#### Evolutionary Computation and Games Tutorial

Julian Togelius, Sebastian Risi, Georgios Yannakakis

GECCO '18 Companion, July 15–19, 2018, Kyoto, Japan © 2018 Copyright is held by the owner/author(s). ACM ISBN 978-1-4503-5764-7/18/07. https://doi.org/10.1145/3205651.3207860

#### Who are we?

Julian Togelius Sebastian Risi

Georgios N. Yannakakis

#### Course Agenda

Playing Games

Neuroevolution in games

Search-based procedural content generation

Player Modelling

#### Objective of the Tutorial

To give you a taste of some of the many ways evolutionary algorithms (and related computational intelligence methods) can be used in games research









# 2016: Google vs Go





# You already know about

- Tree search
- Basic idea of evolutionary computation
- Basic ideas of supervised learning and reinforcement learning, including neural nets



| 20                       | 009: ? vs Mario                                                      |
|--------------------------|----------------------------------------------------------------------|
| <u>File</u> <u>E</u> dit | <u>R</u> un <u>S</u> ource Refactor <u>N</u> avigate Se <u>a</u> rch |
| <b>1</b> • <b>1</b>      | 🛾 👜 🗧 😫 💩 🔻 🔾 - 🗛 -                                                  |
| Packag                   | ge Explorer 🕱 🦹 Hierarchy                                            |
|                          |                                                                      |
|                          | 🖶 tasks                                                              |
|                          | CoinTask.java                                                        |
|                          | ProgressTask.java                                                    |
|                          | Task.java                                                            |
|                          | 🖶 test                                                               |
|                          | EA.java                                                              |
|                          | Evolvable.java                                                       |
|                          | 🗊 FA.java                                                            |

# Do you know A\*?

# Why use AI to play games?

- Playing to win vs playing for experience
  - For experience: human-like, fun, predictable...?
- Playing in the player role vs playing in a non-player role

|                        | Playing to win                                                                                               | Playing for experience                                                                                                      |
|------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| As a<br>player         | Al Benchmarking<br>Really hard adversaries<br>Goldfarming bots<br>Al Playtesting (is the level<br>beatable?) | Interesting adversaries in<br>online games<br>Tutorialization<br>AI Playtesting (is the<br>level hard/easy for a<br>human?) |
| As a<br>non-<br>player | Really hard opponent<br>NPCs?<br>Team mates / allies                                                         | Most current "AI" in the game industry                                                                                      |

# Characteristics of games

- Number of players: 1, 1.5, 2, many...
  - Adversarial? Cooperative? Both?
- Stochasticity: does the same action in the same state lead to the same outcome?
- Observability: how much does the agent know?
- Action space and branching factor: how many actions?
- Time granularity: how many turns/ticks until end/reward?



# Some board games

 Chess Two-player adversarial, deterministic, fully observable, branching factor ~35, ~70 turns

 Go Two-player adversarial, deterministic, fully observable, branching factor ~350, ~150 turns

 Backgammon Two-player adversarial, stochastic, fully observable, branching factor ~250, ~55 turns

# Some video games

- Frogger (Atari 2600) 1 player, deterministic, fully observable, bf 6, hundreds of ticks
- Montezuma's revenge (Atari 2600)
   1 player, deterministic, partially observable, bf 6, tens of thousands of ticks
- Halo
   1.5 player, deterministic, partially observable, bf ???, tens of thousands of ticks
- Starcraft
   2-4 players, stochastic, partially observable, bf > a million, tens of thousands of ticks

# Applying AI to games

- How is the game state represented?
- Is there a (fast, accurate) forward model?
- Do you have time to train?
- How many games are you playing?

# How to play games

- Different methods are suitable:
  - Depending on the characteristics of the game
  - Depending on how you apply AI to the game
  - Depending on why you want to make a game-playing
- There is no single best method (duh!)
- Often, hybrid architectures do best







- Planning (requires forward model)
  - Uninformed search (e.g. minimax, breadth-first)
- Informed search (e.g. A\*)
- Evolutionary algorithms
- Reinforcement learning (requires training time)
- TD-learning / approximate dynamic programming
- Evolutionary algorithms
- Supervised learning (requires play traces to learn from)
  - Neural nets, k-nearest neighbors etc
- Random (requires nothing)









# Monte Carlo Tree Search

- The best new tree search algorithm you hopefully already know about
- When invented, revolutionized computer Go

| 3/   | D           | Destation                                   | 11   |
|------|-------------|---------------------------------------------|------|
| rear | Program     | Description                                 | EIO  |
| 2006 | INDIGO      | Pattern database, Monte Carlo simulation    | 1400 |
| 2006 | GNU GO      | Pattern database, $\alpha$ - $\beta$ search | 1800 |
| 2006 | MANY FACES  | Pattern database, $\alpha$ - $\beta$ search | 1800 |
| 2006 | NEUROGO     | TDL, neural network                         | 1850 |
| 2007 | RLGO        | TD search                                   | 2100 |
| 2007 | MoGo        | MCTS with RAVE                              | 2500 |
| 2007 | CRAZY STONE | MCTS with RAVE                              | 2500 |
| 2008 | FUEGO       | MCTS with RAVE                              | 2700 |
| 2010 | MANY FACES  | MCTS with RAVE                              | 2700 |
| 2010 | Zen         | MCTS with RAVE                              | 2700 |
|      |             |                                             |      |

















Sid Meier's Civilization Heroes of Might and Magic

Advance Wars



# Acting in Hero Academy

- 5 action points each turn
- Actions: Movement, Healing, Attacking, Equipping, Swapping
- Branching factor:
  - One action: ~60
  - One turn:  $60^5 = 7.78 \times 10^8 = 778,000,000$

# Playing by search algorithm

- Random
- 1-ply search (Greedy on action-level)
- 5-ply (1 turn) depth-first search (Greedy on turn-level)
  - ~500,000 unique outcomes evaluated each turn (6 seconds)
  - Similar to MiniMax search depth-limited to 5 plies
- Monte Carlo Tree Search

# Enormous branching factor beats MCTS

|               | Random | Greedy Action | Greedy Turn | MCTS  |
|---------------|--------|---------------|-------------|-------|
| Greedy Action | 100%   | -             |             | 51.57 |
| Greedy Turn   | 100%   | 64.0%         |             |       |
| MCTS          | 100%   | 48.5%         | 22.0%       |       |

# Using evolution to plan?

- Some games have extremely high branching factor
- Chess: 35
- Go: 350
- Civilization/StarCraft: say you have ten units, which can each take one of ten actions...
- Tree search cannot even get past the first ply
- One solution: treat the whole plan as a sequence of actions, the value of the final state as fitness...

# **Online Evolution**

- Evolve the set of actions to take each turn
  - Chromosome is a sequence of five actions
- Simple evolutionary algorithm:
  - Population size of 100, 50% elitism, random selection of parents, uniform crossover, 10% mutation rate









### Why Neuroevolution

- Broad applicability
- Can be used for both supervised and RL problems
- Diversity
- · Open-ended learning
- Enables new types of games









# **Evolving Neural Networks**

- Direct encodings
  - NEAT (can evolve arbitrary topologies)
  - Evolutionary Strategies
- Indirect encodings
  - HyperNEAT
  - Compressed weight space

# **Fitness Evaluations in Games**

- Incremental evolution
- Transfer learning
- Co-evolution
- Multiobjective evolution

# Input Representation

- Straight line sensors and pie slice sensors
- Angle sensors and relative position sensors
- Pathfinding sensors
- Third-person input
- · Learning from raw sensory data











# Open NE in Games Challenges

- Reaching Record-beating Performance
- Combining evolution with other learning methods
- Learning from high-dimensional/raw data
- General video game playing
- · Combining NE with life-long learning
- Competitive and cooperative coevolution
- Fast and reliable methods for commercial games

**Procedural Content Generation** 







# Why model players?

- Why not?
- Machines (and some people) understand numbers
- Player Experience is the holy grail for design and development
- But most importantly because...



#### Why model players?

- The perfect game is tailored to you!
- We are different (and many more than before)
- If you learn to play.... it is only fair that the game learns you







#### Core Player Modeling Tasks for EC/ML

Supervised/Reinforcement Learning Imitation Prediction

> Unsupervised Learning Clustering Association mining













#### Gameplay Input

- Player game preferences, behavioral patterns
- Micro vs macro actions
- Examples: tactics, strategy, play patterns, clickthroughs, deaths, weapon selection, character selection, etc...
- Pros: real-time efficiency
- Challenge: we can't tell much beyond player behavior...





| Objective |  |  |
|-----------|--|--|
|           |  |  |
|           |  |  |

#### **Objective Input**



- Bodily and physiological manifestations of gameplay
- Captured via a multitude of sensors (e.g. EEG, BVP, ECG, EMG, eyetracking,...)
- **Pros:** reliable measures of user experience
- Challenges: many; let's see them in more detail

#### Visual Cues

- Pros: every laptop has a camera, off-the-shelf cheap solution, natural interaction
- Challenges: do we really express emotions (facially) while playing? Head-pose might be more relevant?











## (arousal/valence); useful in game-child interaction studies Challenges: verbal cues are rare; environment noise; multi-player games

Speech

• Pros: speech (pitch, loudness, quality) is linked to emotions

#### **Player Profile**

#### • Player profile

 Information about ones' personality, demographics, culture, age, sex, experience with games etc...



- In general information that does not change due (or not altered via) games – at least not that rapidly...:)
- A player profile can form additional input(s) to a player model
- Player Model vs. Player Profile : what are the differences?
  - A profile is built on static data and not influenced by game
  - A model is built on *dynamic* data from the gaming interaction and is (temporally) influenced by the game





#### Output = Annotation

- Annotation is the labelling of experience (states/values/ranks etc.)
- This is ultimately the *ground truth* of experience
- This is the training signal for your computational models

#### Key questions

- Who annotates?
- When?
- How often?
- How?





#### How Often to Annotate?

- Time-Discrete (e.g. self-assessment manikin)
- Time-Continuous (e.g. FeelTrace, AffectRank)



#### How often to annotate?

- Depends on
  - Application (speed of interaction: e.g. games vs. movies vs. e-learning apps)
  - Signal (e.g. physiology is slower than body movement and speech)
- No gold standard

#### A note about time and self-report!

- Self-reports are timedependent
- Real experience vs. Postexperience
  - Few seconds  $\rightarrow$  Real experience
  - Few minutes/hours → Episodic memory (context retrieval)
  - More → Semantic Memory (beliefs)



 NB. The gap between our memory of experience and our experience is more prominent when we report unpleasant emotions such as anger, sadness and tension. Also: The experience felt near the end of a session (e.g. a game level or a game) affects our report – aka *peak-end rule*.

#### Which Annotation (Data) Type?

- Scalar (a value of arousal, valence, SAM, Geneva wheel, Likert scale) **Rating**
- Binary value or a class Class
- Preference between two or more options Rank

















#### Annotation – Take away messages

- 1<sup>st</sup> vs. 3<sup>rd</sup> person: depends on the application
- Try to get reports as close to the *true* experience as possible (time-wise)
- No report is ideal (they suffer from biases)
- Annotate experience as **ranks** whenever possible
- If ratings are available
  - Regression of ratings is fundamentally wrong
  - Do not convert them to classes it will cost you on model performance
  - Convert them to ranks (treat them as ordinal scales)!



| Subjective Notions Summary                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------|
| Try out something like this instead:                                                                                               |
| <ul> <li>I like Julian's class more/less than Georgios' class</li> <li>I like them both equally</li> <li>I like neither</li> </ul> |
|                                                                                                                                    |



# Supervised learning for modelling experience The output of the model is the *estimated experience*The ground truth is given by annotated experience given as Nominal values (e.g. sample A is frustrated) Numerical values (e.g. sample A is 0.86 frustrated)

- Ordinal values
- Ranks (e.g. sample A is more frustrating than sample B)
- Ratings (e.g. sample A is 'extremely frustrating' and sample B is 'fairly frustrating'















#### (Deep) Preference Learning beyond BP

- The concept of learning from pairs of preferences can be implemented in most supervised learning methods by adapting the error/fitness function
- NeuroEvolution
- SVMs (RankSVM)
- Decision Trees
- ٠...

#### (Deep) Preference Learning with BP

 Error function maximizes the distance between the output for the preferred sample (d<sup>A</sup>) and the output for the non preferred sample (d<sup>B</sup>)





#### An Example: Player Experience Modeling in Super Mario

- 327 subjects (1308 games)
- Input: Playing Behavior and Content Features
- Output: Engagement, Frustration, Challenge self-reported ranks (pairwise) of short games
- ANN trained via neuroevolutionary preference learning
- Player experience model accuracy: 73-92%





#### The Super Mario Example:

Player Experience Modelling (Visual + Behavioral) Shaker, Asteriadis, Yannakakis and Karpouzis, Fusing Visual and Behavioral Cues for Modelling User Experience in Games, IEEE Trans. on Systems, Man and Cybernetics (B), 2013



The Super Mario Example: Head Expressivity Features (ANN Input)

| Category | Feature          | Description                                                                          |
|----------|------------------|--------------------------------------------------------------------------------------|
|          |                  | Head Movement Features throughout whole sessions                                     |
| Mean     | Avg              | Absolute first order derivative of Head Pose Vector                                  |
| Head     | OA               | Overall Activation                                                                   |
| Movement | SE               | Spatial Extent                                                                       |
|          | TE               | Temporal Expressivity parameter                                                      |
|          | PO               | Energy Expressivity parameter                                                        |
|          | FL               | Fluidity                                                                             |
|          | $M_{horizontal}$ | Median value for horizontal head rotation                                            |
|          | $M_{vertical}$   | Median value for vertical head rotation                                              |
|          |                  | Head Movement Features during gameplay events                                        |
|          | $Avg_a$          | Absolute first order derivative of Head Pose Vector when the gameplay event, a occur |
| Visual   | $OA_a$           | Overall Activation when the gameplay event, $a$ occur                                |
| Reaction | $SE_a$           | Spatial Extent when the gameplay event, a occur                                      |
| Features | $TE_a$           | Temporal Expressivity parameter when the gameplay event, a occur                     |
|          | $PO_a$           | Energy Expressivity parameter when the gameplay event, a occur                       |
|          | $FL_a$           | Fluidity when the gameplay event, a occur                                            |
|          | $M_a$            | Median value for head rotation norm when the gameplay event, a occur                 |
|          |                  |                                                                                      |
|          |                  |                                                                                      |
|          |                  |                                                                                      |

- 58 subjects (28 Male) Played: 167 game pairs
- Player Experience model (ANN) accuracy: **88-92**%
- Input: Visual features and behavioral features
- States (Output) : Engagement, Frustration, Challenge

| Category        | Feature          | Content (Level) Features The Super Mario Example:                            |
|-----------------|------------------|------------------------------------------------------------------------------|
| Content (Level) | G                | Number of gaps                                                               |
| Features        | $G_w$            | Average width of gaps Gamenlay/Content Features                              |
|                 | E                | Placement of enemies                                                         |
|                 | $\tilde{N}^{p}$  | Number of powerups                                                           |
|                 | B                | Number of boxes (ANN INDUT)                                                  |
|                 |                  | GamePlay Features                                                            |
| Time            | $t_{comp}$       | Completion time                                                              |
|                 | tlastLift        | Playing duration of last life over total time spent on the level             |
|                 | lduck            | Time spent ducking (%)                                                       |
|                 | jump             | Time spent jumping (%)                                                       |
|                 | tright           | Time spent moving reft (%)                                                   |
|                 | trun             | Time spent running (%)                                                       |
|                 | $t_{small}$      | Time spent in Small Mario mode (%)                                           |
|                 | $t_{big}$        | Time spent in Big Mario mode (%)                                             |
| Interaction     | $n_{coins}$      | Free coins collected (%)                                                     |
| with items      | $n_{coinBlocks}$ | Coin blocks pressed or coin rocks destroyed (%)                              |
|                 | npowerups        | Fowerups pressed (%)<br>Sum of all blacks and rocks proceed or destroyed (%) |
| Interaction     | k Plan           | Sum of all blocks and locks plessed of destroyed $\langle n \rangle$         |
| with enemies    | kaoombaKoone     | Times the player kills a goomba or a koopa (%)                               |
|                 | kstomn           | Opponents died from stomping (%)                                             |
|                 | kunicash         | Opponents died from unleashing a turtle shell (%)                            |
| Death           | $d_{total}$      | Total number of deaths                                                       |
|                 | $d_{cause}$      | Cause of the last death                                                      |
| Miscellaneous   | $n_{mode}$       | Number of times the player shifted the mode between:                         |
|                 | 22               | Sman, big, and rice                                                          |
|                 | nojump           | Difference between the # of gaps and the # of jumps                          |
|                 | nduck            | Number of times the duck button was pressed                                  |
|                 | $n_{state}$      | Number of times the player changed the state between:                        |
|                 |                  | standing still, run, jump, moving left, and moving right                     |
| 1               |                  |                                                                              |
|                 |                  |                                                                              |
|                 |                  |                                                                              |
|                 |                  |                                                                              |



#### The Super Mario Example:

#### The Modelling Approach

Shaker, Asteriadis, Yannakakis and Karpouzis, Fusing Visual and Behavioral Cues for Modelling User Experience in Games, IEEE Trans. on Systems, Man and Cybernetics (B), 2013

- NeuroEvolutionary Preference Learning: SLPs and MLPs
- Feature Selection: Sequential Forward Selection (SFS)











