"CASE STUDIES IN

THE DETERMINATION OF

THE ORIGINAL SURFACE LIMITS OF

THE FERROUS ARMOUR OF

THE ORDER OF ST JOHN,

PALACE ARMOURY, MALTA"

by

James B. CRAWFORD

VOLUME I of II

A dissertation submitted in partial fulfilment of the requirements for the degree of:

Master of Conservation in Applied Conservation Studies (M. Cons.)

University of Malta – Heritage Malta, Institute of Conservation & Management of Cultural Heritage

May 2008

99 300 words (excl. footnotes, references, & appendices) 132 700 words (incl. footnotes, references, & appendices)

Supervisor: Dr Christian DEGRIGNY

University of Malta Library – Electronic Thesis & Dissertations (ETD) Repository

The copyright of this thesis/dissertation belongs to the author. The author's rights in respect of this work are as defined by the Copyright Act (Chapter 415) of the Laws of Malta or as modified by any successive legislation.

Users may access this full-text thesis/dissertation and can make use of the information contained in accordance with the Copyright Act provided that the author must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the prior permission of the copyright holder.

COPYRIGHT NOTICE

"Case studies in the determination of the original surface limits of the ferrous armour of the Order of St John, Palace Armoury, Malta"

This dissertation was produced by James B. Crawford in partial fulfilment of requirements for the degree of Master of Conservation in Applied Conservation Studies (M. Cons) from the University of Malta – Heritage Malta, Institute of Conservation & Management of Cultural Heritage. The author is the copyright owner and retains all rights. Dissemination of this dissertation and appendices is permitted only in full soft-copy/digital format. Hard-copy/paper format reproduction of this dissertation, in whole or in part, or use of elements of the dissertation, as soft- or hard-copy, requires the specific written consent of the author. Requests relating to reproduction of the dissertation are to be forwarded to the author at: 16 Antoinette Blvd, Eltham, Victoria, Australia, 3095 or jamesbcrawford76@gmail.com.

Copyright © 2008 James B. CRAWFORD

ABSTRACT

Ferrous heritage artefacts either from a burial environment, or in an indoor museum, can be either totally or partly masked by (or even comprised of) corrosion product (CP) layers. Some CP layers reduce surface legibility and corrosion resistance, and possibly contain altered traces of original surfaces. The correct amount of corrosion product cleaning required for all artefact materials and environments is not yet a fait accompli... As Bertholon suggests, "...we must question our attitudes about the cleaning of other archaeological or museum objects"¹. The way the corrosion products evolve on mid-late Early Modern Period wrought iron and low-carbon steel in an atmospheric environment, and any capability of retaining the *limit of the original surface* (or *limitos* after Bertholon²), is the topic of this dissertation. This experimental research diagnostically determined the presence of the limitos in atmospherically corroded steel to indicate an appropriate level of CP removal during conservation treatments of historical wrought ferrous artefacts. Specific attention and adaptation of the findings was made to a historically accessible and atmospherically exposed collection: the partly corroded 16th-17th century northern Italian-style wrought iron and low-carbon steel munition armour of the Order of St John, Palace Armoury (PA), Malta.

International conservation philosophy and practice towards munition armour with corrosion products was examined via a literature review and a questionnaire issued for this research and returned by twenty-four armour conservator-restorers representing twenty-one organisations based in Europe and North America.

Non-invasive and non-destructive study of the Palace Armoury's largely undecorated munition armour collection, and its environment, enabled the deduction of the specific corrosion processes, and the formation of resulting corrosion product morphologies. The information gained from authentic armour was used to corrode

 ¹ Bertholon, 2001c, p. 11.
 ² Bertholon, R. (2000). La limite de la surface d'origine des objets métalliques archéologiques: Caractérisation, localisation et approche des méchanismes de conservation. U.F.R. d'Art et d'Archéologie. Paris, Université Paris 1 Sorbonne-Panthéon.

quantities of armour analogues (contemporary artefact simulation material) in the laboratory. Destructively studying the resulting corrosion product morphologies determined that markers were present above (e.g. applied particles, protective coating) and corresponding with (e.g. surface marks) the limitos. The limitos on these ferrous surfaces was typified by certain vertically displaced CP morphologies and coherency depended on their formation process and extent of underlying corrosion. Filiform corrosion morphologies always exhibited evidence of the previous metal surface (i.e. topographical micro-grooves) in the raised filaments of its corrosion products. However, local to general corrosion morphologies demonstrated that the limitos was only evidenced with these micro-grooves if the corrosion was during its earliest corrosion phase: as corrosion in the subsurface pit continued, any initially apparent original micro-grooves in the surface became more displaced and were eventually totally deformed and fragmented beyond recognition. Despite not being directly identifiable by the former micro-grooves, justification for the retention of these deformed limitos materials was made by association with other material properties they shared with the evidenced micro-groove CPs. The presence of micro-grooves on both of these limitos corrosion product structures, i.e. filiform corrosion and early local to general corrosion morphologies, was substantiated with the PA's munition armour, which had recently had its protective coating removed. It was asserted that the limitos (with its definition adapted to the historical context for this selection of munition armour) was influenced not only by the extent of corrosion, but also by interventions from custodians of the collection while in active service or on static gallery display.

The Palace Armoury employee, presently responsible for corrosion product removal procedures on armour, performed current Armoury techniques on the authentic munition armour and on the armour analogues. Documentation of these surfaces demonstrated these techniques did not respect any of the limitos CP surfaces determined by this research to be present in corrosion products. The PA's approach *aims* to remove all CPs above the level of the adjacent uncorroded metal surfaces and also the CPs inside the corrosion pits; despite this being practically fully unachievable due to the inaccessible pit depth and concerns about damaging the adjacent metal. The presence of partly corroded surfaces in conjunction, with the PA's non-localised and unmagnified CP removal techniques, means that abrading/polishing is simultaneously depleting adjacent metal surfaces on munition armour surfaces. Using simple physical techniques available in common conservation laboratories, corrosion product removal (to the level determined by this research to respect the limitos) was performed by the author on the armour analogues. The approach, necessarily under binocular microscope magnification, was time-consuming and the result was a surface dominated by corrosion products, which are not usually retained on armour; either in Malta or internationally.

Discussion with the two Palace Armoury curators exemplified the general subjectivity of attitudes towards corrosion products and the supposed appropriate surface finishes for ferrous munition armour. Instability and aesthetic issues imparted by corrosion products were the main points of discourse; in agreement with international munition armour conservation philosophy and practice. To reach reasoned conclusions on the subjective aspects of some conservation-restoration approaches it was recommended conservators and curators further discuss the objectives of an artefact CP removal treatment and inform museum staff and the wider public of the broad rationales. Before future decisions are made regarding this research's newly proposed conservative level of corrosion product removal from munition armour, a reappraisal of the PA's fundamental environment and preventive conservation practices was recommended: a holistic perspective of the Palace Armoury's material-environment system would benefit the conservation of the limitos corrosion products, and also the metal of the munition armour of the Order of St John.

DEDICATION

To Elwyn, Neville, Hamish, Keith, Anne-Claire, Badidou, Claire, Dana, Duncan, Keiran, Marianne & Vanessa for imparting their endless inspiration, support and inquiring minds; for without, the following personal undertaking would have been wholly unachievable.

ACKNOWLEDGEMENTS

Particular acknowledgements to:

- Christian Degrigny for fulfilling his large component of this Masters programme, his proposal of the dissertation topic and his inspiration and drive for science in heritage conservation.
- Daniel Vella for our numerous chemistry and corrosion discussions, his and the University of Malta's Department of Metallurgy & Materials Engineering's preparation of the steel coupons and his related doctoral and Promet project research.
- Michael Stroud & Emmanuel Magro Conti for their concerned custodianship, trust and making the time to enable this curator-conservator collaboration.
- Lawrence Spiteri for his consistent laboratory support and SEM-EDS operation.
- Martina Caruana for her support, availability and making possible the Masters programme at ICMCH, Heritage Malta.
- The European Commission 6th Framework Programme, the former Malta Centre for Restoration & Heritage Malta, for funding the complementary Promet project research, without which this part-time study would not have been financially viable.
- The European Commission Promet project co-ordinator, Vasilike Argyropoulos & Workpackage 3 leader, Christian Degrigny.

Further acknowledgements to:

- Duncan Abela for his contribution to the statistical analysis of the questionnaire on ferrous munition armour corrosion products and to numerous information technology matters.
- Badidou Abdallah Hadj Amar, Dana Ben-Israel, Oliver Mamo, Michelle Marsh, François Mirambet, Edwin Sciberras, Maryse Pierrard & Annick Texier for providing access to their reference libraries.
- Ivan Barbara, Joseph Darmanin, Karmenu Debono & Joseph Vassallo for providing their skilled technical support.

- Régis Bertholon for his inspiration, correspondence and continued work on the modified original surfaces of archaeological metal artefacts.
- Louis Borg, Tony Borg & Raymond Jones for providing logistical and material support.
- JoAnn Cassar, Francis Chetcuti & Elizabeth Galea for their discussions on Maltese limestone-based/derived materials.
- Roslyn DeBattista, Matthew Grima & Valentina Lupo for their operation of the SEM-EDS and for assisting with the laboratory accelerated corrosion regime of the armour analogues.

Anne-Claire de Poulpiquet for providing French-English translations.

Philippe Dillmann, Judith Monnier & Delphine Neff for their interest and assistance in the dissemination of their and their colleagues⁵ research on corrosivity of atmospheric ferrous corrosion products and its interpretation to the heritage conservation domain.

Stavroula Golfomitsou for her interest, perspectives and advice.

Stefan Michael for providing German-English translations.

Judith Monnier for performing the Raman micro-spectroscopy and spectra interpretation of the Raman micro-spectroscopy & micro-x-ray diffractometry.

Jesmond Pace & Pierre Vella for the CNC milling of the acrylic sample-tray mould.

- Jean-Pierre Reverseau & his armour restorers for their discussions and tour of Le Musée de L'Armée, Les Invalides.
- Robert Smith for his communications, generosity and interest in armour conservation.
- Daniel Vella, Elizabeth Galea, David Scott, Gertie Jensen, Mark Dowsett & David Thickett for communications on optimising corrosion product/metal sample cross-section embedding procedures.
- The twenty-four unnamed armour conservator-restorer respondents (including their curator & conservation scientist colleagues) to the international questionnaire on ferrous munition armour corrosion products.

AUTHOR'S DECLARATION

I, the undersigned, declare that this work has been done entirely by myself under the supervision of Dr Christian Degrigny with appropriate referencing to sources utilised. This dissertation has never been presented to any other educational institution, nor published through any other means prior to this presentation.

James B. Crawford

TABLE OF CONTENTS

V	0	LU	M	E	Ι
the statement of the st					

PREFA	CE	.xxx
1	INTRODUCTION	1
2	HISTORICAL, SCIENTIFIC & CONSERVATION CONTEXT	3
2.1	The Order of St John & Malta, the Palace Armoury	
	munition armour collection: fabrication, history &	•
0 1 1	environment	3
2.1.1	Armour typology, dating & provenance	/
2.1.2	Munition armour fabrication: materials & techniques	9
2.1	2.2. Muetal extraction & processing	10
2.1	2.2 Munition armour forming	18
2.1	2.4 Munition armour neat-treatment	20
2.1	2.5 Munition armour surface fillisfing	21
2.1	L.5 Withition affinour assembly & articulation $Listem of the Delege Armony's 16^{th} \cdot 17^{th} contumy northern Italian$	23
2.1.3	History of the Palace Affilioury \$ 10 -17 century northern Italian-	22
2.1	2.1 Mid 16 th contume 1709 Order of St Johns functional symbolic St	25
2.1	absolute erroral	25
2.1	2.2 1708 1064 French & British accumption: decorative romantic	25
2.1	trophies to academic antiques	32
21	3.2 1064 Independence: remnants of a colonial history	32
2.1	3.4 Recent history: museum typological collection & tourist site	38
2.1	Environment of the Palace Armoury's 16 th 17 th century porthern	50
2.1.4	Italian style munition armour	30
2.1	4.1 First floor location 1604-1975	30
2.1	A.2 Ground floor location, 1004-1975	40
2.1	4.2 Ground noor location, 1975-present	40
2.2	Indoor atmospheric ferrous corrosion & control	43
2.2.1	Ferrous corrosion: basic definitions & concepts	44
2.2.2	Indoor atmospheric ferrous corrosion: definition, processes &	
	factors	45
2.2	.2.1 Definition	45
2.2	.2.2 Processes	46
2.2	.2.3 Factors	49
2.2.3	Atmospheric ferrous corrosion, corrosion product morphologies &	
	corrosion mechanisms	70
2.2	.3.2 Filiform corrosion/corrosion product morphology	72

morphology 79 2.2.4 Atmospheric corrosion control 88 2.2.4.1 Preventive conservation methods 89 2.2.4.2 Interventive conservation methods 90 2.3 Metal heritage artefact conservation & corrosion products: philosophy & practice 92 2.3.1 What is the original surface & why determine its presence? 93 2.3.1.1 Development of the original surface concept 95 2.3.1.2 The limit of the original surface: the limitos 100 2.4 International munition armour conservation philosophy & practice: literature review & laboratory questionnaire 111 2.4.1.1 Philosophy 112 2.4.1.2 Practice 116 2.4.1.3 Literature review on ferrous armour corosion products 118 2.4.2 Laboratory questionnaire on ferrous armour corosion products 118 2.4.2.1 Laboratory questionnaire summary & conclusions 119 2.5 Summary to historical, scientific & conservation context 122 3.1 Overview of the experimental framework 123 3.1.1 Overview of the experimental framework 123 3.2.2 Armour Hall wall display: <i>in-situ</i> corrosion survey 126 3.2.3.1 Armour surface observations 126 3.2.3.2 Armour traface observations <td< th=""><th></th><th>2.3.3 Uneven local to uneven general corrosion/corrosion product</th><th></th></td<>		2.3.3 Uneven local to uneven general corrosion/corrosion product	
2.2.4 Atmospheric corrosion control 88 2.2.4.1 Preventive conservation methods 89 2.2.4.2 Interventive conservation methods 90 2.3 Metal heritage artefact conservation & corrosion products: philosophy & practice 92 2.3.1 What is the original surface & why determine its presence? 93 2.3.1.2 The limit of the original surface why determine its presence? 93 2.3.1.2 The limit of the original surface concept 95 2.3.1.2 The limit of the original surface why determine its presence? 93 2.4.1 International munition armour conservation philosophy & practice: literature review & laboratory questionnaire 111 2.4.1 Philosophy 112 2.4.1.2 Practice 116 2.4.2.1 Laboratory questionnaire on ferrous armour corrosion products 118 2.4.2.1 Laboratory questionnaire summary & conclusions 118 2.5 Summary to historical, scientific & conservation context 122 3.1 Overview of the experimental framework 123 3.2.1 Armour Hall aerosol polutants: scanning electron microscopy- energy dispersive spectrometry (SEM-EDS) 126 3.2.3 Authen		morphology	79
2.2.4.1 Preventive conservation methods 89 2.2.4.2 Interventive conservation methods 90 2.3 Metal heritage artefact conservation & corrosion products: philosophy & practice 92 2.3.1 What is the original surface & why determine its presence? 93 2.3.1.1 Development of the original surface concept 95 2.3.1.2 The limit of the original surface concept 95 2.3.1.1 Development of the original surface concept 95 2.3.1.2 The limit of the original surface concept 95 2.3.1.1 Development of the original surface concept 95 2.3.1.2 The limit of the original surface concept 95 2.3.1.2 The limit of the original surface concept 95 2.4.1 Philosophy 112 2.4.1.2 Practice 116 2.4.2.1 Philosophy 118 2.4.2.1 Laboratory questionnaire summary & conclusions 118 2.4.2.1 Laboratory questionnaire summary & conclusions 122 3.1 Overview of the experimental framework 123 3.2 Palace Armoury environment, munition armour & corrosion p	2.2	Atmospheric corrosion control	88
2.2.4.2 Interventive conservation methods 90 2.3 Metal heritage artefact conservation & corrosion products: philosophy & practice 92 2.3.1 What is the original surface & why determine its presence? 93 2.3.1.1 Development of the original surface concept 95 2.3.1.2 The limit of the original surface ithe limitos 100 2.4 International munition armour conservation philosophy & practice: literature review & laboratory questionnaire 111 2.4.1 Literature review on ferrous armour corrosion products 112 2.4.1.1 Philosophy 112 2.4.1.2 Practice 116 2.4.1.3 Literature review summary & conclusions 118 2.4.2 Laboratory questionnaire on ferrous armour corrosion products 112 2.4.1.1 Laboratory questionnaire summary & conclusions 118 2.4.2.1 Laboratory questionnaire summary & conclusions 112 2.5 Summary to historical, scientific & conservation context 122 3.1 Overview of the experimental framework 123 3.2.2 Armour Hall aerosol pollutants: scanning electron microscopy- energy dispersive spectrometry (SEM-EDS) 126		2.4.1 Preventive conservation methods	89
2.3 Metal heritage artefact conservation & corrosion products: philosophy & practice 92 2.3.1 What is the original surface & why determine its presence? 93 2.3.1.1 Development of the original surface concept 95 2.3.1.2 The limit of the original surface concept 95 2.3.1.2 The limit of the original surface the limitos 100 2.4 International munition armour conservation philosophy & practice: literature review & laboratory questionnaire 111 2.4.1 Literature review on ferrous armour corrosion products 112 2.4.1.1 Philosophy 112 2.4.1.2 Practice 116 2.4.1.3 Literature review summary & conclusions 118 2.4.2.1 Laboratory questionnaire on ferrous armour corrosion products 118 2.4.2.1 Laboratory questionnaire summary & conclusions 119 2.5 Summary to historical, scientific & conservation context 122 3.1 Overview of the experimental framework 123 3.2 Palace Armoury environment, munition armour & corrosion product morphologies: laboratory investigations of surfaces & structures investigations 126 3.2.1 Armour Hall aerosol pollutants: sca		2.4.2 Interventive conservation methods	90
philosophy & practice922.3.1What is the original surface & why determine its presence?932.3.1.1Development of the original surface concept952.3.1.2The limit of the original surface: the limitos1002.4International munition armour conservation philosophy & practice: literature review & laboratory questionnaire1112.4.1Literature review on ferrous armour corrosion products1122.4.1.1Philosophy1122.4.1.2Practice1162.4.1.3Literature review summary & conclusions1182.4.2Laboratory questionnaire on ferrous armour corrosion products1182.4.2.1Laboratory questionnaire summary & conclusions1192.5Summary to historical, scientific & conservation context1233.1Overview of the experimental framework1233.1Overview of the experimental framework1253.2.1Armour Hall wall display: <i>in-situ</i> corrosion survey alcal social science observations1263.2.2Armour Hall wall display: <i>in-situ</i> corrosion product morphologies: laboratory investigations of surfaces & structures alcal armour corrosion/corrosion product morphologies: laboratory investigations of surfaces & structures alcal armour surface observations1283.2.3Authentic munition armour corrosion product removal: the Palace Armoury technique1373.3.1Munition armour analogues: laboratory corrosion case studies: preparation & destructive investigations1423.3.1Armour analogues: coljectives & destructive invest	2.3	Metal heritage artefact conservation & corrosion products:	
2.3.1 What is the original surface & why determine its presence? 93 2.3.1.1 Development of the original surface concept 95 2.3.1.2 The limit of the original surface concept 95 2.3.1.2 The limit of the original surface concept 95 2.3.1.2 The limit of the original surface concept 95 2.3.1.2 The limit of the original surface concept 95 2.3.1.2 The limit of the original surface concept 95 2.4.1 Literature review on ferrous armour consolon products 112 2.4.1.1 Philosophy 112 2.4.1.2 Practice 116 2.4.2.1 Laboratory questionnaire on ferrous armour corrosion products 118 2.4.2.1 Laboratory questionnaire summary & conclusions 119 2.5 Summary to historical, scientific & conservation context 122 3.1 Overview of the experimental framework 123 3.2.1 Palace Armoury environment, munition armour & corrosion product microscopy- energy dispersive spectrometry (SEM-EDS) 126 3.2.3.1 Armour Hall wall display: <i>in-situ</i> corrosion product morphologies: laboratory investigations of surfaces & structures 137		philosophy & practice	92
2.3.1.1 Development of the original surface concept 95 2.3.1.2 The limit of the original surface: the limitos 100 2.4 International munition armour conservation philosophy & practice: literature review & laboratory questionnaire 111 2.4.1 Philosophy 112 2.4.1.1 Philosophy 112 2.4.1.2 Practice 116 2.4.1.3 Literature review summary & conclusions 118 2.4.2 Laboratory questionnaire on ferrous armour corrosion products 118 2.4.2.1 Laboratory questionnaire summary & conclusions 119 2.5 Summary to historical, scientific & conservation context 122 3 EXPERIMENTAL METHODS & MATERIALS 123 3.1 Overview of the experimental framework 123 3.2 Palace Armoury environment, munition armour & corrosion product case studies: non-invasive & non-destructive investigations 126 3.2.1 Armour Hall wall display: <i>in-situ</i> corrosion survey 126 3.2.3 Authentic munition armour corrosion/corrosion product morphologies: laboratory investigations of surfaces & structures 137 3.2.3.1 Armour surface observations 128	2.3	What is the original surface & why determine its presence?	93
2.3.1.2 The limit of the original surface: the limitos 100 2.4 International munition armour conservation philosophy & practice: literature review & laboratory questionnaire 111 2.4.1 Literature review on ferrous armour corrosion products 112 2.4.1.1 Philosophy 112 2.4.1.2 Practice 116 2.4.1.3 Literature review summary & conclusions 118 2.4.2 Laboratory questionnaire on ferrous armour corrosion products 118 2.4.2.1 Laboratory questionnaire summary & conclusions 119 2.5 Summary to historical, scientific & conservation context 122 3 EXPERIMENTAL METHODS & MATERIALS 123 3.1 Overview of the experimental framework 123 3.2 Palace Armoury environment, munition armour & corrosion product case studies: non-invasive & non-destructive investigations 126 3.2.1 Armour Hall wall display: <i>in-situ</i> corrosion survey 126 3.2.2 Armour Hall aerosol pollutants: scanning electron microscopy-energy dispersive spectrometry (SEM-EDS) 126 3.2.3 Authentic munition armour corrosion product morphologies: laboratory investigations of surfaces & structures 137 3.3.1 Armour analogues: laboratory corrosion case studies: preparation & destructive investigations 142 3.3.1.1 Metal selection & substrate preparation 14		3.1.1 Development of the original surface concept	95
2.4 International munition armour conservation philosophy & practice: literature review & laboratory questionnaire 111 2.4.1 Literature review on ferrous armour corrosion products 112 2.4.1.1 Philosophy 112 2.4.1.2 Practice 116 2.4.1.3 Literature review summary & conclusions 118 2.4.2 Laboratory questionnaire on ferrous armour corrosion products 118 2.4.2.1 Laboratory questionnaire summary & conclusions 119 2.5 Summary to historical, scientific & conservation context 122 3 EXPERIMENTAL METHODS & MATERIALS 123 3.1 Overview of the experimental framework 123 3.2 Palace Armoury environment, munition armour & corrosion product case studies: non-invasive & non-destructive investigations 125 3.2.1 Armour Hall wall display: <i>in-situ</i> corrosion survey 126 3.2.2 Armour Hall aerosol pollutants: scanning electron microscopy-energy dispersive spectrometry (SEM-EDS) 126 3.2.3.1 Armour surface observations 128 3.2.3.2 Armour surface observations 128 3.2.3.1 Armour analogues: laboratory corrosion case studies: preparation & destructive inve		3.1.2 The limit of the original surface: the limitos	100
practice: literature review & laboratory questionnaire1112.4.1Literature review on ferrous armour corrosion products1122.4.1.1Philosophy1122.4.1.2Practice1162.4.1.3Literature review summary & conclusions1182.4.2Laboratory questionnaire on ferrous armour corrosion products1182.4.2.1Laboratory questionnaire summary & conclusions1192.5Summary to historical, scientific & conservation context1223EXPERIMENTAL METHODS & MATERIALS1233.1Overview of the experimental framework1233.2Palace Armoury environment, munition armour & corrosion product case studies: non-invasive & non-destructive investigations1253.2.1Armour Hall wall display: <i>in-situ</i> corrosion survey1263.2.2Armour Hall well display: <i>in-situ</i> corrosion product morphologies: laboratory investigations of surfaces & structures 	2.4	International munition armour conservation philosophy &	
2.4.1 Literature review on ferrous armour corrosion products 112 2.4.1.1 Philosophy 112 2.4.1.2 Practice 116 2.4.1.3 Literature review summary & conclusions 118 2.4.2 Laboratory questionnaire on ferrous armour corrosion products 118 2.4.2.1 Laboratory questionnaire on ferrous armour corrosion products 118 2.4.2.1 Laboratory questionnaire summary & conclusions 119 2.5 Summary to historical, scientific & conservation context 122 3 EXPERIMENTAL METHODS & MATERIALS 123 3.1 Overview of the experimental framework 123 3.2 Palace Armoury environment, munition armour & corrosion product case studies: non-invasive & non-destructive investigations 126 3.2.1 Armour Hall wall display: <i>in-situ</i> corrosion survey 126 3.2.2 Armour Hall acrosol pollutants: scanning electron microscopy-energy dispersive spectrometry (SEM-EDS) 126 3.2.3.1 Armour surface observations 128 3.2.3.2 Anmour surface observations 128 3.2.3.1 Armour analogues: laboratory corrosion case studies: preparation & destructive investigations 128	_	practice: literature review & laboratory questionnaire	111
2.4.1.1 Philosophy 112 2.4.1.2 Practice 116 2.4.1.3 Literature review summary & conclusions 118 2.4.2 Laboratory questionnaire on ferrous armour corrosion products 118 2.4.2.1 Laboratory questionnaire summary & conclusions 119 2.5 Summary to historical, scientific & conservation context 122 3 EXPERIMENTAL METHODS & MATERIALS 123 3.1 Overview of the experimental framework 123 3.2 Palace Armoury environment, munition armour & corrosion product case studies: non-invasive & non-destructive investigations 125 3.2.1 Armour Hall wall display: <i>in-situ</i> corrosion survey 126 3.2.2 Armour Hall aerosol pollutants: scanning electron microscopy-energy dispersive spectrometry (SEM-EDS) 126 3.2.3.2 Armour corrosion cross-section observations & analyses 130 3.2.3.2 Armour corrosion cross-section observations & analyses 130 3.2.4 Authentic munition armour corrosion product removal: the Palace Armoury technique 137 3.3.1.1 Metal selection & substrate preparation 142 3.3.1.1 Metal selection & substrate preparation 142 <	2.4	Literature review on ferrous armour corrosion products	112
2.4.1.2 Practice 116 2.4.1.3 Literature review summary & conclusions 118 2.4.2 Laboratory questionnaire on ferrous armour corrosion products 118 2.4.2.1 Laboratory questionnaire summary & conclusions 119 2.5 Summary to historical, scientific & conservation context 122 3 EXPERIMENTAL METHODS & MATERIALS 123 3.1 Overview of the experimental framework 123 3.2 Palace Armoury environment, munition armour & corrosion product case studies: non-invasive & non-destructive investigations 125 3.2.1 Armour Hall wall display: <i>in-situ</i> corrosion survey 126 3.2.2 Armour Hall aerosol pollutants: scanning electron microscopy-energy dispersive spectrometry (SEM-EDS) 126 3.2.3.1 Armour surface observations 128 3.2.3.2 Armour corrosion cross-section observations & analyses 130 3.2.4 Authentic munition armour corrosion product removal: the Palace Armoury technique 137 3.3.1.1 Munition armour analogues: laboratory corrosion case studies: preparation & destructive investigations 142 3.3.1.1 Metal selection & substrate preparation 143 3.3.1.2 Armo		4.1.1 Philosophy	112
2.4.1.3 Literature review summary & conclusions 118 2.4.2 Laboratory questionnaire on ferrous armour corrosion products 118 2.4.2.1 Laboratory questionnaire summary & conclusions 119 2.5 Summary to historical, scientific & conservation context 122 3 EXPERIMENTAL METHODS & MATERIALS 123 3.1 Overview of the experimental framework 123 3.2 Palace Armoury environment, munition armour & corrosion product case studies: non-invasive & non-destructive investigations 125 3.2.1 Armour Hall wall display: <i>in-situ</i> corrosion survey 126 3.2.2 Armour Hall aerosol pollutants: scanning electron microscopy-energy dispersive spectrometry (SEM-EDS) 126 3.2.3.1 Armour surface observations 128 3.2.3.2 Armour corrosion cross-section observations & analyses 130 3.2.3.1 Armour surface observations 128 3.2.3.2 Armour analogues: laboratory investigations of surfaces & structures 137 3.3.1 Authentic munition armour corrosion product removal: the Palace Armoury technique 137 3.3.1 Armour analogues: manufacture & corrosion 142 3.3.1.1 Metal selection & s		4.1.2 Practice	116
2.4.2 Laboratory questionnaire on ferrous armour corrosion products 118 2.4.2.1 Laboratory questionnaire summary & conclusions 119 2.5 Summary to historical, scientific & conservation context 122 3 EXPERIMENTAL METHODS & MATERIALS 123 3.1 Overview of the experimental framework 123 3.2 Palace Armoury environment, munition armour & corrosion product case studies: non-invasive & non-destructive investigations 125 3.2.1 Armour Hall wall display: <i>in-situ</i> corrosion survey 126 3.2.2 Armour Hall aerosol pollutants: scanning electron microscopy-energy dispersive spectrometry (SEM-EDS) 126 3.2.3.1 Armour surface observations 128 3.2.3.2 Armour corrosion cross-section observations & analyses 130 3.2.4 Authentic munition armour corrosion product removal: the Palace Armoury technique 137 3.3.1 Munition armour analogues: laboratory corrosion case studies: preparation & destructive investigations 142 3.3.1.1 Metal selection & substrate preparation 143 3.3.2.4 Armour analogues: manufacture & corrosion 142 3.3.1.2 Armour analogues: cosin fractive investigations 170 <tr< td=""><td></td><td>4.1.3 Literature review summary & conclusions</td><td>118</td></tr<>		4.1.3 Literature review summary & conclusions	118
2.4.2.1 Laboratory questionnaire summary & conclusions 119 2.5 Summary to historical, scientific & conservation context 122 3 EXPERIMENTAL METHODS & MATERIALS 123 3.1 Overview of the experimental framework 123 3.2 Palace Armoury environment, munition armour & corrosion product case studies: non-invasive & non-destructive investigations 125 3.2.1 Armour Hall wall display: <i>in-situ</i> corrosion survey 126 3.2.2 Armour Hall aerosol pollutants: scanning electron microscopy-energy dispersive spectrometry (SEM-EDS) 126 3.2.3 Authentic munition armour corrosion/corrosion product morphologies: laboratory investigations of surfaces & structures 127 3.2.3.1 Armour surface observations 128 3.2.3.2 Armour corrosion cross-section observations & analyses 130 3.2.4 Authentic munition armour corrosion product removal: the Palace Armoury technique 137 3.3 Munition armour analogues: laboratory corrosion case studies: preparation & destructive investigations 142 3.3.1.1 Metal selection & substrate preparation 143 3.3.2.2 Armour analogues: conse-section 143 3.3.2.1 Analogues: conse-section preparation	2.4	Laboratory questionnaire on terrous armour corrosion products	118
2.5 Summary to historical, scientific & conservation context 122 3 EXPERIMENTAL METHODS & MATERIALS		4.2.1 Laboratory questionnaire summary & conclusions	119
3 EXPERIMENTAL METHODS & MATERIALS 123 3.1 Overview of the experimental framework 123 3.2 Palace Armoury environment, munition armour & corrosion product case studies: non-invasive & non-destructive investigations 125 3.2.1 Armour Hall wall display: in-situ corrosion survey 126 3.2.2 Armour Hall aerosol pollutants: scanning electron microscopy-energy dispersive spectrometry (SEM-EDS) 126 3.2.3 Authentic munition armour corrosion/corrosion product morphologies: laboratory investigations of surfaces & structures 127 3.2.3.1 Armour surface observations 128 3.2.3.2 Armour corrosion cross-section observations & analyses 130 3.2.4 Authentic munition armour corrosion product removal: the Palace Armoury technique 137 3.3 Munition armour analogues: laboratory corrosion case studies: preparation & destructive investigations 142 3.3.1.1 Metal selection & substrate preparation 143 3.3.1.2 Armour analogues: objectives & destructive investigations 170 3.3.2.4 Analogues: objectives & destructive investigations 142 3.3.1.1 Metal selection & substrate preparation 143 3.3.1.2 Armour analogues election <td>2.5</td> <td>Summary to historical, scientific & conservation context</td> <td>122</td>	2.5	Summary to historical, scientific & conservation context	122
3.1 Overview of the experimental framework 123 3.2 Palace Armoury environment, munition armour & corrosion product case studies: non-invasive & non-destructive investigations 125 3.2.1 Armour Hall wall display: in-situ corrosion survey 126 3.2.2 Armour Hall aerosol pollutants: scanning electron microscopy-energy dispersive spectrometry (SEM-EDS) 126 3.2.3 Authentic munition armour corrosion/corrosion product morphologies: laboratory investigations of surfaces & structures 127 3.2.3.1 Armour surface observations 128 3.2.3.2 Armour corrosion cross-section observations & analyses 130 3.2.4 Authentic munition armour corrosion product removal: the Palace Armoury technique 137 3.3 Munition armour analogues: laboratory corrosion case studies: preparation & destructive investigations 142 3.3.1.1 Metal selection & substrate preparation 143 3.3.2.2 Armour analogues: objectives & destructive investigations 170 3.3.2.1 Armour analogues: objectives & destructive investigations 174 3.3.1.2 Armour analogues: corss-section preparation 174 3.3.2.1 Analogues: corss-section preparation 174 3.3.2.2 Analogue	3	EXPERIMENTAL METHODS & MATERIALS 1	123
3.2 Palace Armoury environment, munition armour & corrosion product case studies: non-invasive & non-destructive investigations 125 3.2.1 Armour Hall wall display: in-situ corrosion survey 126 3.2.2 Armour Hall aerosol pollutants: scanning electron microscopy-energy dispersive spectrometry (SEM-EDS) 126 3.2.3 Authentic munition armour corrosion/corrosion product morphologies: laboratory investigations of surfaces & structures 127 3.2.3.1 Armour surface observations 128 3.2.3.2 Armour corrosion cross-section observations & analyses 130 3.2.4 Authentic munition armour corrosion product removal: the Palace Armoury technique 137 3.3 Munition armour analogues: laboratory corrosion case studies: preparation & destructive investigations 142 3.3.1.1 Metal selection & substrate preparation 143 3.3.1.2 Armour analogues: objectives & destructive investigations 170 3.3.2.1 Analogues: plan surface preparation 174 3.3.2.2 Analogues: coss-section preparation 174 3.3.2.3 Analogues: destructive investigations 170	3.1	Overview of the experimental framework	123
product case studies: non-invasive & non-destructive investigations1253.2.1Armour Hall wall display: <i>in-situ</i> corrosion survey1263.2.2Armour Hall aerosol pollutants: scanning electron microscopy- energy dispersive spectrometry (SEM-EDS)1263.2.3Authentic munition armour corrosion/corrosion product morphologies: laboratory investigations of surfaces & structures1273.2.3.1Armour surface observations1283.2.3.2Armour corrosion cross-section observations & analyses1303.2.4Authentic munition armour corrosion product removal: the Palace Armoury technique1373.3Munition armour analogues: laboratory corrosion case studies: preparation & destructive investigations1423.3.1.1Metal selection & substrate preparation1433.3.2.2Armour analogues: objectives & destructive investigations1703.3.2.1Analogues: plan surface preparation1743.3.2.2Analogues: cross-section preparation1743.3.2.3Analogues: coss-section preparation174	3.2	Palace Armoury environment, munition armour & corrosion	
investigations1253.2.1Armour Hall wall display: <i>in-situ</i> corrosion survey1263.2.2Armour Hall aerosol pollutants: scanning electron microscopy- energy dispersive spectrometry (SEM-EDS)1263.2.3Authentic munition armour corrosion/corrosion product morphologies: laboratory investigations of surfaces & structures1273.2.3.1Armour surface observations1283.2.3.2Armour corrosion cross-section observations & analyses1303.2.4Authentic munition armour corrosion product removal: the Palace Armoury technique1373.3Munition armour analogues: laboratory corrosion case studies: preparation & destructive investigations1423.3.1.1Metal selection & substrate preparation1433.3.2.2Armour analogue selection1683.3.2.1Anmour analogues: objectives & destructive investigations1703.3.2.1Analogues: preparation1743.3.2.2Analogues: cross-section preparation1743.3.2.3Analogues: cross-section preparation174		product case studies: non-invasive & non-destructive	
3.2.1 Armour Hall wall display: <i>in-situ</i> corrosion survey 126 3.2.2 Armour Hall aerosol pollutants: scanning electron microscopy- energy dispersive spectrometry (SEM-EDS) 126 3.2.3 Authentic munition armour corrosion/corrosion product morphologies: laboratory investigations of surfaces & structures 127 3.2.3.1 Armour surface observations 128 3.2.3.2 Armour corrosion cross-section observations & analyses 130 3.2.4 Authentic munition armour corrosion product removal: the Palace Armoury technique 137 3.3 Munition armour analogues: laboratory corrosion case studies: preparation & destructive investigations 142 3.3.1 Metal selection & substrate preparation 143 3.3.1.2 Armour analogues: objectives & destructive investigations 170 3.3.2.1 Analogues: plan surface preparation 174 3.3.2.2 Analogues: cross-section preparation 174 3.3.2.3 Analogues: cross-section preparation 174		investigations	125
3.2.2 Armour Hall aerosol pollutants: scanning electron microscopy- energy dispersive spectrometry (SEM-EDS) 126 3.2.3 Authentic munition armour corrosion/corrosion product morphologies: laboratory investigations of surfaces & structures 127 3.2.3.1 Armour surface observations 128 3.2.3.2 Armour corrosion cross-section observations & analyses 130 3.2.4 Authentic munition armour corrosion product removal: the Palace Armoury technique 137 3.3 Munition armour analogues: laboratory corrosion case studies: preparation & destructive investigations 142 3.3.1.1 Metal selection & substrate preparation 143 3.3.2 Armour analogues: objectives & destructive investigations 170 3.3.2 Armour analogues: objectives & destructive investigations 170 3.3.2.1 Analogues: plan surface preparation 174 3.3.2.2 Analogues: cross-section preparation 174 3.3.2.3 Analogues: destructive investigations 174	3.2	Armour Hall wall display: <i>in-situ</i> corrosion survey	126
and the energy dispersive spectrometry (SEM-EDS)1263.2.3Authentic munition armour corrosion/corrosion product morphologies: laboratory investigations of surfaces & structures1273.2.3.1Armour surface observations1283.2.3.2Armour corrosion cross-section observations & analyses1303.2.4Authentic munition armour corrosion product removal: the Palace Armoury technique1373.3Munition armour analogues: laboratory corrosion case studies: preparation & destructive investigations1423.3.1Armour analogues: manufacture & corrosion1423.3.1.1Metal selection & substrate preparation1433.3.2Armour analogues: objectives & destructive investigations1703.3.2.1Analogues: plan surface preparation1743.3.2.2Analogues: cross-section preparation1743.3.2.3Analogues: cross-section preparation1743.3.2.4Analogues: destructive investigations174	3.2	Armour Hall aerosol pollutants: scanning electron microscopy-	100
3.2.3 Authentic munition armour corrosion/corrosion product morphologies: laboratory investigations of surfaces & structures 127 3.2.3.1 Armour surface observations 128 3.2.3.2 Armour corrosion cross-section observations & analyses 130 3.2.4 Authentic munition armour corrosion product removal: the Palace Armoury technique 137 3.3 Munition armour analogues: laboratory corrosion case studies: preparation & destructive investigations 142 3.3.1 Armour analogues: manufacture & corrosion 142 3.3.1.1 Metal selection & substrate preparation 143 3.3.2.2 Armour analogues: objectives & destructive investigations 170 3.3.2.1 Analogues: plan surface preparation 174 3.3.2.2 Analogues: cross-section preparation 174 3.3.2.3 Analogues: destructive investigations 174	2	energy dispersive spectrometry (SEM-EDS)	126
morphologies: laboratory investigations of surfaces & structures1273.2.3.1Armour surface observations1283.2.3.2Armour corrosion cross-section observations & analyses1303.2.4Authentic munition armour corrosion product removal: the Palace Armoury technique137 3.3 Munition armour analogues: laboratory corrosion case studies: preparation & destructive investigations1423.3.1Armour analogues: manufacture & corrosion1423.3.1.1Metal selection & substrate preparation1433.3.2.2Armour analogues: objectives & destructive investigations1703.3.2.1Analogues: plan surface preparation1743.3.2.2Analogues: cross-section preparation1743.3.2.3Analogues: cross-section preparation1743.3.2.4Analogues: cross-section preparation174	3.2	Authentic munition armour corrosion/corrosion product	107
3.2.3.1 Armour surface observations 128 3.2.3.2 Armour corrosion cross-section observations & analyses 130 3.2.4 Authentic munition armour corrosion product removal: the Palace Armoury technique 137 3.3 Munition armour analogues: laboratory corrosion case studies: preparation & destructive investigations 142 3.3.1 Armour analogues: manufacture & corrosion 142 3.3.1.1 Metal selection & substrate preparation 143 3.3.2.2 Armour analogues: objectives & destructive investigations 170 3.3.2.1 Analogues: plan surface preparation 174 3.3.2.2 Analogues: cross-section preparation 174 3.3.2.3 Analogues: destructive investigations 178		morphologies: laboratory investigations of surfaces & structures	127
3.2.3.2Annour corrosion cross-section observations & analyses1303.2.4Authentic munition armour corrosion product removal: the Palace Armoury technique1373.3Munition armour analogues: laboratory corrosion case studies: preparation & destructive investigations1423.3.1Armour analogues: manufacture & corrosion1423.3.1.1Metal selection & substrate preparation1433.3.1.2Armour analogue selection1683.3.2Armour analogues: objectives & destructive investigations1703.3.2.1Analogues: plan surface preparation1743.3.2.2Analogues: cross-section preparation1743.3.2.3Analogues: destructive investigations178		2.3.1 Armour surface observations	128
3.2.4Authentic infinition annour consistion product removal: the Parace Armoury technique1373.3Munition armour analogues: laboratory corrosion case studies: preparation & destructive investigations1423.3.1Armour analogues: manufacture & corrosion1423.3.1.1Metal selection & substrate preparation1433.3.1.2Armour analogue selection1683.3.2Armour analogues: objectives & destructive investigations1703.3.2.1Analogues: plan surface preparation1743.3.2.2Analogues: cross-section preparation1743.3.2.3Analogues: destructive investigations178	2 1	2.5.2 Artificul corrosion cross-section observations & analyses	130
3.3Munition armour analogues: laboratory corrosion case studies: preparation & destructive investigations1423.3.1Armour analogues: manufacture & corrosion1423.3.1.1Metal selection & substrate preparation1433.3.1.2Armour analogue selection1683.3.2Armour analogues: objectives & destructive investigations1703.3.2.1Analogues: plan surface preparation1743.3.2.2Analogues: cross-section preparation1743.3.2.3Analogues: destructive investigations178	5.4	Aumentic multion annour corrosion product removal, the ratace	127
3.3Munition armour analogues: laboratory corrosion case studies: preparation & destructive investigations1423.3.1Armour analogues: manufacture & corrosion1423.3.1.1Metal selection & substrate preparation1433.3.1.2Armour analogue selection1683.3.2Armour analogues: objectives & destructive investigations1703.3.2.1Analogues: plan surface preparation1743.3.2.2Analogues: cross-section preparation1743.3.2.3Analogues: destructive investigations178		Armoury technique	137
studies: preparation & destructive investigations1423.3.1Armour analogues: manufacture & corrosion1423.3.1.1Metal selection & substrate preparation1433.3.1.2Armour analogue selection1683.3.2Armour analogues: objectives & destructive investigations1703.3.2.1Analogues: plan surface preparation1743.3.2.2Analogues: cross-section preparation1743.3.2.3Analogues: destructive investigations178	3.3	Munition armour analogues: laboratory corrosion case	1 4 3
3.3.1Armour analogues: manufacture & corrosion1423.3.1.1Metal selection & substrate preparation1433.3.1.2Armour analogue selection1683.3.2Armour analogues: objectives & destructive investigations1703.3.2.1Analogues: plan surface preparation1743.3.2.2Analogues: cross-section preparation1743.3.2.3Analogues: destructive investigations178	2	Armour analogues: manufacture & correction	142
3.3.1.1Armour analogue selection1433.3.1.2Armour analogue selection1683.3.2Armour analogues: objectives & destructive investigations1703.3.2.1Analogues: plan surface preparation1743.3.2.2Analogues: cross-section preparation1743.3.2.3Analogues: destructive investigations178	3	Armour analogues, manufacture & corrosion	14Z
3.3.1.2Annour analogue selection1083.3.2Armour analogues: objectives & destructive investigations1703.3.2.1Analogues: plan surface preparation1743.3.2.2Analogues: cross-section preparation1743.3.2.3Analogues: destructive investigations178		3.1.1 Armour analogue selection	143 169
3.3.2Analogues: objectives & destructive investigations1703.3.2.1Analogues: plan surface preparation1743.3.2.2Analogues: cross-section preparation1743.3.2.3Analogues: destructive investigations178		5.1.2 Annour analogue selection	100
3.3.2.1Analogues: plan surface preparation1743.3.2.2Analogues: cross-section preparation1743.3.2.3Analogues: destructive investigations178	2 1	Armour analogues: objectives & destructive investigations	170
3.3.2.3 Analogues: destructive investigations 178	3.2	Armour analogues: objectives & destructive investigations	170 174
1/0	3.:	2 Armour analogues: objectives & destructive investigations 3.2.1 Analogues: plan surface preparation 3.2.2 Analogues: cross-section preparation	170 174 174

3.4	Preliminary non-invasive observation of the determined limitos on authentic munition armour	186
3.5	Investigation methods & instrumentation	186
3.5.1	Macrophotography & photomicroscopy	186
3.5.1.	1 In-situ macrophotography	187
3.5.1.	2 Laboratory macrophotography	187
3.5.1.	3 Laboratory photomicroscopy	187
3.5.2	Scanning electron microscopy-energy dispersive spectrometry	190
3.5.2.	1 SEM-EDS sample preparation	191
3.5.3	Raman micro-spectroscopy	191

VOLUME II

4	RESULTS	195
4.1	Palace Armoury environment, munition armour & corrosion	
	product case studies: non-invasive & non-destructive	
	investigations	195
4.1.1	Armour Hall wall display: in-situ corrosion survey	195
4.1.2	Armour Hall aerosol pollutants: scanning electron microscopy-	
	energy dispersive spectrometry	197
4.1.2.	1 Armour Hall aerosol pollutants' SEM-EDS: results	197
4.1.3	Authentic munition armour corrosion/corrosion product	
	morphologies: laboratory investigations of surfaces & structures	198
4.1.3.	1 Armour surface observations: macrophotography &	
	photomicroscopy	198
4.1.3.	2 Armour corrosion cross-section observations & analyses	204
4.1.4	Authentic munition armour corrosion product removal: the Palace	
	Armoury technique	255
4.2	Munition armour analogues: laboratory corrosion case	
	studies & destructive investigations	257
4.2.1	Armour analogues, limitos determination: corrosion/corrosion	
	product morphologies & limitos investigations	257
4.2.1.	1 Plan perspective investigations	258
4.2.1.	2 Cross-section perspective investigations	270
4.2.1.	3 Summary of armour analogues, limitos determination:	
	corrosion/corrosion product morphologies & limitos	
	investigations' results	287
4.2.2	Armour analogues, Palace Armoury technique: current armour	
	corrosion product removal practice	287
4.2.3	Armour analogues, limitos application: corrosion product removal	
	to the limitos	291
4.2.3.	1 Curatorial perspectives on corrosion product removal to the	
	limitos	296
4.2.4	Summary of armour analogue investigations	299
4.3	Preliminary non-invasive observation of the determined	
	limitos on authentic munition armour	299

4.4		Summary of results	301
5		DISCUSSION	303
5.1		Palace Armoury environment, munition armour & corrosion product case studies: non-invasive & non-destructive	
		investigations	303
5	11	Armour Hall wall display: <i>in-situ</i> corrosion survey	303
5	12	Armour Hall aerosol pollutants: scanning electron microscopy-	505
5	. 1 . 2	energy dispersive spectrometry	304
	5121	Armour Hall aerosol pollutants' SFM-FDS: attribution of	504
	J.1.2.1	exagenalis solurces	304
	5121	Armour Hall aerosol pollutants' SFM-FDS: evaluation of	504
	J.1.2.2	notential superior limitos marker properties	308
5	13	Authentic munition armour corrosion/corrosion product	500
5	.1.5	morphologies: laboratory investigations of surfaces & structures	312
	5121	Armour surface observations: macrophotography &	512
	5.1.5.1	mbotomicrossony	212
	5120	photomicroscopy	212
~	5.1.3.2	Armour corrosion cross-section observations & analyses	312
5	.1.4	Authentic munition armour corrosion product removal: the Palace	200
		Armoury technique	328
	5.1.4.	Conclusions from the Palace Armoury's corrosion product	
		removal technique	328
5.2		Munition armour analogues: laboratory corrosion case	220
_ر	0.1	studies & destructive investigations	328
5	.2.1	Armour analogues, limitos determination: corrosion/corrosion	200
	501	product morphologies & limitos investigations	328
	5.2.1.	Plan perspective investigations	329
	5.2.1.2	2 Cross-section perspective investigations	332
	5.2.1.3	3 Applied superior limitos markers review	334
	5.2.1.4	Armour analogue discussion & corrosion/corrosion product	
		morphologies' validity	337
5	.2.2	Armour analogues, Palace Armoury technique: current armour	
		corrosion product removal practice	341
5	.2.3	Armour analogues, limitos application: corrosion product removal	
		to the limitos	343
	5.2.3.	Curatorial perspectives on corrosion product removal to the	
		limitos	345
5.3		Preliminary non-invasive observation of the determined	
		limitos on authentic munition armour	348
5.4		Summary & conclusions to discussion	349
6		CONCLUSIONS	352
7		RECOMMENDATIONS	355
8		FUTURE RESEARCH	357

REFERENCI	ES
LIST OF AB	BREVIATIONS
APPENDICE	S
Appendix A –	Laboratory questionnaire on ferrous armour corrosion products: delivered questionnaire
Appendix B –	Laboratory questionnaire on ferrous armour corrosion products: results & analyses
Appendix C –	Ten Palace Armoury armour available for laboratory study
Appendix D –	Ten Palace Armoury armour and cross-section samples: comparative summary
Appendix E –	Microstructures of the three Palace Armoury munition armour samples selected for cross-section investigations
Appendix F –	Microstructures of munition armour analogues
Appendix G –	Raman micro-spectroscopy spectra: representative selection from zones of interest on armour cross-sections PA RC 166 & PA 316

,

Volume II back cover: CD-ROM digital version of dissertation & appendices.

LIST OF FIGURES

Figure 2-1 The Islamic world circa AD 1500 (below broad green line) and	
Malta on the Christendom frontier	4
Figure 2-2 Upper left: Context map of the Maltese Islands with the cities of	
Valletta, Vittoriosa & Mdina Upper right: Context aerial view of	
the Palace Armoury in Valletta Lower left: Exterior of Grand	
Masters' Palace, Republic Street Lower right: Exterior of Grand	
Masters' Palace Armoury, Merchants Street	5
Figure 2-3 Detail from an engraving of Valletta Francesco Villamena published	
in 1602 in Giacomo Bosio's History of the Order of St John. It is	
possible that the content of the map dates even earlier since it is	
said the map was a copy of an earlier map dating to 1582	6
Figure 2-4 Assembly of 16th-17th century northern Italian-style munition half-	
armour and helmets of the peaked morion type at the Palace	
Armoury	7
Figure 2-5 Left: Northern Italian-style etched Knight's Armour (circa 1570-	
1580) Right: Northern Italian Pisan style gilt parade armour of	
Grand Master Verdelin (circa 1580)	8
Figure 2-6 Section and plan perspectives of three bloomery furnaces dating	
from the Middle Ages	.12
Figure 2-7 Left: Sixteenth century illustrations of Italian blast furnaces of	
various shapes powered by a watermill Right: A bellow and blast	
furnace Note all furnaces are producing liquid material	.15
Figure 2-8 Left: & Right: Contemporary technical elevation and plan of a	
hydraulic blast furnace (circa 16th century)	.15
Figure 2-9 Left: Annotated appellation of worn etch-decorated half-armour	
(breast and backplates are covered by a surcoat marked by the	
Order of St. John ensign)	.18
Figure 2-10 A 15-16th French manuscript depicting hot forming of a	
breastplate or backplate by hammer on an anvil	.19
Figure 2-11 Typical mid 16th-mid 17th century northern Italian-style munition	
armour at the Palace Armoury. Left: Breastplate and tasset. Right:	
Pauldron, upper cannon (rerebrace), couter and lower cannon	
(vambrace)	.20
Figure 2-12 An illustration from Hausbuch der Mendelschen	
Zwölfbrüderstiftung (circa 1571) depicting an armourer using a	
hydraulic powered polishing/grinding wheel	.21
Figure 2-13 "Northern Italian foot soldier/infantry armour (c. 1560-1570)" at	
Vienna's Kunsthistorisches Museum	.22

Figure 2-14 Examples of trophies of arms across Europe. Left: Hertford House
(circa 1873-1897), Sir Richard Wallace, United Kingdom. Centre:
Pierrefonds (published 1867), Viollet-le-Duc, France. Right:
Cabinet des armes et armures (n.d.) of Prince Soltykoff in St
Petersburg, Russia26
Figure 2-15 Le Magazin Royal des Armes à Paris, circa 1686
Figure 2-16 Acid-etched decorations on more elaborate armour (circa 1590)
indicate trophy of arms display formations
Figure 2-17 Left: Detail of trophies of arms from Right: Armoury in the
Governor's Palace in Valetta lithograph by Charles Frederick de
Brocktorff circa 1840
Figure 2.18 Unner and lower left: Details of transies of arms from Main: The
Pigure 2-18 Opper and lower left. Details of tropines of arms from Main. The
Palace Annoury circa 1900
Figure 2-19 Postcards depicting the Palace Armoury during the British period
of the 20th century. Note the multitudes of trophies of arms (and
armour) on walls and furnishings
Figure 2-20 Armourers polishing armour at the Palace Armoury after the
Second World War
Figure 2-21 The Palace Armoury arrangement before its 1975 ground floor
transferral. Note the relative absence of wall-displayed armour
when compared with Figure 2-19
Figure 2-22 Original and current Palace Armoury locations
Figure 2-23 Palace Armoury Armour Hall exhibition space in 2006 marked
with display types 42
Figure 2-24 A selection of the wall-displayed trophies of arms in the Armour
Hall in 2006
Figure 2.25 The coastal urban and industrial regional environment of the
Figure 2-23 The coastar, urban and industrial regional environment of the
Falace Alliloury, Valietta
Figure 2-26 "A schematic depiction of surface hydroxyl (OH-) groups on a
metal oxide surface after Leygraf & Graedel
Figure 2-27 Schema of differential aeration corrosion caused by a surface
deposit particle
Figure 2-28 Left: Rack containing low-carbon steel coupons exposed at an
inclination of 30° to the vertical in the Palace Armoury, Armour
Hall. Centre: Very corroded particle-collecting upper side of
unprotected coupon after 17 months exposure. Right: Slightly
corroded inverted side of corresponding unprotected coupon,
which is collecting less particles
Figure 2-29 "Differential aeration cell formed by rust on iron"
Figure 2-30 "Schematic view of the corrosion layer developed on the Amiens
iron chains" 64
Figure 2-31 Left: Varnished helmet in-situ on a wall display at the Palace
Armoury Right: Detail of the same helmet featuring filiform
Armoury. Right. Detail of the same nemiet reaturing innorm
Eigure 2.22 Eiliform correction programmer on contormation start 1
rigure 2-52 rimonin contosion progressing on contemporary low-carbon steel
coaled with Paralold B-72 ¹ (15%m/v in acetone) during
laboratory-based accelerated corrosion protective system
efficiency tests. Left: Filament after 14 daily cycles & Right:
Same filament after 22 daily cycles

Figure 2-33 Left: Scanning electron microscope image of filiform corrosion on
iron. Right: Filiform heads enriched with chlorine as determined
by corresponding mapping with energy dispersive spectrometry74
Figure 2-34 Plan and profile of filiform corrosion mechanism on coated steel75
Figure 2-35 Lower left: Contemporary set of four varnished steel carpentry
chisels featuring filiform corrosion products oriented parallel with
the grinding directions on each facet. Top left and right: Details
of a single chisel's facets and filament orientation
Figure 2-36 Corrosion product filaments that are oriented parallel in respective
areas on Palace Armoury munition armour
Figure 2-37 A coated unspecified metal with filiform corrosion propagating
from deliberate coating incisions
Figure 2-38 Scanning electron microscope image of a small filiform corrosion
filament on iron coated with halite, rather than a coating
Figure 2-39 Scanning electron microscope backscatter electron (BSE) detector
images of cross-sections of corroded munition armour from the
Palace Armoury
Figure 2-40 Schematic classification of types of metal corrosion: excluding
corrosion products
Figure 2-41 Excessive corrosion to a wrought iron construction beam
Figure 2-42 Schematic depiction of pitting corrosion by differential aeration on
a ferrous metal with a previous oxide layer
Figure 2-43 Left: Energy dispersive spectrometry mapping of a cross-section of
more heavily corroded Palace Armoury armour (PA RC 20) with
increased chlorine concentration inside a corrosion pit below the
adjacent metal. Main: Corresponding SEM BSE image
Figure 2-44 A conceptual representation of the principal components of the
material-environment system contributing to the metal artefact
alteration by corrosion88
Figure 2-45 "Longitudinal cross-section through the wall of a cast iron pipe,
exhibiting severe graphitic corrosion, i.e. dissolution of the iron
from the cast iron pipe leaving behind layers of intact graphite"94
Figure 2-46 "Diagram showing four options the conservator may choose in
cleaning a bronze object"95
Figure 2-47 Left: Overall view of a Merovingien (5-8th century AD) wrought
iron plate inlaid with brass. Right: Detail demonstrating the
vertical displacement of the corroded iron and contained brass 103
Figure 2-48 Schematic representation of internal and external marker locations
on a wrought ferrous metal in a burial environment
Figure 2-49 Left: Wrought iron axehead dating from the Middle Ages after
terrestrial excavation with corrosion products fixed into sediment.
Right: Same axehead after removal of sediment fixed with
corrosion products104
Figure 2-50 Details from during corrosion product removal stages of axehead
in Figure 2-49. Left: Quartz sediment superior limitos markers in
external corrosion product layers. Right: Determined limitos of
axehead without quartz sediment superior limitos markers
Figure 2-51 Widmanstätten microstructures present in metal and corrosion
products (200x)
Figure 2-52 "Slag inclusions wholly surrounded by corrosion products (100x)"106

Figure 2-53 Conceptual localisation of the limitos using Bertholon's limitos marker system
Figure 2-54 Cross-section of corroded Chinese bronze with schematic representation of same area with labelling of the various strata
Figure 2-55 Detail of Palace Armoury munition armour tasset with corroded surface area largely devoid of corrosion products
Figure 3-1 The three munition armour accompanying the cross-section samples selected for further laboratory study
Figure 3-2 Three backplate armour selected to be representative of the corrosion extent on the wall displays
Figure 3-3 Equipment and materials used during the Palace Armoury's documented backplate corrosion product removal (and associated)
Figure 3-4 Dimensions of low-carbon steel armour analogues 147
Figure 3-5 Armour analogue representative of Coupon Series 1 after pre-
existing coating and partial corrosion product removal
Figure 3-6 Filiform corrosion filaments (orange-brown) proposed to have
initiated from former corrosion pits (black areas) on munition
armour
Figure 3-7 Armour analogues from Coupon Series 2-7 during and after surface grinding
Figure 3-8 Armour analogue representative of Coupon Series 2-7 after pre-
existing coating and corrosion product removal
Figure 3-9 Filiform corrosion propagating along parallel metal surface abrasion
lines on PA munition armour
Figure 3-10 Removal of surface matter from armour analogues by
Eigune 2 11 Presedure for correction accelerant conflication by immersion 152
Figure 3-11 Procedure for local correspon accelerant application for filiform
rigure 3-12 Flocedure for local corrosion accelerant application for finitorin
Figure 3-13 Schematic representation of coupons designed for filiform
Figure 3-14 Application of zinc oxide/barium sulphate applied superior limitos
Figure 3-15 Conglomeration of barium sulphate applied superior limitos
Figure 3-16 Gold superior limitos marker application onto armour analogues 162
Figure 3-17 Polypronylene chambers and oven used for relative humidity and
temperature cycling (2-week regime)
Figure 3-18 Representative armour analogues from the four Coupon Series not selected for continued investigation Top row: Before accelerated corrosion regime Bottom row: After accelerated corrosion regime 160
Figure 3-19 Representative armour analogues from the three Coupon Series selected for continued investigation. Top: Before accelerated
corrosion regime Bottom: After accelerated corrosion regime170
Figure 3-20 Schematic summary of armour analogue coupon with sequential objectives
Figure 3-21 Overview of the armour analogues' division (left) and numbering (right)

Figure 3-22 Left: Armour analogues being wrapped (bottom: unwrapped, top:
wrapped) in carbon paper before cutting. Centre: Industrial sheet
metal cutting guillotine used to divide armour analogues. Right:
Assembly of cut major-coupons (Armour analogue objective 1,
Limitos determination only) from Coupon Series 1, 4 & 6 173
Figure 3-23 Left: Computer Numerical Control (CNC) machined acrylic
positive mould and cast silicone negative mould custom-designed
for dimensions of armour analogue sections Centre & right:
Overview and detail of mini-coupons (i.e. cross-section samples)
in embedding tray before resin application175
Figure 3-24 Laboratory constructed vacuum resin embedding system
Figure 3-25 Sample polishing table and example detail of sample orientation
and abrasive wheel direction
Figure 3-26 Slag in metallographic cross-section of armour analogue
Figure 3-27 Equipment and materials used to clean armour analogues
Figure 3-28 In-situ photographic and written documentation process of armour
wall displays in the Palace Armoury Armour Hall
Figure 3-29 Macrophotography of overall armour
Figure 3-30 Photomicroscopy configuration: Leitz MM5 inverted
metallographic microscope and tripod mounted Nikon Coolpix
4500 digital camera
Figure 3-31 Example spectra exhibiting Left: Raman signals & Right: mainly
fluorescence signals (right)
Figure 4-1 Left: Context of wall-displayed coated cabasset type helmets at the
Palace Armoury. Centre & right: Details of helmets reproducibly
exhibiting corrosion products on surfaces with particulate
deposits
Figure 4-2 Example of a high magnification SEM BSE image (x1600) of
collected Palace Armoury particulates and example spectra from
the EDS sites of analyses $(1 \& 2)$
Figure 4-3 Former wall-displayed munition armour with corrosion products on
non-inverted surfaces (15cm scales)
Figure 4-4 Sampling location and surface documentation of Pauldron (part) PA
RC 166
Figure 4-5 Sampling location and surface documentation of Pauldron PA 316206
Figure 4-6 Sampling location and surface documentation of Backplate PA 329 206
Figure 4-7 Palace Armoury armour cross-section, Pauldron (part) PA RC 166:
Overall context photograph using the Olympus BX-50 optical
microscope
Figure 4-8 Palace Armoury armour cross-sections, Pauldron (part) PA RC 166:
Apparent corrosion product colours in corrosion product
stratigraphies (ZOIs 11 & 21) as observed by optical microscopy.
Context image in Figure 4-7
Figure 4-9 Palace Armoury armour cross-section, Pauldron (part) PA RC 166:
Apparent corrosion product colours in corrosion product
stratigraphies as observed by optical microscopy of ZOI 31.
Context image in Figure 4-7. 209
Figure 4-10 Palace Armoury armour cross-section, Pauldron (part) PA RC 166:
Metallographic microscope image of ZOI 32. Equivalent area
represented by Figure 4-9. Context image in Figure 4-7

Figure 4-11 Palace Armoury armour cross-section, Pauldron PA 316: Overall context photograph using the Olympus BX-50 optical microscope 211
Figure 4-12 Palace Armoury armour cross-section, Pauldron PA 316, Corrosion product stratigraphy of ZOI 11, observed by optical microscopy. Context image in Figure 4-11
Figure 4-13 Palace Armoury armour cross-section, Pauldron PA 316: Metallographic microscope image of ZOI 12 on corresponding area represented in Figure 4-12. Context image in Figure 4-11
Figure 4-14 Palace Armoury armour cross-section: Pauldron PA 316, Stratigraphy of ZOI 2a-b, as observed by optical microscopy. Context image in Figure 4-11
Figure 4-15 Palace Armoury armour cross-section, Backplate PA 329: Overall context photograph using the Olympus BX-50 optical microscope
Figure 4-16 Palace Armoury armour cross-section, Backplate PA 329: Corrosion product stratigraphy of ZOI 11 as observed by optical microscopy Context image in Figure 4-15 216
Figure 4-17 Palace Armoury armour cross-section, Backplate PA 329: Stratigraphy of ZOI 21 as observed by optical microscopy.
Figure 4-18 Palace Armoury armour cross-section, Backplate PA 329: Metallographic microscope image of ZOI 22 on area represented
Figure 4-17. Context image in Figure 4-15
Figure 4-39
Figure 4-19
Figure 4-22 Palace Armoury armour cross-section, Pauldron (part) PA RC 166:
High magnification (1000x) SEM BSE image of inner armour subsurface stratigraphy at ZOI 3a3 of the globules in the dense product layer & example spectra from the sites of EDS analyses (3, 6, 8-9). Context image in Figure 4-21
Figure 4-23 Palace Armoury armour cross-section, Pauldron (part) PA RC 166: Normalised (%rel.at.wt.) EDS elemental mapping of areas above and below the initially & revised proposed TM/DPL interfaces (as respectively marked by the orange & yellow dashed lines) on
inner armour subsurface stratigraphy at ZOI 3a4. Context image in Figure 4-21
context SEM BSE image with contexts for ZOIs 1-2 presented in Figure 4-25, Figure 4-27 & Figure 4-40

BSE image (300x) of outer armour subsurface stratigraphy at ZOI 11 and sites of EDS analyses (1-18) Context image in Figure
4-24
Figure 4-26 Palace Armoury armour cross-section, Pauldron PA 316: SEM BSE mid-range magnification (750x) image of the coating and dense product layer interface at ZOI 12. Context image presented in Figure 4-25
Figure 4-27 Palace Armoury armour cross-section, Pauldron PA 316: Low magnification (85x) SEM BSE image of stratigraphy at ZOI 2a1- b1. Context image in Figure 4-24
Figure 4-28 Palace Armoury armour cross-section, Pauldron 316: SEM BSE image (500x) of outer armour subsurface stratigraphy at ZOI 2a2 and sites of EDS analyses (1-14). Context image in Figure 4-27234
Figure 4-29 Palace Armoury armour cross-section, Pauldron PA 316: SEM BSE high magnification detail (2000x) of outer armour subsurface stratigraphy at ZOI 2a3 and sites of EDS analyses (1-
8). Context image in Figure 4-28
Figure 4-30 Palace Armoury armour cross-section, Pauldron PA 316: Metallographic image
Figure 4-31 Palace Armoury armour cross-section, Backplate PA 329: Overall context SEM BSE image (25x) with contexts for ZOIs 1-3 presented in Figure 4-32, Figure 4-33, Figure 4-34, Figure 4-41 & Figure 4-42
Figure 4-32 Palace Armoury armour cross-section, Backplate PA 329: Main: Low magnification (250x) SEM BSE image of outer armour subsurface stratigraphy at ZOI 31. Context image in Figure 4-31.
Figure 4-33 Palace Armoury armour cross-section, Backplate PA 329: Energy dispersive spectrometry mapping at ZOI 11. Context image in Figure 4-31
Figure 4-34 Palace Armoury armour cross-section, Backplate PA 329: SEM BSE image (250x) of inner armour subsurface stratigraphy at ZOI 21. Context image in Figure 4-31
Figure 4-35 Palace Armoury armour cross-section, Pauldron PA 329: SEM BSE detail (400x) of inner armour subsurface stratigraphy at ZOI 22 and sites of EDS analyses (1-12). Context image in Figure
 4-34
Figure 4-37 Palace Armoury armour cross-section, Pauldron (part) PA RC 166: Left: Optical microscope image representing areas of Raman micro-spectroscopy analyses of inner armour subsurface CP stratigraphy for ZOI 3b1 and the results for the respective analysis points (31-50). Context image in Figure 4-19. Right: SEM BSE image of same area and adjacent inclusions inside the dense product layer

Raman micro-spectroscopy linear profiling of inner armour subsurface corrosion product stratigraphy for ZOI 3a1. Context image in Figure 4-19. Right: Results for the respective Raman micro-spectroscopy analysis points (1-18)
subsurface corrosion product stratigraphy for ZOI 3a1. Context image in Figure 4-19. Right: Results for the respective Raman micro-spectroscopy analysis points (1-18)
image in Figure 4-19. Right: Results for the respective Raman micro-spectroscopy analysis points (1-18)
micro-spectroscopy analysis points (1-18)
Figure 4-30 Palace Armoury armour cross-section Pauldron (nart) PA BC 166.
$r_1 g_{u_1} = -37$ ratace Armoury armour cross-section. ration (part) r A RC 100.
Top: Optical microscope image with Raman micro-spectroscopy
mapping at ZOI 3d1. Context image in Figure 4-19. Bottom:
Hyperspectral mapping results by intensity of corrosion product
phases. Black denotes areas of strong fluorescence
Figure 4-40 Palace Armoury armour cross-section, Pauldron PA 316: Left:
SEM BSE image representing Raman micro-spectroscopy point
analyses of cross-section inner armour subsurface stratigraphy at
ZOI 12 and the results for the respective analysis points (1-12.
15). Context image in Figure 4-24 Right: Optical microscope
image with original Raman analyses points
Figure 4-41 Palace Armoury armour cross-section. Backplate PA 329: SEM SE
image of ZOI 11. Context image in Figure 4-31
Figure 4-42 Palace Armoury armour cross-sections. Backplate PA 329: Optical
microscope images representing Raman micro-spectroscopy
analyses at ZOI 22 on the cross-section and the results for the
respective analysis points (1-5, 7). Context image in Figure 4-31, 254
Figure 4-43 Palace Armoury armour backplate: Comparison of effects before
and after consecutive steps of corrosion product removal and
associated interventions
Figure 4-44 Palace Armoury armour backplate: Detail of effects from corrosion
product removal and associated interventions after steps 1-3 and
1-4 of the Palace Armoury technique
Figure 4-45 Palace Armoury armour backplate: Detail of effects from corrosion
product removal and associated interventions after steps 1-5 and
1-6 of the Palace Armoury technique
Figure 4-46 Armour analogue plan perspective. Coupon Series 1: Major
coupon used to demonstrate surface features and context frame
for Figure 4-47
Figure 4-47 Armour analogue plan perspective. Coupon Series 1: Overview of
area containing representative corrosion product morphologies
and context frames for Figure 4-48 (before coating removal and
CP prohing)
Figure 4-48 Armour analogue plan perspectives. Coupon Series 1: Details of
areas from Figure 4-47 containing representative materials and
corrosion product morphologies (before coating removal and CP
probing)
Figure 4-49 Armour analogue plan perspective. Coupon Series 1: Various
filiform corrosion filaments (CP8c) exhibiting micro-grooves
from the metal (after coating removal and before CP probing)

.

Firme 4.50 A merel and allow a new retires Courses Series 1. Maine True
Figure 4-50 Armour analogue plan perspective, Coupon Series 1: Main: Two
corrosion blisters (CP6c) in varying states of preservation that
exhibit micro-grooves from the metal. Inset: Context of blisters
with metal and micro-grooves (after coating removal and before
CP probing)
Figure 4-51 Armour analogue plan perspective, Coupon Series 1: Main:
Corrosion blister (CP7c) exhibiting micro-grooves from the
metal. Inset: Context of blister with metal and micro-grooves
(after coating removal and before CP probing)
Figure 4-52 Armour analogue plan perspectives. Coupon Series 1: Exposure of
(P9) (orange powdery corrosion products) under various
correction product morphologics holding the limites (after costing
corrosion product morphologies holding the mintos (after coating $1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 $
removal and during CP probing)
Figure 4-53 Armour analogue plan perspective, Coupon Series 4: Stepped
stratigraphy during stratigraphic probing
Figure 4-54 Armour analogue plan perspective, Coupon Series 6: Inset:
Context of main image, of surface from (before coating removal
and before CP probing). Main: Micro-grooves on filiform
filament surface and internal orange CPs inside the same filament
(after removal of coating and gold marker and during CP
(and removal of country and gold marker and during Cr
Figure 4.55 Armour analogue plan perspective Coupon Series 6: Clabular
Figure 4-55 Armour analogue plan perspective, Coupon Series 0. Otobular
tubercle corrosion products with gold marker before and during
probing
Figure 4-56 Armour analogue cross-section, Coupon Series 1: Main: SEM
BSE image (500x) of stratigraphy and sites of EDS analyses (1-
5). Inset: Optical microscope image of corresponding site
depicting indicative corrosion product colours
Figure 4-57 Armour analogue cross-section, Coupon Series 6: Inset: Optical
microscope and scanning electron microscope context images for
main image. Main: High magnification (1500x) SEM BSE image
of stratigraphy and initially proposed limitos area between
transformed medium and dense product layer 273
Eigure 4.59 Armour analogue group gention. Course Sories 6: Main: Low
Figure 4-38 Armour analogue closs-section, Coupon Series 0. Main. Low
magnification (250x) SEM BSE context image for inset. Inset:
High magnification (1500x) SEM BSE image of stratigraphy and
revised proposed limitos area between transformed medium and
dense product layer274
Figure 4-59 Armour analogue cross-section, Coupon Series 6: Discrimination
between ferrous corrosion products and gold superior limitos
marker by SEM-EDS. Top: High magnification (1500x) SEM
BSE image. Bottom: Spectra from the sites of EDS analyses (1-
3) 275
Figure 4-60 Armour analogue cross-section Counon Series 4. Comparison of
abservation techniques. Top: antical microscope visible light
Middle, entired microscope ultraviolet light. Dettern, SEM DSE
Millule, optical incroscope ultraviolet light. Bottom: SEM BSE
2/7 image (100x) of stratigraphy

Figure 4-61	Armour analogue cross-section, Coupon Series 4: Top: Detail of area in corrosion products stratigraphy with the lower limits of applied superior limitos marker (green line) Bottom: SEM BSE
Figure 4-62	Armour analogue cross-section, Coupon Series 4: Normalised EDS mapping and lower limits of superior limitos marker (green dashed line) of context image in Figure 4-61: Bottom
Figure 4-63	Armour analogue cross-section, Coupon Series 4: Low magnification (100x) SEM BSE image with contexts for zones of interest in Figure 4-64 & Figure 4-66
Figure 4-64	Armour analogue cross-section, Coupon Series 4: High magnification (1000x) SEM BSE image of a cross-section with contexts for zones of interest in Figure 4-65. Context image in Figure 4-63
Figure 4-65	Armour analogue cross-section, Coupon Series 4: SEM BSE images and results of manganese EDS analyses (%rel.at.wt.) of the metal and corrosion products in a corrosion pit. Context image in Figure 4-64
Figure 4-66	Armour analogue cross-section, Coupon Series 4: Low magnification (500x) context SEM BSE context image zones of interest in Figure 4-67. Context image in Figure 4-63
Figure 4-67	Armour analogue cross-section, Coupon Series 4: SEM BSE images and results of manganese EDS analyses (%rel.at.wt.) of corrosion products above a corrosion pit. Context image in Figure 4-64
Figure 4-68	Armour analogue major coupon plan perspective, Coupon Series 4. Left: Before and Right: After partial corrosion product removal by the Palace Armoury (with red context frame for Figure 4-70)288
Figure 4-69	Armour analogue major coupon plan perspective, Coupon Series 6. Left: Before and Right: After partial corrosion product removal by the Palace Armoury (with red context frame for Figure 4-71)288
Figure 4-70	 Armour analogue major coupon plan perspective, Coupon Series 4: Main: Raking light optical microscope image of cleaned armour analogue by the Palace Armoury. Inset: Context image from Figure 4-68.
Figure 4-71	Armour analogue major coupon plan perspective, Coupon Series 6: Main: Raking light optical microscope image of Armour analogue cleaned by the Palace Armoury. Inset: Context image from Figure 4-69
Figure 4-72	Armour analogue major coupon plan perspective, Coupon Series 1: Example of major coupon. Left: before and Right: after corrosion product removal according to the determined limitos292
Figure 4-73	 Armour analogue major coupon plan perspective, Coupon Series 4: Example of major coupon. Left: before and Right: after corrosion product removal according to the determined limitos
Figure 4-74	Armour analogue major coupon plan perspective, Coupon Series 6: Example of major coupon Left: before and Right: after corrosion product removal according to the determined limitos293

Figure 4-75 Armour analogue major coupon plan perspective, Coupon Series	
1: Progressive optical microscope magnification of very thin	
general corrosion products exhibiting micro-grooves from the	
metal	94
Figure 4-76 Armour analogue major coupon plan perspective, Coupon Series	
1: Optical microscopy of corrosion products. Top: Before; and	
Bottom: After partial corrosion product removal to the determined	
limitos29	95
Figure 4-77 Armour analogues plan perspectives, examples of major coupons	
(with uncleaned mini-reference coupons). Top: Cleaned according	
to the current Palace Armoury technique and Bottom: Cleaned	
according to the diagnostically determined limitos	96
Figure 4-78 Palace Armoury armour plan perspectives, Pauldron PA 316:	
Binocular microscope images of corrosion product morphologies	
exhibiting a displaced limitos as evidenced by surface abrasion	
micro-grooves	00
Figure 5-1 Detail of the Palace Armoury armour wall display with numerous	
evident layers of white and coloured limewash	08
Figure 5-2 Armour analogue lateral-section, Coupon Series 1: Subsurface	
laterally polished metal with filiform corrosion filament (that has	
self-terminated as indicated by direction of blue arrows)	31

LIST OF TABLES

Table 2-1 Frequency of crystalline corrosion product types from a selection of three Palace Armoury munition armour (PA RC 166, PA 316, PA220)
529)
of artefacts as reviewed by Bertholon
Table 2-3 Summary of artefact features cited in the literature that are deemed indicative or indeed reveal the original surface
Table 3-1 Attributes of the metal and corrosion products comprising the three munition armour and corresponding samples selected for further
study
Table 3-2 Most prevalent alloying and trace element components of the armour analogues 144
Table 3-3 Summary of the objectives and variables of the manufactured armour
analogues 148
Table 3-4 Mass range of applied superior limitos marker applied to coupons
(75 x 50mm2)
Table 3-5 Summary of the anticipated temperature and relative humidity
parameters and the executed accelerated corrosion regime
durations
Table 3-6 Summary of the parameters, data and key calculations to achieve
targeted relative humidities
Table 3-7 Summary example of three cross-sections in the sample grinding
dimension calculator (Microsoft Excel [™])177
Table 4-1 Summary of raw data of Palace Armoury particulate deposits
analyses by SEM-EDS198
Table 4-2 Summary classification of proposed evolution of corrosion product
morphologies and degrees of development on laboratory studied
munition armour
Table 4-3 Corresponding photomicroscopy of the summary classification of
proposed evolution of corrosion product morphologies and
degrees of development given in Table 4-2
Table 4-4 Pauldron (part) PA RC 166: Semi-quantitative summary of elements
found on EDS analyses sites depicted in Figure 4-20
Table 4-5 Pauldron (part) PA RC 166: Semi-quantitative summary of elements
found on EDS analyses sites depicted in Figure 4-21
Table 4-6 Pauldron (part) PA KC 106: Semi-quantitative summary of elements
Tokie 4.7 Devidence 216. Some guantitative summary of elements found on
Table 4-7 Pauldron 510: Semi-quantitative summary of elements found on
Table 4.9 Doubleton DA 216: Somi quantitative summary of elements found on
FDS analyses sites denicted in Figure 4.20
Table 4-9 Pauldron PA 329. Semi-quantitative summary of elements found on
EDS analyses sites depicted in Figure 4-35.

Table 4-10 Summary of classifications and characteristics of corrosion	
products, applied materials and metal on Coupon Series 1	262
Table 4-11 Coupon Series 1: Summary of corrosion product stratigraphy and	
limitos determination	263
Table 4-12 Semi-quantitative summary of elements found on EDS analyses	
sites depicted in Figure 4-56.	272
Table 5-1 Summary of the interpreted exogenous materials attributable to the	
SEM-EDS-detected elements of the Palace Armoury particulate	
deposits	304
Table 5-2 Compound sources and elements typically present in Lower	
Globigerina	306

LIST OF GRAPHS

Graph 2-1 The iron and steel section of the iron-carbon phase diagram	13
Graph 2-2 The iron-carbon phase diagram including, iron, steel and cast iron	
phases	16
Graph 2-3 Consumption rates of iron and oxygen during a wet-dry cycle (after	
Stratmann)	52
Graph 2-4 Temperature and relative humidity in the Palace Armoury Armour	
Hall around the summer months	53
Graph 2-5 Psychrometric chart exemplifying the effect on relative humidity by	
temperature change	54
Graph 2-6 Relationship between surface corrosion product typologies and	
coatings on armour at the Palace Armoury	79
Graph 3-1 Temperature and relative humidity recorded during the accelerated	
corrosion regime of the armour analogues over 4 months	167
Graph 3-2 Temperature and relative humidity recorded during the accelerated	
corrosion regime of the armour analogues over 2 weeks	168

LIST OF EQUATIONS

Equation 2-1 Simplified smelting representation of iron oxide reduction to	
elemental iron	11
Equation 2-2 Conceptual half reactions for metal oxidation (a) and reduction of other chemical species (b)	45
Equation 2-3 Predominant anodic (a) and cathodic (b) reactions in atmospheric	
ferrous corrosion	47
Equation 2-4 Cathodic half equation for aerated, acidic to neutral atmospheric conditions	49
Equation 2-5 Cathodic half equation for deaerated, acidic atmospheric conditions	49
Equation 2-6 Hydrolysis of ferrous ions to form acidic conditions	49
Equation 2-7 Reduction of ferric ions to the ferrous state during wetting of a corrosion product layer	66
Equation 2-8 Complete oxidation of iron and corrosion product formation	
summary	69
Equation 2-9 Reaction of ferrous ions with hydroxides	69
Equation 3-1 Glycerin-water solution concentration calculation in terms of the	
solution's refractive index	165
Equation 5-1 Production of carbonic acid by absorption of atmospheric carbon	
dioxide into water.	310

PREFACE

This Master of Conservation applied research dissertation is complementary to the 3.5-year (2004-2008) European Commission 6^{th} Framework Programme research project Promet (Protection of metals)³: a multidisciplinary consortium that investigated advanced analysis techniques and applied anti-corrosion materials for protecting indoor metallic cultural heritage against corrosion in the Mediterranean environment.

One of Promet's Maltese partners, Heritage Malta, selected the large metal armour collection and environment of the Palace Armoury for its investigations. The collection's military history as functional tools of warfare and static museum trophies has involved cycles of periodic neglect followed by undocumented enthusiastic restoration interventions; intrinsically evidenced by the artefacts themselves.

The development and testing of barrier coatings and corrosion inhibitors new to cultural heritage conservation was one of the main objectives of Promet. Unlike industrial applications, heritage conservation practitioners do not have the flexibility of creating a surface to suit the needs of a corrosion protection material. Rather, the protection material must be principally designed around the surface properties of the artefact.

³ For further information refer to <u>www.promet.org.gr</u>

1 INTRODUCTION

The development of conservation strategies based more on scientific evidence, and less on empirical and subjective practices, is a prime objective for contemporary conservation of tangible cultural heritage. The recognition of metal corrosion products (CPs) as providing a resource of an artefact's surface features, albeit modified by corrosion processes, has grown in acceptance in the heritage conservation domain. Since surface information (e.g. manufacture marks, evidence of use & maintenance) and artefact shape can be found in metal corrosion products conservation ethics require consideration of preservation of these materials.

Corrosion of historic ferrous plate body armour is an international conservation problem. The conversion of metal into corrosion products is clearly detrimental to the metal, but questions remain around an appropriate level of corrosion product removal. To date, approaches to armour CPs appear to remain empirical. This research dissertation explores the past and present conservation strategies applied to CPs on a collection of ferrous armour on open-display in an indoor environment. The applied research aims to determine the possible presence of the *limit of the original surface (limitos)* in corrosion products on mid-late Early Modern Period wrought ferrous plate munition armour. It follows a diagnostic, non-subjective approach to determine if the limitos within CP strata coming from its last metallic state might be identifiable and practically conservable during a treatment intervention.

Chapter 2 presents the historical, scientific, and conservation background to the problem as sourced from the literature and personal communications. The mid 16th-mid 17th century northern Italian-style munition armour of the Order of the Knights of St John, housed at the Palace Armoury (PA), Malta, was used as a corrosion case study and their history is described in detail in that chapter. The wider context of current international armour conservation-restoration philosophy and practice and recently developing approaches to archaeological metal conservation-

1

restoration are also presented; the latter comprises a summary explanation of Bertholon's work on the original surface limits of archaeological metals.

Chapter 3 provides the framework and rationale supporting the practical experimental methods of the research and includes details on the employed materials and techniques of investigation. As an innovative means of advancing the research question, the fabrication of contemporary experimental metal samples, which were purposefully made with *corresponding* and *superior limitos markers*, is described there.

Chapter 4 presents the results and results' interpretation from the various experimental research phases performed at the Palace Armoury and in the laboratory on authentic mid 16th-mid 17th century munition armour, and their contemporary analogues. The gradual determination of the limitos on these materials is realised in this chapter.

Chapter 5 discusses the validity of the methodology and results, and the wider implications for historic armour conservation and their corrosion products. Collaboration with the two Palace Armoury curators provides conservation-related discussion stemming from curatorial perspectives about the munition armour's surface stability, significance and aesthetics.

Chapter 6 concludes the research by summarising the major findings and relates their consequences to: conservators practically approaching the corrosion products on the Palace Armoury's wall-displayed munition armour, and also to curators who must consider their role in the corrosion process-corrosion product removal cycle and the historical significance of these armour's surfaces.

Chapter 7 and Chapter 8 respectively outline wider recommendations for the Palace Armoury's holistic environmental management and future research avenues for the determination of the limitos on more heavily corroded wrought ferrous metals in atmospheric environments and with other material-environments.

2

2 HISTORICAL, SCIENTIFIC & CONSERVATION CONTEXT

This opening chapter provides the background to the subsequent experimental research by: detailing the long and varied historical development and management of the munition armour now at the Palace Armoury; outlining concepts and examples of ferrous corrosion in indoor environments; and summarising important developments in the conservation of modified original surfaces in the corrosion products of metal archaeological artefacts. Philosophy and practice of contemporary armour conservation-restoration is presented via a literature review and via the presentation of trends recorded by a current international questionnaire on ferrous munition armour and their CPs. Complementary reference to the PA and its munition armour is made throughout with information obtained from recent material and environmental science studies.

2.1 THE ORDER OF ST JOHN & MALTA, THE PALACE ARMOURY MUNITION ARMOUR COLLECTION: FABRICATION, HISTORY & ENVIRONMENT

This subsection summarises the numerous major historic events and policies, distant and more recent, which have brought a specific and large part of the Palace Armoury collection to its present day environment and conservation condition.

October 26, 1530 marked the arrival in Malta of the itinerant Christian Hospitaller Knights of the Order of St John of Jerusalem, heralding in a new époque of Maltese history⁴. Previously, the defeated Knights and their loyal Rhodian followers, then led by Grand Master Philippe Villiers de L'Isle Adam, were evicted

⁴ For the historical development of the Order of the Knights of St John of Jerusalem from charitable monks (late 11th century) serving Christian pilgrims in the Holy Land of Levant during the Holy Crusades, to assailants against the Muslim faith (mid 12th-early 13th century onwards) and to a corsairing Mediterranean naval power (post late 13th century) based in Cyprus, Rhodes and Malta, the reader is referred to: Mizzi, J. (1970) <u>A Bibliography of the Order of St. John of Jerusalem (1925-1969)</u>. Malta, Council of Europe; and Mallia-Milanes, V. (ed.) (1993) <u>Hospitaller Malta 1530-1798</u>: Studies in Early Modern Malta and the Order of St John of Jerusalem. Malta, Mireva Publications

from Rhodes by Suleiman the Magnificent and his Ottoman Turks⁵. Finally after seven years of negotiations with Charles V, King of Spain and Holy Roman Emperor, an agreement was reached that allowed the Order to settle in the Maltese Islands⁶. The proximity to the so-called *infidel* (in Levant and northern Africa, Figure 2-1) made Malta suitable for the Order to continue waging their religious war on Islam, while also offering relative isolation and autonomy from other various adverse affairs in continental Europe⁷.

Figure 2-1 The Islamic world circa AD 1500 (below broad green line) and Malta on the Christendom frontier⁸

Inevitably, the Order's continuing regional presence, forming a frontier between seemingly irreconcilable faiths, made the organisation and distribution of a large military capacity for the Order a life or death necessity. The Palace Armoury building and its contained movable heritage forms a significant part of the tangible history of the Order's military organisation in Malta⁹. The present collection of arms and armour housed at the Armoury of the Grand Masters' Palace, Valletta, Malta (Figure 2-2) is testimony to its erratic history. Ever since the collection's intermittent commissioning and acquisition, it has always remained in the custodianship of the governing administration of the day and subsequently witnessed fluctuations in its

⁵ Mallia-Milanes, 1993, pp. 2, 5

⁶ Ibid., pp. 2-3

⁷ Ibid., pp. 2-3, 7-8

⁸ Brice, 1981, <u>http://ccat.sas.upenn.edu/~rs143/map6.jpg</u> – accessed 03/02/2007

⁹ Magro Conti, 2007, pers. comm.

interest and consequent welfare¹⁰. The last decade of the PA has been subject to high visitor attendance¹¹, while more recently, scientific investigations have followed, including those relevant to this research dissertation.

Figure 2-2 Upper left: Context map of the Maltese Islands with the cities of Valletta, Vittoriosa & Mdina¹² Upper right: Context aerial view of the Palace Armoury in Valletta¹³ Lower left: Exterior of Grand Masters' Palace, Republic Street¹⁴ Lower right: Exterior of Grand Masters' Palace Armoury, Merchants Street¹⁵

The development and provenance of the arsenal housed at the Palace Armoury can be traced to before Grand Master Alof de Wignacourt who installed it within the Grand Masters' Palace in 1604¹⁶. The armoury's transferral from opposite the Palace in Piazza San Giorgio was one of Wignacourt's military reforms undertaken when a perceived threat from the Turks had arisen, and when greater

¹⁰ Ibid.

¹¹ Over 100 000 persons per annum (Argyropoulos, in press, Chapter 5, p. 17)

¹² MEPA, 2006, <u>http://www.mepa.org.mt/Planning/index.htm?MapServer.htm&1</u> – accessed 12/08/2006

¹³ Ibid.

¹⁴ Crawford, 2005-2007, pers. photog. permission courtesy of E. Magro Conti

¹⁵ Ibid.

¹⁶ Spiteri, 2003, pp. 69, 75
regulation of firearm proliferation was demonstrated by a series of decrees made by the Order from the mid to late 16th century¹⁷. An engraving (Figure 2-3) depicts the Grandmasters' Palace at a time when the upper floors of the future Palace Armoury were not yet constructed¹⁸ and the *Publicca Armeria*, as it was referred to, was still located in Piazza San Giorgio¹⁹.

Figure 2-3 Detail from an engraving of Valletta Francesco Villamena published in 1602 in Giacomo Bosio's <u>History of the Order of St John</u>²⁰. It is possible that the content of the map dates even earlier since it is said the map was a copy of an earlier map dating to 1582²¹

Some of the artefacts in the collection date from before the Great Siege of Malta (1565), and some were brought with the Order to Malta²². The collection currently under custodianship of the Palace Armoury is vast and varied. Not only does it comprise the arms and armour currently housed on the ground floor of the Grand Masters' Palace of the Order of St John, but it also includes items found in the Grand Masters' Palace State Room corridors, various government ministerial buildings, former auberges of the Knights, and other sites around Malta and Gozo²³. The heterogeneity and wide distribution (with varying environments) of such a collection makes its accurate description, conservation assessment and historical

²² Spiteri, 2003, p. 17

¹⁷ Spiteri, 2003, pp. 72-73, 127

¹⁸ Bonello, 2001, p. 28,

¹⁹ Spiteri, 2003, p. 12

²⁰ Ganado, 2001, p. 16

²¹ Spiteri, 2006, p. 71

²³ Magro Conti, 2007, pers. comm.

development impossible for a single research framework of this size. To focus on one research question, armour of one typology (i.e. shape, features etc.) currently housed in the Palace Armoury and attributable to the Order of St John is considered here.

2.1.1 ARMOUR TYPOLOGY, DATING & PROVENANCE

The specific group of artefacts in this study are plate munition armour. They are of a *Pisan* typology believed to date to the mid 16th-mid 17th centuries and provenance from northern Italy^{24, 25} (Figure 2-4). The armour consists of *half-armour*, not full suits (*harnesses*) with full leg and foot protection. This group of armour is hereafter often simply referred to as *munition armour*.

Figure 2-4 Assembly of 16th-17th century northern Italian-style munition half-armour and helmets of the *peaked morion* type at the Palace Armoury²⁶

The exact workshops or suppliers are unknown, as hallmark stamps are generally not found and subsequent historical research has been minimal^{27, 28}. Unmarked armour is typical of lesser quality Italian steel armour even more so after the debut of the 16th century²⁹. However, it is likely that the workshops could have

²⁴ Ibid.

²⁵ It is clarified that a northern Italian typology is probably Italian, but not certainly, since it is possible that a northern Italian style could have been copied and produced outside northern Italy (Stroud, 2006-2007, pers. comm. & Williams, 2003, p. 61).

²⁶ Crawford, 2005-2007, pers. photog. permission courtesy of E. Magro Conti

²⁷ Magro Conti, 2007, pers. comm.

²⁸ Only a fraction of one percent of the archives of the Order of St John has been consulted and has identified the armour workshop of one armour suit (Magro Conti, 2007, pers. comm.).

²⁹ Williams, 2003, pp. 67, 203-204

been located in Milan and Brescia, two towns that were arms and armour production centres of northern Italy's Lombardy region³⁰. Brescia is reputed to have made more mass-produced armour and less high quality ones³¹. By the early 15th century, Milan is cited as being involved in armour mass-production as evidenced by the city's fulfilment of an order of 6 000 armour (including 2 000 infantry armour) in several days³². Such earlier mass-production would have later been suitable for the numerous munition armour of the 16th-17th centuries found today at the Palace Armoury. An eminent metallurgist of historic arms and armour, Dr Alan Williams, points out that the Lombardy region was still capable of such production until times contemporary to the munition armour in this study, "Milan and Brescia continued to make mass-produced armour of modest price until well into the 17th century".

These munition armour were maintained by the Order, but were worn by the permanent troops (mercenaries from all over Europe) of the Knights of the Order of St John and are importantly to be differentiated from the types worn by the Knights and the Grand Masters in ceremony, the latter two types bearing increasingly decorated surfaces (Figure 2-5)³⁴.

Figure 2-5 Left: Northern Italian-style etched Knight's Armour (circa 1570-1580)³⁵ Right: Northern Italian Pisan style gilt parade armour of Grand Master Verdelin (circa 1580)³⁶

- ³³ Ibid., p. 211
- ³⁴ Stroud, 2006-2007, pers. comm.

³⁰ Ibid., pp. 56-58

³¹ Ibid., p. 57

³² Ibid.

³⁵ Crawford, 2005-2007, pers. photog. permission courtesy of E. Magro Conti

The munition armour currently comprise the majority of the armour in the Palace Armoury collection and are displayed predominantly on the walls of the two Arms and Armour Halls, in the Palace corridors and are also stored in the reserves³⁷. The following subsections outline the fabrication of these armour and trace the development of the armour's history, their cleaning³⁸ interventions and the ambient environment, which these armour are likely to have experienced.

2.1.2 MUNITION ARMOUR FABRICATION: MATERIALS & TECHNIQUES

Broadly, the munition armour at the Palace Armoury are made predominantly from multiple forged *ferrous*³⁹ (iron (Fe), or steel) metal plates (*lames*) of varying dimensions. The following subsection outlines the possible processes involved in producing these major components of the armour. Significantly, the munition armour at the PA were fabricated during a period when northern Italian munition armour production standards had regressed: poorer quality and non-hardened ferrous metals were more common⁴⁰.

2.1.2.1 Metal extraction & processing

Biringuccio, a Siennese metallurgist and armament maker of the 16th century, attests to the abundance of iron ores of various kinds in Italian regions, including Brescia, during the 16th century⁴¹: a potentially convenient local resource for Lombard armour production. The specific processes of ferrous ore smelting⁴², and any conducted fining⁴³, to produce the metal for the many individual plates comprising the Palace Armoury munition armour are unknown. Extractive metallurgy cannot be fully determined merely from metallographic studies⁴⁴ and the

³⁶ Spiteri, 2001, pp. 134-135

³⁷ Magro Conti, 2007, pers. comm.

³⁸ For purposes of brevity, "cleaning" will often be used to refer to "corrosion product removal" and is not to be confused with cleaning surfaces of foreign deposited particles. Cleaning away of these corrosion products can therefore be partial or complete.

³⁹ For purposes of convenience and brevity, when discussing iron and iron-based metals like alloys such as carbon steels, they will often be grouped as being *ferrous*. In the cases where information is specific to either iron or steel, these specific terms will be applied. This is not to be confused with the ferrous ion (Fe²⁺) when discussing the iron cation or with corrosion products/mineral species based on this cation – clarification will be made in the instances where the 2+ valence state cation is intended.

⁴⁰ Williams, 2003, p. 203

⁴¹ Biringuccio, 1990, p. 61

 ⁴² 2.1.2.1.1 Direct process: bloomery furnace, 2.1.2.1.2 Indirect process: blast furnace & finery, &
 2.1.2.1.3 Blast furnace-direct process

 ⁴³ 2.1.2.1.2 Indirect process: blast furnace & finery & 2.1.2.1.4 Cofusion-indirect process
 ⁴⁴ Dillmann et al., 2002, p. 327

collection has barely been studied in terms of *slag*⁴⁵ composition^{46, 47}. Nonetheless, since both iron and steel (mostly of the low-carbon type)⁴⁸ are known to be present in the munition armour and they are typologically dated to the mid-late Early Modern Period⁴⁹, these metals were likely to have been produced via a certain number of processes. The most commonly cited ferrous smelting processes active during the mid-late Early Modern Period are either the *direct* or *indirect processes*.

The direct process (otherwise known as the bloomery process), is the much older of these two processes in Europe and was first established in and disseminated from the Caucasus and the Fertile Crescent during the second millennium BC^{50} . Two to three thousand years later, in the 12th century, the development of the European indirect process began.

Of note, there appears from the literature to be some uncertainty as to the precise possible procedures of iron and steel production at the time, and also specifically for mass-produced items like the munition armour: questions remain about the way the furnaces and fineries attributed to these processes were operated⁵¹. Whatever the *modus operandi*, a forgeable ferrous metal was obtained that was more or less heterogeneous in its composition in terms of microstructural phases and inclusions⁵²; key characteristics that affected its working life performance⁵³ and subsequent corrosion⁵⁴.

During the 14th century in Italy, larger metal plates emerged and they were generally of steel⁵⁵. However, the subsequent centuries progressively witnessed a regression in the quality of Italian munition armour. Studies by Williams demonstrate that the mass-produced Italian steel armour of the 16th century contained less carbon than of the previous century and armour of the 16th-17th centuries further worsened in quality "...as iron becomes commoner for munition armour, and its slag

⁴⁵ Silicates and oxides inside the iron ore: 2.1.2.1.1 Direct process: bloomery furnace

⁴⁶ Magro Conti, 2007, pers. comm.

⁴⁷ Discriminating analysis techniques of inclusions (Dillmann et al., 2002) and applications to armour are developing (Williams, 2003, p. 891).

⁴⁸ Low-carbon steel is classified, by contemporary terminology, as containing <0.30% carbon (Chandler, 1998, p. 32).

⁴⁹ Vella et al. 2004, pp. 221-222, 230

⁵⁰ Williams, 2003, p. 5

⁵¹ Ibid., pp. 886-889

⁵² 2.1.2.1.1 Direct process: bloomery furnace & 2.1.2.1.2 Indirect process: blast furnace & finery

⁵³ Williams, 2003, p. 879

⁵⁴ Chandler & Hudson, 2000, p. 5

⁵⁵ Williams, 2003, p. 56

content increases"⁵⁶. Steel's superior hardness over iron is attributable to its increased carbon content. Based on the literature review below on metal smelting processes and on an admittedly small sample of eight munition armour from the Palace Armoury investigated by Vella et al.⁵⁷, the metallurgy of the PA armour appears to fall within the quality trends outlined by Williams. The fabrication processes for this wrought heterogeneous product with inclusions made it less like contemporary steel, which lacks slag and features far greater homogeneity^{58, 59}.

2.1.2.1.1 Direct process: bloomery furnace

Historically, metal extraction from the iron ore (*gangue*) as a liquid was not initially achievable since the melting point (MP) for iron (1535°C) was not easily attainable⁶⁰. The direct, or bloomery process, managed to extract a metal, but in a non-liquid state. The process involved heating granulated iron ore in a masonry furnace of 1-2 metres height⁶¹. Oxygen (O₂) necessary for combustion was supplied from the exterior with pipes (*tuyeres*) that were fed by bellows⁶². Charcoal, wood and the mostly enclosed shaft furnace structure provided the fuel and reducing atmosphere (i.e. sufficiently deficient in oxygen) to reduce (*smelt*) the iron from the iron ore (Equation 2-1).

 $FeO_{(s)} + C_{(s)} \rightarrow Fe_{(s)} + CO_{(g)}$

Equation 2-1 Simplified smelting representation of iron oxide reduction to elemental iron⁶³

Iron ore reduction to iron was achieved at circa 700-800°C. However, higher temperatures were required to liquefy the slag; facilitating its physical separation from the reduced iron⁶⁴. Slag is known to lessen mechanical resistance properties required for armour^{65, 66}. Slag is very common in bloomery iron but, "…high quality products may show very little evidence of slag content"⁶⁷. At 1205°C the MP of the most common slag species, iron silicate (*fayalite*, 2FeO.SiO₂), was reached and

⁵⁶ Ibid., p. 889

⁵⁷ Vella et al. 2004

⁵⁸ Buchwald & Wivel, 1998, pp. 76, 94-95

⁵⁹ Gale, 1969, p. 7

⁶⁰ Scott, 1989, p. 8

⁶¹ Williams, 2003, pp. 4, 877 & Buchwald & Wivel, 1998, p. 73

⁶² Buchwald & Wivel, 1998, p. 76

⁶³ Williams, 2003, p. 879

⁶⁴ Ibid., p. 4

⁶⁵ Ibid., p. 879

⁶⁶ The effect of slag on corrosion is later discussed: 2.2.3.3 Uneven local to uneven general corrosion

⁶⁷ Scott, 1991, p. 102

limited separation occurred by settling or tapping out the slag from underneath the bloom furnace^{68, 69}. Figure 2-6 demonstrates the schematic layout of some earlier bloomery furnaces.

Figure 2-6 Section and plan perspectives of three bloomery furnaces dating from the Middle Ages⁷⁰

The result coming from the bloomery furnace, when operated under direct process conditions, was the *bloom*: a porous, semi-solid mass of heated iron containing high and varied amounts of encapsulated inclusions⁷¹. A host of non-ferrous metal oxides present as slag inclusions in non-contemporary direct process-derived iron has been reported in the literature, including oxides of sodium, magnesium, aluminium, silicon, phosphorus, sulphur, potassium, calcium, barium, titanium, vanadium and manganese⁷². Inclusions came from remaining unreduced iron ore, added flux or developed via formation with the furnace walls⁷³. *Physically* decreasing the impurities using the bloomery furnace, via liquid slag & solid metal viscosity differences at elevated temperatures, has already been described. *Chemically* decreasing the slag present in the direct bloom was achieved via more reducing conditions in the furnace when carbon could reduce some, but not all, of the non-elemental iron in slag to iron. The result would simultaneously increase (at least locally) the carbon content of an iron (i.e. *ferrite*⁷⁴) bloom thereby making a steel

⁶⁸ Williams, 2003, p. 4

⁶⁹ Tylecote, 1976, p. 88

⁷⁰ Tylecote, 1992, p. 76

⁷¹ Ibid., p. 96 & Williams, 2003, pp. 4, 879

⁷² Buchwald & Wivel, 1998, pp. 80-81

⁷³ Williams, 2003, p. 4

⁷⁴ ferrite = a solid solution in body centred cubic iron, and carbon being the typical solute (Chandler, 1998, pp. 38-39).

(e.g. $pearlite^{75}$ with $cementite^{76}$, i.e. hypereutectoid⁷⁷ or pearlite with ferrite, i.e. hypoeutectoid⁷⁸)⁷⁹ (Graph 2-1).

Graph 2-1 The iron and steel section of the iron-carbon phase diagram⁸⁰

The bloomery or shaft furnace is largely attributed to have only made iron and not steel, but it is known from remnant excavated fragments and experimental archaeology that carbon steels, even cast iron (if only accidentally) could be made from such furnaces⁸¹. Neither a homogenous iron, nor a homogenous steel product was obtainable in the time span that a bloomery furnace could burn. Some parts of the bloom were fully reduced to iron and contained parts richer in carbon (0.4-0.7%); these areas were identified and separated for production of articles that benefited from the harder properties of this steel product⁸².

The generally negligible or lower carbon content of bloomery iron (especially when compared to cast iron⁸³), made it malleable for forge work and it is for this reason it is also referred to as wrought iron. Wrought iron contains circa 0.03%

⁷⁵ pearlite = Fe/Fe_3C (i.e. ferrite and cementite laminations) (Spence, 2005, p. 43).

⁷⁶ *cementite* = Fe_3C (Spence, 2005, p. 43).

⁷⁷ Brandt, 1992, p. 149

⁷⁸ Ibid.

⁷⁹ Williams, 2003, p. 879

⁸⁰ Scott, 1991, p. 132

⁸¹ Williams, 2003, p. 877 & Hawthorn & Stanley Smith footnote citation in Theophilus, 1979, p. 183

⁸² Buchwald & Wivel, 1998, p. 86

^{83 2.1.2.1.2} Indirect process: blast furnace & finery

carbon and 1-3% slag, the latter being physically mixed rather than chemically⁸⁴. An important step for lowering slag content was performed out of the furnace and was undertaken by hammering out some slag (*bloom consolidation*). The quality of this work would determine the amount of slag as inclusions still trapped inside the resultant ingot or *billet*⁸⁵. This process elongated the remaining slag perpendicular to the forging action⁸⁶.

The small size of a bloom obtained from the direct process in a bloomery furnace, and the fact that it was made by a batch process (i.e. stopping and starting the furnace) made it unsuitable for mass production of plate armour; such as was probably required for the Palace Armoury's munition armour. Large plates of armour between 2.5-4.5kg required a billet of at least 10kg making such production via the direct process difficult⁸⁷. It was also preferable to make a plate of armour from one single billet since forge-welding numerous plates together was wasteful of the metal: due to oxidation and increased risk of inclusion entrapment from the forge⁸⁸.

2.1.2.1.2 Indirect process: blast furnace & finery

The second method available at the time for possibly producing ferrous metal used in armour fabrication took a lengthier, more circuitous route than the direct process: hence the appellation *indirect process*. Despite greater fuel consumption, the advantages of the indirect process over the direct included: continuous operation; greater ore to metal conversion efficiency; and ability to smelt inferior ores⁸⁹.

The indirect process comprised two steps in separate furnaces and hearths that yielded different ferrous materials of varying carbon content⁹⁰:

1. Blast furnace \rightarrow cast iron (circa 4.0 C%)

2. Finery hearth \rightarrow steel (circa 0.1-0.8 C%)

BLAST FURNACE

The earliest claimed European blast furnace is attributable to Sweden and dates to the mid-late 12th century⁹¹. Normally, the blast furnace comprised a top feeding chimney and a hearth with two openings: an upper one for the air source; and

⁸⁴ Schweitzer, 2004, p. 646

⁸⁵ Dillmann et al., 2002, p. 327

⁸⁶ Scott, 1991, p. 7

⁸⁷ Williams, 2003, p. 56

⁸⁸ Ibid., pp. 56, 878

⁸⁹ Ibid., pp. 880-881 & Tylecote, 1992, p. 96

⁹⁰ Buchwald & Wivel, 1998, p. 74

⁹¹ Ibid., p. 87 & Tylecote, 1992, p. 76

a lower one for accessing the reduced and liquefied metal. The continuous blast of air came from bellows that were typically powered by watermills located in adjacent streams (Figure 2-7 & Figure 2-8)⁹². Biringuccio attested to the use and benefits of hydraulic power for bellows during the characteristically large-scale operations of the blast furnace⁹³.

Figure 2-7 Left: Sixteenth century illustrations of Italian blast furnaces of various shapes powered by a watermill⁹⁴ Right: A bellow and blast furnace⁹⁵ Note all furnaces are producing liquid material

Figure 2-8 Left: & Right: Contemporary technical elevation and plan of a hydraulic blast furnace (circa 16th century)⁹⁶

By smelting granulated iron ore with fuel in a bigger and taller furnace that was blasted with more air, higher temperatures and more transformations could occur to the reduced iron: notably an increased carbon content. As the carbon content increased towards 2.0%, the MP of the fraction further decreased (to a minimum of 1147°C) thereby encouraging even greater absorption of carbon (Graph 2-2)⁹⁷. As a liquid metal, the carbon could then more easily diffuse into the metal thereby potentially creating even higher carbon concentrations (circa 4%)⁹⁸.

⁹⁷ Williams, 2003, p. 880 & Buchwald & Wivel, 1998, p. 74

⁹² Tylecote, 1992, p. 97

⁹³ Biringuccio, 1990, pp. xiv, 22

⁹⁴ Ibid., p. 150

⁹⁵ Ibid., p. 64

⁹⁶ Tylecote, 1992, p. 97

⁹⁸ Buchwald & Wivel, 1998, p. 74 & Dillmann et al., 2002, p. 327

Graph 2-2 The iron-carbon phase diagram including, iron, steel and cast iron phases⁹⁹

The molten metal (with infused carbon) was easily drained away from the less dense slag. As a result the cast iron, at this stage, was almost free from slag inclusions and unreduced components¹⁰⁰. This increased carbon concentration and little slag marks a contrast with bloomery iron. However, the elevated concentrations of carbon resulted in embrittlement: making steel unsuitable for the forge work required for armour plate production¹⁰¹.

FINERY HEARTH

To make cast iron from the blast furnace forgeable, its carbon content would have been lowered by oxidation¹⁰². This process was performed with small lumps of cast iron in an open oxidising finery hearth at circa 1150°C¹⁰³. As the metal lumps lost carbon content the metal resultantly solidified (due to the rising MP as carbon

⁹⁹ Scott, 1991, p. 132

¹⁰⁰ Dillmann et al., 2002, p. 327

¹⁰¹ Williams, 2003, p. 881

¹⁰² Buchwald & Wivel, 1998, pp. 88-89 & Dillmann et al., 2002, p. 327

¹⁰³ Buchwald & Wivel, 1998, p. 89 & Williams, 2003, p. 882

concentration decreased: as per Graph 2-2) and were then consolidated into one $mass^{104}$.

Negatively, while the fining process involved the subtraction of carbon, it also coincided with the formation of a heterogeneous metal that was "…just as likely to be full of slag…" as bloomery iron¹⁰⁵. Elements such as phosphorous, silicon and iron in the previously relatively slag-free cast iron were oxidised and therefore became inclusions¹⁰⁶. These inclusions were partly extracted via hammering that also flattened the resulting bloom before its cutting and distribution¹⁰⁷. The use of hydraulic power was here again drawn upon: this time as automated trip-hammers to produce sheets of plate metal¹⁰⁸.

2.1.2.1.3 Blast furnace-direct process

Williams cites some scepticism towards the fining stage of the indirect process. He states that the practical achievement of enabling decarburisation to occur at an intermediate level between cast iron and iron would have been difficult to achieve due to instability of the finery hearth temperature¹⁰⁹. Williams has suggested the possibility of the blast furnace being operated like a bloomery furnace¹¹⁰. In brief, Williams supposes that blast furnaces supplying Italian armourers were not used to create cast iron *indirectly* for armour, but instead to *directly* create the larger blooms necessary to make armour plates¹¹¹. It is unclear whether the ironmaster *certainly* limited the carburisation occurring in the blast furnace so as to attain a forgeable carbon steel suitable for armour and to avoid formation of liquid cast iron and the subsequent finery process: Williams believes ironmasters had such capabilities¹¹².

2.1.2.1.4 Cofusion-indirect process

Alternatively, Biringuccio describes an indirect steel-making process, *cofusion*, which involved the repetitious addition of masses of bloomery iron (negligible or low carbon content) to a continually heated receptacle of molten cast iron (high carbon content). The process ended when the mixture became "...soft and

¹⁰⁴ Williams, 2003, p. 882

¹⁰⁵ Ibid., & Buchwald & Wivel, 1998, p. 89

¹⁰⁶ Dillmann et al., 2002, p. 328

¹⁰⁷ Buchwald & Wivel, 1998, pp. 74, 89

¹⁰⁸ Williams, 2003, p. 881 & Biringuccio, 1990, pp. xiv, 22

¹⁰⁹ Williams, 2003, p. 888

¹¹⁰ Ibid., p. 889

¹¹¹ Ibid., p. 878

¹¹² Ibid., p. 881

pasty..." whereby it appears this might have been caused by the dilution of its carbon content; as a result, the MP rose, thereby beginning to solidify the mass¹¹³. To increase even carbon distribution, the carburised material was periodically extracted cooled and broken up and returned to the bath¹¹⁴.

2.1.2.2 Munition armour forming

The various anatomical parts that comprise half-armour are given in Figure 2-9.

Figure 2-9 Left: Annotated appellation of worn etch-decorated¹¹⁵ half-armour (breast and backplates are covered by a surcoat marked by the Order of St. John ensign)¹¹⁶

The Palace Armoury's collection of munition armour under study is present in three distinct relative sizes; small; medium; and large: supporting the notion that mass-produced munition armour were not custom-fitted to particular soldiers¹¹⁷.

To help briefly outline some of the processes necessary to transform the metal billet to fabricated armour, the munition armour of this study are further described here. The munition armour are relatively lightweight (0.8-1.2mm in thickness¹¹⁸) and would have been hammered from sheets. The concave shaping of the sheets was wrought, probably hot, by hammers on anvils, stakes, dishes etc¹¹⁹ (Figure 2-10).

¹¹³ Graph 2-2

¹¹⁴ Biringuccio, 1990, pp. 68-69, Tylecote, 1992, p. 105 & Williams, 2003, p. 887

¹¹⁵ The etched surfaces depicted are not representative of the armour in this study.

¹¹⁶ Spiteri, 2003, pp. 55, 384

¹¹⁷ Magro Conti, 2007, pers. comm.

¹¹⁸ As measured by the present author on the various lames on 8 different munition armour assemblies ¹¹⁹ Biringuccio, 1990, p. 370 & Williams, 1978, p. 132

Figure 2-10 A 15-16th French manuscript depicting hot forming of a breastplate or backplate by hammer on an anvil¹²⁰

Shears would have made the final cut, trimming away excess metal. The outer surfaces of munition armour at the PA are largely plain and undecorated, while the decorations that do exist are modest. The most common decorative forms of this typology include spirals (*volutes*) and edging formed by repoussé (surface embossing by hammering reverse of sheet metal), roped edges (outer edges of ferrous plates have been rolled over drawn wire then hammered or filed to give a cord-effect) (Figure 2-11).

19

Figure 2-11 Typical mid 16th-mid 17th century northern Italian-style munition armour at the Palace Armoury¹²¹. Left: Breastplate and tasset. Right: Pauldron, upper cannon (rerebrace), couter and lower cannon (vambrace)

More rarely, single acid-etched or chisel-engraved lines appear as trimming or centrelines. These might have been used for evolving symmetry during pattern making and forming. Some lame edges were cut in an indented manner thereby providing positioning for adjacent lames¹²².

2.1.2.3 Munition armour heat-treatment

In addition to the hardness imparted by carbon structures of cementite in steel, this carbon presence permitted armourers to further increase hardness of steels via *quenching*¹²³. Quenching could have been carried out by rapidly cooling the hot metal by immersion in a liquid: water for a hard-quench; or oil for a slack-quench, for example. The hardness increased with the quicker rate of cooling, and unless later tempered, quenching could lead to embrittlement¹²⁴. The improved physical properties were attributable to microstructural changes to *bainite* (acicular shape) or *martensite* (lath shape)¹²⁵. According to Williams, pre-1530 hardening of undecorated Italian armour seldom occurred, while post-1530 the practice was

¹²¹ Crawford, 2005-2007, pers. photog. permission courtesy of E. Magro Conti

¹²² Stroud, 2006-2007, pers. comm.

¹²³ Williams, 2003, p. 879

¹²⁴ Tylecote, 1992, p. 52

¹²⁵ Williams, 1978, p. 132

discontinued¹²⁶. A sample of six undecorated late 16th-early 17th century northern Italian armour studied by Williams supports this theory since all of the samples were classified as being air-cooled low-carbon steel (i.e. hardening was neither achieved, nor attempted)¹²⁷. All of the seven *steel* samples of 16th-17th century northern Italian-style munition armour from the Palace Armoury examined by Vella and Williams appear to have been air-cooled: remaining consistent with the hypothesis that hardening of munition armour in Italy was not performed post-1530¹²⁸.

2.1.2.4 Munition armour surface finishing

For munition armour a series of three basic manufactured outer surface finishes¹²⁹ has been proposed by Robert Smith¹³⁰, a prominent authority on armour conservation and restoration:

- 1. "<u>Rough from the hammer</u>: The piece was hammered into shape and was then *planished* (smoothed to a greater or lesser extent using a flat hammer and a stake)."
- 2. "<u>Rough filed</u>: This is not common, but surfaces exist which have been planished and then rough filed smooth: file marks are still evident."
- 3. "<u>Polished</u>: The piece would have been planished, rough filed and then polished to a bright finish using successively finer abrasives" (Figure 2-12).

Figure 2-12 An illustration from <u>Hausbuch der Mendelschen Zwölfbrüderstiftung</u> (circa 1571) depicting an armourer using a hydraulic powered polishing/grinding wheel¹³¹

In a foreign collection, other half-armour of strikingly similar typology (Pisan), period (1560-1570) and provenance (northern Italy) has been shown to bear

¹²⁸ Vella et al. 2004, p. 230

¹²⁶ Williams, 2003, p. 211

¹²⁷ Ibid., p. 209

¹²⁹ Exclusive of decorative applied and depletion techniques (gilding, etching etc)

¹³⁰ Author and former Head of Conservation, Leeds Armoury, United Kingdom and currently in private practice

¹³¹ Price, 2000, p. 264

so-called *browned* surfaces (intentional oxide layers¹³²) that underneath still exhibit *rough from the hammer* marks (Figure 2-13). This particular armour present at the Kunsthistorisches Museum is believed to be that used by an infantry foot soldier; however earlier in the mid 1500s nobility sometimes wore armour of this description¹³³. This Kunsthistorisches Museum armour is in contrast to the Palace Armoury armour in this study, which *currently* have smooth, non-facetted metallic finishes¹³⁴. The outer surfaces *from manufacture* of the PA munition armour are believed to be of a brilliant metallic finish and therefore belong to the third surface classification above: i.e. polished¹³⁵.

Figure 2-13 "Northern Italian foot soldier/infantry armour (c. 1560-1570)"¹³⁶ at Vienna's Kunsthistorisches Museum¹³⁷

Since the PA munition armour have been highly intervened over the last centuries the probable modification of the armour surfaces since manufacture is not disregarded¹³⁸. The exposed outer surfaces present today do not testify such browned surfaces and without further study of a larger corpus of these armour (in particular between lames and under rivets) it is supposed for now that the outer surfaces of the armour in this study were more likely to have been fabricated with the polished

¹³² Smith, 2006, p. 28

¹³³ Anon. Display caption. Inv No A 1045

¹³⁴ i.e. the still metallic uncorroded surfaces

¹³⁵ Stroud, 2006-2007, pers. comm. & Smith, 12/06/2007, pers. comm.

¹³⁶ Anon. Display caption. Inv No A 1045

¹³⁷ Crawford, 2005-2007, pers. photog.

 $^{^{138}}$ 2.1.3 History of the Palace Armoury's 16^{th} - 17^{th} century northern Italian-style munition armour

finish. In contrast, it is supposed that the inner surfaces of armour were not polished of their hammer-scale oxides¹³⁹.

A conservator's awareness of the various manufacture surface finishes of armour is of high significance to detecting and acting on preserving any such remnant original or modified original surfaces. Armour's manufactured surface finishing is an area of metallurgy requiring further investigation that would help inform the armour conservator¹⁴⁰.

2.1.2.5 Munition armour assembly & articulation

Finally, the separate metal plates comprising the half-armour would have been assembled with ferrous rivets often capped with copper alloy plating (brass with minor and trace metals¹⁴¹) and embossed rosettes. Originally, armour inner surfaces featured leather strapping to facilitate their assembly and articulation and padded textile to improve the comfort of the wearer¹⁴². Only very rarely, and in very small quantities do organic components of the Palace Armoury munition armour inner surfaces remain¹⁴³.

2.1.3 HISTORY OF THE PALACE ARMOURY'S 16th-17th century northern Italian-style munition armour

Here an attempt is made to outline the probable history of the mid 16th - mid 17th century northern Italian-style munition armour currently present at the Palace Armoury. This account importantly includes some documentation regarding the corrosive effects of the environment and some approaches to corrosion product removal through the armour's history. Indeed it is possible (or almost doubtless) that some of the many and separable multi-component armour bear surfaces that are testimony to the history that each piece has passed through: from the mid-late Early Modern Period to contemporary times¹⁴⁴.

The arms and armour that now constitute the PA collection, some spanning almost 500 years, have almost always been of high prominence and remained under the administration of the governing or occupying state¹⁴⁵. As a result, a relatively

¹³⁹ Stroud, 2006-2007, pers. comm. & Degrigny et al., 2007b, p. 38

¹⁴⁰ Smith, 29/07/2007, pers. comm.

¹⁴¹ Degrigny et al., 2007a, pp. 27, 29

¹⁴² Smith, 1982, pp. 9, 12

¹⁴³ Stroud, 2006-2007, pers. comm.

¹⁴⁴ Magro Conti, 2007, pers. comm.

¹⁴⁵ Spiteri, 2003, p. 17

continuous line of information is present, though this is still dependent on the records kept by each successive ruling administration and external documentary resources. The individual documentation identifying each article of munition armour and its location since manufacture to the present-day is non-existent, as it seems that the Order of St John and subsequent administrations did not pay attention to record the individual details of each article. The former individual wearers of each munition armour are not known and these armour are thus treated as an assembly. Early records do show however numerous events where control of military equipment dissemination was a problem and the Order's Artillery Commander was placed personally responsible to account for the arsenal's whereabouts¹⁴⁶. The *definitive* history of each munition armour piece, especially when outside the Palace Armoury, hence remains open to speculation. As a concession, thanks to the significant numbers of munition armour (as required for the numerous troops), this collection category can be traced through numerous inventories (listing only *article categories*) and historical sources (e.g. written memoirs, graphic representations) associated with the collection's time at the prominent PA (17th century onwards). Such Palace Armoury-related resources could not cover all the history of the munition armour since some armour predates the establishment of the PA, and because the PA later formed an integral part of a larger network of armouries throughout the Maltese Islands. It can be expected that transfers between armouries, as needs arose, would have formed a part of the armour's strategic management¹⁴⁷. For example, it is known that up until the 18th century three armouries existed in Valletta, including the Palace Armoury, St James Cavalier and Strada Forni¹⁴⁸. The munition armour could have also possibly been stored in one of the many decentralised village or town armouries in the Maltese Islands¹⁴⁹.

The controlled issuing of equipment from the Palace Armoury by the Order ended in 1798 with their eviction by the French and it is uncertain how much equipment trickled back to the PA since then¹⁵⁰. So, despite this indefinite history, it can be reasonably speculated that much of the remaining quantities of munition

 ¹⁴⁶ Ibid., pp. 80-83
 ¹⁴⁷ Magro Conti, 2007, pers. comm.

¹⁴⁸ Spiteri, 2003, pp. 13, 103

¹⁴⁹ Ibid., p. 103

¹⁵⁰ Ibid., p. 118

armour have had a long connection with the Palace Armoury environment: a minimum 210 years from present (2008) and reaching just over 400 years¹⁵¹.

The various roles that the numerous 16th-17th century munition armour have taken over these centuries is described next. Written accounts of visits and inventories of the armoury form the basis of the historical evidence during its original administration by the Order, while documentation of subsequent rule is further supported by pictorial evidence.

It is illustrated in the following subsection that the munition armour have consistently assumed a significantly lower status especially when compared to the individual, more elaborate and technically complex armour of the Grand Masters. Also, in the Palace Armoury's early history under the Order's administration, the strategically significant and numerous guns further diminished the attention paid to the munition armour. The prioritised attention towards other items in the collection probably influenced the munition armour's conservation state; similarly to the present-day¹⁵².

2.1.3.1 Mid 16th century-1798, Order of St John: functional, symbolic & obsolete arsenal

2.1.3.1.1 Mid-late 16th century, Order of St John: pre-Palace Armoury

The munition armour dating to the mid-late 16th century evidently antedate the 1604 establishment of the Palace Armoury in the Grand Masters' Palace. It is possible that such armour, presuming direct importation from the Italian manufacturer to Malta, were stored either in Fort St Angelo in Vittoriosa (*Birgu*)^{153,} ¹⁵⁴, or, after the establishment of Valletta, in either of the armouries located in Strada Forni or later in Piazza San Giorgio^{155, 156}. The Mdina armoury could have also been another possible, yet distant, storage location during the late 16th century^{157, 158}.

¹⁵¹ Magro Conti, 2007, pers. comm.

¹⁵² 2.1.4.2 Ground floor location, 1975-present

¹⁵³ Spiteri, 2003, pp. 65, 71

¹⁵⁴ Figure 2-2 Upper left

¹⁵⁵ Spiteri, 2003, p. 12

¹⁵⁶ Figure 2-3

¹⁵⁷ Spiteri, 2003, p. 200

¹⁵⁸ Figure 2-2 Upper left

2.1.3.1.2 1604-1798, Order of St John: Palace Armoury

The transferral of the armoury in Piazza San Giorgio to the Grand Masters' Palace¹⁵⁹ in 1604 marked a paradigm shift regarding the management of the Order's military equipment¹⁶⁰. Notably, the wall hanging arrangement of static arms and armour previously worn by the Grand Masters' appears to have transpired early in the 1600s¹⁶¹. Whereas the date for the institution of trophies of common arms and munition armour at the Palace Armoury is not known, but probably occurred from the mid 17th century¹⁶². Trophies of arms or *panoplies* were commonplace in Europe's palaces and castles, but more so during the romantic revival of the 19th century (Figure 2-14).

Figure 2-14 Examples of trophies of arms across Europe. Left: Hertford House (circa 1873-1897), Sir Richard Wallace, United Kingdom¹⁶³. Centre: Pierrefonds (published 1867), Violletle-Duc, France¹⁶⁴. Right: *Cabinet des armes et armures* (n.d.) of Prince Soltykoff in St Petersburg, Russia¹⁶⁵.

It will be seen in the following subsections that the open wall-display of panoplies of munition armour at the Palace Armoury increased after the Order's rule and persists to a lesser extent until the present day. The wall panoplies are of high significance at the PA, even today, to the conservation implications of their contents¹⁶⁶. It is notable that during the time of the Order, the number of wall-hung armour (either as a means of storage or on display as trophies), appears to be

¹⁵⁹ Figure 2-3

¹⁶⁰ Spiteri, 2003, pp. 69-70

¹⁶¹ Spiteri, 2006, p. 32

¹⁶² Spiteri, 2003, p. 200

¹⁶³ Edge, 2006, p. 45

¹⁶⁴ Faton-Boyancé et al., 2006, p. 13

¹⁶⁵ Ibid., p. 12

¹⁶⁶ As explained in 2.2 Indoor atmospheric ferrous corrosion & control

insignificant when compared to its apparent peak during the British rule of the 20th century¹⁶⁷.

From the beginning of the management of the military equipment at the Palace Armoury, two parallel states seem to have formed for different classes of equipment: the *dynamic* (use) state; and the *static* (display) state. The static state continues to present day for all the collection, and on balance is inherently favourable to the collection's preservation when compared with the former embattled and dynamic period of the arsenal.

The initial primary state of the PA was of course as a dynamic arsenal: a central functional storehouse for maintaining and issuing pieces of offensive and defensive equipment to the Order of St John's troops and Knights¹⁶⁸. An account of a room supplementary to the main armoury hall, published in 1679 by Sieur de Bachelier, testifies to an abundant yet orderly arrangement of arms and armour:

"In this room we find laid out in the same order 6000 muskets, and as many bandoliers (musket ammunition belts), 2000 helmets and an equal number of breastplates"¹⁶⁹.

There is no early pictorial evidence available to support this description, but this categorised arrangement of similar equipment would be suitable for quickly issuing items at the time of alarm. The vast quantities suggest most of this equipment was reserved for the numerous troops, not the relatively few personnel of the upper ranks¹⁷⁰. Sieur de Bachelier's description of the Palace Armoury possibly reflects a categorised arrangement depicted in an illustration of the Royal Armoury in Bastille, Paris, dating to the same period (Figure 2-15). Breastplates and backplates mounted high on the beams and the guns on the more central and more accessible racks along the floor and walls are to be noted. This speculated possible early configuration is echoed in pictorial evidence of the configuration at the PA much later during the mid 19th century¹⁷¹.

 ¹⁶⁷ 2.1.3.2 1798-1964, French & British occupation: decorative romantic trophies to academic antiques
 ¹⁶⁸ Spiteri, 2006, p. 70

¹⁶⁹ Bonello, 2001, p. 41

¹⁷⁰ Stroud, 2006-2007, pers. comm.

 ¹⁷¹ Later presented in 1798-1964, French & British occupation: decorative romantic trophies to academic antiques & Figure 2-17 Left: Detail of trophies of arms from Right: Armoury in the Governor's Palace in Valetta, lithograph by Charles Frederick de Brocktorff, circa 1840.

Figure 2-15 Le Magazin Royal des Armes à Paris, circa 1686¹⁷².

Given that the armour of this study were manufactured in the mid 16th-mid 17th centuries, it can be presumed that at least during the early years of the armour's installation at the Palace Armoury (i.e. 1604 onwards) the majority of this arsenal would have been relatively new and had a state that could be classified as being *dynamic*; especially taking into account the numerous alarms and mobilisations of the troops and militia in the late 16th & early 17th centuries. There were at least nine incidents between 1598-1629, while the 1614 Turkish invasion of a force of 5 000 men prompted the call-up of the Order's militia¹⁷³ and troops¹⁷⁴ to confront the invaders. Another alarm, later in 1638, required the despatch of 200 troops¹⁷⁵ to reinforce the Cittadella in Gozo¹⁷⁶.

The succession of new and improved military technologies inevitably rendered dynamic parts of the Palace Armoury arsenal obsolete. Records indicate the removal of obsolescent items, specifically guns, on several occasions (1640, 1703 & 1763)¹⁷⁷. Although not explicitly found in the literature concerning the PA collection, it is assumed that obsolescence would have also occurred for the thin Palace Armoury munition armour, especially at a time when increasing efficiency and use of firearm technologies compelled improved armour defensive capabilities via *bullet-proofing*¹⁷⁸. Generally, armour use began to decline in the late 16th century, while obsolescence (at least for defensive purposes) was largely complete by the end of the

¹⁷² Faton-Boyancé et al., 2006, p. 8

¹⁷³ Spiteri, 2003, p. 70

¹⁷⁴ Stroud, 2006-2007, pers. comm.

¹⁷⁵ Ibid.

¹⁷⁶ Spiteri, 2003, p. 146

¹⁷⁷ Ibid., pp. 104, 107 & 119

¹⁷⁸ Ibid., p. 60

17th century¹⁷⁹. The decline in armour use was protracted since often the slow reloading of firearms during siege warfare would ultimately lead to hand-to-hand combat where armour was useful¹⁸⁰. However, by the latter half of the 18th century the defensive capability of ferrous armour against firearms was surpassed and armour was rendered totally obsolete as a functional piece of equipment¹⁸¹.

The secondary, yet significant (in terms of historical evolution and conservation), and parallel state of the arsenal installed at the Palace Armoury, was not functional and dynamic, but instead symbolic and static. In just thirteen years after Grand Master Wignacourt's installation of the armoury in the Palace, a 1617 account by Count George Albrecht of Erbach describes his tour led by the German Knights. The Knights presented the battle suits of Grand Masters adjacent to their portraits and numerous other arms and armour¹⁸². From this early observation it is clear that the Knights retained equipment that was not of continued functional military value, but also of historic, symbolic and decorative value. A specialist in Malta's military history, Stephen Spiteri, uses Erbach's 1617 account to support his claim that the Palace Armoury:

"...quickly began to assume the character of a showpiece reflecting the military power and glory of the Order, capturing the attention and imagination of many a distinguished visitor to Malta... it also began to acquire the qualities of an antiquarian collection and as such, became an instrument of propaganda exalting the Order's heroic past".¹⁸³.

It is supposed, by the present author, that the static display in elaborate trophy panoplies (as opposed to the more practically accessible rows) of munition armour occurred to some armour after they were rendered technologically obsolete. The retention of the more common equipment, such as the munition armour covered in this study, for static use in decorative displays is only well attested during the latter part of the Order's management of the collection. The Order's Commander of Artillery, St Felix, described in 1785 the distribution of items in the armoury. His inventory demonstrated the previously described dual statuses (i.e. dynamic and static) of items in the Palace Armoury. The account included almost 20 000 guns of various types including nearly 18 000 muskets that were held on 4-metre high wooden racks in the centre of the room and along the walls that were intended to be

¹⁷⁹ Smith, 1982, p. 7

¹⁸⁰ Spiteri, 2003, p. 60

¹⁸¹ Galizea, 1906, p. 11

¹⁸² Spiteri, 2001, p. 127

¹⁸³ Ibid., p. 127

functional (i.e. dynamic)¹⁸⁴. Meanwhile antique arms and armour were displayed (i.e. static) along the walls in 24 elaborate panoplies of trophies-of-arms below the cornice, and with some suits on the floor¹⁸⁵. The cornice included armour of 254 breastplates & backplates and 124 helmets¹⁸⁶.

The specific arrangement of the cited decorative panoplies is unclear, but it seems possible the inspiration could have been drawn from heraldry/blazons, decorations on architectural features¹⁸⁷ and even from some types of armour (Figure 2-16). These dated armour surface etchings indicate that composing arms and armour in symmetrical formations was established even before the 1604 founding of the PA.

Figure 2-16 Acid-etched decorations on more elaborate armour (circa 1590) indicate trophy of arms display formations¹⁸⁸.

MAINTENANCE & RESTORATION

The responsibility of keeping arms and armour functional at the time of the Order was bestowed on the *Capomastro del Armeria* who led armourers, skilled labourers and sometimes slaves¹⁸⁹. Such maintenance work was performed in the

¹⁸⁴ Ibid., p. 129

¹⁸⁵ Spiteri, 2003, p. 109

¹⁸⁶ Ibid.

¹⁸⁷ Ibid., pp. 125-127

¹⁸⁸ Ibid., p. 290

¹⁸⁹ Spiteri, 2001, p. 128

Armourer's workshop (Ufficina dell'Armeria); a room next to the armoury hall¹⁹⁰. The concern of the Order for the condition of the arsenal was exemplified by a decree in 1648 that required, "...a commission of knights was to inspect the Armoury at least once or twice a year and draw up a detailed list indicating the quantity, quality and state of preservation of the weapons and armour^{,191}. However it is believed that these condition reports were not undertaken at the decreed regular intervals and only one such list has been found, dating much later (1782)¹⁹². A variety of repair work was undertaken, but several accounts (1769, 1782, 1795) of rusted equipment and cleaning procedures would have made corrosion product removal a significant task during the latter part of the Order's management of the arsenal¹⁹³.

Oil and emery (olio e smeriglio) were used as cleaning materials during the time of the Order. Emery's abrasive qualities were not only understood for their efficiency in removing corrosion products, but caution to the armourers was given to not overclean and consume the underlying metal; otherwise reducing the efficacy of the armour in active service¹⁹⁴. The oil was presumably used as a lubricant for the emery's physical action and for possible corrosion protection. Sand is reputed, not documented, to have substituted emery at times of low stock in the late 18th century and was applied in a mixture of vinegar (chemical action by acidic dissolution) with a cloth. The finishing polish appears to have been a form of burnishing performed with deer horn and wine spirits¹⁹⁵. Records of the works performed in the Armourer's workshop were supposed to be kept¹⁹⁶. The details of these were probably scant and more intended to account for the payments made to the armourers¹⁹⁷, rather than for treatment documentation purposes that are presently required for recording conservation treatments.

190 Ibid.

¹⁹² Ibid.

¹⁹¹ Spiteri, 2003, p. 81

¹⁹³ Ibid., pp. 11, 147, 154

¹⁹⁴ Spiteri, 2006, p. 74

¹⁹⁵ Ibid., p. 74
¹⁹⁶ Spiteri, 2003, p. 160

¹⁹⁷ Ibid., pp. 158-162

2.1.3.2 1798-1964, French & British occupation: decorative romantic trophies to academic antiques

The ever decreasing military value and increasing aesthetic value of the armoury perpetuated its changing role from active arsenal to gallery of antiques and curios; *form as function & symbolism* was being exchanged for *form as decoration*. It is seen here that the early part of this period truly cemented the status of the munition armour as being functionally obsolete and decorative, especially in comparison to the firearms. Later, scholarly interest in the Palace Armoury collection grew, but this attention was not directed towards the munition armour.

When Napoléon I and his forces occupied Valletta without resistance in 1798, the rapid dissolution of the Order's rule over the Maltese Islands and their eviction ceased the Order's management of the Palace Armoury. The strategic military importance of the PA was recognised at the time of invasion: in fact, most of Malta's armouries fell under French control¹⁹⁸. An inventory made one year after occupation listed literally thousands of firearms categorised as "new models (totalling 9234)", "old models (965)", "to clean (749)" or "unspecified (2950)". It would appear that these firearms were being classified according to potential continued use. It is therefore not surprising that some suspicion falls upon Napoléon's ship, L'Orient¹⁹⁹, for thousands of these now unaccounted firearms²⁰⁰. Meanwhile, the French perception of the armour as being non-functional or ornamental is clearly seen in their inclusion of the armour in a list entitled, "Décorations de la Salle d'Armes". Two phrases describe the arrangement of 255²⁰¹ cuirasses (breast/backplates) hanging in rows above and on the cornice-coving and a series of fourteen symmetrical trophies with unspecified contents²⁰². Napoléon's forces seemed uninterested in documenting the serviceable state of the munition armour. Unlike the firearms, it appears that the munition armour's technological obsolescence, perhaps coupled with their inherently non-exquisite nature, was their saving grace from pilfering by the French occupation.

¹⁹⁸ Spiteri, 2003, p. 118

¹⁹⁹ Bound for the war campaign in Egypt (Spiteri, 2003, p. 118).

²⁰⁰ Spiteri, 2003, p. 118

 ²⁰¹ Almost corresponding (i.e. 255 versus 254) to the quantities previously mentioned in the 1785
 Order of St John inventory

²⁰² Spiteri, 2003, pp. 115-116

Later however, under British rule (1800-1965), "...quantities..." of Italian munition armour were pilfered by the British and taken to London's Tower Armouries in 1826 and 1846 making it "...an important centre for the study of this type of armour"²⁰³. Yet, another account of the British occupation details the positive attention given to a derelict collection by the British colonial Governor (1858-1864) Sir John Gaspard Le Marchant, himself a "...great amateur and connoisseur of antiquities"²⁰⁴:

"The old Armoury of the Knights of St. John had been long neglected, and its contents thrown aside like useless lumber. Sir Gaspard (Le Marchant) set himself to work to recover these valuable relics of a bygone age. Under his personal direction they were duly restored, classified, and arranged to the best advantage in one of the finest halls of the Palace"²⁰⁵.

At this time the decorative, static nature of the hall was accentuated by developing a late romantic style. The number of wall panoplies increased and mannequins bearing armour and papier mâché shields were installed²⁰⁶. Figure 2-17, Figure 2-18 and Figure 2-19 demonstrate the increasing use of symmetrical formations of trophies of arms during the first part of the British period.

²⁰³ Spiteri, 2001, p. 131

²⁰⁴ Żygulski, 1970, p. 70

²⁰⁵ Laking, 1903, p. xiv

²⁰⁶ Żygulski, 1970, p. 70

Figure 2-17 Left: Detail of trophies of arms from Right: Armoury in the Governor's Palace in Valetta, lithograph by Charles Frederick de Brocktorff, circa 1840²⁰⁷.

The establishment of the Palace Armoury as a museum in 1860 marks its transition to a more academic profile²⁰⁸; although, it can be said that museums of the Victorian era were more characteristic of curiosity cabinets than the more educational museums of the present-day. The increasing role of the Armoury as being of scholarly interest came at the turn of the 20th century with the arrival of Sir Guy Francis Laking, Keeper of the British King's armoury. Lord Grenfell, the then Governor of the Maltese Islands, requested Laking's study of the collection and this published work can be seen as the first pseudo-academic or scholarly interpretation of the PA collection²⁰⁹. Laking counted hundreds of 16th-17th century armour on the walls, however, his descriptive cataloguing was prioritised to 464 articles of the 5286²¹⁰ articles counted. He stated that the "...more ordinary armaments...", presumably such as the munition armour of this present study, were not the focus as he justifies:

²⁰⁷ Ganado, 2001, p. 18

 ²⁰⁸ Spiteri, 2003, p. 9
 ²⁰⁹ Laking, 1903, Żygulski, 1970, p. 70 & Spiteri, 2003, p. 9

²¹⁰ Żygulski, 1970, p. 71

"Each specimen would, had time and space permitted, have had its individual place in the Catalogue, but as it is, the more ordinary armaments will be found mentioned in round numbers, and the important pieces fully recorded in the Catalogue"211.

This again demonstrates that the collective munition armour was held in less regard and attention was prioritised elsewhere.

Galizea, the Palace Armoury curator at the turn of the 20th century confirms the location and decorative status of the munition armour at the turn of the century noting that, "The plainer suits of the men at arms have been left for the decoration of the walls of the gallery..."212.

Figure 2-18 Upper and lower left: Details of trophies of arms from Main: The Palace Armoury circa 1900²¹³

²¹¹ Laking, 1903, p. xiv ²¹² Galizea, 1906, p. 20

²¹³ Spiteri, 2001, p. 138

Laking's display interpretation remained until a bombing of the Palace during the Second World War²¹⁴. The collection was then transferred to underground shelters²¹⁵ where some damage was sustained due to the "...unfavourable conditions",²¹⁶ (presumably corrosion from the typically elevated humidities of subterranean spaces). After the war the collection was returned to the Palace Armoury and entrusted to the Governmental Museums Department²¹⁷. The Museums Department was slow to effectively manage the Palace Armoury. Criticism of an attention bias towards other museums under their directorate has been cited²¹⁸, along with a lack of resources²¹⁹, as causes for insufficient attention to the PA.

Figure 2-19 Postcards depicting the Palace Armoury during the British period of the 20th century²²⁰. Note the multitudes of trophies of arms (and armour) on walls and furnishings

2.1.3.2.1 Restoration

It is apparent that a period of significant neglect leading to corrosion passed during the middle of the British period. Prior to the opening of the Palace Armoury as a museum in 1860, three months of armour cleaning was undertaken²²¹. And after the Second World War armour were again polished²²² (Figure 2-20).

- ²¹⁸ Magro Conti, 2007, pers. comm.
- ²¹⁹ Spiteri, 2003, p. 225

²¹⁴ Czerwinski & Żygulski, 1969, p. 6

²¹⁵ Żygulski, 1970, p. 71

²¹⁶ Czerwinski & Żygulski, 1969, p. 6

²¹⁷ Spiteri, 2001, p. 131

²²⁰ Courtesy of L. Sciberras & C. Zammit

²²¹ Spiteri, 2003, p. 207

²²² Ibid., p. 224

Figure 2-20 Armourers polishing armour at the Palace Armoury after the Second World War

2.1.3.3 1964, Independence: remnants of a colonial history

The independence of Malta from British administration was enacted in 1964, and 1979 saw the end of Britain's military presence in Malta²²⁴. Another study of the Palace Armoury collection was performed in 1969, this time by United Nations Educational, Scientific & Cultural Organization (UNESCO) representatives Czerwinski and Żygulski. Again, it seems the munition armour were ignored, "All objects, except for those hanging on the walls ... have had their condition examined"²²⁵. The UNESCO visit came at a time when Malta was in transition from colonial to independent federated state. For the PA collection, the independence from colonial rule was indelibly marked by a significant political decision that imposed a further decline in the already tenuous welfare of the collection: its relocation to the Grand Masters' Palace's former stables²²⁶. The potential conservation implications of this act are described in 2.1.4.2 Ground floor location, 1975-present.

²²³ Ibid., p. 224
²²⁴ Attard, 2004, pp. 133-134
²²⁵ Czerwinski & Żygulski, 1969, p. 9

²²⁶ Spiteri, 2003, p. 227

Figure 2-21 The Palace Armoury arrangement before its 1975²²⁷ ground floor transferral²²⁸. Note the relative absence of wall-displayed armour when compared with Figure 2-19

2.1.3.3.1 Restoration

Czerwinski and Żygulski the UNESCO representatives, noted that "...the largest group" of the Palace Armoury collection was "...objects of bright steel partly attacked by rust... especially from among the exhibits hanging on the walls"²²⁹. These are believed to be the munition armour. Czerwinski and Żygulski demonstrated to PA staff a series of restoration treatment options. Those deemed suitable at the time for undecorated objects were "...jellied..." or "...liquid rust remover, steel wool and fine wire brushes". Electrochemical "...reduction in zinc and caustic soda" was also recommended for objects without ornaments "... covered with thick layers of old rust"²³⁰. Of note was the demonstration for "Mechanical finishing of a cleaned object: brushing, polishing with fine abrasive cloth no. 00 or emery powder and oil"²³¹. The extent of the subsequent application at the Palace Armoury of these demonstrated restoration procedures is unknown²³².

2.1.3.4 Recent history: museum typological collection & tourist site

The most recent developments at the Palace Armoury have occurred since the inception of Heritage Malta (HM) in 2002, a governmental agency entrusted with the conservation and management of Malta's cultural patrimony. The representation and

²²⁷ Stroud, n.d. p. 1

²²⁸ Spiteri, 2003, p. 224

²²⁹ Czerwinski & Żygulski, 1969, p. 10

²³⁰ Ibid., p. 14

²³¹ Ibid.

²³² Stroud, 2006-2007, pers. comm.

interpretation of the PA collection arranged by chronological and typological format is being continued after its initiation and revision during the last years of the former Museums Department²³³. The focus of recent refurbishment works has been to improve visitor facilities and interpretation of the display cases. Meanwhile, comparatively little resources have been allocated to maintaining the continued display of armour in the wall panoplies²³⁴. The attention bias away from the munition armour has thus been demonstrated to continue until present day.

2.1.3.4.1 Restoration

It is known that until the early 1990s a phosphoric acid-based rust converter was in use at the Palace Armoury for removing corrosion products²³⁵:

"Very deep rusting is best treated with orthophosphoric acid which helps loosen the corrosion without actually affecting the solid metal. Controlled immersion is by far the best method but successive brush/swab application often proves sufficient²³⁶.

The detection (by milli-x-ray fluorescence (XRF) spectrometry) of quantities of phosphorus on decorated PA armour helmets²³⁷ has been supposed to be either attributable to the metal constituents or phosphoric acid residue²³⁸. The current approaches to munition armour CPs at the Palace Armoury are explored in detail as a part of this research's experimental component and are therefore presented in Chapter 3 Experimental methods & materials and Chapter 4 Results.

THE PALACE ARMOURY'S 16th-17th 2.1.4 ENVIRONMENT OF CENTURY NORTHERN ITALIAN-STYLE MUNITION ARMOUR

The past and present natural and anthropogenic environmental influences on the Palace Armoury collection during its history are briefly introduced here. The mechanics and implications of such environmental aspects are expanded upon in 2.2 Indoor atmospheric ferrous corrosion & control.

2.1.4.1 First floor location, 1604-1975

The original location of the Palace Armoury was on the first floor at the Merchants Street end of the Grand Masters' Palace (Figure 2-2). The Order of St

²³³ Magro Conti, 2007, pers. comm.

²³⁴ Further described in 2.1.4.2.1 Current display & storage method

²³⁵ Kitto, 2006, p. 59

²³⁶ Stroud, c.1993, p. 2

²³⁷ Degrigny et al. 2007a, pp. 28, 31
²³⁸ Ibid., pp. 29-33

John was all too aware of the indoor natural environment and the effects of metal corrosion on their arsenal. Appropriate architectural planning motivated by the knowledge of the susceptibility of arms and armour to corrosion by *rising damp* is given in Romano Carapecchia's (-1738) Compendio Architettonico²³⁹. The implementation of such architectural theory by the Order was evidenced in Malta by the placement of armouries on non-ground floor locations in buildings at Mdina, Birgu and Vilhena Palace²⁴⁰. Nonetheless, several separate accounts (1769, 1782²⁴¹, 1858²⁴², 1903²⁴³) of the corrosive effects on the collection were made in the period that the Palace Armoury was located on the first floor of the Grand Masters' Palace. A late assessment of the first floor environment by Czerwinski and Żygulski (1969) comments that while the gallery presented "...a rather dry microclimate" external dust and humidity could penetrate the gaps in the windows and a source of dust was the unsealed limestone (essentially calcium carbonate, CaCO₃) floor²⁴⁴. Even so, they reported the condition of the artefacts as being "...on the whole good, in many cases - very good" and attributed this to the application of protective varnish²⁴⁵. However. this is in contrast to the corrosion they noted on the wall-displayed armour²⁴⁶.

2.1.4.2 Ground floor location, 1975-present

Waves from the socio-political events of the 1970s in Malta were felt by the Palace Armoury collection when an order was issued (1974) by the then Prime Minister Dom Mintoff to relocate the PA from its original site on the first floor to the ground floor site immediately below: the former stables of the Grand Masters' Palace²⁴⁷ (Figure 2-22).

²³⁹ Spiteri, 2003, p. 188

²⁴⁰ Ibid., p. 125

²⁴¹ Ibid., p. 200

²⁴² Ibid., p. 206

²⁴³ Laking, 1903, p. vii

²⁴⁴ Czerwinski & Żygulski, 1969, p. 9

²⁴⁵ Ibid.

²⁴⁶ 2.1.3.3 1964, Independence: remnants of a colonial history, Restoration

²⁴⁷ Spiteri, 2003, pp. 224-226

Figure 2-22 Original and current Palace Armoury locations²⁴⁸

The subsequent curatorial order in 1975 for relocation was three days and the move was carried out in this time²⁴⁹. This left insufficient time for adequate immediate organisation and some armour lay on the floor unattended for four years²⁵⁰. It is presumed that this armour would have most likely included the less prestigious munition armour of this study: not the parade armour of the Grand Masters²⁵¹.

2.1.4.2.1 Current display & storage methods

At present the armour displayed at the Palace Armoury can be categorised into three display types: display cases; open floor display; and open wall displays (Figure 2-23). Each display types presents its own environmental characteristics. The munition armour under study here are exclusively represented on the open wall (119 armour elements) and floor displays, while many more that were once hanging on the walls, comprise a large number of artefacts in the storage reserve where some 1025 further single armour pieces or armour assemblies are kept²⁵².

²⁴⁸ Crawford, 2007a, p. 9, permission courtesy of E. Magro Conti

²⁴⁹ Stroud, n.d, p. 1

²⁵⁰ Stroud, n.d. & Magro Conti, 2007, pers. comm..

²⁵¹ Ibid.

²⁵² Argyropoulos, in press, Chapter 5, p. 17 & Magro Conti, 2007, pers. comm. & Vella et al., 2005a, p. 5

Figure 2-23 Palace Armoury Armour Hall exhibition space in 2006 marked with display types²⁵

Figure 2-24 A selection of the wall-displayed trophies of arms in the Armour Hall in 2006²⁵⁴

The open wall displays are relatively inconspicuous and form no part of the current period and typological museological classification that the arrangements in display cabinets feature. No educational interpretation attempt is made for the museum visitor (e.g. in the form of lighting, signage, captions or audio guides). As a result, the focus of attention by the visitors does not fall on these wall displays. Maintenance efforts seem to correspond with this lack of visitor attention and are attributable to a lack of appropriate staff²⁵⁵. Instead the armour lies, literally and figuratively, on the periphery of the hall in their bygone symbolic and decorative formations.

Inspections of the wall-displayed armour in the Palace Armoury Armour Hall in 2005 showed the prevalence of corrosion products on their upper surfaces²⁵⁶. The reasons for this corrosion behaviour are attributable to their display characteristics and are explained in the subsequent section to exemplify the principles of corrosion in this case study.

From these historical and contemporary accounts it is clear that corrosion has plagued the arms and armour at the Palace Armoury, whether they were located on

²⁵³ Crawford, 2007a, p. 11, permission courtesy of E. Magro Conti

²⁵⁴ Ibid., p. 12

²⁵⁵ Stroud, 2006-2007, pers. comm.

²⁵⁶ Vella et al., 2006b, p. 3

the original first floor location or as present in the former Palace stables. Any difference in the extent of corrosion occurring between the two locations was not ascertainable from the literature. Even though it is evidenced in the next section²⁵⁷ that the present unfiltered and ventilated ground floor environment is unfavourable to the munition armour's conservation, good housekeeping is also important for such a large and vulnerable ferrous collection and is later outlined in 2.2.4.1 Preventive conservation methods. When the PA was located on the original first floor site inappropriate housekeeping could explain why Czerwinski and Żygulski noted occurrences of corrosion on wall-displayed armour, but not other armour²⁵⁸.

2.2 INDOOR ATMOSPHERIC FERROUS CORROSION & CONTROL

The causes of ferrous metal corrosion in a non-air conditioned and cyclically ventilated indoor atmospheric environment such as that characterised by the Palace Armoury are examined here. In accordance with the research topic, the role of corrosion products as one factor in the complex interdependent material-environment system is included, as well as their morphologies and the hypothetical mechanisms behind their evolution. The resulting corrosion mechanisms are of significance to preserving or destroying traces of *modified original surfaces* as explained in subsection 2.3.1 What is the original surface & why determine its presence?

Since there are many similar corrosion characteristics between iron and carbon steels²⁵⁹ they are largely treated as a whole group²⁶⁰. Their "…interactions with corrosive atmospheres demonstrate more similarities than differences…"²⁶¹ and "…many of the reactive atmospheric species and many corrosion products are the same"²⁶². It is recognised that the Palace Armoury environmental-corrosion system is further complicated by Early Modern Period ferrous materials and by the presence of protective organic coatings, which must be surmounted before corrosion ensues. Appropriate corrosion and environment examples from separate recent studies at the PA are cited in the following sub-sections to exemplify certain points.

²⁵⁷ 2.2 Indoor atmospheric ferrous corrosion & control

²⁵⁸ 2.1.4.1 First floor location, 1604-1975

 ²⁵⁹ Carbon steels (i.e. not necessarily low-carbon steel) contain, by this citation and contemporary definition, ≤1% carbon and also small varying amounts of Mn, S, P and Si (Leygraf & Graedel, 2000, p. 281).

²⁶⁰ Leygraf & Graedel, 2000, p. 281

²⁶¹ Ibid.

²⁶² Ibid.

Based upon the subsequent information sourced from the literature and these case study examples, it will be suggested that:

The Palace Armoury's current building and environmental management, coupled with the inherent location on an urbanised peninsula adjacent to industry and on an island in the centre of the Mediterranean Sea is not advantageous to preventing atmospheric ferrous metal corrosion (Figure 2-25).

Figure 2-25 The coastal, urban and industrial regional environment of the Palace Armoury, Valletta²⁶³

Lastly, appropriate means for corrosion prevention in a cultural heritage context are briefly summarised so as to emphasise the priority from the outset to minimise corrosion occurrences, and to limit development should it occur.

2.2.1 FERROUS CORROSION: BASIC DEFINITIONS & CONCEPTS

By definition, "Corrosion is the destructive attack of a metal by chemical or electrochemical reaction with its environment", meanwhile the term *rusting* is specific to corrosion of iron or ferrous alloys²⁶⁴. Corrosion processes are most often electrochemical and are driven by the thermodynamic instability of the metals to revert to the more stable energy states they possessed prior to extraction from the mineral ore²⁶⁵. Thus, on an observational basis, metal corrosion is evidenced by the

 ²⁵⁵ Virtual Tourist, 2006, <u>http://members.virtualtourist.com/m/7cf39/6ecb5</u> – accessed 04/06/2006
 ²⁶⁴ Uhlig & Revie, 1985, p. 1

²⁶⁵ Ibid., p. 6 & Selwyn, 2004, p. 19

transformation of an often brilliant lustrous metallic appearance to a non-reflective mineralised aspect²⁶⁶. On a fundamental basis, metal corrosion involves a transfer of electrons. A loss of electrons from the metal occurs (termed oxidation and occurring at the negatively charged pole, or *anode*), with a simultaneous acceptance of electrons by other chemical species present in the metal, in the corrosion products or in the environment (termed reduction, occurring at the positively charged pole, or *cathode*)²⁶⁷ (Equation 2-2).

 $\begin{array}{c} M \rightarrow M^{z^+} + ze^{-} \\ EA^{z^+} + ze^{-} \rightarrow EA \end{array} \tag{a}$

M = metal z = valence/number of electrons EA = electron acceptor

Equation 2-2 Conceptual half reactions for metal oxidation (a) and reduction of other chemical species (b)²⁶⁸

It is important to emphasise the distinction between the terms *corrosion* and *corrosion products*: two terms that are often confusingly interchanged. It is here specified that *corrosion* is referred to as a process that produces corroded areas in metal (i.e. lost metal), while corrosion products are mineralised metal that have been converted by the corrosion process and are positioned in the corroded area or elsewhere (in solid states or in liquid solutions).

2.2.2 INDOOR ATMOSPHERIC FERROUS CORROSION: DEFINITION, PROCESSES & FACTORS

2.2.2.1 Definition

Atmospheric corrosion is distinguishable from the broader previously given definition of corrosion since it is further specified as the "...the corrosion or degradation of material exposed to the air and its pollutants, rather than immersed in a liquid"²⁶⁹, and it does not concern high temperature gaseous oxidation since it relates to ambient temperatures, as found in a museum.

The atmospheric environment is complex. It consists of gaseous, liquid and solid phases where electrochemical, chemical and physical processes can occur either within these phases or at the interfaces between them²⁷⁰.

²⁶⁶ Leygraf & Graedel, 2000, p. 24

²⁶⁷ Uhlig & Revie, 1985, p. 9

²⁶⁸ Tretheway & Chamberlain, 1998, p. 76

²⁶⁹ Pohlman, 1998, p. 80

²⁷⁰ Leygraf & Graedel, 2000, p. 9

2.2.2.2 Processes

Atmospheric corrosion, whether it occurs indoors or outdoors, follows the same physicochemical processes including: "...adsorption of water $[H_2O],$ deposition of gases and particles into the liquid layer, proton- and ligand-induced (metal) dissolution, ion pairing, and precipitation, and growth of corrosion products"²⁷¹. The notable difference between indoor and outdoor atmospheric corrosion is a less corrosive indoor environment where "...variations in relative humidity (RH) are less dramatic indoors than out, and deposition velocities and concentrations of gas or particle corrodents are generally lower"²⁷². However. corrosivity increases with high indoor-outdoor air exchange rates²⁷³ and this effect on corrosion is therefore of importance to the cyclically ventilated and unfiltered Palace Armoury environment. This subsection outlines the sequence of stages required for atmospheric corrosion to occur.

2.2.2.2.1 Surface hydroxylation & water adsorption

Instantaneously, under atmospheric exposure, metal surfaces react with water vapour and normally cause disassociation of the water molecules and mainly initially result in forming bonds with metals or metal oxides (Figure 2-26)²⁷⁴.

Figure 2-26 "A schematic depiction of surface hydroxyl (OH") groups on a metal oxide surface" after Levgraf & Graedel²⁷⁵

Subsequently, further water vapour is adsorbed in superior layers, but as complete molecules. The thickness of this water layer increases with increased humidity²⁷⁶ and hygroscopic aerosol pollutants^{277, 278}. The water's lateral distribution is more localised as clusters rather than as a uniform distribution. The composition

- ²⁷² Ibid.
- ²⁷³ Ibid., p. 109
- ²⁷⁴ Ibid., pp. 9-10

- ²⁷⁵ Ibid., p. 10 ²⁷⁶ 2.2.2.3.2 Atmospheric water
- ²⁷⁷ 2.2.2.3.3 Atmospheric pollutants

²⁷¹ Ibid., p. 126

²⁷⁸ Leygraf & Graedel, 2000, pp. 9-11, 17

and topographies of ferrous surfaces affects the amount of water present²⁷⁹. Importantly, the adsorbed water layer also acts as a solvent for gaseous and solid aerosols and is subsequently referred to as the *liquid* layer, rather than the *water* layer²⁸⁰.

At the interface between the adsorbed liquid layer and the solid substrate (i.e. metal and/or corrosion products) electrochemical reactions can occur. In atmospheric ferrous corrosion, the predominant anodic and cathodic reactions are respectively metal dissolution and oxygen reduction²⁸¹, as follows in Equation 2-3.

The liquid layer is in close proximity to atmospheric oxygen, which is normally easily dissolved by the adsorbed liquid layer²⁸⁴. This scenario typically makes the anodic reaction the rate-limiting step, instead of the cathodic reaction²⁸⁵. In the case of metals coated with protective coatings such as organic polymers, atmospheric water and oxygen must first access the metal. To do this they must diffuse through coatings, and/or facilitate the coating's degradation (more achievable if in an oxidising or acidic environment such as that caused by pollution e.g. ozone, O_3 , sulphur dioxide, SO_2)^{286, 287}.

2.2.2.2.2 Proton- & ligand-induced metal dissolution

Ions such as protons (H⁺) and ligands (e.g. bisulphite (HSO₃), bisulphate (HSO₄)) present in the liquid layer are known to exchange with the previously described hydroxyl ions²⁸⁸ under the adsorbed liquid layer. This replacement is said to be one of the most important initial corrosion stages since it can weaken the bonded metal and adjacent metal²⁸⁹. Protons are allegedly involved in the detachment of the metal ions (*cations*) since if at least two protons are bonded to the metal they

²⁷⁹ Ibid., p. 283

²⁸⁰ Ibid., p. 13

²⁸¹ Ibid..

²⁸² Chandler & Hudson, 2000, p. 3

²⁸³ Asphahani & Silence, 1998, p. 113

²⁸⁴ Tretheway & Chamberlain, 1998, p. 281

²⁸⁵ Leygraf & Graedel, 2000, p. 13

²⁸⁶ Hess & Bullett, 2000, p. 43

²⁸⁷ 2.2.2.3.3 Atmospheric pollutants, Gaseous aerosols

 ²⁸⁸ Figure 2-26 "A schematic depiction of surface hydroxyl (OH) groups on a metal oxide surface" after Leygraf & Graedel

²⁸⁹ Leygraf & Graedel, 2000, p. 17

can cause weakening of its bond via polarisation²⁹⁰. The departure of the metal ion into the liquid layer creates a vacant site on the surface, which is then hydroxylated, thereby freeing more protons that are in turn capable of facilitating further metal dissolution via polarisation²⁹¹.

2.2.2.2.3 Ion-pairing

The metal's cations dissolved into the liquid layer are reactive with counterions also present there and form covalent bonds with those counterions that possess similar valence electron properties. Likely paired species follow the Lewis acid-base concept where soft acids (e.g. Cu^+) are more likely to bond with soft bases (e.g. R_2S). Relevant to ferrous corrosion, hard acids (e.g. the ferric ion, Fe^{3+}) prefer to bond with hard bases (e.g. H_2O , $OH^{-})^{292}$. The ferrous ion (Fe^{2+}) is classed as an intermediate acid and its probable intermediate basic counterparts include sulphite (SO_3^{2-}) and nitrite (NO_2^{-}) anions²⁹³.

2.2.2.4 Corrosion product precipitation

The formation of solid phase corrosion products occurs via the precipitation of the ion pairs out of supersaturated liquid layer solutions and can emerge via a colloidal state²⁹⁴. Defects in the solid surface (i.e. metal, metal corrosion products) provide nucleation sites for this precipitation to occur. The overall CP precipitation formation rate is governed by the rate of growth rather than the nucleation rate²⁹⁵.

2.2.2.5 Corrosion product coalescence

Given time, cycling of the previously outlined steps of metal dissolution, ion pairing and corrosion product precipitation initiate enough nucleation sites, which propagate in sufficient size to eventually cover the metal surface with CPs²⁹⁶. These corrosion products "...play a most important role for the behaviour of any material in a given environment"²⁹⁷ as detailed in subsection 2.2.2.3.4 Ferrous corrosion products. Providing that the CPs are not protective and the liquid layer is not too

- ²⁹² Ibid., p. 18
- ²⁹³ Ibid.
- ²⁹⁴ Ibid., p. 20
- ²⁹⁵ Ibid.
- ²⁹⁶ Ibid., p. 22

²⁹⁰ Ibid.

²⁹¹ Ibid., pp. 17-18

²⁹⁷ Ibid., p. 21

thick then the anodic reaction (i.e. metal dissolution, Equation 2-3a), continues to be the rate-limiting step²⁹⁸.

2.2.2.3 Factors

This subsection describes the various major factors influencing atmospheric corrosion processes.

2.2.2.3.1 Atmospheric oxygen

As mentioned previously²⁹⁹, oxygen in the atmosphere normally acts as the electron acceptor in the cathodic reaction of atmospheric corrosion. Equation 2-3b represents near neutral or alkaline conditions, while Equation 2-4 summarises neutral to acid conditions in the presence of oxygen, which is also reduced.

 $H^+ + \frac{1}{4}O_2 + e^- \rightarrow \frac{1}{2}H_2O$ Equation 2-4 Cathodic half equation for aerated, acidic to neutral atmospheric conditions³⁰⁰

Iron corrosion can even occur in deoxygenated conditions where acidity provides an alternative reduction reaction: proton reduction to produce hydrogen gas $(\text{Equation } 2-5)^{301}$:

$H^+ + e^- \rightarrow \frac{1}{2}H_2$ Equation 2-5 Cathodic half equation for deaerated, acidic atmospheric conditions³⁰²

Acidic conditions might occur when pollutants like sulphur dioxide are present in high concentrations^{303, 304} or due to hydrolysis of ferrous ions in confined spaces like corrosion pits or crevices (Equation 2-6)³⁰⁵.

 $Fe^{2+} + 2H_2O \rightarrow Fe(OH)_2 + 2H^+$ Equation 2-6 Hydrolysis of ferrous ions to form acidic conditions³⁰⁶

2.2.2.3.2 Atmospheric water

The three subdivisions of atmospheric corrosion conditions are determined by the level of atmospheric water present and are called dry, damp and wet corrosion³⁰⁷.

²⁹⁸ Ibid.

²⁹⁹ 2.2.2.1 Surface hydroxylation & water adsorption

³⁰⁰ Cornell & Schwertmann, 2003, p. 492

³⁰¹ Ibid.

³⁰² Ibid.

³⁰³ 2.2.2.3.3 Atmospheric pollutants, Gaseous aerosols

³⁰⁴ Pohlman, 1998, p. 81

³⁰⁵ Kruger, 1990, p. 151

³⁰⁶ Ibid.

³⁰⁷ Pohlman, 1998, p. 80

Dry corrosion atmospheres (characterised by an absence of ambient moisture) have negligible rates on iron and are mainly of concern to copper and silver (referred to as *tarnishing*, such as with the presence of hydrogen sulphide, H_2S)³⁰⁸.

Ferrous metal atmospheric corrosion is attributable to the latter categories of damp & wet corrosion³⁰⁹. Water in the atmosphere is actively implicated in many reduction reactions (e.g. Equation 2-3b, Equation 2-6) and the overall corrosion process since water provides a conductive means for transporting current and is referred to as the *electrolyte*.

It has been measured that the atmospheric corrosion of iron is circa 2000 times greater outdoors than indoors, and it is not simply attributable to water from rainfall (or other climatic precipitation)³¹⁰ as indicated earlier³¹¹. Laboratory studies show "... the main reason is the extremely high dependence of the iron corrosion rate on relative humidity"³¹². On normally clean metal surfaces (i.e. no corrosion products or pollutants) a relative humidity of around 70% is sufficient to support a thin invisible surface film of moisture in atmospheric conditions. The amount of adsorbed moisture required to form the electrolyte for the current transfer necessary for damp corrosion to occur is known as the *critical relative humidity*³¹³. The critical RH for iron is 60% and is when rust slowly forms³¹⁴. The RH for metals in a museum environment is recommended to be as low as possible, while 35-55% RH can be tolerated as a compromise for mixed collections containing organics susceptible to embrittlement via dehydration^{315, 316}. As relative humidity increases, the ferrous corrosion rate increases. For example, between 75-80%RH a sharp increase in corrosion rate occurs, while at 90% another rate increase can be observed³¹⁷. Increasing corrosion rates are associated with the moisture film thickness, underlying material surface and pollutant properties. A maximum corrosion rate is observed when the moisture layer exceeds 150um³¹⁸. Relative humidity is largely governed by natural climatic conditions: increases and decreases

³¹⁴ Ibid.

³¹⁸ Ibid.

³⁰⁸ Uhlig & Revie, 1985, p. 165, 171 & Pohlman, 1998, p. 80

³⁰⁹ Pohlman, 1998, p. 81

³¹⁰ Leygraf & Graedel, 2000, p. 124

³¹¹ 2.2.2.2 Processes

³¹² Leygraf & Graedel, 2000, p. 124

³¹³ Pohlman, 1998, p. 82

³¹⁵ CCI, 1995, p. 1

³¹⁶ Not to forget museum staff and visitor comfort

³¹⁷ Pohlman, 1998, p. 82

in temperature respectively decrease and increase RH due to air's temperature dependent capacity for moisture retention³¹⁹. The indoor architectural environment not only plays a sheltering role from wet atmospheric corrosion by precipitation such as dew and rain, but can also play an insulating role from outdoor atmospheric temperature and humidity, and their fluctuations³²⁰. Yet, the architectural environment can have its own influence on increasing RH: it too can contain moisture in the building-fabric and air³²¹. Water sources from plumbing, roofing leaks, or groundwater sources cannot be overlooked³²² and have been revealed at the Palace Armoury, which is located on a ground floor without an insulating damp course and with walls exhibiting soluble salt efflorescence, typical of rising damp³²³.

Wet atmospheric corrosion involves the local presence of visible water in crevices and condensation traps³²⁴. Such water has been noted on ferrous surfaces at the Palace Armoury³²⁵. Notably, the multi-component armour constructions, with their many overlapping metal plates and rosettes, probably make ideal interfacial condensation traps and ensuing local wet corrosion possible.

TIME OF WETNESS/DAMPNESS & HUMIDITY CYCLES

An important factor governing the corrosion rate is the time a corroding surface is above the critical RH for corrosion to occur, and is referred to as the *time* of wetness³²⁶.

Iron and steel are very sensitive to relative humidity fluctuations³²⁷. Often fluctuations in T & RH are seen to affect corrosion more than their absolute values. The most important effect temperature has on atmospheric corrosion (such as at indoor ambient temperatures) is indirect, but can still be significant due to its influence on relative humidity³²⁸. Dry-damp cycles are well known to accelerate corrosion since they induce the precipitation-dissolution cycles that occur as moisture is respectively lost, gained and lost³²⁹. Corrosion accelerated by dry-damp cycles is usually less common indoors, but again such a generalisation becomes less

³¹⁹ Uhlig & Revie, 1985, p. 173 & Rowlinson, 1977, p. 23

³²⁰ Pohlman, 1998, p. 81

³²¹ Cassar, 1995, p. 45

³²² Getty Conservation Institute, 1994, p. 86

³²³ Magro Conti, 2007, pers. comm.

³²⁴ Pohlman, 1998, p. 80

³²⁵ Vella et al., 2006b, p. 12

³²⁶ Pohlman, 1998, p. 82 & Uhlig & Revie, 1985, p. 174

³²⁷ Leygraf & Graedel, 2000, p. 71

³²⁸ Ibid., p. 195

³²⁹ Ibid., pp. 126, 194

applicable with buildings featuring high indoor-outdoor air exchange rates³³⁰. While RH fluctuations are expected to be less than outdoors, they might still be appreciable³³¹. Relative humidity and temperature fluctuations in the uncontrolled indoor environment of Palace Armoury are likewise dependent on the ventilation with the outdoor environment. Quantifying the Palace Armoury air exchange rate was not determinable from the literature³³², but it is known that each extraction fan in the two exhibition halls is used for daily air-exchange that functions in conjunction with the external doors, which are opened daily³³³.

Studies on lightly rusted iron, by corrosion scientists, Stratmann and Streckel, demonstrated that during the drying phase of the adsorbed moisture layer the corrosion rate "...shows a pronounced maximum"³³⁴. This is due to the increased access oxygen has to corrosion product pores previously more occupied by water ("Corrosion maximum" in Graph 2-3)³³⁵.

Graph 2-3 Consumption rates of iron and oxygen during a wet-dry cycle (after Stratmann)³³⁶

The drying phase is also of significance to corrosion since the concentration of dissolved species in the adsorbed liquid layer can increase by several orders of magnitude thereby causing more corrosive pH levels to develop³³⁷.

Half of the annual temperature and relative humidity compiled in 2006 inside the Palace Armoury is presented in Graph $2-4^{338}$. It is immediately observable from

³³⁰ Ibid., p. 126

³³¹ Ibid., p. 110

³³² Though air-exchange rates can be calculated.

³³³ Stroud, 2006-2007, pers. comm.

³³⁴ Stratmann & Streckel, 1990, p. 695

³³⁵ Maréchal et al., 2007, p. 23

³³⁶ Ibid., p. 22

³³⁷ Leygraf & Graedel, 2000, p. 14

the graph alone that the RH is predominantly above the critical RH of iron, where this time of wetness must also be influencing the corrosion rate, as previously mentioned. Additionally, it appears the temperature fluctuations $(25.20\pm2.12^{\circ}C = mean\pm1 \text{ standard deviation})$ corresponded with relative humidity fluctuations $(63.13\pm6.61\%\text{RH} = mean\pm1 \text{ standard deviation})^{339}$ that are in close agreement with the psychrometric chart (Graph 2-5) and are potentially favourable for iron corrosion, since on numerous occasions the RH fluctuates around the critical relative humidity.

Graph 2-4 Temperature and relative humidity in the Palace Armoury Armour Hall around the summer months³⁴⁰

Upon analysis of the raw data³⁴¹ for Graph 2-4, it can be summarised that the Palace Armoury's inherent building dampness (e.g. damp building foundations) and daily ventilation is likely to be inducing the relative humidity fluctuations. To briefly explain, following afternoon closing time (i.e. window extraction fans off and entrance doors closed), the RH steadily increases (probably due to an interior moisture source such as rising damp), while temperatures remain nearly constant or constant³⁴². In the morning (i.e. window extraction fans on and entrance doors

³³⁸ RH and T in the PA for the year November 2006 – October 2007 will be published in Degrigny, Chapter 7, (in press), p. 28

³³⁹ Argyropoulos et al., 2007a, p. 11

³⁴⁰ Ibid., p. 12

³⁴¹ Examined by the present author, available courtesy of D. Vella, conservation scientist, Diagnostic Science Laboratories, Heritage Malta, Bighi, Malta.

³⁴² In one overnight example (20-21/09/2006), despite a constant temperature and closed indoor space, a recorded 7.6% RH increase in the closed Armour Hall was noted in the raw environmental

opened) the RH dramatically drops as this interior, more humid air is displaced and/or heated by the normally warmer (over the summer months) and drier exterior air (but rarely falls below 40%RH in Malta³⁴³).

At already elevated relative humidities it only takes a small temperature change to produce a large RH fluctuation. For example, at 63% RH & 25°C (the mean T & RH in the PA Armour Hall during summer³⁴⁴) a decrease of 2°C increases the RH to circa 70%RH (Graph 2-5).

Graph 2-5 Psychrometric chart exemplifying the effect on relative humidity by temperature change³⁴⁵

2.2.2.3.3 Atmospheric pollutants

Many forms of natural and anthropogenic airborne species in the atmosphere contribute to indoor corrosion mechanisms³⁴⁶. These polluting airborne species are referred to as aerosols, and are defined as "…suspension(s) of small liquid and/or

monitoring data of the graph published in Argyropoulos et al., 2007a, p. 12 examined by the present author, courtesy of D. Vella.

³⁴³ Malta Weather Services, 2006, <u>http://www.maltaweather.com/climate.shtml</u> – accessed 14/01/2006

³⁴⁴ Graph 2-4 Temperature and relative humidity in the Palace Armoury Armour Hall around the summer months

³⁴⁵ Howard University, 2006, <u>http://howard.engr.siu.edu/staff1/tech/MET/ET401/LAB/psychro_carrier_si.jpg</u> – accessed 12/08/2006

³⁴⁶ Leygraf & Graedel, 2000, pp. 110, 115

solid particles in a gaseous medium³⁴⁷. They can either come from indoor sources or be introduced by air currents from outdoor sources. Aerosols, gaseous or solid, deposit on surfaces by either dry or wet deposition. The former occurs when aerosols collide into and adhere to a dry surface³⁴⁸, while the latter occurs when the aerosols dissolve into atmospheric humidity or into water already adsorbed onto surface aerosols³⁴⁹. The manner by which some atmospheric pollutants react to induce corrosion are outlined and it is important to note that their interrelationship with the metal and environment is complex and can only be cursorily covered here.

SOLID AEROSOLS

Outdoor types of solid aerosols include soil, sea-salt, construction dust and hydrocarbon combustion pollution³⁵⁰. Meanwhile indoor solid aerosols can emanate from the building fabric (e.g. concrete, stone, marble)³⁵¹.

Due to the sheltered indoor environment, indoor solid aerosols have deposition velocities of one to two orders of magnitude less than in outdoor environments³⁵². The size of the particles also affects their transportation: very small particles have high diffusion rates and follow atmospheric movements more, while large particles are affected less since they have their own greater momentum³⁵³. Large particles deposit easily on non-inverted surfaces, whereas they do not deposit easily on inverted surfaces. Deposition of small particles is much less affected by surface orientation since they move more like gaseous aerosols³⁵⁴.

A metallic surface partly covered with solid aerosols, such as particles from architectural masonry or earth sediment, can cause corrosion via the formation of *differential aeration cells* due to the relative difference in access to atmospheric oxygen³⁵⁵ (Figure 2-27).

³⁴⁷ Ibid., p. 55

³⁴⁸ Ibid., p. 40

³⁴⁹ Ibid., pp. 40, 57

³⁵⁰ Ibid., pp. 59-60

³⁵¹ Stolow, 1987, p. 18

³⁵² Leygraf & Graedel, 2000, p. 56

³⁵³ Ibid., p. 55

³⁵⁴ Ibid., p. 57

³⁵⁵ Pohlman, 1998, p. 81, Fyfe, 2000, p. 35 & Leygraf & Graedel, 2000, p. 63

Figure 2-27 Schema of differential aeration corrosion caused by a surface deposit particle³⁵⁶

Hygroscopic particles can either simply increase atmospheric water adsorption or participate further in electrochemical reactions. For example, carbon soot from combustion, highly present in urban zones, increases surface moisture adsorption³⁵⁷, whereas sodium chloride is more implicated. Sodium chloride is not only hygroscopic, and therefore increases the amount of adsorbed surface moisture, but additionally, is conductive, thereby increasing corrosive conditions through the electrolyte's conductivity³⁵⁸. Salt-water coastal environments, such as the peninsula where the Palace Armoury is situated, are known to be corrosive and this is largely due to the prevalent water-soluble salt sodium chloride (NaCl) that comes from breaking waves on saltwater seas and oceans³⁵⁹. The chloride ion (Cl) is highly corrosive to both iron and steel and is also known to degrade protective coatings³⁶⁰.

The effect of solid aerosols on ferrous corrosion at the Palace Armoury is evidenced and pronounced, and is therefore elaborated here. Despite the sheltered indoor environment, using scanning electron microscopy-energy dispersive spectrometry (SEM-EDS), Vella documented sodium chloride crystals on surfaces exposed to the Palace Armoury atmosphere during the European Commission Promet project. It is presumed that such salts came in the form of sea-spray from the natural environment and were drawn through the museum's cyclically open ventilation³⁶¹. Later SEM-EDS studies by the same research group, showed a year-round accumulation of calcium and silicon materials. Chlorine was also heavily

³⁵⁶ Shreir, 2000, p. 155

³⁵⁷ Fyfe, 2000, p. 35 & Leygraf & Graedel, 2000, p. 63

³⁵⁸ Fyfe, 2000, p. 35 & Leygraf & Graedel, 2000, p. 283

³⁵⁹ Fyfe, 2000, p. 35 & Leygraf & Graedel, 2000, p. 59

³⁶⁰ Leygraf & Graedel, 2000, p. 38 & Pohlman, 1998, p. 81

³⁶¹ Vella, 2006 – An extended interpretation of this raw data acquired by Vella is made later in the context of 4.1.2.1 Armour Hall aerosol pollutants' SEM-EDS: results

evidenced. These findings presumed a correlation of the calcium with limestone, the silicon with clay [earth] and the chloride [*sic*] with marine salts³⁶².

Accordingly, an apparently significant indoor source of solid aerosols at the Palace Armoury is the traditional limewash applied to cover the limestone walls³⁶³. Limewash has historically been and is contemporarily still in use at the Palace Armoury³⁶⁴ and throughout Malta³⁶⁵ to provide a layer to areas where rising damp is problematic. Salt efflorescence destroys this thin superficial layer that is periodically replaced at lesser expense than the construction stone³⁶⁶. The necessary porosity of this material engenders its friability and its susceptibility to becoming an atmospheric pollutant. Lime for producing limewash is produced from the Upper and Lower Coralline Limestones, not the Globigerina Limestone³⁶⁷. Meanwhile a limestone is the construction stone of the Palace Armoury³⁶⁸, and more specifically Lower Globigerina, is the predominant construction stone for Valletta³⁶⁹.

A correlation between the deposition of solid aerosols on ferrous surfaces and corrosion has been noted on artefacts, and also on contemporary samples of low-carbon steel, of which their history is more confidently known (Figure 2-28)³⁷⁰.

Figure 2-28 Left: Rack containing low-carbon steel coupons exposed at an inclination of 30° to the vertical in the Palace Armoury, Armour Hall³⁷¹. Centre: Very corroded particle-collecting upper side of unprotected coupon after 17 months exposure³⁷². Right: Slightly corroded inverted side of corresponding unprotected coupon, which is collecting less particles³⁷³.

- ³⁶² Degrigny (in press), Chapter 7, pp. 29-30
- ³⁶³ Magro Conti, 2007, pers. comm.
- ³⁶⁴ Stroud, 2006-2007, pers. comm.
- ³⁶⁵ Chetcuti 30/10/2007, pers. comm.
- 366 Ibid.
- ³⁶⁷ Cassar, 01/11/2007, pers. comm. & Cassar & Scerri, 2007, pp. 4-6
- ³⁶⁸ Magro Conti, 2007, pers. comm.
- ³⁶⁹ Cassar 2004, p. 12
- ³⁷⁰ Vella et al., 2006b, pp. 2-4, 13
- ³⁷¹ Ibid.
- ³⁷² Crawford, 2007c, coupon 48
- ³⁷³ Ibid.

It should be noted that some particles retard corrosion: notably via the neutralisation of acidic surfaces with alkaline particulates³⁷⁴. The calcium carbonatederived limewash wall and ceiling finish at the Palace Armoury could potentially fall within this category of alkaline materials³⁷⁵. However, in practice, surfaces are contaminated with mixtures of particles³⁷⁶ and it is experimentally evident from Figure 2-28 that the overall presence of this atmosphere's solid aerosols facilitates corrosion processes.

GASEOUS AEROSOLS

In an indoor environment, with still air, gaseous aerosols are transported by molecular diffusion and convection³⁷⁷. However air currents caused by fans and ventilation would have a greater influence on transport. Actual surface deposition is dependent on the gas transport rate and also the transformation ability after collision³⁷⁸. Gaseous aerosols do not have significant size differences that affect their transport like the case for solid aerosols³⁷⁹.

Sulphur and nitrogen dioxides (NO₂) are the most notable gaseous pollutants cited as having a corrosive effect on metals: they increase surface acidity³⁸⁰ by transformation to sulphurous (H₂SO₃), sulphuric (H₂SO₄) and nitric (HNO₃) acids³⁸¹. The corrosive effect and rates depend on the metal type, but generally increase with increasing RH³⁸². Iron and steel are both known to be highly sensitive to sulphur dioxide³⁸³. The oxidising property of ozone (produced in photochemical smog) enables oxidation of nitrogen oxides (NO_xs) to nitric acid and thus has an indirect corrosive effect on metals³⁸⁴.

Gaseous hydrogen chloride (HCl) occurs in marine environments by dechlorination of sea salt aerosols. Gaseous hydrogen chloride dissolves readily in atmospheric water, allowing the chloride ion to disassociate and participate as a

³⁷⁹ Ibid. p. 55

³⁸¹ Leygraf & Graedel, 2000, pp. 14, 42, 45 & Evans & Taylor, 1972, p. 228

³⁸² Tidblad & Kucera, 2002, pp. 233-234

³⁷⁴ Tidblad & Kucera, 2002, p. 234

³⁷⁵ Trench, 2000, p. 283

³⁷⁶ Vella, 2006

³⁷⁷ Leygraf & Graedel, 2000, p. 110

³⁷⁸ Ibid.

³⁸⁰ Pohlman, 1998, p. 81, Tidblad & Kucera 2002, pp. 234-235 & Leygraf & Graedel, 2000, p. 44

³⁸³ Leygraf & Graedel, 2000, p. 38

³⁸⁴ Tidblad & Kucera, 2002, p. 22

corrodent³⁸⁵. Sources of gaseous HCl are known to be associated with industrialised coastal regions exposed to nitric or sulphuric acids³⁸⁶.

All of the above mentioned anthropogenic pollutants are mainly products (e.g. SO₂, NO₂) or by-products (e.g. O₃) of fossil fuel combustion in the outdoor environment³⁸⁷. Some of the possible sources relevant to the Palace Armoury region include automated road traffic, cruiseships, cargoships & Marsa's oil-fuelled power station (Figure 2-25). Importantly, the possible interaction of these regional anthropogenic (and other natural) atmospheric pollutants on the PA collection is dependent on the relative locations of the pollutant sources and naturally variable climatic conditions, such as wind direction and speed³⁸⁸.

Meanwhile, the more immediate urban environment of the Palace Armoury is also consistently populated by fossil fuel consuming activities. Merchants Street (Trig-il Merkanti) (Figure 2-2, Lower right), where the Armoury is located, is subjected to 6-times weekly fossil fuel powered vehicles transporting merchandise to the shops opposite and open-air street markets.

Some gaseous aerosols that come from indoor environments and are detrimental to iron are volatile organic compounds (VOCs) such as formaldehyde (HCHO), acetalaldehye (CH₃CHO), formic acid (HCOOH) and acetic acid (CH₃COOH). These are often in higher concentrations indoors than outdoors due to their indoor material sources³⁸⁹. Display case materials are a common indoor source cited in museum contexts³⁹⁰. Construction timber (i.e. fibres and adhesives) provides sources of these volatile corrodents and iron, in addition to tin and lead, are deemed to be the metals most susceptible to formaldehyde 391 .

Maximum advisable gaseous aerosol pollutant exposure concentrations specific for indoor museum ferrous metals could not be sourced. However, guidelines have been established for copper in indoor museums³⁹². The maximum average concentrations for gaseous aerosols such as SO₂, NO₂ and O₃ were respectively 1.01µg.m⁻³, 5.03µg.m⁻³ and 25µg.m⁻³ and were published in reference to gaseous aerosol investigations in the Palace Armoury Armour Hall. It was

³⁸⁶ Ibid., pp. 46, 51

³⁸⁸ Boubel, et al., 1994, p. 233

³⁸⁵ Leygraf & Graedel, 2000, p. 46

³⁸⁷ Ibid. pp. 40-41, 44

³⁸⁹ Leygraf & Graedel, 2000, p. 197

 ³⁹⁰ Stolow, 1987, p. 18
 ³⁹¹ Hatchfield, 2002, p. 33

³⁹² Knotkova et al. 2007, pp. 64-65

summarised in that reference that only for one month (August) was SO_2 above the advised maximum threshold, while NO_2 was consistently above. The level of O_3 was above the advised maximum during the summer months³⁹³.

Two important points are necessary regarding this overview of the advised maximum gaseous pollutant exposures when applied to ferrous metals in the PA collection:

1. These maximum exposure guidelines are for copper, not iron or steel.

2. The established recommended maximum concentrations do not account for the "possible corrosion effects of particulates in indoor atmospheres"³⁹⁴, important when considering the PA's particle-polluted environment³⁹⁵.

As a consequence of these factors and unquantifiable synergisms with RH and other pollutants³⁹⁶, the net effect of the theoretically permissible exposure limit of PA ferrous metals to these gaseous aerosols cannot be determined here. Nonetheless, it is clear that these polluting gaseous aerosols are at least periodically present in the environment at levels excessive for some other metals that also feature on the armour (e.g. cupreous rivet heads and rosettes)³⁹⁷, and the susceptibility of ferrous metals to these gaseous aerosols would probably be increased by the presence of particles.

2.2.2.3.4 Ferrous corrosion products

As outlined here, ferrous corrosion products themselves can play various roles by either retarding or furthering atmospheric corrosion. However, on the whole, their presence is considered undesirable for corrosion prevention and hence provides a dilemma for cultural heritage artefacts where their preservation might be required³⁹⁸. The way some common ferrous CPs generally affect corrosion processes in atmospheric environments is outlined here, while their types, some of their specific effects and their formation are outlined shortly afterwards in the subsequent subsections, Types of atmospheric ferrous corrosion products & Formation of atmospheric ferrous corrosion products.

³⁹³ Degrigny, (in press), Chapter 7, p. 28

³⁹⁴ Knotkova et al. 2007, p. 70

³⁹⁵ 2.2.2.3.3 Atmospheric pollutants, Solid aerosols

³⁹⁶ Hatchfield, 2003, p. 5

³⁹⁷ 2.1.2.5 Munition armour assembly & articulation

³⁹⁸ 2.3 Metal heritage artefact conservation & corrosion products: philosophy & practice

Atmospheric ferrous corrosion products frequently appear as non-adherent orange-brown or black voluminous masses³⁹⁹. Following the same differential aeration corrosion mechanism caused by a surface deposit particle⁴⁰⁰, ferrous CPs can induce corrosion, providing the environment is conducive (Figure 2-29)⁴⁰¹.

Figure 2-29 "Differential aeration cell formed by rust on iron"⁴⁰²

Beneficially, corrosion products entirely covering ferrous surfaces normally slow the corrosion rate. Moreover, the formation of dense CPs is also known to limit further corrosion⁴⁰³. The corrosion rate slows as the thickness or density of the CP layer increases, since reactive species in the liquid layer now need to migrate inwards through the corrosion product layer to react with the metal. Singly charged ions (e.g. CI⁻) or protons, rather than doubly charged species like sulphates (SO₄²⁻), are more easily transported through this layer. In addition, the outward migration of the dissolved metal's ions needs to occur for corrosion to continue⁴⁰⁴. The transport of electrons generated at the anode, and consumed at the cathode, must also be achieved for corrosion to continue. Thicker, denser and non-conductive CP layers can retard this migration, thereby assisting electron transport to be the rate-limiting factor⁴⁰⁵.

The possible imparted corrosion protection of a corrosion product film is dependent on its coherency and the volume ratio of the formed corrosion product and the corroded metal⁴⁰⁶. "Rust layers on iron and carbon steel are porous and poorly adherent"⁴⁰⁷. Cracks are typically present in the outer corrosion product layers while nanometric (circa 3-15nm) pores permit ingress of adsorbed liquid to promote further

³⁹⁹ Cornell & Schwertmann, 2003, p. 499

⁴⁰⁰ Figure 2-27

⁴⁰¹ Uhlig & Revie, 1985, p. 11

⁴⁰² Ibid.: Depicting conventional current direction not electron current direction

⁴⁰³ Stratmann, 1990, p. 51

⁴⁰⁴ Leygraf & Graedel, 2000, p. 21

⁴⁰⁵ Ibid.

⁴⁰⁶ Cornell & Schwertmann, 2003, p. 496

⁴⁰⁷ Leygraf & Graedel, 2000, p. 282

corrosion of underlying metal⁴⁰⁸. Iron's metal to corrosion product volume ratio is at least 1:2.1, therefore explaining why stresses and defects occur in the forming CPs⁴⁰⁹. Also, the separate locations of anodic and cathodic sites means that the CPs form away from the anodic site and do not provide a protective layer⁴¹⁰. Decreases in corrosion rate attributable to ferrous surface corrosion product coverage⁴¹¹ are less pronounced on pure iron than on low-alloy steel since the former propagates more powdery and looser products⁴¹². Unalloyed steel also features porous non-adhering films⁴¹³.

Relating this information to the Palace Armoury munition armour, which are not expected to be like contemporary low-alloy steel⁴¹⁴, and of which a small corpus is known to be unalloyed steel and iron⁴¹⁵, it is likely then that non-protective corrosion product layers feature and further corrosion would be active due the high RH and polluted environment^{416, 417}. Furthermore, in the practical case of the historic armour at the Palace Armoury, this proposed slowing of corrosion rate attributed to surface corrosion products is probably not as pronounced throughout since the armour surfaces are only partly covered with CPs, leaving susceptible adjacent metal exposed.

TYPES OF ATMOSPHERIC FERROUS CORROSION PRODUCTS

Iron's cations, produced from the anode, might commonly form corrosion products of oxides (e.g. Fe₃O₄, magnetite) or oxyhydroxides (FeOOH)⁴¹⁸, while many other compounds are possible, depending on the environmental constituents. Commonly occurring steel corrosion products in outdoor environments are phases of lepidocrocite (γ -FeOOH), goethite (α -FeOOH) and magnetite⁴¹⁹. A more precise description of iron and steel CP occurrence and distribution includes a dense inner

⁴⁰⁸ Ibid.

⁴⁰⁹ Cornell & Schwertmann, 2003, p. 496

⁴¹⁰ Ibid. p. 493 & Evans & Taylor, 1972, p. 227

⁴¹¹ 2.2.2.3.4 Ferrous corrosion products

⁴¹² Uhlig & Revie, 1985, pp. 166-167

⁴¹³ Pohlman, 1998, p. 80

⁴¹⁴ Low-alloy steel definitions vary, but as a general indication low alloy steels can be regarded as alloy steels (by ISO definition) containing between 1 and less than 5% of elements deliberately added for the purposes of modifying properties (IMMA, 1988, p. 4)

 ⁴¹⁵ Excepting one phosphoric (circa 0.1-0.5%wt) iron from ten samples investigated (Vella et al. 2004, p. 230)

⁴¹⁶ Leygraf & Graedel, 2000, p. 281

⁴¹⁷ 2.2.2.3.2 Atmospheric water & 2.2.2.3.3 Atmospheric pollutants

⁴¹⁸ Turgoose, 1989, p. 30

⁴¹⁹ Antunes et al., 2003, p. 27

layer of so-called *amorphous iron oxyhydroxides* with magnetite and an outer loose layer of maghemite (γ -Fe₂O₃) with a lepidocrocite/goethite layer⁴²⁰.

The Promet project's recent short-term corrosion of contemporary lowcarbon steel in the laboratory⁴²¹ and *in-situ* at the Palace Armoury⁴²² respectively produced corrosion products of ferrihydrite & magnetite (determined with μ x-ray diffractometry (μ XRD) & μ Raman spectroscopy)⁴²³, and also ferrihydrite, goethite and lepidocrocite (determined with μ Raman spectroscopy only)⁴²⁴. These metals were corroding indoors and are therefore more relevant, in terms of materials and environment, to the scenario of this study.

Other studies from indoor environments, but on older materials, also detected the typical main phases of outdoor atmospheric ferrous corrosion products: magnetite; goethite; and lepidocrocite. This work involved synchrotron radiation μ xray diffractometry (SR- μ XRD) characterisation of crystalline CPs from precontemporary hypoeutectoid ferrous metals aged 120-1600 years^{425, 426}.

As an extension of the same research group, Neff et al. recently published Raman spectroscopy studies on various atmospherically corroded indoor irons from the 13-18th centuries. This work proposed a ferrous corrosion product stratum that was predominated by goethite as the main phase, together with unspecified poorly crystallised hydrated iron oxyhydroxides, and smaller amounts of lepidocrocite and occasionally akaganéite (β-FeOOH)⁴²⁷.

Monnier et al's recent continuation of Neff's et al.'s work determined a similar CP stratigraphy to her predecessor. Transverse-section stratigraphies of samples extracted from wrought iron bars (dating 1498) were investigated by μ XRD, SEM, μ Raman spectroscopy and μ x-ray absorption spectroscopy (μ XAS)⁴²⁸. A main corrosion product phase of goethite featured with local presences of "a type of

⁴²⁰ Leygraf & Graedel, 2000, p. 285

⁴²¹ 24 hours at 30°C/100%RH + 24 hours at 25°C/50-60%RH + 24 hours at 30°C/100%RH (Degrigny, in press, Chapter 7, pp. 6-7)

⁴²² 12 months exposed at variable ambient conditions (Degrigny, in press, Chapter 7, pp. 6, 8-9) and oriented as per Figure 2-28

⁴²³ Degrigny, in press, Chapter 7, p. 8

⁴²⁴ Ibid., p. 11

⁴²⁵ Dillmann et al., 2001, pp. 318, 332

⁴²⁶ This citation marks one of a series of research papers presented here by the successive research colleagues and teams of corrosion scientist, Philippe Dillmann, Laboratoire Pierre Süe, CEA/CNRS Saclay, Gif Sur Yvette, France, who are investigating the factors of atmospheric ferrous corrosion, for contemporary application: in the prediction of long-term corrosion behaviour in nuclear waste storage systems.

⁴²⁷ Neff et al., 2006, pp. 1230, 1232, 1236

⁴²⁸ Monnier et al. 2007, p. 48, 52

ferrihydrite", lepidocrocite and akaganéite (nearer the surface) (Figure 2-30)⁴²⁹. Notably, magnetite was not reported despite the detection capabilities of the instrumentation used.

Figure 2-30 "Schematic view of the corrosion layer developed on the Amiens iron chains"⁴³⁰.

In much closer correlation with this study (in terms of artefact genre), crystalline (only) corrosion product characterisation (i.e. via XRD) by Biasini & Cristoferi on 16^{th} - 17^{th} northern Italian century armour also demonstrated the presence of akaganéite, goethite, lepidocrocite and, in lesser frequency, hydrated ferric chloride (2FeCl₃.5H₂O) and siderite (FeCO₃)⁴³¹.

Crystalline corrosion product characterisation has also recently been performed on munition armour from the Palace Armoury and falls in line with the predominant species previously cited. These analyses were performed with synchrotron radiation μ XRD in transmission mode on extracted particle samples at station 9.6 of the synchrotron radiation at Daresbury Laboratory, United Kingdom⁴³². Iron oxyhydroxides (goethite, akaganéite and lepidocrocite), and to a lesser extent, magnetite dominated the samples (total 52) that were extracted from the inner and outer surfaces of three armour (PA RC 166, PA 316, PA 329⁴³³) (Table 2-1). Compositional variation between the inner and outer surfaces of the armour was minor⁴³⁴.

⁴³⁴ Monnier, 2006, p. 1

⁴²⁹ Ibid. p. 52

⁴³⁰ Ibid., p. 53

⁴³¹ Biasini & Cristoferi, 1995, p. 253

⁴³² Degrigny et al., 2007b, p. 36

⁴³³ These three armour are those studied by the present research more specifically in: 4.1.3.2 Armour corrosion cross-section observations & analyses, and also together with other armour in 4.1.3.1 Armour surface observations: macrophotography & photomicroscopy

	Corrosion product species $(\underline{n} = 52)$	
	Mean frequency	Standard deviation
Goethite	79%	±3%
Akaganéite	77%	±4%
Lepidocrocite	62%	±4%
Magnetite	42%	±2%
Wüstite	13%	±2%
Hematite	6%	±1%

 Table 2-1 Frequency of crystalline corrosion product types from a selection of three Palace

 Armoury munition armour (PA RC 166, PA 316, PA 329)⁴³⁵

The properties of iron oxyhydroxides are known to significantly favour corrosion processes due to their affinity for water and aggressive gases and negative ions (*anions*)⁴³⁶. At the surface of FeOOH crystals, hydroxyls and oxygen defects react highly by chemisorption of vapours of water or sulphur dioxide and increase the electrical conductivity of the oxyhydroxide; respectively by direct or indirect donation to it of an electron⁴³⁷. The attraction of iron oxyhydroxides to aggressive anions is demonstrated by strong adsorption of sulphates onto surface hydroxyls of goethite, while chlorides are presumed to be electrostatically adsorbed, by majority, to the surfaces of goethite and lepidocrocite, and inside akaganéite⁴³⁸.

Akaganéite is formed in seacoast environments⁴³⁹ and contains chlorides and water in its tunnel-like structure⁴⁴⁰. Akaganéite is seen to be a symptom of active corrosion and is often located at the iron/iron corrosion product interface⁴⁴¹. Much has been summarised about akaganéite on ferrous heritage artefacts, more particularly archaeological⁴⁴² iron artefacts⁴⁴³ where chloride concentrations and corrosive effects would be expected to generally be much greater than on *historical*⁴⁴⁴ iron⁴⁴⁵. Akaganéite participates or contributes to ferrous corrosion

⁴³⁵ Statistical compilation tabulated from Monnier, 2006, p. 1

⁴³⁶ Kaneko, 1989, p. 55-56, 62-63

⁴³⁷ Ibid., pp. 62-63

⁴³⁸ Ibid., p. 64

⁴³⁹ Cornell & Schwertmann, 2003, p. 499

⁴⁴⁰ Ibid. p. 105

⁴⁴¹ Selwyn et al. 1999, pp. 225-226

⁴⁴² Archaeological artefacts are, in this context, classified as being excavated from burial (terrestrial or marine) conditions.

⁴⁴³ Zucchi, et al., 1977, pp. 217-232 & Selwyn et al. 1999, pp. 217-232

⁴⁴⁴ Historical artefacts are, in this context, classified as those that have not been buried and instead have been atmospherically exposed.

⁴⁴⁵ Differentiating between archaeological and historical artefacts is an important means of artefact classification that not only implies their general environmental characteristics, but also anthropogenic influences such as accessibility.

processes since it is perceived to act as a catalyst, release chlorides, behave hygroscopically and like the other iron oxyhydroxides physically damages structures during precipitation formation⁴⁴⁶. Akaganéite often appears as hollow beads of yellow-brown precipitate⁴⁴⁷.

Ferrihydrite, a lesser-mentioned, poorly crystalline⁴⁴⁸ or nano-crystalline, natural mineral or corrosion product species of disputed molecular formula⁴⁴⁹ is reddish-brown and unstable, so much so that it has been referred to as "...an important precursor of more stable and better crystalline Fe oxides",⁴⁵⁰.

Lepidocrocite, an orange corrosion product⁴⁵¹, has been theorised to play an active role in the atmospheric corrosion cycle as proposed by Stratmann. During the wetting phase of a wet-dry cycle, lepidocrocite (with its +3 oxidation state) initially oxidises the metal by receiving the latter's electrons (lepidocrocite simultaneously being reduced to a +2 oxidation state, to form magnetite, Fe_3O_4)⁴⁵² ("Initial corrosion" in Graph 2-3 & Equation 2-7). Such a corrosion reaction can be classified as being *galvanic* in mechanism, as discussed later⁴⁵³, and research by Antony et al. "…indicates that (the) iron/ γ -FeOOH galvanic coupling is possible",⁴⁵⁴.

$Fe^{3^+} + e^- \rightarrow Fe^{2^+}$ Equation 2-7 Reduction of ferric ions to the ferrous state during wetting of a corrosion product layer⁴⁵⁵

Recent preliminary studies by Neff et al. (on a statistically low number of 6 samples)⁴⁵⁶ and later on a further 50 sites of interest⁴⁵⁷ initially questioned Stratmann's theory's long-standing dependence on lepidocrocite as a corrosion product active in atmospheric ferrous corrosion. However, this contradiction was erroneous (as confirmed in more recent personal communications with co-author Dillmann⁴⁵⁸) because it was based upon the unfounded "...condition that

⁴⁵⁶ Neff et al., 2006, p. 1229

⁴⁴⁶ Selwyn et al. 1999, pp. 225-226

⁴⁴⁷ Ibid., pp. 221-222

⁴⁴⁸ Neff et al., 2006, p. 1229

⁴⁴⁹ Michel et al., 2007, p. 1726

⁴⁵⁰ Cornell & Schwertmann, 2003, p. 6

⁴⁵¹ Ibid., p. 5

⁴⁵² Stratmann, 1990, p. 47

⁴⁵³ 2.2.3.3.2 Galvanic corrosion mechanism

⁴⁵⁴ Antony et al., 2005, p. 751

⁴⁵⁵ Leygraf & Graedel, 2000, p. 150

⁴⁵⁷ Dillmann, 07/12/2007, pers. comm.

⁴⁵⁸ Dillmann, 05/02/2008, pers. comm.

lepidocrocite is in contact with the metal^{3,459} and their analyses that had "...shown that lepidocrocite is never in contact with the metal.^{3,460}. Dillmann's team is currently investigating the electrical conductivity of corrosion products to potentially understand the role of lepidocrocite that is not in direct contact with the metal core⁴⁶¹.

The location of Stratmann's cited reduction reaction in corrosion product layers is important since it demonstrates that the reduction can occur away from the metal/atmosphere interface, which can be in areas of low oxygen concentration⁴⁶². Additionally, further electrochemical reactions are provoked since the reduced CPs (highly doped with Fe^{2+}) are electronically conductive and form part of the corrosion product/electrolyte interface that determines the rate of oxygen reduction⁴⁶³.

Magnetite, the black corrosion product⁴⁶⁴ reduced from lepidocrocite according to Stratmann's wet-dry cycling model, is an electron conductor and is known to be a significantly greater reductant of oxygen than the metal and is said to be one reason why incomplete corrosion product removal before protective coating application encourages failure⁴⁶⁵. Magnetite, a semi-oxidised CP can also be formed from the metal as an oxidation product at the metal/corrosion product interface since there is less oxygen available in this area for full oxidation⁴⁶⁶. In cases of restricted oxygen access maghemite can also result⁴⁶⁷.

Goethite, a yellow-brown corrosion product⁴⁶⁸, can be formed directly as a corrosion product precipitate or via other CP phases such as lepidocrocite⁴⁶⁹ and is "…extremely stable and is often the end member of transformations of other iron oxides"⁴⁷⁰. Indeed, a simple measure of the ability for corrosion product layers to provide protection of the underlying metal from further corrosion has been termed as the *protective ability index* and has been defined, for example, by Hœrlé et al. as a ratio of goethite to lepidocrocite, α -FeOOH/ γ -FeOOH: the greater the proportion of

⁴⁵⁹ Neff et al 2006, p. 1236

⁴⁶⁰ Ibid.

⁴⁶¹ Dillmann, 05/02/2008, pers. comm.

⁴⁶² Ibid.

⁴⁶³ Stratmann, 1990, p. 51

⁴⁶⁴ Cornell & Schwertmann, 2003, p. 6

⁴⁶⁵ Ibid., p. 500

⁴⁶⁶ Ibid., p. 499

⁴⁶⁷ Chandler & Hudson, 2000, p. 4

⁴⁶⁸ Cornell & Schwertmann, 2003, p. 4

⁴⁶⁹ Ibid., p. 497

⁴⁷⁰ Ibid., p. 6

goethite to lepidocrocite the more protective the CP layer⁴⁷¹. More recently in a continuation of similar research activities, Antony et al. proposed an alternative method of characterising the corrosivity of corrosion product layers towards iron⁴⁷². They suggested replacing the *protective ability index* with *reduction reactivity*⁴⁷³. By studying the electrochemical reactivities of synthesised⁴⁷⁴ ferric ion-based powders a relative order of reduction reactivity towards metallic iron was deduced: magnetite < goethite $\alpha 1 <$ goethite $\alpha 2 <$ maghemite < lepidocrocite < akaganéite < ferrihydrite⁴⁷⁵. In essence this work studied the potential of galvanic coupling⁴⁷⁶ effects that ferric minerals could have on iron⁴⁷⁷. Ferrihydrite is considered to be the species of the series that is most reactive to reduction with the iron metal⁴⁷⁸. In a second part of the same work, the reduction reactivity of real hypoeutectoid steel corrosion product layers (aged 200, 400, 600, 800 years in indoor atmospheres) was proven to decrease with the age of the samples: the 800 year old sample was considered to have "... a very low reactivity" and possibly reached a stable composition consisting almost exclusively of goethite479. An increased presence over time of ferric-based CP species, which are less reactive to iron, might be a more interesting discovery for the conservation of metals that are totally covered in corrosion products and have had sufficient time to age. But considering the case of the Palace Armoury munition armour where the metal surfaces are only partly covered and the armour themselves are only about 400 years old (not the outer surface CPs), such results suggested by Antony et al.'s study might not be so applicable for these heritage artefacts.

FORMATION OF ATMOSPHERIC FERROUS CORROSION PRODUCTS

The oxidation of metallic iron can be a three-stage process according to combinations of the two valence states of the iron ions: ferrous (+2); and ferric (+3). Firstly, iron is oxidised to the ferrous oxidation state, then to an intermediate corrosion product including a combination of both ferrous and ferric cations and,

⁴⁷⁸ Ibid., pp. 7757, 7759

⁴⁷¹ Hœrlé et al., 2004, p. 1441

⁴⁷² Antony et al, 2007, pp. 7754-7759

⁴⁷³ Ibid., p. 7757

⁴⁷⁴ This experimentation does not account for some physical properties (such as thickness and porosity) of naturally formed corrosion product layers and possible effects therein (Ibid., p. 7759).

⁴⁷⁵ Antony et al, 2007, p. 7757

⁴⁷⁶ 2.2.3.3.2 Galvanic corrosion mechanism

⁴⁷⁷ Antony et al., 2007, p. 7758

⁴⁷⁹ Ibid., pp. 7756-7757

then finally the fully oxidised ferric ion is formed⁴⁸⁰. Ferrous corrosion products are largely composed of hydrous ferric oxides⁴⁸¹ (i.e. including iron oxyhydroxides⁴⁸²). The overall oxidation of iron (0 oxidation state) to its +3 oxidation state as an iron oxyhydroxide is summarised by Equation 2-8.

$4Fe + 3O_2 + 2H_2O \rightarrow 4FeOOH$ Equation 2-8 Complete oxidation of iron and corrosion product formation summary⁴⁸³

A simplified process of iron oxidation in $mild^{484}$ steel is presented next so as to demonstrate the transition from the unoxidised metal species to the fully oxidised ferric ion. In a humid atmosphere the normally protective oxide layer on mild steel decomposes and results in the loss of electrons (Equation 2-3a)⁴⁸⁵. In alkaline and neutral conditions the typical reduction reaction of oxygen has been presented in Equation 2-3b. The produced hydroxides then react with further ferrous ions from Equation 2-3a and produce ferrous hydroxides (Equation 2-9) that are then further oxidised to form ferric hydroxide (Fe(OH)₃)⁴⁸⁶.

$Fe^{2+} + 2OH^- \rightarrow Fe(OH)_2$ Equation 2-9 Reaction of ferrous ions with hydroxides⁴⁸⁷

Corrosion product evolutions and transformations are many, complex and, as outlined previously⁴⁸⁸, the CPs themselves can alternate between the two oxidation states of the iron cations (Equation 2-3a & Equation 2-7).

2.2.2.3.5 Ferrous metal type

Last, but certainly not least, the type of ferrous material undergoing atmospheric corrosion is of importance. The type of ferrous metal determines the susceptibility to corrosion since some ferrous metals have self-protecting or *passivating* layers (e.g. stainless steels⁴⁸⁹ and low-alloy weathering steels⁴⁹⁰). Those ferrous metals that are generally more susceptible to corrosion are cast iron, wrought

⁴⁸⁰ Leygraf & Graedel, 2000, p. 286

⁴⁸¹ Uhlig & Revie, 1985 p. 1

⁴⁸² Chandler & Hudson, 2000, p. 3

⁴⁸³ Maréchal et al., 2007, p. 132

⁴⁸⁴ Mild steel, also containing up to 0.3% carbon, is synonymous to low-carbon steel and is simply non-engineering commercial terminology referring to low-carbon steels without further standard specifications (IMMA, 1988, p. 3).

⁴⁸⁵ Chandler & Hudson, 2000, p. 3

⁴⁸⁶ Ibid.

⁴⁸⁷ Ibid.

⁴⁸⁸ 2.2.2.3.4 Ferrous corrosion products, Types of atmospheric ferrous corrosion products

⁴⁸⁹ Leygraf & Graedel, 2003, p. 281

⁴⁹⁰ Chandler & Hudson, 2000, p. 3

iron and steels⁴⁹¹. The nature of these metals not only affects the rate of corrosion (e.g. wrought iron atmospherically corrodes 30% slower⁴⁹² than the less corrosion resistant mild steel⁴⁹³), but more importantly can also affect the manner in which it corrodes (e.g cast iron corrodes via graphitisation⁴⁹⁴ and some stainless steels corrode via pitting or intergranular corrosion⁴⁹⁵).

A varying metallurgical structure of even the same metal type can affect corrosion susceptibility. For example, contained metalloids or local composition variations of metallic phases each have their effects⁴⁹⁶.

The way in which wrought iron and wrought low-carbon steels corrode is of high significance to this research's determination of the limitos and is described in the next subsection.

2.2.3 ATMOSPHERIC FERROUS CORROSION, CORROSION PRODUCT MORPHOLOGIES & CORROSION MECHANISMS

Under atmospheric corrosion conditions, like elsewhere, ferrous corrosion and corrosion products can manifest themselves in a wide variety of ways that can be classified according to the "...visual characteristics of the *morphology* of attack"⁴⁹⁷. Their forms are dependent on many interdependent factors such as the metal's composition, homogeneity, construction and surface coatings. The complexity and interrelation of each corrosion process scenario is too great to always be able to confidently draw conclusions on distinct, all-inclusive corrosion *mechanisms* involved in the metal loss and CP formation that becomes evident to the observer⁴⁹⁸. Nonetheless, in many cases labelled morphologies are indicative of, and indeed result from, their corrosion mechanisms, which can then at least be hypothesised from the material and environmental indications.

From a metallic heritage conservation perspective, it is imperative to understand the corrosion mechanisms so as to facilitate the development of

⁴⁹¹ Ibid.

⁴⁹² Ibid., p. 5

⁴⁹³ Gale, 1969, p. 7

⁴⁹⁴ Figure 2-45 "Longitudinal cross-section through the wall of a cast iron pipe, exhibiting severe graphitic corrosion, i.e. dissolution of the iron from the cast iron pipe leaving behind layers of intact graphite"

⁴⁹⁵ Asphahani & Silence, 1998, pp. 113-114 & Steigerwald, 1998, p. 124

⁴⁹⁶ Steigerwald, 1998, p. 123

⁴⁹⁷ Craig & Pohlman, 1998, p. 79

⁴⁹⁸ Ibid.

conservation strategies⁴⁹⁹. In the case that corrosion has already occurred, it is similarly important to identify the various corrosion mechanisms since they should influence determination of the limitos and selective corrosion product removal procedures⁵⁰⁰.

Little was found in the literature regarding specific reference to corrosion/corrosion product morphologies and corrosion mechanisms of wrought iron and wrought low-carbon steel provenancing the mid-late Early Modern Period. This might be due to a combination of factors; possibly being that these materials are/feature:

- 1. Not as relevant today as contemporary industrial materials, which are of greater current economic concern⁵⁰¹;
- 2. Corrosion phenomena similar to pre- and post- mid-late Early Modern Period wrought iron and low-carbon steel, and thus do not require further temporal specification; and/or
- 3. Simply an understudied/underpublished area.

It is unclear then which corrosion mechanisms, if any have been ascertained, are considered responsible. The few references specific to "wrought iron" corrosion are most probably regarding materials and processes from the industrial revolution (late 18th - early 19th century) onwards. Until 1860 "...wrought iron was the most important structural metal available"⁵⁰² possibly explaining their inclusion in engineering texts (e.g. "Conservation of Bridges"⁵⁰³ or generic engineering handbooks, such as published by American Society for Metals (ASM) International⁵⁰⁴). No references could be cited regarding corrosion of precontemporary wrought low-carbon steel and it is presumed that such a steel classification would have been ambiguously encompassed by the classification of "wrought iron"; at the time, a misnomer for steel.

In order to communicate a more complete description of corrosion of mid-late Early Modern Period wrought iron and low-carbon steel it is therefore necessary to cautiously combine potentially applicable theory from research on similar contemporary materials with corrosion examples on primary sources of 16th-17th century armour at the Palace Armoury.

⁴⁹⁹ Neff et al., 2006, p. 1228

⁵⁰⁰ Bertholon, 2001a, p. 244

⁵⁰¹ Gale, 1969, p. 9

⁵⁰² Brandt, 1992, p. 39

⁵⁰³ Tilly et al., 2002

⁵⁰⁴ Davis, 1998

Two main corrosion/corrosion product surface morphologies are described here since they predominate the examples found at the Palace Armoury. It is important to note that the vast majority of morphology evaluation of the PA munition armour has been made on a visual *surface-only* assessment. The assessment and extent of subsurface corrosion/corrosion product morphologies (e.g. pitting, intergranular, transgranular) can only be determined by cross-section observation and this has been undertaken during a preliminary study of an admittedly small corpus of ten samples⁵⁰⁵ due to the undesirably invasive nature of such procedures on valued cultural heritage artefacts. While understanding any corrosion of the internal metal core is of importance to the artefact as a whole, and its structural integrity (the majority of PA armour are structurally sound), the surface and near surface subsurfaces are more particularly relevant to selective corrosion product removal due to their observability and potential accessibility.

Two types of fundamental corrosion mechanisms that drive the various resulting morphologies are hypothesised: differential aeration and galvanic corrosion cells.

2.2.3.2 Filiform corrosion/corrosion product morphology

Filiform corrosion is most commonly associated with metal (e.g. steel, zinc aluminium⁵⁰⁶) surfaces that have an organic coating (circa 0.1mm thick⁵⁰⁷) that has failed under conditions of relative humidity exceeding 65%⁵⁰⁸. Corrosion ensues and the:

"...pattern of attack is characterized by the appearance of fine filaments emanating from one or more sources in semi random directions. The source of initiation is usually a defect or mechanical scratch in the coating"⁵⁰⁹.

An example of filiform corrosion occurring on the coated Palace Armoury munition armour is given in Figure 2-31.

⁵⁰⁵ Vella et al., 2005b

⁵⁰⁶ Uhlig & Revie, 1985, p. 257

⁵⁰⁷ Hahin, 1998, p. 104

⁵⁰⁸ Shreir, 2000, p. 170

⁵⁰⁹ Hahin, 1998, p. 104

Figure 2-31 Left: Varnished⁵¹⁰ helmet in-situ on a wall display at the Palace Armoury. Right: Detail of the same helmet featuring filiform corrosion⁵¹¹

The morphology of the filiform filament is anatomically separated into the advancing head and the trailing tail or body (Figure 2-32).

The filiform head is characteristically blue, grey or green and features low pH (1-4, due to hydrolysis) and high chlorine concentration (Figure 2-33)⁵¹⁴. The tail consists of characteristically brown corrosion products⁵¹⁵

- ⁵¹³ (Crawford in) Degrigny, in press, Chapter 7, p. 19
- ⁵¹⁴ Hahin, 1998, pp. 104-105
- ⁵¹⁵ Ibid, p. 105

 ⁵¹⁰ A transparent yellow-green "varnish" is anecdotally known to have been used in the recent past and is characteristic of a type of polyurethane identified by Fourier transform infra-red spectroscopy (FTIR) analyses on different Palace Armoury armour (Lemasson et al., 2004, p. 11).

⁵¹¹ Crawford, 2007a, p. 23, permission courtesy of E. Magro Conti

⁵¹² Copolymer of ethyl methacrylate-methylacrylate (Horie 1987, pp. 106-107).

Figure 2-33 Left: Scanning electron microscope image of filiform corrosion on iron. Right: Filiform heads enriched with chlorine as determined by corresponding mapping with energy dispersive spectrometry⁵¹⁶

Corrosion of the metal by filiform corrosion is restricted to the upper areas of a metallic substrate and can corrode metal up to 15µm deep and create filaments about 20µm in height and 0.05-3mm in width⁵¹⁷. Higher RH supposedly results in thicker corrosion product filaments due to "…more vigorous corrosion…"⁵¹⁸.

2.2.3.2.1 Filiform corrosion mechanism

Filiform corrosion is considered a specialised form of differential aeration cell that is driven by differences in oxygen concentration between the head and body of the filament⁵¹⁹. The oxygen concentration difference occurring induces the potential difference, which causes the current flow associated with corrosion processes⁵²⁰.

Figure 2-34 demonstrates the filiform corrosion mechanism on coated steel.

⁵¹⁶ Weissenrieder & Leygraf, 2004, p. 168

⁵¹⁷ Hahin, 1998, p. 104

⁵¹⁸ Weissenrieder & Leygraf, 2004, p. 167

⁵¹⁹ Hahin, 1998, pp. 104, 106

⁵²⁰ Uhlig & Revie, 1985, p. 12

Figure 2-34 Plan and profile of filiform corrosion mechanism on coated steel⁵²¹

The head and tail are where oxygen and water permeate the coating, and the centre of the head is where the anodic site generating ferrous ions is located. The differential aeration cell is established between the centre of the head (relatively less oxygen) and the periphery of the head and its junction with the tail, where oxygen access is greater⁵²². The hydroxides produced from the cathodic oxygen reduction reaction (Equation 2-3b) react with the Fe²⁺ thereby forming FeO.H₂O, which is then oxidised by further oxygen to form Fe₂O₃.H₂O (or FeOOH)⁵²³. The result is a vertically displaced corrosion product tail with the superimposed coating⁵²⁴. Hahin describes this important part of the corrosion mechanism, which is strongly related to this research:

"The head literally tunnels through the substrate, separating the coating from the steel and bulging it out by expansion of corrosion products or by hydrogen gas evolution if the head is very acidic." 525

This conversion, and physical displacement, of the former metal surface with corrosion products is vital to Section 2.3 Metal heritage artefact conservation & corrosion products: philosophy & practice and is also vital to the interpretation of the experimental phenomena recorded in Chapter 4 Results.

A coating's film strength and bonding to the metal substrate is affected by both the head's and tail's physical and chemical properties: the tail's CPs are typically alkaline causing coating cracking and debonding via softening and

⁵²¹ Hahin, 1998, p. 106

⁵²² Weissenrieder & Leygraf, 2004, p. 170

⁵²³ Uhlig and Revie, 1985, p. 259

⁵²⁴ Weissenrieder & Leygraf, 2004, p. 170

⁵²⁵ Hahin, 1998, p. 106

weakening of the film⁵²⁶, while blistering of the head due to hydrogen evolution can occur due to low pH (circa 1-2) (Equation 2-5)⁵²⁷. Rupturing of the swollen coating by considerably expanded corrosion products at the head or tail permits a new initiation site for further filament propagation⁵²⁸. Filiform initiates perpendicular to the defect in a coating (i.e. where the oxygen concentration is lowest, thereby forming the anode) and it is reported that filiform tends to propagate in the direction the metal was rolled or burnished⁵²⁹. Similarly, from the author's personal observation of actual examples with filiform corrosion product morphologies on steel, the predominant orientation of filaments are parallel to any polishing direction/*micro-grooves*, as has been observed on contemporary steel examples (Figure 2-32 & Figure 2-35) and on many of the PA's ferrous armour (Figure 2-36).

Figure 2-35 Lower left: Contemporary set of four varnished steel carpentry chisels⁵³⁰ featuring filiform corrosion products oriented parallel with the grinding directions on each facet. Top left and right: Details of a single chisel's facets and filament orientation

- ⁵²⁷ Ibid.
- ⁵²⁸ Ibid.
- ⁵²⁹ Ibid., p. 104

⁵²⁶ Ibid.

⁵³⁰ Courtesy of J. Camilleri-Polidano

Figure 2-36 Corrosion product filaments that are oriented parallel in respective areas on Palace Armoury munition armour⁵³¹

It is conjectured from Figure 2-36, and numerous other armour examples that the last corrosion product removal and/or metal polishing procedure left similarly oriented surface irregularities that then influenced the direction of coating failure and filiform CP propagation.

It is observed later⁵³² that the undermining of the coating on Palace Armoury armour becomes so extensive that the filament corrosion morphology becomes less localised and spreads outwards becoming non-filament like and more generalised. Similarities exist between the filiform head and pitting⁵³³ corrosion, since filiform corrosion is effectively an uninterrupted lateral succession of multiple shallow differential aeration cells with corrosion pits that migrate over the surface of the metal rather than remaining immobile and extending in depth⁵³⁴.

The intentional creation of filiform corrosion products can be performed by coating depletion techniques⁵³⁵. Note that many of the densely packed filaments in Figure 2-37 have either deflected or terminated after interception with other filaments: typical behaviour of filiform corrosion⁵³⁶.

⁵³¹ Crawford, 2007a, p. 23, permission courtesy of E. Magro Conti

 ⁵³² 4.1.3.1 Armour surface observations: macrophotography & photomicroscopy
 ⁵³³ 2.2.3.3.1 Pitting corrosion mechanism

⁵³⁴ This citation refers to filiform corrosion of aluminium (Huisert, 2001, p. 88).

⁵³⁵ Cebelcorr, n.d., http://www.cebelcor.org/activities.htm – accessed 02/01/2006

⁵³⁶ Weissenrieder & Leygraf 2004, p. 167 & Hahin, 1998, p. 106

Figure 2-37 A coated unspecified metal with filiform corrosion propagating from deliberate coating incisions⁵³⁷

Filiform corrosion has been documented (to a much lesser extent) as occurring on iron surfaces without coatings, but instead lightly coated with pollutants, particularly sodium chloride salts (Figure 2-38)⁵³⁸. While the material cause differs (i.e. coating versus deliquesced salts), the corrosion mechanism of differential aeration and its resulting filament CP morphology is fundamentally similar⁵³⁹.

Figure 2-38 Scanning electron microscope image of a small filiform corrosion filament on iron coated with halite, rather than a coating⁵⁴⁰

⁵³⁷ Cebelcorr, n.d., <u>http://www.cebelcor.org/activities.htm</u> – accessed 02/01/2006

⁵³⁸ Weissenrieder & Leygraf, 2004, pp. 165-171

⁵³⁹ Ibid, p. 169

⁵⁴⁰ Ibid, p. 170

The specification of *underfilm* filiform corrosion has been previously used to describe filiform associated with protective coatings⁵⁴¹. Although, previous studies⁵⁴² have proven the presence of chlorides on the Palace Armoury armour artefacts, it is proposed that in this case the filiform corrosion is mainly attributable to the protective coatings (in conjunction with high RH) applied to the armour and can therefore be specified as most likely being underfilm filiform corrosion.

Recently the documentation of various types of surface CP formations was undertaken in a corrosion survey of display cases and open-air exhibited armour at the PA⁵⁴³. Graph 2-6 shows a sample of the acquired data and a trend of filiform corrosion (40%) being mainly associated with a characteristic varnish (Figure 2-31) on the armour, while a generalised corrosion product surface coverage (associated with the same varnish) follows next in frequency⁵⁴⁴. It is unclear whether this statistical analysis takes into account the fact that there are inherently more artefacts with this varnish type, thereby possibly leading to skewing of the data.

Graph 2-6 Relationship between surface corrosion product typologies and coatings on armour at the Palace Armoury⁵⁴⁵

2.2.3.3 Uneven local to uneven general corrosion/corrosion product morphology

In order to present the second corrosion and corrosion product morphology classification relevant to the Palace Armoury, observation of cross-sections of corroded munition armour from the PA is required (Figure 2-39).

⁵⁴¹ Uhlig & Revie, 1985, p. 257

⁵⁴² Table 2-1 (Monnier, 2006, p. 1) & Vella et al. 2005b, p. 322

⁵⁴³ Argyropoulos, in press, Chapter 5, p. 17

⁵⁴⁴ Ibid.

⁵⁴⁵ Ibid, p. 25

Steel part of tasset - PA RC 80 548

Steel part of full arm - PA RC 88 549

Figure 2-39 Scanning electron microscope backscatter electron (BSE) detector images of crosssections of corroded munition armour from the Palace Armoury

On the whole, it can be seen from Figure 2-39 that corrosion appears to have occurred heterogeneously through the cross-sections, but predominantly towards the atmosphere/armour surface interface. In each case presented in Figure 2-39 the surface layers are more corroded than the internal areas. It appears that this could be due to an inherently greater access of necessary reactants like atmospheric oxygen. The corroded metal surface and corrosion product distribution is characterised by a combined morphology of *uneven local* and *uneven general corrosion* (Figure 2-40) strata that is sometimes characterised by wide corrosion pits.

⁵⁴⁶ Vella & Degrigny, 2004b, p. 7

⁵⁴⁷ Ibid., p. 8

⁵⁴⁸ Ibid., p. 11

⁵⁴⁹ Ibid., p. 15

Figure 2-40 Schematic classification of types of metal corrosion: excluding corrosion products⁵⁵⁰

Oxygen and iron detected by energy dispersive spectrometry on these crosssections in Figure 2-39 indicated oxides of iron, presumably corrosion products, but possibly also slags, especially for the cases where silicon or non-ferrous metals also featured with oxygen around the elongated features⁵⁵¹. The corrosion appears to have taken an internal path along these inclusions⁵⁵² and along general surface corrosion fronts parallel to the armour lame's surface and supposed working direction. This internal corrosion could be compared, if only much less pronounced, with the "…laminated or stringy longitudinal texture" that becomes more obvious in severe corrosion cases of structural wrought iron (Figure 2-41)⁵⁵³.

Figure 2-41 Excessive corrosion to a wrought iron construction beam⁵⁵⁴

- ⁵⁵² Vella & Degrigny, 2004j, pp. 3, 5
- ⁵⁵³ Tilly et al., 2002, p. 181
- ⁵⁵⁴ Ibid.

⁵⁵⁰ Shreir, 2000, p. 152

 ⁵⁵¹ Vella & Degrigny, 2004f, p. 5, Vella & Degrigny, 2004j, pp. 4, 8, Vella & Degrigny, 2004h, pp. 2-3, Vella & Degrigny, 2004g, pp. 6-7

One found reference regarding the corrosion of wrought iron appears to substantiate the apparent internal longitudinal corrosion on the cross-sections depicted in Figure 2-39:

"The atmospheric attack of wrought iron can sometimes progress along the internal planes formed during rolling and cause swelling of the material. For this reason it is best not to cut across the grain boundaries and leave the face exposed to the environment"⁵⁵⁵.

Such severe delaminations are not present on the armour and this is possibly simply due to its less corroded state or also since slag was ideally minimised in armour⁵⁵⁶.

From the cross-sections presented in Figure 2-39 and others not presented⁵⁵⁷, two separate types of corrosion mechanisms are inferred to be operational on the same material: again differential aeration cells (but this time of the pitting/crevice type)⁵⁵⁸; and possibly galvanic corrosion cells (caused by semi-conductive phases of corrosion products and also possibly by some types of slag inclusions). Further justification is warranted to further substantiate the case for galvanic corrosion via semi-conductive impurities since this assertion is later supported by a small amount of published research⁵⁵⁹.

2.2.3.3.1 Pitting corrosion mechanism

Pitting corrosion, i.e. where corrosion is more localised than in adjacent areas, is associated with differential aeration cells and can occur when a porous or defective protective coating covers the metal⁵⁶⁰. The high ratio of cathodic to anodic areas, and auto-catalytic formation of acid isolated in the pits are factors of the pitting corrosion mechanism⁵⁶¹. In the case of pitting corrosion, these differential aeration cells are formed between areas that are less accessible to oxygen (due to insoluble corrosion product deposits, more impermeable coating) and areas that are more accessible to oxygen (absent CPs, less protective coating)⁵⁶². The pitting corrosion products on carbon steels at the surface environment interface are

⁵⁵⁵ Pohlman, 1998, p. 82

⁵⁵⁶ 2.1.2.1.1 Direct process: bloomery furnace

⁵⁵⁷ Vella & Degrigny, 2004a-j

⁵⁵⁸ 2.2.3.3.1 Pitting corrosion mechanism

⁵⁵⁹ 2.2.3.3.2 Galvanic corrosion mechanism

⁵⁶⁰ Uhlig & Revie, 1985, p. 12 & Cornell & Schwertmann, 2003, p. 497

⁵⁶¹ Shreir, 2000, p. 175

⁵⁶² Uhlig & Revie, 1985, p. 12

characterised by a hemispherical/domed membrane that inhibits diffusion of dissolved oxygen to the metal beneath⁵⁶³ (Figure 2-42). This membrane is of great significance to the later discussion about formation of modified original surfaces⁵⁶⁴ and interpreting the experimental phenomena recorded in Chapter 4; where it is documented in reality that the membrane can *also* be discontinuous, cracked and irregularly ordered⁵⁶⁵, as per previous descriptions of iron and steel corrosion products⁵⁶⁶ and unlike the simplified schematic depiction below.

Figure 2-42 Schematic depiction of pitting corrosion by differential aeration on a ferrous metal with a previous oxide layer⁵⁶⁷

The corroding bottom of the pit is anodic (Equation 2-3a), while the cathodic area where oxygen is reduced (typically Equation 2-3b), is adjacent to the surface. The production of the positive ferrous ions (cations) in the pit from the corroded metal requires charge balancing and this is achieved with anions, typically chlorides from the environment⁵⁶⁸.

The physically separate locations of the cathodic and anodic sites permit differences in pH and solution composition. Around the anode a lower pH (profusion of acid, H⁺) can result due to the hydrolysis of the formed cations or by precipitation of oxides⁵⁶⁹. These subsequently hydrolysed products form metal hydroxides and

⁵⁶³ Shreir, 2000, p. 182

⁵⁶⁴ 2.3 Metal heritage artefact conservation & corrosion products: philosophy & practice

⁵⁶⁵ Figure 4-50, Figure 4-51, Figure 4-54 & Figure 4-55

⁵⁶⁶ 2.2.2.3.4 Ferrous corrosion products

⁵⁶⁷ NSA, n.d., p. 7

⁵⁶⁸ Asphahani & Silence, 1998, p. 113

⁵⁶⁹ Turgoose, 1989, p. 30

free acid (Equation 2-6)⁵⁷⁰. The free acid continues the corrosion pit's propagation⁵⁷¹. Meanwhile around the cathode, pH is greater due to the alkalinity imparted by the relative magnitude of hydroxyl ions produced by the reduction reaction (Equation 2-3b) and oxyhydroxides⁵⁷².

It is very important, on the one hand to emphasise that the presence of slag in wrought iron is most often cited to be the ground for its good corrosion resistance. The extent of pitting corrosion occurring in wrought iron can be limited by the presence of the non-metallic amorphous slag stringers since they often form a physical and non-conductive barrier between other metallic areas and pitting corrosion cannot proceed past them⁵⁷³. It is thought that in these cases where slag inhibits corrosion, the authors might refer to the most common slag species: fayalite, a glassy, insulating i.e. non-conductive material at room temperature and pressure⁵⁷⁴. A possible example of this corrosion inhibition by slag in the Palace Armoury munition armour is noted later in the experimental part of these investigations⁵⁷⁵.

On the other hand, applying the theory of pitting corrosion via differential aeration cells to the cases of wrought armour at Palace Armoury, corrosion could also involve the development of corrosion pits that extend longitudinally into the metal via its internal planes, rather than vertically (transversally). This can be seen in the cases given in Figure 2-39 and might be considered more akin to *crevice corrosion*. Crevice corrosion is another closely related form of differential aeration corrosion cell, but its definition includes its occurrence along unintentional metallurgical seams/defects of metal-to-metal or non-metal-to-metal interfaces⁵⁷⁶. The internal seams demonstrated in Figure 2-39 could be attributable to slag and/or the internal interfaces created on wrought ferrous metals during consolidation of bloom iron⁵⁷⁷ or armour forging⁵⁷⁸.

Another cross-section of Palace Armoury armour (Figure 2-43) demonstrates corrosion pits with increased chlorine concentrations and a much lesser presence of

⁵⁷⁶ Kain, 1998, pp. 108, 110

⁵⁷⁰ Asphahani & Silence, 1998, p. 113

⁵⁷¹ Ibid.

⁵⁷² Turgoose, 1989, p. 30

⁵⁷³ Brandt, 1992, p. 39 & Gale, 1969, p. 5

⁵⁷⁴ Cococcioni, 2003, pp. 1, 5

⁵⁷⁵ 4.1.3.2.2 Armour cross-section optical & metallographic photomicroscopy, Pauldron (part) PA RC 166

⁵⁷⁷ 2.1.2.1.1 Direct process: bloomery furnace

⁵⁷⁸ 2.1.2.2 Munition armour forming

slag inclusions. Notably, these inclusions are also discontinuous and relatively short, rather than the long stringers that would otherwise isolate layers of metal from further downward corrosion: pitting corrosion has been able to proceed past these discontinuous inclusions.

Figure 2-43 Left: Energy dispersive spectrometry mapping of a cross-section of more heavily corroded Palace Armoury armour (PA RC 20) with increased chlorine concentration inside a corrosion pit below the adjacent metal. Main: Corresponding SEM BSE image⁵⁷⁹.

2.2.3.3.2 Galvanic corrosion mechanism

Galvanic, or bimetallic, corrosion can occur when two conductive materials of dissimilar potential are coupled together in a corrosive environment, such as an atmospheric environment where humidity and possibly also pollutant levels are sufficiently corrosive⁵⁸⁰. The material with the more negative potential (i.e. less electrochemically noble) becomes the anode and corrodes in preference to the material with the more positive potential, which becomes the cathode⁵⁸¹. The oxidation sites in galvanic corrosion necessarily occur on a metal, whereas the sites for reduction need only occur on a material (metallic or conducting non-metallic), which is connected electrically to the metal and in the same electrolyte⁵⁸².

⁵⁸⁰ Leygraf & Graedel, 2000, p. 181

⁵⁷⁹ Vella et al. 2005, p. 322

⁵⁸¹ Pryor & Astley, 2000, p. 213

⁵⁸² Baboian, 1998, p. 83

of electrons from the anode does not pass via the electrolyte⁵⁸³ and must pass through a solid-state material⁵⁸⁴.

The rate of galvanic corrosion is largely influenced by less readily polarised cathodes⁵⁸⁵. Polarisation of anodes and cathodes occurs due to the current flowing between them that causes their potentials to shift towards each other. A galvanic cell featuring a less easily polarised cathode features a potential shift of the anode closer to the cathode and results in greater corrosion of the anode when compared with a corresponding cell of opposite cathodic and anodic polarisation behaviour. Differences in polarisation behaviour significantly affect the ability and extent of galvanic corrosion⁵⁸⁶.

Galvanic couples featuring non-metallic conductors as cathodes are less reported in the literature than galvanic couples with metal cathodes⁵⁸⁷. Magnetite is a semi-conductive iron oxide that is considered to display "...almost metallic properties"⁵⁸⁸ and is known to participate in galvanic corrosion of steel⁵⁸⁹, while lepidocrocite's galvanic action on iron has already been detailed⁵⁹⁰. To be semiconductive the "...separation between the valence band of orbitals and the conduction band is less than 5eV"⁵⁹¹. There are many ferrous minerals that satisfy this requirement: wüstite (FeO) (band gap 2.3eV); maghemite (2.03eV); hematite (Fe₂O₃) (2.2eV); goethite (2.10eV); lepidocrocite (2.06eV); akaganéite (2.12eV); and magnetite (0.1eV)⁵⁹². The low band gap of magnetite results in its greater conductivity ($10^2-10^3 \Omega^{-1} \text{ cm}^{-1}$) when compared with goethtite, lepidocrocite and akaganéite (circa $10^{-9} \Omega^{-1} \text{ cm}^{-1}$) at room temperature⁵⁹³.

As mentioned previously⁵⁹⁴, the determination of conductive iron oxides (particularly corrosion products, rather than residual mineral oxides) contributing to ferrous corrosion is one of the present themes of interest for the research team of

⁵⁸³ Selwyn, 2004, pp. 20-21

⁵⁸⁴ Dillmann 05/02/2008, pers. comm.

⁵⁸⁵ Pryor & Astley, 2000, p. 231

⁵⁸⁶ Baboian, 1998, p. 83

⁵⁸⁷ Ibid., p. 84

⁵⁸⁸ Cornell & Schwertmann, 2003, p. 115

⁵⁸⁹ Baboian, 1998, p. 84

⁵⁹⁰ 2.2.2.3.4 Ferrous corrosion products, Types of atmospheric ferrous corrosion products

⁵⁹¹ Cornell & Schwertmann, 2003, p. 115

⁵⁹² Ibid. p. 117

⁵⁹³ Ibid.

⁵⁹⁴ 2.2.2.3.4 Ferrous corrosion products, Types of atmospheric ferrous corrosion products

Dillmann et al.⁵⁹⁵. Such semi-conductive ferrous oxide species might not only be present as products of corrosion, but could also be products of manufacture (e.g. wüstite or hematite as high temperature oxides formed from smithing⁵⁹⁶ or wüstite as an unreduced slag species from the iron ore⁵⁹⁷). Wüstite-based slags prevail in ferritic iron, while fayalite-based slags prevail in the pearlite phase of steels. Wüstite slags have dendritic microstuctures⁵⁹⁸. Of the three ferritic irons of Palace Armoury armour observed by Vella et al. no dendritic structures in the "high slag content"⁵⁹⁹ were reported⁶⁰⁰. This does not necessarily conclude these oxides on the samples are all products of corrosion: dendrites might have simply not been observed since morphologies more likely to be representing corrosion products than slag were the focus of that study on corrosion product morphologies⁶⁰¹.

A list of non-ferrous metal oxides (including titanium) present as slag inclusions in bloomery iron has been given previously⁶⁰². Kaneko suggests that, "The FeOOH crystals produced on iron antiquities may exhibit a high surface activity which originates from the higher electronic conductivity due to impurities" ⁶⁰³ and "The introduction of foreign cations of a valency different from the parent cations leads to a distinct change in electrical conductivity"⁶⁰⁴. For example, doping with Ti⁴⁺ enhances the electrical conductivity of goethite, while Al³⁺ accordingly has no effect⁶⁰⁵. This influence of non-ferrous oxides on the semi-conductor properties of ferrous corrosion products and their potential influence on galvanic corrosion of wrought iron/steel is poorly represented in the literature; raising questions about the awareness or certainty of this phenomena or simply whether it has been underinvestigated.

In conclusion to this matter on the possible galvanic corrosion effect of semiconductive ferrous and non-ferrous inclusions, it seems far less proven than the galvanic effect that has been established and published for certain ferrous corrosion products: namely magnetite; and lepidocrocite.

³⁹³ Dillmann, 05/02/2008, pers. comm.

⁵⁹⁶ Degrigny et al., 2007b, pp. 36, 38

⁵⁹⁷ Buchwald & Wivel, 1998, p. 77

⁵⁹⁸ Dillmann et al., 2002, p. 329

⁵⁹⁹ Vella et al., 2004, p. 230

⁶⁰⁰ Vella et al., 2005b, pp. 319, 322, 324

⁶⁰¹ Vella et al., 2005b

⁶⁰² 2.1.2.1.1 Direct process: bloomery furnace

⁶⁰³ Kaneko, 1989, p. 61

⁶⁰⁴ Ibid.

⁶⁰⁵ Ibid.

2.2.4 ATMOSPHERIC CORROSION CONTROL

The control of corrosion in the museum environment is briefly mentioned here as a reminder that there are many possible strategies available for avoiding corrosion in the first instance, thereby avoiding the periodic interventions on formed corrosion products. The methods for controlling atmospheric corrosion on metallic cultural heritage artefacts are less obvious than those permissible for commercially/industrially employed metals and are described here in two subsections. Often, for successful corrosion control, preventive and interventive conservation methods must be employed in tandem⁶⁰⁶. Recently, maintenance efforts, or lack thereof, have been cited as an influential factor contributing to metal corrosion at the Palace Armoury⁶⁰⁷.

It is necessary to therefore assess the material-environment system (Figure 2-44), rather than simply consider the materials separately from the environment and follow instinctive prejudices to remove corrosion product materials from an artefact.

Figure 2-44 A conceptual representation of the principal components of the materialenvironment system contributing to the metal artefact alteration by corrosion

Certain norms and guidelines have been established for ferrous metals for varying states of pollution and environments. For example, as stated earlier⁶⁰⁸, unpolluted and uncorroded iron has a critical relative humidity of circa 60%⁶⁰⁹, while corroded and chloride polluted archaeological iron has a critical relative humidity of

⁶⁰⁶ Hockey & Shearman, 2006, p. 33

⁶⁰⁷ Argyropoulos, in press, Chapter 5, p. 25

^{608 2.2.2.3.2} Atmospheric water

⁶⁰⁹ Pohlman, 1998, p. 82

as low as 15% and a rapidly increasing corrosion rate when above 30%RH⁶¹⁰. It would be expected that the armour at the Palace Armoury would fall between these two extreme scenarios since it is less corroded and has not been exposed to burial conditions where soluble salt concentration and penetration could be much higher.

2.2.4.1 Preventive conservation methods

Preventive conservation methods have long been known to be the most desirable form of action since they aim to avoid deterioration in the first instance: effectively demonstrating the adage that prevention is better than the cure⁶¹¹. Normally, preventive conservation methods function by removing (or reducing) one or more of the factors responsible for a deterioration process. Such processes are more respectful of the artefact materials since they involve procedures that are less intimately related to the artefact.

2.2.4.1.1 Environmental control

If an environment is considered to be corrosive, controlling the overall ambient atmosphere (in terms of relative humidity, pollutants) of a museum airspace via passive means (e.g. landscape/architectural design/construction, door/window seals)⁶¹² or active means (e.g. building management, air conditioning, dehumidification, filtering)⁶¹³ are respectively the most desirable means of preventing/limiting degradation processes⁶¹⁴. However, often the initial capital and/or ongoing running costs are perceived to be financially prohibitive⁶¹⁵, and museums are in inherited historic buildings requiring innovative installation of modern air-control systems⁶¹⁶. The Palace Armoury is one such historic building and collection.

2.2.4.1.2 Display cases

The enclosure of sensitive materials inside appropriately constructed display cases potentially provides a protective microclimate extending material longevity by

⁶¹⁰ Thickett & Luxford, 2007, p. 106

⁶¹¹ Thompson, 1977, p. 46

⁶¹² Cassar, 1995, pp. 33-52

⁶¹³ Ibid. pp. 77-108

⁶¹⁴ Gilroy & Godfrey, 1998, p. 113

⁶¹⁵ Cassar, 1995, p. 86

⁶¹⁶ Ibid. p. 85

limiting pollutant deposition and buffering environmental fluctuations⁶¹⁷. The installation of larger showcases at the Palace Armoury occurred in 1957 for the "outstanding pieces of arms", ⁶¹⁸ (i.e. not for the munition armour), while other smaller cases have even been in longer use (>100 years), as evidenced by pictorial documentation (Figure 2-18, Figure 2-19 & Figure 2-21).

2.2.4.1.3 Dusting regime

For artefacts too large, too numerous, or deemed of lesser priority (like the PA's munition armour) a scheduled regime of dust removal by physical processes (clean and soft cloth and brushes with portable vacuum) should help limit corrosion of artefacts that must remain on display and outside cases⁶¹⁹.

By 1969 Czerwinski and Żygulski, the invited UNESCO representatives, had already suggested these simple cleaning procedures and some of the above-cited architectural measures so as to preserve the arms and armour collection at the Palace Armoury⁶²⁰.

2.2.4.2 Interventive conservation methods

Unfortunately, it follows that interventive conservation methods are often employed to treat the symptoms of inadequate or ineffective or non-existent preventive conservation practice, but there is little point in reinstating the artefact into its previously damaging environment⁶²¹. Those interventive conservation methods only relevant to their possible application to the ferrous armour at the Palace Armoury are described here.

2.2.4.2.1 Applied barrier coatings

The use of an applied barrier coating helps to isolate the metal from its environment⁶²² in a similar way as a display case, but on a much more intimate level: by adhesion⁶²³. Barrier coatings suitable for indoor environments are typically organic compounds such as resins and waxes with very low water permeability⁶²⁴

⁶¹⁷ Ibid. p. 109

⁶¹⁸ Czerwinski & Żygulski, 1969, p. 6

⁶¹⁹ Gilroy & Godfrey, 1998, p. 8 & Butcher-Younghans, 1993, pp. 133-135, 137

⁶²⁰ Czerwinski & Żygulski, 1969, p. 15

⁶²¹ Gilroy & Godfrey, 1998, p. 1 & Hatchfield, 2002, p. 55

⁶²² Grossbard, 1992, p. 101

⁶²³ Horie, 1987, p. 4

⁶²⁴ Chatterjee et al., 2001, p. 67

and are preferably as inert, removable and visually inconspicuous as possible⁶²⁵. Coatings should only be perceived as an interim protection means until the next scheduled dust removal and themselves require maintenance according to the material longevity and efficacy determined by its properties and the environment⁶²⁶. Recently surveyed coating practices across Europe and the Mediterranean basin show that acrylic resins or waxes, used separately or in conjunction, are common for ferrous archaeological artefacts, while oils are also used on historical ferrous artefacts⁶²⁷. Importantly for armour and their multiple-joined components with defined edges, complete and uniform coating coverage is a far from achievable ideal⁶²⁸.

2.2.4.2.2 Stabilisation

Stabilisation of metals is the term used to prevent recurrences of active corrosion. In an interventive conservation context, this can either be achieved by removal of the corrodent species (e.g. soluble salts) or by surface film forming or complexing with corrosion inhibitors⁶²⁹. These approaches are largely avoided for historical ferrous artefacts like armour since they commonly involve immersion in solutions. Tannic acid is the corrosion inhibitor most commonly used on ferrous artefacts⁶³⁰ in Europe⁶³¹. Tannic acid application is renowned for its black aspect⁶³², which might not be considered technologically or aesthetically sympathetic with the armour genre.

2.2.4.2.3 Corrosion product removal

Corrosion products are often removed from metallic cultural heritage artefacts. The possible motivations are many and case dependent. Importantly for the context of armour's (and other historical artefacts') conservation, it is their nonmetallic mineral colours that make aesthetics an issue. Meanwhile, their hardness, adhesion and intimate proximity to the metal substrate pose risks by any

⁶²⁵ Horie, 1987, p. 7 & Grossbard, 1992, p. 104

⁶²⁶ Grossbard, 1992, p. 104

⁶²⁷ Argyropoulos et al., 2007b, pp. 168-169

⁶²⁸ Bradford, 1993, p. 226

⁶²⁹ Hatchfield, 2002, p. 125

⁶³⁰ It was not specified if these artefacts treated with tannic acid are archaeological and/or historical iron

⁶³¹ Argyropoulos et al., 2007b, p. 168

⁶³² Gilroy & Godfrey, 1998, p. 123

interventions that might inadvertently affect metallic areas. The next section explores in depth the interventive conservation practice of corrosion product removal.

2.3 METAL HERITAGE ARTEFACT CONSERVATION & CORROSION PRODUCTS: PHILOSOPHY & PRACTICE

The development of conservation approaches for metal cultural heritage artefacts, like any material artefact type, follows a continuing evolution of thought and action over time. This evolution is governed by the material nature of the artefacts and their environment, societal perceptions of these artefacts and available sciences^{633, 634}. Corrosion is the particular threat and form of degradation most relevant⁶³⁵, but not necessarily unique⁶³⁶ to metal cultural heritage. Accordingly, metal conservation research efforts to prevent this phenomenon have understandably, in the past and present, reflected this particularity. But how have these corrosion processes modified an artefact from its so-called *original* state and how do conservation professionals approach an artefact already with corrosion products?

Philosophical and practical approaches to corrosion products emanating from metal artefacts, and their contribution to the conservation or destruction of modified original surfaces on metal artefacts, are a major area of such continual development and are described here. This section initially explains the deeper relevance and concepts of the determination of the modified original surface in CPs on metallic artefacts; as developed and currently continued by conservator, conservation researcher and lecturer, Dr Régis Bertholon, with his emphasis on archaeological metal artefacts. Bertholon's work in the last two decades has involved a holistic stepby-step approach of:

- reviewing the work of past scientists and conservators on archaeological metal artefacts with modified original surfaces⁶³⁷;
- constructing a standard vocabulary and an annotation system to describe corrosion product and metal stratigraphy features⁶³⁸;
- defining valid markers useful for delimiting materials and interfaces on corroded artefacts⁶³⁹; and
- establishing research methodologies to characterise corrosion typologies and possible modified original surfaces therein⁶⁴⁰.

⁶³³ Bertholon, 2001b, p. 172

⁶³⁴ Hockey & Shearman, 2006, p. 32

⁶³⁵ That is to say that metals are subject to other major conservation threats such as neglect, theft etc but these are not particular to metals

 ⁶³⁶ Glass and plastics also suffer from corrosion degradation mechanisms (Bertholon, 2001c, p. 11)
 ⁶³⁷ Bertholon, 2000, Bertholon, 2001b & Bertholon 2001c

⁶³⁸ Bertholon, 2000

⁶³⁹ Ibid.

The adaptation and restrictions of these findings and approaches from archaeological metal artefacts is later related to the historical artefacts found at the Palace Armoury⁶⁴¹. Lastly, for a worldly perspective specific to the munition armour genre, international conservation practices on armour with corrosion products are subsequently examined via a literature review and questionnaire⁶⁴².

2.3.1 WHAT IS THE ORIGINAL SURFACE & WHY DETERMINE ITS PRESENCE?

The interest in determining a supposed *original* surface is driven by the direct⁶⁴³ appreciation (by academics and the public) of a surface that represents an artefact's shape, fabrication method, decoration, evidence of use or surface details⁶⁴⁴. The artefact and its surface are thus a source of primary information and are irreplaceable. The artefact is only complemented by secondary information resources such as archival records; predominantly unavailable for archaeological⁶⁴⁵ materials, and possibly available in greater or lesser extents for historical⁶⁴⁶ artefacts. Correspondingly, a lack of secondary resources, especially unambiguous ones, on armour manufacture and surface finishing motivates direct metallurgical research investigations on real armour artefacts⁶⁴⁷. After corrosion of a metal surface it is clear that the actual original surface is no longer present; e.g. the characteristic lustrous metallic appearance and hardness are lost forever. However, some characteristics of the original surface, e.g. shape, marks, can still remain as features of the now modified original surface⁶⁴⁸.

The graphitisation of grey cast-iron (such as for military cannon) is a wellrecognised example of corrosion products representing, in a modified way (e.g. loss

⁶⁴² 2.4 International munition armour conservation philosophy & practice: literature review & laboratory questionnaire

⁶⁴⁰ Neff et al., 2003

⁶⁴¹ 2.3.1.2.2 Definition of the limitos for the Palace Armoury's historical munition armour

⁶⁴³ Radiographic techniques such as, x-ray radiology and x-ray tomography are increasingly valid forms of indirect observation, however at present and in the near future their use is, at best, mostly limited to necessity and to museum professionals. They therefore rarely facilitate artefact appreciation by the public who are until recently only accustomed to direct appreciation of museum tangible objects and not virtual reproductions. Though improvements and lowering costs will make technologies more affordable by museums it is not expected, in the present author's opinion, that the bulk of collections will be ever duplicated for exclusive appreciation in virtual forms.

⁶⁴⁴ Bertholon, 2007a, p. 31

⁶⁴⁵ Archaeological artefacts are again in this context classified as coming from burial conditions and are often dating prehistory and commonly do not accompany written records.

⁶⁴⁶ Historical artefacts are again classified as those that have not been interred and are also typically of more recent periods.

⁶⁴⁷ Williams, 2003

⁶⁴⁸ Bertholon, 2000, pp. 218-219 & Bertholon, 2004, p. 228

of hardness) the shape of the original metal. The ferrite and pearlite content in grey cast iron corrodes, preferentially to the non-metallic carbon network in a more or less even corrosion front and preserves the original shape, producing little or no change in thickness⁶⁴⁹ of the material in these graphitised layers⁶⁵⁰ (Figure 2-45).

Figure 2-45 "Longitudinal cross-section through the wall of a cast iron pipe, exhibiting severe graphitic corrosion, i.e. dissolution of the iron from the cast iron pipe leaving behind layers of intact graphite"⁶⁵¹

Surface information can be within corrosion product layer crusts as mineralised material that represents the modified metal's original surface features or encapsulates other preserved materials like *organic pseudomorphs*⁶⁵² (more applicable to more corroded artefacts like archaeological artefacts).

Alternatively, this surface information can remain as still uncorroded metallic surfaces that are underneath corrosion product layers that have deposited from adjacent corrosion sites (more applicable to less corroded materials like historical artefacts). Notably, if a surface has altered over time, as is often the case with corroded artefacts, the reliability of information gained from corroded artefacts depends on the knowledge of the given alteration mechanisms⁶⁵³. The extent of alteration of an artefact's surface, from that moment before abandonment at the end of its useful life until its conservation examination, can be considerable depending on the artefact material, environment and duration. In fact, evidence of the original surface *per se* can be irretrievably corroded and this was a common, unquestioned and sometimes incorrect conservation diagnosis on many metal artefacts until the latter part of the 20th century. Removing all corrosion products (*stripping*, Figure 2-46) was common practice because the CPs did not bear a resemblance of a

⁶⁴⁹ Steigerwald, 1998, p. 133

⁶⁵⁰ Turgoose, 1989, p. 30 & Cornell & Schwertmann, 2003, p. 497

⁶⁵¹ Testlabs, n.d., www.testlabs.ca/tech-ref.html - accessed 20/08/2007

⁶⁵² Structures of decomposed organic material that have been preserved by corrosion products that have migrated from adjacent metals and impregnated the organic cell structures (Cronyn, 1990, pp. 183-184).

⁶⁵³ Bertholon, 2007a, p. 32

recognisable metallic surface or they were deemed to have destroyed the original surface upon expansion⁶⁵⁴.

Figure 2-46 "Diagram showing four options the conservator may choose in cleaning a bronze object"⁶⁵⁵

However, the practice of stripping has largely been discontinued⁶⁵⁶ since there is increasing realisation that corrosion products can potentially retain modified original surfaces⁶⁵⁷. Now that more support has grown from the evidenced cases where CPs can preserve surface information, the current challenge is how to correctly diagnose if original surface information remains in other as yet undetermined cases.

2.3.1.1 Development of the original surface concept

The concept of the *original surface* is not a new area of interest for conservation, nor is it exclusive to metal artefacts. To describe the conceptual development of the original surface for metals, particularly archaeological ones, Bertholon reviewed the published conservation literature from authors of the 20^{th} century⁶⁵⁸.

The development of the original surface concept for archaeological metals was classified accordingly:

⁶⁵⁴ Bertholon, 2001c, p. 10

⁶⁵⁵ Organ, 1977, p. 125

⁶⁵⁶ Bertholon, 2001b, p. 168

⁶⁵⁷ Bertholon, 2001c, p. 11

 ⁶⁵⁸ Bertholon, R. (2001b). The location of the original surface, a review of the conservation literature. <u>Metal 2001: Proceedings of the International Conference on Metals Conservation, Santiago,</u> <u>Chile, I. D. MacLeod, J.M. Theile, C. Degrigny (eds.). Perth, Western Australian Museum.</u> 167-179.

- 1. Emergence;
- 2. Conceptualisation; and
- 3. First definitions and extensive conceptual application⁶⁵⁹.

Of concern to this present dissertation on historical ferrous metals, it should be emphasised here that the subjects of the articles reviewed by Bertholon⁶⁶⁰ seem to be predominated by metals and environments differing to the Palace Armoury and this could lead to differing corrosion product formations and original surface preservation mechanisms. The focus of Bertholon's reviewed literature was on archaeological metals and with a majority ratio of circa 5:2, of non-ferrous versus ferrous metals/alloys⁶⁶¹. The proportion of non-ferrous metals was circa 4:1, Cu versus Ag/Sn/Pb/Au.

While the term *original surface/surface originelle* has been used widely used in the literature, other terms have also been expressed. A selection of terms from a wider group of texts reviewed in the doctoral work of Bertholon were used to describe the artefact's former or present day existence (Table 2-2):

original shape	original form/forme originelle	original contours	
original appearance	distinctive form	surface primitive	
forme primitive	forme initiale	patina/patine	
original volume	surface features	surface markings	
surface details	skin/peau	epidermis/épiderme	
authentic surface	pseudomorphic replacement	pseudomorphic substitution	

 Table 2-2 Summary of original surface-related terms used to describe surfaces of artefacts as reviewed by Bertholon⁶⁶²

A reappraisal of the context of these terms used in the numerous texts reviewed by Bertholon is out of the scope of the present work. The broad point is that Bertholon found many authors had realised the original surface of their subject matter could have been transformed into corrosion products and was therefore no longer in existence⁶⁶³. They consequently used other terms to describe the traces of the former original surface. Some of these terms are referred to in the following sections outlining the development of the original surface concept. Later, efforts were made to organise the semantics related to the concept of the original surface.

⁶⁵⁹ Ibid., p. 168

⁶⁶⁰ Ibid., pp. 172-174

⁶⁶¹ Ibid.

⁶⁶² Bertholon, 2000, Microsoft Excel file "IndexSO" on attached CD-ROM

⁶⁶³ Ibid., p. 192

2.3.1.1.1 Emergence: late 19th century-1960s

At the end of the 19th century Rathgen, German scientist renowned for his discovery of x-rays, recognised that the ancient surface of an artefact could be preserved in the smooth patina. Rosenberg (1917), Danish Museum⁶⁶⁴, is attributed as being, "...the first to extensively use the concept of the original surface" as he proposed the possible presence of original surfaces under some corrosion products and also suggested the use of markers from the environment (namely sand/quartz) to demarcate the original surface⁶⁶⁵. Of relevance to locating the modified original surface. Rosenberg noted the corrosion layers as being externally or internally relative to the original surface⁶⁶⁶. This relative positioning infers that he must have been aware of examples where he could locate the original surface. Research scientists, Fink and Eldridge, pursued ways of approaching the CPs and original surfaces of bronze artefacts and were sympathetic of conservation ethics that dictate the objective is not to make like new. In their 1925 report, as cited by Bertholon⁶⁶⁷, "...bringing out details in design and yet not making the object appear as though it were of recent origin" was the approach to be respected. In spite of these philosophical considerations, initially Fink and Eldridge attempted to revert the artefact's oxides back to the metallic state. Plenderleith, via his landmark conservation handbook Conservation of Antiquities and Works of Art (1956)⁶⁶⁸ concentrated on describing the "original form", not the "original surface", and did not specify if the latter was present or indeed recoverable⁶⁶⁹.

2.3.1.1.2 Conceptualisation: 1960s-1980s

Jedrzejewska (1964) considered the original surface concept by focussing on bronzes and what she designated the "surface layer", discussing its properties, distribution, structure, composition and its cleavage properties (of relevance to physical cleaning)⁶⁷⁰. The application of new analytical instrumentation by scientists (Gettens, 1970) to corrosion product layers facilitated greater theorising about corrosion mechanisms and strata together with correlations with pre-abandonment

⁶⁶⁴ Ibid., p. 21

⁶⁶⁵ Bertholon, 2001b, p. 168 & Bertholon, 2001c, p. 6

⁶⁶⁶ Bertholon, 2001c, p. 6

⁶⁶⁷ Ibid.

⁶⁶⁸ Bertholon, 2000, p. 50

⁶⁶⁹ Bertholon, 2001b, p. 168

⁶⁷⁰ Ibid., pp. 168-169

artefact surfaces. Meanwhile, the cleaning practices by conservators (France-Lanlord, 1965; Organ, 1977) reflected the new perception that original surfaces remained within CP layers⁶⁷¹. However, of notable relevance to the present research focussing on the ferrous metals of iron and low-carbon steel, Organ explicitly cites his perception that the original surface of iron does not exist, at least in its *trueness*:

"I do not believe there is ever a true original surface preserved in rusted objects. Many of my colleagues in Europe, however, believe that there are and that they can find them. I am not convinced of this at all, although a lower layer of black oxide can usually be found"⁶⁷².

Exactly what Organ meant by a "*true* original surface" is unclear, but it is supposed that he implied at least one of the two following meanings, more probably the first:

- 1. Simply, the original surface had modified from a metallic state to a corrosion product state; or
- 2. The original surface could not be recreated or *sculpted* by inference (i.e. compared with adjacent surface levels of inlays⁶⁷³).

In this same publication Organ provides the basic and useful conceptual schematic cross-section of an incompletely corroded bronze artefact (Figure 2-46). He uses the diagram to demonstrate that the CP layers are both above and below the artefact's "shape". The diagram also shows the results of other possible conservation intervention options on the CP strata.

2.3.1.1.3 First definitions & extensive conceptual application: 1990s & onwards

The last two decades have witnessed a surge in activity on the original surface topic, largely driven by Bertholon with his work continuing the focus on archaeological metal artefacts. Importantly, this period is seen as one that helped properly define the precise terminology relating to original surfaces.

A broader definition from Bertholon and colleague Relier (1990) on any archaeological artefact (not necessarily metallic) was also given:

"The original surface of an archaeological object is the limit between what make up the object (metallic parts and other mineral or organic parts) and the environment at the time of its abandonment"⁶⁷⁴.

⁶⁷² Organ, 1977, p. 137

⁶⁷¹ Ibid., p. 168

⁶⁷³ Ibid., pp. 137-138

⁶⁷⁴ Bertholon, 2001b, pp. 168-169

This definition has intentionally represented the original surface as "a nonmaterial limit (or interface) between two layers," rather than a tangible material⁶⁷⁵.

In Bertholon's doctoral thesis (2000) on "La limite de la surface d'origine des objets métalliques archéologiques, caractérisation, localisation et approche des mécanismes de conservation"⁶⁷⁶, he coined revised definitions for the original surface in temporal and spatial terms:

"The original surface is the surface of the metallic object at the time of its abandonment. The abandonment, voluntary or involuntary, marks the end of the anthropogenic phases of its existence before its discovery (e.g. excavation)."⁶⁷⁷

"The original surface constitutes the volume starting from the interface with the abandonment environment until the lower limit of the metal zone, which differs to the core metal in composition, in physical-chemical properties or in metallurgical structure."⁶⁷⁸

The first definition clarifies the *point in time* that the artefact surface is classified as "original". Since the fabrication date does not account for changes to the artefact occurring during its useful life (i.e. evidence of human use that can be of historical significance) and during its burial period (i.e. when alterations were induced after its human interaction), the original surface is thus defined as the point in time when human contact was last made and burial environment alterations have not started: i.e. the moment of abandonment.

The second definition clarifies the *point in space* in the artefact where the surface is classified as "original". The original surface must therefore be at or just below the interface with the abandonment environment. The depth of the original surface has characteristics that can vary according to the artefact's inherent material nature (e.g. roughness, shine, colour, profile, thickness) at the time of abandonment. This second definition differed from the one made a decade earlier by Bertholon and Relier since this original surface was defined as possibly having a material volume as well as an abstract limit or interface⁶⁷⁹.

⁶⁷⁵ Ibid., p. 168

⁶⁷⁶ Bertholon, 2000

 ⁶⁷⁷ Translated, courtesy of A-C. de Poulpiquet, from: "La surface d'origine est la surface de l'objet métallique lors de son abandon. L'abandon, volontaire ou involontaire, marque la fin des phases anthropiques de son existence avant sa découverte" (Bertholon, 2000, p. 217).

⁶⁷⁸ Translated, courtesy of A-C. de Poulpiquet, from: "La surface d'origine constitue le volume partant de l'interface avec l'environnement d'abandon jusqu'à la limite inférieure de la zone du métal différente du métal de base en composition, en propriétés physico-chimiques ou en structure métallurgique" (Bertholon, 2000, p. 217).

⁶⁷⁹ Bertholon, 2001b, p. 171

2.3.1.2 The limit of the original surface: the limitos

Bertholon required a third and ultimate definition to differentiate the previously defined *original surface* between the *surface of the modified artefact* that emerges after its abandonment period. After corrosion the original surface can be transformed forever. The *limit* (i.e. not necessarily the location or appearance) of this former original surface can at best be possibly located. Thus, the *limit of the original surface* was Bertholon's chosen term to describe this modified surface after corrosion. The *limit of the original surface* is a conceptual term that attempts to encompass a variety of modified original surfaces depending on the metal and environment. This definition takes into account that the original surface of metallic artefacts can alter its position and/or composition over time. The modified original surface now consisting of corrosion products can either be different in its aspect (e.g. colour) and profile/form (e.g. expansion or vertical displacement). However, surface features from the original surface, such as texture, can persist. For ease of reference the *limit of the original surface* will hereafter often be referred to as the *limitos*, as proposed by Bertholon⁶⁸⁰.

2.3.1.2.1 Localisation of the limitos

Bertholon remarked that in spite of increased acceptance of the possible preservation of modified original surfaces (or the limitos), subsequent research activity, explicit and comprehensive evidence and rational published discussion was limited:

"In most of the works mentioning the original surface, little is said about the ways it can be located among the corrosion stratigraphy; the original surface position is assumed but rarely argued"⁶⁸¹.

This significant *lacuna* in the metals conservation field appears to have driven the research motivation of Bertholon to pursue the area in a progressive rational manner that attempts to not only fill this gap in theoretical knowledge, but importantly, also in conservation practice.

Corrosion scientist, Turgoose (1989) stated some cautious optimism towards the feasibility of determining original features of artefacts:

⁶⁸⁰ Bertholon, 2000, p. 219

⁶⁸¹ Bertholon, 2001b, p. 169

"Potentially it is possible to obtain information concerning the original shape and internal structure of metal artefacts. However, it is not to be expected that this will be possible for every object"⁶⁸².

Turgoose also stated that, "The possible preservation of some marker of the original surface has attracted considerable debate"⁶⁸³.

Bertholon categorised the many features cited in the literature that were deemed by authors to be *indicative* or even *reveal* the original surface/limitos (Table 2-3).

	Features that act as "clues" to locate, or not, the original surface	Features that act to "reveal" the original surface
1.	Striking ⁶⁸⁴ surface profile	Decorations
2.	Striking ⁶⁸⁵ interface surface profile	
3.	Tool marks and use marks	
4.	Corrosion layer cohesion	
5.	Corrosion layer hardness	
6.	Compactness or porosity of corrosion layers	
7.	Compactness or density of the x-rays pictures	
8.	Cleavage and parting of corrosion layers	
9.	Physical properties of corrosion layers, crystal and metallurgical structures	
10.	Colour and shine	
11.	Chemical composition	
12.	Presence of metal core or metallic nodules	
13.	Presence of sand in corrosion layers	
14.	Presence of calcium carbonate in corrosion layers	
15.	Presence of organic materials or organisms	

 Table 2-3 Summary of artefact features cited in the literature that are deemed indicative or indeed reveal the original surface⁶⁸⁶

These features that help localise the position of the limitos on corroded artefacts have been termed as *markers*⁶⁸⁷. Markers can be distinguishable by their material composition and structure, shape and appearance. It is important to see that most markers in Table 2-3 are considered only as "...*clues* to locate the original surface". To exemplify this point, one "clue" particularly worthy of elaboration is "colours and shine"; qualities that are readily observable to a conservator and, like others, are open to proper use or misuse according to their interpretation. The application of colours alone to recognise specific corrosion product *species* (which might then be associated with the limitos) has been used by conservators in the past,

⁶⁸² Turgoose, 1989, p. 30

⁶⁸³ Ibid.

⁶⁸⁴ It is presumed that *striking* is meant to imply *prominent* or *obvious*

⁶⁸⁵ Ibid.

⁶⁸⁶ Bertholon, 2001b, pp. 175-179

⁶⁸⁷ Bertholon, 2004, p. 227

but is now considered unreliable⁶⁸⁸. For the case of archaeological wrought iron, the uncovering of the black layer by conservators has led to their assumption that it contains magnetite and to their subsequent conclusion that the limitos is present there⁶⁸⁹. Bertholon refers to the case of this black layer on terrestrial archaeological wrought iron:

"The description of the corrosion form is far from being precise enough and the same for our knowledge of the limitos location. In fact the location of the limitos is not always the interface of this black layer with other layers."

Colours should only be used in conjunction with other properties (e.g. porosity, hardness) for identifying corrosion product *forms*⁶⁹⁰ so as to be able to relate them with existing comparable corrosion forms that have had their limitos previously defined⁶⁹¹. Notably, corrosion products can be arranged in CP mixtures, thus giving differing net colours according to the relative concentrations, varying particle sizes, shapes and refractive indices of the species present⁶⁹². Manual, sensitive cleaning has been cited as potentially useful for determining tactile differences between corrosion product layers⁶⁹³.

The exceptional marker listed in Table 2-3 that might be used alone to define the limitos is decorations. The inlaid decorations, on an excavated archaeological wrought iron artefact after selective corrosion product removal, testify the location of the limitos, which in this case has not only been converted into CPs, but has been vertically displaced; albeit in an irregular manner (Figure 2-47), as Bertholon recounts again for terrestrial archaeological wrought iron:

"As the corrosion continues, the thickness of the corrosion layers increase. The formation of corrosion products under or within the layer of magnetite may cause swelling of the corrosion layers that contain the original surface. Therefore the original surface⁶⁹⁴ is no longer at its original level. That is the reason why the original surface is not always flat and smooth as would have been expected on such objects"⁶⁹⁵

⁶⁸⁸ Bertholon, 2007b, pers. comm.

⁶⁸⁹ Ibid.

⁶⁹⁰ forms = "a combination of some corrosion strata or layers disposed in a specific corrosion structure" (Bertholon, 2007b, pers. comm.).

⁶⁹¹ Bertholon, 2007b, pers. comm.

⁶⁹² Cornell & Schwertmann, 2003, p. 131 & Elias et al., 2006, pp. 73-74 & Selwyn et al. 1999, p. 220

⁶⁹³ Bertholon, 2001b, pp. 170-171

⁶⁹⁴ Here original surface is meant to imply the *limitos*. Despite being defined earlier by Bertholon (2000) the term limitos was not used in this reference – perhaps an intentional avoidance of jargon in this more introductory paper written for material engineers.

⁶⁹⁵ Bertholon, 2001a, p. 244

Figure 2-47 Left: Overall view of a Merovingien (5-8th century AD) wrought iron plate inlaid with brass⁶⁹⁶. Right: Detail demonstrating the vertical displacement of the corroded iron and contained brass.

The given example of a decorated ferrous archaeological artefact is made so as to clearly demonstrate, via the contrasting brass, the extent of surface displacement in a burial environment. Later, this research pursues identifying which markers on undecorated atmospherically corroded wrought ferrous metals could be useful for determining any limit of the original surface in that materialenvironment⁶⁹⁷.

Markers have been classified according to their position relative to the limitos⁶⁹⁸:

- Superior limitos marker: such a corrosion stratum character indicates that the limit of the original surface is below the given corrosion stratum, but does not specify its exact location⁶⁹⁹. It is a relative marker⁷⁰⁰;
- *Inferior limitos marker*: such a corrosion stratum character indicates that the limit of the original surface is above the given corrosion stratum, but does not specify its exact location⁷⁰¹. It is a relative marker⁷⁰²; and
- *Corresponding limitos marker*: such a corrosion layer interface character indicates that the limit of the original surface corresponds to the given interface, definitively localising the limitos⁷⁰³. It is an absolute marker⁷⁰⁴.

Superior limitos markers are materials exogenous to the artefact and are often a deposit of burial material such as sand in soil sediment^{705, 706}, which cannot penetrate the lower matrix of CPs and therefore remains superior to the limitos. The

⁶⁹⁶ Courtesy of Unité Municipale d'Archéologie de Saint-Denis (Bertholon, 2000, p. 220)

⁶⁹⁷ Chapter 3 Experimental methods & materials, Chapter 4 Results & Chapter 5 Discussion

⁶⁹⁸ Bertholon, 2000, p. 221

⁶⁹⁹ Bertholon, 2004, p. 238

⁷⁰⁰ Bertholon, 2000, p. 222

⁷⁰¹ Bertholon, 2004, p. 238

⁷⁰² Bertholon, 2000, p. 222

⁷⁰³ Bertholon, 2004, p. 239

⁷⁰⁴ Bertholon, 2000, p. 222

⁷⁰⁵ Ibid.

⁷⁰⁶ Bertholon, 2001b, p. 171

CPs permeate this environmental material forming a matrix referred to as the transformed medium, or TM (Figure 2-48). Figure 2-48 schematically shows the relative positions of superior and inferior limitos markers in a buried and corroded wrought ferrous metal. For the latter environment and metal it would normally be supposed that the limitos could be preserved at the interface of areas marked *dense* product layer (DPL) and the TM⁷⁰⁷, or unusually in the case of this simplified schematic representation, the limitos could be within the DPL since the internal and external markers do not meet.

Figure 2-48 Schematic representation of internal and external marker locations on a wrought ferrous metal in a burial environment⁷⁰⁸

An example demonstrating the practical application of the theory of superior limitos markers is given in Figure 2-49 & Figure 2-50 where quartz markers on a formerly buried wrought iron artefact were used to delimit the corrosion products superior to the limitos during selective mechanical CP removal.

Figure 2-49 Left: Wrought iron axehead dating from the Middle Ages after terrestrial excavation with corrosion products fixed into sediment. Right: Same axehead after removal of sediment fixed with corrosion products⁷⁰⁹

⁷⁰⁷ Neff et al. 2004, p. 743 ⁷⁰⁸ Reguer et al, 2007, p. 174

⁷⁰⁹ Crawford, 2003

Figure 2-50 Details from during corrosion product removal stages of axehead in Figure 2-49. Left: Quartz sediment superior limitos markers in external corrosion product layers. Right: Determined limitos of axehead without quartz sediment superior limitos markers⁷¹⁰

As later investigated⁷¹¹, a potentially comparable superior limitos marker in an atmospheric exposure context might include particulate aerosols from the indoor or outdoor environment that are distinguishable from the corrosion products or other pollution.

Inferior limitos markers are materials endogenous to the artefact and can be metallurgical features⁷¹² such as *ghost* grain microstructures (Figure 2-51) like dendrites, or resilient inclusions such as slag (Figure 2-52)⁷¹³. Slag inclusions offer a superior permanence that makes them particularly useful (at least in cross-section) as inferior limitos markers. From the point of manufacture or even before, they are essentially composed of an oxidised thermodynamically stable state, an inertness that the ferrous metal seeks to attain since its moment of extraction by smelting.

⁷¹⁰ Ibid.

 ⁷¹¹ 4.1.2 Armour Hall aerosol pollutants: scanning electron microscopy-energy dispersive spectrometry & 4.1.3.2 Armour corrosion cross-section observations & analyses

⁷¹² Bertholon, 2000, p. 222

⁷¹³ Ibid., p. 338

Figure 2-51 Widmanstätten microstructures present in metal⁷¹⁴ and corrosion products (200x)⁷¹⁵

Figure 2-52 "Slag inclusions wholly surrounded by corrosion products (100x)"⁷¹⁶

The corresponding limitos marker can be a surface or interface between CPs layers and can include physical or tactile properties such as cleavage between layers⁷¹⁷.

Bertholon has asserted the need to use a simultaneous combination of the superior, inferior and corresponding markers to more definitively determine the location of the limitos⁷¹⁸. Figure 2-53 schematically demonstrates an ideal situation where the sequential presence of all these labelled limitos markers and their interfaces are noted through the CP stratigraphy. The ideal presence of superior limitos markers in layers 1 and 2 and at interface 1/2 of Figure 2-53 indicates that the

⁷¹⁴ Metal type not specified ⁷¹⁵ Scott, 1989, p. 13

⁷¹⁶ Ibid., p. 11

⁷¹⁷ Bertholon, 2000, p. 222 & Bertholon, 2001b, p. 171

⁷¹⁸ Bertholon, 2000, p. 224

limitos must be beneath these layers. Meanwhile, the presence of inferior limitos markers in layer 3 and the metal and at interface 3/metal indicates that the limitos must be above these layers. Finally, the presence of a corresponding limitos marker at the interface between layers 2 and 3 determines that the limitos is located in here⁷¹⁹. If justifiable the upper two corrosion products layers and interface could then be removed to reveal the limit of the original surface in the CPs.

Corrosion product layers	Superior limitos marker	Corresponding limitos marker	Inferior limitos marker
Layer 1	Present	Absent	Absent
Interface 1/2	Present	Absent	Absent
Layer 2	Present	Absent	Absent
Interface 2/3	Absent	Present	Absent
Layer 3	Absent	Absent	Present
Interface 3/Metal	Absent	Absent	Present
Metal	Absent	Absent	Present

Figure 2-53 Conceptual localisation of the limitos using Bertholon's limitos marker system⁷²⁰

CORROSION/CORROSION PRODUCT STRATIGRAPHY TERMINOLOGY

Bertholon devised an annotation system, involving an extensive vocabulary, coding and framework for describing CP features and distribution, to effectively communicate between conservation professionals the corrosion strata observed on artefacts⁷²¹. A simple introduction to the layout is given in Figure 2-54.

Sediment	Corrosion product	Void	Corroded metal	Metal
S	CP (1, 2, 3, 4)	v	СМ	M

2.3.1.2.2 Definition of the limitos for the Palace Armoury's historical munition armour

It is necessary to define a meaning of the limitos that is appropriate the context of the mid 16th-mid 17th century northern Italian-style plate munition armour.

⁷¹⁹ Ibid.

⁷²⁰ Ibid., p. 223

⁷²¹ Ibid., p. 307

⁷²² Ibid., p. 240

To do this it is essential to relate the previously established historical events that have caused the armour's transformations through time⁷²³.

There is common recognition that the long-term accessibility of armour on display in museums has led to centuries of cleaning and restorations that have removed much of the possibly remaining original surfaces⁷²⁴ and added new materials⁷²⁵. As such, the previously described history of the Palace Armoury munition armour collection⁷²⁶ includes important periods of the armour's existence that have dictated the possible survival of any original surfaces from manufacture and other features from use.

According to Bertholon:

"The history of most artefacts can be divided into four main periods of time: the creation period (the object's fabrication or production), the use period, the abandonment period (with or without burial, in various environments) and the post-excavation period"⁷²⁷,

...while each period can further be subdivided into phases relating to events in each period. Bertholon considers that variations of this framework are possible⁷²⁸ and it is here that we consider its adaptation to the case of the Palace Armoury munition armour.

For the munition armour, the *creation period* (mid 16th-mid 17th century) is clearly the purported time of manufacture in northern Italy. This period was divided into many successive phases: from mineral ore smelting, forge work, surface finishing and assembly⁷²⁹.

After a transitional transportation period to Malta, the armour began its >100 to 200-year *dynamic use period* (mid 16th-mid 17th century to the mid 18th century) during its existence in active service as worn by troops of the Order of St John. The armour most probably experienced one or more cycles of alert, preparation, battle, maintenance (e.g. repair and polishing) and relative peace when complacency slackened maintenance procedures^{730, 731}. This use period is specified with its dynamic status so as to differentiate it from its subsequent static display use

⁷³⁰ Spiteri, 2003, pp. 11-12

⁷²³ Ibid, p. 199

⁷²⁴ Starley, 2006, p. 2 & Smith, 2006, p. 55

⁷²⁵ Starley, 2006, p. 4

⁷²⁶ 2.1.3 History of the Palace Armoury's 16th-17th century northern Italian-style munition armour

⁷²⁷ Bertholon, 2007a, p. 31

⁷²⁸ Ibid.

⁷²⁹ 2.1.2 Munition armour fabrication: materials & techniques

⁷³¹ 2.1.3.1 Mid 16th century-1798, Order of St John: functional, symbolic & obsolete arsenal

(effectively a continued symbolic use, if not practically functional)⁷³². It is reminded that the munition armour reached dynamic obsolescence in the time of the Order, and thus the Knights were the first to put it on display as trophies of arms (circa mid 17th onwards⁷³³). The Order therefore probably polished them for aesthetic reasons; in a similar manner as during their service life.

The so-called *abandonment period* and *post-excavation period* classifications are more applicable to archaeologically interred artefacts and are not as easily adaptable to historical armour⁷³⁴, since the armour were under permanent custodianship and accessibility. The *abandonment period* and *post-excavation period* classifications are adapted here and respectively retermed as the *obsolescence* & *neglect period* and the *static use (display)* & *storage period*.

The obsolescence & neglect period for the munition armour is proposed to reflect the abandonment period since the armour's dynamic use was eventually discontinued due to irreparable battle-damage or later technological obsolescence as previously described⁷³⁵. The obsolescence of the armour permitted its static use on display as trophies of arms and other wall arrangements. It is supposed that most/all heavily damaged munition armour would not have been displayed. The *static use (display)* & *storage period* is proposed to represent the *post-excavation period* since interest in the armour would have included phases of restoration, display/exhibition and possible study, as previously described⁷³⁶.

Compared with archaeological artefacts, historical artefacts, as exemplified here by the munition armour, do not necessarily have sequential *use*, *abandonment* and *post-excavation periods*. Instead these historical armour, treated as an ensemble or collection due to their imprecisely documented individual histories, have an almost simultaneous commencement of the two latter periods of their history. Indeed, the *obsolescence* & *neglect period* and the *static use (display)* & *storage period* started around the same period: circa mid 17th-mid 18th century onwards depending on the age and use of the particular munition armour. Numerous accounts have previously been cited when the static display armour suffered from neglect as it

^{732 2.1.3.1.2 1604-1798,} Order of St John: Palace Armoury

^{733 2.1.3.1.2 1604-1798,} Order of St John: Palace Armoury

⁷³⁴ Hockey & Shearman, 2006, p. 31

⁷³⁵ 2.1.3.1 Mid 16th century-1798, Order of St John: functional, symbolic & obsolete arsenal

 ⁷³⁶ 2.1.3.2 1798-1964, French & British occupation: decorative romantic trophies to academic antiques, 2.1.3.3 1964, Independence: remnants of a colonial history & 2.1.3.4 Recent history: museum typological collection & tourist site

repetitively fell out of favour due to other priorities and attractions⁷³⁷. The armour's static use (display) was thus marked by times of neglect and inattention resulting in corrosion. When attention was cyclically cast back onto the munition armour on display their corrosion products were removed⁷³⁸.

More recently, similar to when the munition armour were in a supplementary storage room (as per Sieur de Bachelier's 1679 account)⁷³⁹ during their *dynamic use period* in functional service, those armour deemed superfluous, or possibly unfit for continued display, have been stored in the reserve collection rather than on display.

So what do the implications of historical accessibility with cyclical interventions mean for the original surfaces and limits of the original surfaces of the mid 16th-mid 17th century northern Italian-style plate munition armour at the Palace Armoury?

Since the *static use (display) and storage period* has lasted up to 350 years, featuring numerous documented corrosion episodes and corrosion product removal campaigns, it cannot generally be expected that much of the original surfaces (as for the uncorroded areas) or the limits of the original surfaces (as for the corroded, corrosion product covered areas) dating to the armour's Italian manufacture or its last dynamic service (or static display use) by the Order of St John have survived.

Inaccessible surfaces such as those found between lames or under rivets might have evaded periodic cleaning campaigns. If uncorroded these localised areas could therefore possibly retain some original surfaces, or potentially some limits of the original surfaces, if corroded. Any unaltered remaining original surfaces of the armour therefore have to be defined as the surfaces on the munition armour that have been historically untouched, inaccessible and/or uncorroded i.e. metallic. Since armour are riveted together, making them impossible to non-destructively disassemble, and since the far majority of the plate surface areas are accessible, this study focuses on these exposed and accessible areas with corrosion products. Meanwhile, the potential limitos of the armour must be defined as the surfaces or interfaces found in any CPs. This potential limitos area might represent an original surface, perhaps from manufacture or use in service or from display, that has been modified by corrosion processes. More likely and relevant to these historical

⁷³⁷ 2.1.3 History of the Palace Armoury's 16th-17th century northern Italian-style munition armour

 ⁷³⁸ 2.1.3.1 Mid 16th century-1798, Order of St John: functional, symbolic & obsolete arsenal & 2.1.3.2
 1798-1964, French & British occupation: decorative romantic trophies to academic antiques

⁷³⁹ 2.1.3.1.2 1604-1798, Order of St John: Palace Armoury

artefacts, the limitos might correspond to the CPs formed from a metallic surface that was previously created by any one of a number of CP cleaning interventions that occurred during its *obsolescence* & *neglect* and *static use (display)* & *storage periods*⁷⁴⁰.

The last intervention on the majority of munition armour was typically 30 or more years ago. This intervention is most likely to have featured the removal of a failed protective coating, practically all CPs from affected areas and the reapplication of a protective coating⁷⁴¹. As a result, any possibly determined limitos corrosion products might come either from these more recently created metallic surfaces or from any other time since fabrication. The imprecise dating of the munition armour's current surfaces is attributable to the lack of documentation.

After the last corrosion product removal intervention on the armour, corrosion on certain areas has ensued. The unanswered questions remain:

- 1. How have any limits of the original surfaces on the munition armour been formed by corrosion since the time of its last CP removal intervention?
- 2. And have these corrosion processes preserved any evidence of the limitos from the former metallic surfaces?

These are the principal practical questions this dissertation seeks to answer.

2.4 INTERNATIONAL MUNITION ARMOUR CONSERVATION PHILOSOPHY & PRACTICE: LITERATURE REVIEW & LABORATORY QUESTIONNAIRE

The international literature on armour conservation and restoration is reviewed here. No attempt is made to detail the maintenance of armour when it was still in use since this point has been addressed in detail specifically for the case of the Palace Armoury munition armour⁷⁴². Notably the researched literature is rather limited in number and scope, and even less so when detailing approaches to corrosion products.

To supplement and update the scarce information provided by the literature, a questionnaire focussing on CPs and munition armour conservation, was designed by

⁷⁴⁰ Vella et al., 2005b, p. 318

⁷⁴¹ Stroud, 2006-2007, pers. comm.

⁷⁴² 2.1.3 History of the Palace Armoury's 16th-17th century northern Italian-style munition armour

the present author and disseminated to international armour conservation workshops and laboratories.

2.4.1 LITERATURE REVIEW ON FERROUS ARMOUR CORROSION PRODUCTS

The researched literature can be broadly categorised into discussions about the issues and philosophies concerning corrosion products on armour, and secondly into case studies that report the technical procedures employed towards these CPs. These case studies also reflect upon the reasoning behind the approaches taken.

As with many aspects of conservation practice in general, over recent years CP removal approaches have changed considerably for armour (and arms). More scientifically informed preventive and interventive actions have become the preferred and performed treatment options by later generations of conservation professionals. The developing approaches towards CPs on archaeological metal artefacts over the last century preceded this sea change⁷⁴³. Of note is the recent amount of examination, documentation, and analytical work used to inform conservation proposals on historical artefacts including armour⁷⁴⁴. Interventive approaches towards armour have generally become more conservative. Previously, ex-servicemen or artisans undertook the caretaking of arms and armour⁷⁴⁵. These personnel bore a traditional restoration approach that removed all CPs. "The aim of restoration is now to physically support or enhance the legibility of an object without attempting to 'recreate' the original appearance"⁷⁴⁶.

2.4.1.1 Philosophy

Stipulated ethics form the common foundation stone of contemporary western conservation practice. Various national and international codes of conduct and/or ethical guidelines are now available for conservation professionals to follow⁷⁴⁷. Of particular note and contention with some ethical guidelines is the issue of *reversibility* and that any intervention should ideally be reversible⁷⁴⁸. The guidelines

⁷⁴³ Bertholon, 2001b & Bertholon, 2001c

⁷⁴⁴ Hockey & Shearman 2006, p. 33

⁷⁴⁵ Ibid., p. 31

⁷⁴⁶ Ibid., p. 33

⁷⁴⁷ ECCO, 2002, <u>http://www.ecco-eu.info/matador/eccosite/ecco_contents.php?doc_id=170</u> – accessed 03/02/2007 UKIC, n.d., <u>http://sul3.stanford.edu:10001/ukic/ukic_ethics.doc</u> – accessed 03/02/2007 & AIC, 2004, <u>http://aic.stanford.edu/pubs/ethics.html#six</u> – accessed 03/02/2007

⁷⁴⁸ "The Conservator-Restorer shall strive to use only products, materials and procedures which, according to the current level of knowledge, will not harm the cultural heritage, the

offer a dramatic contrast with times past, but difficulties remain in their interpretation and application as they depend on the genre of artefact, its condition, its environment and its use. In the context of armour conservation, Smith has raised the inherent irreversibility of any corrosion product removal⁷⁴⁹. Meanwhile, Oddy, more experienced in the archaeological domain concurs, "…removal of corrosion products is certainly irreversible and certainly compromises the integrity of the object"⁷⁵⁰. Edge suggests that the removal of CPs falls neither within the categories of conservation nor restoration activities⁷⁵¹. Edge contends that "…insensitively 'cleaned' or inaccurately 'restored'…" work on armour risks the loss of decoration, evidence of construction or use and the original form⁷⁵². Furthermore, Edge feels that over-cleaning of CPs from armour "…in an effort to make an object shiny and visually appealing…" and the removal of metal around corrosion pits in an attempt to restore armour "…to an appearance it never actually had…" is a kind of restoration that is "…of course completely unacceptable"⁷⁵³.

Figure 2-55 shows how an undocumented former cleaning process appears to have extracted the majority of CPs from the corrosion pits on a piece of Palace Armoury munition armour.

Figure 2-55 Detail of Palace Armoury munition armour tasset with corroded surface area largely devoid of corrosion products⁷⁵⁴

environment or people. The action itself and the materials used should not interfere, if at all possible, with any future examination, treatment or analysis. They should also be compatible with the materials of the cultural heritage and be as easily and completely reversible as possible" (ECCO, 2002, Article 9).

⁷⁵³ Ibid., pp. 154-155

⁷⁴⁹ Smith, 1998, p. 7

⁷⁵⁰ Oddy, 1999, p. 3

⁷⁵¹ Edge, 1994, p. 153

⁷⁵² Ibid., p. 154

⁷⁵⁴ Crawford, 2007a, p. 31 permission courtesy of E. Magro Conti
Despite such criticism of how not to perform corrosion product removal, suggested appropriate levels of CP removal are rarely discussed. Smith details the extent of his cleaning undertaken:

"By carefully removing the corrosion products it is often possible to recover a reasonably smooth clean surface though dotted with black corrosion spots" that "...can, in many cases, recover some of the 'original' surface surviving between the corrosion pits"755.

Smith highlights that the so-called original surface is highly unlikely to be that related to the "...working lifetime (i.e. period of use) of the object... as all objects will have been extensively cleaned throughout the centuries"⁷⁵⁶; an important point that was previously outlined and is later discussed⁷⁵⁷.

The literature's discussion about armour CPs and any need for preserving original surfaces largely centres around the requirement to avoid damaging surface treatments such as browning, gilding, etching, or features like stamps⁷⁵⁸ that are mostly on the armour outer surfaces. While, Manella mentions intentionally keeping "...la patine intérieure d'origine..." in his cleaning treatment of an armour⁷⁵⁹. Undecorated outer metal surfaces, such as those in this study, are less frequently mentioned⁷⁶⁰, let alone discussed in much detail. Smith states, "Of course many pieces of armour are just plain iron or steel but even here care must be exercised to preserve any surviving surface"⁷⁶¹. It is unclear whether Smith is referring to a surviving metal surface or a surviving modified surface retained in the CPs. But from his earlier statements about the "...'original' surface surviving between the corrosion pits"762, 763, it is assumed he means the unmodified metal surface. It seems then that, according to Smith, modified original surfaces within corrosion products are not sought after in CPs. But, also according to Smith, the retention of some corrosion products can provide some other information since they, "...can indicate the presence, or absence, of other materials or parts of the object and the pattern of

⁷⁵³ Smith, 2006, p. 54 ⁷⁵⁶ Ibid., p. 55

⁷⁵⁷ 2.3.1.2.2 Definition of the limitos for the Palace Armoury's historical munition armour & 4.2.3 Armour analogues, limitos application: corrosion product removal to the limitos

⁷⁵⁸ Smith, 2006, pp. 53-54, Edge, 1994, p. 155, Hockey & Shearman 2006, p. 33 & Paulitsch, 1992, p. 385

⁷⁵⁹ Mannela, 1998, p. 187

⁷⁶⁰ Smith, 2006, p. 54 & Hockey & Shearman 2006, p. 33

⁷⁶¹ Smith, 2006, p. 54

⁷⁶² Ibid.

⁷⁶³ As cited previously at greater length in quote referenced by footnote 755.

pitting can indicate past use⁷⁶⁴ and might retain indications of former display characteristics⁷⁶⁵.

Aesthetics are deemed by Smith to be of importance to the motivations behind the amount of CPs removed from armour:

"Basically arms and armour were originally intended to have bright smooth surfaces which reflected light strongly. Thorough and total cleaning of the surface of an iron object, that is removing all the corrosion products from every corrosion pit, results in a dull grey surface which does not reflect the light."⁷⁶⁶

Reference is made in the literature to the possible adverse effects of keeping CPs on armour. In order to develop informed restoration procedures, Biasini and Cristoferi used cross-sections of samples taken from 16th-17th century Italian armour to study the corrosion morphology. They found, via energy dispersive spectrometry, deep pits filled with corrosion products featuring chlorine concentrated at the metal/CP interface⁷⁶⁷. This discovery, and the presence of akaganéite (the ferrous CP containing chlorides⁷⁶⁸) detected by XRD on extracted CP samples influenced their cleaning approach. Biasini and Cristoferi realised that:

"...the corrosion product layer does not have any protective effect on the underlying metal; on the contrary the corrosion process is very active, especially inside pits and cavities, and can compromise the good condition of the object"⁷⁶⁹.

As a result, the restoration method had,

"...the aim of removing the corrosion products as completely as possible, without damaging the original surface... One cannot think however, of removing every trace of corrosion because this would compromise the surface of the ancient artefact"⁷⁷⁰.

In their approach, it is clear that even though the corrosion products were recognised as harbouring corrosive species, which would have been desirable to entirely extract, their physical cleaning approach was tempered by respecting the adjacent uncorroded metal. Notably their account does not conceive CPs as possibly containing modified original surfaces and the extent of cleaning appears to be quite subjective as a balance between aesthetics and minimising metal surface damage was sought.

⁷⁶⁴ Smith, 1999, p. 7

⁷⁶⁵ Smith, 2006, p. 52

⁷⁶⁶ Ibid. p. 54

⁷⁶⁷ Biasini & Cristoferi, 1995, p. 254

⁷⁶⁸ 2.2.2.3.4 Ferrous corrosion products, Types of atmospheric ferrous corrosion products

⁷⁶⁹ Biasini & Cristoferi, 1995, p. 255

⁷⁷⁰ Ibid.

The last justification cited for removing corrosion products from armour is the prevention of degradation caused by CPs on organic components like leather strapping that assembles the armour⁷⁷¹.

In favour of some corrosion product retention, Smith states that armour from unburied environments⁷⁷² that still have "...black corrosion spots..." after cleaning can be kept at moderate relative humidities (<50%RH); even with the retention of these corrosion products⁷⁷³. The reasoning behind this practice is not stated, but it is assumed that Smith makes the distinction between archaeological and historical armour due to the greater reactivity of archaeological CPs caused generally by a more concentrated presence of soluble salts. Such salts are more likely to be found in burial conditions. Edge also mentions black corrosion products that "...are often completely stable"⁷⁷⁴. No mention was made of other coloured corrosion products (e.g. ochres).

Regarding corrosion product morphologies, Smith is not the only author to cite corrosion of armour with pitting⁷⁷⁵. Biasini and Cristoferi also determined the presence of deep pitting as the corrosion morphology present on their armour⁷⁷⁶.

Of relevance to stability and the previously cited material-environment system⁷⁷⁷, Paulitsch's summary of a conservation treatment on an engraved and painted 16th century armour, describes that his level of corrosion product removal is dictated by the future environmental conditions of the armour. When the conditions in the exhibition space and reserves are suitable for the armour, Paulitsch asserts that it is not necessary to remove all CPs. Like Biasini and Cristoferi, Paulitsch states a preference to not remove all CPs since doing so can damage the metal and provides new contact surfaces for corrosion to occur⁷⁷⁸.

2.4.1.2 Practice

The practices followed to achieve the armour conservation or restoration approaches of the past were generally by physical (abrasion) and/or chemical (dissolution/chelating) means, but today physical approaches predominate. The

⁷⁷¹ Smith, 2006, p. 51

⁷⁷² i.e. historical, not archaeological

⁷⁷³ Smith, 2006, pp. 54-55

⁷⁷⁴ Edge, 1994, p. 155

⁷⁷⁵ Smith, 2006, p. 54

⁷⁷⁶ Biasini & Cristoferi, 1995, p. 254

⁷⁷⁷ Figure 2-44

⁷⁷⁸ Paulitsch, 1992, p. 384, translation courtesy of S. Michael

similar physical and chemical sensitivity and intimate positioning between a metal and its various possible corrosion products makes the selective treatment of one of these materials a challenging task to achieve without undesirable effects on the other.

According to the literature, alternative approaches to ferrous corrosion products, as applied to some other genres of metal artefacts, were determined not to be suitable for armour. Use of chemical conversions (e.g. tannic or phosphoric acid) and more complex treatments such as electrochemical reduction or electrolysis or innovative techniques such as CP removal via laser were not found in the armour literature.

Only one reference was made to corrosion product removal assisted by magnification: Paulitsch performed local cleaning of CPs from a painted armour by scalpel under binocular microscope⁷⁷⁹.

Whichever technique is applied, its success is cited to be determined by the experience of knowing how to apply it and knowing how far to go before stopping⁷⁸⁰.

2.4.1.2.1 Physical removal

Due to their controllability, manual and mechanical means of physically abrading away corrosion products with tools and materials are now the preferred means of CP removal from armour⁷⁸¹. Smith cited a variety of manual tools including hard-steel scrapers, fine abrasive papers, wire wool and abrasive pastes that would be selected according to the corrosion and condition of the armour⁷⁸².

Biasini and Cristoferi used air-abrasive equipment using glass microspheres $(50-100\mu m)$ at 0.5-1.5kgcm⁻² to remove ferrous corrosion products from armour since they felt it was the most selective means⁷⁸³. Rotating brushes were deemed inappropriate since they either damaged the metal surface, because they were not localised enough, or "...exerted too much force for the areas with light surface corrosion products and not enough force in those areas with deeper corrosion"⁷⁸⁴. A dental descaler was used for reduction of thicker layers⁷⁸⁵.

⁷⁷⁹ Ibid., p. 383, translation courtesy of S. Michael.

⁷⁸⁰ Smith, 2006, p. 54

 ⁷⁸¹ Hockey & Shearman 2006, p. 33, Smith, 2006, p. 54, Biasini & Cristoferi, 1995, p. 254 & Mannela, 1998, p. 187

⁷⁸² Smith, 2006, p. 54

⁷⁸³ Biasini & Cristoferi, 1995, p. 255

⁷⁸⁴ Ibid., p. 254

⁷⁸⁵ Ibid., pp. 254-255

Paulitsch also performed removal of heavy CPs using air-abrasive with walnut shell and glass microspheres at 1 bar pressure. He also cites the use of sandpaper⁷⁸⁶.

2.4.1.2.2 Chemical removal

The full immersion of artefacts in chemical solutions (e.g. corrosive acids) has mostly been discontinued. And if any chemical treatments are justifiable then they are performed on a localised basis⁷⁸⁷. Incorrectly applied or unsupervised corrosion product removal via chemical means can overclean a surface by emptying corrosion pits and also etch any remaining metal⁷⁸⁸.

2.4.1.3 Literature review summary & conclusions

From this literature review an observation and a prime conclusion can be drawn regarding corrosion products on armour and original surfaces. They are that:

- 1. The literature is predominantly concerned with decorated armour, not the mainly undecorated armour of this study; and
- 2. The literature discusses broader issues of ethical interest, especially the irreversible nature of CP removal procedures and there are many reasons for justifying the removal or justifying the preservation of corrosion products on armour, but there does not seem to be any perception that traces of modified original surfaces can exist in corrosion products. Instead it seems that original forms are recreated by inference with adjacent uncorroded surfaces.

2.4.2 LABORATORY QUESTIONNAIRE ON FERROUS ARMOUR CORROSION PRODUCTS

As outlined in the literature review on armour conservation-restoration⁷⁸⁹, information relevant to this research dissertation is inadequate and thereby prompted the need for a complementary information source. Practical and philosophical literature covering ferrous armour conservation has been published, but specific approaches to their corrosion products are not very detailed. The information given is often in the context of individual case studies where technical procedures and underlying rationales for a specific armour conservation treatment are presented. Not only does published information rarely cover the simpler relatively undecorated munition armour, it also does not attempt to assess international trends in munition armour conservation. It was deemed appropriate to gain a current and simultaneous

⁷⁸⁸ Hockey & Shearman 2006, p. 33

⁷⁸⁶ Paulitsch, 1992, p. 383, translation courtesy of S. Michael

⁷⁸⁷ This citation refers to archaeological arms and armour (Hockey & Shearman 2006, p. 33).

⁷⁸⁹ 2.4.1 Literature review on ferrous armour corrosion products

overview on armour conservation trends from a wide variety of armour conservation professionals at an international level via a questionnaire.

The delivered questionnaire and the quantified respondent results with analyses are respectively in Appendix A^{790} & Appendix B^{791} , while a largely qualitative summary of the questionnaire findings is presented next.

2.4.2.1 Laboratory questionnaire summary & conclusions

Results compiled from the "Ferrous Armour Corrosion Product Questionnaire" outlined the prevailing international trends in approaching ferrous corrosion products on plain undecorated ferrous armour. The wide international representation of countries (14) by the reasonable number of respondents (24), of whom the majority (70.8%) have an armour specific professional background in predominantly armour (and arms) collecting organisations, is deemed to be sufficient to draw fairly confident conclusions from the philosophy and practices surveyed. Before concluding on the questionnaire's seven main findings, it is important to reiterate here that trends were surveyed, and clarify that the aim was not to attempt to document all the individual approaches and influencing conditions possible for each and every individual armour: an immeasurable and impossible task for any research methodology. Consideration of the individuality of each armour's use (dynamic and static) and environment (climatic, fiscal), past and future, is recognised by some respondents who elected to emphasise these important aspects.

The questionnaire's seven main conclusions are as follows:

- 1. Corrosion product removal is unanimously the approach *most commonly* taken to ferrous CPs on undecorated ferrous munition armour. So-called CP conversion with chemicals is still practiced as an option, but to a much lesser degree. Unlike some approaches taken to archaeological ferrous artefacts, leaving CPs in place on armour and not intervening is uncommon practice: only one respondent did this and this was on armour inner surfaces only;
- 2. The level of corrosion product removal was less decisive, but a clear majority take a relatively conservative approach by "Removing red-brown corrosion products, leaving most/all dark grey/black corrosion products in/above the corrosion pits". Completely stripping a surface of CPs appears to be largely, but not entirely, a discontinued practice;

⁷⁹⁰ Appendix A – Laboratory questionnaire on ferrous armour corrosion products: delivered questionnaire

⁷⁹¹ Appendix B – Laboratory questionnaire on ferrous armour corrosion products: results & analyses

- 3. The factors for determining which corrosion products are removed are ranked here in order of receiving the respondents' highest degrees of influence:
 - i. <u>Corrosion prevention;</u>
 - ii. Armour surface information; and

iii. Aesthetics.

i. Corrosion prevention

Corrosion prevention is the highest-rated factor influencing which corrosion products are removed. The majority of respondents did not make any differentiation between any possible effects of different CP types (colours, forms) and any specific influences on which CPs are removed and kept. Armour conservation professionals do not seem to make a distinction between ferrous CP species/phases, although specific questions on this topic would be required to confirm or disprove this supposition. One respondent specified, "Active corrosion may be removed, but on the whole the objects are coated in wax and put into controlled environments and left". It is unclear how "active corrosion" can "be removed" and it is thought that this refers to the weeping corrosion products that are symptomatic of active corrosion rather than the root cause of corrosion. Preventive conservation practices were not surveyed, but these approaches must obviously play an integrated overall role in limiting the corrosion evolution-corrosion product removal cycle. Unsurprisingly suggesting that these preventive conservation practices do indeed exist in parallel, a respondent specified that the philosophy was: "Minimal intervention" and the "Aim: protection and preventive conservation".

ii. Armour surface information

The second highest-rated factor that influences which corrosion products are removed is "Armour surface information". For this factor, the CP removal procedure is cited as being used to reveal original surface features, while at the same time the approach taken is tempered by not removing too much material since this could paradoxically remove the features that the procedure endeavours to reveal. It is unclear if this information is preserved in the CPs or in the adjacent uncorroded metal. This is of high relevance to the research dissertation since there were no cited examples of CPs retaining such former surface information. This either suggests that the phenomenon does not exist, or at least is not perceived to exist, on atmospherically corroded ferrous armour. A specific question is required to elicit these data.

iii. Aesthetics

The third highest-rated factor that influences which corrosion products are removed is "Aesthetics". Here the motivation for selecting which CPs are removed is mentioned as improving, "as much as possible", the uniformity or evenness of the surface. Making improvements is a *relative* & subjective concept where boundaries are defined by the *before treatment* condition and the subsequent level of cleaning performed, and of course by human opinion. Approaching full restoration by attempting to obtain a new state for aesthetic purposes is not possible without removing all CPs and the far majority do not attempt this practice.

In practice, these three influential factors would not be treated in isolation and the overall decision to select which CPs to be removed would be determined by making a simultaneous assessment of these and other factors. One respondent aptly specified, "You have to do a balance that is dependent on the factors in play at the time - in conservation the only golden rule is that there is no golden rule!"

- 4. Concerning the types of equipment/materials used to remove corrosion products, a wide variety is in use. The most commonly cited categories of equipment/materials in use are summarised below in order, and are notably all physical and manual methods⁷⁹²:
 - i. <u>Handheld implements (91.7%);</u>
 - ii. <u>Steelwool handtools (66.7%);</u> and
 - iii. <u>Abrasive pastes liquids (58.3%)</u>.

Some respondents who have preferences for *manual*, rather than *automated* (i.e. mechanical) physical tools, made this distinction, "However I do almost all my work now using abrasive methods by hand so that the process is highly controlled", "I have, in the past, used a range of polishing machinery, but I would not advocate that approach now at all", and "...always manual (no motor, etc)".

The strong preference for physically based equipment/materials is further made clear when compared to chemically based equipment/materials in use (acid solutions (29.2%), chelating agents (16.7%)). One respondent specified their unambiguous perception of a specific acid:

"One of the worst treatments used on armour which has caused irreparable damage in many European collections has been the application of acid, most commonly phosphoric acid. Mechanical methods I believe are much superior because the conservator has control of the level of corrosion removal. Acid is not very controllable, destroys the total surface of the object-often leaving the surface dead."

The same respondent preceded this statement however with an important point that is in fact applicable irrespective of any technique, physical or chemical:

"Often it is not so much the type of abrasive/technique used, but the actual knowledge/method & skill of the conservator that is the defining factor in producing a sympathetic treatment or a damaging one".

More complex and innovative techniques (e.g. laser, local electrolysis) have been tested by several respondents, but it appears that the simpler traditional techniques remain in predominant use; probably logically since they are perceived, at least until present, the most effective and affordable. Laser and local electrolysis are in continued use by one respondent each.

- 5. Before corrosion product removal procedures, protective coatings are in the majority removed and done so with solvents.
- 6. The finding that the majority (70.0%) of respondents polish adjacent metallic surfaces after corrosion product removal (in order to homogenise the overall appearance) has implications for the long-term conservation of armour surfaces. The depletion of metal from armour is in these cases a two- or possibly three-stage process that would vary in severity on a case-by-case basis:
 - i. Before treatment intervention: corrosion of metal by oxidation,
 - ii. During treatment intervention: erosion of metal by polishing, and
 - iii. <u>After treatment intervention: corrosion or repassivation of</u> previously passivated metal by oxidation.

It appears from the data that the treatment techniques applied to remove CPs from munition armour could be, at the outset, insufficiently localised to avoid such initial metal contact and metal surface polishing. The level of assisted magnification, if any, could have beneficial implications on insufficiently localised CP removal procedures.

⁷⁹² Although non-physical actions of constituents in proprietary abrasive pastes/liquids are open to question.

7. Respondents unanimously remove corrosion product residues from surfaces after CP removal procedures, while they all use solvents and fibre/cloths to achieve this. This practice is believed to occur so as to improve the corrosion resistance of a surface, and coverage of any coating; although motivations were not specifically asked.

2.5 SUMMARY TO HISTORICAL, SCIENTIFIC & CONSERVATION CONTEXT

Chapter 2 has demonstrated that the mid 16th-mid 17th century northern Italian-style wrought ferrous munition armour has experienced a diverse history, assuming roles that have implicated its corrosion and removal of subsequent corrosion products. Current philosophical and practical approaches to CPs on metal artefacts including armour have evolved to account for many of the considerations required in a contemporary museum context. Of significance is the current development of the conservation of modified original surfaces in corrosion products on archaeological artefacts.

The following chapters seek to experimentally ascertain if it is indeed possible to determine the presence of modified original surfaces in the corrosion products of Palace Armoury munition armour and on atmospherically corroded materials similar to this armour. Any traces of the limitos could activate international discussion regarding the approaches taken to armour conservation and possibly other historical ferrous artefacts.

In other words, is there a surviving limit of the original surface on atmospherically exposed mid-late Early Modern Period wrought iron and low-carbon steel armour artefacts? If there is a limitos, how does one determine its location? And lastly, how does one practically reveal it?

3 EXPERIMENTAL METHODS & MATERIALS

The experimental methods and materials employed to determine and reveal any limits of the original surfaces present in the corrosion products on the mid 16th-mid 17th century⁷⁹³ northern Italian-style wrought plate munition armour at the Palace Armoury are presented in this chapter.

The application of these methods was divided between the two major components of the experimental investigations: firstly, during non-invasive⁷⁹⁴ or non-destructive⁷⁹⁵ investigations on *authentic munition armour* artefacts and secondly, during extensive invasive⁷⁹⁶ investigations performed on *armour analogues* designed to simulate the characteristics of the authentic armour.

3.1 OVERVIEW OF THE EXPERIMENTAL FRAMEWORK

Case studies on the authentic munition armour were used to define the metal, corrosion and corrosion product morphologies present on these cultural heritage artefacts. Defining the CP morphologies and their extent of development relative to the uncorroded metal was integral to determining their association, and determining how the limit of the original surface⁷⁹⁷ might be preserved within these CPs. The metal surfaces did not require much further investigation since their identification was apparent from their metallic appearance, but the surfaces' influence on corrosion morphologies was noted. The determination of evidence for the former original metal surfaces in the corrosion products on armour was the focus of this research.

⁷⁹³ i.e. mid-late Early Modern Period

⁷⁹⁴ Non-invasive investigations are defined as where investigations do not cause any artefact alterations.

⁷⁹⁵ Non-destructive investigations are defined as where investigations cause alterations to a surface site or sample, but permit reinvestigation since the site/sample is not destroyed.

⁷⁹⁶ Invasive investigations are defined as where investigations cause irreversible alterations. Invasive investigations might be wholly destructive of a surface or sample or they might be non-destructive; thereby permitting reinvestigation.

⁷⁹⁷ As a reminder, the *limitos* (limit of the original surface) can be considered here as the last metallic surface that has become modified over time during corrosion processes. The limitos manifests itself as metal corrosion products, not metal. The surfaces of uncorroded metal can be considered as the *original surface* according to the definitions given in 2.3.1 What is the original surface & why determine its presence?

The methodology to study the authentic munition armour began on a global level during a macroscopic, *in-situ* corrosion condition survey of the collection displayed in the Armour Hall at the Palace Armoury. This macro perspective of a large quantity of armour enabled determining the major trends in CP surface distribution and morphologies. Next, surfaces on a smaller selection of munition armour were observed in the laboratory at macro- and microscopic levels. From these armour, three extracted and embedded samples (made available from previous studies) were selected for non-destructive cross-section investigations. Each of these samples provenanced munition armour featuring surfaces hypothesised to represent differing historical interventions or non-interventions. The stratigraphy of this local area on each armour could then be determined in terms of its metal core, inclusions, corrosion products, protective coatings and surface pollution. Amongst these stratigraphies, the localisation of the limitos on several zones of interest (ZOIs) for each sample was then proposed.

The case studies of authentic munition armour informed the subsequent manufacture of the simulated armour: the *armour analogues*, otherwise also simply referred to as *coupons*. These contemporary analogues, made from similar but non-identical materials to the armour, were prepared to create the corrosion product morphologies simulating those previously observed on the authentic armour.

Since the research question revolves around the interventive, destructive and therefore totally irreversible conservation-restoration practice of metal corrosion product removal, it was anticipated that the experimental questions would require quantities of suitable experimental material to destructively investigate. Conservation ethics dictate the requirement to minimise testing on authentic artefacts, especially when at an initial research phase. In this way, destructive research interventions on authentic armour during these preliminary investigations would be avoided while accepting the limitations of indirect comparability.

The armour analogues were destructively used for a series of three principal and consecutive objectives, which were to: determine the presence, or indeed absence, of the limitos; investigate current corrosion product removal practice at the Palace Armoury; and finally demonstrate the level of selective CP removal required to respect the previously determined limitos (if any).

124

3.2 PALACE ARMOURY ENVIRONMENT, MUNITION ARMOUR & CORROSION PRODUCT CASE STUDIES: NON-INVASIVE & NON-DESTRUCTIVE INVESTIGATIONS

The methodologies followed, the justification for the selection criteria, and the various levels and means of observation and analyses made on the Palace Armoury environment and munition armour, are presented here.

The main objectives of the laboratory investigations of the Palace Armoury's environmental pollution and corroded munition armour were to:

- 1. Assess the potential use of environmental pollution as a superior limitos marker in the armour corrosion products;
- 2. Propose potential corresponding and inferior limitos markers in the armour corrosion products; and
- 3. Interpret the development of corrosion products on the armour surfaces and their internal structures, so as to better simulate representative corrosion on the armour analogues.

As a consequence, of particular interest was the presence of: particulate aerosols within the PA environment and the armour's corrosion products; the distribution of the armour's corrosion product morphology types and their extent of development; and the armour's metallurgical features.

The genre of undecorated munition armour of the Palace Armoury, once worn by the field troops of the Order of St John, was chosen since it represents the majority of armour in the collection that requires attention in terms of corrosion product prevalence. This genre conveniently provides a less complicated material construction being less decorated (i.e. no gilding, bluing, browning, limited etching etc) than the Knights' or Grand Masters' field or parade armour⁷⁹⁸.

In this research, focus was made to determining the limitos of the outer armour surfaces. The armour surfaces are defined by their orientation to the former wearer: *outer* surfaces are those that face outwards when worn and are visible, while *inner* surfaces are those that face towards the body of the wearer. Identifying the inner and outer surfaces has important implications towards interpreting the respective surface histories of the armour. Armour have historically been appreciated for their aesthetic appeal whether in active service or static display. As a result the

⁷⁹⁸ Opportunely starting with fewer construction variables reduces the complexities introduced by these materials and can be more easily simulated by contemporary analogues. In this way the studies on the munition armour and their analogues could form the basis of future studies on decorated historical ferrous artefacts, which feature this greater number of variables.

outer surfaces, rightly or wrongly, have been and continue to be, given greater attention to maintain their observed appearance⁷⁹⁹.

3.2.1 ARMOUR HALL WALL DISPLAY: *IN-SITU* CORROSION SURVEY

The objective of the Palace Armoury Armour Hall wall display *in-situ* corrosion survey was to gain an understanding of how the environment has been affecting the corrosion of this munition armour. Of particular interest was correlating environmental factors and corrosion protection coatings with the presence, morphologies, distribution and extent of ferrous corrosion and corrosion products.

Wall-displayed armour were inspected via ladder access while still *in-situ* on the wall in the PA⁸⁰⁰. Handling was prohibited and low ambient illumination was supplemented by a headlamp. This impractical documentation scenario limited possibilities to study the surfaces in detail, but provided an opportunity to gain a macro perspective of the corrosion condition of all the munition armour hanging as wall panoplies in the Armour Hall. In addition to recording the evident environmental effects later outlined⁸⁰¹, the particular armour component and constituent materials including protective coatings were noted. The inner surfaces of the armour were not documented primarily due to their inaccessibility and also because this research focuses on outer surfaces. The total number of armour assemblages investigated in this way was 119. The corresponding Arms Hall featured a similar quantity, which was only viewed from the floor and not photographed, as it was deemed unnecessary to effectively duplicate the survey.

3.2.2 Armour Hall aerosol pollutants: scanning electron microscopy-energy dispersive spectrometry (SEM-EDS)

To further investigate which, if any, of the materials deposited at the Palace Armoury could act as potential superior limitos markers it was necessary to explore the immediate atmospheric environment so as to identify their presence and gain a

⁷⁹⁹ The attention given to the armour inner surfaces appears to have included repeated application (over existing materials) of coatings for protection and has resulted in a multi-layered organic stratigraphy with metal corrosion products and possible high temperature oxides remaining from fabrication (Degrigny et al., 2007b, p. 38). This complex stratigraphy can be considered a time capsule of valuable information (e.g. fabrication, maintenance) warranting a larger collaborative conservation research project between metals and paintings conservators. Nonetheless, the inner armour surfaces were not entirely overlooked in this research since they formed a part of these three-dimensional artefacts and because they sometimes provided useful comparisons with the information provided by the outer surfaces.

⁸⁰⁰ 3.5.1.1 *In-situ* macrophotography

⁸⁰¹ 4.1.1 Armour Hall wall display: *in-situ* corrosion survey

better understanding of the potential interactions of these artefacts' materialenvironment system. An understanding of the PA's environmental composition would facilitate interpretation of materials unassociated with the metal and corrosion products.

To gain an overview of the elements comprising the aerosol pollutants at the Palace Armoury, particles actually deposited on experimentally exposed surfaces other than armour were observed and elementally analysed with SEM-EDS by Vella⁸⁰². The present author interpreted these data. These particles had been manually collected (by means of SEM copper backed adhesive tape) from exposed and previously clean experimental surfaces located adjacent to armour on a wall display in the Armour Hall. The samples were analysed without a preparatory carbon coating, as this was unnecessary for conductivity of these thin layers already mounted on the conductive copper tape. It is important to note that point analyses were not performed randomly; indeed they aimed to identify the range of materials present, not their statistical quantities. A range of morphologies was analysed.

To confidently use exogenous materials as superior limitos markers, they should ideally not be inherently present in the artefact material itself, making attribution between the two sources possible. If such an ideal superior limitos marker is not found, then discrimination between materials of similar elemental composition might still be possible, via justification with major differences in morphology or quantity. Since such material characterisation is here based on SEM-EDS⁸⁰³, morphology and elemental composition can only be used, as opposed to the more definitive structural characterisation methods such as x-ray diffractometry or Raman spectroscopy.

3.2.3 AUTHENTIC MUNITION ARMOUR CORROSION/CORROSION PRODUCT MORPHOLOGIES: LABORATORY INVESTIGATIONS OF SURFACES & STRUCTURES

The methodologies followed to perform the various laboratory investigations on the surfaces and cross-sections of the authentic munition armour are subsequently presented here. Justification of the instruments and approaches followed and sample selection criterion is emphasised.

⁸⁰² Vella, 2006

⁸⁰³ 3.5.2 Scanning electron microscopy-energy dispersive spectrometry

3.2.3.1 Armour surface observations

Laboratory examinations of a selection of these munition armour was required for a greater understanding of the corrosion and corrosion products, since superior illumination, magnification and surface cleanliness greatly facilitated observation, circumstances that were unachievable *in-situ* at the Palace Armoury.

3.2.3.1.1 Munition armour selection

Ten armour, mostly formerly displayed on the Palace Armoury walls, but now stored in the PA reserve collection, were made available for more detailed study in the laboratory⁸⁰⁴. Images of the ten available armour for selection are provided in Appendix C^{805} .

From the ten armour available, six were selected for further *surface* documentation. They were chosen for their representativeness of the majority of the munition armour collection. Since there is no current inventory of the Palace Armoury collection, the selection was based on the data and experiences obtained from the *in-situ* observation of the armour on the wall displays and a previous inspection of the collection held in the reserve collection.

Four of these available armour⁸⁰⁶ were excluded from the surface observation selection since the armour surfaces were either:

- Covered (i.e. PA RC 29 Tasset & PA RC 88 Full arm) with black paint. The opaque black paint limited observation of any possible underlying metallic surfaces and the type and extent of corrosion product morphologies. Transparent coatings were preferred since the paint might have had a possibly different, even if minor, effect on the corrosion surface properties and moreover since transparent coatings permitted greater surface observations without destructive probing of these coating layers. More significantly, armour with transparent coatings such as the yellow-green polyurethane⁸⁰⁷ varnish were deemed more representative of the collection⁸⁰⁸; or
- Decorated largely with acid-etching (i.e. PA RC 20 Cannon & PA RC 25 Gorget). Etched armour, as previously explained⁸⁰⁹, represent non-munition armour materials and present more complex material structures not under study here.

⁸⁰⁴ The curators of the Palace Armoury made these armour available for the Promet project and subsequently for this research dissertation.

⁸⁰⁵ Appendix C – Ten Palace Armoury armour available for laboratory study

⁸⁰⁶ Appendix C – Ten Palace Armoury armour available for laboratory study

⁸⁰⁷ Lemasson et al., 2004, p. 10

⁸⁰⁸ 4.1.1 Armour Hall wall display: *in-situ* corrosion survey

⁸⁰⁹ 3.2 Palace Armoury environment, munition armour & corrosion product case studies: non-invasive & non-destructive investigations

Although these four artefacts had altered surfaces, their metal cores were still of potential interest; thus they were not totally excluded from enquiries concerning the metal composition.

3.2.3.1.2 Armour surface macrophotography & photomicroscopy

Photographic documentation of the surfaces of the six representative munition armour began on a macroscopic scale⁸¹⁰ by looking globally at the corrosion product distribution over the varying orientations of the armour surfaces. The objective of performing armour surface *macrophotography* was to assist documentation of trends in the types, distribution and extent of corrosion products present on the surfaces of the six selected armour.

The armour available for laboratory examination had mostly previously been cleaned of its particulate layer, thereby allowing unobstructed inspection of the surface CPs. This unobscured observation (together with greater illumination and magnification) further confirmed the probable causes (assumed from the Palace Armoury *in-situ* wall display examination) why corrosion had ensued on certain surfaces yet was almost non-existent on other surfaces. Further to this confirmation, close-up surface inspections, still on a macro scale, enabled classifying a possible evolution or transition of the types of corrosion product morphologies on the metal surfaces. The differing CP morphologies and their extent of development supported a hypothetical proposition of how the CPs possibly evolved and even interacted to provoke different morphologies over time.

The objective of the subsequently performed *photomicroscopy*⁸¹¹ was to complement the macro perspective observations by determining how these normally macro-viewed surfaces are microscopically constructed. The surface morphology of the metal, not only the CPs, was deemed to be of interest since this would provide a reference point of the surface conditions before corrosion. and possibly determine how the metal surface influences, or not, the development/morphology of the corrosion products. Such surfaces might then be mimicked in the CPs and therefore behave as a corresponding limitos marker (i.e. indications of the limitos in corrosion products)⁸¹². Information from these microscopic surface investigations would also

⁸¹⁰ 3.5.1.2 Laboratory macrophotography

⁸¹¹ 3.5.1.3 Laboratory photomicroscopy

⁸¹² 2.3.1.2.1 Localisation of the limitos

provide the basis for the informed manufactured surface finishing of the armour analogues.

3.2.3.2 Armour corrosion cross-section observations & analyses

The main aim of the cross-section observation and analysis of the armour was to determine if, by this unique internal core perspective, evidence exists within the corrosion products for diagnostically defining the limitos. It was anticipated that some exogenous materials (i.e. pollution, coatings) might be used as superior limitos markers. Simultaneously, some endogenous materials (i.e. metal, inclusions) might be used as inferior limitos markers. Lastly, any corresponding limitos markers, the definitive marker, were sought. All of these markers were expected to help highlight the boundary between the CPs containing the superior and inferior limitos markers.

As a secondary objective, the cross-section observation assisted in understanding the nature of the CP stratigraphy in order to enable the more accurate reproduction of the armour analogues.

Characterising corrosion products and their pollutants would also assist in determining the likely stability of these CP layers and their reactivity towards the metal. While it was not the research focus, the implications these corrosion product layers have on the underlying supporting metal are paramount when considering their material conservation implications, and also the attitudes held by museum staff towards ferrous CPs.

While the primary research question was to diagnostically determine the limits of the original surfaces, it was also useful to consider the type of any evidence found. This consideration was necessary in order to see if such micrometric-scaled evidence⁸¹³ could then later be extrapolated, and applied, onto the scales of a macroscopic artefact. In other words:

How could any evidence, which is found on such a small scale and in cross-section, be useful to a conservator who is attempting to reveal, via a plan perspective, the original surface limits from a complete armour artefact with a coating and corrosion products?

⁸¹³ As given by optical microscopy, micro-Raman spectroscopy, scanning electron microscopy-energy dispersive spectrometry

3.2.3.2.1 Armour cross-section sample selection

To facilitate the subsurface assessment of the armour, one cross-section⁸¹⁴ from each of the ten pieces of Palace Armoury armour was made available for this study⁸¹⁵. To prepare a shortlist of candidate samples for further study, the results from previously published studies⁸¹⁶ and project reports⁸¹⁷ (predominantly using SEM-EDS) of these armour samples by Vella et al. were used in conjunction with the present author's preliminary application of reflected optical microscopy (standard optical and metallographic microscopes⁸¹⁸). To focus these studies on a more feasible quantity, a selection of three from these ten armour and corresponding cross-sections was made.

A summary of the ten armour's characteristics, and more particularly the characteristics of their accompanying cross-sections, are given in Appendix D^{819} . Particular reference is given to the representativeness of the samples and the armour, especially their corrosion and corrosion products. Again, the presence of paint layers and decorative etching precluded four of these armour from being selected⁸²⁰.

All the armour sample extraction locations were previously decided with curatorial consultation so as to minimise the impact of such invasive sampling⁸²¹. Mainly due to the concurrence between visible outer surfaces and those featuring corrosion products, it was not possible to obtain samples from these aesthetically prominent surfaces. These prominent surfaces are of more promising research potential due to their representiveness of the bulk material and the surface conditions not always found at the armour edge. Sampling from damaged areas of armour was elected for the minority of the armour. Despite localised damage possibly making a sample unrepresentative of the remaining armour and collection, one such sample was chosen since the highly developed corrosion and retained corrosion products were deemed of high investigative potential.

⁸¹⁹ Appendix D – Ten Palace Armoury armour and cross-section samples: comparative summary

⁸²⁰ 3.2.3.1.1 Munition armour selection

⁸¹⁴ Cross-sections previously created during the Promet research project were reused for the current research.

⁸¹⁵ 3.2.3.1.1 Munition armour selection

⁸¹⁶ Vella et al., 2004 & Vella et al., 2005b

⁸¹⁷ Vella & Degrigny, 2005b

⁸¹⁸ 3.5.1.3 Laboratory photomicroscopy

⁸²¹ Degrigny et al., 2007b, p. 36

The small number and localised nature of the cross-sections from the numerous and multi-component pieces of armour makes claiming full statistical representativeness impossible. Due to the heterogeneities inherently introduced by the wrought ferrous plate manufacture technology⁸²², homogeneity of composition between separate plates or across individual plates is not assumed. Nonetheless, these samples provided indispensable insights into the armour's internal composition and condition.

Generally, the extracted samples contained the metal core with corrosion products, organic coatings and surface pollution. The investigative potential of both the sample and corresponding armour were influential on the sample selection criteria. Also, the influence of the specific variant of wrought ferrous metal (i.e. iron or steel) on CP formation, and its possible effect on any limitos markers and the limitos position, was seen to be of potential investigative interest.

Images of the three armour, PA RC 166, PA 316 and PA 329, selected for further investigations in cross-section, are given in Figure 3-1.

PA RC 166 Pauldron (part)

PA 316 Pauldron

PA 329 Backplate

Figure 3-1 The three munition armour accompanying the cross-section samples selected for further laboratory study⁸²³

As an extract of Appendix D – Ten Palace Armoury armour and cross-section samples: comparative summary, Table 3-1 provides a comparison of the attributes of each of the three chosen armour, and their corresponding samples; in terms of representativeness of the originating artefact itself and also the Palace Armoury collection.

⁸²² 2.1.2 Munition armour fabrication: materials & techniques

⁸²³ (Crawford in) Vella et al., 2005a, pp. 8, 10

	Palace Armoury ID no. & date		PA RC 166 1600-1650	PA 316 - ca. 1570	PA 329 – ca. 1570	
	Armour compon	ent name	Pauldron (part, proper right?)	Pauldron (proper left)	Backplate	
Armour macroscopic examinations	Whole armour corrosion description: typology, extent and distribution	/hole armour Outer prrosion surface escription: /pology, extent nd distribution		Moderately developed general CPs throughout oblique surfaces & highly developed filiform corrosion throughout oblique surfaces	Moderately developed general CPs throughout oblique surfaces & highly developed filiform corrosion throughout oblique surfaces	
		Inner surface	Highly developed general surface CPs throughout	Highly developed general surface CPs throughout	Moderately developed general surface CPs throughout	
	Armour sample site description: corrosion typology and oxtent (surface	Outer surface	Highly developed general surface CPs	Not observable: between lames	Mildly corroded surfaces with no CPs evident	
	assessment only), between lames, damaged edge, etc.	Inner surface	Highly developed general surface CPs	Highly developed general surface CPs	Moderately developed general surface CPs	
	Number of lames & location notes	k sampling	One lame from one. Physically damaged edge.	One lame from nine. Edge between dynamic lames	One lame from two. Physically damaged edge	
	Representativeness	of artefact	Yes, in respect to corrosion typology and extent. No, in respect to damaged edge	Yes, in respect to corrosion typlogy and extent. Determinable for inner surface only	Outer – Yes, in respect to surfaces exhibiting pitting but few CPs. No, in respect to corrosion typologies and extent of corrosion. Inner surface – Yes, in respect to corrosion typology and extent	
	Representativeness collection	sof	No, in respect to physically damaged and highly corroded state with no adjacent metallic areas	Yes	Yes	
Armour sample microscopic examinations	Metal type & micr	ostructure	Ferrite ⁸²⁴	Ferrite with carbides ⁸²⁵	Widmanstätten ferrite-pearlite ⁸²⁶	
	Corrosion products (CPs) observable by	Outer surface	Present	Present	Present in partly emptied pits	
	optical microscope	Inner surface	Present	Present	Present	

Table 3-1 Attributes of the metal and corrosion products comprising the three munition armour and corresponding samples selected for further study

The key cross-section sample selection prerequisite was the presence and extent of corrosion and/or corrosion products. As indicated by the armour surface

⁸²⁴ Vella et al. 2004, p. 223 & Appendix E – Microstructures of the three Palace Armoury munition armour samples selected for cross-section investigations

⁸²⁵ Ibid., p. 227 & Appendix E – Microstructures of the three Palace Armoury munition armour samples selected for cross-section investigations

⁸²⁶ Ibid., p. 224 & Appendix E – Microstructures of the three Palace Armoury munition armour samples selected for cross-section investigations

conditions of PA RC 166, PA 316 and PA 329, and their respective extracted samples (Table 3-1), the selected armour most probably had non-identical histories. That is to say their present day condition (i.e. presence or absence of corrosion pits and/or corrosion products) suggested a variety of information indicating their histories might be retrieved from each sample cross-section and associated armour surface. The potential contribution of each sample for these studies varies according to the amount of CPs remaining. A request for resampling of new sites featuring greater corrosion and CP prevalence was considered in order to acquire samples more suited to this experimental question. This was decided against however due to its inherently invasive nature.

The proportions of the previously determined⁸²⁷ microstructures of the eight⁸²⁸ remaining munition armour (i.e. 3 iron, 37.5% & 5 steel, 62.5% steel) were used to determine a proportionally representative sample of three (one iron, 33.3% & two steel, 66.7%) cross-sections.

The chosen ferritic armour was PA RC 166 (Appendix E^{829}). Although it would not eventually be possible to use a single-phased ferritic iron for the armour analogue material, it was deemed appropriate to investigate the possibility of any corrosion product strata differences between iron and steels; especially in terms of the limitos. In turn, two *steels* of differing microstructures (ferrite with carbides, Pauldron PA 316 (Appendix E^{830}); and ferrite-pearlite, Backplate PA 329 (Appendix E^{831}) were selected to indicate possible corrosion differences between varying steel microstructures⁸³².

⁸²⁷ Vella et al., p. 230

⁸²⁸ The etched armour (PA RC 20 Cannon & PA RC 25 Gorget) were excluded since they are not considered munition armour (Figure 2-5 Left: Northern Italian-style etched Knight's Armour (circa 1570-1580) Right: Northern Italian Pisan style gilt parade armour of Grand Master Verdelin (circa 1580)).

⁸²⁹ Appendix E – Microstructures of the three Palace Armoury munition armour samples selected for cross-section investigations

⁸³⁰ Appendix E – Microstructures of the three Palace Armoury munition armour samples selected for cross-section investigations

⁸³¹ Appendix E – Microstructures of the three Palace Armoury munition armour samples selected for cross-section investigations

⁸³² 2.2.2.3.5 Ferrous metal type

3.2.3.2.2 <u>Armour cross-section sampling site surface macrophotography &</u> photomicroscopy

The plan surfaces adjacent to the sampling site were recorded via macrophotography⁸³³ and photomicroscopy⁸³⁴. The purpose of retrospectively recording the magnified appearance of the surfaces adjacent to the cross-sections' sampling sites was to enable a comparison with the subsurface condition of the subsequently observed cross-sections. When faced with surfaces of similar aspect, that do not have the benefit of a complementary cross-section observation, it might be possible to assume cautious preliminary assessments about a possible range of conditions to expect inside an armour's corrosion products. Inspecting the sampling site would also aid greater understanding of how its provenance from the specific location on the armour artefact might have affected its current internal condition.

3.2.3.2.3 Armour cross-section sample preparation

The samples were previously extracted and embedded by Vella et al. for metallographic⁸³⁵ and subsequent corrosion morphology⁸³⁶ studies⁸³⁷.

Upon receipt of the three samples by the current author, minor pitting and superficial corrosion products on the metal cross-section were removed by polishing with 2400 and 4000 grit silicon carbide paper for 20-30 seconds each. White spirit was used as a polishing lubricant to avoid flash rusting and/or dissolving the thicker coating system that covered two of the samples and their CPs. Between investigations, samples were stored in sealed boxes desiccated with dry silica gel to limit corrosion reactivation.

^{833 3.5.1 ?} Laboratory macrophotography

⁸³⁴ 3.5.1.3 Laboratory photomicroscopy

⁸³⁵ Vella et al., 2004

⁸³⁶ Vella et al., 2005b

⁸³⁷ The procedure is stated to involve manual cutting from the armour with a jeweller's saw and embedding in Buehlers Epoplast epoxy resin (Vella et al. 2004, p. 221). It was noted that the corrosion product layers on PA RC 166 "...might have been disturbed during cutting/embedding procedure" (Vella et al., 2005b, p. 319). The embedded samples were ground and polished with 100-200-300-400-600-1000 grit silicon carbide paper on a specimen preparation wheel. Finally 3µm and 1µm diamond pastes were used to achieve a higher polish. These samples had previously been acid-etched for metallography, but were subsequently repolished for the preliminary studies of corrosion morphology (Vella et al., 2005b, p. 320).

3.2.3.2.4 Armour cross-section optical & metallographic photomicroscopy

Photomicroscopy⁸³⁸ performed on the cross-sections was used to make preliminary observations of the various features of the sample stratigraphies resolvable at the low magnifications offered by these instruments. This enabled selection of zones of interest specifically appropriate for the investigations. Zones of interest were principally those regions that exhibited corrosion products.

Generally the samples were first surveyed at low magnifications (standard optical: 40x / metallographic: 64x) to gain an overview and context of the various features. Then higher magnifications (100/128x-200/256x) were used to further inspect zones of interest.

3.2.3.2.5 <u>Armour cross-section scanning electron microscopy-energy dispersive</u> <u>spectrometry</u>

To bridge the optical and metallographic microscope observations of the armour cross-sections low magnification (25-100x) observation with the scanning electron microscope⁸³⁹ were performed first. A general indication of the applied detectors is given later⁸⁴⁰. Then using the higher magnification (200-2000x) and elemental characterisation capabilities of the SEM-EDS, the followed methodology correlated morphological and elemental compositional qualities occurring within the corrosion product layers or metal. Consistent boundaries (or interfaces) between the various features were sought in order to document any possible evidence for the limit of the original surface. Complementary to this, the absence or presence of superior or inferior limitos markers⁸⁴¹ was sought to assist the limitos determination on the armour.

3.2.3.2.6 Armour cross-section Raman micro-spectroscopy

It was anticipated that the Raman micro-spectroscopy ⁸⁴², performed abroad by a second party⁸⁴³, could provide information on the composition and distribution of the corrosion product species, or at least the majority phases (i.e. single or mixed

^{838 3.5.1.3} Laboratory photomicroscopy

⁸³⁹ 3.5.2 Scanning electron microscopy-energy dispersive spectrometry

⁸⁴⁰ 3.5.2 Scanning electron microscopy-energy dispersive spectrometry

⁸⁴¹ Materials respectively exogenous or endogenous to the artefact, as per 2.3.1.2.1 Localisation of the limitos

⁸⁴² 3.5.3 Raman micro-spectroscopy

⁸⁴³ Ms Judith Monnier, Laboratoire Pierre Süe, CEA (Commissariat Energie Atomique) Saclay, France

CPs). The distribution of CPs, vertical from the surface layers to the uncorroded metal, was of interest since this is the perspective the conservator has, when approaching armour.

The zones of interest corresponded with those investigated with the SEM-EDS; facilitating complementarity of investigation techniques.

It was via Raman micro-spectroscopy that indications regarding the possible activity or inactivity of these CPs on further corrosion of the metal could be made.

3.2.4 AUTHENTIC MUNITION ARMOUR CORROSION PRODUCT REMOVAL: THE PALACE ARMOURY TECHNIQUE

The current author made a request to the Palace Armoury curators to document the current corrosion product removal procedure being practiced on their munition armour. The CP removal approach on armour pending treatment was observed and documented.

One rationale behind documenting the armour cleaning process was to enable making an assessment of the comparability of the performed CP removal approaches subsequently applied to the armour analogues. The surface area of armour analogues later given to the Palace Armoury conservation personnel⁸⁴⁴ was required to be small (2 x 2.5cm) to facilitate their subsequent examination on the various microscope stages. Such a small size might not favour comparable conduct that could occur with larger armour. Also it was suspected that corrosion product removal procedures between authentic armour and armour analogues might become incomparable if the respective coatings and CPs did not respond similarly to cleaning techniques. In this way any possible resulting differences in approaches to the analogues could be assessed for their significance.

The firsthand witnessing of the Palace Armoury's munition armour routine corrosion product removal practice also supported the information provided by the PA in their contribution to the Ferrous Armour Corrosion Product Questionnaire⁸⁴⁵.

Prior to meeting for the documentation of the cleaning procedure in the PA conservation laboratory, the broad research rationale behind documenting the CP removal was outlined. Three backplates, formerly on wall display, had been selected

 ⁸⁴⁴ 3.3.2.3.2 Armour analogues, Palace Armoury technique: current armour corrosion product removal practice & 4.2.1.2.1 Summary of armour analogue corrosion cross-section investigations results

⁸⁴⁵ Appendix A – Laboratory questionnaire on ferrous armour corrosion products: delivered questionnaire & Appendix B – Laboratory questionnaire on ferrous armour corrosion products: results & analyses

in collaboration with the Palace Armoury Curator from a collection pending treatment. The armour represented three relative degrees of CP development (Figure 3-2). A fourth, more heavily corroded backplate was available for selection, however this corrosion was deemed to not be representative of the greater munition armour collection (as established by the PA *in-situ* corrosion survey⁸⁴⁶).

Figure 3-2 Three backplate armour selected to be representative of the corrosion extent on the wall displays

The armour with the least corrosion development (Figure 3-2, image 1) was selected to observe the Palace Armoury's cleaning technique since it was expected that it would be representative of the amount of corrosion realistically possible to later create in the laboratory on the armour analogues. It was not expected that the

⁸⁴⁶ 4.1.1 Armour Hall wall display: *in-situ* corrosion survey

armour analogues would have enough time to corrode as much as the third, and possibly second, corrosion extent classifications. A temporary vignette was selected for corrosion product removal and would form a comparative reference to the uncleaned areas on this symmetrically corroded armour.

The corrosion product removal technique only attended to the outer armour surface. Divided into the following stages, they were all performed manually and progressed downwards through the strata. The stated objective of the PA munition armour cleaning procedure is to "…treat it like a disease and to remove as much corrosion products as possible"⁸⁴⁷. However not all rust is removed for practical reasons since, "No brush or tool can take the rust in the pores of the metal out"⁸⁴⁸. Remarks by the Palace Armoury staff member describing the intention behind the performed actions are quoted below through the procedure:

- 1. Particle removal
 - a. Loose particulate matter on surfaces was removed by dry cloth
- 2. <u>Upper coating (i.e. grease⁸⁴⁹) removal</u>
 - b. Dried grease on surfaces was removed by white spirit solvent on toilet tissue
 - c. Residual white spirit was removed by clean dry paper

- 3. Lower coating (i.e. yellow-green varnish) removal
 - a. Toilet tissue with methylated spirits rubbed over surface
 - b. Bristle brush with methylated spirits rubbed into the surface since this varnish had a "good strong coat". The coating became sticky. "Some varnishes dissolve immediately, but others, like this one, are more resilient and take too long to remove by methylated spirits alone".
 - c. Bristle brush with commercial spray thinner (mixture of aromatic hydrocarbons) rubbed into the surface.
 - d. Toilet tissue without solvent rubbed over surface to remove varnish. "Loose reddish rust" in coating removed during coating removal and thrown away to avoid scratching of the metal. Steps c. & d. were continued for circa 5 cycles until most varnish was removed
 - e. Acetone on paper used to remove almost all isolated remnants of varnish (acetone evaporates too quickly for the bulk of coating removal and would have used twice as much paper)

⁸⁴⁷ This is in contrast with approaches to decorated armour (Stroud, 2006-2007, pers. comm.).

⁸⁴⁸ Stroud, 2006-2007, pers. comm.

⁸⁴⁹ Ibid.

3c.

4.

3d.

Upper (i.e. positioned above adjacent metal profile) corrosion product removal

- a. Adherence of "hard rust attached to the surface" checked by probing with the custom-made acrylic plastic wedge. This physical process also "removed varnish remnants trapped in the rust". "Rust is hard, but shallow", and the acrylic tool skimmed over surface without too much resistance. Acrylic tool applied in a manner to avoid scratching metal surface; as can occur if it picks up corrosion products and pushes them over the metal surface. Remaining CPs proved too resilient as it wore the acrylic wedge
- b. Acetone and toilet tissue used to clean surface for improved surface observation

- c. Machine oil (3-in-1[™]) added to wad/ball of 0000 grade steel wool and armour for lubrication and limited abrasive action. Pressure with fingertips created a localised effect from the steel wool, while the "rest of wad just tickled the surface". Generally, long hand movements are restricted to larger areas of corrosion products
- d. Acetone and toilet tissue used to clean surfaces for improved surface observation.

4c.

4c.

4d.

- e. Scalpel skimmed over surface leaving dark corrosion products in deeper pits. Care taken to not scratch adjacent metal since scratches would show. Blade inspected to see if serrated edges were created by CPs and blade was accordingly replaced. "Worming things" (i.e. filiform corrosion filaments) quite deep; scalpel unable to remove them
- f. 0000 steel wool wads and machine oil used "to remove grits left after scalpel stage"
- g. 0000 steel wool with machine oil applied with pressure on small areas with bamboo skewers to avoid rubbing whole area. A circular motion used to create a more diffuse, less polished area than from straight motions

- Lower (i.e. positioned in pits below adjacent metal profile) corrosion product diminution 5.
 - Wads of 0000 wool moistened with machine oil and dusted with rottenstone a. (silica-limestone powder) and applied in a circular motion. "Rottenstone teases out grit and dirt from holes, tones down blemishes left by rusting and blends in the previous interventions (e.g. "nicking etc from scalpel")". "Not using too much pressure from steel wool as it is used more as a carrier for the rottenstone"
 - b. Acetone & toilet tissue were used to remove rottenstone, abraded "grit & dirt"

- Surface polishing 6.
 - Pre-Lim[™] polishing paste by Picreator applied with tissue in a circular a. motion "to give a shine and take off more dirt"
 - Pre-Lim[™] residue removed with acetone and toilet tissue b.

6b.

The equipment and materials used in the Palace Armoury's outlined corrosion product removal procedure are given in Figure 3-3.

Top row from left: toilet tissue, 3-in-1 machine oil, rottenstone abrasive

Bottom row from left: bristle brush, acrylic scraper, 0000 steel wool, scalpels, steel wool on bamboo skewer, Pre-Lim™ polishing paste

From left: White spirit, methylated spirits, commercial thinner (mixture of aromatic hydrocarbons), acetone

Figure 3-3 Equipment and materials used during the Palace Armoury's documented backplate corrosion product removal (and associated) procedures

As routine, armour are then cold-waxed for corrosion protection with two coats of Renaissance Microcrystalline Wax[™] by Picreator. This step was followed after macrophotographic surface documentation was performed⁸⁵⁰.

3.3 MUNITION ARMOUR ANALOGUES: LABORATORY CORROSION CASE STUDIES: PREPARATION & DESTRUCTIVE INVESTIGATIONS

The methodologies followed and justification for the aging and selection criteria and various means of observation and analyses made on the munition armour analogues are presented here.

The broad aim of producing and studying armour analogues was to better understand the stratigraphies of corrosion product layers and interventions on materials similar to the munition armour. Of particular note was the potential determination of the limitos in such ferrous CP stratigraphies that would not be complicated by the indeterminable variables and ambiguities introduced by historical human interventions. By momentarily withdrawing this significant variable, the natural ferrous corrosion system could be investigated.

3.3.1 ARMOUR ANALOGUES: MANUFACTURE & CORROSION

The literature review on atmospheric ferrous corrosion⁸⁵¹ and direct studies of the surfaces of the armour⁸⁵² were used to inform the manufacture of the coupons designed to simulate the armour metal and its corrosion product morphologies.

⁸⁵⁰ 4.1.4 Authentic munition armour corrosion product removal: the Palace Armoury, Figure 4-43, Figure 4-44 & Figure 4-45

Before detailing how certain CP morphologies were encouraged, several general considerations regarding the fabrication of the armour analogues had to be respected. The major consideration was *time*. The corrosion of experimental analogues does not usually have the benefit of years or decades of CP evolution in the way historical artefacts do, albeit to their detriment.

Also, while the foundations for the armour analogue manufacture and corrosion were based on the literature and first hand observations of coated and corroded ferrous material, the end product coming from the subsequently formulated approaches were ultimately yielded from empirical approaches of trial and error. Differing series of strategies involving various materials were applied to corrode the coupons with morphologies comparable to the armour. Only those armour analogues of greatest experimental potential were selected for later investigation.

3.3.1.1 Metal selection & substrate preparation

The metal coupons used to fabricate the armour analogues were sourced from previous studies on protective coating efficiency⁸⁵³. Since wrought iron is no longer commercially produced⁸⁵⁴, contemporarily produced steel was used as a substitute material⁸⁵⁵. Recycled wrought iron from specialist suppliers could have been considered if finances permitted and consequently a much larger group of samples would have been needed to mitigate/understand any effects of irreproducibility caused by such a variable source. The chosen substitute material, referred to as *grade A naval steel*, was hot-rolled above crystallisation temperatures during fabrication, rather than cold-rolled and tempered⁸⁵⁶. The rolling of the steel between successive mills implies that the metal was not wrought by folding and therefore does not feature the internal planes typical of non-contemporary wrought iron. The base material for all the armour analogues came from the same source and was analysed by a second party with atomic emission arc induced spectroscopy (AEAIS) and was

⁸⁵⁵ Vella, 18/01/2006, pers. comm.

⁸⁵¹ 2.2 Indoor atmospheric ferrous corrosion & control

⁸⁵² 3.2.3.1.2 Armour surface macrophotography & photomicroscopy & 4.1.3.1 Armour surface observations: macrophotography & photomicroscopy

⁸⁵³ The coupons were made available from a previous laboratory testing corrosion protection performance of barrier coatings under the Promet project (Crawford et al., 2007).

⁸⁵⁴ Lyons, 2005, p. 154

⁸⁵⁶ Ibid. & Vella & Degrigny, 2005, p. 1

determined	to	be	a	hypoeutectoid	steel ⁸⁵⁷	with	minor	alloying	of	manganese	and
silicon (Tab	le 3	3-2)	858	8							

	Element	Measured concentration (% weight) ⁸⁵⁹	Calculated concentration (% relative atomic weight) ⁸⁶⁰
1.	Iron	98.9-99.9	99.1894-99.2202
2.	Manganese	0.5130-0.5190	0.5058-0.5119
3.	Silicon	0.1959-0.2012	0.0987-0.1014
4.	Carbon	0.1250-0.1572	0.0269-0.0339
5.	Copper	0.0572-0.0578	0.0652-0.0659
6.	Aluminium	0.0439-0.0444	0.0215-0.0212
7.	Chromium	0.0313-0.0314	0.0292-0.0293
8.	Nickel	0.0219-0.0220	0.0230-0.0231
9.	Sulphur	0.0087-0.0090	0.0050-0.0052
10.	Phosphorous	0.0066-0.0070	0.0037-0.0039

Table 3-2 Most prevalent alloying and trace element components of the armour analogues

With this established composition and according to the American Society for Metals⁸⁶¹ definition and also by those given earlier⁸⁶², this steel is a *carbon steel* (or *plain carbon steel*) as they contain, by definition, maximum concentrations of 1.65%wt manganese, 0.60%wt silicon, 0.05%wt sulphur and 0.05%wt phosphorus⁸⁶³. More specifically, the carbon content (C = 0.13-0.16%wt) of this particular carbon steel classifies it as a *low-carbon steel*⁸⁶⁴ the same classification attributed to the majority of the steel armour (0.1-0.3%wt carbon) metallographically studied by Vella et al.⁸⁶⁵

"Low-carbon 'mild' steel..." is considered, by pre-eminent archaeometallurgist, R.F. Tylecote, as "...the modern equivalent of wrought iron"⁸⁶⁶. Although this is true, since low-carbon steel might have succeeded wrought iron in contemporary application, it is not identical to the so-called wrought iron produced in

⁸⁶³ Roe, 1978, p. 183

⁸⁵⁷ Graph 2-1 The iron and steel section of the iron-carbon phase diagram

⁸⁵⁸ Vella & Degrigny, 2005, p. 1 & Vella et al, 2006a, p. 1

⁸⁵⁹ Surface Engineering Malta, 2005

⁸⁶⁰ Converted from % weight into % relative atomic weight by the present author for comparison with later EDS data which is given in terms of %rel.at.wt (3.5.2 Scanning electron microscopyenergy dispersive spectrometry & 4.2.1.2 Cross-section perspective investigations)

⁸⁶¹ Now ASM International

⁸⁶² Chandler, 1998 in footnote 48 & Leygraf & Graedel, 2000, in footnote 259

⁸⁶⁴ 2.1.2.1 Metal extraction & processing

⁸⁶⁵ Vella et al., 2004, p. 230

⁸⁶⁶ Tylecote, 1992, p. 145

the Early Modern Period, not least due to the relative freedom of inclusions in contemporary carbon steel and its relatively unworked structure⁸⁶⁷.

Manganese and silicon are employed during production of contemporary lowcarbon steels as *deoxidisers* of the metal. These two elements can be used simultaneously during fabrication to react with dissolved oxygen in the molten metal. The de-oxidation products formed are more stable than iron, and their removal as slag is facilitated prior to solidification⁸⁶⁸. Without these additives a greater proportion of these non-metallic particles would form from the oxygen and other elements present and impart undesirable properties in the manufactured metal⁸⁶⁹. The concentration of manganese in the armour analogues is too small to be classed as a manganese-steel (Mn = 1.2-1.8%wt) where depth of hardening, toughness and strength are thereby improved⁸⁷⁰.

Potentially differing corrosion resistance between steels of dissimilar metal alloy (and carbon) content is not overlooked. An effect on corrosion resistance, increased or decreased, is likely, but it remains unknown if such behavioural differences are appreciable between the present research materials (i.e. authentic armour and armour analogues). For example, corrosion performance tests on two contemporary non-manganese steels of respectively varying carbon (0.12-0.17% versus 0.35-0.42%), manganese (0.40-0.60% versus 0.90-1.20%), silicon (0.18-0.28% versus 0.20-0.30%) and copper (0.20-0.25% versus [no stated value]) content showed a greater corrosion resistance of the latter steel (i.e. the steel with more carbon, more manganese, more silicon and no stated copper)⁸⁷¹.

In addition to the trace elements listed in Table 3-2 numerous other elements were detected, but with much lesser concentration. For micro-alloyed metals (including some carbon steels), the alloy component's concentration can be very small (together totalling only 0.005-0.10wt%): with elements like boron, vanadium and niobium cited as having an effect on useful properties at these small quantities⁸⁷². The potential contribution of properties imparted by the amounts of these three micro-alloying elements on the armour analogues can be suggested by the amounts determined from the AEAIS. The concentrations of boron and vanadium

⁸⁶⁷ 2.1.2.1 Metal extraction & processing & 2.1.2.2 Munition armour forming

⁸⁶⁸ Bodsworth, 1963, pp. 389-390, 400-401

⁸⁶⁹ Ibid., pp. 389-390

⁸⁷⁰ IMMA, 1988, p. 3

⁸⁷¹ Jekayinfa et al. 2005, pp. 286-292

⁸⁷² IMMA, 1988, p. 4

determined fell below the detection limits (respectively <0.0001%wt & <0.0010%wt), while nobium registered small amounts (0.0023-0.0027%wt)⁸⁷³. Taking the maximum registered possible values (i.e. boron 0.0001%wt, vanadium 0.0010%wt & nobium 0.0027%wt) the calculated amount is marginally less (24%) than the minimum amount expected to achieve a micro-alloying contribution to property changes. So according to these parameters, it is hypothesised that a micro-alloying effect in these contemporary analogues is unlikely: decreasing the possible dissimilarities between the metal of the armour analogues and the metal of the midlate Early Modern Period armour.

The theoretical 30% increase in the corrosion rate of mild steel compared with wrought iron⁸⁷⁴ is not considered to be of significance, but is nonetheless recognised and further separate research might be required to investigate this aspect in practice. To explain, the corrosion rate might not be considered to be as important, whereas the type of corrosion mechanism and resultant morphologies are more fundamental to these studies. The speculative claim that the difference in corrosion rate might be insignificant is also made on the proviso that the marginal increase does not entail disproportionately voluminous corrosion product surfaces. Since Palace Armoury munition armour metal generally appear to have relatively fewer and shorter inclusions⁸⁷⁵ instead of multitudes of long stringers, and since the suggested predominant surface corrosion mechanisms appear⁸⁷⁶ to be filiform⁸⁷⁷ and pitting⁸⁷⁸, rather than galvanic or crevice corrosion⁸⁷⁹, a comparative decrease in corrosion rate for the analogues is not considered to be a very significant inadequacy.

Without simultaneous experimental studies in identical environments on the corrosion of Early Modern Period wrought iron and steel with this contemporary simulation material, it is difficult to categorically conclude on the possible the differences caused by their inherently differing material composition and structure. On the one hand, if such Early Modern Period wrought iron and steel were available then it would evidently be preferable to use this as the armour analogue simulation material. On the other hand however, these metals' corrosion phenomena appear

⁸⁷⁷ 2.2.3.2.1 Filiform corrosion mechanism

⁸⁷³ Surface Engineering Malta, 2005

⁸⁷⁴ 2.2.2.3.5 Ferrous metal type

⁸⁷⁵ 2.2.3.3 Uneven local to uneven general corrosion/corrosion product morphology

⁸⁷⁶ 4.1.3.1 Armour surface observations: macrophotography & photomicroscopy & 4.1.3.2 Armour corrosion cross-section observations & analyses

⁸⁷⁸ 2.2.3.3.1 Pitting corrosion mechanism

⁸⁷⁹ 2.2.3.3.2 Galvanic corrosion mechanism

more similar than dissimilar, and knowing that unalloyed carbon steels are also subject to pitting and filiform corrosion⁸⁸⁰ (rather than, for example, graphitic corrosion as for grey-cast iron, or intergranular and pitting corrosion as for stainless steels)⁸⁸¹, makes an unalloyed low-carbon steel a suitable best-available choice for these corrosion phenomena-based investigations.

Prior preparation of the metal by Vella et al. for the previously cited laboratory tests included first modifying the microstructure⁸⁸² (Appendix F^{883}) and then preparing the surfaces and dimensions to standard-sized plates of metal (75 x 50 x 2-3mm) (Figure 3-4).

Figure 3-4 Dimensions of low-carbon steel armour analogues

The thickness of the coupons, 2-3mm, was not intended to represent the armour thickness (circa 0.8-1.2mm in the bulk areas⁸⁸⁴), but instead it provided a rigid practical support for the various experimental procedures to occur without

⁸⁸⁰ 2.2.3.2.1 Filiform corrosion mechanism & 2.2.3.3.1 Pitting corrosion mechanism

⁸⁸¹ 2.2.2.3.5 Ferrous metal type

⁸⁸² In brief, the microstructural treatment aimed to change the fine ferrite-pearlite into the Widmanstätten microstructures observed in a selection of previously studied armour (Vella et al, 2004). This involved heating guillotine-cut plates of the sheet metal in a furnace at 950°C for 4.5 hours and then rapidly cooling under a blast of compressed air. The intention was to approach a microstructure that might better simulate its corrosion susceptibility. Sandblasting, pressing, milling and grinding of surfaces to expose the metal core removed the mill scale and decarburised zones resulting from the furnace. The standard sized coupons were cut from the sheets of metal with a donkey saw (Vella & Degrigny, 2005a, pp. 2-8). The metallographic structures in the steel used for the armour analogues were established to vary from fine ferrite-pearlite microstructures to blocky ferrite and Widmanstätten ferrite platelets with pearlite microstructures (Crawford, 2007b, p. 19).

⁸⁸³ Appendix F – Microstructures of munition armour analogues

⁸⁸⁴ 2.1.2.2 Munition armour forming

introducing additional issues regarding flexing of the substrate. Such flexibility of the thin lames on armour might introduce fissures in the corrosion product layers, especially at local zones under stress from handling or storage/display. Further separate research would be required to investigate any significance of this aspect.

While the substrate material for each of the analogues came from the same source, the preparation of the surfaces purposely varied between each Coupon Series. Seven different series of coupons were prepared and the possible surface preparation variables between each series included:

- Pre-existing CPs and pits versus no CPs and pits;
- Extent and orientation of surface grinding and resulting micro-grooves;
- Presence or absence of sodium chloride;
- Composition of applied superior limitos marker; and
- Presence or absence of coating.

Table 3-3 presents a summary of the seven differently prepared armour analogue Coupon Series, and the corrosion and corrosion product morphology objectives that influenced their design. The duration of the respective Coupon Series' accelerated corrosion regime is also given.

	Corrosion	objectives						
Coupon Series	Morphology	Extent of development	Pre-existing corrosion products and pits	Micro- groove orientation & roughness	Sodium chloride & applica- tion method	Applied superior limitos marker	Paraloid B-72 TM coating	Laboratory accelerated corrosion duration
1	Uneven local to general uneven corrosion	Primary- secondary	Yes	Lateral and weak	Yes, immersion	BaSO ₄	Yes	4 months + 2 weeks
2	Uneven local to general uneven corrosion	Primary- secondary	No	Longitudinal and strong	No	BaSO ₄	Yes	4 months
3	Uneven local to general uneven corrosion	Primary- secondary	No	Longitudinal and strong	No	BaSO ₄	No	4 months
4	Uneven local to general uneven corrosion	Primary- secondary	No	Longitudinal and strong	Yes, immersion	ZnO/ BaSO ₄	Yes	2 weeks
5	Filiform corrosion	Primary- secondary	No	Longitudinal and strong	Yes, locally	ZnO/ BaSO4	Yes	2 weeks
6	Uneven local to general uneven corrosion	Primary- secondary	No	Longitudinal and strong	Yes, immersion	Au	Yes	2 weeks
7	Filiform corrosion	Primary- secondary	No	Longitudinal and strong	Yes, locally	Au	Yes	2 weeks

Table 3-3 Summary of the objectives and variables of the manufactured armour analogues

A minimum of three coupons (i.e. experimental replicates) was allocated per Coupon Series for purposes of statistical reproducibility. Due to financial limitations the armour analogues using gold as an applied superior limitos marker (Coupon Series 6 & 7) were limited to one coupon each. Due to their individuality, the results from the coupons with gold superior limitos marker could therefore only be considered as preliminary indications. A control coupon was also allocated to each Coupon Series. The controls were prepared simultaneously with the experimental replicates, but were not exposed to the corrosion duration, remaining instead in desiccated storage for possible comparison.

Since much of the armour analogue methodology was based on innovative approaches, extra coupons were prepared in parallel to serve as *methodology pilot coupons*. These coupons were used at stages of the investigation to trial approaches that, if successful, would be applied to the experimental replicates. This precautionary measure avoided the introduction of such variables into the experimental replicates.

3.3.1.1.1 Corrosion/corrosion product morphologies

It was decided, based on investigations of the munition armour⁸⁸⁵, that the corrosion and corrosion product morphologies most representative of the collection *and* those that are present on the *surface* of armour would be reproduced for investigation. It was decided that filiform and uneven local to uneven general surface corrosion and corrosion product morphologies⁸⁸⁶ would be reproduced for determination of their original surface limits.

The aimed extent of their development (Table 3-3) was decided to be *primary to secondary corrosion* (as later defined in Table 4-2 & Table 4-3). This extent would not only be more representative of the collection, but (as indicated initially⁸⁸⁷) in the given timeframe would be more achievable than the *tertiary corrosion* development classification.

The methodologies followed for each of the Coupon Series' preparation variables are given next.

3.3.1.1.2 Surface grinding

Two approaches were followed to prepare the surfaces of the previously used coupons:

⁸⁸⁵ 4.1 Palace Armoury environment, munition armour & corrosion product case studies: non-invasive & non-destructive investigations

⁸⁸⁶ 2.2.3.2 Filiform corrosion/corrosion & 2.2.3.3 Uneven local to uneven general corrosion

⁸⁸⁷ 3.3.1 Armour analogues: manufacture & corrosion
1. Removal of previous coating by immersion in appropriate solvent (either acetone or white spirit) and subsequent assistance by physical abrasion with cotton wool swabs. Removal of superficial corrosion products by rotating steel brush on hand held drill. As a result, the metal surface maintained the majority of the parallel and laterally orientated grinding lines/micro-grooves from initial coupon manufacture (Figure 3-5). Pits that were partly filled with CPs from previous corrosion remained. These irregularities were intended to act as defects to help initiate corrosion sites.

Figure 3-5 Armour analogue representative of Coupon Series 1 after pre-existing coating and partial corrosion product removal

These coupons can be considered similar to the armour surfaces where new corrosion products have propagated from formerly corroded and cleaned surfaces (Figure 3-6).

Figure 3-6 Filiform corrosion filaments (orange-brown) proposed to have initiated from former corrosion pits (black areas) on munition armour

2. Removal of all corrosion products and corrosion pits by an electric belt sander with 60-grit aluminium oxide sandpaper (Figure 3-7).

Sander, holder & coupon

Figure 3-7 Armour analogues from Coupon Series 2-7 during and after surface grinding

As a result, this grinding removed the laterally oriented micro-grooves from initial manufacture. The final corrosion and corrosion product-free surface finish (Figure 3-8) of longitudinally oriented micro-grooves was achieved with 120-grit aluminium oxide sandpaper with the belt sander.

Figure 3-8 Armour analogue representative of Coupon Series 2-7 after pre-existing coating and corrosion product removal

These micro-grooves were intentionally created to help propagate parallel filiform (as documented on PA armour, Figure 3-9) longitudinally along the coupon. It was expected that the parallel micro-grooves would encourage filiform propagation by minimising self-termination and would facilitate simultaneous microscopic cross-section observation of numerous filaments. Cross-sectioning was anticipated to be performed transversally so as to be largely perpendicular these micro-grooves and any filiform filaments.

Figure 3-9 Filiform corrosion propagating along parallel metal surface abrasion lines on PA munition armour

The relatively coarse surface finishing of the coupons was executed for two main reasons. Knowing that rougher and unpolished surfaces provide corrosion initiation sites⁸⁸⁸ a roughly ground surface was deemed desirable for encouraging corrosion in the given time span. The second, and more important motivation was borne from prior observations of other corroded steel surfaces that had shown that original surface features of the former metal could be emulated in corrosion products formed from these corrugated surfaces. Adding this minor corrugated third

⁸⁸⁸ Hess & Bullett, 2000, p. 50

dimension to the surface enabled its inclusion as a topographical marker that would help to characterise an otherwise flat and featureless surface. Since these microgrooves are associated with the metal, they can therefore importantly be referred to as a corresponding limitos marker: the absolute or definitive limitos marker⁸⁸⁹. While armour also feature these micro-grooves (from manufacture, former maintenance or restoration intervention) their prominence, in quantity and quality, varies. Indeed some armour surfaces are very smooth. The micro-grooves on the armour analogues did not aim to represent the minutely corrugated surfaces of armour (although they clearly could have simulated them), but instead were anticipated to possibly provide a convenient diagnostic means of identifying an otherwise less distinguishable and flat surface topography.

To degrease the surfaces, and help remove any particles remaining from surface grinding (i.e. abrasives, metal & CPs), coupons were immersed in acetone and ultra-sonicated within an outer vessel of water for 20 seconds each (Figure 3-10).

Figure 3-10 Removal of surface matter from armour analogues by ultrasonication

3.3.1.1.3 Corrosion accelerant

To increase the rate of corrosion, and subsequent corrosion product evolution, sodium chloride, was applied to some Coupon Series⁸⁹⁰. The salt was added to the coupons by one of two techniques depending on the targeted corrosion product morphology:

1. Uneven local to uneven general corrosion: momentary immersion of single coupon (still without applied superior limitos markers) in an aqueous sodium chloride solution (1.75%m/v) (Figure 3-11) and then desiccated horizontally in a chamber saturated with dry silica gel.

⁸⁸⁹ 2.3.1.2.1 Localisation of the limitos

⁸⁹⁰ As discussed, sodium chloride increases the conductivity of the electrolyte and is considered a known corrosion accelerant found in the Palace Armoury environment as per 2.2.2.3.3 Atmospheric pollutants, Solid aerosols.

Figure 3-11 Procedure for corrosion accelerant application by immersion

The sodium chloride concentration was empirically selected from previous experience. Previous studies using a 3.5%m/v solution proved to be so corrosive while under a laboratory accelerated corrosion regime that the surface became so disrupted that there would be little chance to track any modified original surfaces in CPs.

The addition of sodium chloride in a water solution resulted in a rapid superficial coating of corrosion products formed by *flash-rusting*. Even though such CPs are very thin, they were not desirable since it is supposed that it introduced an ambiguity between the CPs formed before and after the subsequently applied superior limitos marker. For future applications where prevention of preliminary corrosion is desirable it is recommended that solutions of sodium chloride in a non-corrosive solvent such as ethanol⁸⁹¹ be used.

To avoid unnecessary and untidy corrosion of the reverse coupon face, contactadhesive tape was temporarily attached to act as a mask and prevent access to the surface by the sodium chloride solution during immersion.

2. Filiform corrosion: numerous local applications of single droplets of sodium chloride in aqueous solution (1.75%m/v) onto coupons that had been coated with their respective applied superior limitos marker⁸⁹² and coating⁸⁹³. To provide access to the metal surface for the sodium chloride, the coating was locally depleted mechanically by a handheld microdrill (Figure 3-12). After sodium chloride application the coupons were desiccated horizontally in a chamber saturated with dry silica gel.

⁸⁹¹ In spite of sodium chloride's much lower solubility in ethanol (0.055 g/100g at 25°C) compared with in water (26.483g/100g at 25°C) (Pinho & Macedo, 2005, p. 30). Repeated applications would therefore be required.

⁸⁹² 3.3.1.1.4 Applied superior limitos markers

⁸⁹³ 3.3.1.1.5 Protective coating

Figure 3-12 Procedure for local corrosion accelerant application for filiform corrosion coupons The design intention for Coupon Series 5 & 7 was for filiform corrosion filaments to initiate adjacent to the coating's incision with sodium chloride and to propagate parallel to the surface grinding direction (micro-grooves) (Figure 3-13).

Figure 3-13 Schematic representation of coupons designed for filiform corrosion

3.3.1.1.4 Applied superior limitos markers

The deliberate application of superior limitos markers was made in an effort to provide identifiable markers that might contribute to the later attempt in determining the limitos. The markers were anticipated to prove useful if the corrosion product evolution became so locally prolific that it transfused into or deposited onto these markers. These applied superior limitos markers on the armour analogues were intended to act in a similar way to superior limitos markers like quartz sediment on archaeologically buried artefacts⁸⁹⁴. Unlike the exogenous particles to be studied on the authentic munition armour⁸⁹⁵, the applied superior limitos markers did not attempt to mimic the position of solid aerosols from the natural environment that deposit on artefacts: they would be expected to be positioned more above the coating than below.

The ideal applied superior limitos marker would feature the following characteristics:

- Inert and neutral observer;
- Permeable structure and uniform surface coverage;
- Optically distinguishable from steel and corrosion products;
- Compositionally distinguishable from steel and corrosion products;
- Insoluble in water; and
- Non-toxic.

To avoid interference in the corrosion, and subsequent corrosion product formation processes, it was desirable that the applied superior limitos markers would be chemically inert and neutral observers of these processes.

Applied superior limitos markers permeable to corrosion products were chosen since they were required to permit CP evolution to pass through and deposit on top. Strong or coherent layers like metal foils, plastic or paint films were thus not deemed suitable since they would be more likely to trap all CPs, not letting them form and deposit freely. Notably, since polymer coatings are typically present on the munition armour any such possible effects from these constituents would be of valid consequence to the armour, but would be of hindrance to the diagnostic purpose of the armour analogues. The applied superior limitos marker should also be sufficiently permeable to water vapour and oxygen so as to not significantly impede corrosion.

To assist observation of the applied superior limitos marker in relation to the anticipated corrosion strata, several qualities were selected according to particular observation techniques. Since the primary available microscopic observation technique was anticipated to be optical microscopy, it was decided that applied superior limitos markers with colours that contrast with the metallic silver of the steel and the anticipated yellows, oranges, reds, browns and blacks typical of ferrous CPs would be appropriate. The secondary observation instrument and primary analysis

⁸⁹⁶ 3.3.1.1.5. Protective coating

⁸⁹⁴ 2.3.1.2.1 Localisation of the limitos

⁸⁹⁵ 4.1.3.2 Armour corrosion cross-section observations & analyses

instrument available for the armour analogues would be a scanning electron microscope coupled with an energy dispersive spectrometer. In terms of observation via the SEM (using the backscatter electron (BSE) detector), selected applied superior limitos markers would ideally be relatively radio-opaque compared to the iron in steel, and even more so to the ferrous corrosion products⁸⁹⁷.

In terms of compositional analyses via the EDS, the applied superior limitos marker should not be composed of elements that could be confused with the other components of the armour analogue materials (i.e. steel coupon with minor alloying and trace elements, corrosion accelerant, coating). In this way the location of the applied superior limitos marker between evolved corrosion products could be confirmed (as suspected from observations of contrasting radio-opaqueness or particle morphology given by the SEM BSE detector).

Applied superior limitos markers being highly, or totally, insoluble in water were of preference for two reasons:

- 1. To minimise their dissolution and movement in the corrosion products during the projected highly humid accelerated corrosion regime⁸⁹⁸; and
- 2. To minimise loss of applied superior limitos marker during cross-section preparation while under abrasive polishing using water as a lubricant⁸⁹⁹.

For health and safety reasons, toxic materials were disregarded for use as applied superior limitos markers.

Since this application of superior limitos markers is an innovative approach, markers of several materials and application techniques were tried. Three markers were finally selected and used on the armour analogues: particles of barium sulphate; zinc oxide; and gold.

None of the selected markers can be considered to be *ideal*, with each presenting their own advantages and disadvantages. Having a thin and/or porous material, regardless of its inertness, on a metallic surface such as the armour analogues, is likely to cause differential aeration of the surface and induce related corrosion mechanisms⁹⁰⁰. Conductive materials might be expected to behave electrochemically by way of galvanic corrosion⁹⁰¹. Even if inert, such markers might be considered as catalysts and therefore not behave as neutral observers. Nonetheless

⁸⁹⁷ 3.5.2 Scanning electron microscopy-energy dispersive spectrometry

⁸⁹⁸ 3.3.1.1.6 Laboratory accelerated corrosion

⁸⁹⁹ 3.3.2.2 Analogues: cross-section preparation

⁹⁰⁰ 2.2.2.3.3 Atmospheric pollutants, Solid aerosols

⁹⁰¹ 2.2.3.3.2 Galvanic corrosion mechanism

the selection of applied superior limitos markers that might be considered of limited influence was necessary.

Gold is highly renowned for its inertness⁹⁰² and is only dissolved in highly concentrated specific acid conditions⁹⁰³, while barium sulphate is considered to be inert in both acidic and alkaline conditions⁹⁰⁴ and has high insolubility in water $(0.00031 \times 10^{20} \text{g}.100 \text{g}^{-1} \text{H}_2 \text{O})^{905}$. Although zinc oxide is also insoluble in water⁹⁰⁶, its inertness is less satisfactory especially under humid atmospheric conditions when it can transform into soluble zinc carbonate⁹⁰⁷ Moreover, zinc oxide is also amphoteric so readily dissolves in acidic (even diluted⁹⁰⁸) or basic solutions⁹⁰⁹.

In terms of material compatibility, barium sulphate is known to be chemically compatible with all other pigments⁹¹⁰. Zinc oxide is reported to typically be used in paints with lead white (lead carbonate hydroxide⁹¹¹), barium sulphate and titanium whites⁹¹² (titanium dioxide⁹¹³), however its compatibility was not established. Although gold is very unreactive, its high electrochemical nobility is expected to cause metal incompatibility due to possible galvanic corrosion of the steel coupons. There is a large potential difference between gold (Au³⁺ + 3e⁻ \rightarrow Au, +1.50V/SHE at 25°C, 1M)⁹¹⁴ and iron (Fe²⁺ + 2e⁻ \rightarrow Fe, -0.440V/SHE at 25°C, 1M)⁹¹⁵.

Barium sulphate and zinc oxide, both being brilliant white pigment powders, gave suitable optical contrast to the steel substrate and anticipated CPs. It was thought that gold would also contrast sufficiently.

No gold or barium was detected in the previous analyses of the coupon metal⁹¹⁶, making these elements suitable for discriminating between applied superior limitos markers and the ferrous metal and its corrosion products. The very low

⁹⁰² Kettel, 1982, p. 5

⁹⁰³ Aqua regia: 1 part nitric acid 3 part hydrochloric acid) – <u>CRC Handbook of Chemistry and</u> <u>Physics: 85th Edition</u>, 2004, p. 4 – 14

⁹⁰⁴ Feller, 1986, p. 51

⁹⁰⁵ CRC Handbook of Chemistry and Physics: 85th Edition, 2004, p. 4-45

⁹⁰⁶ Ibid, p. 4 – 95

⁹⁰⁷ Eastaugh et al. 2004a, p. 407

⁹⁰⁸ CRC Handbook of Chemistry and Physics: 85th Edition, 2004, p. 4-95

⁹⁰⁹ Kühn, 1986, p. 175

⁹¹⁰ Feller, 1986, p. 50

⁹¹¹ Gettens et al., 1997, p. 67

⁹¹² Kühn, 1986, p. 178

⁹¹³ Lever, 1996, p. 295

⁹¹⁴ Uhlig, 1963, p. 28

⁹¹⁵ Ibid.

⁹¹⁶ Table 3-2

quantity of zinc (0.0037-0.0040% or 0.0043-0.0047% rel.at.wt⁹¹⁷) in the coupon metal also made its source distinguishable since its concentration in the steel was circa two orders of magnitude below the expected detection limits of the EDS⁹¹⁸). That is to say, if zinc were to be detected, then its source would have to be attributable to the superior limitos marker.

Barium⁹¹⁹ and gold, respectively having high atomic numbers of 56^{920} and 79^{921} versus 26^{922} for iron give them potentially good atomic contrast with the SEM BSE detector, making their widespread identification with SEM rapid, rather than relying on EDS analyses for preliminary identification⁹²³. Zinc's atomic number $(30)^{924}$ was expected to be too low for SEM BSE visual discrimination, thereby requiring EDS for identification amongst ferrous corrosion products.

Zinc oxide was mainly chosen as an applied superior limitos marker due to its ready identification using ultra-violet (UV) light fluorescence microscopy. When subjected to UV light, zinc oxide auto-fluoresces a distinctive yellow light (evidently) observable in the visible light spectrum⁹²⁵. The peak emission at 520nm is a yellow-green⁹²⁶. Significantly in terms of the diagnostic potential of zinc oxide for these limitos studies, its fluorescence ability is inhibited by impurities or admixtures that affect the colour of its fluorescence⁹²⁷. The CPs of iron, themselves pigments, could also potentially be responsible for these undesirable phenomena, but a reference that specified which pigments affect the fluorescence of zinc oxide could not be found. For these diagnostic purposes, successful use of zinc oxide would require that zinc oxide fluorescence occurs when mixed with ferrous corrosion products.

The availability and demand for the anticipated scanning electron microscope-energy dispersive spectrometer fluctuates, so it was considered practical to have an applied superior limitos marker on the same Coupon Series that would be

- ⁹¹⁹ The word *barium* derives from the Greek word *barys* meaning *heavy* (Feller, 1986, p. 46).
- 920 CRC Handbook of Chemistry and Physics: 85th Edition, 2004, p. 4 5

⁹¹⁷ Table 3-2

⁹¹⁸ 3.5.2 Scanning electron microscopy-energy dispersive spectrometry

⁹²¹ Ibid., p. 4 – 13

⁹²² Ibid., p. 4 – 17

⁹²³ The principle of contrast by atomic numbers is outlined in 3.5.2 Scanning electron microscopyenergy dispersive spectrometry

⁹²⁴ Ibid., p. 4 – 35

⁹²⁵ Kühn, 1986, p. 172

⁹²⁶ Eastaugh et al., 2004b, pp. 324-325

⁹²⁷ Kühn, 1986, p. 172

potentially distinguishable via both optical and scanning electron microscopy. In this way the same Coupon Series could be investigated according to either means of observation. A mixture of zinc oxide and barium sulphate was formulated. To aid even composition (by volume) of the powdered mixture, the specific densities of zinc oxide and barium sulphate (respectively 5.6g.cm⁻³ ⁹²⁸ & 4.49g.cm⁻³ ⁹²⁹) determined that a zinc oxide and barium sulphate mixture in proportions 4:5 by weight, was appropriate to approximate an equal formulation by volume (assuming comparable particle size and packing).

Despite their potentially beneficial diagnostic properties, the main undesirable quality that barium sulphate and zinc oxide bring to the experimentation is that they are known to act as pigments in anti-corrosion undercoats and paint systems⁹³⁰. Indeed, the naval colour *battleship grey* is formulated from 45% *blanc fixe* (BaSO₄), 45% *zinc white* (ZnO) and 10% *lamp black* (C)⁹³¹. For this application, it was thought these pigments would not have a sufficiently protective effect since they would neither be *evenly* bound in a film suspension, nor *thickly* applied.

Barium sulphate is non-toxic due to its extreme water insolubility^{932, 933}. Zinc oxide is considered to be "not particularly toxic", Gold as dust, the form present here, is considered to not be carcinogenic to rats, while skin implants of the metal sheet have proven to induce tumours⁹³⁵. Other candidate applied superior limitos markers based on white pigments with high atomic number like lead $(Z = 82)^{936}$ in the form of toxic lead white⁹³⁷ pigment were not considered for health and safety reasons. To avoid skin contact, direct handling of the armour analogues was conducted with gloves. Indirect handling was made in dedicated plastic weighing trays. Inhalation during the application of the powdered white pigments was mitigated with a facemask, while inhalation during handling was not considered a significant risk to warrant facial protection.

934 Kühn, 1986, p. 175

⁹²⁸ CRC Handbook of Chemistry and Physics: 85th Edition, 2004, p. 4 – 95

⁹²⁹ lbid, p. 4 – 45

⁹³⁰ Feller, 1986, p. 47

⁹³¹ Ibid., p. 50

⁹³² Ibid, p. 51

⁹³³ Indeed barium sulphate, is ingested by human patients undergoing diagnostic medical procedures (i.e. barium enemas) as a radio-contrast agent for x-ray imaging of the digestive tract – the same principle applied here (Feller, 1986, pp. 51, 60)

⁹³⁵ Robles, 1998, p. 61

 $^{^{936}}$ CRC Handbook of Chemistry and Physics: 85th Edition, 2004, p. 4 – 18

⁹³⁷ Eastaugh et al., 2004a, p. 233

The physical arrangement of the applied superior limitos markers was in particles so as to assist permeability by water, oxygen and the subsequently produced corrosion products. The barium sulphate and zinc oxide/barium sulphate mixture were applied by sieve in powdered form (Figure 3-14) from standard laboratory supplies (ZnO, 99.9%, Aldrich Chemical Company & precipitated BaSO₄, 99.9% BDH Laboratory Supplies).

Figure 3-14 Application of zinc oxide/barium sulphate applied superior limitos marker to armour analogue Coupon Series 5

Complete and uniform surface coverage for these two white applied superior limitos markers was problematic. Particles of barium sulphate and zinc oxide are reported in the literature to be small, respectively on average $0.5-2.0 \mu m^{938}$ and $0.25-1.0 \mu m$ (nodular form used in this study)⁹³⁹. The problem however was the tendency for the particles to conglomerate together. Decreasing the assembly of particles was achieved by drying in an oven ($105^{\circ}C$) until no mass loss was recorded. The powders were then ground further using a mortar and pestle. However, although it can be seen that the average conglomeration sizes are smaller, the particles did not fully separate from each other (Figure 3-15): probably due to the mesh diameter of the sieve. A sub-micron diameter sieve would have been preferable for separating particles thereby assisting greater uniformity of surface coverage.

⁹³⁸ Feller, 1986, p. 54

⁹³⁹ Kühn, 1986, p. 179

From supplier and after sieving

From supplier and after heating, grinding and sieving

Figure 3-15 Conglomeration of barium sulphate applied superior limitos marker particles

Gold was sputter-deposited onto the armour analogues using a SEM sample preparation sputter coater (Agar Automatic Sputter Coater B7341) (Figure 3-16). Since gold sputtering for SEM and/or EDS applications is designed to increase conductivity of the sample, while being unobservable, it was anticipated that it would be necessary to previously determine a sufficient quantity of sputtered gold that could indeed be observable under the SEM BSE mode (especially on a crosssection) and/or detectable under the EDS. According to the supplier of the gold sputter coater, the variable parameters (plasma current and time) required to apply a suggested standard application of gold to a sample normally destined for SEM-EDS investigations is 30mA for 120 seconds⁹⁴⁰. These parameters were applied as a preliminary test onto glass microscope slides, which were subsequently embedded in epoxy resin and polished in cross-section. Under optical microscope magnification (1000x) a lustrous gold reflection was faintly determinable, but very blurred and insufficient for diagnostic purposes. Energy dispersive spectrometry on a highly magnified (2000x) interface between the glass and the epoxy resin confirmed its presence. To increase the thickness of this gold layer, and therefore reduce the required observation magnification, two rounds of sputtering at the same amperage (30mA) and for 120 seconds were applied to the armour analogues representing Coupon Series 6 & 7 (Figure 3-16). The coupons were repositioned on the stage for the second sputtering application so as to gain a more even gold thickness throughout. The surface distribution of gold onto the analogues did not feature any observable lacunae.

⁹⁴⁰ Biella, 14/03/07, pers. comm.

Plan detail of coupons (experimental & control) from Coupon Series 6 on sputtering stage before sputtering

Gold sputtering application in progress in Agar Automatic Sputter Coater B7341

Figure 3-16 Gold superior limitos marker application onto armour analogues

The masses of each superior limitos marker applied to the coupons were calculated from before and after mass measurements recorded on an electronic microbalance (± 0.0001 g). The coverage of applied superior limitos marker was calculated in terms of the upper surface area (Table 3-4). To achieve greater surface coverage than the barium sulphate application made previously (on Coupon Series 1-3), the total amount of the barium sulphate and zinc oxide mixture was increased. The maximum quantity of gold applied was determined mainly by economic reasons.

Average mass and standard deviation of applied superior limitos marker applied to upper coupon surface area (mg.cm ⁻²)					
$BaSO_4$ (n = 12)	ZnO / BaSO4 (n = 12)	Au (n=2)			
1.032 ± 0.225	6.559 ± 0.801	0.044 ± 0.025			

Table 3-4 Mass range of applied superior limitos marker applied to coupons (75 x 50mm²)

Despite gold's comparative scarcity by mass, its surface coverage attributed to small particles proved to be superior to that of barium sulphate and the zinc oxide/barium sulphate mixture.

3.3.1.1.5 Protective coating

A coating of acrylic resin (Paraloid B- 72^{TM} , an ethyl methacrylatemethylacrylate (EMA/MA 70/30) copolymer by Rohm & Hass)⁹⁴¹ was applied to each Coupon Series (excepting Coupon Series 3) after the addition of their respective superior limitos marker.

The purpose of coating the armour analogues was to mimic the coated armour. Coatings, although not considered parts of the armour are certainly a part of

⁹⁴¹ Horie, 1987, pp. 106-107

the munition armour's material-environment system⁹⁴² and their presence has clear consequences on the differential aeration corrosion mechanisms acting on the metal. The influence of coatings is testified by the corrosion product morphologies, most notably for filiform corrosion filaments, likewise referred to as *underfilm* filiform corrosion⁹⁴³.

Coupon Series 3 was not coated due to concerns that the coating, despite its anticipated thinness, might at least to a certain extent impede the movement of evolving corrosion products through the applied superior limitos markers as reminded via personal communication with Bertholon⁹⁴⁴. So as to ascertain any effect the coating could have on corrosion product movement and the subsequent determination of the limitos, it was anticipated that after the accelerated laboratory corrosion regime Coupon Series 3 (BaSO₄/no NaCl/Paraloid B-72TM) could then be compared with Coupon Series 2 (BaSO₄/no NaCl/Paraloid B-72TM).

Paraloid B-72TM was selected as a coating material due to its ready solubility⁹⁴⁵ in common solvents that would enable its subsequent removal from the coupons without significantly disturbing the corrosion product layers when assisted by physical action⁹⁴⁶. It was decided that such a coating would need to be sufficient to locally provide protection from atmospheric oxygen, and yet not be so thick and protective that it would significantly prevent corrosion and importantly the profusion of CPs through the coating should they evolve upwards as expected. The coating solution was prepared to a 7.5%m/v concentration⁹⁴⁷. The concentration was empirically selected from prior experiences with a 15.0%m/v concentration on similar low-carbon steel analogues⁹⁴⁸.

The coating solution was applied by immersion in the same manner that the corrosion accelerant was applied to Coupon Series 1, 4 & 6 (Figure 3-11), although slower, so as to not disrupt the still loose applied superior limitos markers of barium sulphate and zinc oxide. An average and standard deviation mass of Paraloid B-72[™]

⁹⁴² Figure 2-44

⁹⁴³ 2.2.3.2.1 Filiform corrosion mechanism

⁹⁴⁴ Bertholon 17/01/2007, pers. comm.

⁹⁴⁵ Horie, 1987, p. 106

⁹⁴⁶ The assisted removal, by physical means, of less soluble coatings present on armour might prove to have an extra effect on corrosion products on armour. Determining the extent and significance of this effect, if present, would require further experimentation

⁹⁴⁷ i.e. 75g of Paraloid B-72[™] in 1000mL of acetone, not to make a 1000mL solution

⁹⁴⁸ Crawford et al., 2007, p. 9

applied to each surface (including all faces & sides) of the armour analogues (<u>n</u>=12) was calculated to be 0.8351 ± 0.0966 mg.cm⁻²

3.3.1.1.6 Laboratory accelerated corrosion

In order to cause sufficient atmospheric corrosion of the metal, and create sufficient corrosion products in the relatively short timeframe of this research. accelerated corrosion regimes were designed and executed. Environmental parameters, in particular relative humidity, were selected and controlled. To accelerate the metal corrosion process, it was decided to fluctuate the humidity and thereby induce the wet and dry cycling forwarded by Stratmann's model of atmospheric corrosion of iron⁹⁴⁹. Condensing humidities (100%RH) were avoided as suggested by the atmospheric corrosion testing literature, which recommended 50-95%RH⁹⁵⁰. The targeted upper RH was chosen to be 90% since this would be sufficiently below dew point should the temperature drop significantly: e.g. 90%RH at 20°C becomes 100%RH with a 2°C drop⁹⁵¹. Two accelerated corrosion regimes were followed: the first for over 4 months; and the second for 2 weeks. Normally, cycling was performed on a diurnal basis on working days. Over non-working days the analogues were left inside the chambers with elevated relative humidity. During the 4-month regime the containers were insulated inside polystyrene over-containers to limit fluctuations towards dew point. The 4-month regime involved cycling the relative humidity only, while the 2-week regime involved was more aggressive by cycling both relative humidity and temperature (Table 3-5).

	Accelerated corrosion regime				
	4 months		2 weeks		
	Relative Humidity (RH%)	Temperature (T°C)	Relative Humidity (RH%)	Temperature (T°C)	
Working day (8 hours)	Ambient	Ambient	Glycerin box, circa 60%	Ambient	
Night (16 hours) and non-working days	Glycerin box, circa 90%	Ambient	Glycerin box, circa 90%	Oven, circa 35°	

 Table 3-5 Summary of the anticipated temperature and relative humidity parameters and the executed accelerated corrosion regime durations

⁹⁵⁰ Leygraf & Graedel, 2000, p. 71

⁹⁴⁹ 2.2.2.3.2 Atmospheric water, Time of wetness/dampness & humidity cycles

⁹⁵¹ As per the psychrometric chart (Graph 2-5)

In addition, during the last week of the 2-week regime, the conditions were cycled two times per 24 hours⁹⁵².

The targeted lower RH limit selected for the 2-week corrosion regime was 60%, the previously stated⁹⁵³ critical RH of unpolluted iron⁹⁵⁴. In this way the coupons not polluted with sodium chloride would still have been likely to corrode at this lower RH. Furthermore filiform on steel is reported to occur at RH ranges of 60-95% in a temperature range of 20-35°C⁹⁵⁵.

To achieve the desired relative humidity, the standard, "Standard Practice for Maintaining Constant Relative Humidity by Means of Aqueous Glycerin Solutions ASTM D $5032 - 97^{*956}$, was followed. This involved the placement of glycerin-water solutions of a predetermined concentration in closed containers whereby an equilibrium relative humidity was achieved. This solution functions on the principle that greater proportions of glycerin yields lower humidities. The predetermined concentration was ascertained by Equation 3-1, where the required relative humidity and expected temperature were inserted.

 $R = \left[\sqrt{(100 + A)^2 + A^2 - (H + A)^2} - A\right] \ge 1/715.3 + 1.3333$ $A = 25.60 - (0.1950 \ge T) + (0.0008 \ge T^2)$ R = refractive index T = temperature (°C) H = relative humidity (%)Equation 3-1 Glycerin-water solution concentration calculation in terms of the solution's refractive index⁹⁵⁷

The equation's resulting refractive index (R) was then referred to in a set of standard data tables⁹⁵⁸ with refractive index versus concentration of glycerin in water (mol glycerin/L water) at a given temperature (20°C). The molar concentration (mol/L) of the glycerin-water solution was converted to a mass per volume concentration and the solution was practically formulated. A summary of the various established parameters for obtaining the glycerin-water concentrations to achieve the targeted relative humidity in the closed chambers at the expected temperatures is given in Table 3-6.

⁹⁵² Initially use of the oven by other personnel dictated that elevated temperatures could not be used during the day.

^{953 2.2.2.3.2} Atmospheric water

⁹⁵⁴ Pohlman, 1998, p. 82

⁹⁵⁵ Hahin, 1998, p. 105

⁹⁵⁶ ASTM, 2003

⁹⁵⁷ Ibid., p. 3

⁹⁵⁸ CRC Handbook of Chemistry and Physics: 85th Edition, 2004, p. 8 – 66

	Required relative humidity (H)	Expected temperature (T)	Calculated temperature co-efficient (A)	Calculated refractive index (R)	Concentration (mol glycerin.L ⁻¹ water)	Calculated concentration (g glycerin .L ⁻¹ water)
Dry	60%	Ambient: circa 20°C	22.020	1.433	9.490	873.972
Damp	90%	35°C	19.755	1.378	4.252 ⁹⁵⁹	391.584

 Table 3-6 Summary of the parameters, data and key calculations to achieve targeted relative humidities

As suggested by the standard, copper sulphate (0.1% m/v) was added to the prepared glycerin water solution for biocide purposes⁹⁶⁰.

Coupons were divided between two transparent polypropylene 8.4L Rubbermaid[™] boxes featuring Eastover seals for improved hermiticness (Figure 3-17).

Figure 3-17 Polypropylene chambers and oven used for relative humidity and temperature cycling (2-week regime)

A HoboTM data logger accompanied the armour analogues in one of the chambers to monitor and record the temperature and relative humidity. The data logger was supported with the software Boxcar Pro version 4.3, providing $\pm 5\%$ RH accuracy over the operating range of +5% to $+50\%^{\circ}C^{961}$. Simple RH indicator strips were installed facing outwards through the containers as visual indicators for real-time RH spot-checking. The temperature and relative humidity data for the 4 month and 2 week acceleration corrosion regimes are presented respectively in Graph 3-1 & Graph 3-2. The difference between the targeted equilibrium RH and the RH actually recorded during the four-month corrosion regime was initially non-existent or very low (-2 to 0%RH). The progressive decrease in the equilibrium relative humidity achieved over the four month corrosion regime could be attributable to water loss

⁹⁶⁰ ASTM, 2003, p. 2

⁹⁵⁹ Concentration of glycerin/water solution when with 1.3785 RI (at 20°C) (Ibid.). Data at 35°C could not be sourced.

⁹⁶¹ Onset, 2003

from the chambers, probably particularly during opening and closing of the chambers to insert and remove the coupons. The temperature's diurnal fluctuations and longer-term net changes are attributable to the uncontrolled ambient laboratory environment (Graph 3-1).

Graph 3-1 Temperature and relative humidity recorded during the accelerated corrosion regime of the armour analogues over 4 months

For the two-week corrosion regime, a similar discrepancy (circa -2%RH) between the targeted and recorded RH was observed. It was also noticed that the temperature recorded by the logger (circa 34°C) was consistently below the oven thermostat (35°C). Like the four-month corrosion regime, a slight decline in the overall equilibrium RH was noticed for the two-week regime. The upper temperature during the two-week regime is constant overall, and is attributable to the oven's thermostat (with minor heat-loss and heating fluctuations). Greater temperature variation outside the oven is due to the uncontrolled ambient laboratory environment (Graph 3-2).

Graph 3-2 Temperature and relative humidity recorded during the accelerated corrosion regime of the armour analogues over 2 weeks

3.3.1.2 Armour analogue selection

After accelerated laboratory corrosion, the armour analogues were inspected for selection for continued investigation. The criterion for selection was the development of sufficient corrosion products formed in morphologies representative of the armour.

Coupon Series 2, 3, 5 and 7 (Figure 3-18) did not meet the selection criterion. Coupon Series 2 and 3 (each without corrosion accelerant) both failed to corrode sufficiently. The application of sodium chloride was therefore essential for accelerating the corrosion processes in the required timeframe. Series 3 demonstrated the complementary value the coating provided by retaining in place the otherwise loose white pigment applied superior limitos markers. The armour analogues designed to propagate filiform corrosion, Coupon Series 5 & 7, were only successful in creating this morphology in several localised places. Instead it appears the defect in the film coating, that was intentionally created to provide an initiation site with sodium chloride, had instead provided a defect in the metal for pitting corrosion to initiate and propagate. The scarcity of filiform corrosion propagating from the initiation sites meant this morphology could not be investigated appropriately on these coupons as anticipated. The discontinuation of Coupon Series 2 (barium sulphate with coating) & 3 (barium sulphate without coating) meant that it would no longer be possible to investigate the effects the coating might have had on the position of the applied superior limitos marker and the limitos (between these otherwise identically prepared coupons)⁹⁶².

Figure 3-18 Representative armour analogues from the four Coupon Series *not* selected for continued investigation Top row: Before accelerated corrosion regime Bottom row: After accelerated corrosion regime

Coupons Series 1, 4 & 6 were all selected for continued investigation of their original surface limits. They had all corroded in such a manner to be considered under the classification *local to general corrosion* morphology and corroded to a *primary extent* (Figure 3-19).

962 3.3.1.1.5 Protective coating

Figure 3-19 Representative armour analogues from the three Coupon Series selected for continued investigation. Top: Before accelerated corrosion regime Bottom: After accelerated corrosion regime

The presence of corrosion products indicates, superficially at least, that Coupon Series 6 (with the gold marker) had corroded significantly more than the zinc oxide/barium sulphate covered analogues (Coupon Series 4), which were prepared and exposed to otherwise identical conditions. It is probable then that the respective behaviours of the applied superior limitos markers are responsible for this discrepancy in CP evolution. Also notable was the presence of filiform corrosion, of varying shapes, heights, lengths and widths, on all coupons, but more prevalent on Coupon Series 1. The simultaneous presence of filiform and pitting corrosion was a similarity shared with the authentic armour corrosion product morphologies⁹⁶³.

To limit recorrosion between preparation and investigation procedures, coupons were contained in desiccated storage boxes.

3.3.2 ARMOUR ANALOGUES: OBJECTIVES & DESTRUCTIVE INVESTIGATIONS

The major advantage of studying contemporarily manufactured analogues is the ability to unhesitatingly destructively investigate them. Importantly and equal to this advantage is that the surfaces represent a known history, which make it possible

⁹⁶³ 4.1.3.1 Armour surface observations: macrophotography & photomicroscopy: Table 4-2 & Table 4-3

to infer with much greater confidence their fabrication and present-day condition after a purposely induced degradation, such as an accelerated corrosion regime in a laboratory. As previously outlined⁹⁶⁴, so-called historical artefacts exposed to unknown atmospheric environments and human interventions, such as pollution and corrosion product removal procedures, introduce attributes that cannot usually be confidently explained, or at best, ambiguously explained. The uncontrolled environment of the Palace Armoury and the lack of documentation concerning restoration interventions on the munition armour exacerbate this fundamental situation, which makes it difficult to know exactly how CPs have evolved in this polluted environment and how interventions have affected this process.

The armour analogues were destructively used for a series of three principal objectives; building the experimental framework briefly presented here, and elaborated later⁹⁶⁵:

- 1. <u>Armour analogue objective 1</u>, <u>Limitos determination: Characterisation of corrosion product stratigraphy and metal leading to limitos determination</u> The first objective pursued understanding the corrosion products' properties and their relation to the uncorroded metal. These investigations sought clues in the complicated CP stratigraphies that could indicate any presence of the limit of the original surface in these CPs;
- 2. <u>Armour analogue objective 2, Palace Armoury technique: Documentation &</u> <u>investigation of the current Palace Armoury cleaning procedure and results</u> The second objective was carried out to understand the corrosion product removal procedures currently performed at the Palace Armoury. The performance and documentation of the level of CP removal procedures practiced at the PA would provide a reference point to the limitos anticipated to be determined from the previous objective. Indeed it might have been possible that the Palace Armoury is already empirically practicing CP removal to a level comparative to a diagnostically determined limitos; and
- 3. <u>Armour analogue objective 3, Limitos application: Removal of corrosion products according to limitos determination</u> The third and final objective provided space to demonstrate the practical application of corrosion product removal techniques that remove non-limitos materials and reveal the CPs anticipated to have previously been determined to represent the limit of the original surface. This objective would provide ultimate samples for collaborative curatorial discussion.

The individual coupons had an area of sufficient size that was equally divisible into the *sub-coupons* ($25 \times 50 \times 2$ -3mm) required for the three objectives (Figure 3-20).

 ⁹⁶⁴ 2.3.1.2.2 Definition of the limitos for the Palace Armoury's historical munition armour
 ⁹⁶⁵ 3.3.2.3 Analogues: destructive investigations

Figure 3-20 Schematic summary of armour analogue coupon with sequential objectives

Achieving each series of objectives on divisible components originating from an initially united substrate was performed to increase reliable comparability of results between the three identically prepared areas. The three *sub-coupons* (each representing one of the three objectives, Figure 3-20) were then further subdivided into four coupons that included two *mini-coupons* for plan (P) and cross-section (CS) observations and analyses (Figure 3-21: left). These mini-coupons (12.5 x 10 x 2-3mm) were anticipated for use as unaltered references. The central location of the unaltered references was decided for greater representativeness of the corrosion products on the adjacent major-coupons, thereby minimising unrepresentative edge effects. Two *major-coupons* (25 x 20 x 2-3mm) for each objective were produced per coupon (i.e. 6 major coupons per Coupon Series per Armour analogue objective) (Figure 3-21: left). Prior to cutting and their subsequent investigation, the analogue reverses were marked by pen with identification numbers (Figure 3-21: right) to track the numerous coupons.

Schematic division of armour analogues

Numbered reverse of coupon

Figure 3-21 Overview of the armour analogues' division (left) and numbering (right)

Separation of coupons was achieved using a hydraulic sheet metal guillotine (Figure 3-22: centre). Such a cutting technique was appropriate since it involved no heating, no generation of metal filings and no coolant liquids, which could all potentially interfere with the coupon materials. Before cutting the coupons, carbon paper was wrapped around them (Figure 3-22: left). The carbon paper served two purposes:

- 1. To protect surfaces from grease contamination during the guillotine cutting procedure; and
- 2. To mark the cutting edge with black carbon to assist highlighting the edges compressed by the guillotine cutting action. Compressed areas and adjacent zones would thus later be identifiable and be discounted from further examination.

Figure 3-22 Left: Armour analogues being wrapped (bottom: unwrapped, top: wrapped) in carbon paper before cutting. Centre: Industrial sheet metal cutting guillotine used to divide armour analogues. Right: Assembly of cut major-coupons (Armour analogue objective 1, Limitos determination only) from Coupon Series 1, 4 & 6

3.3.2.1 Analogues: plan surface preparation

Besides removing the carbon paper from the analogue samples, no specific preparation was required for the coupons to be observed by plan perspective by optical microscopy. For SEM-EDS investigations in plan perspective, coupons were carbon coated as later outlined⁹⁶⁶, while Coupons Series 6 did not require a further conductive coating since they were already covered in gold. This series did however require removal of the Paraloid B-72[™] coating with acetone on cotton swabs to enable observation of the surface topography with the secondary detector. The coatings were removed from the underside of all mini-coupons with acetone for electrical contact with the aluminium stub SEM-EDS stage sample holder.

3.3.2.2 Analogues: cross-section preparation

To prevent the surfaces of the cross-section samples from disintegrating during grinding and polishing, they were embedded in epoxy resin for consolidation.

Unlike with uniform corrosion and corrosion product morphologies, the localised nature of the morphologies on the armour analogues meant that cross sections could not simply be taken at random through a sample: doing so would not guarantee localising a significant pit, or any pit, for investigation. Before embedding these samples in preparation for cross-section examination, the likely zones of interest were documented and their distances from the edges of the coupons were measured with a screw gauge micrometer.

Custom-designed silicone rubber trays consisting of 20 cubic moulds ($20 \times 20 \times 20 \times 20 \text{ mm}$) were fabricated to accommodate the numerous coupon cross-section samples (Figure 3-23: left). To avoid introducing adhesives, samples were physically held in place by polycarbonate inserts during the embedding procedure (Figure 3-23: centre & right).

⁹⁶⁶ 3.5.2.1 SEM-EDS sample preparation

Figure 3-23 Left: Computer Numerical Control (CNC) machined acrylic positive mould and cast silicone negative mould custom-designed for dimensions of armour analogue sections Centre & right: Overview and detail of mini-coupons (i.e. cross-section samples) in embedding tray before resin application

Previous experiences with preparing metal samples with corrosion products prompted the necessity to optimise retention of the CP layers that are susceptible to being *pulled-out* during grinding and polishing. An embedding procedure that was consolidating and a gentle, progressive grinding and polishing regime were deemed to be of high priority since preserving the CP layers meant retaining the prime areas of interest for investigation. Struers EpofixTM, a low viscosity epoxy resin was ordered for the cross-section sample embedding.

Embedding was performed under partial vacuum to remove air in the porous CPs and the applied superior limitos markers and to improve consolidation of these materials with embedding resin. Partial vacuum-embedding was achieved using an electric rotary vacuum pump and glass bell jar (Figure 3-24). A commercial partial vacuum-embedding unit was not available at the laboratories. Such units offer the considerable advantage of evacuating air from the samples *before* introducing the embedding resin.

Figure 3-24 Laboratory constructed vacuum resin embedding system

Samples with their freshly mixed resin were introduced into the bell jar, which was pumped from ambient atmosphere, circa 1bar, to a partial vacuum of 0.1-0.2bar as advised by the manufacturer⁹⁶⁷. A partial vacuum around 0.0533bar (40mm Hg) was avoided as this is the boiling point of epoxies and would have overheated the resin and introduced air-bubbles into the embedding resin⁹⁶⁸. The partial vacuum was released and pumped for a second time "to force air out and epoxy into blind-ending cavities"⁹⁶⁹. The resin was allowed to cure at ambient pressure for 12 hours.

Cured embedded samples were ground and polished on a specimen preparation wheel, initially with aluminium oxide grit paper, and later silicon carbide grit paper. Tap water was used as a lubricant until the last two grit sizes. To avoid flash rusting, white spirit (Paraloid B-72TM insoluble⁹⁷⁰) was used to perform the last two polishing stages and to dewater the samples quickly after completing polishing. To limit contamination across layers the samples were polished with the surface orientated parallel to the polishing wheel direction (Figure 3-25).

⁹⁶⁷ Jensen, 18/6/2007, pers. comm.

⁹⁶⁸ Nielsen & Maiboe, 2000, p. 3

⁹⁶⁹ Ibid., p. 1

⁹⁷⁰ Insolubility in white spirits (or Stoddard's solvent, a mixture of 85% nonane and 15% trimethyl benzene (Lewis, 2002, p. 1126)) was suspected due to B-72[™]'s insolubility in heptane (Horie, 1987, p. 205). Insolubility was then confirmed by a solubility test involving immersion of the granulated resin in white spirits and agitation with a magnetic stirrer for 48 hours.

Figure 3-25 Sample polishing table and example detail of sample orientation and abrasive wheel direction

A grinding/polishing regime previously established by trial and error on the methodology pilot coupons was followed to retain an acceptable proportion (>90%) of the corrosion product layers. A Microsoft Excel[™] spreadsheet automatically calculated the amount of sample to be ground/polished away before progressing to the subsequently finer grit paper (Table 3-7). This computation was especially of use for the numerous samples that each presented zones of interest at different distances from the coupon edges. To maximise CP retention, 1.5mm from each sample had to be slowly removed using 1000 grit paper to approach the zone of interest before the last much shorter polishes were performed.

		ANALOGUE IDENTIFICATION	1-2	1-2	1-2
		CROSS-SECTION NUMBER	8	13	23
		CROSS-SECTION DIMENSION	(mm)	(mm)	(mm)
DIMENSION REMOVED PER GRIT SIZE		START DIMENSION	13.60	13.30	13.20
		DIMENSION TO ZONE OF INTEREST	9.500	8.100	6.900
Grit	(mm)	TOTAL DIMENSION TO REMOVE	4.10	5.20	6.30
80	≥2.000	Dimension remaining after 80 grit	11.575	10.175	8.975
320	0.500	Dimension remaining after 320 grit	11.075	9.675	8.475
1000	1.500	Dimension remaining after 1000 grit	9.575	8.175	6.975
2400	0.050	Dimension remaining after 2400 grit	9.525	8.125	6.925
4000	0.025	DIMENSION AFTER 4000 grit	9.500	8.100	6.900

 Table 3-7 Summary example of three cross-sections in the sample grinding dimension calculator

 (Microsoft ExcelTM)

During grinding with the 1000 grit, the sections were repeatedly inspected via binocular microscope until the zone of interest became exposed (i.e. the corrosion pit and corrosion products). Care was taken not to grind too far past the corrosion pit, while at the same time aiming to maximise the cross-section that exposed the deepest pit possible.

3.3.2.3 Analogues: destructive investigations

The rationales and subsequent methodologies followed for each of the three objectives pursued with the destructive investigations on the armour analogues are described next.

3.3.2.3.1 <u>Armour analogues, limitos determination: corrosion/corrosion product</u> morphology & limitos investigations

For <u>Armour analogue objective 1, Limitos determination</u>, characterisation of the armour analogues' corrosion product strata in terms of their composition, distribution, aspect and physical properties such as fragility and tenacity formed the basis of achieving this prime objective.

The characterisation of the CP stratigraphies and determination of the limitos of each of the three Coupons Series was performed via two perspectives:

- 1. Cross-section investigations of the stratigraphies of uncleaned mini-coupons (Figure 3-21). Three mini-coupons from each coupon were observed in cross-section; and
- 2. Plan/vertical physical probing investigations of the stratigraphies of uncleaned major-coupons (Figure 3-21). Two major-coupons from each coupon were vertically probed.

Each perspective presented its advantages for the methodology and was complementary to the other. Before completing the vertical probing, cross-sections of the uncleaned mini-coupons were observed and analysed⁹⁷¹ to determine the general layout of the exogenous material (i.e. coating, applied superior limitos marker) and the metal/corrosion product stratigraphy⁹⁷². This cross-section perspective aimed to permit locating superior, inferior and corresponding limitos markers and provide a guiding *map* to the subsequent vertical stratigraphic probing performed on the major-coupons. The principal potential benefit of the vertical stratigraphic probing was that observation via the surfaces was the same perspective that an armour surface would be approached during a conservation-restoration intervention. Any limitos markers found from this perspective could be invaluable to a conservator responsible for corrosion product removal from armour. Vertical probing also permitted rapid investigation of numerous zones of interest. Cross-section samples embedded in resin were anticipated to limit the number of rapidly investigated zones of interest due to the necessary grinding/polishing to new zones of

⁹⁷¹ 3.5.1.3 Laboratory photomicroscopy & 3.5.2 Scanning electron microscopy-energy dispersive spectrometry

⁹⁷² Raman micro-spectroscopy was unavailable for the armour analogue investigations.

interest. Moreover, the correlation of many zones of interest with the previously observed non-embedded surface morphologies would have been an excessively timeconsuming process for the numerous samples.

CROSS-SECTION ZONES OF INTEREST SELECTION & INVESTIGATION

Investigation of the armour analogues' reference mini-coupons via crosssection perspective was performed to better understand the composition and orientation of the sample's stratigraphy and more particularly to witness the subsequent position of the applied superior limitos marker after the corrosion regime. The position of the applied superior limitos marker was anticipated to indicate (with comparison to the uncorroded control coupons and/or adjacent uncorroded areas), how the features and position of the corrosion products had been modified from the metal state.

The cross-section zones of interest ideal selection criteria were:

- 1. One or more zones of interest composed of corrosion pits with superimposed corrosion products; and
- 2. Significant amounts of corrosion products with sufficiently distributed superimposed applied superior limitos marker.

Evidently, to understand the interactions between the two criteria above, these components must have been simultaneously present. For example, there would have been less purpose in examining a cross-section featuring CPs that was devoid of corrosion pits and/or the applied superior limitos marker.

As mentioned⁹⁷³, prior to cross-section investigation and vertical stratigraphic probing, potential zones of interest were selected via the plan perspective. To establish representiveness, an initial overview and assessment of all the coupons in each Coupon Series was made with the naked eye to ensure there were not any significantly varying CP morphologies and varying extents of development perceptible on a macro scale. Areas near the outer edges (circa 1-2mm) of the coupons were deemed unrepresentative of the larger inner areas available for investigation and would not be investigated since they had corroded differently (more or less, depending on the particular Coupon Series. i.e. an *edge-effect* occurred). Preliminary surveys of individual coupons under binocular microscope (mag. 20-50x) were made to determine the prevalent morphologies present and their constituent components. As planned for these three Coupon Series (1, 4 & 6) the

⁹⁷³ 3.3.2.2 Analogues: cross-section preparation

corrosion product morphology chosen for these cross-section zones of interest was *local to general corrosion*. Although also present, filiform CP morphologies were both too few in number for practical use in cross-section. To achieve transversalcross-sectioning of filaments and base metal, recording the location and orientation, embedding and grinding/polishing to the filiform filament would have been necessary. Transversally-sectioning a filiform filament and also distinguishing it from all the other CPs on these coupons would not have been efficient or reproducibly achievable on mass. This is where the role of the anticipated Coupon Series 5 & 7 was intended to be advantageous. Filiform CP morphologies were nonetheless investigated by stratigraphic probing on the coupons from Coupon Series 1, 4 & 6. After selection of the zones of interest was made on the mini cross-section reference coupons (Figure 3-21) they were embedded and polished as previously detailed⁹⁷⁴.

Preliminary observation of the cross-sections was first undertaken via optical microscopy and metallographic microscopes⁹⁷⁵. The coupons coated with zinc oxide were observed both under visible light and under ultra-violet light for fluorescence and to possibly indicate its location within corrosion products. For greater magnification, phase contrast and elemental analyses during observation, prioritised cross-sections were investigated under SEM-EDS⁹⁷⁶ following the standard sample conductivity preparation procedure⁹⁷⁷.

Considering that determination of the limitos is ideally made by simultaneous alignment of superior, corresponding and inferior limitos markers⁹⁷⁸, it was decided to check if there was a determinable inferior marker for the corroded contemporary steel. Very minor amounts of fine (5 μ m), short (100-150 μ m) and isolated slag inclusions had previously been observed by others during metallographic observation of the polished uncorroded metal^{979, 980} used in the armour analogues (Figure 3-26); so it was not expected to easily find, if at all, such an inferior limitos marker in the metal's corrosion products. Modern steel, such as that used for the armour analogues,

⁹⁷⁸ 2.3.1.2.1 Localisation of the limitos

⁹⁷⁴ 3.3.2.2 Analogues: cross-section preparation

⁹⁷⁵ 3.5.1.3 Laboratory photomicroscopy

⁹⁷⁶ 3.5.2 Scanning electron microscopy-energy dispersive spectrometry

⁹⁷⁷ 3.5.2.1 SEM-EDS sample preparation

 ⁹⁷⁹ Before microstructure modifications (3.3.1.1 Metal selection & substrate preparation)
 ⁹⁸⁰ Vella & Degrigny, 2005a, p. 3

is generally of a relatively high purity with few inclusions, especially when compared with pre-contemporary wrought ferrous metals that are heterogeneous⁹⁸¹.

Figure 3-26 Slag in metallographic cross-section of armour analogue⁹⁸²

The method for checking inferior markers was trialled with EDS and was expected to be based on elemental compositional differences between the various CP phases and the metal. Similar examples of corrosion phenomena where variations in elemental composition of the corrosion products and the metal can indicate the limitos include dealloying of bronze by decuprification⁹⁸³ or graphitisation of grey cast iron⁹⁸⁴. Iron was excluded from being considered as a discriminating element (at least in concentration) since the extreme heterogeneity of mixed phases of the common atmospheric ferrous corrosion products and their relative closeness in iron composition (e.g. $Fe_3O_4 = 72\%$ at.wt. Fe, while FeOOH = 50%at.wt. Fe) was thought to be too unreliable to account for gradients in iron concentration and too demanding for EDS's capabilities. The two most abundant minor alloying elements in the lowcarbon steel had previously been determined to be: manganese (Mn: 0.5130-0.5190%wt or 0.5058-0.5119%rel.at.wt.) and silicon (Si: 0.1959-0.2012%wt or 0.0987-0.1014% rel.at.wt.)985. Their concentrations were at the limit or below the detection range of the EDS in optimum conditions⁹⁸⁶. The third most abundant alloying component in the armour analogues was carbon (C: 0.1250-0.1572%wt or 0.0269-0.0339% rel.at.wt.)987. Like manganese and silicon, the carbon concentration was also under the optimum detection range for the EDS, however EDS is not ideal

⁹⁸⁵ 3.3.1.1 Metal selection & substrate preparation

⁹⁸¹ 2.1.2.1 Metal extraction & processing

⁹⁸² Vella et al., 2006a, p. 3

⁹⁸³ Robbiola et al. 1998, p. 2094

⁹⁸⁴ 2.3.1 What is the original surface & why determine its presence?

⁹⁸⁶ 3.5.2 Scanning electron microscopy-energy dispersive spectrometry

⁹⁸⁷ 3.3.1.1 Metal selection & substrate preparation

for accurately detecting such a low atomic weight element⁹⁸⁸. Carbon was thus excluded as a potential candidate for marking the inferior limitos, but it could still be trialled if prepared with a gold sputter coat (rather than graphite⁹⁸⁹) or with more appropriate analyses techniques. The use of silicon as a marker was excluded since its faint presence on the polished samples was omnipresent: most probably due to the silicon carbide polishing papers used in sample preparation⁹⁹⁰. Similarly to carbon, silicon could be trialled if the samples were prepared with non-ambiguous materials (e.g. alumina/diamond-based abrasive). Manganese thus remained as the only likely candidate for elemental concentration discrimination by EDS.

Visually different (i.e. varying morphologies and greyscales of corrosion products) phases of CPs and metal were surveyed variously by point and area analyses with EDS for manganese at varying magnification in areas of the CP stratigraphy. Small area analyses (circa $1-9\mu m^2$) were applied to restricted areas of specific morphologies to limit the background effect of potential non-manganese containing zones: it was thought that if a non-homogenous presence of manganese exists, any zones poor in manganese concentration could potentially mask a small signal for manganese. The survey initially started on the metal as a reference point and then on CPs in the bottom of the corrosion pit and progressed upwards to the outer surface that interfaced with the applied superior limitos marker. To relate the concentrations of any determined manganese, a conversion from the atomic emission arc induced spectroscopy's units of measurement (% weight) to EDS's units of measurement (% relative atomic weight) was made, and included EDS's 20% accuracy tolerance range when in optimum conditions⁹⁹¹.

PLAN PERSPECTIVE ZONES OF INTEREST SELECTION & INVESTIGATION

The major corrosion product forms were micro-photographed⁹⁹² in plan perspective on the major-coupons available for plan observation and subsequent stratigraphic probing under <u>Armour analogue objective 1</u>⁹⁹³. The corrosion product nomenclature system established by Bertholon⁹⁹⁴ was employed to describe the characteristics of the various features present. The position of these various corrosion

⁹⁸⁸ 3.5.2 Scanning electron microscopy-energy dispersive spectrometry

⁹⁸⁹ 3.5.2.1 SEM-EDS sample preparation

⁹⁹⁰ 3.5.2.1 SEM-EDS sample preparation

⁹⁹¹ 3.5.2 Scanning electron microscopy-energy dispersive spectrometry

⁹⁹² 3.5.1.3 Laboratory photomicroscopy

⁹⁹³ Figure 3-21

⁹⁹⁴ 2.3.1.2.1 Localisation of the limitos, Corrosion/corrosion product stratigraphy terminology

products and materials relative to the proposed limitos were annotated accordingly: s = superior limitos marker or i = inferior limitos marker. For example, in the documentation of Coupon Series 1⁹⁹⁵, the Paraloid B-72TM coating was annotated as D2s: meaning a deposit (D) that is superior (s) to the limitos and is layered second (2) to the outer interface with the atmosphere.

To better characterise the nature of each of these labelled and localised features they were then described in terms of their composition (e.g. heterogeneity), distribution (e.g. continuousness), appearance (e.g. colour, shine), profile (e.g. irregularity), texture (e.g. roughness) and physical properties (e.g. hardness, cleavage).

According to the nature of the materials present, physical or solvent-chemical means were used for manual probing. *Physical probing* involved using a scalpel, cotton swab (moistened with white spirit for lubrication) or fibreglass pen, for example, to remove corrosion products from corrosion pits. *Solvent-chemical probing* involved cotton swabs moistened with acetone, for example, to remove the Paraloid B-72TM coating. To assist the plan perception during stratigraphic probing, observations previously made with the embedded cross-sections of uncleaned references were used to complement (confirm or supplement) the stratigraphies observed. During such probing, determination of the presence or absence of the limitos in the stratigraphy of various CP and materials was achieved as later detailed⁹⁹⁶.

3.3.2.3.2 <u>Armour analogues, Palace Armoury technique: current armour corrosion</u> product removal practice

To satisfy <u>Armour analogue objective 2, Palace Armoury technique</u> major coupons from each Coupon Series were given to the Palace Armoury staff member currently performing corrosion product removal on the armour. These armour analogues facilitated a diagnostic assessment of the current corrosion product removal practice applied on the Palace Armoury munition armour. A real-time comparison of the surfaces and stratigraphies between the PA's cleaned majorcoupons and their uncleaned reference mini-coupons was enabled. Furthermore, an evaluation could be made between these major-coupons cleaned by the PA and the

⁹⁹⁵ Figure 4-47

⁹⁹⁶ 4.2.1.1 Plan perspective investigations

major-coupons⁹⁹⁷ that were cleaned by the research author according to the results from the diagnostically determined limitos^{998, 999}.

These coupons from <u>Armour analogue objective 2</u>, <u>Palace Armoury</u> <u>technique</u> were cleaned of their coating and CPs according to the materials and procedures followed at the Palace Armoury (Figure 3-27):

- 1. Armour analogues (major coupons: 20 x 25 x 2-3mm) inserted into cardboard holder to facilitate manipulation.
- 2. <u>Coating (i.e. Paraloid B-72[™]) removal</u>
 - a. Acetone on cotton swab (bamboo skewer wrapped with cotton wool) used to dissolve and remove most of Paraloid B-72TM coating.
 - b. Perspex acrylic scraper and metal scraper used to remove tacky masses of coating.
 - c. Acetone on tissue paper used to remove coating remnants.
- 3. Upper (i.e. positioned above adjacent metal profile) corrosion product removal
 - a. Scalpel used to remove, as much as possible, CPs superior to adjacent metal surfaces.
 - b. Acetone on tissue paper used to wipe surface of loose CPs from previous step.
- 4. Lower (i.e. positioned in pits below adjacent metal profile) corrosion product diminution
 - a. Machine oil (3-in-1[™]) added directly to coupon and added to 0000 grade steel wool that was then dipped in rottenstone powder (silicalimestone abrasive) and applied in a circular motion to remove most of remaining corrosion products on coupon. Emphasis made to help remove some of those CPs remaining in pits.
 - b. Acetone on tissue paper used to wipe off CPs and oil slurry.
- 5. Surface polishing
 - a. Small wad/ball of 0000 grade steel wool dipped into Pre-Lim[™] abrasive polishing paste and applied in a circular motion to clean and polish metal surface.
 - b. Acetone on tissue paper used to wipe surface of Pre-Lim[™] paste and particles from previous step.

Armour analogue inside holder

From left and top: Acrylic scraper, scalpels, cotton swab, paper tissue, steel wool and rottenstone powder

From left: Acetone, 3-in-1TM machine oil and Pre-LimTM polishing paste

Figure 3-27 Equipment and materials used to clean armour analogues

In accordance with corrosion product removal from munition armour at the Palace Armoury¹⁰⁰⁰ all work was undertaken without magnification. The same CP

⁹⁹⁷ 3.3.2.3.3 Armour analogues, limitos application: corrosion product removal to the limitos

⁹⁹⁸ 3.3.2.3.1 Armour analogues, limitos determination: corrosion/corrosion product morphology & limitos investigations

⁹⁹⁹ Figure 3-20 & Figure 3-21

removal procedure was applied to each of the three Coupon Series. These coupons were not waxed in order to avoid impeding subsequent metal and CP surface observations and photography.

For comparative purposes, the surfaces of the cleaned <u>Armour analogue</u> <u>objective 2</u> major coupons were macrophotographed before and after PA CP removal¹⁰⁰¹. The cleaned surfaces were then documented by photomicroscopy¹⁰⁰². The examination of the extent of corrosion product removal undertaken by the Palace Armoury on the armour analogues was made on Coupon Series 4 and 6 only, not Coupon Series 1.

3.3.2.3.3 <u>Armour analogues, limitos application: corrosion product removal to the</u> limitos

Providing evidence of any limitos would actually be determinable via the first objective of the armour analogues, the third and final objective, <u>Armour analogue objective 3</u>, <u>Limitos application</u>, was performed to ascertain if the present research author could practically reveal the limitos via commonly applied and available conservation procedures. Subsequent to this, any revealed limitos would need to be critiqued in terms of the implications of leaving the limitos corrosion products on the armour surface in a museum context.

The method of coating and CP removal varied according to the Coupon Series. The Paraloid B-72TM coating was removed from Coupon Series 1 & 4 by repeatedly rolling a cotton swab moistened with acetone over the surface, while full immersion in acetone and agitation with a magnetic stirrer was used for Coupon Series 6. Corrosion product removal was performed either by scalpel or cotton swab moistened with white spirits for lubrication. Identification of limitos corrosion products and controlled selective cleaning was performed with binocular microscope magnification (20-50x).

The surfaces of the <u>Armour analogue objective 3</u> major coupons¹⁰⁰³ were macrophotographed before and after CP removal according to the determined

¹⁰⁰² 3.5.1.3 Laboratory photomicroscopy

 ¹⁰⁰⁰ 3.2.4 Authentic munition armour corrosion product removal: the Palace Armoury technique
 ¹⁰⁰¹ 3.5.1.2 Laboratory macrophotography

¹⁰⁰³ Figure 3-21 Overview of the armour analogues' division (left) and numbering (right)
limitos. Also, surfaces before and after attempted cleaning to the limitos were documented by optical microscopy¹⁰⁰⁴.

3.4 PRELIMINARY NON-INVASIVE OBSERVATION OF THE DETERMINED LIMITOS ON AUTHENTIC MUNITION ARMOUR

Following the determination of the limitos on the armour analogues¹⁰⁰⁵, selected areas of armour previously documented according to 3.2.3.1.2 Armour surface macrophotography & photomicroscopy, were non-invasively examined for evidence of the limitos. This exercise was necessary to validate or not, albeit in a non-interventionist manner, the potential comparability of the armour analogues with the authentic armour. Under binocular microscope, areas were observed where the protective coatings had already been removed during prior studies of their coating systems¹⁰⁰⁶.

With the curators' permissions, various interventive approaches on the munition armour (including treatment of a backplate via partial corrosion product removal to this research's diagnostically determined limitos) were initially planned for this stage of the research. These treatments were withdrawn due to the large scope required to comprehensively advance the research question to this point.

3.5 INVESTIGATION METHODS & INSTRUMENTATION

A series of observation and analytical methods was employed during the investigations of the authentic armour and armour analogues. To benefit from complementarities between investigation techniques, the same zones of interest were examined, particularly with the cross-sections.

3.5.1 MACROPHOTOGRAPHY & PHOTOMICROSCOPY

Photography at macro- and microscopic scales was used throughout the investigations as a form of material surface documentation on which observations were recorded.

¹⁰⁰⁴ 3.5.1.3 Laboratory photomicroscopy

¹⁰⁰⁵ 3.3.2.3.1 Armour analogues, limitos determination: corrosion/corrosion product morphology & limitos investigations

¹⁰⁰⁶ Lemasson et al. 2004, pp. 40-41

3.5.1.1 In-situ macrophotography

Macrophotography of the wall-displayed armour in the museum environment of the Palace Armoury was performed. Documentation was made by digital photography (Canon 300D with 18-52mm lens) with diffused flash while and observations were recorded on a proforma (Figure 3-28).

Figure 3-28 *In-situ* photographic and written documentation process of armour wall displays in the Palace Armoury Armour Hall

The ability to immediately review images via digital photography permitted performing the photography in on-site conditions much more efficiently than when compared with analogue photographic image processing.

3.5.1.2 Laboratory macrophotography

Laboratory macrophotographic documentation was made with digital cameras tethered to a personal computer. A Canon 300D was used for wider shots of the armour, while a Nikon Coolpix 4500 was used for close-ups. The Canon was used for the macrophotography of the armour analogues. Both cameras were tripod- or copy stand-mounted and illumination was provided by tungsten lamps (Figure 3-29).

Figure 3-29 Macrophotography of overall armour

3.5.1.3 Laboratory photomicroscopy

Optical photomicroscopy of the armour surfaces was performed with a tripod-mounted digital camera (Nikon Coolpix 4500) set onto the ocular of an

Olympus SZ11 binocular microscope mounted on a counterbalanced arm to accommodate the armour's size. A fibre-optic tungsten light source was used with a 10-60° angle of incidence. Images were taken either at 20x or 80x magnification.

Photomicroscopy provided the most useful means to observe and record the surface features, corrosion product morphologies and their interrelationships, before and/or after the various investigative interventions on the armour analogue's surfaces.

Photomicroscopy of the armour cross-section samples and armour analogue plan and cross-sections was performed with the following microscopes:

- Olympus BX-50 optical microscope (plan observations and cross-sections) at 40x, 100x, & 200x; and
- Leitz MM5 inverted metallographic microscope (cross-sections¹⁰⁰⁷) at 64x, 128x & 256x.

The Canon 300D digital camera was mounted, without its lens, directly onto the Olympus BX-50 optical microscope. Again a fibre-optic tungsten light source was used with a 10-60° angle of incidence. To lessen glare from metal surfaces, therefore increasing contrast, light was polarised with a cassette filter in the microscope objective. The armour analogues prepared with zinc oxide¹⁰⁰⁸ were observed under polarised visible light and also under non-polarised ultra-violet light (Olympus U-ULH mercury burner & U-RFL-T UV adaptor connected to the Olympus BX-50 microscope) with a 90° angle of incidence for fluorescence observation. The Nikon Coolpix 4500 was tripod mounted onto the ocular of the metallographic microscope (Figure 3-30). A reflected non-polarised tungsten light source via the objective (i.e. 90° angle of incidence) was used.

¹⁰⁰⁸ 3.3.1.1.4 Applied superior limitos

¹⁰⁰⁷ The Leitz metallographic microscope is ideally suitable for flat and highly polished surfaces as for cross-sections, thus it was not used for plan perspective observations.

Figure 3-30 Photomicroscopy configuration: Leitz MM5 inverted metallographic microscope and tripod mounted Nikon Coolpix 4500 digital camera

Dimension scaling for the Olympus BX-50 and the Olympus SZ11 binocular photomicroscopy was performed using a glass slide (Olympus AX 0001 OB-M) with a 1mm graticule featuring 100 intervals. Scaling for the Leitz MM5 metallographic microscope was performed via the eyepiece graticule. Faint scales were embedded into photographs with imaging software (Adobe Photoshop CS2TM) for subsequent annotation in MS WordTM.

Both optical/binocular and metallographic microscopy served as useful observation methods for becoming familiar with the various predominant features on each sample size, shape, corrosion product presence, characteristics and distribution, coating thickness etc. Specific capabilities of the microscopes were used to differentiate between colours of the stratigraphies and surfaces (optical/binocular microscopes) and between the porosity and the metallic/non-metallic components (metallographic microscope). The Leitz MM5 (metallographic) microscope was beneficial in determining phase differences between the various corrosion strata by observing reflectance variations, but mostly in greyscale. The high reflectivity and contrast observable with the metallographic microscope was particularly useful for locating porosities (highlighted by black zones) and small areas of uncorroded metal nodules (white zones) amongst CPs that were otherwise unseen by the standard optical microscope. Since corrosion product organisation and distribution were of principal interest, not metallographic structure, etching was not performed when using the metallographic microscope.

The low magnification familiarisation of the samples also served for shortlisting zones of interest for subsequent higher magnification observations and analyses using scanning electron microscopy-energy dispersive spectrometry.

3.5.2 SCANNING ELECTRON MICROSCOPY-ENERGY DISPERSIVE SPECTROMETRY

A scanning electron microscope (Oxford LEO 1430) coupled with an energy dispersive spectrometer with an ATW2 window powered by Inca software (version 11A) was used to investigate the armour cross-sections. In essence, the SEM can characterise morphologies, while the EDS can associate the elemental composition of these particular features.

Scanning electron microscopy was anticipated to not only provide greater observation magnification of morphologies, but also increased phase contrast of the various mixtures of the predominant iron corrosion products and/or phase mixtures. The SEM using the BSE detector represents those materials of relatively higher average atomic number (Z) in the image with relatively whiter greyscale levels: the higher the average atomic number, the greater the backscattering and the more radio-opaque (i.e. whiter)¹⁰⁰⁹.

When SEM is coupled with energy dispersive spectrometry, the system can also provide elemental analyses of materials from carbon (Z = 6) upwards, if sufficiently present. In practice, with conditions of high background and broad peaks, the detection limit of EDS on mixtures of elements (Z > 10) is circa 0.5±0.1% atomic weight, but can be reduced to 1-2% atomic weight. Although Heritage Malta's EDS is not used for full quantitative analyses (requiring real/non-virtual standards) the EDS is used to provide relative concentrations (% relative atomic weight) thereby providing a semi-quantitative relative measure. The EDS is calibrated by using a real cobalt standard. In optimum conditions, the energy dispersive spectrometer has a 20% accuracy tolerance range¹⁰¹⁰.

The relative concentrations (% relative atomic weight) from the EDS analyses were generally classified according to a semi-quantitative measure of major (>5%), minor (1-5%), and trace (<1%). These figures were not exactly relied upon, but provided a relative indication of the concentrations of the elements detected in each spectrum.

The application of SEM-EDS was prioritised to zones of interest on the shortlisted samples from the optical microscopy observations. For these normally flat cross-sections the secondary electron (SE) detector (topographical contrast) was useful to determine if the section was truly flat, and subsequently the backscatter

¹⁰⁰⁹ Rochow & Tucker, 1994, p. 302

¹⁰¹⁰ Sbaraglia 24/11/07, pers. comm. (Assing, SEM-EDS Service Engineer)

electron detector was applied. Inherent porosity or losses from the corrosion product strata during sample preparation were probable causes of voids in cross-section surfaces.

The main operating conditions of the SEM-EDS used were EHT = 20.00kV, filament current = 2.797A & beam current = 80μ A.

Three spatial formats of EDS analyses were used on the cross-sections:

- 1. Points analysis;
- 2. Area analysis; and
- 3. Mapping analysis.

Points analysis restricts the incident beam and detection to a localised zone fixed around one point on the zone of interest, while area analysis covers a rectangular field area adjustable according to the size of the zone of interest¹⁰¹¹. For both of these formats separate spectra with accompanying data (% rel.at.wt. of elements detected) were generated. Mapping analysis produces data with a sum numerical total of the relative percentages of the elements detected, as well producing pictorial representations of the elemental distribution with separate images assigned for each element¹⁰¹².

3.5.2.1 SEM-EDS sample preparation

Prior to SEM-EDS investigations, samples were carbon coated (Agar SEM Carbon Coater – B7367) and locally coupled with removable double-sided copper tape to form the conductive circuit required on the aluminium stub, which was then attached to the SEM-EDS stage. The addition of the non-conductive epoxy embedding resin to the otherwise conductive metal necessitated this sample preparation stage to avoid *charging* that prevents observation. The addition of the copper tape was locally applied under binocular microscope to avoid masking zones of interest previously determined via optical microscopy.

3.5.3 RAMAN MICRO-SPECTROSCOPY

Raman micro-spectroscopy was performed abroad on the three cross-section armour samples by Ms Judith Monnier, Laboratoire Pierre Süe, CEA (Commissariat Energie Atomique) Saclay, France. Micro-Raman measurements of the corrosion product layers¹⁰¹³ were performed at the Laboratoire de Dynamique, Interaction et

¹⁰¹¹ Figure 4-20

¹⁰¹² Figure 2-43

¹⁰¹³ Monnier, 2005a-c

Réactivité (LADIR, CNRS and Paris6 laboratory, Thiais, France) with a micro-Raman notch-based spectrometer LabRam Infinity (Jobin Yvon-Horiba)¹⁰¹⁴.

Raman spectroscopy is a useful tool for corrosion product characterisation since, unlike x-ray diffractometry, non-crystalline (or poorly crystalline) as well as crystalline species can be identified¹⁰¹⁵. It was thought that Raman microspectroscopy might provide information regarding the complicated ferrous CP strata.

Limitations to Raman spectroscopy however, include the inability (due to peak overlap) of it to discriminate between low concentrations of magnetite in goethite¹⁰¹⁶ and low concentrations of magnetite in maghemite¹⁰¹⁷. This is where a complementary technique such as XRD¹⁰¹⁸ might be required for differentiation *if necessary* for the research objectives¹⁰¹⁹. Contrarily, discriminating between magnetite and maghemite by XRD spectra has proven to be very difficult especially if they are mixed and this is where Raman spectroscopy proves complementary and successful¹⁰²⁰.

Regarding the methodology for the Raman micro-spectroscopy, radiation (green, 532 nm) was produced by a frequency-doubled Nd:YAG laser. Samples were observed under an Olympus microscope and objectives with 100x magnification, giving a beam waist diameter of about 3μ m. The spectrometer setting offers a spectral resolution of about 2cm^{-1} . As some iron oxides are highly sensitive to laser irradiation, measurements were always performed with a power at the sample surface kept below 100μ W in order to avoid any phase transformations¹⁰²¹.

A pre-selection of potential zones of interest were previously determined by scanning electron microscopy and accompanied the samples for their analysis abroad. Multiple individual point analysis sites with the Raman micro-spectrometer were first selected manually on the cross-sections to identify visually differing phases. Later, linear and mapping profiles (with hyperspectral imaging) over the

¹⁰¹⁴ Monnier, 06/10/2007, pers. comm.

¹⁰¹⁵ Neff et al., 2006 p. 1229

¹⁰¹⁶ Figure 3-31.

¹⁰¹⁷ Neff et al., 2004. p. 743

¹⁰¹⁸ The results from synchrotron radiation micro-XRD of samples extracted from the Palace Armoury munition armour already been presented in Chapter 1. It is not presented here since although the characterisation is of interest the method of sampling did not preserve the stratigraphic orientation that might be useful for these studies.

¹⁰¹⁹ For this case, i.e. during the determination of the limitos such complementary analyses were not required.

¹⁰²⁰ Neff et al., 2006, p. 1229

¹⁰²¹ Monnier, 06/10/2007, pers. comm.

thickness of CP layers were performed. While taking longer, the use of hyperspectral imaging with the Raman micro-spectrometer "increases the statistic on the results by describing the phase organisation in the corrosion scale and ensures a better reliability of the conclusions brought up"¹⁰²². LabSpecTM (Jobin Yvon-Horiba) software was used to acquire and manipulate hyperspectral maps and the established methodology has been published¹⁰²³. The analyst performed phase identification by comparison with reference spectra¹⁰²⁴.

A brief summary of the Raman micro-spectroscopy analysis principles is provided since it explains non-Raman signals, particularly *fluorescence*, later observed in the results¹⁰²⁵. "Raman scattering and fluorescence emission are two competing phenomena, which have similar origins"¹⁰²⁶. Raman spectra are obtained from the electromagnetic radiation scattered by the molecules subjected to the excitation source¹⁰²⁷, typically a laser. The scattered photons are less energetic and demonstrate a frequency shift due to the absorption of energy by the molecules under investigation. The particular shift in frequency depends on molecular vibrations that are characteristic of defined compounds¹⁰²⁸. If the excitation source provides enough energy to cause an electronic transition from the sample's molecules, then direct absorption of photons can occur at the excited electronic state; this is then followed by a return to the electronic ground state. If the process is relatively slow (10⁻⁹ seconds) then fluorescence occurs¹⁰²⁹.

The change in frequency of the laser for Raman signals is represented by Raman shift peaks versus an arbitrary scale (Figure 3-31 left). However, fluorescence signals can reduce or eliminate the ability to match a signal pattern to reference spectra since they obscure the peaks that make identification possible (Figure 3-31 right).

- ¹⁰²² Neff et al., 2006, p. 1229
- ¹⁰²³ Ibid, 2006, pp. 1231-1232

- ¹⁰²⁵ 4.1.3.2.4 Armour cross-section Raman micro-spectroscopy
- ¹⁰²⁶ Horiba Jobin Yvon, n.d., p. 1
- ¹⁰²⁷ Cornell & Schwertmann 2003, p. 146

¹⁰²⁴ Monnier, 06/10/2007, pers. comm.

¹⁰²⁸ Horiba Jobin Yvon, n.d., p. 1

¹⁰²⁹ Ibid.

Separate Raman spectra for goethite and magnetite

Raman spectra of cyanine dye using different laser wavelengths 488. 647, 514 and 1064nm. Fluorescence signals increase with shorter wavelengths until identifying peaks are unobservable: 488nm)

Figure 3-31 Example spectra exhibiting Left: Raman signals¹⁰³⁰ & Right: mainly fluorescence signals (right)¹⁰³¹

Fluorescence is cited to be caused by a variety of factors commonly occurring

on heritage artefacts, including:

- Surface roughness (asperity)¹⁰³²;
- Organic materials (e.g. varnishes, resins such as coatings)¹⁰³³; and
- Impurities from the exposure environment¹⁰³⁴.

¹⁰³⁰ Neff et al. 2004, p. 743

¹⁰³¹ Edwards & Chalmers, 2005, p. 43

¹⁰³² Monnier, 2005a, p. 3

¹⁰³³ Edwards & Chalmers, 2005, p. 42 & Monnier, 2005a, p. 3

¹⁰³⁴ Ibid.