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ABSTRACT
While artificial intelligence has been applied to control players’
decisions in board games for over half a century, little attention
is given to games with no player competition. Pandemic is an ex-
emplar collaborative board game where all players coordinate to
overcome challenges posed by events occurring during the game’s
progression. This paper proposes an artificial agent which controls
all players’ actions and balances chances of winning versus risk
of losing in this highly stochastic environment. The agent applies
a Rolling Horizon Evolutionary Algorithm on an abstraction of
the game-state that lowers the branching factor and simulates the
game’s stochasticity. Results show that the proposed algorithm
can find winning strategies more consistently in different games
of varying difficulty. The impact of a number of state evaluation
metrics is explored, balancing between optimistic strategies that
favor winning and pessimistic strategies that guard against losing.
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•Computingmethodologies→Game tree search; Intelligent
agents; Stochastic games; • Theory of computation→ Represen-
tations of games and their complexity.
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1 INTRODUCTION
Board games have fascinated researchers in Artificial Intelligence
(AI) from the very beginnings of the field. Chess, checkers, and
tic-tac-toe were some of the first testbeds [28] for AI algorithms
such as reinforcement learning [17]. Events where a master player
competed against a computer in a game of chess [15] and Go [8]
garnered massive public interest. Perhaps due to the physical aspect
of the board games, or their popularity, board game playing is still
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the most common way in which the general public perceives AI.
Academic research in board game playing AI has of course moved
beyond most pedestrian board games, applying a diverse set of
algorithms for playing card games with millions of card combina-
tions such as Magic: the Gathering (Wizards of the Coast, 1993) [3],
games of tactical card placement such as Lords of War (Black Box,
2012) [19] and Carcassonne (Hans im Glück, 2000) [9], card games
of team-based competition such as Hanabi (Abacusspiele, 2010) [26]
or Codenames (Czech Games Edition, 2015) [22], and many more.

Traditional board games such as chess [15] and backgammon
[23], as well as recent card games such as Race for the Galaxy (Rio
Grande, 2007) [6] or digitized board games such as Hearthstone
(Blizzard, 2014) [11, 18], focus on players competing to deplete an-
other player’s resources (pawns, hit points) or to accumulate more
victory points before the game ends. However, today’s ecosystem
of board games has a plethora of alternative modes of gameplaying.
A particularly interesting type of board game invites collaborative
play, where all players must work together to survive (and win)
against a rule-based system which presents an escalating challenge.
Common design patterns for such collaborative games are (a) player
roles specializing in certain tasks, (b) a rule-based system with high
stochasticity (via drawn cards or dice) that introduces more and
more complications and challenges to the game state, (c) a race
against time for players to achieve victory, and (d) a dilemma be-
tween performing actions that mitigate current threats and actions
that lead to victory. An example collaborative board game is For-
bidden Island (Gamewright, 2010) where the terrain tiles that make
up the board may ‘submerge’ and then be removed completely,
based on a shuffled deck that determines which tile is affected. This
pressures players to either save the tiles to increase their movement
options (and avoid losing) or to pursue the winning criterion of
collecting artefacts scattered across the board. Players choose roles
which have increased mobility options or ignore/modify precondi-
tions for some actions. More complex collaborative games such as
Arkham Horror (Fantasy Flight, 2005) and Robinson Crusoe (Portal,
2012) follow similar patterns. Pandemic (Z-Man, 2008) is one of
the most popular collaborative board games and is fairly straight-
forward to play: players take different specialized roles and strive
to cure diseases while these diseases infect more and more cities
on the board with disease cubes. Players must balance between
removing disease cubes (to stop the game from ending) while also
exchanging cards in order to cure diseases (to win the game). What
makes Pandemic particularly interesting is that the cities that are in-
fected are not chosen completely randomly; Pandemic implements
a clever system of recycling past infected cities. This means that
players can anticipate the next few cities that will be infected (but
not the order in which they will be infected) and strategize how
best to minimize the risk.
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This paper highlights that collaborative board game play poses
its own set of challenges to Artificial Intelligence. While competi-
tive play challenges AI to anticipate what the other player might
do or how best to block another player, collaborative board game
play challenges AI to best coordinate with other players. When all
players are controlled by AI, a plan can be formulated for every
player (by a single controller) and executed to the letter. This is
actually how human players also handle a collaborative board game
by making a strategy for every player’s move and executing it (or
replan, if circumstances change). The AI challenge of collaborative
board game play is thus not to align each player’s goal (as a single
controller can control every player) but instead (a) to balance be-
tween short-term damage control and long-term strategies that win
the game, (b) to optimally take advantage of different players’ roles
and special abilities, and (c) to anticipate the best- and worst-case
scenarios of upcoming events and how they will affect the game
state. Due to the stochastic nature of escalating threats posed by
the game system, human players similarly perform risk assessment
and mitigation in the hopes of avoiding the worst outcomes which
usually cause the game to be lost.

The board game Pandemic is chosen to test how collaborative
board game play can be handled by AI. The controlled way in which
the infected cities are reshuffled and may re-appear again and again
makes for an interesting challenge for AI to assess risks of outbreaks.
Failing to downsize the disease cubes or the number of outbreaks
can lose the game; however, failing to cure all diseases swiftly also
causes the game to be lost. Themultiple ways in which the game can
be lost, versus a single way in which it can be won, emphasizes the
tension between pessimistic strategies (curbing losing conditions)
and optimistic strategies (getting closer to a winning condition)
within an AI agent’s game state evaluation. Finally, the numerous
actions available per player, combined with special abilities of each
player role which modify these actions, requires an abstraction of
the action space in order for AI to take only meaningful decisions
on a more macro-strategic level. This paper takes first steps to
address each of these challenges in an implementation of a Rolling
Horizon Evolutionary Algorithm (RHEA) [12] for controlling all
players in a Pandemic game session. The paper introduces a way of
abstracting actions into more meaningful macro-actions, a forward
model which accounts for the unknown distribution of the decks
while capturing the probabilities of each threat, and necessary
modifications to RHEA in order to account for different players’
turn order and the need for an initial seed. The paper tests the RHEA
controller in ten different testbed setups, and explores the impact
of state evaluations which reward winning or penalize losing in
different ways.

2 RELATEDWORK
While AI research on board games has explored a vast range of
algorithms, the majority of AI for board game play focuses on some
form of game tree search. Early experiments in zero-sum games
such as chess relied on the minimax algorithm [25], where the AI
attempted to minimize losses from the opponents’ expected (opti-
mal) move. In complex games, each unique game state is difficult to
enumerate, and the end condition is reached after many rounds of
player actions. In such cases traditional tree search methods must

be enhanced (a) by abstracting the current game state via carefully
designed rule-based systems and via learned models [20], or (b) by
exploring only a small sample of future states. Taking advantage
of both strategies, Monte Carlo Tree Search has been especially
powerful for board game play. Monte Carlo Tree Search (MCTS)
builds a game tree in an incremental and asymmetric manner using
a tree policy which balances exploration (sampling many strate-
gies) and exploitation (expanding on more promising strategies)
[2]. When the most urgent node of the tree is identified via the
tree policy, a simulation (playout) from that node is performed
using a default policy which takes decisions on the agent’s moves.
The playout’s end-state is evaluated and back-propagated through
the selected nodes of the tree. Playouts may last until the game is
won or lost, or until a maximum number of actions are taken. The
default policy in playouts may be completely random (aheuristic)
or take advantage of domain knowledge; the tradeoff is generality
versus computational efficiency, respectively [2, 5]. By building
partial, shallow trees and only assessing the terminal state after
(inexact) playouts, MCTS is able to provide a valid next action any-
time [12], unlike other tree search algorithms such as A*. MCTS
has shown very good results in deterministic board games [21] and
can perform well in unknown games, e.g. in the General Video
Game AI competition [16]. MCTS hinges on a forward model for
simulating the game; when the game state changes stochastically
due to the agent’s actions or other factors, its performance can
suffer [13]. While players’ actions are deterministic in Pandemic,
the game state changes after each player’s turn in unpredictable
ways and MCTS is ineffective for handling this non-determinism.

The Rolling Horizon Evolutionary Algorithm (RHEA) was ini-
tially proposed in [12] as a potent alternative of MCTS for real-time
agent control problems [24]. RHEA evolves a sequence of actions
in order to maximize some quality of the game state at the end of
these actions, then performs only the first action of the fittest indi-
vidual. As its name suggests, the performance of the RHEA hinges
on its planning horizon H . Experiments in RHEA variants for the
General Video Game AI competition [7] highlighted the impact of
the population size and length of the chromosome (horizon H ) on
performance. Similar to MCTS, the sequence of actions that make
up the chromosome in RHEA are simulated via a forward model
which can return the end-state after all actions are taken. Since
RHEA does not require any part of a tree to be built, it can be more
efficient than MCTS—especially in ‘noisy’ environments where the
forward model may falter. Since RHEA is limited to look-ahead only
up to its horizon H , a state evaluation (fitness) of the game state af-
ter simulating all actions in the chromosome is vital. Unlike MCTS,
which can in theory perform a random simulation until the game is
won or lost, assessing an intermediate state of the game greatly af-
fects the performance of RHEA. Finally, due to the strong influence
of the horizon H on RHEA efficiency, a compact representation of
the action space is preferred. Already in the first implementation
of RHEA for games [12], the chromosome contained macro-actions
which could capture more substantial changes to the game state; in
that real-time control problem, a macro-action was the same action
repeated 10 times.

Of particular interest is the RHEA controller [1] developed for
Splendor (Space Cowboys, 2014), a competitive card game where the
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Figure 1: Example game state during a playthrough of Pandemic. Players take different roles (see bottom of the image), must
travel the world to treat diseases (disease cubes on cities) and must use cards in their hand (under each player’s role) to cure
diseases at research stations (white houses on cities). The current game state is at the start of Player 2’s turn.

stochasticity of cards appearing on the marketplace can severely af-
fect which actions are available (or optimal) in future turns. Splendor
has similar patterns to Pandemic which can challenge AI and for-
ward models in particular, specifically the long-term implications of
early-game actions, the limited turns before the game ends, and the
stochasticity of hidden decks. Differences between the two include
the competitive nature of Splendor which necessitates opponent
modeling [1]; most importantly, stochasticity in Splendor has far
less impact than in Pandemic since 12 marketplace cards are visible
at all times, one unseen marketplace card may appear per turn, and
marketplace cards in the same stack have fairly similar and always
positive uses. In terms of AI control, [1] dealt with the stochasticity
of the forward model by implementing a random action generator
which only produced valid actions based on the state, and used its
seed as representation for RHEA. The algorithm described in this
paper similarly handles stochasticity by operating on a much more
constrained space of valid moves based on a hierarchical random
action selection, but uses a constrained hierarchical mutator for
actions, compared to the agnostic way in which mutation operates
on random actions’ seeds in [1].

3 THE GAME
As noted in Section 1, the Pandemic board game is an ideal instance
of collaborative gameplay. This section describes the game rules of
Pandemic and lists the nuances of the version tested in this paper.

3.1 Components
Pandemic is played on a world map with 48 cities connected as
a graph (see Fig. 1). Each city has one color (blue, yellow, red or
black) and will be infected by disease cubes of that color during
game setup and as the game progresses. The game has 24 disease
cubes of each color, and a city can have a maximum of 3 cubes

of the same color; if a fourth cube should be added, an outbreak
occurs instead and all adjacent cities receive a cube of that color.
Where disease cubes are added is determined by 48 infection cards,
which match the 48 cities on the board. Each player has a pawn
and can move from city to city and take actions (see Section 3.2).
Finally, Pandemic has a set of player cards and a set of epidemic
cards which are shuffled together to form the player deck. A player
card shows a city and its respective color and is drawn and kept by
the acting player, while an epidemic card is not kept but influences
the infection process as discussed in Section 3.3.

3.2 Player Actions
Each player has a hand of player cards, and each card refers to a
specific city on the board and its color. Players take turns acting, and
at the end of a player’s turn she gains two player cards and more
cities of the board become infected (see Section 3.3). On a player’s
turn, she can perform up to four actions: the possible action types
include 4 ways of moving between cities, and 4 ways of changing
the game state. Movement actions can (a) move the player along an
edge from one city to an adjacent city (drive/ferry), (b) move the
player from a city with a research station to any other city with a
research station (shuttle flight). The other two movement actions
require the player to discard a card, either to (c) move to the city
on the discarded card from anywhere on the board (direct flight)
or (d) to move to any city on the board if they are currently at the
city on the discarded card (charter flight). Movement actions allow
players to reach cities where they can perform the other action
types available to them: treat disease by removing one disease cube
from a city they are currently in, build research station at the city
they are in by discarding a card with the same city, share knowledge
by giving or receiving a player card from a player on the same city,
provided that the card traded also refers to the same city, or discover
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a cure by discarding five cards of the same color at a city with a
research station. Players can remove all disease cubes of a cured
disease in the same city with a single treat action. Moreover, if no
cubes of a cured disease exist on the board then it is eradicated and
drawing cities of this color from the infection pile has no effect.

It should be noted that in the Pandemic board game, players
take different roles which modify some of the above actions, while
special event cards are shuffled into the player deck which can then
be used by players anytime. To simplify the AI controller’s range of
options, no special event cards are used in this version of Pandemic
while players can only choose the following player roles:

• Operations Expert: Can build a research station without
discarding a city card, and can move from a research station
to any city by discarding any city card (once per turn).

• Researcher: Can give any city card from her hand to an-
other player in the same city as her, without this card having
to match her city.

• Medic: Can remove all cubes of the same color with one
treat disease action (or freely if the disease is cured).

• Scientist: Can discover a cure with 4 (not 5) player cards of
the same color.

3.3 Game State & Ending Conditions
In the beginning of the game, each player receives two player cards.
The remaining player cards are split into piles of equal size and one
epidemic is shuffled into each pile. In an Easy game, four epidemics
are shuffled into four piles of player cards and then the different
piles are placed one on top of each other. Finally, the infection deck
is shuffled and 9 cities are revealed: the first 3 cities each receive
3 disease cubes of their respective colors, the next 3 cities receive
2 cubes each, and the last 3 cities receive 1 cube each. Revealed
infection cards are placed on the infection discard pile.

Players take turns to perform 4 actions (see Section 3.2), and then
receive two cards from the player deck. If they reveal city cards then
they keep them in their hand, although they must discard any cards
over 7 from their hand after drawing. If they reveal an epidemic card,
the infection rate increases, the city at the bottom of the infection
deck gains 3 matching cubes and is discarded; finally, all cards in
the infection discard pile are shuffled and added (face down) on
top of the infection deck. This mechanism ensures that cities that
have already been infected will be soon infected again. After the
players have drawn two player cards (and resolved any epidemic),
a number of cards are drawn from the infection deck and one cube
of matching color is added to each. The number of infection cards
drawn depends on the infection rate (2, 3 or 4 infections for 0-3
epidemics, 4-5 epidemics, 6-7 epidemics respectively).

The game can only be won if players discover cures for all four
diseases (through the discover a cure action in Section 3.2). The
game can be lost if players need to place disease cubes of a certain
color but no cubes of that color remain off the board, if the number
of outbreaks reaches 8, or if the player deck runs out. This forces
players to rush to discover a cure while controlling the cubes on
the board so that the other losing conditions are not met.

4 ROLLING HORIZON PANDEMIC AGENT
While players can easily identify a set of promising actions, the
high branching factor and long-term repercussions of some player
actions raise a serious challenge for game-playing AI. To make the
problem easier to handle, a number of steps are taken to simplify
playouts, and the RHEA was adapted to handle different players’
turns. This section discusses the final RHEA architecture.

4.1 Game Abstraction
4.1.1 Forward Model. A forward model is necessary in order to
simulate the game and evaluate future states based on current
actions. On the one hand, Pandemic is highly stochastic as both
the player deck and the infection deck are unknown to players. On
the other hand, the stochasticity is somewhat known to players
(especially halfway into the game), since the epidemics on the player
deck are distributed fairly evenly in the beginning, and after the
first epidemic the infection deck always has previously seen cities
on top. To maintain this distribution, the forward model randomizes
its infection deck and player deck as follows. For the infection deck,
cards reinserted due to an epidemic are stored in separate stacks;
each stack is shuffled on its own, and the infection deck is recreated
by placing stacks one atop the other in the same order. For the
players’ deck, the number of cards in the partitions during the
initial setup acts as a guide for the size of each partition mid-way
into the game. For instance, in an Easy game (4 epidemics), the initial
partitions consists of 13 cards (12 city cards and one epidemic); after
two epidemics, if the current player deck has 30 cards, it consists
of two partitions with 13 cards (12 city cards and one epidemic),
and the top-most partition with 4 cards (and no epidemic, as the
epidemic for this partition has already appeared). The forward
model shuffles all non-discarded city cards together, then places
them into partitions, inserts epidemic cards to partitions that should
have one, shuffles the cards in each partition and recreates the player
deck by placing partitions in the same order. The forward model
randomizes the hidden states of the game in this fashion at the
beginning of each gameplay simulation.

4.1.2 Macro-actions. Each player has four actions per turn, so
enumerating all the possible actions would be excessive and could
lead to duplicate effort (e.g. a city can be reached via different routes).
To simplify and compress the action state, the concept of macro-
actions is introduced. Macro-actions are sequences of actions which
actually improve the chance of winning, and combine movement
actions to reach a city where that action must be applied. The
macro-actions in this implementation are the following:

• Treat disease: In N actions, reach a city with one or more
disease cubes and remove one disease cube (N-1 movement
actions, 1 treat disease action).

• Discover cure: In N actions, reach a city with a research
station and discover cure for one (uncured) disease (N-1
movement actions, 1 discover cure action).

• Build research station: In N actions, reach a city if (a) this
player can build a research station there (e.g. by discarding
that city card, or for free as the Operations Expert) and (b)
this city is at least 4 steps away from another research station,



Collaborative Agent Gameplay in the Pandemic Board Game FDG ’20, September 15–18, 2020, Bugibba, Malta

then build a research station (N-1 movement actions, 1 build
research station action).

• Share knowledge (give): In N actions, reach a city for
which the player has that city card and another player would
benefit from it. If the other player is already in that city, give
the card (N-1 movement actions, 1 share knowledge action).
If the other player is not yet in that city or there are no more
actions, wait there (N movement actions).

• Share knowledge (take): In N actions, reach a city where
(a) another player is positioned in; (b) the other player has
that city card; (c) taking that card is beneficial, then take that
card (N-1 movement actions, 1 share knowledge action). If
the other player is not yet in that city or there are no more
actions, wait there (N movement actions).

Each of these macro-actions can include any number of movement
actions calculated based on the shortest action sequence (see Fig. 2).
Eligible movement actions include any drive/ferry action and shut-
tle flight action (as they do not require spending cards) and any
direct flight and charter flight for which the card spent does not
reduce the overall chances of curing a disease. The same metric is
used to choose cards to discard in case the player has more than
7 cards, and for selecting cards to give or take through the share
knowledge macro-actions. For any disease t , the ability to cure the
disease is measured via A(t) in Eq. 1 which depends on the best
hand across all players (in terms of cards of this type).

A(t) =

{
1 if t cured
maxp=1...PAc (p, t) otherwise

(1)

Ac (p, t) =

{
1, if h(p, t) ≥Cd (p)
h(p,t )
Cd (p)

, otherwise
(2)

where P is the number of players, h(p, t) is the number of cards
of type t in the hand of player p and Cd (p) is the number of cards
needed for player p to cure a disease (Cd = 4 for the Scientist, and
Cd = 5 for every other role).

4.1.3 State evaluation. Taking into account the winning and losing
conditions of Pandemic, there are several ways to evaluate any given
state: optimistically in terms of the cards needed to discover every
cure, or pessimistically in terms of the disease cubes left before the
game is lost. The following state evaluation (fitness) functions are
tested in this paper:

fo,d =
1
4
Nd (3)

fo,A =
1
1.3

(
1
4

4∑
t=1

A(t) + 0.3·Nd

)
(4)

fc,a =
1
4

4∑
t=1

Nc (t)

24
(5)

fc,m =mint=1...4
Nc (t)

24
(6)

fc,p =
4∏

t=1

Nc (t)

24
(7)

fb = 1 −
Nb
8

(8)

where Nd is the number of cured diseases, Nc (t) the number of
number of cubes for disease t remaining off the board, and Nb is
the number of outbreaks that have occurred so far.

The fitness functions account for cured diseases (fo,d ) or the
general ability to cure diseases (fo,a ), different ways to calculate
disease cubes remaining off the board (average, minimum, or prod-
uct) and finally the number of outbreaks (as the game ends at 8
outbreaks). All fitness scores are normalized to [0, 1] and a high fit-
ness indicates a better game state. Of note is the addition of 0.3·Nd
in Eq. (4) which gives additional pressure if the disease is already
cured compared to instances where the disease can be cured.

4.2 Default Policy
Based on the macro-actions defined, a decision-making script was
designed based on a hierarchy ofmacro-actions. This “default policy”
agent acts as the baseline in our experiments, as the initial individual
which the RHEA adjusts through mutations, and also for repairing
mutations in RHEA. The default policy enumerates all possible
macro-actions of a specific type (based on a predefined order): if
there are any macro-actions of this type then a random one of them
is chosen and executed, otherwise the next type of macro-actions
is enumerated etc. The order was chosen following intuition and
experimentation:

(1) Cure disease macro-actions
(2) Treat disease macro-actions only for cities with 3 disease

cubes of the same type
(3) Share knowledge macro-actions (take or give) with immedi-

ate effect, otherwise wait in position to share knowledge on
another player’s turn (take or give)

(4) Build research station macro-actions (if there are less than 5
research stations)

(5) Treat disease macro-actions only for cities with 2 disease
cubes of the same type

(6) Treat disease macro-actions only for cities with 1 disease
cube of the same type

(7) Walk away (i.e. move randomly using all remaining actions
left for this player’s turn)

Using the game state of Fig. 1 as an example, we identify the
default policy macro-actions on the turn of Player 2 (P2). Since P2
can not discover a cure but can travel to any city if they spend a card
(see Fig. 2), the default policy will take the 2nd option in the order
and choose a random city with 3 disease cubes (St. Petersbourg,
Moscow, Kolkata), move there (3 actions in all cases) and spend
their last action to remove disease cubes. For the sake of complete-
ness, the next option (3) is to travel to Manila via drive/ferry and
give the Manila card to the Scientist: this would increase A(red) of
Eq. (1) from 2/5 (Player 1’s hand) to 2/4 (Player 4’s hand). While
P2 can build a research station in Manila, that macro-action (4)
is unavailable because there is a research station already nearby.
Rounding up the other available options, as 5th priority P2 can treat
disease at Miami or Lagos (chosen at random), and as 6th priority
P2 can treat disease at Montreal, Hong-Kong or Beijing (chosen at
random). If no other actions were available, the player would just
move to a random location on the board using all 4 actions.
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Figure 2: Areas accessible to Player 2 (P2) with the different move options (measuring the shortest route), on the game of Fig. 1.
P2 can move without spending a card to the orange higlighted areas, spending a number of actions shown inside each city. P2
can take a shuttle flight from Atlanta to Hong Kong (both have research stations), increasing reach. P2 can spend the Manila
card to travel faster to Manila and Taipei via a direct flight from Chicago. P2 can also travel to Manila via drive/ferry and
spend the Manila card there (using the charter flight) to travel anywhere in the word. All cities accessible by spending the red
Manila card are shown next to the city with the least actions spent inside a red rectangle.

4.3 Rolling Horizon Evolutionary Algorithm
RHEA operates on a horizon of 5 player turns, but operates on the
macro-action space. Since macro-actions may take one action (e.g.
if the player is already at the right city) but usually take multiple
actions, the chromosome for RHEA has a variable length. RHEA
is initialized with the macro-actions of the default policy and then
applies a 1+1 evolutionary approach, creating a mutation of the
current strategy and replacing it if the mutated strategy leads to
a higher fitness at the end of the 5 player turns. Evaluation is
performed after the player receives new cards at the end of the
5th turn and cities are infected. Note that the forward model is
randomized every time an individual is mutated: after each player’s
macro-actions are simulated, disease cubes are added to cities based
on the shuffled infection deck etc.

Based on preliminary parameter tuning, this RHEA implementa-
tion applies mutation on every player’s turn in the chromosome,
choosing one macro-action at random on that player’s turn and
mutating it. The mutator chooses from an ordered list of macro-
actions, where the order is shuffled in each mutation. The candidate
macro-actions in their (non-randomized) order are below.

(1) Cure disease macro-actions
(2) Treat disease macro-actions only for cities with 3 disease

cubes of the same type; if none exist, treat disease macro-
actions for cities with 2 disease cubes of the same type;
if none exist, treat disease macro-actions for cities with 1
disease cubes of the same type.

(3) Share knowledge macro-actions (take or give) with immedi-
ate effect, otherwise wait in position to share knowledge on
another player’s turn (take or give)

(4) Build research station macro-actions (if there are less than 5
research stations)

Note that only macro actions that can be completed in this player’s
turn are considered. For instance, if this is the first macro-action
of the player, macro-actions that can be completed in 4 or fewer
actions are considered, but if the second or third macro-action of
the same player is mutated, the macro-action’s duration could be
restricted to 1 action. Based on this randomized order, the mutator
selects a random macro-action among those in the first set, if there
are no such actions thenmoves to the second set etc. Once amutated
macro-action is selected (and there are still actions remaining for
this player after its execution), the default policy is applied again to
add macro-actions until the end of this player’s turn. This ensures
that e.g. if the agents’ mutated macro-action moved the player
to another location, the agent will not continue with actions that
would not be viable.

Due to the inherent randomness of the forward model, there
is a possibility that players’ actions (mutated or not) can not be
applied. For example, if at the end of the previous turn London was
infected and the player’s macro-action is to treat disease in London,
then in another trial (and shuffled forward model) on the same
turn other cities (not London) could be infected and thus the player
would have nothing to treat in London. In such cases, the player
performs all actions that are viable within the macro-action but
“waste” actions that are not viable: in the previous example, a player
may move from Paris to London (1 action) but not treat disease
in London (spending 1 action doing nothing). When evaluating
the performance of each individual (the initial default policy and
every mutated individual) a number of trials are performed with a
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shuffled forward model every time, and the state evaluation (see
Section 4.1.3) at the end of 5 player turns is averaged to derive the
final fitness.

5 EXPERIMENTS
In order to assess the performance of the RHEA described in Section
4, a number of controlled experiments are carried out in a specific
set of game setups (detailed in Section 5.1). These controlled exper-
iments explore the impact of state evaluation functions (Section
5.2). Section 5.3 compares between the best RHEA agent and the
default policy (see Section 4.2) which acts as both an initial seed
and a baseline for RHEA. Finally, less controlled versions of the
same experiments are repeated to assess the robustness of RHEA
in more challenging scenarios (Section 5.4). All RHEA runs apply
a 1+1 evolutionary strategy for 100 generations (population of 1),
while the individual’s fitness is calculated as the average evaluation
of final states in 5 trials, each with a re-randomized forward model.

5.1 Testbed Setups
The initial game state in Pandemic (including the order of cards
in the two hidden decks) can greatly affect the game’s difficulty.
In order to show how the rolling horizon agent can improve the
performance of the (scripted yet stochastic) default policy, it is
important that many different initial setups are tested. 104 initial
setups were created and tested in 100 runs by the default policy
until the game was won or lost. The top 103 setups in terms of win
ratio were then chosen: those setups had at least a 2% win ratio
and thus did not include setups that were unwinnable. To select
a smaller but representative set from these 103 setups, 10 initial
setups were selected as the medoids from clustering along the axes
of win ratio (naturally between 0 and 1) and duration (normalized
based on the maximum game length, i.e. 23 turns). The distribution
of the top 103 setups and the 10 medoids are shown in Fig. 3. The
average win ratio for the default policy agent for these setups is
8.3% (ranging from 28% to 3% in different cases), and an average
game duration of 19 turns (ranging from 13.9 turns to 20.6 turns).
Other game metrics point to a variety of strategies favored in each
setup: the ratio of share knowledge actions over all actions ranges
from 6.1% to 0.8%, while ratio of losses due to epidemics ranges
from 9% to 33%.

Except for Section 5.4, all experiments test the 10 chosen setups
with the same order of unseen cards, as well as the same four player
roles in the same turn order: (1) Operations expert, (2) Medic, (3)
Researcher, (4) Scientist. Each setup is played until won or lost
for 100 runs. Performance metrics of note is the win ratio in 100
runs, as well as improvement of RH in terms of win ratio over the
baseline. The baseline is the default policy (DP) agent, which was
also used to select the 10 setups.

5.2 Impact of State Evaluation
5.2.1 Single evaluation. A number of fitnesses are proposed in
Section 4.1.3 for evaluating the state of the game: Eq. (3)-(4) are
optimistic (taking into account how “close” the game is to being
won) and Eq. (5)-(8) are pessimistic (taking into account how “far”
the game is to being lost). These fitnesses do not inherently con-
sider whether the game is already won or lost. Variations of each

Figure 3: Ten chosen testbed setups (black dots) via k-
medoids clustering on the 1000 ‘easiest’ setups.

fitness are also tested: Eq. (9) assigns maximum fitness (1) when the
game is won and minimum fitness (0) when the game is lost, while
Eq. (10) rewards winning in the same way but penalizes losing
proportionately to the fitness score. The p(f ) formula hypothesizes
that while losing should always be penalized compared to staying
in the game (through a modifier Cp ), the state of the game when
lost can indicate how well the agent could defend against a loss.
For all experiments in this paper, Cp = 0.1.

w(f ) =


1 if game won
f if game ongoing
0 if game lost

(9)

p(f ) =


1 if game won
f if game ongoing
Cp ·f if game lost

(10)

This experiment tests each fitness of Section 4.1.3 in its 3 variants:
the average win ratio in the ten testbed setups (from 100 trials in
each setup) are reported in Fig. 4a. An important observation is
that pessimistic evaluations on their own perform much worse
than the default policy, or comparably when winning and losing
conditions are accounted for. Generally, thew(f ) variant performs
better than the default fitness, while only for fo,a the penalty seems
to have a positive effect. The optimistic fitnesses manage to steer the
agent towards winning the game more often: the best improvement
over the default policy (averaged across the ten setups) is 120% with
w(fo,d ). In terms of other differences between the agents, optimistic
agents generally tend to play shorter games and lose much faster
than pessimistic agents. Indicatively, fo,d is the fastest to lose, with
lost games’ average duration at 14.3 player turns, versus fc,p which
is the slowest to lose (21.3 turns). Unsurprisingly, pessimistic agents
who prioritize keeping disease cubes off the board rarely lose due
to outbreaks or insufficient cubes: indicatively, fd,p loses due to
epidemics in 22% of lost games and due to disease cubes in 6.3% of
lost games, compared to 56% and 24% respectively for fo,a . Finally,
optimistic agents tend to use the share knowledge actionmore often
than the DP agent while the opposite is true for the pessimistic
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(b) State evaluation as average fitness of the two fitness scores

Figure 4: Average win ratio for the 10 test setups, using
different state evaluations (with or without win/loss condi-
tions). The dotted line is the win ratio of the default policy.

agents. Pessimistic agents tend to use the treat disease action more
often than the DP agent, while the opposite is true for optimistic
agents. These differences in actions favored are less pronounced
when the fitness is conditionally applied asw(f ) or p(f ).

5.2.2 Combined evaluation. While fitness functions measuring
how close players are to winning seem to perform well, optimistic
RHEA agents underestimate losing conditions and tend to lose
quickly. The hypothesis is that combining optimistic and pessimistic
fitnesses could allow agents to account for both opportunities and
dangers in their final state. For the sake of this experiment, two
fitness scores are averaged (one optimistic, one pessimistic) and
applied either on their own or conditionally via Eq. (9) and Eq. (10).

The average win ratio in 10 setups (from 100 trials per setup), for
different combinations of state evaluations are reported in Fig. 4b.
Interestingly, a trend is reversed compared to Fig. 4a in that the
naive aggregated state evaluation often performs better than the
conditional variants, especiallyw(f ). While fo,d performed better
on average than fo,a when applied alone, in this case fitnesses
that combine fo,a perform much better. While differences are quite
small among the most well-performing agents, the best agent is
p(

fo,a+fc,m
2 ) with an average win ratio of 29.3%, i.e. an average

improvement of 302% over the DP agent (calculated per setup). This
fitness will be used in the next experiments for the RHEA agent.

5.3 Analysis of RHEA Strategies
With the best RHEA agent discovered through the exploration of
Section 5.2, it is important to identify the differences in performance
and behavior of RHEA with the baseline DP used to initialize the
macro-action sequence. This section explores the impact of the ten
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Figure 5: The win ratio of the default policy and the best RH
agent per initial setup.
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Figure 6: The ratio of losing conditions triggered per agent.
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Figure 7: Ratio of cities with the listed number of cubes of
the same type at the end-game, per agent.

setups, as well as the changes in decision-making and end-game
statistics, comparing the best RHEA agent and the DP agent.

Figure 5 shows the win ratio of the two agents in the ten setups
tested in this paper. The setups are sorted based on the behavior of
the default policy. While the RHEA agent improves performance
over the baseline in all cases (average improvement over the base-
line is 302%), it performs best in very difficult setups such as S10
(with a win ratio over 22 times that of the baseline). In some setups
such as the “easy” S1 (baseline win ratio of 29%) or the “difficult” S7
(baseline win ratio of 3.8%), the improvements for RHEA are not as
pronounced (135% improvement in S1 and 137% in S7).

Figure 6 shows the ratio of each losing condition triggered. It is
evident that the RHEA agent lost more often because the maximum
turn limit was reached (i.e. due to no more player cards available to
draw from). While RHEA was also better at managing the disease
cubes on the board (losing far less often due to insufficient disease
cubes), it did not seem able to avoid outbreaks. Averaging across
all 10 setups, the RHEA agent achieved a 9% drop in the number
of outbreaks compared to the baseline, although in some setups
the difference was more pronounced (e.g. 21% fewer outbreaks for
S3). The improved strategy of RHEA in handling disease cubes
is verified in Fig. 7 which shows the ratio of cities with disease
cubes of the same type at the end-game. Evidently, RHEA can keep
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player, per agent.

the number of cities with three disease cubes slightly lower, thus
lowering the chance of an outbreak. On the other hand, the ratio of
cities with one disease cube does not change as they rarely trigger
an outbreak.

Figure 8 shows the ratio of each type of action in the playthroughs
of the best RH agent and the baseline. While both agents primarily
spend most of their actions moving around the board, RHEA spends
fewer actions doing so. Interestingly, RHEA also spends slightly
fewer actions treating disease despite the fact that games end with
fewer cubes on the board and fewer outbreaks (see Fig. 6). RHEA
spends only marginally more actions building research stations; the
number of research stations at the end-game is only 11% higher for
RHEA compared to the DP agent. Clearly, the primary difference in
strategy is that the RHEA agent favors the share knowledge action,
choosing it almost twice as often (96% increase). In some games this
was even more pronounced, e.g. in S7 and S5 the share knowledge
set of actions was chosen approximately four times as often (301%
increase and 275% increase respectively).

5.4 Testing Robustness
In all the experiments so far, the same set of 10 setups were tested,
with a total of four epidemics in the player deck and with a preset
player order. Due to the way in which the initial game states were
selected (clustering based on the baseline performance), the experi-
ments were highly controlled as the order of the hidden decks was
always the same and the difficulty of the game was Easy (based on
the rules of Pandemic). Having established the differences in agents’
performance in controlled experiments, it is important to also test
the robustness of the RHEA agents’ performance when the order
of play, the hidden decks, and the number of epidemics changes.
This Section performs a number of experiments on the same 10
setups but (a) randomizing the order of players’ roles in every trial
(Prand ), (b) shuffling the infection and player decks (Drand ) after
the initial cities are infected and starting player cards are given,
and (c) changing the number of epidemics in the player deck from
4 (Easy difficulty), to 5 (Medium difficulty), and 6 (Hard difficulty).

Fig. 9 shows how the win ratio drops for both agents (baseline
and RHEA) when the player order and/or the hidden decks are ran-
domized. Interestingly, a simple reordering of player roles seems to
severely affect the baseline agent (68% drop in win rate), while the
RHEA agent is less sensitive to this (25% drop in win rate). Unsur-
prisingly, the initial game states were likely selected because the
cards in the hidden decks resulted in fairly easy game progressions;
when the hidden decks are randomized the drop is substantial for
both agents (84% drop for DP, 50% drop for RHEA). Clearly when
both hidden decks and player order is randomized the task becomes
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Figure 9: Impact of different randomizations on the initial
setups, on Easy difficulty and 4 players.
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Figure 10: Impact of different players when the number of
epidemics changes. Both player order and hidden decks are
randomized (PrandDrand ) in these experiments. Results are
averaged from 100 trials in each of the 10 testbed setups.

more challenging, although the RHEA agent still manages to win
12% of the games. Indeed, as the games become more challenging
due to the randomizations, RHEA outperforms the baseline by a
larger margin (winning up to 20 times more often when both hidden
decks and player order is randomized).

Other factors that affect the challenge is the number of epidemics
and the number of players. As the number of epidemics increases,
the same cities become infected more often and the likelihood
of outbreaks increases. On the other hand, if Pandemic is played
by fewer players then it is easier to plan ahead and coordinate
as the game state changes less between a player’s consecutive
turns. The impact of both the number of players and the number
of epidemics is shown in Fig. 10; in these experiments, both player
order and hidden decks are randomized. Specifically, the player deck
is split into stacks of the same size and the epidemics are added to
each (as normal), while in games with fewer players the roles are
randomly selected in each trial among the four tested in 4-player
games (Operations expert, Scientist, Researcher, Medic). Results
from Fig. 10 show that, unsurprisingly, games become easier with
fewer players even when more epidemic cards are added. While for
3 players an Easy Pandemic game is less challenging for both RHEA
and DP agent than a 2-player game (likely due to better synergies
between different roles), the reverse is true for Medium and Hard
games. Admittedly, in Hard difficulties RHEA also suffers (with
win ratios below 3% even with two players). However, RHEA can
win games in which the baseline never finds a winning strategy. In
Hard difficulties, DP manages to win any of the 100 trials in 5 out
of 10 setups when playing with 2 players, and in 2 out of 10 setups
when playing with 3 players; RHEA manages to win at least once
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in 100 trials in 9 out of 10 setups and in 7 out of 10 setups when
playing with 2 and 3 players respectively.

6 DISCUSSION
Experiments in this paper have illustrated that a rolling horizon
evolutionary algorithm can enhance the performance of the well-
designed baseline agent for playing Pandemic, winning four times as
often in the controlled testbeds prepared for this paper. Moreover, in
more difficult conditions the RHEA is able to discover more winning
strategies. It is hypothesized that the improved performance of
RHEA is due to the fact that it can anticipate better the upcoming
challenges through multiple simulations of the forward model,
but also because it can better adapt macro-action selection to the
strengths of each player role (e.g. prioritize share knowledge macro-
actions for the researcher and treat disease for the medic).

It should be noted that the strictly defined baseline agent, which
also acts as seed and repair mechanism for the RHEA, is also a
weakness of the proposed method. First of all, the RHEA has only
a limited degree of freedom in terms of its available strategies, and
those are further arbitrarily limited in terms of e.g. proximity con-
straints on where research stations can be built. On the other hand,
preliminary experiments with fewer constraints on actions (e.g. mu-
tation being able to choose actions that would not be completed in
this player’s turn) exhibited poor performance. RHEA would need
far more computational resources to perform well if the number
of options is not carefully controlled. Other rules, such as when
players can share knowledge (only when A(t) would increase) are
beyond the control of the RHEA. This likely explains why share
knowledge actions were rarely chosen, and ultimately why higher
difficulty games were rarely won. Finally, the experiments were
performed on testbed setups which could be solved by the DP agent:
this could bias the findings by testing games that e.g. did not require
as much knowledge sharing in order to be won. The experiments
in Section 5.4 showed how the baseline rule-based agent under-
performs when the hidden states are randomized, while RHEA is
better able to adapt to less favorable test conditions.

It is important to note that current experiments exclude certain
player roles and all special event cards, which makes the game far
more challenging. Specifically, event cards add more player turns
(as they are added to the player deck) and also allow for emergency
actions outside the players’ 4 actions per turn. However, dealing
with actions that can be taken on another player’s turn or after
drawing player cards (via special events), or actions that move other
players (via the Dispatcher player role) would highly complicate
the representation of the RHEA chromosome.

Experiments in Section 5.2 showed how different lenses of assess-
ing the game state can lead to different strategies and performance:
pessimistic evaluations which tried to avoid a premature loss fa-
vored treating diseases while optimistic evaluations which tried
to get closer to a win favored sharing knowledge. Experiments in
Section 5.2.2 showed that a simple aggregation of optimistic and
pessimistic evaluations can lead to a much improved performance.
Other combinations of state evaluations likely performed worse
due to the relative imbalance between the two metrics combined.
Adjusting the weight of pessimistic versus optimistic evaluation
will likely improve performance further, via e.g. a weighted sum

of two or more state evaluations of Eq. (3)-(8). A multi-objective
approach for RHEA could also better handle the tradeoff between
the likely conflicting state evaluations. However, preliminary ex-
periments with a simple algorithm based on NSGA-II [4] where
pessimistic and optimistic state evaluations were combined yielded
poor results, likely requiring more computational resources (e.g.
generations or population size) to reach peak performance.

Further exploration in the vein of collaborative board game play
for Artificial Intelligence could target more complex games. As
noted in Section 1, games such as Arkham Horror, Robinson Crusoe,
or Zombicide (CMON, 2012) have similar design patterns with Pan-
demic but complicate the game state substantially via player inven-
tories (with items that may further modify the optimal or allowed
actions that players can take) and further randomness as players
roll dice for combat and other actions. Further research in abstract-
ing the game state, likely via machine-learned forward models [14]
based on a corpus of playthroughs (or parts of a playthrough, such
as a combat sequence), would be necessary in order to playout such
a game. Another avenue for exploration would be having both AI
and human players collaborating in the same game, e.g. where one
human player can play a game intended for 4 players by offloading
the other roles to the AI. In this case, the primary challenges for an
AI would be (a) anticipating the most likely actions of the player in
its forward model, and (b) explaining and guiding the player on the
strategy the AI players wish to follow. For the former challenge, the
AI will need to model the human co-players, either based on their
past actions [27] (in a data-driven manner) or as procedural per-
sonas [10] of board game players (e.g. the altruist or the egoist). For
the latter challenge, research in explainable AI [29] can be carried
out regarding suggestions of action and cost/benefit visualizations
so that human players are convinced of the best course of action,
or suggest their own strategies for the AI to follow.

7 CONCLUSION
This paper has highlighted the challenges and opportunities that
collaborative board games such as Pandemic pose to AI agent con-
trol, due to the complex task of controlling the stochasticity of the
environment and anticipating immediate and long-term dangers.
Moreover, the different roles that players take in a game of Pan-
demic and the high branching factor of the game’s original actions
necessitate several innovations in the design of an AI controller
that can strategize all players’ actions efficiently. The RHEA tested
in this paper seems to perform competently in many different envi-
ronments, difficulty levels, and number of players. However, further
research in Pandemic game play can shed important light on AI
agent control in the underexplored domain of collaborative board
game play.
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Framework.

https://github.com/konsfik/Pandemic-AI-Framework
https://github.com/konsfik/Pandemic-AI-Framework


Collaborative Agent Gameplay in the Pandemic Board Game FDG ’20, September 15–18, 2020, Bugibba, Malta

REFERENCES
[1] Ivan Bravi, Simon Lucas, Diego Perez, and Jialin Liu. 2019. Rinascimento: Optimis-

ing Statistical Forward Planning Agents for Playing Splendor. In IEEE Proceedings
on the Conference on Games.

[2] Cameron Browne, Edward Jack Powley, Daniel Whitehouse, Simon M. Lucas,
Peter I. Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez Liebana,
Spyridon Samothrakis, and Simon Colton. 2012. A Survey of Monte Carlo Tree
Search Methods. IEEE Transactions on Computational Intelligence and AI in Games
4 (2012), 1–43.

[3] Peter I. Cowling, Colin D. Ward, and Edward Jack Powley. 2012. Ensemble
Determinization in Monte Carlo Tree Search for the Imperfect Information Card
Game Magic: The Gathering. IEEE Transactions on Computational Intelligence
and AI in Games 4 (2012), 241–257.

[4] Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T. Meyarivan. 2002. A fast
and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on
Evolutionary Computation 6 (2002), 182–197.

[5] Peter Drake and Steve Uurtamo. 2007. Move Ordering vs Heavy Playouts: Where
Should Heuristics be Applied in Monte Carlo Go. In Proceedings of the North
American Game-On Conference. 35–42.

[6] Theresa Duringer. 2017. From TD-Gammon to Race for the Galaxy: Temporal
Difference Learning for BoardgameAI. https://www.templegatesgames.com/race-
for-the-galaxy-ai/. Accessed 9 January 2020.

[7] Raluca D. Gaina, Simon M. Lucas, and Diego Perez Liebana. 2017. Rolling horizon
evolution enhancements in general video game playing. Proceedings of the IEEE
Conference on Computational Intelligence and Games (CIG), 88–95.

[8] Dave Gershgorn. 2016. Google’s AlphaGo Beats World Champion in Third Match
to Win Entire Series. https://www.popsci.com/googles-alphago-beats-world-
champion-in-third-match-to-win-entire-series/. Retrieved 13 Dec 2019.

[9] Cathleen Heyden. 2009. Implementing a computer player for Carcassonne. Master’s
thesis. Maastricht University.

[10] Christoffer Holmgård, Antonios Liapis, Julian Togelius, and Georgios N. Yan-
nakakis. 2014. Evolving Personas for Player Decision Modeling. In Proceedings of
the IEEE Conference on Computational Intelligence and Games (CIG).

[11] Amy K. Hoover, Julian Togelius, Scott Lee, and Fernando de Mesentier Silva.
2019. The Many AI Challenges of Hearthstone. CoRR abs/1907.06562 (2019).
arXiv:1907.06562 http://arxiv.org/abs/1907.06562

[12] Diego Perez Liebana, Spyridon Samothrakis, Simon M. Lucas, and Philipp Rohlf-
shagen. 2013. Rolling horizon evolution versus tree search for navigation in
single-player real-time games. In Proceedings of the Genetic and Evolutionary
Computation Conference.

[13] Diego Perez Liebana, Spyridon Samothrakis, Julian Togelius, Tom Schaul, and
Simon M. Lucas. 2016. Analyzing the robustness of general video game playing
agents. Proceedings of the IEEE Conference on Computational Intelligence and
Games (2016).

[14] Simon M. Lucas, Alexander Dockhorn, Vanessa Volz, Chris Bamford, Raluca D.
Gaina, Ivan Bravi, Diego Pérez-Liébana, Sanaz Mostaghim, and Rudolf Kruse.

2019. A Local Approach to Forward Model Learning: Results on the Game of Life
Game. In Proceedings of the IEEE Conference on Games.

[15] Monty Newborn. 1997. Kasparov versus Deep Blue - computer chess comes of age.
Springer-Verlag.

[16] Hyun-Soo Park and Kyung-Joong Kim. 2015. MCTS with influence map for gen-
eral video game playing. In Proceedings of the IEEE Conference on Computational
Intelligence and Games.

[17] Arthur L. Samuel. 1959. Some studies in machine learning using the game of
Checkers. IBM Journal of research and development 3, 3 (1959), 210–229.

[18] Andre Santos, Pedro A. Santos, and Francisco S. Melo. 2017. Monte Carlo Tree
Search experiments in Hearthstone. In Proceedings of the IEEE Conference on
Computational Intelligence and Games Conference.

[19] Nick Sephton, Peter I. Cowling, Edward Jack Powley, and Nicholas H. Slaven.
2014. Heuristic move pruning in Monte Carlo Tree Search for the strategic
card game Lords of War. Proceedings of the IEEE Conference on Computational
Intelligence and Games (2014), 1–7.

[20] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalch-
brenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu,
Thore Graepel, and Demis Hassabis. 2016. Mastering the Game of Go with Deep
Neural Networks and Tree Search. Nature 529, 7587 (Jan. 2016), 484–489.

[21] Dennis J. N. J. Soemers, Éric Piette, and Cameron Browne. 2019. Biasing MCTS
with Features for General Games. In Proceedings of the IEEE Congress on Evolu-
tionary Computation. 450–457.

[22] Adam Summerville, Andrew Kim, Maxim Ruzmaykin, and Aaron Truong. 2019.
The Codenames AI Competiton. https://sites.google.com/view/the-codenames-
ai-competition/home. Retrieved 13 Dec 2019.

[23] Gerald Tesauro. 1995. Temporal Difference Learning and TD-Gammon. Commun.
ACM 38, 3 (March 1995), 58–68.

[24] Xin Tong,Weiming Liu, and Baihai Li. 2019. Enhancing Rolling Horizon Evolution
with Policy and Value Networks. In Proceedings of the IEEE Conference on Games.

[25] Alan M. Turing. 1953. Digital computers applied to games. Faster than thought
101 (1953).

[26] Joseph Walton-Rivers, Piers R. Williams, Richard Bartle, Diego Perez Liebana,
and Simon M. Lucas. 2017. Evaluating and modelling Hanabi-playing agents.
Proceedings of the IEEE Congress on Evolutionary Computation (2017), 1382–1389.

[27] Georgios N. Yannakakis, Pieter Spronck, Daniele Loiacono, and Elisabeth André.
2013. Player Modeling. 6 (2013).

[28] Georgios N. Yannakakis and Julian Togelius. 2018. Artificial Intelligence and
Games. Springer. http://gameaibook.org.

[29] Jichen Zhu, Antonios Liapis, Sebastian Risi, Rafael Bidarra, and G. Michael Young-
blood. 2018. Explainable AI for Designers: A Human-Centered Perspective on
Mixed-Initiative Co-Creation. In Proceedings of the IEEE Conference on Computa-
tional Intelligence and Games.

https://www.templegatesgames.com/race-for-the-galaxy-ai/
https://www.templegatesgames.com/race-for-the-galaxy-ai/
https://www.popsci.com/googles-alphago-beats-world-champion-in-third-match-to-win-entire-series/
https://www.popsci.com/googles-alphago-beats-world-champion-in-third-match-to-win-entire-series/
https://arxiv.org/abs/1907.06562
http://arxiv.org/abs/1907.06562
https://sites.google.com/view/the-codenames-ai-competition/home
https://sites.google.com/view/the-codenames-ai-competition/home
http://gameaibook.org

	Abstract
	1 Introduction
	2 Related Work
	3 The Game
	3.1 Components
	3.2 Player Actions
	3.3 Game State & Ending Conditions

	4 Rolling Horizon Pandemic Agent
	4.1 Game Abstraction
	4.2 Default Policy
	4.3 Rolling Horizon Evolutionary Algorithm

	5 Experiments
	5.1 Testbed Setups
	5.2 Impact of State Evaluation
	5.3 Analysis of RHEA Strategies
	5.4 Testing Robustness

	6 Discussion
	7 Conclusion
	Acknowledgments
	References

