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Who are we?

Julian Togelius
Sebastian Risi

Georgios N. Yannakakis

Objective of the Tutorial

To give you a taste of some of the many ways evolutionary algorithms (and
related computational intelligence methods) can be used in games research
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Want to know more”?

Procedural Yannakakis and
Content Togelius: Artificial
Generation Intelligence and Games
in Games www.gameaibook.org
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http://www.gameaibook.org

Al applied to games

N

Playing
board games

Time for a video
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You already know about

» Tree search
» Basic idea of evolutionary computation

» Basic ideas of supervised learning and reinforcement
learning, including neural nets

2009: ? vs Mario

File Edit Run Scurce Refacter MNavigate Search
rle B B¢ B-0-Q-
f: Package Explorer o Tz Hierarchyl
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£ tasks
[J] CoinTaskjava
[J] ProgressTask.java
[J] Taskjava

£ test

[J] EAjava

[J] Evolvablejava
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Why use Al to play games?

» Playing to win vs playing for experience

Do you know A*?

» For experience: human-like, fun, predictable...?

» Playing in the player role vs playing in a non-player
role

Playing to win Playing for experience
Characteristics of games

Interesting adversaries in
online games
Tutorialization

Al Playtesting (is the
level hard/easy for a

Al Benchmarking
Really hard adversaries
Goldfarming bots
Al Playtesting (is the level

Number of players: 1, 1.5, 2, many...

« Adversarial? Cooperative? Both?

beatable?) h PN « Stochasticity: does the same action in the same state lead
uman?) to the same outcome?
« Observability: how much does the agent know?
« Action space and branching factor: how many actions?
el h’\?;%gg ponent Most current “Al” in the P 9 Y
Team matesl/ allies game industry « Time granularity: how many turns/ticks until end/reward?
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Observability

Perfect
Information

Imperfect
Information

Pac-Ma
Atari 26 Ms Pac-Man
Checkers A
Chess Time
~Go |
Granularity
StarCraft

. Scrabble

Battleship ’Poker Real-Time
Turn-Based

Deterministic Non-deterministic

Stochasticity

Some video games

Frogger (Atari 2600)
1 player, deterministic, fully observable, bf 6, hundreds of ticks

Montezuma's revenge (Atari 2600)
1 player, deterministic, partially observable, bf 6, tens of thousands
of ticks

Halo
1.5 player, deterministic, partially observable, bf ??7?, tens of
thousands of ticks

Starcraft
2-4 players, stochastic, partially observable, bf > a million, tens of
thousands of ticks

588

Some board games

Chess
Two-player adversarial, deterministic, fully observable,
branching factor ~35, ~70 turns

Go
Two-player adversarial, deterministic, fully observable,
branching factor ~350, ~150 turns

Backgammon
Two-player adversarial, stochastic, fully observable,
branching factor ~250, ~55 turns

Applying Al to games

How is the game state represented?
Is there a (fast, accurate) forward model?
Do you have time to train?

How many games are you playing?
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How to play games

« Different methods are suitable:

» Depending on the characteristics of the game

» Depending on how you apply Al to the game

» Depending on why you want to make a game-playing
« There is no single best method (duh!)

« Often, hybrid architectures do best

Yeah, well, that's just, like,
your_opinion, man.

589

Surely, deep
Q-learning is
the best
algorithm for
game-playing!

Planning (requires forward model)

« Uninformed search (e.g. minimax, breadth-first)

« Informed search (e.g. A

« Evolutionary algorithms

Reinforcement learning (requires training time)

« TD-learning / approximate dynamic programming

« Evolutionary algorithms

Supervised learning (requires play traces to learn from)
« Neural nets, k-nearest neighbors etc

Random (requires nothing)

4/24/18



Informed search: A*

Not so fast!

SIBRBRBH{GL
S
SIERRREG2

e SEOTNNT

New methods overcome limits

590

Slawomir Bojarski and Clare Bates Congdon: REALM: A Rule-Based
Evolutionary Computation Agent that Learns to Play Mario.CIG 2010.
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Monte Carlo Tree Search

The best new tree search algorithm you hopefully
already know about

When invented, revolutionized computer Go

Year Program Description Elo
2006 INDIGO Pattern database, Monte Carlo simulation 1400
2006 GNU Go Pattern database, -3 search 1800
2006 MANY FACES Pattern database, -3 search 1800
2006 NEUROGO TDL, neural network 1850
2007 RLGO TD search 2100
2007 MoGo MCTS with RAVE 2500
2007 CRAZY STONE MCTS with RAVE 2500
2008 FUEGO MCTS with RAVE 2700
2010 MANY FACES MCTS with RAVE 2700
2010 ZEN MCTS with RAVE 2700

Monte Carlo Tree Search

/—' Selection — Expansion — Simulation — Backpropagation ~

5 40 40 4

Tree Def;zulr

Policy Policy
v
N A J

Tree policy: choose which node to expand (not
necessarily leaf of tree)

Default (simulation) policy: random playout until end of
game

N

s\
A o
‘ 729 SL*~So
LD .-
O 5 stochasticit

y™

UCB1 criterion

Choose which node to
explore based so as to

number of visits so far

UCBH1 (Auer et al (2002)).
Choose node j so as to

. maximize:
balance exploration and
exploitation v 2logn
X5+ T
Uses average reward for all
children of a node, and Mean Upper bound

on variance

591
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It’s a me, Mario, again...

Noor Shaker, Julian Togelius, Georgios N. Yannakakis, Likith P. K. Satish, Vinay S. Ethiraj, Stefan J. Johansson, Robert
Reynolds, Leonard Kinnaird-Heether, Tom Schumann and Marcus Gallagher (2013): The Turing Test Track of the 2012 Mario
i ip: Entries and ion. IEEE C« on C i ig and Games.

Multi-action games

Sid Meier's Heroes of Might and Magic Advance Wars
Civilization

Hero Academy

Acting in Hero Academy

« 5 action points each turn

» Actions: Movement, Healing, Attacking, Equipping,
Swapping

» Branching factor:
« One action: ~60

« One turn: 60° = 7.78 x 108 = 778,000,000

4/24/18



Playing by search algorithm

Random
1-ply search (Greedy on action-level)
5-ply (1 turn) depth-first search (Greedy on turn-level)

« ~500,000 unique outcomes evaluated each turn (6
seconds)

« Similar to MiniMax search depth-limited to 5 plies

Monte Carlo Tree Search

Using evolution to plan?

Some games have extremely high branching factor
o Chess: 35
» Go: 350

« Civilization/StarCraft: say you have ten units, which can
each take one of ten actions...

Tree search cannot even get past the first ply

One solution: treat the whole plan as a sequence of actions,
the value of the final state as fitness...

593

Enormous branching factor
beats MCTS

Random Greedy Action Greedy Turn MCTS

Greedy Action 100%
Greedy Turn 100% 64.0%
MCTS 100% 48.5% 22.0%

Online Evolution

» Evolve the set of actions to take each turn
« Chromosome is a sequence of five actions
« Simple evolutionary algorithm:
« Population size of 100, 50% elitism, random

selection of parents, uniform crossover, 10%
mutation rate

4/24/18
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HEAL HEAL MOVE EQUIP EQuIP

HEAL MOVE ATTACK ATTACK
1231~ 33) 23]+ (28] A=A Y~ § (28

23]+ 33] 831~ B4 m M

7

v
HEAL MOVE  MOVE

(23]~ (33] [33]= (84 BA=E1 Y ~ (5.1 -
| |

EQUIP  ATTACK

Neuroevolution in Games
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Results: wow

Random  Greedy Action Greedy Turn  MCTS

90.0% 80.5% 98%

Online Evolution 100%

» ~10,000 unigue outcomes evaluated each turn (6
seconds)

» ~3,500 generations each turn on average

Neuroevolution

Genetic fitness_

U 0"'."%‘.x"'\-‘./"m.m"\‘m.",
.
&
. *

Environment F
Y
-

action

observation
Gomez et al. 2008

4/24/18
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NE in Games
NE Role in Games

Role of NE in Games

Fitness
+ Inci t i 1 ion  Direct action Modelmg player h
+ Co-evolution selection selectlon exp

+ Multiobjective EAs | EEE
* Interactive evolution | |
Evolutionary Algorithm Anglelpie-siicelpathfi
* CMAES o Action | | sensors, third-person input,
* NEAT/HyperNEAT raw sens dgta etc. a5
* GAJES/PSOletc. S
v\\n‘\\ i S
~/ Con!enl generallon Strategy
| selection

Predic

/g tion

Hastings, Guha, and Stanley 2009

Player/ ||
Context ||
/

Network Types: Feedforward,
Recurrent, Modular, Plastic, etc.

NERO: NeuroEvolving Robotic
Operatives

Scenario 1: Enemy Turret Scenario 2: 2 Enemy Turrets Scenario 3: Mobile Turrets & Walls| Battle

» Broad applicability a?, Q P '\!

. . Q Q Qo Q ©
Can be used for both supervised and RL B - -, - PR R I e
problems P P RS ©

* Diversity é

* Open-ended learning

* NPCs improve in real time as game is played
* Enables new types of games » Player can train Al for goal and style of play
« Each Al Unit Has Unique NN

Why Neuroevolution

QA v ©
Q 0

595 12



EVOLVE
New game mechanics based on brain switching

Evolving Neural Networks

* Direct encodings
— NEAT (can evolve arbitrary topologies)
— Evolutionary Strategies
* Indirect encodings
— HyperNEAT
— Compressed weight space

596

Role of NE

« State/action evaluation

+ Direct action selection

» Selection between strategies
* Modelling opponent strategy
» Content generation

* Modelling player experience

Fithess Evaluations in Games

* Incremental evolution
Transfer learning

» Co-evolution
Multiobjective evolution

4/24/18
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Input Representation

Straight line sensors and pie slice sensors
Angle sensors and relative position
Sensors

Pathfinding sensors

Third-person input

Learning from raw sensory data

Enemy/Friend Radars

Left/Right Forward/Back Fire
(2

7/ 7»’4,»“»\\\\\\ x

N

i N
¢f[cReReRo) o) he))e)
Bias
Enemy Radars On  Object Rangefiners E nemy
Target LOF

Sensors
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NERO Inputs and Outputs

Left/Right Forward/Back Fire
!

//////04»‘«».&).\‘,\\\\\

JIT TS JP]© 5 B OV

Enemy Radars _On  Object Rangefiners Enemy
Target LOF

Enemy On-Target Sensor

Left/Right Forward/Back Fire
@)

7 mm\\\\\

o’o'ooo“b'oooo‘o

Enemy Radar. L Object Rangefin: Enemy ON OFF
arget

4/24/18
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Object Rangefinder Sensors

Left/Right Forward/Back Fire

/////»mw.&»a\\\\\

JI TS JC] OO
Bi:
Enemy Radars _On  Object Rangefiners ELemY
rge

Open NE in Games Challenges

= hing R Ly ina Porf

» Combining evolution with other learning
methods
I e f hich-di onall I

» General video game playing

» Combining NE with life-long learning

» Competitive and cooperative coevolution

» Fast and reliable methods for commercial
games

598

Enemy Line-of-Fire Sensors

Left/Right Forward/Back Fire

/////m_w.&).\‘,\\\\

T TS OO 5 OOV e

Bias
Enemy Radars On  Object Rangefiners Enemy
Target LOF

Sensors

Procedural Content Generation

4/24/18
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Game
Al

Game
Al

Play
Games

G. N. Yannakakis and J. Togelius, “Artificial Intelligence and Games,” Springer, 2018

G. N. Yannakakis and J. Togelius, “Artificial Intelligence and Games,” Springer, 2018.

Why model players?

¢ Why not?

* Machines (and some
people) understand
numbers

e Player Experience is the
holy grail for design and
development

e But most importantly

because...
Modelling Players... Why?

599 16



Why model players?

¢ The perfect game is
tailored to you!

¢ We are different (and
many more than
before)

¢ If you learn to play....
it is only fair that the
game learns you

Player Experience vs Player Behavior

Experience: how you feel during play

¢ A set (a synthesis) of affective,
cognitive and behavioral states

¢ Or else user states

e Emotions: Appraisal theory, ...

¢ Cognition/Behavior: several
models (e.g. BDI,...)

Behavior: what you do during play

600

Player
Modelling

Behaviour

Experience

G. N. Yannakakis and J. Togelius, “Artificial Intelligence and Games,” Springer, 2018

Core Player Modeling Tasks for EC/ML

Supervised/Reinforcement Learning
Imitation
Prediction

Unsupervised Learning
Clustering
Association mining

4/24/18
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Player Modelling: In a nutshell

Yannakakis et al., Player Modeling, in Dagstuhl Seminar on Al/CI n in Games, 2013

Theory (model-based) Data (model-free)

How — In a Nutshell

Is X or Y more frustrating?

OxOv
[ Both are equally frustrating
[ Neither is frustrating

G. N. Yannakakis, P. Spronck, D. Loiacono and E. Andre, “Player Modeling,” in Togelius et al.,
(Eds.) Dagstuhl Seminar on Artificial and Computational Intelligence in Games, 2013.

601

Player Modelling: In a nutshell

Yannakakis et al., Player Modeling, in Dagstuhl Seminar on Al/Cl n in Games, 2013

Theory (model-based)

Data (model-free)

AR

g
A

Objective

Context

Player Profile
Web of Data

Output Data Types

Interval

Nominal [

[ ot et Preerencetearning |

Player Model

Gameplay Model-Based [Top-Down)]
(Psychology, Cognitive Science, Game
Studies, ...)

Output (Experience)

Free Response vs.
Forced Response

First Person vs.
Third Person

Discrete vs.
Continuous

Time-Discrete vs.
Time-Continuous

Pre vs. During vs. Post

Ratings vs. Classes vs.
Ranks

Absolute vs. Relative

| Reward |<— ROa K@

@theﬁﬁﬂim]

Output (Behavior)

| No Output |<—

TDatas ™
T 7

Unsupervised Learning

Micro-actions vs.
Macro-actions

4/24/18
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Gameplay Free Response vs.
A Forced Response
Objective 2
First Person vs.
Context Third Person
Player Profile Discrete vs.
Web of Data Continuous
a > Time-Discrete vs.
5 5 Time-Continuous
Supervised Learning
Interval Regression Pre vs. During vs. Post
Nominal Classification TN U s e,
Ranks
| Ordinal |<——| Preference Learning | Absolute vs. Relative
—
| Reward Reinforcement Learning %
At < R T )
| No Output Unsupervised Learning Micro-actions vs.

Macro-actions

Gameplay Input

¢ Player game preferences,
behavioral patterns

e Micro vs macro actions

e Examples: tactics, strategy, play
patterns, clickthroughs, deaths,
weapon selection, character
selection, etc...

¢ Pros: real-time efficiency

e Challenge: we can’t tell much
beyond player behavior...

602

Gameplay

4/24/18
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Objective Input

Bodily and physiological
manifestations of gameplay
Captured via a multitude of
sensors (e.g. EEG, BVP, ECG,
EMG, eyetracking,...)

Pros: reliable measures of
user experience
Challenges: many; let’s see
them in more detail

Physiology

Pros: directly linked to arousal —
immediate response

Challenges: signal
denoising/normalization; control
for subjectivity of physiological
responses

603

e Pros: every laptop has a camera, off-the-shelf cheap solution, natural

interaction
e Challenges: do we really express emotions (facially) while playing?
Head-pose might be more relevant?

Measuring physiology can be obtrusive...

4/24/18
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Eye-tracking

e Pros: you know where your

player looks at/focuses e Pros: speech (pitch, loudness, quality) is linked to emotions
on/pays attention to (arousal/valence); useful in game-child interaction studies
e Challenges: practicality, lab ¢ Challenges: verbal cues are rare; environment noise; multi-player games

conditions (illumination),
pupilometry doesn’t really
work

J. Munoz, G. N. Yannakakis, F. Mulvey, D. Witzner, G. Gutierrez and A. Sanchis, “Towards Gaze-Controlled Platform
Games,”in Proceedings of 2011 IEEE Conference on Computational Intelligence and Games, 2011.

Context matters!

(Game) Context

604

4/24/18
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T ) - \
Player Profile Gameplay Free Response vs.
Objective Forced Response
. First Person vs.
¢ Player profile Context Tiviie] Blase
¢ Information about ones’ personality, demographics, culture, Player Profile Discrete vs.
age, sex, experience with games etc... Web of Data Continuous
e In general information that does not change due (or not P — e DlsaEE s,
altered via) games — at least not that rapidly... : ) -% ‘ Spervies) leeiiE Time-Continuous
¢ A player profile can form additional input(s) to a S — I
Interval Regression EChSTUNENS0S
player model
. . et Ratings vs. Classes vs.
* Player Model vs. Player Profile : what are the Nominal Classification ke

differences? | Ordinal |‘——| Preference Learning |
¢ A profile is built on static data and not influenced by game )

¢ A modelis built on dynamic data from the gaming p >
interaction and is (temporally) influenced by the game | Reward |‘_ Reinforcement Learning ‘ }—

IRA#A S KAschinal T

| No Output Unsupervised Learning Micro-actions vs.
Macro-actions

) | . v )
Gameplay Free Response vs. Output = Annotation
T Forced Response
Objective
First Person vs.
Context Third Person e Annotation is the labelling of experience
Player Profil :
—P ocrete ve (states/values/ranks etc.)
- Time-Discrete vs. e This is ultimately the ground truth of
"{ ‘ Supervised Learning limE-CONtNUoUS experience
Interval Regression Pre vs. During vs. Post e This is the training signal for your
Nominal Classification Ratmgs;:ﬂi':ssesvs' Computational models
| Ordinal |<——| Preference Learning |
| Reward |<— Reinforcement Learning ‘ F
| No Output |<— Unsupervised Learning Micro-actions vs.
Macro-actions
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Key questions

Who annotates?
When?

How often?
How?

How is Experience Best Represented?

e Discrete states (e.g. fun, engagement, frustration)
¢ Continuous dimensions (e.g. arousal and valence)

T Arousal 2
high L L
Annoying |  Excited

Angry Happy Fear Anger

Arousal

Nervous Pleased
Valence

(negative) (positive)

Relaxed
Gad Sadness (Contempt|
I Peaceful

Steepy| €M
low

«© Dominance

606

Who annotates?

e Third Person

e Usually a domain expert (game designer) or a psychologist

¢ First Person

e The person actually experiencing the emotion/affect

Third person First person

+ * Expert * Reported true experience
knowledge
» Assumptions » Self-deception
about the true * Reporting effects
- emotion * No expert knowledge

* Reporting effects

How Often to Annotate?

¢ Time-Discrete (e.g. self-assessment manikin)
¢ Time-Continuous (e.g. FeelTrace, AffectRank)

. |¢:]

o

r‘
T

00oe

NI

4/24/18
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How often to annotate?

¢ Depends on
* Application (speed of interaction: e.g. games
vs. movies vs. e-learning apps)
* Signal (e.g. physiology is slower than body
movement and speech)
¢ No gold standard

Which Annotation (Data) Type?

e Scalar (a value of arousal, valence, SAM, Geneva
wheel, Likert scale) — Rating

¢ Binary value or a class — Class

¢ Preference between two or more options — Rank

A note about time and self-report!

e Self-reports are time-
dependent
¢ Real experience vs. Post-
experience
e Few seconds -> Real experience
e Few minutes/hours - Episodic
memory (context retrieval)
e More > Semantic Memory (beliefs)

NB. The gap between our memory of experience and our experience is
more prominent when we report unpleasant emotions such as anger,
sadness and tension. Also: The experience felt near the end of a session
(e.g. a game level or a game) affects our report — aka peak-end rule.

ATATATAY el =
oI | e

A i (— -

12 3 4

Examples: Geneva Wheel,

X was challenging SAM, Likert Scales, PAD
Strongly Disagree
Strongly Agree Va I U eS

| S S e e —
0 1 2 3 4 5

4/24/18
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Examples:

* This facial expression
is happy! (Eckman)

* Arousal values higher 3 N
than 0.6 belong to = =
class aroused m & a

* This skin conductance . = <

peak denotes stress

1‘.,\ f;’ f:f ::’ ( > 2-\’
= -— -

Happines

_ challenging
Xis more/less |frystrating

than Y |arousing

boring
fearful

* Requires at least two
instances!

* N-Alternative Forced
Choice (4-AFCis
popular)

X is more/less frustrating than Y

Both are equally frustrating

l:l Neither is frustrating

Use ratings (e.g. Likert items, SAM, etc.)?

Yannakakis and Hallam, Rating vs. Preference: A comparative study of self-reporting, ACIl, 2011
Yannakakis and Martinez, Ratings are Overrated! Frontiers in Human-Media Interaction, 2015

Xis frustrating
Strongly Disagree

Strongly Agreq

Ordinal data (ratings) is
[ X interval...

% Neither is frustrating

The ordinal (relative) approach

Yannakakis, Cowie, Busso, The Ordinal Nature of Emotions, ACIl, 2017 [Best Paper Award]

Arousal

Valence (negative - positive)

AR

1 2 4 5 6 8 9

W

4/24/18
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Classified Ratings vs Ranked Ratings

Martinez, Yannakakis and Hallam, Don’t classify ratings of affect; Rank them!
IEEE Trans. on Affective Computing, 2014

Classification

Ground
Truth
C
05
=
(9}
cC
=}
2
Bl
()
()]
.
©
[
0

Preferenc&y
Learning

AffectRank: Ordinal emotion annotation
Yannakakis and Martinez, Grounding Truth via Ordinal Annotation, Affective Computing and
Intelligent Interaction, 2015.

Active =|(active arousal) Active
Unpleasant Pleasant

(unp\easan‘ . (pleasant
valence) | valence)

Inactive Inactive

Unpleasant Pleasant
= [(inactive arousal)

609

Ratings (and Classes) vs. Ranks

Martinez, Yannakakis and Hallam, Don’t classify ratings of affect; Rank them, /EEE
Transactions on Affective Computing, 2014

Treat ratings as ordinal data : rank them!

Cha”englng Valence (negative - positive)

Xis more/less |frusrating =
than Y |arousing ﬁ fﬁ ETE fﬁ ﬁ

. iy

boring !
fearful <:- - ﬁ..:ﬁ:%
b ok

>| 2 3 4 H 6

30 G E
=== e

78 9

X was challenging
Strongly Disagree
Strongly Agree

1t
0 1 2 3 4 5

RankTrace: Relative Unbounded Annotation

Lopes et al., RankTrace: Relative and Unbounded Affect Annotation Affective Computing and
Intelligent Interaction, 2017.

Tools @ emotion-research.net

. Video
Playback

Annotation Timeline Cont

4/24/18
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Annotation — Take away messages Subjective Notions Summary

¢ 1St VS. 3rd person: depends on the application d Don’t try What is your overall satisfaction with our product?
* Try to get reports as close to the true Notatal o Exemel
experlence as pOSSIbIe (tlme-WISE) * WaSterI Info due to What is your overall satisfaction with our product?
* No report is ideal (they suffer from biases) e Scale-bias Notatal 1 2 3 4 5  Extremely
. satisfied ( C satisfied
* Annotate experience as ranks whenever e Personal-bias ‘ )
pOSSIble ° Labels are NOT ‘J,halwsx‘o:r cfw:”fa(;fa}ctwjnmlh our product?
* If ratings are available numbers f i
. . . What is your overall satisfaction with our product
¢ Regression of ratings is fundamer?tallly wrong ° High inconsistency Notatall Siightly Moderately Very Extremely
* Do not convert them to classes — it will cost you on model satisfied satisfied satisfied satisfied satisfied
performance (randomness) C C ¢ ¢
*  Convert them to ranks (treat them as ordinal scales)! ° .

I . v \
] =
SUbjective Notions Summary Gameplay Free Response vs.
Objective Forced Response
m— First Person vs.
. . .. X ;
Try out something like this instead: hidlRerson
Player Profile Discrete vs.
Web of Data Continuous
p Time-Discrete vs.
. ., ., "{ Supervised Learning JlImE-CoNtiNIous
I I!ke Julian’s class more/less than Georgios’ class e Regression Pre vs. During vs. Post
I Ilke them bOth equa”y Ratings vs. Classes vs
Nominal Classification Ra'nks :

0 | like neither

| Ordinal |<——| Preference Learning | Absolute vs. Relative

| Reward |<— Reinforcement Learning

[Ha#a € Rinal A}

| No Output |<— Unsupervised Learning Micro-actions vs.
Macro-actions

610 27
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Gameplay

Objective

Context

Player Profile
Web of Data

Output Data Types

Interval e

Nominal e

Ordinal |‘—

Player Model

Model-Based [Top-Down]
(Psychology, Cognitive Science, Game
Studies, ...)

Preference Learning

Reward |<—
No Output |<—

RRaED e eRO LRATR NG|

Unsupervised Learning

Free Response vs.
Forced Response

First Person vs.
Third Person

Discrete vs.
Continuous

Time-Discrete vs.
Time-Continuous

Pre vs. During vs. Post

Ratings vs. Classes vs.
Ranks
Absolute vs. Relative

J_

Micro-actions vs.
Macro-actions

e B ES
il
= |
B

Example (Player Experience Modeling)
MazeBall — Dataset: http://www.hectorpmartinez.com/

611

N

-

t 1

Gameplay od d [Top-Do Free Response vs.
I g Forced Response
Objective ology, *-08 B
. First Person vs.
Context Third Person
Player Profile Discrete vs.
Web of Data Continuous
Time-Discrete vs.
q : Time-Continuous
Supervised Learning
Interval — Regression Pre vs. During vs. Post
Nominal — Classification Ratings vs. Classes vs.

Ranks

[ oana

Preference Learning |

Reward |<—
No Output |4—

Reinforcement Learning

|—Pata-Seience-Machine-learningi—]

Unsupervised Learning

Absolute vs. Relative

Micro-actions vs.
Macro-actions

Sequence Mining (General Sequential Pattern)

Martinez and Yannakakis, Mining Multimodal Sequential Patterns: A Case Study on Affect Detection,

ICMI, 2011 [Outstanding Student Paper Award]

=
3-sequences mes

1.5 3

($sM)(s%) 141 168
(E s™)(s¥) | 131 163
(s™)($)(s*) | 123 164
(s")(E)(s¥) | 116 164
(s™)(s*)($) | 112 181
(E)(s™)(s¥) | 109 175
(sM)(sY)(E) | 106 180

JEAVINIAVIRISY 0= 1

| DEAYZ 105 158

Garfje Context

b

SkirfConductance

(s™ s¥)($) 102 139

0 08

oo O

Frequent Sequences

4/24/18
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Deep Fusion of Events and Signals

Martinez and Yannakakis, Deep multimodal fusion: Combining discrete events and continuous signals,

° ([ ] (] Proceedings of the 16th International conference on multimodal interaction, 2014
%ee0%,,
. . . Convolution fusion Pooling fusion Training fusion
T T T
v v
L L 1 L 1 L
15 35 15 35 15 35 15 35
Time (seconds)

Convolution for Affect Detection

Martinez, Bengio and Yannakakis, Learning Deep Physiological Models of Affect, |IEEE
Computational Intelligence Magazine, 2013

I

612

PR R

p od F Player Model
Gameplay ode d [Top-Do Free Response vs. Gameplay Model-Based [Top-Down)] Free Response vs.
Objective P ology, Cognitive Forced Response Objective (Psychology, Cognitive Science, Game Forced Response
s First Person vs. SIEIES o) First Person vs.
Context Third Person Context Third Person
Player Profile Discrete vs. Player Profile Discrete vs.
Web of Data Continuous Web of Data Continuous
p Time-Discrete vs. Time-Discrete vs.
-{ Supervised Learning Time-Continuous Output Data Types Time-Continuous
Interval - Regression Pre vs. During vs. Post Interval L Pre vs. During vs. Post
Nemitiel | | Classification Ratings vs. Classes vs. Nominal (__ Ratings vs. Classes vs.
Ranks Ranks
| Ordinal —| Preference Learning | Absolute vs. Relative | Ordinal |<——| Preference Learning | Absolute vs. Relative
. S
| Reward Reinforcement Learning J— | Reward |<— ROIAEP e eRs LiRATRING) }—
Datas Machiae o Data s Machine L ol
| No Output Unsupervised Learning Micro-actions vs. | No Output |<— Unsupervised Learning Micro-actions vs.
Macro-actions Macro-actions
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Modelling Steps Supervised learning for modelling experience

IFeature extraction ! EModeIIing
'and selection L

¢ The output of the model is the estimated experience
¢ The ground truth is given by annotated experience given as
» Nominal values (e.g. sample A is frustrated)
» Numerical values (e.g. sample A is 0.86 frustrated)
» Ordinal values
- Ranks (e.g. sample A is more frustrating than sample B)
- Ratings (e.g. sample A is ‘extremely frustrating’ and
sample B is ‘fairly frustrating’

—@@ﬁ@@—j;\ -

Which Training Method?

Example: modelling fun ratings

How much fun was that game?

O ® & ¢ @6
= =/

| 2 3 4 5

not at all slightly moderately  fairly  extremely

fun(x)

x: input features

Preference  Classification Regression
learning
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The : Regression

e Remember: ratings are NOT numbers!
> Not everyone uses the scales in the same way
> Items in the scale are not equidistant

fun(x)

Xx: input features

The ugly: Classification

¢ Converting ratings into classes eliminates a lot of information

and it can introduce biases

fun(x)

x: input features

H. P. Martinez, G. N. Yannakakis and J. Hallam, “Don’t Classify Ratings of
Affect; Rank them!,” |EEE Transactions on Affective Computing, 2014

614

Regression with backpropagation

Sum of squared deviations

1
E = E(dk —ag)?

Training patterns (d) 0

ANN prediction (a) 0

Output (f(x))

! g :

Inputs (x)

Classification with backpropagation

e Same as regression but with one output per class

- 1 ;
Sum of squared deviations Ey = i(d" —ax)? Training patterns (d) ()
MLP prediction (a) O

= 99 _ = ]
& =z &
= = ~
= o bt
2 5 2
= 5 5
@] a (@) i

& oo | dde

Inputs (x) Inputs (x) Inputs (x)
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The good: Preference Learning

e Learn only the ordinal relations

¢ Valid whenever the annotator is consistent on her use of the scale

fun(x)

x: input features

(Deep) Preference Learning beyond BP

¢ The concept of learning from pairs of preferences can be
implemented in most supervised learning methods by adapting
the error/fitness function

> NeuroEvolution
> SVMs (RankSVM)
> Decision Trees

>

615

(Deep) Preference Learning with BP

e Error function maximizes the distance between the output for the
preferred sample (d*) and the output for the non preferred sample (d?)

A B )
E =maz(0,1 — (d4 — dB)) 0B ={_%u+g;i71  if dt —dP <1

Ow;; 0 , otherwise
E @ @ @
TR e e © e
g
<
(=4
—'— —_
1 D —
x: input features

An open-source Preference Learning Toolbox

Farrugia, Martinez and Yannakakis, The Preference Learning Toolbox, arXiv preprint, 2015

Preproces| = - Preference Learning Methods
Feature Selection ] Gt .
— — e v e o
5 = — o
- ] — ot = e
== =y

. — | -~ ! TRY T NOW!

O New Relic

https://sourceforge.net/projects/pl-toolbox/
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An Example: Player Experience Modeling in Super Mario

e 327 subjects (1308 games)

* Input: Playing Behavior and Content Features

¢ Output: Engagement, Frustration, Challenge self-reported
ranks (pairwise) of short games

* ANN trained via neuroevolutionary preference learning

* Player experience model accuracy: 73-92%

MARIONI2) COTN| ORI
) SYOTE

Examples

The Super Mario Example:

: The Super Mario Example:
Player Experience Modelling (Visual + Behavioral) LR b Head Expressivity Features

Shaker, Asteriadis, Yannakakis and Karpouzis, Fusing Visual and Behavioral Cues for Modelling |4 (ANN Input)
User Experience in Games, IEEE Trans. on Systems, Man and Cybernetics (B), 2013 A

Catcgory Feature Description
Head Movement Features throughout whole sessions
Mean Avg Absolute first order derivative of Tead Pose Vector
Head OA Overall Activation

Movement SE Spatial Extent
TE Temporal Expressivity parameter
PO Energy Expressivity parameter
FL Fluidity
Mporizontat  Median value for horizontal head rotation
ical Median value for vertical head rotation
Head Movement Fe g gameplay events
lw‘,, Absolute first order derivative of Head Pose Vecior when the gameplay event, a occur
B . B O Overall Activation when the gameplay event, a occur
* 58 subjects (28 Male) — Played: 167 game pairs on SE. Spatial Extent when the gamcplay event, a occur
. Features TE, Temporal Expressivity parameter when the gameplay event, a occur
* Player Experience model (ANN) accuracy: 88-92% PG Energy Expressivty parameter when the gameplay even, a occur
) . Fluidity when the gameplay event, a oceur
¢ Input: Visual features and behavioral features M. Median value for head rotation norm when the gameplay event, a occur

« States (Output) : Engagement, Frustration, Challenge
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Caicgory Feature Description

. — _ 2n)|||;-||t uF-wh s 1 he Su per \YETdTe) Example:
Fatures PR FESEl Gameplay/Content Features
R e (ANN Input)

GamePlay Features

Time Completion fime

ght (%)
0)
ario mode (%)

ario mode (%)

Time spent in B
Free coins colled
Coin blocks pressed or coin rocks destroyed (%)
Powerups pressed (%)

Sum of all blocks and rocks pressed or destroyed (%)
Times the player Kills a cannonball or a flower (%)
Times the player kills a goomba or a koopa (%)
Opponents died from stomping (%)

Opponents died from unleashing a turtle shell (%)

Tnteraction
with items

Interaction
with enemies

Death “Total number of deaths
ause Cause of the last death
Miscellancous Tomode Nurmber of times the player shified the mode berween
Small, Bi
Number

ire
es the jump button was pressed
Difference between the # of the # of
Number of times the duck buttc pressed

Number of times the player changed the state between
standing still. run. jump, moving left, and moving right

The Super Mario Example:
The Modelling Approach

Shaker, Asteriadis, Yannakakis and Karpouzis, Fusing Visual and Behavioral Cues for Modelling User
Experience in Games, IEEE Trans. on Systems, Man and Cybernetics (B), 2013

The Super Mario Example:
The Annotated Experience (ANN output)

Shaker, Asteriadis, Yannakakis and Karpouzis, Fusing Visual and Behavioral Cues for Modelling
User Experience in Games, IEEE Trans. on Systems, Man and Cybernetics (B), 2013

¢ Three Player experience states modelled:
e Engagement, Frustration, Challenge
¢ Player Experience is self-reported (post-experience) via
a 4-alternative forced choice questionnaire:

[]Game Ais more/less engaging than B
0 Both are equally engaging
0 Neither is engaging

The Super Mario Example:
The Modelling Approach

Shaker, Asteriadis, Yannakakis and Karpouzis, Fusing Visual and Behavioral Cues for Modelling
User Experience in Games, IEEE Trans. on Systems, Man and Cybernetics (B), 2013

e NeuroEvolutionary Preference Learning: SLPs and MLPs
¢ Feature Selection: Sequential Forward Selection (SFS)

Phase-1: SLP Feature Selection Phase-2: MLP Feature Selection Phase-3: MLP Topology Optimization

@

e Selected Feature

2 —* SLP Subset

3 MLP ——»Selected Feature —* MLP

W + Subset

1 Remaining T
SFS Features MLP topology

1 hidden layer with best accuracy
of two neurons (3-fold CV)

617
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More Preference Learning Examples

Entertainment Modelling

Playware Playground

inment (y)

08

Fig. 4. Fittest feedforward NN (f = 22.82).

G. N. Yannakakis, and J. Hallam, ! ing and ing Game through Challenge and
Curiosity,” International Journal on Artificial Intelligence Tools, vol. 16, issue 6, pp. 981-999, December 2007.

618

Entertainment Modelling

Prey/Predator Games

Eretannentvaue )
Entertainment value (y)

G. N. Yannakakis, and J. Hallam, “Modeling and Augmenting Game Entertainment through Challenge and
Curiosity,” International Journal on Artificial Intelligence Tools, vol. 16, issue 6, pp. 981-999, December 2007.

Takeaway and Future

* We encode information in
relative terms
* Machine learning/EC should
probably do so too!
» Preference learning is a way! "
» Do regression and classification
become irrelevant?
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