
Evolutionary
Computation 
and Games

Julian Togelius, Sebastian Risi, 
Georgios N. Yannakakis

GECCO '20 Companion, July 8–12, 2020, Cancún, Mexico
© 2020 Copyright is held by the owner/author(s).
ACM ISBN 978-1-4503-7127-8/20/07.
https://doi.org/10.1145/3377929.3389854

Who we?

Julian

Georgios

Sebastian

Read moreWant to know more?

gameaibook.org

Evolutionary computation
can be used to…

• Play games

• Generate game content (levels etc)

• Generate games

• Model players

• Assist designers

• <your idea here>

620

Julian Togelius

Julian Togelius
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other
uses, contact the Owner/Author.

GECCO '20 Companion, July 8–12, 2020, Cancún, Mexico
© 2020 Copyright is held by the owner/author(s).
ACM ISBN 978-1-4503-7127-8/20/07.
https://doi.org/10.1145/3377929.3389854

Playing board games Playing board games

Playing board games
Playing

board games

AI applied to games

621

How can evolution be used
to play a game?

difficult and engaging for human players. We used the same network
architecture, hyperparameter values (see Extended Data Table 1) and
learning procedure throughout—taking high-dimensional data (210|160
colour video at 60 Hz) as input—to demonstrate that our approach
robustly learns successful policies over a variety of games based solely
on sensory inputs with only very minimal prior knowledge (that is, merely
the input data were visual images, and the number of actions available
in each game, but not their correspondences; see Methods). Notably,
our method was able to train large neural networks using a reinforce-
ment learning signal and stochastic gradient descent in a stable manner—
illustrated by the temporal evolution of two indices of learning (the
agent’s average score-per-episode and average predicted Q-values; see
Fig. 2 and Supplementary Discussion for details).

We compared DQN with the best performing methods from the
reinforcement learning literature on the 49 games where results were
available12,15. In addition to the learned agents, we also report scores for
a professional human games tester playing under controlled conditions
and a policy that selects actions uniformly at random (Extended Data
Table 2 and Fig. 3, denoted by 100% (human) and 0% (random) on y
axis; see Methods). Our DQN method outperforms the best existing
reinforcement learning methods on 43 of the games without incorpo-
rating any of the additional prior knowledge about Atari 2600 games
used by other approaches (for example, refs 12, 15). Furthermore, our
DQN agent performed at a level that was comparable to that of a pro-
fessional human games tester across the set of 49 games, achieving more
than 75% of the human score on more than half of the games (29 games;

Convolution Convolution Fully connected Fully connected

No input

Figure 1 | Schematic illustration of the convolutional neural network. The
details of the architecture are explained in the Methods. The input to the neural
network consists of an 84 3 84 3 4 image produced by the preprocessing
map w, followed by three convolutional layers (note: snaking blue line

symbolizes sliding of each filter across input image) and two fully connected
layers with a single output for each valid action. Each hidden layer is followed
by a rectifier nonlinearity (that is, max 0,xð Þ).

a b

c d

 0
 200
 400
 600
 800

 1,000
 1,200
 1,400
 1,600
 1,800
 2,000
 2,200

 0 20 40 60 80 100 120 140 160 180 200
A

ve
ra

ge
 s

co
re

 p
er

 e
pi

so
de

Training epochs

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 a
ct

io
n

va
lu

e
(Q

)

Training epochs

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

Training epochs

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 a
ct

io
n

va
lu

e
(Q

)

Training epochs

Figure 2 | Training curves tracking the agent’s average score and average
predicted action-value. a, Each point is the average score achieved per episode
after the agent is run with e-greedy policy (e 5 0.05) for 520 k frames on Space
Invaders. b, Average score achieved per episode for Seaquest. c, Average
predicted action-value on a held-out set of states on Space Invaders. Each point

on the curve is the average of the action-value Q computed over the held-out
set of states. Note that Q-values are scaled due to clipping of rewards (see
Methods). d, Average predicted action-value on Seaquest. See Supplementary
Discussion for details.

RESEARCH LETTER

5 3 0 | N A T U R E | V O L 5 1 8 | 2 6 F E B R U A R Y 2 0 1 5

Macmillan Publishers Limited. All rights reserved©2015

Common technique: 
Q-learning with deep nets

Surely, deep
Q-learning is

the best
algorithm for
game-playing!

622

• Planning (requires forward model)

• Uninformed search (e.g. minimax, breadth-first)

• Informed search (e.g. A*)

• Evolutionary algorithms

• Reinforcement learning (requires training time)

• TD-learning / approximate dynamic programming

• Evolutionary algorithms

• Supervised learning (requires play traces to learn from)

• Neural nets, k-nearest neighbors etc

• Random (requires nothing)

How can evolution be used
to play a game?

• Evolve an agent that plays the game

• e.g. through neuroevolution or genetic
programming

• Use evolution to play the game (as an action
selector)

Neuroevolution

Gomez et al. 2008

NE Role in Games

Neuroevolution in Games. Risi and Togelius, TCIAIG, 2015.

623

Evolving Neural Networks

• Direct encodings
– Evolution strategies / Genetic

algorithms
– NEAT (can evolve arbitrary

topologies)
– Many more …

• Indirect encodings
– HyperNEAT
– Compressed weight space
– Many more …

Why Neuroevolution

• Broad applicability
• Can be used for both supervised and RL problems
• Diversity
• Open-ended learning
• Enables new types of games

NERO: NeuroEvolving Robotic Operatives
(Stanley et al. 2005)

• NPCs improve in real time as game is played
• Player can train AI for goal and style of play
• Each AI Unit Has Unique NN
• Supports incremental evolution

EvoCommander
New game mechanics based on brain switching  

(Jallov et al. 2015)

https://www.youtube.com/watch?v=xFwjbCe5Zo8#t=22

624

Fitness Evaluations in Games
• Co-evolution
• Multiobjective Evolution
• Incremental Evolution

NE Role: Direct action selection Car racing

• Driving a car fast requires fine motor control (in
both senses)

• Optimizing lap times requires planning

• Overtaking requires adversarial planning

625

• Walls are solid

• Waypoints must be
passed in order

• Fitness: continuous
approximation of
waypoints passed in
700 time steps

A simple car game • Inputs

• Six range-finder sensors
(evolvable pos.)

• Waypoint sensor, Speed,
Bias

• Networks

• Standard multi-layer
perceptron, 9:6:2

• Outputs interpreted as
thrust/steering

Fig. 2. The initial sensor setup, which is kept throughout the evolutionary
run for those runs where sensor parameters are not evolvable. Here, the car
is seen in close-up moving upward-leftward. At this particular position, the
front-right sensor returns a positive number very close to 0, as it detects a
wall near the limit of its range; the front-left sensor returns a number close
to 0.5, and the back sensor a slightly larger number. The front, left and right
sensors do not detect any walls at all and thus return 0.

range 200 pixels, as has three sensors pointing forward-

left, forward-right and backward respectively. The two other

sensors, which point left and right, have reach 100; this is

illustrated in figure 2.

B. Neural networks

The controllers in the experiments below are based on

neural networks. More precisely, we are using multilayer

perceptrons with three neuronal layers (two adaptive layers)

and tanh activation functions. A network has at least three

inputs: one fixed input with the value 1, one speed input

in the approximate range [0..3], and one input from the

waypoint sensor, in the range [-�..�]. In addition to this,
it might have any number of inputs from wall sensors, in

the range [0..1]. All networks have two outputs, which are

interpreted as driving commands for the car.

C. Evolutionary algorithm

The genome is an array of floating point numbers, of

variable or fixed length depending on the experimental setup.

Apart from information on the number of wall sensors and

hidden neurons, it encodes the orientation and range of the

wall sensors, and weights of the connections in the neural

network.

The evolutionary algorithm used is a kind of evolutionary

strategy, with µ = 50 and � = 50. In other words, 50
genomes (the elite) are created at the start of evolution. At

each generation, one copy is made of each genome in the

elite, and all copies are mutated. After that, fitness value is

calculated for each genome, and the 50 best individuals of

all 100 form the new elite.

There are two mutation operators: Gaussian mutation

of all weight values, and Gaussian mutation of all sensor

parameters (angles and lengths), which might be turned on

or off. In both cases, the standard deviation of the Gaussian

distribution was set to 0.3.

Last but not least: the fitness function. The fitness of a

controller is calculated as the number of waypoints it has

Track 10 50 100 200 Pr.
1 0.32 (0.07) 0.54 (0.2) 0.7 (0.38) 0.81 (0.5) 2
2 0.38 (0.24) 0.49 (0.38) 0.56 (0.36) 0.71 (0.5) 2
3 0.32 (0.09) 0.97 (0.5) 1.47 (0.63) 1.98 (0.66) 7
4 0.53 (0.17) 1.3 (0.48) 1.5 (0.54) 2.33 (0.59) 9
5 0.45 (0.08) 0.95 (0.6) 0.95 (0.58) 1.65 (0.45) 8
6 0.4 (0.08) 0.68 (0.27) 1.02 (0.74) 1.29 (0.76) 5
7 0.3 (0.07) 0.35 (0.05) 0.39 (0.09) 0.46 (0.13) 0
8 0.16 (0.02) 0.19 (0.03) 0.2 (0.01) 0.2 (0.01) 0

TABLE I

THE FITNESS OF THE BEST CONTROLLER OF VARIOUS GENERATIONS ON

THE DIFFERENT TRACKS, AND NUMBER OF RUNS PRODUCING

PROFICIENT CONTROLLERS. FITNESS AVERAGED OVER 10 SEPARATE

EVOLUTIONARY RUNS; STANDARD DEVIATION BETWEEN PARENTHESES.

passed, divided by the number of waypoints in the track,

plus an intermediate term representing how far it is on its way

to the next waypoint, calculated from the relative distances

between the car and the previous and next waypoint. A

fitness of 1.0 thus means having completed one full track

within the alloted time. Waypoints can only be passed in the

correct order, and a waypoint is counted as passed when the

centre of the car is within 30 pixels from the waypoint. In

the evolutionary experiments reported below, each car was

allowed 700 timesteps (enough to do two to three laps on

most tracks in the test set) and fitness was averaged over

three trials.

IV. EVOLVING TRACK-SPECIFIC CONTROLLERS

The first experiments consisted in evolving controllers for

the eight tracks separately, in order to the test the software

in general and to rank the difficulty of the tracks.

For each of the tracks, the evolutionary algorithm was run

10 times, each time starting from a population of “clean”

controllers, with all connection weights set to zero and sensor

parameters as explained above. Only weight mutation was

allowed. The evolutionary runs were for 200 generations

each.

A. Fixed sensor parameters

1) Evolving from scratch: The results are listed in table I,

which is read as follows: each row represents the results for

one particular track. The first column gives the mean of the

fitnesses of the best controller of each of the evolutionary

runs at generation 10, and the standard deviation of the

fitnesses of the same controllers. The next three columns

present the results of the same calculations at generations 50,

100 and 200, respectively. The “Pr” column gives the number

of proficient best controllers for each track. An evolutionary

run is deemed to have produced a proficient controller if

its best controller at generation 200 has a fitness (averaged,

as always, over three trials) of at least 1.5, meaning that it

completes at least one and a half lap within the allowed time.

For the first two tracks, proficient controllers were pro-

duced by the evolutionary process within 200 generations,

but only in two out of ten runs. This means that while it is

possible to evolve neural networks that can be relied on to

Track 1 2 3 4 5 6 7 8
Fitness (sd) 1.66 (0.12) 1.86 (0.02) 2.27 (0.45) 2.66 (0.3) 2.19 (0.23) 2.47 (0.18) 0.22 (0.15) 0.15 (0.01)

TABLE V

FITNESS OF A FURTHER EVOLVED GENERAL CONTROLLER WITH EVOLVABLE SENSOR PARAMETERS ON THE DIFFERENT TRACKS. COMPOUND FITNESS

2.22 (0.09).

Track 10 50 100 200 Pr.
1 1.9 (0.1) 1.99 (0.06) 2.02 (0.01) 2.04 (0.02) 10
2 2.06 (0.1) 2.12 (0.04) 2.14 (0) 2.15 (0.01) 10
3 3.25 (0.08) 3.4 (0.1) 3.45 (0.12) 3.57 (0.1) 10
4 3.35 (0.11) 3.58 (0.11) 3.61 (0.1) 3.67 (0.1) 10
5 2.66 (0.13) 2.84 (0.02) 2.88 (0.06) 2.88 (0.06) 10
6 2.64 (0) 2.71 (0.08) 2.72 (0.08) 2.82 (0.1) 10
7 1.53 (0.29) 1.84 (0.13) 1.88 (0.12) 1.9 (0.09) 10
8 0.59 (0.15) 0.73 (0.22) 0.85 (0.21) 0.93 (0.25) 0

TABLE VI

FITNESS OF BEST CONTROLLERS, EVOLVING CONTROLLERS

SPECIALISED FOR EACH TRACK, STARTING FROM A FURTHER EVOLVED

GENERAL CONTROLLER WITH EVOLVED SENSOR PARAMETERS.

Fig. 5. Sensor setup of controller specialized for track 5. While more or
less retaining the two longest-range sensors from the further evolved general
controller it is based on, it has added medium-range sensors in the front and
back, and a very short-range sensor to the left.

controllers. For each track, 10 evolutionary runs were made,

where the initial population was seeded with the general

controller and evolution was allowed to continue for 200

generations. Results are shown in table VI. The mean fitness

improved significantly on all six first tracks, and much of

the fitness increase occured early in the evolutionary run,

as can be seen from a comparison with table V. Further,

the variability in mean fitness of the specialized controllers

from different evolutionary runs is very low, meaning that the

reliability of the evolutionary process is very high. Perhaps

most surprising, however, is that all 10 evolutionary runs

produced proficient controllers for track 7, on which the

general controller had not been trained (and indeed had very

low fitness) and for which it had previously been found to

be impossible to evolve a proficient controller from scratch.

Analysis of the evolved sensor parameters of the special-

ized controllers show a remarkable diversity, even among

controllers specialized for the same track, as evident in

figures 5, 6 and 7. Sometimes, no similarity can be found

between the evolved configuration and either the original

sensor parameters or those of the further evolved general

controller the specialization was based on.

Fig. 6. Sensor setup of a controller specialized for, and able to consistently
reach good fitness on, track 7. Presumably the use of all but one sensor and
their angular spread reflects the large variety of different situations the car
has to handle in order to navigate this more difficult track.

Fig. 7. Sensor setup of another controller specialized for track 7, like the
one in figure 6 seemingly using all its sensors, but in a quite different way.

VII. OBSERVATIONS ON EVOLVED DRIVING BEHAVIOUR

It has previously been found that the evolutionary approach

used in this paper can produce controllers that outperform

human drivers[4]. To corroborate this result, one of the

authors measured his own performance on the various tracks,

driving the car using keyboard inputs and a suitable delay

of 50 ms between timesteps. Averaged over 10 attempts,

the author’s fitness on track 2 was 1.89, it was 2.65 on

track 5, and 1.83 on track 7, numbers which compare rather

unfavourably with those found in table VI. The responsible

author would like to believe that this says more about the

capabilities of the evolved controllers than those of the

author.

Traces of steering and driving commands from the evolved

controllers show that they often use a PWM-like technique,

in that they frequently - sometimes almost every timestep -

change what commands they issue. For example, the general

controller used as the base for the specializations above

employs the tactic of constantly alternating between steering

left and right when driving parallell to a wall, giving the

appearance that the car is shaking. Frequently alternating

Track 1 2 3 4 5 6 7 8
Fitness (sd) 1.66 (0.12) 1.86 (0.02) 2.27 (0.45) 2.66 (0.3) 2.19 (0.23) 2.47 (0.18) 0.22 (0.15) 0.15 (0.01)

TABLE V

FITNESS OF A FURTHER EVOLVED GENERAL CONTROLLER WITH EVOLVABLE SENSOR PARAMETERS ON THE DIFFERENT TRACKS. COMPOUND FITNESS

2.22 (0.09).

Track 10 50 100 200 Pr.
1 1.9 (0.1) 1.99 (0.06) 2.02 (0.01) 2.04 (0.02) 10
2 2.06 (0.1) 2.12 (0.04) 2.14 (0) 2.15 (0.01) 10
3 3.25 (0.08) 3.4 (0.1) 3.45 (0.12) 3.57 (0.1) 10
4 3.35 (0.11) 3.58 (0.11) 3.61 (0.1) 3.67 (0.1) 10
5 2.66 (0.13) 2.84 (0.02) 2.88 (0.06) 2.88 (0.06) 10
6 2.64 (0) 2.71 (0.08) 2.72 (0.08) 2.82 (0.1) 10
7 1.53 (0.29) 1.84 (0.13) 1.88 (0.12) 1.9 (0.09) 10
8 0.59 (0.15) 0.73 (0.22) 0.85 (0.21) 0.93 (0.25) 0

TABLE VI

FITNESS OF BEST CONTROLLERS, EVOLVING CONTROLLERS

SPECIALISED FOR EACH TRACK, STARTING FROM A FURTHER EVOLVED

GENERAL CONTROLLER WITH EVOLVED SENSOR PARAMETERS.

Fig. 5. Sensor setup of controller specialized for track 5. While more or
less retaining the two longest-range sensors from the further evolved general
controller it is based on, it has added medium-range sensors in the front and
back, and a very short-range sensor to the left.

controllers. For each track, 10 evolutionary runs were made,

where the initial population was seeded with the general

controller and evolution was allowed to continue for 200

generations. Results are shown in table VI. The mean fitness

improved significantly on all six first tracks, and much of

the fitness increase occured early in the evolutionary run,

as can be seen from a comparison with table V. Further,

the variability in mean fitness of the specialized controllers

from different evolutionary runs is very low, meaning that the

reliability of the evolutionary process is very high. Perhaps

most surprising, however, is that all 10 evolutionary runs

produced proficient controllers for track 7, on which the

general controller had not been trained (and indeed had very

low fitness) and for which it had previously been found to

be impossible to evolve a proficient controller from scratch.

Analysis of the evolved sensor parameters of the special-

ized controllers show a remarkable diversity, even among

controllers specialized for the same track, as evident in

figures 5, 6 and 7. Sometimes, no similarity can be found

between the evolved configuration and either the original

sensor parameters or those of the further evolved general

controller the specialization was based on.

Fig. 6. Sensor setup of a controller specialized for, and able to consistently
reach good fitness on, track 7. Presumably the use of all but one sensor and
their angular spread reflects the large variety of different situations the car
has to handle in order to navigate this more difficult track.

Fig. 7. Sensor setup of another controller specialized for track 7, like the
one in figure 6 seemingly using all its sensors, but in a quite different way.

VII. OBSERVATIONS ON EVOLVED DRIVING BEHAVIOUR

It has previously been found that the evolutionary approach

used in this paper can produce controllers that outperform

human drivers[4]. To corroborate this result, one of the

authors measured his own performance on the various tracks,

driving the car using keyboard inputs and a suitable delay

of 50 ms between timesteps. Averaged over 10 attempts,

the author’s fitness on track 2 was 1.89, it was 2.65 on

track 5, and 1.83 on track 7, numbers which compare rather

unfavourably with those found in table VI. The responsible

author would like to believe that this says more about the

capabilities of the evolved controllers than those of the

author.

Traces of steering and driving commands from the evolved

controllers show that they often use a PWM-like technique,

in that they frequently - sometimes almost every timestep -

change what commands they issue. For example, the general

controller used as the base for the specializations above

employs the tactic of constantly alternating between steering

left and right when driving parallell to a wall, giving the

appearance that the car is shaking. Frequently alternating

Mutation: add Gaussian noise with sd 1 to each
connection

Fitness: progress around the track

626

Example video

Evolved with 50+50 ES, 100 Generations

Choose your inputs
(+their representation)

• Using third-person inputs (cartesian inputs)
seems not to work

• Either range-finders or waypoint sensor can be
taken away, but some fitness lost

• A little bit of noise is not a problem, actually it’s
desirable

• Adding extra inputs (while keeping core inputs)
can reduce evolvability drastically!

Generalization and
specialization

• A controller evolved for one track does not
necessarily perform well on other tracks

• How do we achieve more general game-
playing skills?

• Is there a tradeoff between generality and
performance?

Fig. 1. The eight tracks. Notice how tracks 1 and 2 (at the top), 3 and
4, 5 and 6 differ in the clockwise/anti-clockwise layout of waypoints and
associated starting points. Tracks 7 and 8 have no relation to each other
apart from both being difficult.

how to evolve controllers that provide robust performance
over several tracks. These controllers are then validated on
tracks for which they have not been evolved. Finally, these
controllers are further evolved to provide better fitness on
specific tracks, conclusions are drawn, and further research
is suggested.

II. THE CAR RACING MODEL

The experiments in this article were performed in a
2-dimensional simulator, intended to qualitatively if not
quantitatively, model a standard radio-controlled (R/C) toy
car (approximately 17 centimeters long) in an arena with
dimensions approximately 3*2 meters, where the track is
delimited by solid walls. The simulation has the dimensions
400*300 pixels, and the car measures 20*10 pixels.

R/C toy car racing differs from racing full-sized cars in
several ways. One is the simplified controls; many R/C cars
have only three possible drive modes (forward, backward,
and neutral) and three possible steering modes (left, right
and center). Other differences are that many toy cars have
bad grip on many surfaces, leading to easy skidding, and that

damaging such cars in collisions is harder due to their low
weight.

The dynamics of the car are based on a reasonably detailed
mechanical model, taking into account the small size of the
car and bad grip on the surface, but is not based on any actual
measurement [13][14]. The model is similar to that used in
[4], and differs mainly in its improved collision handling;
after more experience with the physical R/C cars the collision
response system was reimplemented to make collisions more
realistic (and, as an effect, more undesirable). Now, a collison
may cause the car to get stuck if the wall is struck at an
unfortunate angle, something often seen in experiments with
physical cars.

A track consists of a set of walls, a chain of waypoints,
and a set of starting positions and directions. When a car
is added to a track in one of the starting positions, with
corresponding starting direction, both the position and angle
being subject to random alterations. The waypoints are used
for fitness calculations.

For the experiments we have designed eight different
tracks, presented in figure 1. The tracks are designed to
vary in difficulty, from easy to hard. Three of the tracks
are versions of three other tracks with all the waypoints
in reverse order, and the directions of the starting positions
reversed.

The main differences between our simulation and the
real R/C car racing problem have to do with sensing. As
reported in Tanev et al. as well as [4], there is a small but
not unimportant lag in the communication between camera,
computer and car, leading to the controller acting on outdated
perceptions. Apart from that, there is often some error
in estimations of the car’s position and velocity from an
overhead camera. In contrast, the simulation allows instant
and accurate information to be fed to the controller.

III. EVOLVABLE INTELLIGENCE

A. Sensors

The car experiences its environment through two types
of sensors: the waypoint sensor, and the wall sensors. The
waypoint sensor gives the difference between the car’s cur-
rent orientation and the angle to the next waypoint (but not
the distance to the waypoint). When pointing straight to a
waypoint, this sensor thus outputs 0, when the waypoint is
to the left of the car it outputs a positive value, and vice versa.
As for the wall sensors, each sensor has an angle (relative to
the orientation of the car) and a range, between 0 and 200
pixels. The output of the wall sensor is zero if no wall is
encountered along a line with the specified angle and range
from the centre of the car, otherwise it is a fraction of one,
depending on how close to the car the sensed wall is. A small
amount of noise is applied to all sensor readings, as it is to
starting positions and orientations.

In some of the experiments the sensor parameters are
mutated by the evolutionary algorithm, but in all experiments
they start from the following setup: one sensor points straight
forward (0 radians) in the direction of the car and has

627

Incremental evolution
• Introduced by Gomez & Mikkulainen (1997)

• Change the fitness function f (to make it more
demanding) as soon as a certain fitness is
achieved

• In this case, add new tracks to f as soon as the
controller can drive 1.5 rounds on all tracks
currently in f

Incremental evolution

Video: navigating
a complex track Observations

• Controllers evolved for specific tracks perform poorly
on other tracks

• General controllers, that can drive almost any track,
can be incrementally evolved

• Starting from a general controller, a controller can be
further evolved for specialization on a particular track

• drive faster than the general controller

• works even when evolution from scratch did not
work!

628

Two cars on a track
• Two car with solo-evolved controllers on one

track: disaster

• they don’t even see each other!

• How do we train controllers that take other
drivers into account? (avoiding collisions or
using them to their advantage)

• Solution: car sensors (rangefinders, like the wall
sensors) and competitive coevolution

Competitive coevolution

• The fitness function evaluates at least two
individuals

• One individual’s success is adversely affected
by the other’s (directly or indirectly)

• Very potent, but seldom straightforward; e.g.
Hillis (1991), Rosin and Belew (1996)

Competitive coevolution
• Standard 15+15 ES; each individual is

evaluated through testing against the current
best individual in the population

• Fitness function a mix of...

• Absolute fitness: progress in n time steps

• Relative fitness: distance ahead of or behind
the other car after n time steps

Video: absolute fitness

629

Video: 50/50 fitness Video: relative fitness

Open Challenges: NE in Games

• Reaching Record-beating Performance
• Combining evolution with other learning

methods
• Learning from high-dimensional/raw data
• General video game playing
• Combining NE with life-long learning
• Competitive and cooperative coevolution
• Fast and reliable methods for commercial

games

Emerging Trends – Hybrid Methods

Alvernaz and Togelius, 2017

Ha and Schmidhuber, 2018
Volz et al. 2018

630

Using evolution to plan?
• Some games have extremely high branching factor

• Chess: 35

• Go: 350

• Civilization/StarCraft: say you have ten units, which can
each take one of ten actions…

• Tree search cannot even get past the first ply

• One solution: treat the whole plan as a sequence of
actions, the value of the final state as fitness…

Hero Academy

Enormous branching factor
beats MCTS Online Evolutionary Planning

• Evolve the set of actions to take each turn

• Chromosome is a sequence of five actions

• Simple evolutionary algorithm:

• Population size of 100, 50% elitism, random
selection of parents, uniform crossover, 10%
mutation rate

631

Results: wow

• ~10,000 unique outcomes evaluated each turn (6
seconds)

• ~3,500 generations each turn on average

Niels Justesen, Tobias Mahlmann, Sebastian Risi and Julian Togelius (2017): Playing Multi-
Action Adversarial Games: Online Evolutionary Planning versus Tree Search. IEEE TCIAIG.

Procedural content
generation in games

Why generate game
content?

• To replace the human? (Saving time and money…)

• To assist the human designer?

• To make new types of games possible?

• To go beyond human creativity

• To really understand design

632

Search-based PCG
• Use evolutionary computation to search the design

space for good artifacts (e.g. levels)

• Technically, we could use other stochastic search
/ optimization algorithms

• Major issues:

• Representing the content

• Devising a good evaluation / fitness function
Julian Togelius, Georgios N. Yannakakis, Kenneth O. Stanley and Cameron Browne (2011):

Search-based Procedural Content Generation: A Taxonomy and Survey. IEEE TCIAIG.

Search-based Procedural Content Generation

Sentient Sketchbook (Liapis et al. 2013)

Hastings, Guha, and Stanley 2009 Dahlskog and Togelius 2012

Togelius & Schmidhuber 2008

Petalz Social Facebook Game 
based on PCG through NE

Sebastian Risi, Joel Lehman, David D’Ambrosio, Ryan Hall, Kenneth Stanley, AIIDE 2012, TCIAIG 2015

Generating Flower Images and Shapes

633

Generating Flower Images and Shapes Generating Flower Images and Shapes

0.5

Flower Evolution: Pollinating a Flower

Offspring

Planting the Offspring

ParentOffspring

634

Crosspollination Also Possible Crosspollination

+

Hybrid Methods - Latent Variable Evolution
(LVE)

• A learned compact genotype-
to-phenotype mapping ➔
robust mutations

• Applicable to variety of other
domains

Bontrager, Togelius, Memon 2017 Bontrager, Lin, Togelius, Risi, 2018

Generative and Adversarial Networks (GANs)
Goodfellow 2014

NVIDIA 2017

https://deeplearning4j.org/generative-adversarial-network

Radford et al. 2015

635

https://deeplearning4j.org/generative-adversarial-network https://blog.openai.com/generative-models/

https://blog.openai.com/generative-models/ https://blog.openai.com/generative-models/

Real images Generated images

636

Evolving Mario Levels in the Latent Space of a Deep
Convolutional Generative Adversarial Network 

Volz, Schrum, Liu, Lucas, Smith, Risi, GECCO 2018
Approach – Phase II

GAN Training
173 training images of size 28x14

Level Representation

GAN changes:
• One-hot encoding
• ReLU activation function for

output layer
• Argmax to determine tile

type

28x14x10

637

CMA-ES Experiments
• Representation-based testing:

– Optimize for certain number of ground titles

– Increasing difficulty (less ground, more enemies)

• Agent-based testing:  
A* Mario agent by Baumgarten
 Fitness = %playable + #jumps

Random  
Sampling

• Trained GAN can express different level variations (can be
different to levels used for training)

• Captures domain regularities

28x14x10

Mutations

➔ Trained GAN representation displays locality

28x14x10

Training

638

Results
Part II

Game
AIPlay

Games

Generate
Content

Model
Players

G. N. Yannakakis and J. Togelius, ͞Artificial Intelligence and Games,͟ Springer, 2018.

Game
AIPlay

Games

Generate
Content

Model
Players

G. N. Yannakakis and J. Togelius, ͞Artificial Intelligence and Games,͟ Springer, 2018.

639

Togelius, Julian, Mike Preuss, Nicola Beume, Simon Wessing, J. Hagelback, and Georgios N. Yannakakis. "Multiobjective
exploration of the starcraft map space." In Computational Intelligence and Games (CIG), IEEE Conference on, pp. 265-
272, 2010.

Procedural FPS Level Generation
W. Cachia, A. Liapis, and G. N. Yannakakis, ͞Multi-Level Evolution of Shooter
Levels ,͟ in Proceedings of AIIDE, 2015.

Antonios Liapis, Héctor P. Martínez, Julian Togelius, Georgios N. Yannakakis:
"Transforming Exploratory Creativity with DeLeNoX," in Proceedings of the Fourth
International Conference on Computational Creativity, 2013.

Deep Learning Meets Novelty Search
Liapis, Martínez, Togelius, and Yannakakis: "Transforming Exploratory Creativity with DeLeNoX," in Proceedings of
the Fourth International Conference on Computational Creativity, 2013.

640

Antonios Liapis, Georgios N. Yannakakis, Julian Togelius: "Sentient World:
Human-Based ProcedXral CarWograph\,³ EvoMusArt, 2013.

Constrained Novelty
Search

Constrained Novelty Search

Liapis, Yannakakis and Togelius, Constrained Novelty Search: A Study on Game
Content Generation, Evolutionary Computation, 21(1), 2015, pp. 101-129 Georgios N. Yannakakis, Antonios Liapis and Constantine Alexopoulos: "Mixed-Initiative Co-Creativity," in

Proc. of the ACM Conference on Foundations of Digital Games, 2014.

641

From Novelty Search to Surprise Search

Surprise Search for Problem Solving
Gravina, Liapis, and Yannakakis: ͞SƵƌƉƌiƐe Seaƌch͗ beǇŽŶd NŽǀeůƚǇ aŶd ObjecƚiǀeƐΗ in Proceedings
of GECCO, 2016

Objective Novelty Surprise

Code (C++): http://www.autogamedesign.eu/software

Gravina, Liapis and Yannakakis: "Constrained Surprise Search for Content
Generation," in Proceedings of the IEEE Conference on Computational Intelligence and
Games (CIG). 2016.

Surprise for QD
z Novelty-Surprise Search: a

robust and efficient divergent
search algorithm
z Maze navigation

z Robot morphology evolution

z Surprise for quality diversity
z Combined with local competition

is highly advantageous

Gravina, Daniele, Antonios Liapis, and Georgios N. Yannakakis͘ ͞Quality Diversity Through Surprise" arXiv
preprint arXiv:1807.02397 (2018).

Gravina, Daniele, Antonios Liapis, and Georgios N. Yannakakis. ͞Fusing Novelty and Surprise for Evolving
Robot Morphologies" GECCO (2018).

642

Game
AIPlay

Games

Generate
Content

Model
Players

G. N. Yannakakis and J. Togelius, ͞Artificial Intelligence and Games,͟ Springer, 2018.

How ʹ In a Nutshell

G. N. Yannakakis, P. Spronck, D. Loiacono and E͘ Andre, ͞Player Modeling,͟ in Togelius et al.,
(Eds.) Dagstuhl Seminar on Artificial and Computational Intelligence in Games, 2013.

AI/ML

Player
Modelling

Experience
Behaviour

G. N. Yannakakis and J. Togelius, ͞Artificial Intelligence and Games,͟ Springer, 2018.

643

Experience: Labels are Key!

The ordinal (relative) approach
Yannakakis, Cowie, Busso, The Ordinal Nature of Emotions, ACII, 2017 [Best Paper Award]

A
ro

us
al

X Y

Happier

Valence

A
ro

us
al

To sum it up: DŽŶ͛ƚ do this!

ͻ Wasteful Info due to
ͻ Scale-bias
ͻ Personal-bias
ͻ Labels are NOT

numbers
ͻ High inconsistency

(randomness)
ͻ ͙

I like JƵůiaŶ͛Ɛ style more/less than GeŽƌgiŽƐ͛Ɛ style
I like them both equally
I like neither

Do this instead

ͻ You gain on
ͻ Reliability
ͻ Validity
ͻ Generality

644

Modeling Player Experience

Supervised learning for modelling experience

‣Nominal values
- Julian is frustrated

‣Numerical values
- Julian is 0.86 frustrated

‣Ordinal values
- Georgios is more frustrated than Julian

Which Training Method?

Preference
learning

Classification Regression

• Preference learning is inspired by and built upon
humans͛ limited ability to express their preferences
directly in terms of a specific (subjective) value
function

• Our inability is mainly due to the
• subjective nature of a preference
• cognitive load for assigning specific values to each

one of the options
• It is more natural to express preferences about a

number of options; and this is what we end up doing
normally.

Preference Learning

S. Kaci, Working with preferences: Less is more. Springer Science & Business Media, 2011.

645

(Deep) Preference Learning with BP
ͻ Error function maximizes the distance between the output for the

preferred sample (dA) and the output for the non preferred sample (dB)

x: input features

fu
n(

x)
E

1 D

H. P. Martinez, Y. Bengio and G. N. Yannakakis, ͞Learning Deep Physiological Models of Affect,͟ IEEE Computational
Intelligence Magazine, Special Issue on Computational Intelligence and Affective Computing, pp. 20-33, May, 2013.

(Deep) Preference Learning beyond BP

ͻ Learning from pairs of preferences can be implemented in most
supervised learning methods by adapting the error/fitness function
‣ Neuroevolution

- Fitness that rewards match of pairs
‣ Rank-based ANN (RankNet)
‣ SVMs (RankSVM)
‣ Decision Trees
‣ ͙

An Open-Source Preference Learning Toolbox
Farrugia, Martinez and Yannakakis, The Preference Learning Toolbox, arXiv preprint, 2015

https://sourceforge.net/projects/pl-toolbox/
Some Preference Learning Examples

646

Emotionally Adaptive Cameras
Yannakakis, Martinez, Jhala, Towards Affective Camera Control in Games, UMUAI, 2010

General Models of Affect
Camilleri, Yannakakis and Liapis, Towards General Models of Player Affect, ACII, 2017

You have a Player Model͙ so what ?
Experience-driven PCG

Game
AI

Model you! Design
your

Game!

Yannakakis, G. N., & Togelius, J. (2011). Experience-driven procedural content generation. IEEE Transactions on
Affective Computing, 2(3), 147-161.

647

͞A framework for
personalised generation

of content in human
computer interaction (in
particular in games). It

views (game) content as
the building block of user

(player) experience͟

EDPCG: What is it?

Yannakakis, G. N., & Togelius, J. (2011). Experience-driven procedural content generation. IEEE Transactions on
Affective Computing, 2(3), 147-161.

Experience-driven Level Design in Super Mario Bros
Shaker, Togelius and Yannakakis, Crowdsourcing the Aesthetics of Platform Games, IEEE Trans. on CI
and AI in Games, 2013. [Outstanding IEEE TCIAIG Paper Award]

Experience-Driven Level Generation in Super Mario Bros
Shaker, Asteriadis, Yannakakis and Karpouzis, Fusing Visual and Behavioral Cues for Modelling User
Experience in Games, IEEE Trans. on Systems, Man and Cybernetics (B), 2013

Platformer Experience Dataset
K. Karpouzis, G. Yannakakis, N Shaker, S. Asteriadis. The Platformer Experience Dataset, Sixth
Affective Computing and Intelligent Interaction (ACII) Conference, 2015.

http://ped.institutedigitalgames.com/

648

Reframing Mario Game Design for Agent Believability
Camilleri, Yannakakis and Dingli, Platformer Level Design for Player Believability, IEEE CIG, 2016

Game Design for Agent Believability
Camilleri, Yannakakis and Dingli, Platformer Level Design for Player Believability, IEEE CIG, 2016

Player Modeling Beyond Supervised Learning

649

Designer Modeling: Procedural Strategy Map Design
Liapis et al. Adaptive game level creation through rank-based interactive evolution. IEEE Conference on
Computational Intelligence in Games, 2013.

Procedural Personas

ͻ Given utilities (rewards) show
me believable gameplay

ͻ Useful for human-standard game
testing

ͻ RL
ʹ MCTS
ʹ Neuroevolution
ʹ ͙

ͻ Inverse RL

Liapis, Antonios, Christoffer Holmgård, Georgios N. Yannakakis, and Julian Togelius. "Procedural personas as critics
for dungeon generation." In European Conference on the Applications of Evolutionary Computation, pp. 331-343.
Springer, Cham, 2015.

Orchestration
Liapis, Yannakakis, Togelius: "Computational Game Creativity," in Proceedings of the
Fifth International Conference on Computational Creativity, 2014.

Visuals

Audio

Narrative

Level
design

Gameplay

Game
design

650

Lopes, Liapis, and Yannakakis: "Sonancia: Sonification of Procedurally Generated Game Levels," in
Proceedings of the ICCC workshop on Computational Creativity & Games, 2015

͞Games: the final frontier for AI?͟

͞AI: the next step for Games!͟

Julian Togelius, Georgios N. Yannakakis ͞General General Game AI͞ in Proceedings of IEEE CIG, ϮϬϭϲ

Get Involved!

Thank you!
gameaibook.org

651

