration has a condition set whose update w.r.t. the

116 CHAPTER 8. RESIDUAL ANALYSIS

transition is compatible with the guard.

(s, q) c . st I e−−−−−→
e|g 7→a

(s′, q′) ∃ s cs · sat(g∧ update(cs, (c, st))�Θ) 6=⊥

(s, q) c . st I e−−−−−→
e|g 7→a

(s′, q′)

2. A transition matching a DEA transition and an abstract transition is kept only if the
CFA state associated with its source configuration has a condition set compatible
with the guard.

(s, q) �−−−→
e|g 7→a

(s′, q′) ∃ s cs · sat(g∧ cs�Θ) 6=⊥

(s, q) �−−−→
e|g 7→a

(s′, q′)

3. A transition matching no DEA transition is kept if the possibly matching DEA
transitions do not have guards that cover all cases, i.e. their conjunction and
negation is not incompatible with every abstraction.

(s, q) c . st I e−−−−−→
�

(s′, q′) ∃ s cs · sat((
∧

q1
e|g′ 7→a−−−→q′1

¬g′) ∧ update(cs, (c, st))�Θ) 6=⊥

(s, q) c . st I e−−−−−→
�

(s′, q)

4. Any transition that does not match a property transition, and does not involve a local
transition is kept.

(s, q) �−→
�

(s′, q)

(s, q) �−→
�

(s′, q)

In the first case we consider that there is a concrete update in the CFA which
matches a transition in the DEA. Note how a CFA state may have multiple
condition sets associated with it, depending on the flow into the CFA, then to
keep a transition here we need to check that the guard of the DEA transition
is at least compatible with one such condition set. Note also however we are
not using the condition set associated with the source state but the condition
set after the statement st is executed. This is since the monitor is activated
after this st is executed. A weaker version of this would be to consider the
condition sets associated with s′ since update(cs, (c, st)) is included in it (by rule 3
of Definition. 8.1.10), however there may be other condition sets associated with
s′ which we do not need to consider here.

8.2. VERIFICATION WITH RESIDUALS 117

In the second case, where an abstract update in the CFA matches a transition
in the DEA we proceed similarly except that the condition sets associated with s′

have already been pruned appropriately for statements that can occur outside of
the method (by rules 3 and 4 of Definition. 8.1.10) and thus we can use it directly.

In the third case, when there is a concrete update in the CFA but no match
in the DEA, we have to consider whether a no match is actually viable here.
That is, we are checking whether the conjunction of the disjunction of every
DEA transition outgoing from q that could have matched is satisfiable or not. If
the guards are then determined to be mutually exclusive then there necessarily
will be a transition triggered at this point and we can forego transitioning with

no match. For example, consider that in the property we have q
e|g 7→a−−−→ q′ and

q
e|g′ 7→a′−−−−→ q′′ and no other transition from q. The third rule keeps a transition in

the monitored system if there may be a variable state associate with s such that g
and g′ are both false when applied to st(ω). That is, there is the possibility that
no transition matches.

For the last case, any abstract transition that matches no DEA transition
is kept, since it may encode control-flow necessary to ensure a proper over-
approximation.

We expect that the results using the purely control-flow abstract monitored
system hold for this abstract monitored system, since the pruned DEA transitions
are only removed when their guard cannot activate at runtime.

Theorem 8.2.4. Any removed transitions in the abstract monitored system with respect
to the variable abstraction cannot be exhibited at runtime.

Proof We want to show that that a transition is not in the pruned abstract moni-
tored system if it is impossible. We will be considering each pruning rule
(1-3) separately. Throughout we will be using (s, q) 6 x−→

y
(s′, q′) to denote that

the respective transition is in the original abstract monitored system but
not in the reduced version.

1. (s, q) 6c . st I e−−−−−→
e|g 7→a

(s′, q′)

We want to show that such a transition is only removed if whenever
the CFA transition triggers at runtime then the guard g does not hold
on the runtime state.
By the first rule of Definition. 8.2.5, these types of transitions are only re-
moved if there is no condition set associated with s such that the guard
and the update of the condition set with the transition are compatible.
That is we can conclude that ∀ s cs · sat(g∧ update(cs, (c, st))�Θ) =⊥.

118 CHAPTER 8. RESIDUAL ANALYSIS

By definition of sat in Definition. 8.2.5, Theorem. 8.1.3, and the defini-
tion of update in Definition. 8.1.9 then the required result that g will
never hold true on the concrete symbolic states easily follows.

2. (s, q) 6�−−−→
e|g 7→a

(s′, q′)

We have several cases to consider, depending on whether the abstract
transition is looping around an: (i) initial state; (ii) end state; or (iv)
call state.
Consider throughout that such a transition is only removed, by rule 2,
if ∀ s cs · sat(g∧ cs�Θ) =⊥.

Case 1 : Initial state
The condition set associated with the initial state is always the
empty set, thus no such transition is removed.

Case 2 : End state
In this case, for correctness, we have to show that there is no
other (reachable) CFA in which the DEA transition in question can
trigger. Consider that this is ensured by rule 4 of Definition. 8.1.10,
since we are removing any conditions not invariant over the rest
of the functions.

Case 2 : Call state
Here we require that any possibly called function cannot possibly
activate the DEA transition in question. Consider that this is
ensured by rule 3 of Definition. 8.1.10, since we are removing
conditions that are not invariant over the possible calls.

3. (s, q) 6c . st I e−−−−−→
�

(s′, q′)

In this case we want to show that there must be a DEA transition that matches
in the CFA transition in question at runtime
By the third rule of Definition. 8.2.5, these types of transitions are only re-
moved if there is no condition set associated with s such that there is always
some available guard that is compatible with the condition set. That is we
can conclude that ∀ s cs · sat((

∧
q1

e|g′ 7→a−−−→q′1
¬g′) ∧ update(cs, (c, st))�Θ) =⊥.

If e = ε the result easily follows.
Consider then that e ∈ Σ.
By definition of the operational semantics of DEAs, Definition. 7.1.3, a CFA
transition does not match a DEA transition if the program symbolic state it
produces does not activate the guard of the transition, i.e. if the negation of the
guard holds true. Then, the conjunction of all such negated guards represents
the guard that must hold true for no transition to trigger. Consequently, if the

8.2. VERIFICATION WITH RESIDUALS 119

new guard is not compatible with the program state after the transition then
there will always be a transition that matches.

Consider that these ensure the required result by the operational semantics
of CFAs and DEAs, Definition. 7.1.3 and Definition. 7.2.4.

The results in the rest of the chapter do not depend on this reduction, but its
application can optimise the results of residual analysis.

In the example we previously considered then the optimised abstract moni-
tored system constructed is Figure 8.5 without the dotted transition, which allows
us to determine that the program is compliant with the property.

Given we have discussed ways to infer compliance of the program at runtime,
and shown how pruning the abstract monitoring system using a variable state
abstraction can be useful we move on to describing the main novel contributions
here, the production of residual instrumentation and properties for DEAs against
CFAs.

8.2.2 Residual Analysis

In this chapter we discuss analyses of an abstract monitored system to identify
instrumentation and DEA transitions that are not useful for a monitor at runtime
and can be removed.

For simplicity, in this chapter we may use examples of CFAs with only event
annotation, ignoring conditions and statements. Thus, whenever a CFA appears
without conditions and statements in this chapter is to be assumed that there is a
specific deterministic annotation that we are ignoring for illustrative purposes.

We will be using Figure 8.6 as a running example. This is a typestate property
over a user u. In this section we assume the program has only one such user,
leaving the case of multiple users for future work. This property is a specification
of several privacy constraints in the context of a transaction system, using × to
mark bad states, and X to mark accepting states. It specifies that upon a user
registering (the transition 1→ 2) they have a certain limit on transactions (2→ 2
and 2→ ×) until they are authenticated (2→ 3, we use ret as syntactic sugar to
denote the return value of the authenticate function call). We also assume there
are some functions in the program that can pass information to third parties, and
that they can only be called if the privacy level of the user allows information
flow to third parties (3→ ×). Note, we let information loss events happen at state
2 since we assume sensitive information is only provided during authentication.
Moreover upon de-registration, which is only allowed for authenticated users
(3→ 4) we require the data of the user maintained by the program to be sanitized

120 CHAPTER 8. RESIDUAL ANALYSIS

1start 2 3

4X

register(u)

u.transact(v) | cumulativeV > limit

u.transact(v)
| cumulativeV ≤ limit
7→ cumulativeV = cumulativeV - v

authenticate(u)
| ret = true

u.infoLossEvent
| u.privacy 6= 3RDPARTIESOK

enter(deRegister(u))

sanitizeDataOf(u)

exit(deRegister(u))

u.infoLossEvent

Figure 8.6: Running example of specification of a transaction system with certain
data security and privacy guarantees.

(4→ X), otherwise if de-registration ends successfully without sanitation or if
an information loss event occurs there is a violation (4→ ×).

8.2.2.1 Reducing Instrumentation

Consider that from an abstract monitored system we can identify those transitions
of the CFA that never activate a DEA transition, i.e. they never cause a change in
the property state in the configuration.

We characterise this by first considering the transitions of a method in M
that are useful in the context of monitoring a DEA. Namely, we identify those
transitions of the CFA whose source state can reach a bad state of the property.
We also require that this source state is not already a bad state, since subsequent
transitions will maintain this verdict and can be ignored.

Definition 8.2.6. The useful transitions of a method M in the context of a program P, a
property π, and a program abstraction A ∈ CFA→ ACFA are those transitions of M that
match some property transition in the abstract synchronous composition and whose source
state is not a bad state but can reach a bad state: useful(M, π)

def
= {s c . st I e−−−−−→M s′ | ∃ s′′ ∈

8.2. VERIFICATION WITH RESIDUALS 121

SM, q ∈ (Qπ \ Bπ), q′ ∈ Qπ, qB ∈ Bπ, e ∈ Σ · (s, q) c . st I e−−−−−→
e|g 7→a
→(s′, q′) ∧ (s, q)⇒ (s′′, qB)}.

Then silencing transitions in M that are not useful is a safe event reduction,
since we are only removing instrumentation that affect verdict giving. We define
this reduction.

Definition 8.2.7. The useless instrumentation reduction of M with respect to a
property π, in the context of a program P and a program abstraction A ∈ CFA→ ACFA,
is the control-flow automaton M \ π with a transition function containing all the useful
transitions of M, but silencing event triggering for other transitions of M that are
not useful: →M\π

def
= useful(M, π) ∪ {s c . st I ε−−−−−→ s′ | s c . st I e−−−−−→M s′ ∧ (s, c, st, e, s′) 6∈

useful(M, π)}.
Moreover calls in the reduced automaton are re-directed towards their respective

instrumentation reduction: callsM\π(s)
def
= λ ω.callsM(s)(ω) \ π.

Note how we are keeping all those transitions from a state (s, q) that are
reachable from the initial state, and that can reach a bad state (see Definition. 8.2.2).
Consider there are two transitions that are only used in the following way in the
abstract monitored system: (s, q) c . st I e−−−−−→

e|g 7→a
(s′, q′) c′ . st′ I e′−−−−−−→

e′|g′ 7→a′
(s′′, q′′) and (s, q) can be

reached from the initial state and can reach bad state, but the latter conditions
does not hold for (s′, q′). Consider that since (s′, q′) cannot reach a bad state then
upon having reached (s′, q′) in the composition we can determine satisfaction, and
thus we can silence any future instrumentation. However, since (s, q) can reach
a bad state we still need the transition to (s′, q′) since otherwise at runtime we
may potentially affect the outcome of monitoring (i.e. if we silence the transition
we will not reach a concrete version of (s′, q′) at runtime and may instead reach a
state that can still violate).

For example, consider the running example and assume the following transi-
tions is in its abstract monitored system Figure 8.6:

(s, 4)
. sanitizeDataOf(u) I sanitizeDataOf(u)−−−−−−−−−−−−−−−−−−−−−−→

sanitizeDataOf(u)
(s′,X)

. return; I exit(deRegister(u))−−−−−−−−−−−−−−−−→
exit(deRegister(u))

(s′′,X)

If the transition between s′ and s′′ only matches in this part of the abstract
monitored system, then we do not need to listen for exit(deRegister(u)) at runtime,
since a verdict will always have already been given upon it being activated.

Then we can conclude that this reduces the instrumentation of a method in a
correct manner, since the removed transitions never cause progress towards a
verdict.

Theorem 8.2.5. P π
= P \ π

122 CHAPTER 8. RESIDUAL ANALYSIS

Intuition Consider that π
=, by Definition. 7.3.4, requires that every possible trace

prefix in the program is violating iff it is violating in the reduced program.
However, P \ π , by Definition. 8.2.7, only removes transitions from states
in the abstract monitored system that cannot reach a bad state. Then the
removed instrumentation will never appear in a trace to a bad state.

Proof We need to show that ∀ω ∈ Ω, i ∈ N · tracei(P, ω)�Σ ∈ V(π) ⇔ tracei(P \
π, ω)�Σ ∈ V(π).

Assume tracei(P, ω)�Σ ∈ V(π), which by definition of V(π) means ∃ qB ∈
Bπ, θB ∈ Θ · (q0, θ0)

tracei(P,ω)�Σ
======⇒ (qb, θB).

By the operational semantics of CFAs, Definition. 7.2.4, then either there is
a state s that can be reached using tracei(P, ω), or tracei(P, ω) reaches until
the middle of a call:

∃ s · (s↓0 , ω)
tracei(P,ω)
=====⇒ (sa, ω′)

or

tracei(P, ω) = ews++ews′ ∧ ∃ s · (s↓0 , ω)
ews
=⇒ (s↓, ω′)

ews′++ews′′−−−−−→ (s↑, ω′′)

For the first case, by Theorem. 8.2.1 we can immediately conclude that
∃ s ∈ SP, qB ∈ B · (s0, q0) ⇒ (s, qB). This is also true for the second trace,
since we can conclude ∃ q · (s0, q0) =⇒ (s, q) and since s is a call state and
by Definition. 8.1.2 we are allowing any action at s in the abstraction (and
since we know q can reach a bad state), we can also state that ∃ s ∈ SP, qB ∈
B · (s0, q0)⇒ (s, qB).

Now, assume for contradiction that tracei(P \ π, ω)�Σ 6∈ V(π).

If tracei(P, ω) = tracei(P \ π, ω) there is a contradiction, since we know
tracei(P, ω)�Σ ∈ V(π).

Then consider that tracei(P, ω) 6= tracei(P \ π, ω). Then, there is some posi-
tion where in the second trace an event is silenced: ∃ j, ej ∈ Σ · tracei(P, ω) =
(ej, ωj) ∧ tracei(P \ π, ω) = (ε, ωj)).

Then for some M ∈ methodsOf (P) there is a transition used by tracei(P, ω)

such that s1
c . st I e−−−−−→M s2, that is silenced to s1

c . st I ε−−−−−→M\π s2 and used by
tracei(P \ π, ω).

Consider that this M is P, then by Definition. 8.2.7 we can then conclude
that @q, q′ ∈ Q, qB ∈ B, s3 ∈ S · (s1, q)−→→P‖π(s2, q′) ∧ (s1, q) ⇒ (s3, qB). By
considering the contrapositive of Theorem. 8.2.1 we can then conclude that

@ews, ω, ω′, sa
3, qB ∈ B, θB · (s↓0, ω)

ews
=⇒P (sa

3, ω′) ∧ (q0, θ0)
ews�Σ==⇒ (qB, θB). But

this contradicts the assumption that tracei(P, ω)�Σ ∈ V(π).

8.2. VERIFICATION WITH RESIDUALS 123

If M is not P but a method called by P, then we can repeat the same argument
for M, but instead of starting from q0 we start with the property state
associated with the entry in M.

We have then shown that tracei(P, ω) ∈ V(π)⇒ tracei(P \ π, ω) ∈ V(π).

Assume that tracei(P\π, ω) ∈ V(π), and for contradiction that tracei(P, ω) 6∈
V(π). Then the traces are different and there is some position where the
first position has a silenced version of the pair in the other. However, using
dual arguments as before, we can then conclude that tracei(P \ π, ω) does
not violate, since we can only turn off instrumentation that is not used on
the way to a violation, which contradicts the assumption here.

2

Other instrumentation reductions are those of Bodden et al. [2010] and Dwyer
and Purandare [2007]’s approaches, which we do not consider here.

In the next section we focus on property residuals, and show how property
residuals can be produced by analysing the abstract monitored system. Producing
residuals is used both to allow the user to analyse exactly what is left to prove
of the original property, and to allow for subsequent proof attempts to exploit
interprocedural information encoded in the reduction.

8.2.2.2 Property Residuals

The creation of residuals here follows the previous presentation of compliance
checking, given that creating residuals is an extension of compliance checking.

Consider first that from each abstract monitored system we can infer a DEA,
by considering all the DEA transitions used in the composition from states that
can reach a bad state.

Definition 8.2.8. The simple residual induced by a method M given a property π is the
property π \M produced by considering all the transitions used in the respective abstract

monitored system: →π\M
def
= {q e|g 7→a−−−→ q′ | ∃ s, s′, s′′ ∈ S, qB ∈ Bπ, x · (s, q) x−−−→

e|g 7→a
→(s′, q′) ∧

(s, q)⇒ (s′′, qB)}. We assume this is optimally reduced.

For example, consider the abstraction Figure. 8.7(a) in the context of the
running example Figure 8.6, our π here. Recall that Figure. 8.7(a) represents a
CFA abstraction, but we are ignoring conditions and statements here for sim-
plicity. Consider that before(A) = after(D) = Σ then the simple residual will
simply be equal to π, since all transitions in π would be used by the initial
state A. However we can fine tune the abstraction of the outside behaviour

124 CHAPTER 8. RESIDUAL ANALYSIS

with a cheap and sound analysis by considering only the set of events that
cannot occur in the other methods. Assume then that before(A) = after(D) =
Σ \ {enter(deRegister(u)), exit(deRegister(u)), sanitizeDataOf (u)}. Then the simple
residual of the abstraction with these parameters would be π without the tran-
sitions outgoing from state 4, and with state 4 as an accepting state (recall that
the optimal reduction marks states that cannot violate as accepting), as shown
in Figure. 8.8(a). To be useful then π \M requires at least some interprocedural
information.

We can show then that the simple residual of π given P is itself a residual of
π given P.

Theorem 8.2.6. π
π
= π \ P

Intuition π
=, by Definition. 7.3.5, requires the two properties to agree on the

prefixes of the traces of P that are violating. Consider that π \ P does not
contain only those transitions that cannot be used on the way to a bad state,
and then they will never be used at runtime with a violating prefix, since
the abstract monitored system is an over-approximation of the runtime
monitored system by Theorem. 8.2.1.

Proof We need to show that tracei(P, ω)�Σ ∈ V(π)⇔ tracei(P, ω)�Σ ∈ V(π \ P).

Assume tracei(P, ω)�Σ ∈ V(π).

We can then conclude that ∃ qB ∈ B, θB ∈ Θ · (q0, θ0)
tracei(P,ω)�Σ
======⇒π (qB, θB) by

definition of V(π), Definition. 7.1.4.

Assume then that tracei(P, ω)�Σ 6∈ V(π \ P) for contradiction.

Then we can conclude from this and from Definition. 7.1.4 that this trace
does not violate, i.e. @qB ∈ B, θB ∈ Θ · (q0, θ0)

tracei(P,ω)�Σ
======⇒π\P (qB, θB).

Recall that π \ P is a substructure of π and therefore the transitive closures
operate over a subset of the transitions of π. Then at some point the two
transitive closures diverge, and at this point there is some transition used in
the execution in π that is not used in π \ P’s execution. That is (q0, θ0)

ews
=⇒π

(q, θ)
ew−→π (q′, θ′)

ews
=⇒π (qB, θB) but ∃ q2 6∈ Bπ · (q0, θ0)

ews
=⇒π (q, θ)

ew−→π\P

(q, θ)
ews
=⇒π\P (q2, θ2) such that there is some transition q

e|g 7→a−−−→π q′ in π but

q 6e|g 7→a−−−→ π\P q′.

From (q0, θ0)
ews
=⇒π (q, θ)

ew−→π (q′, θ′)
ews
=⇒π (qB, θB), the starting assumption,

the definition of tracei (Definition. 7.3.3), and Theorem. 8.2.1 we can con-
clude that ∃ s′, s′′ ∈ SP · (s0, q0) ⇒ (s′, q) ⇒ (s′′, qB). Here, if we are the

8.2. VERIFICATION WITH RESIDUALS 125

Astart

B

C

D

{e ∈ before(A)}

{e ∈ after(D)}

enter(deRegister(u))

sanitizeDataOf(u)

exit(deRegister(u))

(a) Abstraction of the deregister method.

Astart

B

C D

E

F

{e ∈ before(A)}

{e ∈ after(F)}

infoLossEvent(u)

authenticate(u)

(b) Abstraction of authenticationProcess

method that branches, and authenticates the
user after the branches join.

Astart

B

DC E

F

G

register(u)

{e ∈ during(C)} {e ∈ during(D)}

u.transact(to,val)

(c) Main method P, where state C calls authorisationProcess and state D calls deregister.

Figure 8.7: Example program.

126 CHAPTER 8. RESIDUAL ANALYSIS

1start 2 3

4

register(u)

(v) | cumulativeV > limit

u.transact(v) | cumulativeV ≤ limit 7→ cumulativeV = cumulativeV - v
authenticate(u)
| ret = true

u.infoLossEvent
| u.privacy 6= 3RDPARTIESOK

enter(deRegister(u))

(a) Residual of Figure. 8.7(a), with before(A) = after(D) = Σ \ {enter(deRegister(u)),
exit(deRegister(u)), sanitizeDataOf (u)}.

1start 2 3

4X

register(u)

u.transact(v) | cumulativeV > limit

u.transact(v) | cumulativeV ≤ limit 7→ cumulativeV = cumulativeV - v
authenticate(u)
| ret = true

enter(deRegister(u))

sanitizeDataOf(u)

exit(deRegister(u))

(b) Residual of Figure. 8.7(b), with before(A) = after(F) = Σ \ {infoLossEvent(u)} and during(C) =
infoLossEvent(u).

1start 2 X
register(u)

u.transact(v) | cumulativeV > limit

u.transact(v) | cumulativeV ≤ limit 7→ cumulativeV = cumulativeV - v
authenticate(u)
| ret = true

(c) Optimised structural intersection of residuals in Figure 8.8.

Figure 8.8: Simple residuals.

8.2. VERIFICATION WITH RESIDUALS 127

3

4X

enter(deRegister(u))

sanitizeDataOf(u)

(a) Residual locally used
transitions of Figure. 8.7(a),
with before(A) = after(D) =
Σ \ {enter(deRegister(u)),
exit(deRegister(u)),
sanitizeDataOf (u)}.

2 3

authenticate(u)
| ret = true

(b) Residual locally used transitions
of Figure. 8.7(b), with before(A) =
after(F) = Σ \ {infoLossEvent(u)} and
during(C) = infoLossEvent(u).

1start 2
register(u)

u.transact(v) | cumulativeV > limit

u.transact(v) | cumulativeV ≤ limit 7→ cumulativeV = cumulativeV - v

(c) Residual locally used transitions of Figure. 8.7(c).

1start 2 X
authenticate(u)
| ret = trueregister(u)

u.transact(v) | cumulativeV > limit

u.transact(v) | cumulativeV ≤ limit 7→ cumulativeV = cumulativeV - v

(d) Structural union and optimisation of locally used transitons.

Figure 8.9: Transitions used by each method, and resulting program residual.

128 CHAPTER 8. RESIDUAL ANALYSIS

execution prefix leads to configuration of P this works, while if it is part of
a call s′ is simply the state in P making the call.

However this allows us to elicit a contradiction, since from q 6e|g 7→a−−−→ π\P q′ we

can conclude by Definition. 8.2.8 that @s, s′, s′′ ∈ S, qB ∈ Bπ · (s, q) x−−−→
e|g 7→a
→(s′, q′)∧

(s, q)⇒ (s′′, qB).

We have then proved that tracei(P, ω)�Σ ∈ V(π)⇒ tracei(P, ω)�Σ ∈ V(π \
P).

Assume tracei(P, ω)�Σ ∈ V(π \P) and for contradiction that tracei(P, ω)�Σ 6∈
V(π). We can then conclude dually that the two executions diverge, where
both reach some state q with the same trace, (q0, θ0)

ews
=⇒π\P (q, θ)

ew
=⇒π\P

(q, θ) and (q0, θ0)
ews
=⇒π (q, θ)

ew
=⇒π (q′, θ′).

Then there is a transition q
e|g 7→a−−−→π q′ by definition of Definition. 8.2.8 that

is removed in π \ P, from which we can conclude that @s, s′, s′′ ∈ S, qB ∈
B, x · (s, q) x−−−→

e|g 7→a
→

P‖π
(s′, q′) ∧ (s, q)⇒P‖π (s′′, qB).

The first conjunct of this last statement is true then, by Definition. 8.2.2,
since from the previous propositions we can also conclude, given Theo-
rem. 8.2.1 and from the initial assumption, that ∃ s′, qB ∈ B · (s0, q0)⇒P‖(π\P)
(s, q)⇒P‖(π\P) (s′, qB) (if tracei(P, ω) leads to a state that is not in P this still
holds since call states in the abstraction are chaotic per Definition. 8.1.2).
And then the second conjunct must be false.

From that, using the contrapositive of Theorem. 8.2.1, we can then con-
clude that @sa

1, ω1, qB, θB · (s↓, ω)
ews
=⇒ (sa

1, ω1) ∧ (q0, θ0)
ews
=⇒ (qB, θB). But this

contradicts the previous statement.

We can then conclude that tracei(P, ω)�Σ ∈ V(π \ P) ⇒ tracei(P, ω)�Σ ∈
V(π), from which we conclude the theorem. 2

This residual however uses only the main method’s CFA, while we can also
use the CFA’s called by it, as done for compliance checking. Recall that a method
abstraction only abstracts the executions that pass through it, and not necessarily
all the program, and that we can abstract the whole-program’s behaviour by
considering covers of the program.

Theorem 8.2.7. ∀Ms ∈ coversOf (P) · π π
=

⊔
M∈Ms π \M

8.2. VERIFICATION WITH RESIDUALS 129

Proof: Consider that each abstraction of a trace of P is contained in the union of
the abstract traces of the methods in a cover, by Theorem. 8.1.1. Consider
that each π \M is enough to monitor the traces of M by Definition. 8.2.6
equivalently to π. Then since each trace is a trace of some M the transitions
it can use on the way to a violation are present in

⊔
M∈Ms π \M, giving us

the result required. 2

Consider further the abstraction of another method in Figure. 8.7(b), with
before(A) = after(F) = Σ \ {infoLossEvent(u)} and during(C) = infoLossEvent(u),
and its simple residual in Figure. 8.8(b). If we consider the union of this residual
with the previous method’s residual, Figure. 8.8(a) we almost get back to the
original property, thus without having made any interprocedural gains.

However, consider that we know that both these abstractions are abstractions
of the programs, i.e. they both, separately, cover the whole program. Then we
know each residual is enough to monitor for at runtime, and we can choose one
or the other. However, we can do better by considering instead their structural
intersection, and producing the property in Figure. 8.8(c).

Consider that if the reduction associated with each cover is correct and since
each cover of a program P produces a correct residual, then each of the produced
residuals is correct, and any pruned transitions and states are not reachable in
the program (or can only be reached from states that cannot violate). Thus their
structural intersection suffices.

Theorem 8.2.8. interscoversred π
π
=

d
Ms∈coversOf (P)

⊔
M∈Ms π \M

Proof Consider that any cover is an over-approximation of the program, and
thus any

⊔
M∈Ms π \M is enough to monitor the program with, by Theo-

rem. 8.2.7. Some over-approximations may be finer than others, leading us
identify DEA transitions as useless other over-approximations soundly lead
us to include. Then by considering the structural intersection of these resid-
uals we identify exactly those DEA transitions necessary for any program
abstracted by

⋂
Ms∈coversof (P)

⋃
M∈Ms atraces(M), which includes program P

(a simple corollary of Theorem. 8.1.1). 2

We have applied these analyses to a fine-tuned abstraction, i.e. where the
chaos at start, end, and call states is limited by some contextual information. This
information may be expensive to compute for larger programs, since it requires
some intraprocedural analysis, and which may be too expensive for larger pro-
grams. Consider also that the success of the analyses we presented depends
largely on this fine-tuned context, looking at Figure. 8.7(b) and supposing that
before(A) = after(F) = Σ, i.e. all events, then all the property will be traversed at

130 CHAPTER 8. RESIDUAL ANALYSIS

the initial state, and thus π \M = π. In this case however we can still do some
analysis, that is comparable to one done on a more finely-tuned abstraction.

Recall the condition for compliance, in Theorem. 8.2.3, we specified is based
only whether property bad states are induced by a transition local to a method.
Consider then that from a single method we only need the DEA transitions that
can be triggered by a local transition of the method, ignoring those only triggered
by abstract transitions. Note how by collecting the set of such transitions from
each method of the program then we get the set of DEA transitions possibly
used in each execution of the program, as illustrated in Figure 8.9. In fact, if we
consider Figure. 8.7(c), Figure. 8.7(b), and Figure. 8.7(a) in this manner we will
immediately produce the residual in Figure. 8.8(c), with less effort than then the
previous approach.

Then, from an abstract monitored system we will soundly identify the DEA
transitions that can be used by a method M during its executions, namely those
that appear on an internal non-abstract transition of M in the composition. By
collecting all these concrete updates associated with each method of a program P,
including P, we can construct a property that is a sub-structure of the original
property.

Definition 8.2.9. The residual of a DEA π given a program P, denoted by π) P, is the
property π but with the transition relation containing only the DEA transitions used
from states that can violated in the abstraction of the methods of program P (including
P):
→π)P

def
= {q e|g 7→a−−−→ q′ | ∃M ∈ methodsOf (P) · ∃ s, s′, s′′ ∈ SM, qB ∈ Bπ · (s, q) x−−−→

e|g 7→a
→(s′, q′) ∧

(s, q)⇒ (s′′, qB) ∧ x 6= �}
We assume this property is optimally reduced.

This property is in fact a residual of the original property with respect to the
program.

Theorem 8.2.9. π
π
= π) P

Proof We need to show that tracei(P, ω)�Σ ∈ V(π)⇔ tracei(P, ω)�Σ ∈ V(π) P).
Assume tracei(P, ω)�Σ ∈ V(π).

Then by Definition. 7.3.3, we can conclude that ∃ qB ∈ B, θB ∈ Θ · (q0, θ0)
tracei(P,ω)�Σ
======⇒π

(qB, θB) by definition of V(π), Definition. 7.1.4.
Now, assume for contradiction that tracei(P, ω)�Σ 6∈ V(π) P).
Then by definition of V(π) P), Definition. 7.1.4, we can conclude that

@qB ∈ B, θB ∈ Θ · (q0, θ0)
tracei(P,ω)�Σ
======⇒π)P (qB, θB) by definition of V(π),

Definition. 7.1.4.

8.2. VERIFICATION WITH RESIDUALS 131

Then at some point the two monitors must diverge: ∃ q, q′ ∈ Qπ, θ, θ′, θB ∈
Θ(q0, θ0)

ews1�Σ===⇒π (q, θ)
(e,ω′)−−−→π (q′, θ′)

ews2�Σ===⇒π (qB, θB), and ∃ q, q′, q′′ ∈ Qπ \
Bπ, θ, θ′, θB ∈ Θ(q0, θ0 · (q0, θ0)

ews1�Σ===⇒π (q, θ)
(e,ω′)−−−→π (q, θ)

ews2�Σ===⇒π (q′′, θ′′),
where tracei(P, ω)�Σ = ews1++〈(e, ω)〉++ews2.

This difference, by Definition. 7.1.3 then occurs because there is a transition

in π from q that is not in π) P, i.e. q
e|g 7→a−−−→π q′ ∧ q 6e|g 7→a−−−→ π)P q′.

From this, by Definition. 8.2.9 we can conclude that the following condition
is not satisfied for this transition: @M ∈ methodsOf (P) · ∃ s, s′, s′ ∈ SM, qB ∈
Bπ · (s, q) x−−−→

e|g 7→a
→(s′, q′) ∧ (s, q)⇒ (s′′ ∈ qB ∧ x 6= �).

However, by definition of tracei, Definition. 7.3.3 and the CFA semantics
Definition. 7.2.4, either the program trace prefix leads to a state in P: ∃ sa

1, ω1 ·

(s↓, ω)
tracei(P,ω)
=====⇒P (sa

1, ω1); or it stops during some call: ∃ sa
1, ω1 · (s↓, ω)

ews
=⇒P

(s↓1, ω1)
ews′++ews′′−−−−−→P (s↑1, ω′1) ∧ tracei(P, ω) = ews′++ews′′. Both this cases

contradict the residual condition above, since in the first case then the
required transition is in the abstract monitored system of P, while in the
latter it is in the abstract monitored system of some transitively called
method at s1 by the CFA semantics Definition. 7.2.4.

Then we have shown that tracei(P, ω)�Σ ∈ V(π)⇒ tracei(P, ω)�Σ ∈ V(π)
P)

Assume tracei(P, ω)�Σ ∈ V(π) P).

Then by definition of V(π) P), Definition. 7.1.4, we can conclude that

∃ qB ∈ B, θB ∈ Θ · (q0, θ0)
tracei(P,ω)�Σ
======⇒π)P (qB, θB).

For contradiction assume tracei(P, ω)�Σ 6∈ V(π).

Then by definition of V(π), Definition. 7.1.4, we can conclude that @qB ∈
B, θB ∈ Θ · (q0, θ0)

tracei(P,ω)�Σ
======⇒π (qB, θB).

Then the two monitors diverge at some property state q, then by Defini-
tion. 8.2.9 there is some property transition that is removed, i.e. we have
@M ∈ methodsOf (P) · ∃ s, s′, s′ ∈ SM, qB ∈ Bπ · (s, q) x−−−→

e|g 7→a
→(s′, q′) ∧ (s, q) ⇒

(s′′ ∈ qB ∧ x 6= �). However, projecting this onto the concrete trace by
Theorem. 8.2.1 there is a contradiction here because π) P while at CFA
state s and property/monitor state q is reaching a violating state, while
in the abstract monitored system (which over-approximates the coupled

132 CHAPTER 8. RESIDUAL ANALYSIS

program and monitor possible runtime behaviour) we have determined
that they cannot violate. 2

In fact in the example we considered π \ P reproduced the original property,
illustrating how π) P can give better results than simply considering the union
of simple residuals, without the need to consider covers of the program.

Here we settle on using π) P, since it involves a less time- and memory-
intensive computation, as opposed to an approach using simple residuals of
methods and covers of a program since:

(i) they maintain a larger property for each method (as opposed to only the
internally used transitions); and

(ii) they require an interprocedural analysis to identify cover sets of the pro-
gram.

Moreover, this intersection of simple residuals in our running example produced
the same residual as π) P, as illustrated by Figure. 8.8(c), showing how we can
make progress towards a proof without interprocedural analysis.

Lastly, we can consider another reduction, namely a reduction of the guards
in a DEA. Consider that we are analysing each possible method participating
in an execution at runtime, and we are also removing any non-viable CFA and
DEA transition matches by utilising a variable abstraction. Then, we can identify
cases where a DEA transition is always activated, i.e. if whenever the DEA
transition can be triggered it is triggered. Then we can simply transform such
a DEA transition by turning its guard into the true guard, and removing other
alternate transitions that then cannot be activated.

To characterise this we consider when a guard holds at some program state
given some event, i.e. when the negation of the guard is not compatible with
any of the possible condition sets after the event occurs at that program state in
its method’s abstraction. Then, given such a guard on a transition we can check
that anywhere this DEA transition is used in the abstract monitoring system it
necessarily holds, and then at runtime this transition will always be triggered.

Definition 8.2.10. Given event e, guard g is said to hold at state s if whenever event e
occurs the negation of the guard is not compatible with the program variable state:
holds(e, g, s) def

= ∀ cs, s′ · (s cs∧ s c . st I e−−−−−→ s′)⇒ sat(update(cs, (c, st))�Θ ∧ ¬g) =⊥

We overload this for property states by considering all the possible ways a property
state can appear with a program state: holds(e, g, q) = ∀M ∈ methodsOf (P), s ∈ SM ·
((s0M , q0)⇒ (s, q)) ⇒ holds(e, g, s).

8.3. CONCLUSIONS 133

Then, if we determine that whenever a transition guard is used in the program
it will evaluate to true we can forego checking it.

Definition 8.2.11. The guard residual of a DEA π given a program P is the DEA πoP
that is equivalent to π except that transitions whose guards always hold are transformed
to transitions with the true guard, and without any alternative transition from the

same source state: →πoP
def
= {q e|true 7→a−−−−→ q′ | q

e|g 7→a−−−→π q′ ∧ holds(q, e, g)} ∪ {q e|g 7→a−−−→π q′ |
@q′′, g′, a · q e|g′ 7→a′−−−−→π q′′ ∧ holds(q, e, g′)}.

We assume this property is optimally reduced.

We can show this is also a residual of π with respect to program P.

Theorem 8.2.10. π
π
= π o P

Proof: Consider that by Theorem. 8.1.3 at least one of the condition sets associ-
ated with a state s contains conditions that are all true on the program states
associated with s at runtime. Then, taking into account the condition of a
transition and its statement will produce an approximation of the variable
state associated with an event triggered. Then, we can carry the result of
holds to runtime, and determine that when a transition is triggered it will
necessarily activate.

This residual can be another step in reducing a property, and can be combined
with any of the other two residuals we defined. In the next chapter we see
some instances where this residual is useful. Note that dually we can define a
residual that removes transitions that are always used in contexts where their
guard evaluates to false. These transitions are however already removed by the
reduction we define for the abstract monitored system.

8.3 Conclusions

In this chapter we have described control-flow analyses of a program represented
as a CFA. By considering an intraprocedural abstraction, similar to that described
by Bodden [2009], and composing it with a DEA we identified how we can reduce
program instrumentation and produce property residuals for DEAs. We also de-
fined a simple variable abstraction that propagates conditions on transitions and
conditions implied by statements throughout a CFA until a statement that affects
is possibly executed, which allows for a less coarse residual analysis. We silence
instrumentation that never matches a DEA transition in the abstract monitored
system, while we keep only DEA transitions matching concrete local transitions

134 CHAPTER 8. RESIDUAL ANALYSIS

of a method. This process of silencing instrumentation and reduction of the
property can be repeated until a fixed-point is reached, resulting in an optimal
result, modulo the analysis chosen. We also exploit the variable abstraction to
identify property transitions whose guard always holds at the program states it
is associated with at runtime, allowing us to forego some guard evaluation.

The analysis we have defined here is a sound one. We take the common
position that we prefer to consider all the possible program behaviour, with the
addition of some possible non-realisable violating paths, rather than miss some
realisable violations. This kind of analysis does not allow us to conclude that
any possible path to a violation is actually realisable at runtime, and therefore we
cannot detect violating programs using our analysis. However, as discussed, we
can use this analysis to detect programs that are satisfying.

9

Evaluation

The residual analysis we presented in the previous chapter is aimed to comple-
ment runtime verification by giving some static guarantees and thus reducing
the proof obligation at runtime. In this chapter we evaluate this approach by
considering several case studies and measuring: (i) how much of the property is
proven statically; and (ii) how much runtime computation is avoided through
the residual analysis. We consider both case studies in Java and Solidity 1.).

In Section 9.1 we describe briefly the case studies and relevant details of their
implementation, while we describe and motivate the measures we use to measure
the utility of the residual analysis. In Section 9.2 we present the results of the
experiments and discuss their implications.

9.1 Methodology

In this section we describe the context of the experiments, the way we performed
residual analysis on them, and describe and motivate the measures we take to
evaluate the utility of the analysis.

9.1.1 Context

We applied this work to programs in two languages: Java, and Solidity.

1Solidity (https://solidity.readthedocs.io) is a language to write smart contracts for the
Ethereum (https://www.ethereum.org/) blockchain.

135

https://solidity.readthedocs.io
https://www.ethereum.org/

136 CHAPTER 9. EVALUATION

The Java case studies presented here are based on a financial transaction
system used for benchmarking LARVA and other RV tools in multiple instances
of the Competition on Runtime Verification (CRV) [Bartocci et al., 2019; Reger et al.,
2016]. We made this system larger by introducing different kinds of users and
proxies for applications to communicate with the transaction server. We also
added privacy and data protection concerns to the system. The specifications we
constructed relate to limiting the behaviour of blacklisted users, and to the way
the system should treat data associated with a user.

Solidity is a language used to specify smart contracts for the Ethereum
blockchain. This is a different context from Java, since Solidity smart contracts
tend to be on the smaller side. On Ethereum large and memory- or computation-
intensive systems are discouraged through the requirement of the payment of
gas (i.e. with tokens of real-world value) for the deployment of a smart contract
onto the blockchain and for any function call at runtime, resulting in significantly
simpler programs. We consider the implementation of smart contracts used to
record the ordering and delivery of some objects for a courier service, and two
iterations of a token wallet. The specification we consider for the courier service
is a contract for the proper use of its interface (e.g. an order cannot be delivered
before it is ordered), while for the wallets we consider a specification ensuring
that once the balance of a user is reduced it is added to the balance of another
user, ensuring the total balance over all the users cannot reduce over time.

9.1.2 Experimental Setup

9.1.2.1 Java

We implemented the control-flow residual analysis for Java programs in a pro-
totype Java tool. We call this CLARVA in reference to the combination of the
CLARA and the LARVA approaches. LARVA is then used for the RV part of the
experiment.

The generation of CFAs from Java code is performed using the Soot Java
bytecode analyser [Vallée-Rai et al., 1999] that is able to generate control-flow
graph of the program. We simply further process this to identify relevant program
events and to tag the graph with these events. An issue here could be a mismatch
between the instrumentation we add here, and the instrumentation performed by
the LARVA tool. The process taken in LARVA is to generate aspect specifications
that are used by the AspectJ Kiczales et al. [2001] tool to add instrumentation
points in matching program points.

The residual analysis implementation reflects closely the analysis as described
formally: the control-flow graph of a program function is synchronously com-

9.1. METHODOLOGY 137

posed with a DEA and this is analysed to identify useful program events and
property transitions. The tool however does some richer analysis.

The property language of LARVA is not DEAs, but DATEs. These are an
extension of DEAs with communication between different DATEs and with
timing events. These events are handled by assuming they can be handled at
any point. The tool also includes typestate analysis to project the analysis onto
objects, using the pointer analyses offered by Soot, but however lacks a variable
abstraction algorithm.

The Java experiments were carried out on an Ubuntu 19.04 machine, with an
Intel Core i7-4500U 1.80 GHz CPU, and with 8gb of RAM. This tool is not sound
for all Java programs, given limitations of Soot and since the presence of dynamic
language features does not allow for this [Sui et al., 2018], and is used only as a
proof-of-concept. We used this tool to perform both the residual analysis for the
Java case studies, verifying its results manually and editing them manually to
make the results sound when necessary. LARVA2 was used to produce the files
necessary for monitoring.

9.1.2.2 Solidity

For the Solidity language we developed a counterpart proof-of-concept tool
SOLIDCLARVA in Haskell. For the RV part of the experiment the CONTRACT-
LARVA tool is used.

To generate a CFA of a smart contract we made use of the Solidity component
of CONTRACTLARVA, by analysing the intermediate language it uses. Instru-
mentation in CONTRACTLARVA depends on the notion of modifiers in Solidity
(basically function templates). On the other hand statically instrumentation is
performed by simply inspecting the uninstrumented CFA. There is less possibil-
ity of error in mismatch here than in the Java case, since the event specification
language here is more limited than that afforded by aspects.

Unlike CLARVA we implemented the described assertion propagation in
SOLIDCLARVA, which enables a more fine-grained analysis. We extended the
CONTRACTLARVA Solidity parser to extract from Solidity statements and expres-
sions appropriate counterpart sentences in the SMT-LIB 2.0 language [Barrett
et al., 2016], a standard language for SMT solvers. As described in the previous
chapter, an SMT solver was used on the fly while constructing the synchronous
composition of the program and property automata. This helps avoid exploring
parts of the composition that are not viable at runtime. Our SMT solver of choice
was the z3 SMT solver de Moura and Bjørner [2008].

2http://www.cs.um.edu.mt/svrg/Tools/LARVA/

http://www.cs.um.edu.mt/svrg/Tools/LARVA/

138 CHAPTER 9. EVALUATION

The Solidity experiments were carried out using the Remix IDE3, which allows
the simulation of deployment and running of Ethereum smart contracts written
with Solidity. CONTRACTLARVA [Azzopardi et al., 2018b; Ellul and Pace, 2018]
was then used to produce the instrumented version of the smart contract, with
some manual editing to add typestate (which is not yet implemented in the tool).

9.1.3 Measurements

The techniques we presented attempt to tailor a DEA property to a program, by
leaving only the parts of the DEA that the program can violate (modulo the static
analysis) and the parts of the program instrumentation that can violate. Then
in this chapter we want to evaluate the effectiveness of our residual techniques
after applying them to different case studies. We measure these static guarantees
on two fronts: (i) how much of the property is statically guaranteed; and (ii)
how much less monitoring overheads are required when monitoring the residual
proof obligation.

Other approaches also measure the loss in precision resulting from using an
approximate model of the system (e.g. Grech et al. [2018]). In our case the model
is a sound one, and we only use it to attempt to determine satisfaction of the
property. In future work it would be relevant to compare our approach with
more precise model checking approaches, to determine how useful the tradeoff
of our sound approach makes is.

9.1.3.1 Static Guarantees

The kind of analysis we are considered here acts on two objects required for
verification: (i) the event instrumentation; and (ii) the property. Unlike Bodden
[2009] and Dwyer and Purandare [2007] we do not focus on reducing instrumen-
tation but in inferring what transitions of a property may be activated and which
may not. However we are still reducing some instrumentation, while reducing a
property may cause the program to be instrumented for less events if they are no
longer used in the property.

For a program, we will then be comparing the number of the instrumented
points before and after analysis, corresponding to transitions in the program CFA
that originally were tagged with a non-ε event before the analysis, and with the ε
event after the analysis. Note how if there are no instrumented points after the
analysis then the property is satisfied.

Given a DEA and its residual, we also compare between them with two
measures: (i) the difference in the number of transitions; and (ii) the difference

3http://remix.ethereum.org/

http://remix.ethereum.org/

9.1. METHODOLOGY 139

in the number of states. A reduction in transitions and states signals static
guarantees that a program cannot trigger the removed transitions or visit the
removed states, while if there are none left the property has been proven.

Measuring the difference in instrumentation points and in the property struc-
ture may not however give us an accurate view of reduction in effort required for
subsequent proof attempts, for example the instrumentation points removed may
be in points in the program seldom explored at runtime, requiring experiments
to test the difference in runtime computation overheads.

9.1.3.2 Runtime Overheads

Synchronous monitoring causes computation overheads at runtime, i.e. the mon-
itored program will perform more computation steps at runtime. Considering
Java programs, from a user perspective there are two aspects relevant to their
experience with the program: (i) the time taken for the program to execute; and
(ii) the memory consumed by the program. The case studies did not present
any significant memory consumption increases, thus here for Java programs we
focus on the difference in time taken for the monitored with the original property
and the residual property on the same behaviour as the measure for runtime
overheads.

Then the Java program we consider, i.e. the financial transaction system, will
be instantiated with certain behaviour with a significant amount of computation.
The time taken without any monitors is then compared against monitoring with
the original property and with monitoring with the residual property, giving
a view of how much overheads monitoring causes and how much overheads
residual analysis reduces for the considered case studies. The Java programs here
then consist of a main method that performs this behaviour. To give a better view
of the overheads and how monitoring scales we considering a range of users
transacting in the system.

We cannot characterise overheads for Solidity programs (or smart contracts)
in the same way, since functions in smart contracts tend to be small and not
very intensive. However, instead there is already a notion of the computational
expense of computation in the Ethereum blockchain, namely gas. Each kind of
possible blockchain instruction (e.g. storage in an array) requires some unit of
gas, as pre-defined by Wood [2014]. Moreover, this gas has a real-world value
and thus reducing the amount required is preferable.

Smart contracts are programs with multiple public functions that can be called
by users or other smart contracts. Then, to measure the overheads associated
with a smart contract we do not need to exercise the smart contract as intensely
as we do for Java programs. Instead we simply consider the overheads added to

140 CHAPTER 9. EVALUATION

each of these public functions. To get a better view of the monitoring overheads
we consider both implementations of the case studies that are compliant and
implementations that allow for violations, allowing us a view of the overheads of
monitoring when there is no violation to be found and when there are violations.

In our experiments we then characterise overheads associated with monitor-
ing Solidity smart contracts in two ways: (i) the increases gas cost of deploying a
smart contract to the blockchain; and (ii) the increased gas cost associated with
the instrumented functions of the smart contract.

9.1.4 Threats to Validity

Concisely, we want to measure the effect of adding a static analysis step to
runtime verification on runtime overheads. The independent variable, or the
input variable to our experiment, here then is a program-property pair. We
consider two values for it: (i) the original program-property pair; and (ii) the
residual program-property pair. Our dependent variable, or the output, is the
time overheads measured during monitoring the input program with the input
property.

The major threat here is that of lack of external validity, since we constructed
most of the specifications and programs used ourselves for this purpose. Unfortu-
nately existing benchmarks for RV focus on formalisms without symbolic aspects,
preventing us from performing our experiments on existing specifications. This
means that our results are not necessarily representative of RV with DEA variants
in general. However, we attempt to show different kinds of specifications, includ-
ing specifications for which our analyses fail to give any benefits, to support our
argument.

Early in our experiments we also noted a confounding threat to internal valid-
ity. The measured time overheads varied in different runs of the experiment. We
concluded that this was due to the machine used for experimentation performing
other work in the background. To remedy this we ensured that no user-run
programs ran in parallel with the program. We also ran the experiments several
times and the final results was calculated as the average time taken for each run,
adding confidence in the results.

9.2 Results

In this section we present the results of applying our techniques to the described
case studies. The effectiveness of the presented techniques are then evaluated
according to the collected results in terms of the static guarantees produced

9.2. RESULTS 141

0start

transact(u) | u.blacklisted

Figure 9.1: A blacklisted user cannot
transact.

No. of
Users Unmonitored Monitored Monitoring

Residual
1000 82.26s 173.31s -
1050 83.45s 189.85s -
1100 84.53s 211.32s -
1150 94.37s 232.27s -
1200 103.80s 253.45s -
1250 113.09s 274.27s -
1300 121.08s 318.05s -

Average
Overheads 0 % 236.07 % -%

Table 9.2: Overheads associated with
monitoring for Figure 9.1.

0start

createAccount(a)

| accs.contains(a.getID())

createAccount(a)

| !accs.contains(a.getID())
7→ accs.add(a.getID())

Figure 9.2: Accounts should have dis-
tinct account numbers.

No. of
Users Unmonitored Monitored Monitoring

Residual
1000 82.26s 77.14s -
1050 83.45s 87.51s -
1100 84.53s 95.2s -
1150 94.37s 104.14 -
1200 103.80s 110.37s -
1250 113.09s 121.01s -
1300 121.08s 129.47s -

Average
Overheads 0 % 103.55 % -%

Table 9.3: Overheads associated with
monitoring for Figure 9.2.

statically, and the runtime overheads reduced, as described in the previous
section.

The experiments were conducted on two lines: (i) analysis with pure control-
flow for Java; and (ii) analysis with assertion propagation Solidity. We present
the results along with a discussion of the specific case study, and give a general
overview of the implications of the results at the end of this section.

9.2.1 Analysis of Java programs

The results here will be presented in two ways. For each case study for illus-
trative purposes we give a snapshot of the running time of the program under
verification for a different range of input values (in this case the number of users
transacting with an upper bound of 1300 users, for tractability). Where our
method does not manage to prove the property but instead returns a residual
problem we created a sample of fifty runs. Here we present estimates about the
reduced overheads due to our analysis based on analysing these sample runs.

142 CHAPTER 9. EVALUATION

0For each: UserInfo u 1 2

3

4

register(u)
activate(u,success)
| success

pay(u)

blacklist(u)
| risk(u) > 0.5

blacklist(u)
| risk(u) ≤ 0.5

pay(u)

transfer(u)

whitelist(u)

whitelist(u) pay(u,dest)
| ¬dest.whitelisted

transfer(u)

blacklist(u)
| risk(u) > 0.5

blacklist(u)
| risk(u) ≤ 0.5

Figure 9.3: Property that regulates for the risk appetite of a client, with dashed
transitions removed by the first analysis, and dotted by the third.

0
{Gold/Silver}
UserInfo

1

2

3

activate, register whitelist

blacklist

ε

pay

ε

ε
ε

Figure 9.4: FiTs menu CFG lifted to Gold and Silver users, with respect to the
property in Figure 9.3.

We look first at the property in Figure 9.1. This is a simple property with
only one transition, that however produced significant overheads, as can be
seen by in Table 9.2, in fact on average it caused the time taken to run the test
traces by around 236%. Using pure control-flow analysis we could not prove
this program. Consider that this property can only be reduced if the transact

event does not occur in a program, which should not be possible in a transaction
system. Analysing the data-flow here could be useful, if we are able to determine
that the subject of the transaction is never allowed to be blacklisted. However,
the check for this in the system is implemented through a function call, hiding
the logic that checks whether a user requesting a transaction is blacklisted or not.

Residual analysis on the second property Figure 9.2 fails for the same reason,
where a control-flow residual analysis is able to reduce the program only if an
account cannot be created, which should never be the case for an appropriate
implementation. On the other hand, here data-flow analysis is not useless because
of the implementation of the program (where some data-flow is hidden in a
function call), but because the property transitions only depend on the property’s

9.2. RESULTS 143

No. of
Users Unmonitored Monitored Monitoring

Residual
1000 82.26s 189.03s 100.12s
1050 83.45s 204.19s 109.18s
1100 84.53s 228.79s 122.32s
1150 94.37s 255.59s 132.01s
1200 103.80s 277.49s 148.53s
1250 113.09s 308.71s 151.12s
1300 121.08s 316.85s 163.20s

Average
Overheads 0 % 157.40 % 34.78%

Table 9.4: Overheads(%) for pro-
gram before, and after monitoring
with residuals for data property, Fig-
ure 8.6, with residual Figure. 8.8(c).

No. of
Users Unmonitored Monitored Monitoring

Residual
1000 82.26s 198.5s 178.12s
1050 83.45s 203.71s 191.75s
1100 84.53s 227.16s 205.93s
1150 94.37s 247.06s 225.18s
1200 103.80s 269.06s 242.47s
1250 113.09s 304.02s 275.34s
1300 121.08s 332.78s 300.67s

Average
Overheads 0 % 144.15 % 134.39%

Table 9.5: Overheads (%) for pro-
gram before, and after monitoring
with residuals for risk property (Fig-
ure 9.3).

Est. Mean Est. Sd. Dev. Confidence Interval
Width (95%)

Coefficient
of Variation

Monitored 206.39 37.97 18.40 10.63
Monitored

(just instrum.) 198.77 39.13 19.69 10.96

Residual 196.53 34.67 17.64 9.71
Residual

(just instrum.) 187.47 33.09 17.65 9.27

Figure 9.5: Estimations in terms of percentage of overheads from sample runs for
data property, Figure 8.6, with residual Figure. 8.8(c).

Est. Mean Est. Sd. Dev. Confidence Interval
Width (95%)

Coefficient
of Variation

Monitored 190.46 35.28 9.24 18.52
Monitored

(just instrum.) 187.90 38.40 10.1 20.44

Residual 179.55 28.5 7.46 15.87
Residual

(just instrum.) 177.39 30.57 8.01 17.23

Figure 9.6: Estimations in terms of percentage of overheads from sample runs for
risk property (Figure 9.3).

variable state, which we do not abstract. This is a limitation of the techniques we
present. However the overheads associated with this property are minimal, as
can be seen in Table 9.3.

We consider two other properties with more sophisticated control-flow. One
of these is the running example used in Chapter 8. This property contains both
transitions with guards and without. Analysed against the transaction system
(as described in Chapter 8) the dashed transitions can be removed, and state 4
transformed into an accepting state. As discussed in Chapter 8, the implemen-
tation of the system here allowed us to determine that certain events will not
occur in certain contexts (e.g. an information loss event after authentication)

144 CHAPTER 9. EVALUATION

and that certain events will occur in certain contexts (e.g. data will always be
sanitised after de-registration is requested). In this case data-flow analysis would
not allow us to prune the property further, giving us a minimal residual (modulo
the limitations of our analyses).

As can be seen in Table 9.4, monitoring this residual instead of the original
property gives us a significant reduction in overheads, reducing the time taken
from around 157% of the unmonitored version, to around 34%. Looking at
a larger sample, Figure 9.5, we can determine a trend towards a reduction in
overheads but at a smaller scale. The sample used here involved iterations with
smaller numbers of users than in the snapshot Table 9.4, pushing the mean value
down. Looking at the data we determined that the trend towards reduction
in overheads is more pronounced the larger the number of users (and thus
transactions) involved. From Figure 9.5 we can also determine that the majority
of overheads are due to instrumentation, as opposed to the business logic of the
property.

The last property we considered is Figure 9.3. This deals with a notion of risk,
expecting certain certain behaviour when a user is blacklisted depending on their
risk level, which is computed by the monitor using a computationally-intensive
implementation. In the particular implementation, abstracted by automaton in
Figure 9.4, we are able to determine that transfers are not allowed and that the
possibility for payments is disabled when the user is blacklisted, allowing us to
ignore a large part of the property for the particular implementation we consider.
This only results in moderate overhead reduction here as ilustrated in Table 9.5,
where the time taken in the residual version is only better by around 10%. In
[Azzopardi et al., 2017c], we presented another version of this case study, with
test traces that were less intensive, where they performed less transactions. In
that case the overheads for this property almost reduced to 0%. The results of the
larger sample here, shown in Figure 9.6 reflect those for the previous property.

With these case studies we saw how purely control-flow analysis can be useful
in reducing a property when the both the program and the property make explicit
some control-flow, instead of wholly encoding it in or making it dependent on
data (note how Figure 9.3 monitors the action of blacklisting, as opposed to
Figure 9.1 that checks the variable state of the user). More specifically we can
identify two cases where the described control-flow analysis gave results: (i)
when a DEA contains a sub-graph without guards (e.g. the required behaviour
of the deRegister function in Figure 8.6); and (ii) when the program satisfies
a DEA in a stricter way than required (e.g. the application does not perform
information loss events after authentication or that a blacklisted user is not
allowed any transactions after being blacklisted, although the specifications in
Figure 8.6 and Figure 9.3 allow for this in a restricted manner). We can conclue

9.2. RESULTS 145

that pure control-flow analysis of DEAs is then useful either when parts of the
DEA or relevant parts of the program lack branching based on data state, which
is a severe limitation. In the next section we consider the effect of adding an
abstraction of this data state.

9.2.2 Analysis of Smart Contracts

Here we consider several smart contracts and specifications for them, and il-
lustrate when assertion propagation in the program can be useful, focusing on
Ethereum blockchain use cases. In this context the specification is not just being
monitored but also enforced, in that upon reaching a bad trace the execution is
stopped and its effects on the variable state of the smart contract reverted, as
illustrated and discussed in [Azzopardi et al., 2018b]. Here then we consider
different versions of the smart contract under verification, namely a version that
satisfies the property and a version that does not, to also measure the overheads
of monitoring with reverting. Also, in a real-world context before runtime verifi-
cation we do not know whether a program is compliant with the property or not,
and then a sound evaluation of our techniques should consider their effect on
both programs that satisfy and programs that violate the property. The expected
result here is that our techniques should be able to reduce more of a property
for compliant programs than for violating programs, if our analysis is able to
determine at least partial compliance of the program.

We present the results of the analysis here differently from the Java case.
Determining the gas cost of deploying a smart contract is straightforward and
deterministic. Determining the gas cost of transactions is simply a matter of
executing a number of transactions that exercise each path in the transaction.
We then present the results for transaction cost in terms of a lower and upper
bound gas cost. Here we do not need to use a confidence interval as with
time measurements for the Java case, since the gas costs are predictable and
deterministic. Loops and recursion could be issues for such an approach, however
they are discouraged in Ethereum and thus do not appear in our case studies.

9.2.2.1 Courier Service

Consider the specification of a courier service in Figure 9.7. The specification
requires that once a customer places an order (i.e. the function order(no,eta)

is called for an order with identifier no) then it is either delivered to the proper
customer or a refund is given to the customer by the owner of the smart contract.
This property expects an implementation with three functions order, delivered,
and refund, and with a global variable mapping(int => address) customer.

146 CHAPTER 9. EVALUATION

0For each: int no 1 2

3

4

5

exit(order(no, eta))
| customer[no] == msg.sender

exit(order(no, eta)) | ∗ 7→
exit(delivery(no)) |7→
exit(refund(no)) |7→

enter(refund(no))
| msg.sender == owner

transfer(val, orderNo)

exit(refund(no))

exit(order(no)) | ∗ 7→
exit(delivery(no)) |7→
exit(refund(no)) |7→

exit(order(no, eta)) |7→
exit(delivery(no)) |7→
exit(refund(no)) |7→

exit(*(no))

exit(delivered(no))
| customer[no] == msg.sender

exit(order(no, eta)) |7→
exit(delivery(no)) |7→
exit(refund(no)) |7→

exit(*(no)) | ∗

Figure 9.7: Courier service behavioural interface specification.

Consider an implementation of the expected behaviour in the smart contract
with the functions defined in Listing. 9.1. Proceeding with the intraprocedural
analysis with pure control-flow we cannot reduce the property, since all these
functions act as the entry-points to the smart contract, and can be called in any
order, however if we consider the simple assertion propagation we described
(propagating an assertion until a statement that could affect its truth value) we
can reduce the property significantly.

Since we are interested in only one order (note how Figure 9.7 is a typestate
property on each order number), we can then fix an integer no when analysing
the variable state of the smart contract. If we start by analysing the order function
we can easily determine that the condition between state 0 and state 1 in the
property is always satisfied by the order, since any successful call to the order

9.2. RESULTS 147

Listing 9.1: Courier Service smart contract.
1 function addOrder(uint orderNo, uint eta) payable public{

2 require(msg.value >= cost);

3 require(!ordered[orderNo]);

4
5 customer[orderNo] = msg.sender;

6 orderETA[orderNo] = eta;

7 ordered[orderNo] = true;

8 }

9
10 function deliverySignature(uint orderNo) public{

11 require(msg.sender == customer[orderNo]);

12 require(ordered[orderNo] && !delivered[orderNo]);

13
14 delivered[orderNo] = true;

15
16 orderDeliveryTime[orderNo] = now;

17 }

18
19 function giveRefund(uint orderNo) public payable{

20 require(msg.sender == owner);

21 require(ordered[orderNo] && !delivered[orderNo] && !cancelled[orderNo]);

22
23 (customer[orderNo]).transfer(cost);

24 cancelled[orderNo] = false;

25 }

function executes the assign statement customer[orderNo] = msg.sender, leaving
the corresponding assertion as a post-condition of the function. Then, a call to
order while at monitor state 0 will always match the transition to state 1, and the
transition from 0 to a bad state with condition customer[no] 6= msg.sender(here
hidden with the ∗ syntactic sugar) can also be removed.

We can perform a similar analysis for the other functions, determining that
a residual monitor with respect to the implementation is the part of Figure 9.7
without the transitions with the gray tags. Note how the rest of the DEA is also
ensured by the smart contract, which however we cannot prove since we are
limiting our analysis to be largely intraprocedural. Adding interprocedurality,
through a flatter CFA abstraction would allow us to prove the rest of the DEA.
In the context of Solidity smart contracts such interprocedural analysis is also
more viable, given their size and complexity is limited. The smart contract used
here is in fact very simple, since it does not have any loops or any dynamic calls
to other smart contracts. However, it is representative of many desirable smart
contracts since calls and loops that depend on a dynamic variable are respectively

148 CHAPTER 9. EVALUATION

0For each: int no 1 2

3

4

5

exit(order(no, eta))
|7→ customer := msg.sender

exit(delivery(no)) |7→
exit(refund(no)) |7→

enter(refund(no))
| msg.sender == owner

transfer(val, orderNo)

exit(refund(no))

exit(order(no)) | ∗ 7→
exit(delivery(no)) |7→
exit(refund(no)) |7→

exit(order(no, eta)) |7→
exit(delivery(no)) |7→
exit(refund(no)) |7→

exit(*(no))

exit(delivered(no))
| customer == msg.sender

exit(order(no, eta)) |7→
exit(delivery(no)) |7→
exit(refund(no)) |7→
exit(refund(no)) |7→

exit(*(no)) | ∗

Figure 9.8: Courier service specification using property local state.

discouraged by security concerns and by gas constraints.
The results of performing this residual analysis can be seen in the first row

of Table 9.6 and Table 9.7. The deployment costs overheads are significantly
reduced, by around half in both compliant version of the implementation (shown
in Listing. 9.1) and a violating version of the case study that does not check the
message sender on delivery being called. However the difference in transac-
tion costs is only minimal. Although the increased costs with monitoring are
proportionally significant (around 26% at most) the cost in gas, they are not very
expensive in real-world terms given the trend in real-world value associated with
gas units.

Another pertinent aspect of this use case is the way the DEA is formulated.
An equivalent formulation is the DEA in Figure 9.8, where instead of monitoring

9.2. RESULTS 149

Specification Program
Version

Original Specification Residual Specification
Added Deployment Costs Added Deployment Costs
Gas % of Original Gas % of Original

Courier Interface Well-Use v1 Compliant 845465 197.00 380036 88.55
Violating 845330 202.42 459295 109.98

Courier Interface Well-Use v2 Compliant 770050 179.46 445107 103.73
Violating 782856 187.46 537377 128.68

Coupled Token
Additions and Reductions

Compliant 287083 52.18 0 0
Violating 287019 52.28 214390 39.05

Coupled Token and Ether State Compliant 744011 113.03 0 0
Violating 744075 113.26 296279 45.10

Table 9.6: Solidity case studies added deployment costs of original specification
versus the residual specification.

for the value of the smart contract variable customer[no], the customer identifier
is saved to the monitoring state upon order (in a variable customer), and re-
used during the monitor’s lifetime. Using intraprocedural analysis we cannot
create a residual for this alternate formulation that is as small as for the original
formulation, compare Figure 9.7 and Figure 9.8. The issue here is that the customer
variable becomes divorced from the smart contract’s variable state once it is saved
to the property state, preventing intraprocedural analysis to exploit knowledge
about the smart contract variable state to prove monitor guards. The residual
analysis performed still reduces to an extent deployment costs, as can be seen in
the second row of Table 9.6, but not transaction costs as can be seen in Table 9.7.

A possible way to reconnect these is to perform the same variable state ab-
straction for DEAs, and performing interprocedural analysis. The former requires
applying the variable abstraction to DEAs, while the latter requires creating a flat
whole-program CFA. By performing the analysis on this CFA with the DEA states
tagged with assertions, we would be able to prune more of the DEA, potentially
even proving it. Note an interprocedural would be required here to allow us
to conclude that customerin the DEA corresponds to customer[no]in the smart
contract, and that the value of customer[no]is invariant and thus that checking
for customer[no] == msg.senderin the smart contract is equivalent to checking
for customer == msg.sender. Here we did not attempt this, preferring to focus on
intraprocedural analysis that is agnostic of the rest of the program.

9.2.2.2 Wallets

A common use case for the Ethereum blockchain is token wallets. These associate
with each user an amount of tokens, allowing the users to transfer these tokens
between them. Since these tokens can have real-life value then the well-behaviour

150 CHAPTER 9. EVALUATION

Specification Program
Version

Original Spec Residual Spec
Added Transaction Costs Added Transaction Costs
Gas % of Original Gas % of Original
Least Most Least Most Least Most Least Most

Courier Interface Well-Use v1 Compliant 7453 22107 11.80 26.53 6387 20977 10.12 25.17
Violating 7453 22107 11.80 42.21 6387 21041 10.12 39.60

Courier Interface Well-Use v2 Compliant 7453 26357 11.64 31.65 6715 26357 10.63 31.65
Violating 7453 41385 11.80 49.70 6743 41385 10.68 49.70

Coupled Token
Additions and Reductions

Compliant 0 4108 0 8.82 0 0 0 0
Violating 0 4108 0 8.82 0 3249 0 6.97

Coupled Token and Ether State Compliant 0 8013 0 13.50 0 0 0 0
Violating 0 8013 0 13.50 0 4657 0 7.85

Table 9.7: Solidity case studies added transaction costs of original specification
versus the residual specification.

of these tokens is essential. One important property is that once an amount of
tokens is removed from the balance of a user it is added to another user’s balance,
that is the reduction of an amount of tokens is always coupled with an addition
of tokens. If this property does not hold we may have the case that a user may
have an increasing amount of tokens, causing a reduction in value of the token,
or that tokens may disappear from circulation causing scarcity of the token. This
property is captured by the property in Figure 9.9, which requires that tokens
removed from a user must be given to another user before the execution ends,
and vice-versa that tokens given to a user must come from another user.

Our control-flow analysis here is not be able to prove the whole property, but
it negates a possible permutation of the coupled events, reducing the property
accordingly. In our case the implementation first adds the tokens to a user’s
balance and then removes it from the sender’s balance, allowing us to remove
state 2 in Figure 9.9, and transitions using it. Using variable abstraction we can
also prove the rest of the property, since we can detect that the transaction is only
successful when the sender has enough balance. We also consider a different
version of such a smart contract, one that maintains a token balance associated
with some users, corresponding to the amount of ether (the native currency used
by Ethereum) held by the smart contract for them, for which we are also able to
prove the result when compliant.

We also consider violating versions of these case studies where the token
value exchanged may not be reduced upon a transfer. Our residual analysis thus
still can remove one of the permutations, and remove state 2 from Figure 9.9,
however it is not able to prove the rest of the property (since it is false).

The results associated with each of these wallet case studies can be seen in
the bottom two rows of Table 9.6 and Table 9.7. As can be seen, in the compliant
versions we are able to prove the whole property statically, while in the violating

9.3. CONCLUSIONS 151

0For each: uint val

1

2

balance[to] + val

balance[from] - val | balance[from] ≥ val

exit(*)

balance[from] - val | balance[from] ≥ val

balance[to] + val

exit(*)

Figure 9.9: If a user is given an amount of tokens then the same amount must be
reduced from another user, and vice-versa.

versions we are able to reduce the overheads significantly.

With these case studies we see how adding the notion of data to the residual
analysis of DEAs can be useful, in that we can evaluate some guards statically
which allows us to avoid some expensive computation at runtime. We also so
how the lack of interprocedural analysis can hamper the effectiveness of the
approach when DATEs use their local state.

9.3 Conclusions

In this chapter we have evaluated the presented residual analysis techniques
against several case studies in both the Java and the Solidity languages. We
have presented the results of case studies in relation to the difference in runtime
overheads (time taken for Java, and gas for Solidity) between monitoring with
the original and the residual property.

We can conclude that there are cases that control-flow analysis can be useful
without any data abstraction, however these cases are limited since not all aspects
of interest are encoded in the control-flow of a program. We saw how adding
the notion of data to the analysis can help make inroads in places where pure
control-flow analysis fails by adding the possibility of evaluating statically some
property transition guards. There are however evident limitations with the
intraprocedural approach we took, including that it does not allow us to properly
treat DEA variable state.

10

Discussion

We have presented techniques to partially verify DEAs against programs that can
be abstracted by CFAs. In this chapter we discuss several aspects of this work.

10.1 Partial Order of Verdicts

In this part we have presented techniques that consider the verification problem
statically by pruning transitions from a property. Ignoring event reductions, in
effect, here instead of a verification technique that produces a verdict from the set
{>,⊥, ?} we are creating a technique that produces a verdict in terms of a partial
order of properties.

Consider a program P and a property π, and an attempt to show P ` π.
In the case that we cannot determine satisfaction we are instead producing a
residual of π. In this part we have been using lockstep equivalence between
properties (see Definition. 7.3.5) as the correctness condition for residuals. This
condition induces an equivalence class of properties, however it does not capture
the general idea that monitoring for a property reduction is ‘easier’ (i.e. requires
less computation at runtime). For this we can instead consider the notion of
the property sub-structure relation (see Definition. 7.1.6). These two relations
together induce a partial order of properties, which can be used as the verdict set
for our residual static analysis: VerdictsP

π
def
= {π′ | π ≡P π′ ∧ π′ v π}. Note that

this sub-structure relation does not capture the guard reduction we defined in
Definition. 8.2.11, however it should be clear that we can extend the sub-structure
relation to include it, which we do not do here for simplicity.

153

154 CHAPTER 10. DISCUSSION

Note then how showing compliance reduces to showing that π> (the DEA that
only contains the initial state and no transitions, and thus accepts every program
as satisfying) is in VerdictsP

π, while showing violation reduces to showing that π>
is not in this set.

10.2 Property Variable State

Although our main motivation was to deal with automaton-based properties
with guarded events, we have also considered the analyses in the presence of a
property maintaining some variable state. We have seen that some properties
expressible with using property variable state (Figure 9.8) can be expressed with-
out (Figure 9.7). In this case a specification without variable state is preferable,
since it does not require using further memory. However there are properties
that require this variable state, for example consider that a property may want
to compare the size of a list at different points in time, which requires storing
the earliest value. Maintaining variable state then allows us to specify properties
about the program that can relate together different variable states of the program
at different points in time.

10.3 Comparison with Existing Work

In Chapter 6 we discussed approaches with a similar motivation: performing
some static analysis to reduce what must be proven at runtime. Here we compare
them with our contributions, and consider how they are complementary to our
work.

Bodden [2009] tool, CLARA, considers properties as finite-state automata, with
the main novelty being the reduction of instrumentation that does not affect when
and what verdict is given at runtime. This is similar to our own conditions for an
appropriate residual analysis. Here we have slight differences in that the finite-
state monitors considered by CLARA do not have explicit accepting states and
they allow for multiple violations (i.e. a bad state is not a sink state). However
the approach can still be applied to DEAs by analysing the abstract monitored
system in much of the same way. Bodden [2009] do consider reducing a property
by removing transitions with events that do not occur in a program, however our
approach is much richer in that we consider more sophisticated reductions that
consider the full control-flow of a method. A similarity is that CLARA apply their
analyses at the intraprocedural level, also with some interprocedural information
about which events can occur in which methods.

10.4. DEA EXTENSIONS 155

Dwyer and Purandare [2007] summarise deterministic regions in the program
that cannot violate and that have one possible property state entry-point and
one possible property state exit-point. Unlike our approach this is performed
at the interprocedural level, performing a top-down traversal of the program
source code to identify these regions. This is different from our approach in
both purpose and the approach used, since we use intraprocedural analysis and
attempt to prove a property rather than summarise instrumentation.

Here we have chosen to focus on reducing properties rather than instrumen-
tation, although we do illustrate how abstract monitored systems can be used to
also reduce instrumentation in Definition. 8.2.7. These approaches can both be
applied to DEAs in a similar manner, however it is not clear these approaches do
in the presence of guarded events, although variable abstractions can possibly be
applied to make the analysis more precise.

The work of Chimento et al. [2015] is more in line with our work, where the
residual corresponds to a reduction of the original ppDATE, where the Hoare
triples associated with states of a DATE are removed or reduced. This is also
complementary to our own work, where our techniques can be used to attack the
control-flow of DATEs, and STARVOORS used to reduce the triples. Moreover,
the theorem prover used by STARVOORS, KeY, can be further exploited to attempt
to prove or reduced guards associated with entry or exit into a method.

Looking at the symbolic aspect of our work, in literature we find related
approaches. Francalanza [2017] symbolically analyse monitors represented as
transition systems with labels as guarded events to detect for contrallability. In
other work similar approaches are used by Aceto et al. [2018b] to synthesize
enforcing monitors for µHML properties.

10.4 DEA Extensions

The DEAs we have been using here are a core version of richer specification
languages. Here we consider how our analysis extends to these richer languages.
We consider Colombo et al. [2008]’s dynamic automata with timers and events
(DATEs), Barringer et al. [2012]’s quantified event automata (QEAs), and Chimento
et al. [2015]’s pre- and post-condition DATEs (ppDATEs).

One extension of DEAs is to add typestate. Throughout our examples have
used this notion, but we did not formalise it for simplicity (although we imple-
ment typestate analysis in CLARVA). In effect typestate entails that the events at
runtime are also associated with a certain typestate object (or sets of objects). This
is implemented by parameterising a DEA by some free variables and binding
them at runtime, possibly replicating a DEA for each possible binding. These
variables may be quantified over universally (as done by DATEs and QEAs) and

156 CHAPTER 10. DISCUSSION

also existentially (as done by QEAs). Following the approach of Bodden [2009] a
pointer analysis can be used to abstract the possible variable bindings statically,
producing relations that relate instrumentation points in the program that may be
associated with the same monitor instance at runtime. Our analysis techniques
can be easily projected onto each such static approximation of a typestate object,
producing a residual for each such abstract object. A monitor at runtime can
then monitor for the union of these residuals safely. Typestate static analysis for
QEAs has been proposed by Reger [2016], in attempt to apply Bodden [2009]’s
approach, while they consider briefly that analysing guarded events requires
some program variable abstraction. Here we have considered this formally and
proposed concrete techniques to this end.

Events in this work have been limited to points in the program. DATEs
consider timing events, where a clock may signal a certain time by triggering
an appropriate event. In our approach this can be handled by extending our
CFA abstraction with a looping transition for each state for each relevant timing
event, modeling the possibility that a timing event occurs at any point during
the execution of a program. DATEs also allow for multiple monitors that can
communicate with each other across channels, modeled through channel receive
events. This can be handled by synchronously composing the communicating
DATEs and applying the analysis on the composition, projecting results onto the
original single DATEs.

A syntactic extension of DATEs are ppDATEs, that augment DATEs by associ-
ating sets of Hoare triples with explicit states. These can be reduced into DATEs,
as shown by Chimento et al. [2015], and thus our approach extended to DATEs
as described above projects onto ppDATEs easily.

10.5 Analysis is Harder than Verification

Consider that analysis is a different activity from verification, where analysis at-
tempts to identify facts about the program while verification attempts to confirm
a fact about the program. Cousot et al. [2018] contrast verification and analysis
in terms of computational complexity, showing they are equivalent when the
property space is finite, while for an infinite property space analysis is harder
than verification. This is shown by showing reductions between verifiers and
analysers in the finite case, and showing there is no reduction from a non-trivial
verifier to an analyser in the infinite-case.

Cousot et al. [2018]’s results have no bearing on the work here, since we
are dealing with transformations from analysers to verifiers (i.e. we attempt
to use analysis to show a verification problem, and when failing we produce a

10.6. LIMITATIONS AND FUTURE WORK 157

residual problem), Cousot et al. [2018] instead presents an impossibility result
about translations of certain verifiers to analysers.

10.6 Limitations and Future Work

The static analysis we present is limited in at least two ways: (i) it is performed
intraprocedurally; and (ii) the data-flow techniques we apply to create state in-
variants are quite shallow (since we discard conditions upon meeting a statement
that can effect their truth value), both limiting the precision of the results. Our
purpose here was not to create precise analyses however, instead our purpose
here was to both create inexpensive analyses that can be used as part of the
instrumentation process and to create a formal framework which can be used to
reason about residual analysis of dynamic event automata and variants thereof.

Here we have not attempted to evaluate the appropriateness of performing
these techniques as part of the instrumentation process, but instead focused on
validating the applicability of the analyses to reduce properties. To evaluate
this in the future our prototype tools must be merged with the instrumentation
process, allowing for the time taken to instrument a program without the analysis
to be compared to the time taken to analyse and instrument the program. We
expect that the control-flow analysis will not present substantial addition of time
taken, however we expect that querying an SMT solver to prune an abstract
monitored system to be relatively expensive.

The benefits of an intraprocedural analysis is that analysis can be performed
piecemeal and independently for each method, while the results can be reused
for any high-level use of the procedures since in effect they create function
summaries. However we have not compared the expense of interprocedural
analysis against intraprocedural analysis. One way to implement interprocedural
analysis here would be to use a depth-first traversal of a CFA while using function
summaries, in a similar way to Dwyer and Purandare [2007].

Moreover, the techniques we presented are only sound and do not attempt to
show that a program violates a property, since our main purpose was to produce
residuals. However the artifacts we produce can be analysed for this purpose,
where if we manage to show that there is a path in the abstract monitored system
that only uses concrete transitions towards a violation then we can conclude that
there may be a concrete violation at runtime modulo the branching conditions in
the path.

A reduction in instrumentation, and a reduction in a property can have an
effect on the overheads at runtime. Both entail that less property transitions are
checked for triggering at runtime. This checking can be a significant overhead,
since given a triggered event e the e-transitions outgoing from the current monitor

158 CHAPTER 10. DISCUSSION

state must be iterated over and their guards evaluated. In the worst-case scenario
all the outgoing transitions are evaluated, while in the best-case scenario the first
transition checked matches. It is not clear if the ordering of this checking can
benefit from some type of static analysis, however we do not consider that here.

Here we have been considering only monitorable properties. There are how-
ever other interesting properties. Future work can focus on trying to prove
the non-monitorable parts of a property using static analysis, while leaving the
monitorable parts for runtime. The issue here is how to identify and extract any
non-monitorable parts of a property. There already is work towards this, for
example, Alpern and Schneider [1987] show how to decompose Büchi automata
into safety and liveness properties.

11

Conclusions

In this part we have motivated the use of static analysis techniques to perform
residual analysis of dynamic event automata, i.e. a form of extended finite-state
machines with a symbolic variable state and transitions with events guarded
by predicates on the program and property variable state, and actions on the
property variable state.

We further have given a formal framework for residual analysis of DEAs, by
considering when program and property reductions are equivalent with respect
to each other both at a high-level of general program satisfaction, and at a lower
level of being equivalent in lockstep at the low-level of the verdicts given to
program states. We have presented approaches to residual analysis that are used
to reduce the required program event instrumentation and to produce a reduced
property that is however equivalent to the original with respect to the program.
The analyses we presented are intraprocedural and act piecewise on the program,
while they may exploit an SMT solver to identify when property transitions
cannot match a certain program execution step.

We have evaluated this approach finding moderate overhead reductions
both in the case of Java and Solidity programs. Future works to improve these
results will focus on evaluating the tradeoff between scalability and precision
of interprocedural analysis, and the further development and improvement of
prototypes that currently only partially implement the presented analyses.

159

Conclusions

Verification attempts can fail without leaving a result. In this thesis we have
identified a trend in formal verification communities to deal with such failure
not by simply failing with an unknown verdict, but with a transformation of the
input problem to another simpler problem. In this manner different verifiers
can work in concert to partially or gradually verify compliance, each making
steps useful towards solving the problem. We have formalised this by giving
an abstract semantics to properties in terms of the programs they satisfy. This
allows us to characterise the notion of a residual property in terms of whether
it is equivalent to the original property in the context of what is known about
the program under verification. Through an appropriate property quotienting
operator, as we showed for both state- and event-based property formalisms,
we can then reduce a property modulo a certain level of precision, allowing
subsequent techniques to tackle the remaining proof obligation. The work we
surveyed also considers program transformations which are not captured by this
abstract framework. In future we can consider the effectiveness of including a
similar abstract semantics for programs in terms of the properties they satisfy,
and to characterise a quotienting operator that allows us to transform a program
with respect to the property that remains to be proven.

A specific interesting application to this is in combining static and runtime
verification. This combination allows one to prove as much as possible pre-
deployment whilst leaving any residuals for runtime. Such an approach allows
us to resolve known parts of the program statically, while focusing runtime
verification on more dynamic aspects of the program that cannot be dealt easily
using static analysis. In the process we then are able to provide some static

161

162 CONCLUSIONS

guarantees (increasing confidence in the program) and reduce overheads due to
both instrumentation and monitor computations.

We validated this approach more concretely for state-based properties with
a case study involving an industrial project that necessitated the use of the par-
tial approach to verification motivated here. The context was of a payments
ecosystem, serving as a server with which external applications could communi-
cate with to provide payment services to their customers. In this case study we
showed how in a context where runtime verification is a necessity one can exploit
knowledge about what is being enforced at runtime to provide static guarantees
of a program. In fact, given a developer-provided assured model of the behaviour
of an application being enforced post-deployment, we showed how a regulation
property (as a universally quantified proposition specified in a controlled natural
language) can be verified or partially evaluated from this model.

For event-based properties we have considered the residual analysis of dy-
namic event automata against a control-flow representation of a program (control-
flow automata). Both of the representations we use maintain some symbolic state
representing a variable state and allow branching based on guards that also trans-
form the variable state. The difference is that DEAs act as event listeners and CFAs
act as event producers, with the latter then being appropriately instrumented to
produce events during execution for the DEA to give its verdict. We have defined
techniques to both reduce event instrumentation associated with monitoring
for DEAs, and reductions to a DEA itself, allowing any subsequent analyses to
exploit the simpler framing of the input verification problem. Our treatment
of this approach was technology-agnostic (with respect to a programming lan-
guage), and in fact we have implemented this work for both Java and Solidity,
and validated its utility through a number of case studies. Concretely, we have
used an intraprocedural analysis of a program to abstract runtime executions
in terms of the behaviour explicit in methods. The approach we take is limited,
since intraprocedural information is over-approximated very coarsely, while the
data-flow analysis we consider only propagates assertions up to statements that
can affect them. Subsequent work in this direction can focus on introducing
static analyses that produce a finer representation of a program, perhaps using a
form of interprocedural analysis and introducing some context-sensitivity with
respect to assertions flowing through a program. Nevertheless, the less precise
static analysis we use can be used as a first pass in a workflow of such analyses,
limiting the state space that more precise and resource-intensive analyses have to
explore.

References

Luca Aceto, Antonis Achilleos, Adrian Francalanza, and Anna Ingólfsdóttir. Monitoring for
silent actions. In Satya V. Lokam and R. Ramanujam, editors, 37th IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2017, December 11-15,
2017, Kanpur, India, volume 93 of LIPIcs, pages 7:1–7:14. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2017. doi: 10.4230/LIPIcs.FSTTCS.2017.7. URL https://doi.org/10.4230/

LIPIcs.FSTTCS.2017.7.

Luca Aceto, Antonis Achilleos, Adrian Francalanza, and Anna Ingólfsdóttir. A framework for
parameterized monitorability. In Christel Baier and Ugo Dal Lago, editors, Foundations of
Software Science and Computation Structures, pages 203–220, Cham, 2018a. Springer International
Publishing. ISBN 978-3-319-89366-2.

Luca Aceto, Ian Cassar, Adrian Francalanza, and Anna Ingólfsdóttir. On runtime enforcement
via suppressions. In Sven Schewe and Lijun Zhang, editors, 29th International Conference on
Concurrency Theory, CONCUR 2018, September 4-7, 2018, Beijing, China, volume 118 of LIPIcs,
pages 34:1–34:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018b. doi: 10.4230/
LIPIcs.CONCUR.2018.34. URL https://doi.org/10.4230/LIPIcs.CONCUR.2018.34.

Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Karoliina Lehtinen.
Adventures in monitorability: From branching to linear time and back again. Proc. ACM
Program. Lang., 3(POPL), January 2019a. doi: 10.1145/3290365. URL https://doi.org/10.

1145/3290365.

Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Karoliina Lehtinen.
An operational guide to monitorability. In Peter Csaba Ölveczky and Gwen Salaün, editors,
Software Engineering and Formal Methods - 17th International Conference, SEFM 2019, Oslo, Norway,
September 18-20, 2019, Proceedings, volume 11724 of Lecture Notes in Computer Science, pages
433–453. Springer, 2019b. doi: 10.1007/978-3-030-30446-1_23. URL https://doi.org/10.

1007/978-3-030-30446-1_23.

Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter H. Schmitt, and
Mattias Ulbrich, editors. Deductive Software Verification - The KeY Book - From Theory to Practice,

163

https://doi.org/10.4230/LIPIcs.FSTTCS.2017.7
https://doi.org/10.4230/LIPIcs.FSTTCS.2017.7
https://doi.org/10.4230/LIPIcs.CONCUR.2018.34
https://doi.org/10.1145/3290365
https://doi.org/10.1145/3290365
https://doi.org/10.1007/978-3-030-30446-1_23
https://doi.org/10.1007/978-3-030-30446-1_23

164 REFERENCES

volume 10001 of Lecture Notes in Computer Science. Springer, 2016. ISBN 978-3-319-49811-9. doi:
10.1007/978-3-319-49812-6. URL http://dx.doi.org/10.1007/978-3-319-49812-6.

Irem Aktug and Katsiaryna Naliuka. Conspec – a formal language for policy specification.
Electron. Notes Theor. Comput. Sci., 197(1):45–58, February 2008. ISSN 1571-0661. doi: 10.1016/j.
entcs.2007.10.013. URL http://dx.doi.org/10.1016/j.entcs.2007.10.013.

V. S. Alagar and K. Periyasamy. Extended Finite State Machine, pages 105–128. Springer London,
London, 2011. ISBN 978-0-85729-277-3. doi: 10.1007/978-0-85729-277-3_7. URL https:

//doi.org/10.1007/978-0-85729-277-3_7.

Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness. Distributed Computing, 2
(3):117–126, Sep 1987. ISSN 1432-0452. doi: 10.1007/BF01782772. URL https://doi.org/10.

1007/BF01782772.

H. R. Andersen. Partial model checking. In Proceedings of Tenth Annual IEEE Symposium on Logic
in Computer Science, pages 398–407, Jun 1995. doi: 10.1109/LICS.1995.523274.

Henrik Reif Andersen. Model checking and boolean graphs. In Bernd Krieg-Brückner, editor,
ESOP ’92, pages 1–19, Berlin, Heidelberg, 1992. Springer Berlin Heidelberg. ISBN 978-3-540-
46803-5.

A. Arnold, A. Vincent, and I. Walukiewicz. Games for synthesis of controllers with partial
observation. Theor. Comput. Sci., 303(1):7–34, June 2003. ISSN 0304-3975. doi: 10.1016/
S0304-3975(02)00442-5. URL http://dx.doi.org/10.1016/S0304-3975(02)00442-5.

Shaun Azzopardi, Christian Colombo, and Gordon J. Pace. A model-based approach to
combining static and dynamic verification techniques. In Tiziana Margaria and Bern-
hard Steffen, editors, Leveraging Applications of Formal Methods, Verification and Validation:
Foundational Techniques - 7th International Symposium, ISoLA 2016, Imperial, Corfu, Greece,
October 10-14, 2016, Proceedings, Part I, volume 9952 of Lecture Notes in Computer Science,
pages 416–430, 2016a. ISBN 978-3-319-47165-5. doi: 10.1007/978-3-319-47166-2_29. URL
https://doi.org/10.1007/978-3-319-47166-2_29.

Shaun Azzopardi, Christian Colombo, and Gordon J. Pace. Residual control-flow static analysis
with symbolic automata. In CSAW 2016: Computer Science Annual Workshop 2016, University of
Malta, Malta, 2016b.

Shaun Azzopardi, Christian Colombo, and Gordon J. Pace. Regulation specification and automatic
static and dynamic checks generation in the ope. In CSAW 2016: Computer Science Annual
Workshop 2016, University of Malta, Malta, 2016c.

Shaun Azzopardi, Christian Colombo, Gordon J. Pace, and Brian Vella. Compliance checking in
the open payments ecosystem. In Rocco De Nicola and Eva Kühn, editors, Software Engineering
and Formal Methods, pages 337–343, Cham, 2016d. Springer International Publishing. ISBN
978-3-319-41591-8.

Shaun Azzopardi, Christian Colombo, Jean-Paul Ebejer, Edward Mallia, and Gordon J. Pace. Run-
time verification using VALOUR. In RV-CuBES 2017. An International Workshop on Competitions,
Usability, Benchmarks, Evaluation, and Standardisation for Runtime Verification Tools, September 15,
2017, Seattle, WA, USA, pages 10–18, 2017a. URL http://www.easychair.org/publications/

paper/wbSB.

http://dx.doi.org/10.1007/978-3-319-49812-6
http://dx.doi.org/10.1016/j.entcs.2007.10.013
https://doi.org/10.1007/978-0-85729-277-3_7
https://doi.org/10.1007/978-0-85729-277-3_7
https://doi.org/10.1007/BF01782772
https://doi.org/10.1007/BF01782772
http://dx.doi.org/10.1016/S0304-3975(02)00442-5
https://doi.org/10.1007/978-3-319-47166-2_29
http://www.easychair.org/publications/paper/wbSB
http://www.easychair.org/publications/paper/wbSB

REFERENCES 165

Shaun Azzopardi, Christian Colombo, and Gordon Pace. Control-Flow Residual Analysis for Sym-
bolic Automata. Technical report, 2017b. URL https://www.um.edu.mt/ict/cs/research/

technical_reports.

Shaun Azzopardi, Christian Colombo, and Gordon J. Pace. Control-flow residual analysis for
symbolic automata. In Adrian Francalanza and Gordon J. Pace, editors, Proceedings Second
International Workshop on Pre- and Post-Deployment Verification Techniques, Torino, Italy, 19 Septem-
ber 2017, volume 254 of Electronic Proceedings in Theoretical Computer Science, pages 29–43. Open
Publishing Association, 2017c. doi: 10.4204/EPTCS.254.3.

Shaun Azzopardi, Christian Colombo, and Gordon J. Pace. A controlled natural language for
financial services compliance checking. In Brian Davis, C. Maria Keet, and Adam Wyner,
editors, Controlled Natural Language - Proceedings of the Sixth International Workshop, CNL
2018, Maynooth, Co. Kildare, Ireland, August 27-28, 2018, volume 304 of Frontiers in Artifi-
cial Intelligence and Applications, pages 11–20. IOS Press, 2018a. ISBN 978-1-61499-903-4. doi:
10.3233/978-1-61499-904-1-11. URL https://doi.org/10.3233/978-1-61499-904-1-11.

Shaun Azzopardi, Joshua Ellul, and Gordon J. Pace. Monitoring smart contracts: CONTRACT-
LARVA and open challenges beyond. In The 18th International Conference on Runtime Verification,
2018b.

Shaun Azzopardi, Christian Colombo, and Gordon Pace. A technique for automata-based ver-
ification with residual reasoning. Technical Report CS-2019-02, Department of Computer
Science, University of Malta, 2019. URL https://www.um.edu.mt/ict/cs/ourresearch/

technicalreports.

Shaun Azzopardi, Christian Colombo, and Gordon J. Pace. CLARVA: Model-based residual
verification of java programs. In Model-Driven Engineering and Software Development - 8th
International Conference, MODELSWARD 2020, Valletta, Malta, February 25-27, 2020, 2020a.

Shaun Azzopardi, Christian Colombo, and Gordon J. Pace. A technique for automata-based
verification with residual reasoning. In Model-Driven Engineering and Software Development - 8th
International Conference, MODELSWARD 2020, Valletta, Malta, February 25-27, 2020, 2020b.

Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and Irene Finocchi. A
survey of symbolic execution techniques. ACM Comput. Surv., 51(3), May 2018. ISSN 0360-0300.
doi: 10.1145/3182657. URL https://doi.org/10.1145/3182657.

Clark Barrett and Cesare Tinelli. Satisfiability Modulo Theories, pages 305–343. Springer Interna-
tional Publishing, Cham, 2018. ISBN 978-3-319-10575-8. doi: 10.1007/978-3-319-10575-8_11.
URL https://doi.org/10.1007/978-3-319-10575-8_11.

Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org, 2016.

Howard Barringer, David Rydeheard, and Klaus Havelund. Rule systems for run-time monitoring:
From eagle to ruler. In Oleg Sokolsky and Serdar Taşıran, editors, Runtime Verification, pages
111–125, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. ISBN 978-3-540-77395-5.

https://www.um.edu.mt/ict/cs/research/technical_reports
https://www.um.edu.mt/ict/cs/research/technical_reports
https://doi.org/10.3233/978-1-61499-904-1-11
https://www.um.edu.mt/ict/cs/ourresearch/technicalreports
https://www.um.edu.mt/ict/cs/ourresearch/technicalreports
https://doi.org/10.1145/3182657
https://doi.org/10.1007/978-3-319-10575-8_11
www.SMT-LIB.org

166 REFERENCES

Howard Barringer, Yliès Falcone, Klaus Havelund, Giles Reger, and David Rydeheard. Quan-
tified event automata: Towards expressive and efficient runtime monitors. In Dimitra Gi-
annakopoulou and Dominique Méry, editors, FM 2012: Formal Methods, pages 68–84, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg. ISBN 978-3-642-32759-9.

Ezio Bartocci, Radu Grosu, Atul Karmarkar, Scott A. Smolka, Scott D. Stoller, Erez Zadok, and
Justin Seyster. Adaptive runtime verification. In Shaz Qadeer and Serdar Tasiran, editors,
Runtime Verification, pages 168–182, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. ISBN
978-3-642-35632-2.

Ezio Bartocci, Yliès Falcone, Borzoo Bonakdarpour, Christian Colombo, Normann Decker, Klaus
Havelund, Yogi Joshi, Felix Klaedtke, Reed Milewicz, Giles Reger, Grigore Rosu, Julien Signoles,
Daniel Thoma, Eugen Zalinescu, and Yi Zhang. First international competition on runtime
verification: rules, benchmarks, tools, and final results of crv 2014. International Journal on
Software Tools for Technology Transfer, 21(1):31–70, Feb 2019. ISSN 1433-2787. doi: 10.1007/
s10009-017-0454-5. URL https://doi.org/10.1007/s10009-017-0454-5.

P. Baudin, J.C. Filliâtre, T. Hubert, C. Marché, B. Monate, Y. Moy, and V. Prevosto. Acsl :ansi/iso
c specification language. http://frama-c.cea.fr/acsl.html, 2011. [Online; accessed 10-
April-2019].

Andreas Bauer, Martin Leucker, and Christian Schallhart. Comparing ltl semantics for runtime
verification. J. Log. and Comput., 20(3):651–674, June 2010. ISSN 0955-792X. doi: 10.1093/
logcom/exn075. URL http://dx.doi.org/10.1093/logcom/exn075.

Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime verification for ltl and tltl.
ACM Trans. Softw. Eng. Methodol., 20(4):14:1–14:64, September 2011. ISSN 1049-331X. doi:
10.1145/2000799.2000800. URL http://doi.acm.org/10.1145/2000799.2000800.

Dirk Beyer. Partial verification and intermediate results as a solution to combine automatic
and interactive verification techniques. In Tiziana Margaria and Bernhard Steffen, editors,
Leveraging Applications of Formal Methods, Verification and Validation: Foundational Techniques,
pages 874–880, Cham, 2016. Springer International Publishing. ISBN 978-3-319-47166-2.

Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. Configurable software verification:
Concretizing the convergence of model checking and program analysis. In Werner Damm and
Holger Hermanns, editors, Computer Aided Verification, pages 504–518, Berlin, Heidelberg, 2007.
Springer Berlin Heidelberg. ISBN 978-3-540-73368-3.

Dirk Beyer, Thomas A. Henzinger, M. Erkan Keremoglu, and Philipp Wendler. Conditional
model checking: A technique to pass information between verifiers. In Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of Software Engineering, FSE ’12, pages
57:1–57:11, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1614-9. doi: 10.1145/2393596.
2393664. URL http://doi.acm.org/10.1145/2393596.2393664.

Dirk Beyer, Sumit Gulwani, and David A. Schmidt. Combining Model Checking and Data-Flow
Analysis, pages 493–540. Springer International Publishing, Cham, 2018a. ISBN 978-3-319-10575-
8. doi: 10.1007/978-3-319-10575-8_16. URL https://doi.org/10.1007/978-3-319-10575-8_

16.

https://doi.org/10.1007/s10009-017-0454-5
http://frama-c.cea.fr/acsl.html
http://dx.doi.org/10.1093/logcom/exn075
http://doi.acm.org/10.1145/2000799.2000800
http://doi.acm.org/10.1145/2393596.2393664
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/978-3-319-10575-8_16

REFERENCES 167

Dirk Beyer, Marie-Christine Jakobs, Thomas Lemberger, and Heike Wehrheim. Reducer-based
construction of conditional verifiers. In Proceedings of the 40th International Conference on
Software Engineering, ICSE ’18, pages 1182–1193, New York, NY, USA, 2018b. ACM. ISBN 978-
1-4503-5638-1. doi: 10.1145/3180155.3180259. URL http://doi.acm.org/10.1145/3180155.

3180259.

Eric Bodden. Verifying finite-state properties of large-scale programs. PhD thesis, McGill University,
2009.

Eric Bodden, Patrick Lam, and Laurie Hendren. Clara: A framework for partially evaluating finite-
state runtime monitors ahead of time. In Howard Barringer, Ylies Falcone, Bernd Finkbeiner,
Klaus Havelund, Insup Lee, Gordon Pace, Grigore Roşu, Oleg Sokolsky, and Nikolai Till-
mann, editors, Runtime Verification, pages 183–197, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg. ISBN 978-3-642-16612-9.

Borzoo Bonakdarpour, Cesar Sanchez, and Gerardo Schneider. Monitoring hyperproperties by
combining static analysis and runtime verification. In Tiziana Margaria and Bernhard Steffen,
editors, Leveraging Applications of Formal Methods, Verification and Validation. Verification, pages
8–27, Cham, 2018. Springer International Publishing. ISBN 978-3-030-03421-4.

Muffy Calder and Carron Shankland. A symbolic semantics and bisimulation for full lotos. In
Myungchul Kim, Byoungmoon Chin, Sungwon Kang, and Danhyung Lee, editors, Formal
Techniques for Networked and Distributed Systems, pages 185–200, Boston, MA, 2001. Springer US.
ISBN 978-0-306-47003-5.

Robert Cartwright and Mike Fagan. Soft typing. In Proceedings of the ACM SIGPLAN 1991
Conference on Programming Language Design and Implementation, PLDI ’91, pages 278–292, New
York, NY, USA, 1991. ACM. ISBN 0-89791-428-7. doi: 10.1145/113445.113469. URL http:

//doi.acm.org/10.1145/113445.113469.

Omar Chebaro, Nikolai Kosmatov, Alain Giorgetti, and Jacques Julliand. Program slicing en-
hances a verification technique combining static and dynamic analysis. In Proceedings of
the 27th Annual ACM Symposium on Applied Computing, SAC ’12, pages 1284–1291, New
York, NY, USA, 2012. ACM. ISBN 978-1-4503-0857-1. doi: 10.1145/2245276.2231980. URL
http://doi.acm.org/10.1145/2245276.2231980.

Jesús Mauricio Chimento, Wolfgang Ahrendt, Gordon J. Pace, and Gerardo Schneider. Starvoors
: A tool for combined static and runtime verification of java. In Ezio Bartocci and Rupak
Majumdar, editors, Runtime Verification, pages 297–305, Cham, 2015. Springer International
Publishing. ISBN 978-3-319-23820-3.

Jong-Deok Choi, Keunwoo Lee, Alexey Loginov, Robert O’Callahan, Vivek Sarkar, and Manu
Sridharan. Efficient and precise datarace detection for multithreaded object-oriented programs.
SIGPLAN Not., 37(5):258–269, May 2002. ISSN 0362-1340. doi: 10.1145/543552.512560. URL
http://doi.acm.org/10.1145/543552.512560.

Maria Christakis and Valentin Wüstholz. Bounded abstract interpretation. In Xavier Rival, editor,
Static Analysis, pages 105–125, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg. ISBN
978-3-662-53413-7.

http://doi.acm.org/10.1145/3180155.3180259
http://doi.acm.org/10.1145/3180155.3180259
http://doi.acm.org/10.1145/113445.113469
http://doi.acm.org/10.1145/113445.113469
http://doi.acm.org/10.1145/2245276.2231980
http://doi.acm.org/10.1145/543552.512560

168 REFERENCES

Maria Christakis, Peter Müller, and Valentin Wüstholz. Collaborative verification and testing
with explicit assumptions. In Dimitra Giannakopoulou and Dominique Méry, editors, FM
2012: Formal Methods, pages 132–146, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.
ISBN 978-3-642-32759-9.

Thomas Colcombet and Pascal Fradet. Enforcing trace properties by program transformation.
In Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’00, page 54–66, New York, NY, USA, 2000. Association for Computing
Machinery. ISBN 1581131259. doi: 10.1145/325694.325703. URL https://doi.org/10.1145/

325694.325703.

Christian Colombo, Gordon J. Pace, and Gerardo Schneider. Dynamic event-based runtime
monitoring of real-time and contextual properties. In Formal Methods for Industrial Critical
Systems, 13th International Workshop, FMICS 2008, L’Aquila, Italy, September 15-16, 2008, Revised
Selected Papers, pages 135–149, 2008. doi: 10.1007/978-3-642-03240-0_13. URL https://doi.

org/10.1007/978-3-642-03240-0_13.

Christian Colombo, Gordon J. Pace, and Gerardo Schneider. Larva — safer monitoring of real-
time java programs (tool paper). In Proceedings of the 2009 Seventh IEEE International Conference
on Software Engineering and Formal Methods, SEFM ’09, pages 33–37, Washington, DC, USA,
2009. IEEE Computer Society. ISBN 978-0-7695-3870-9. doi: 10.1109/SEFM.2009.13. URL
https://doi.org/10.1109/SEFM.2009.13.

Loïc Correnson and Julien Signoles. Combining analyses for c program verification. In Mariëlle
Stoelinga and Ralf Pinger, editors, Formal Methods for Industrial Critical Systems, pages 108–130,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. ISBN 978-3-642-32469-7.

Gabriele Costa, David Basin, Chiara Bodei, Pierpaolo Degano, and Letterio Galletta. From natural
projection to partial model checking and back. In Dirk Beyer and Marieke Huisman, editors,
Tools and Algorithms for the Construction and Analysis of Systems, pages 344–361, Cham, 2018.
Springer International Publishing. ISBN 978-3-319-89960-2.

P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In Conference Record of the Fourth
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
238–252, Los Angeles, California, 1977. ACM Press, New York, NY.

Patrick Cousot, Roberto Giacobazzi, and Francesco Ranzato. Program analysis is harder than
verification: A computability perspective. In Hana Chockler and Georg Weissenbacher, editors,
Computer Aided Verification, pages 75–95, Cham, 2018. Springer International Publishing. ISBN
978-3-319-96142-2.

Mike Czech, Marie-Christine Jakobs, and Heike Wehrheim. Just test what you cannot verify! In
Alexander Egyed and Ina Schaefer, editors, Fundamental Approaches to Software Engineering,
pages 100–114, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg. ISBN 978-3-662-46675-9.

Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In C. R. Ramakrishnan and
Jakob Rehof, editors, Tools and Algorithms for the Construction and Analysis of Systems, pages
337–340, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-78800-3.

https://doi.org/10.1145/325694.325703
https://doi.org/10.1145/325694.325703
https://doi.org/10.1007/978-3-642-03240-0_13
https://doi.org/10.1007/978-3-642-03240-0_13
https://doi.org/10.1109/SEFM.2009.13

REFERENCES 169

N. Dragoni, F. Massacci, K. Naliuka, and I. Siahaan. Security-by-contract: Toward a semantics for
digital signatures on mobile code. In Javier Lopez, Pierangela Samarati, and Josep L. Ferrer,
editors, Public Key Infrastructure, pages 297–312, Berlin, Heidelberg, 2007. Springer Berlin
Heidelberg. ISBN 978-3-540-73408-6.

Matthew B. Dwyer and Rahul Purandare. Residual dynamic typestate analysis exploiting static
analysis: Results to reformulate and reduce the cost of dynamic analysis. In Proceedings
of the Twenty-second IEEE/ACM International Conference on Automated Software Engineering,
ASE ’07, pages 124–133, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-882-4. doi:
10.1145/1321631.1321651. URL http://doi.acm.org/10.1145/1321631.1321651.

Matthew B. Dwyer and Rahul Purandare. Residual checking of safety properties. In Klaus
Havelund, Rupak Majumdar, and Jens Palsberg, editors, Model Checking Software, pages 1–2,
Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-85114-1.

Arvind Easwaran, Sampath Kannan, and Oleg Sokolsky. Steering of discrete event sys-
tems: Control theory approach. Electronic Notes in Theoretical Computer Science, 144(4):
21 – 39, 2006. ISSN 1571-0661. doi: https://doi.org/10.1016/j.entcs.2005.02.066. URL
http://www.sciencedirect.com/science/article/pii/S157106610600301X. Proceedings
of the Fifth Workshop on Runtime Verification (RV 2005).

Joshua Ellul and Gordon J. Pace. Runtime verification of ethereum smart contracts. In 14th
European Dependable Computing Conference, EDCC 2018, Iaşi, Romania, September 10-14, 2018,
pages 158–163. IEEE Computer Society, 2018. ISBN 978-1-5386-8060-5. doi: 10.1109/EDCC.
2018.00036. URL https://doi.org/10.1109/EDCC.2018.00036.

Manuel Fähndrich and Francesco Logozzo. Static contract checking with abstract interpretation.
In Bernhard Beckert and Claude Marché, editors, Formal Verification of Object-Oriented Software,
pages 10–30, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. ISBN 978-3-642-18070-5.

Manuel Fähndrich, Michael Barnett, and Francesco Logozzo. Embedded contract languages. In
Proceedings of the 2010 ACM Symposium on Applied Computing, SAC ’10, pages 2103–2110, New
York, NY, USA, 2010. ACM. ISBN 978-1-60558-639-7. doi: 10.1145/1774088.1774531. URL
http://doi.acm.org/10.1145/1774088.1774531.

Yliès Falcone, Jean-Claude Fernandez, and Laurent Mounier. What can you verify and enforce
at runtime? STTT, 14(3):349–382, 2012a. doi: 10.1007/s10009-011-0196-8. URL https:

//doi.org/10.1007/s10009-011-0196-8.

Yliès Falcone, Jean-Claude Fernandez, and Laurent Mounier. What can you verify and enforce
at runtime? International Journal on Software Tools for Technology Transfer, 14(3):349–382, Jun
2012b. ISSN 1433-2787. doi: 10.1007/s10009-011-0196-8. URL https://doi.org/10.1007/

s10009-011-0196-8.

Stephen J. Fink, Eran Yahav, Nurit Dor, G. , and Emmanuel Geay. Effective typestate verification in
the presence of aliasing. ACM Trans. Softw. Eng. Methodol., 17(2):9:1–9:34, May 2008. ISSN 1049-
331X. doi: 10.1145/1348250.1348255. URL http://doi.acm.org/10.1145/1348250.1348255.

Maria João Frade and Jorge Sousa Pinto. Verification conditions for source-level imperative
programs. Computer Science Review, 5(3):252 – 277, 2011. ISSN 1574-0137. doi: https://doi.org/
10.1016/j.cosrev.2011.02.002. URL http://www.sciencedirect.com/science/article/pii/

S1574013711000037.

http://doi.acm.org/10.1145/1321631.1321651
http://www.sciencedirect.com/science/article/pii/S157106610600301X
https://doi.org/10.1109/EDCC.2018.00036
http://doi.acm.org/10.1145/1774088.1774531
https://doi.org/10.1007/s10009-011-0196-8
https://doi.org/10.1007/s10009-011-0196-8
https://doi.org/10.1007/s10009-011-0196-8
https://doi.org/10.1007/s10009-011-0196-8
http://doi.acm.org/10.1145/1348250.1348255
http://www.sciencedirect.com/science/article/pii/S1574013711000037
http://www.sciencedirect.com/science/article/pii/S1574013711000037

170 REFERENCES

Adrian Francalanza. Consistently-detecting monitors. In Roland Meyer and Uwe Nestmann,
editors, 28th International Conference on Concurrency Theory, CONCUR 2017, September 5-8, 2017,
Berlin, Germany, volume 85 of LIPIcs, pages 8:1–8:19. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2017. doi: 10.4230/LIPIcs.CONCUR.2017.8. URL https://doi.org/10.4230/

LIPIcs.CONCUR.2017.8.

Adrian Francalanza, Luca Aceto, Antonis Achilleos, Duncan Paul Attard, Ian Cassar, Dario
Della Monica, and Anna Ingólfsdóttir. A foundation for runtime monitoring. In Shuvendu
Lahiri and Giles Reger, editors, Runtime Verification, pages 8–29, Cham, 2017a. Springer Inter-
national Publishing. ISBN 978-3-319-67531-2.

Adrian Francalanza, Luca Aceto, and Anna Ingólfsdóttir. Monitorability for the hennessy-milner
logic with recursion. Formal Methods in System Design, 51(1):87–116, 2017b. doi: 10.1007/
s10703-017-0273-z. URL https://doi.org/10.1007/s10703-017-0273-z.

Carlo A. Furia, Bertrand Meyer, and Sergey Velder. A survey of loop invariants. CoRR,
abs/1211.4470, 2012. URL http://arxiv.org/abs/1211.4470.

Mihaela Gheorghiu Bobaru, Corina S. Păsăreanu, and Dimitra Giannakopoulou. Automated
assume-guarantee reasoning by abstraction refinement. In Aarti Gupta and Sharad Malik,
editors, Computer Aided Verification, pages 135–148, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg. ISBN 978-3-540-70545-1.

Dimitra Giannakopoulou and Klaus Havelund. Runtime analysis of linear temporal logic specifi-
cations. Technical report, 2001.

Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis Smaragdakis. Heaps don’t
lie: Countering unsoundness with heap snapshots. Proc. ACM Program. Lang., 1(OOPSLA),
October 2017. doi: 10.1145/3133892. URL https://doi.org/10.1145/3133892.

Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis Smaragdakis. Shooting from
the heap: Ultra-scalable static analysis with heap snapshots. In Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2018, page 198–208,
New York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450356992. doi:
10.1145/3213846.3213860. URL https://doi.org/10.1145/3213846.3213860.

Simon Jantsch, David Müller, Christel Baier, and Joachim Klein. From ltl to unambiguous büchi
automata via disambiguation of alternating automata. In Maurice H. ter Beek, Annabelle
McIver, and José N. Oliveira, editors, Formal Methods – The Next 30 Years, pages 262–279, Cham,
2019. Springer International Publishing. ISBN 978-3-030-30942-8.

Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation and Automatic Program
Generation. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993. ISBN 0-13-020249-5.

Johannes Kanig, Rod Chapman, Cyrille Comar, Jerôme Guitton, Yannick Moy, and Emyr Rees.
Explicit assumptions - a prenup for marrying static and dynamic program verification. In
Martina Seidl and Nikolai Tillmann, editors, Tests and Proofs, pages 142–157, Cham, 2014.
Springer International Publishing. ISBN 978-3-319-09099-3.

https://doi.org/10.4230/LIPIcs.CONCUR.2017.8
https://doi.org/10.4230/LIPIcs.CONCUR.2017.8
https://doi.org/10.1007/s10703-017-0273-z
http://arxiv.org/abs/1211.4470
https://doi.org/10.1145/3133892
https://doi.org/10.1145/3213846.3213860

REFERENCES 171

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G. Griswold.
An overview of aspectj. In Proceedings of the 15th European Conference on Object-Oriented
Programming, ECOOP ’01, pages 327–353, London, UK, UK, 2001. Springer-Verlag. ISBN
3-540-42206-4. URL http://dl.acm.org/citation.cfm?id=646158.680006.

Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris Yakobowski.
Frama-c: A software analysis perspective. Formal Aspects of Computing, 27(3):573–609, May
2015. ISSN 1433-299X. doi: 10.1007/s00165-014-0326-7. URL https://doi.org/10.1007/

s00165-014-0326-7.

S. Kleene. Introduction to Metamathematics, 1952.

Kenneth Knowles and Cormac Flanagan. Hybrid type checking. ACM Trans. Program. Lang.
Syst., 32(2):6:1–6:34, February 2010. ISSN 0164-0925. doi: 10.1145/1667048.1667051. URL
http://doi.acm.org/10.1145/1667048.1667051.

Tobias Kuhn. A survey and classification of controlled natural languages. Comput. Linguist., 40
(1):121–170, March 2014. ISSN 0891-2017. doi: 10.1162/COLI_a_00168. URL http://dx.doi.

org/10.1162/COLI_a_00168.

Akash Lal, Nicholas Kidd, Thomas Reps, and Tayssir Touili. Abstract error projection. In
Hanne Riis Nielson and Gilberto Filé, editors, Static Analysis, pages 200–217, Berlin, Heidelberg,
2007. Springer Berlin Heidelberg. ISBN 978-3-540-74061-2.

Leslie Lamport and Martin Abadi. Decomposing specifications of concurrent systems. pages
327–340, August 1994. URL https://www.microsoft.com/en-us/research/publication/

decomposing-specifications-concurrent-systems/.

Martin Leucker. Sliding between model checking and runtime verification. In Shaz Qadeer and
Serdar Tasiran, editors, Runtime Verification, pages 82–87, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg. ISBN 978-3-642-35632-2.

Lars Luthmann, Stephan Mennicke, and Malte Lochau. Compositionality, decompositionality
and refinement in input/output conformance testing. In Olga Kouchnarenko and Ramtin
Khosravi, editors, Formal Aspects of Component Software, pages 54–72, Cham, 2017. Springer
International Publishing. ISBN 978-3-319-57666-4.

Fabio Martinelli. Symbolic partial model checking for security analysis. In Vladimir Gorodetsky,
Leonard Popyack, and Victor Skormin, editors, Computer Network Security, pages 122–134,
Berlin, Heidelberg, 2003. Springer Berlin Heidelberg. ISBN 978-3-540-45215-7.

Erik Meijer and Peter Drayton. Static typing where possible, dynamic typing when needed: The
end of the cold war between programming languages. In OOPSLA’04 Workshop on Revival of
Dynamic Languages, 01 2004.

Samaneh Navabpour, Chun Wah Wallace Wu, Borzoo Bonakdarpour, and Sebastian Fischmeis-
ter. Efficient techniques for near-optimal instrumentation in time-triggered runtime veri-
fication. In Proceedings of the Second International Conference on Runtime Verification, RV’11,
pages 208–222, Berlin, Heidelberg, 2012. Springer-Verlag. ISBN 978-3-642-29859-2. doi:
10.1007/978-3-642-29860-8_16. URL http://dx.doi.org/10.1007/978-3-642-29860-8_16.

http://dl.acm.org/citation.cfm?id=646158.680006
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/s00165-014-0326-7
http://doi.acm.org/10.1145/1667048.1667051
http://dx.doi.org/10.1162/COLI_a_00168
http://dx.doi.org/10.1162/COLI_a_00168
https://www.microsoft.com/en-us/research/publication/decomposing-specifications-concurrent-systems/
https://www.microsoft.com/en-us/research/publication/decomposing-specifications-concurrent-systems/
http://dx.doi.org/10.1007/978-3-642-29860-8_16

172 REFERENCES

Samaneh Navabpour, Yogi Joshi, Wallace Wu, Shay Berkovich, Ramy Medhat, Borzoo Bonakdar-
pour, and Sebastian Fischmeister. Rithm: A tool for enabling time-triggered runtime ver-
ification for c programs. In Proceedings of the 2013 9th Joint Meeting on Foundations of Soft-
ware Engineering, ESEC/FSE 2013, page 603–606, New York, NY, USA, 2013. Association
for Computing Machinery. ISBN 9781450322379. doi: 10.1145/2491411.2494596. URL
https://doi.org/10.1145/2491411.2494596.

Neda Noroozi, Mohammad Reza Mousavi, and Tim A. C. Willemse. Decomposability in input
output conformance testing. In Proceedings Eighth Workshop on Model-Based Testing, MBT
2013, Rome, Italy, 17th March 2013., pages 51–66, 2013. doi: 10.4204/EPTCS.111.5. URL
https://doi.org/10.4204/EPTCS.111.5.

Doron Peled. Partial order reduction: Model-checking using representatives. In Wojciech Penczek
and Andrzej Szałas, editors, Mathematical Foundations of Computer Science 1996, pages 93–112,
Berlin, Heidelberg, 1996. Springer Berlin Heidelberg. ISBN 978-3-540-70597-0.

A. Pnueli and A. Zaks. Psl model checking and run-time verification via testers. In Jayadev Misra,
Tobias Nipkow, and Emil Sekerinski, editors, FM 2006: Formal Methods, pages 573–586, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg. ISBN 978-3-540-37216-5.

Rahul Purandare, Matthew B. Dwyer, and Sebastian Elbaum. Monitoring finite state properties:
Algorithmic approaches and their relative strengths. In Sarfraz Khurshid and Koushik Sen, ed-
itors, Runtime Verification, pages 381–395, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.
ISBN 978-3-642-29860-8.

Jean-Baptiste Raclet. Residual for component specifications. Electronic Notes in Theoretical Com-
puter Science, 215:93 – 110, 2008. ISSN 1571-0661. doi: https://doi.org/10.1016/j.entcs.2008.
06.023. URL http://www.sciencedirect.com/science/article/pii/S1571066108003666.
Proceedings of the 4th International Workshop on Formal Aspects of Component Software
(FACS 2007).

P. J. G. Ramadge and W. M. Wonham. The control of discrete event systems. Proceedings of the
IEEE, 77(1):81–98, Jan 1989. ISSN 0018-9219. doi: 10.1109/5.21072.

Giles Reger. Considering typestate verification for quantified event automata. In Tiziana Margaria
and Bernhard Steffen, editors, Leveraging Applications of Formal Methods, Verification and Valida-
tion: Foundational Techniques, pages 479–495, Cham, 2016. Springer International Publishing.
ISBN 978-3-319-47166-2.

Giles Reger, Sylvain Hallé, and Yliès Falcone. Third International Competition on Runtime
Verification CRV 2016. In Sixteenth International Conference on Runtime Verification, Madrid,
Spain, September 2016. URL https://hal.inria.fr/hal-01428834.

A. Russo and A. Sabelfeld. Dynamic vs. static flow-sensitive security analysis. In 2010 23rd IEEE
Computer Security Foundations Symposium, pages 186–199, July 2010. doi: 10.1109/CSF.2010.20.

R. Sekar, V.N. Venkatakrishnan, Samik Basu, Sandeep Bhatkar, and Daniel C. DuVarney. Model-
carrying code: A practical approach for safe execution of untrusted applications. In Proceedings
of the Nineteenth ACM Symposium on Operating Systems Principles, SOSP ’03, pages 15–28,
New York, NY, USA, 2003. ACM. ISBN 1-58113-757-5. doi: 10.1145/945445.945448. URL
http://doi.acm.org/10.1145/945445.945448.

https://doi.org/10.1145/2491411.2494596
https://doi.org/10.4204/EPTCS.111.5
http://www.sciencedirect.com/science/article/pii/S1571066108003666
https://hal.inria.fr/hal-01428834
http://doi.acm.org/10.1145/945445.945448

REFERENCES 173

Jeremy G. Siek. Gradual typing for functional languages. In In Scheme and Functional Programming
Workshop, pages 81–92, 2006.

Scott D. Stoller, Ezio Bartocci, Justin Seyster, Radu Grosu, Klaus Havelund, Scott A. Smolka, and
Erez Zadok. Runtime verification with state estimation. In Sarfraz Khurshid and Koushik
Sen, editors, Runtime Verification, pages 193–207, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg. ISBN 978-3-642-29860-8.

Sandro Stucki, César Sánchez, Gerardo Schneider, and Borzoo Bonakdarpour. Gray-box mon-
itoring of hyperproperties. In Maurice H. ter Beek, Annabelle McIver, and José N. Oliveira,
editors, Formal Methods - The Next 30 Years - Third World Congress, FM 2019, Porto, Portugal,
October 7-11, 2019, Proceedings, volume 11800 of Lecture Notes in Computer Science, pages 406–
424. Springer, 2019. doi: 10.1007/978-3-030-30942-8_25. URL https://doi.org/10.1007/

978-3-030-30942-8_25.

Li Sui, Jens Dietrich, Michael Emery, Shawn Rasheed, and Amjed Tahir. On the soundness of
call graph construction in the presence of dynamic language features - a benchmark and tool
evaluation. In Sukyoung Ryu, editor, Programming Languages and Systems, pages 69–88, Cham,
2018. Springer International Publishing. ISBN 978-3-030-02768-1.

Satish Thatte. Quasi-static typing. In Proceedings of the 17th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’90, pages 367–381, New York, NY, USA, 1990.
ACM. ISBN 0-89791-343-4. doi: 10.1145/96709.96747. URL http://doi.acm.org/10.1145/

96709.96747.

Frank Tip. A survey of program slicing techniques. Journal of Programming Languages, 3:121–189,
1995.

Tomás E. Uribe. Combinations of model checking and theorem proving. In Hélène Kirchner
and Christophe Ringeissen, editors, Frontiers of Combining Systems, pages 151–170, Berlin,
Heidelberg, 2000. Springer Berlin Heidelberg. ISBN 978-3-540-46421-1.

Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay Sundaresan.
Soot - a java bytecode optimization framework. In Proceedings of the 1999 Conference of the Centre
for Advanced Studies on Collaborative Research, CASCON ’99, pages 13–. IBM Press, 1999. URL
http://dl.acm.org/citation.cfm?id=781995.782008.

Moshe Y. Vardi. Automata-theoretic model checking revisited. In Byron Cook and Andreas
Podelski, editors, Verification, Model Checking, and Abstract Interpretation, pages 137–150, Berlin,
Heidelberg, 2007. Springer Berlin Heidelberg. ISBN 978-3-540-69738-1.

Willem Visser, Klaus Havelund, Guillaume Brat, SeungJoon Park, and Flavio Lerda. Model
checking programs. Automated Software Engineering, 10(2):203–232, Apr 2003. ISSN 1573-7535.
doi: 10.1023/A:1022920129859. URL https://doi.org/10.1023/A:1022920129859.

Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. Ethereum Project
Yellow Paper, 151:1–32, 2014.

Chun Wah Wallace Wu. Methods for Reducing Monitoring Overhead in Runtime Verification. Master
thesis, University of Waterloo, Waterloo, Ontario, Canada, 2013.

https://doi.org/10.1007/978-3-030-30942-8_25
https://doi.org/10.1007/978-3-030-30942-8_25
http://doi.acm.org/10.1145/96709.96747
http://doi.acm.org/10.1145/96709.96747
http://dl.acm.org/citation.cfm?id=781995.782008
https://doi.org/10.1023/A:1022920129859

174 REFERENCES

Y. Zhou and Y. Zhang. A logical study of partial entailment. J. Artif. Intell. Res., 40:25–56, 2011.
doi: 10.1613/jair.3117. URL https://doi.org/10.1613/jair.3117.

https://doi.org/10.1613/jair.3117

	Introduction
	Motivation
	Background
	Pre-deployment Verification
	Post-deployment Verification
	Combining Verification Techniques

	Thesis Contributions
	Outline

	Combining Verification Methods
	Introduction
	Partial Verification in Literature
	Preliminaries
	Classification

	Description of Approaches
	Property Transformation
	Moving Goalposts with Assumptions
	Pruning Parts of a Property

	Program State Space Transformation
	Identifying Satisfying States
	Program Transformation

	Related Work
	Conclusions

	A Foundation for Residual Analysis
	A Formal Theory of Verification
	Properties

	Residual Analysis
	Instantiations
	State-based Analysis
	Event-based Analysis

	Related Work
	Discussion
	Conclusions

	An Industrial Case Study
	Summary
	The Open Payments Ecosystem
	Payment Application Models

	A Partial Verification Framework
	Specification Process and Language
	Financial Services Controlled Natural Language

	Partial Verification
	A Partial Verifier for FSRCNL

	Discussion and Related Work
	Conclusions

	Conclusions

	Residual Analysis for Automata with Variable State
	Introduction
	Context
	Existing Literature
	Unexplored Research Areas

	Contributions
	Outline

	Properties and Programs
	Dynamic Event Automata
	Definitions
	Structural Analysis
	Safe Structural Reductions
	Structural Union and Intersection

	Control-flow Automata
	Definition

	Correctness of Reductions
	Conclusions

	Residual Analysis
	Intraprocedural Abstractions
	A Control-flow Abstraction
	Relation to Program

	A Variable State Abstraction through Propagation

	Verification with Residuals
	An Abstract Monitored System
	Interprocedural Compliance from Intraprocedural Analysis
	Exploiting Variable Abstractions

	Residual Analysis
	Reducing Instrumentation
	Property Residuals

	Conclusions

	Evaluation
	Methodology
	Context
	Experimental Setup
	Java
	Solidity

	Measurements
	Static Guarantees
	Runtime Overheads

	Threats to Validity

	Results
	Analysis of Java programs
	Analysis of Smart Contracts
	Courier Service
	Wallets

	Conclusions

	Discussion
	Partial Order of Verdicts
	Property Variable State
	Comparison with Existing Work
	DEA Extensions
	Analysis is Harder than Verification
	Limitations and Future Work

	Conclusions
	Conclusions
	References

