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Abstract

Chapter

0
Convolutional Gridding is a technique (algorithm) extensively used in Radio
Interferometric Image Synthesis for fast inversion of functions sampled with
irregular intervals on the Fourier plane. In this thesis, we propose some
modifications to the technique to execute faster on a GPU. These modifications give
rise to Hybrid Gridding and Pruned NN Interpolation, which take advantage of the
oversampling of the Gridding Convolutional Function in Convolutional Gridding to
try to make gridding faster with no reduction in the quality of the output. Our
experiments showed that given the right conditions, Hybrid Gridding executes
up to 6.8× faster than Convolutional Gridding, and Pruned NN Interpolation is
generally slower than Hybrid Gridding.

The two new techniques feature the downsampling of an oversampled grid through
convolution to accelerate the Fourier inversion. It is a well-known approximate
technique which suffers from aliasing. In this thesis, we are re-proposing the
technique as a Convolution-Based FFT Pruning algorithm able to suppress aliasing
below arithmetic noise. The algorithm uses the recently discovered least-misfit
gridding functions, which through our experiments gave promising results, although
not as good as expected from the related published work on the stated gridding
functions. Nevertheless, our experiments showed that, given the right conditions,
Convolutional-Based Pruning reduces the Fourier inversion execution time on a
GPU by approximately a factor of 8×.
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Introduction

Chapter

1
In Radio Interferometry, a technique (algorithm) know as Convolutional Gridding

is widely used for image synthesis. In this thesis, we seek to modify Convolutional

Gridding so that it executes faster on the NVIDIA® Tesla® P100 GPU Accelerator

[2], with no degradation in the ability of the technique to suppress aliasing.

This introduction’s main scope is to review Radio Interferometric Image Synthesis,

where we build up the use case of Convolutional Gridding and the proposed

modifications. At the end of the chapter, we discuss publications and how this

thesis is laid out.

In the first sections until Section 1.5, we discuss various topics related to Radio

Interferometry and Image Synthesis and build the use case for Convolutional

Gridding. Then in Section 1.7 we review the many Visibility-to-image algorithms

that use Convolutional Gridding. The said section leads to Section 1.8. After

giving a short description of Convolutional Gridding and our proposed modifications,

we identify which Visibility-to-image algorithms are compatible with the proposed

modifications.

Before moving on to the first section, we need to clarify some terminology used in

this thesis. In general, we shall define notations, acronyms and terms as we progress

through the thesis, but hereunder are definitions of some important terms used.

• Aliasing: The term aliasing exclusively refers to the unwanted distortion in

an output image induced while regularly sampling the image on its spatial

frequency plane with a rate lower than the Nyquist Rate.

• Visibility record: A Visibility record (or record) is a sample of Visibility
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data, including the Visibility value and the sample’s coordinates. When used

in contexts with multi-polarisation, the record contains the Visibility values

for each polarisation.

• uv-profile: This is the set of all Visibility records’ coordinates (including the

w coordinate) in a given telescope observation to be imaged.

• Performance: Any mention of Performance refers to how fast something

executes in terms of the workload, where such workload is generally the number

of records to process. The term is intentionally capitalised, but its verb or

adjective forms are not capitalised while retaining the same meaning.

• Precision: The term Precision (with a capital P) always refers to the

arithmetic precision used for floating-point numbers to either compute with or

digitally represent such floating-point numbers. The reader should always

assume that any compute done with a given Precision will retain the

same Precision throughout the whole process, with inputs and outputs also

represented with the same Precision. In this thesis we will consider two types of

Precision which are Single-Precision and Double-Precision defined in ISO/IEC

60559:2020 [3] as binary32 and binary64 respectively.

• Arithmetic noise: Arithmetic noise is the rounding error introduced in a

given calculation because we are using finite Precision.

• P100: The term P100 refers to the NVIDIA® Tesla® P100 GPU Accelerator.

• Compute: The term compute is used as a noun and a verb. In this thesis, the

noun refers to executed instructions on the P100 that are not memory-related,

while the verb refers to executing such instructions on the P100.

• Logic: The term Logic refers to all compute instructions, excluding those

related to floating-point arithmetic.
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• Algorithm: The term algorithm retains its normal definition, with the

understanding that it does not refer to an implementation (defined below).

• Implementation: The term means the implementation of an algorithm or

part of, to execute on computing hardware, which, unless otherwise stated, is

the P100.

• Convolutional Gridding: An algorithm studied in this thesis and defined

in detail through Algorithm 2.4.

• Hybrid Gridding: An algorithm studied in this thesis and defined in detail

through Algorithm 2.5.

• Pruned NN Interpolation: An algorithm studied in this thesis and defined

in detail through Algorithm 2.6.

• Modified gridding: The term modified gridding is used in this thesis as an

adjective to refer to Hybrid Gridding and Pruned NN Interpolation collectively.

• Studied: The term studied is an adjective used in this thesis to refer to

the Convolutional Gridding, Hybrid Gridding and Pruned NN Interpolation

collectively.

1.1 The Radio Interferometer

Albert Abraham Michelson and Francis G. Pease were the first to make use of

Interferometry in astronomy. In 1921 they made the first diameter measurements

of the star Betelgeuse [4] using the interference properties of light. Discussions by

Michelson on the use of Interferometers are known to have taken place at least 30

years before [5, 6]. The first use of a Radio Interferometer in astronomy is attributed

to Ryle and Vonberg [7], whereby the Ryle-Vonberg receiver (Ryle and Vonberg [8])
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was used (Sullivan [9]). From that time onwards, the theory and technology of

interferometers have made enormous advances, so much so that today humanity is

building the Square Kilometre Array (SKA) [10, 11]. The SKA is a multi-nation

project based in South Africa and Australia with very ambitious goals (Braun et

al. [12]). Other examples of Radio Interferometers are the Low-Frequency Array

known as the LOFAR (van Haarlem et al. [13]), the Karl G. Jansky Very Large Array

known as the VLA (Napier et al. [14]) and the Giant Metrewave Radio Telescope

known as the GMRT (Gupta [15]) all of which are considered as pathfinders to the

SKA [16].

An Interferometer is composed of an array of two or more antennas. It can

achieve a high angular resolution, which is limited by the distance between the

two antennas that are furthest apart in an inversely proportional way. In contrast,

the maximum angular resolution of a single dish is limited by its diffraction limit,

inversely proportional to the diameter of the said dish. For a single-dish to reach a

sub-arc-second resolution, it needs diameters that are prohibitive. However, for an

Interferometer, such sub-arc-second resolution is just a question of having antennas

as far away as necessary from each other. A good example is the Very Long Baseline

Interferometry (VLBI) Space Observatory Programme (VSOP) (Hirabayashi et al.

[17]) were part of the array orbited in space.

The basic Interferometer device is composed of two antennas, each receiving sky

radiation. The radiation received is correlated using a complex correlator, and the

measured quantity of the Interferometer as outputted by the correlator is called

Visibility. Visibility records are given against the baseline, which is the vector

distance between the two dishes.

In general, Radio Interferometers measure four polarisations for each Visibility.

Radiation reaching any given antenna is read in two orthogonal polarisations, say

R and L, which are cross-correlated with polarised readings from another antenna

to generate a quadruple, say RR, RL, LR, and LL, which we shall still refer to
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as polarisations. In the context of this thesis work, each polarisation is imaged

in the same way and therefore, we will continue this review without mentioning

polarisation.

The Interferometer can measure many Visibility records in a short time.

Each combination of antenna pair in the array is a basic Interferometer that

simultaneously measures Visibility against a different baseline. Due to the rotation of

the Earth, each 2-element Interferometer baseline changes with time, implying that

subsequent Visibility measurements are against a different baseline and therefore

considered different readings. The bandwidth of the correlated input flux needs to

be as narrow as possible, or otherwise, accuracy in the measurement of Visibility

will be degraded, especially for wide-field imaging. The entire bandwidth is split

into smaller channels, and each channel is correlated independently. The Visibility

for each channel is measured against a different unique baseline since baselines are

measured in wavelengths.

1.2 The Measurement Equation

The main goal of a Radio Interferferometric Imager is to transform the irregularly

distributed multi-polarised Visibility records in a regularly sampled multi-polarised

intensity image equal to the flux distribution of the real sky being observed.

The relationship between Visibility and intensity in a Radio Interferometer is well

known (Smirnov [18], Hamaker et al. [19]), and here we will derive this relationship

known as the Measurement Equation. The derivation is based on Thompson et al.

[20].

The reader is referred to Figure 1.1 for an illustration of the various vector quantities

we now define.
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Figure 1.1: Diagram illustrating the various quantities defined in Section 1.2 and
used in Equation 1.1

The diagram is a replica from Muscat [21].

Let ŝ be a unit vector that points to an arbitrary position on the celestial sphere

such that I(ŝ) denotes intensity on the surface of the celestial sphere identified by

the solid angle dΩ. I(ŝ) is only defined on the surface of the celestial sphere.

Let ŝ0 be another unit vector acting as a reference direction, fixed to the sky. Such

a reference direction is generally referred to as the phase centre.

Let ~B denote the vectorial distance in meters between two antennas known as the

baseline. Additionally, let λ denote the wavelength of the radio signal such that
~Bλ = ~B/λ is the baseline measured in wavelengths.

The Radio Interferometer measures Visibility denoted by V( ~Bλ) through Equation
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1.1.

V( ~Bλ) =
∫

4π
A(ŝ)I(ŝ)e−j2π ~Bλ·(ŝ−ŝ0)dΩ (1.1)

The definition made through Equation 1.1 is consistent with Thompson et al. [20]

and follows the sign convention of the exponent used in Born et al. [22] and Bracewell

[23].

A(ŝ) is known as the A-term. It encapsulates the effective collective area of the

antennas and distortions in the sky intensity while the radio waves reach the

antennas, including those distortions caused by the ionosphere. The A-term is quite

complicated and can vary with time and other factors. In this thesis, we have little

interest in this term, and for convenience and simplicity, we subsume the term in

what we call the measured intensity Im(ŝ), defined by Equation 1.2.

Im(ŝ) = A(ŝ)I(ŝ) (1.2)

We note to the reader that we will slightly modify the definition of measured intensity

in the following few paragraphs.

By means of Equation 1.2, the Measurement Equation 1.1 reduces to Equation 1.3.

V( ~Bλ) =
∫

4π
Im(ŝ)e−j2π ~Bλ·(ŝ−ŝ0)dΩ (1.3)

We now introduce the UVW coordinate system, defined and illustrated in Figure

1.2. In this coordinate system ŝ = (l,m,
√

1− l2 −m2), while ~Bλ = (u, v, w). Note

that s0 = (0, 0, 1).

We denote Visibility expressed in terms of (u, v, w) as Vw(u, v), while we denote

measured intensity distribution in the (l,m,
√

1− l2 −m2) direction as Im(l,m), for
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Figure 1.2: The UVW coordinate system. The left diagram shows how a baseline
( ~B/λ) is expressed in its (u, v, w) components. The right diagram shows how the
direction cosines l and m express a position on the celestial sky pointed at by the
unit vector ŝ = (l,m,

√
1− l2 −m2). ŝ0 is a unit vector representing the phase centre,

which is a reference direction fixed to the sky, usually pointing to the observed part
of the sky.
The UVW coordinate system is a right-handed Cartesian system. The U and V axes
are normal to the phase centre. The U-axis is in the East-West direction, while the
V-axis is in the North-South direction. The W-axis is in the direction of the phase
centre.
Image is a replica from Muscat [21].

8



Chapter 1: Introduction

which we slightly change the definition as per Equation 1.4.

Im(l,m) = A(ŝ)I(ŝ)√
1− l2 −m2

(1.4)

The new quotient is included in Im(l,m) to simplify the forthcoming equation.

Through a derivation given in Thompson et al. [20] the Measurement Equation 1.3

is expressed in terms of the UVW coordinate system by Equation 1.5.

Vw(u, v) =
∫
∞
Im(l,m)e−j2π(ul+vm+w[

√
1−l2−m2−1])dldm (1.5)

where the integral
∫
∞ denotes a definite integral on all integration variables, taken

over the −∞ to ∞ range.

The term w
(√

1− l2 −m2 − 1
)
is known as the W-term, and we remind the reader

that in this section, we also introduced the A-term, which is subsumed in Im(l,m).

For convenience, we define V ′w(u, v) defined by Equation 1.6.

V ′w(u, v) = Vw(u, v)e−j2πw (1.6)

On multiplying the two sides of the Measurement Equation, 1.5 with the phasor

e−j2πw, the phase-tracker in the W-term cancels out such that the Measurement

Equation can take the form of Equation 1.7.

V ′w(u, v) =
∫
∞
Im(l,m)e−j2π(ul+vm+w

√
1−l2−m2)dldm (1.7)
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1.3 Properties of the Measurement Equation

In the forthcoming Section 1.7.1, we review the many available Visibility-to-image

algorithms that compute an intensity image from the measured Visibility data. They

take advantage of the various properties the Measurement Equation holds, which

we now list and discuss.

Three-Dimensional Fourier Transform

The Measurement Equation 1.7 can be expressed as a Three-Dimensional Fast

Fourier Transform (Clark [24], Cornwell et al. [25], Perley [26]) as per Set of

Equations 1.8.

V ′w(u, v) =
∫
∞
I ′m(l,m, n)e−j2π(ul+vm+wn)dldmdn (1.8a)

I ′m(l,m, n) = Im(l,m)δ
(
n−
√

1− l2 −m2
)

(1.8b)

where δ
(
n−
√

1− l2 −m2
)
is introduced to project Im(l,m) to the surface of the

unit celestial sphere in a three-dimensional space with independent coordinates l,m

and n. Such a setup is identical to that of Equation 1.2 and as illustrated in Figure

1.1. Note that excluding the unit sphere’s surface where Im(l,m) resides, the whole

space is void from any information.

The Visibility Plane at w = 0

On setting w = 0 in Measurement Equation 1.5, we get Equation 1.9.

V0(u, v) =
∫
∞
Im(l,m)e−j2π(ul+vm)dldm (1.9)

10
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Equation 1.9 is a Two-Dimensional Fourier Transform as per Equation 1.10.

V0(u, v) = FIm(l,m) (1.10)

where F denotes a Two-Dimensional Fourier Transform.

Therefore, the Visibility plane at w = 0 is related to Im(l,m) by a simple Fourier

Transform.

A Visibility plane perpendicular to the W-axis at w = c

Let c be a constant and let gw(l,m) contain the W-term as per Equation 1.11

gw(l,m) = e−j2πw(√1−l2−m2−1) (1.11)

1/gw(l,m) clearly exists and we denote it with gw(l,m), that is gw(l,m) = 1/gw(l,m)

On considering the Visibilities on plane w = c, that is Vc(u, v), and substituting

with Equation 1.11, the Measurement Equation 1.4 transforms into:

Vc(u, v) =
∫
∞
Im(l,m)gw(l,m)e−j2π(ul+vm)dldm (1.12)

which is a Two-Dimensional Fourier Transform as better shown by Equation 1.13.

Vc(u, v) = F [Im(l,m)gc(l,m)] (1.13)

On applying an inverse Fourier Transform (F−1) on both sides of the above equation

11
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and put Im(l,m) subject of the formula, we get:

Im(l,m) = gc(l,m)F−1Vc(u, v) (1.14)

Therefore, Visibility on a plane perpendicular to the W-axis is related to Im(l,m)

via a Fourier Transform of the plane and a simple point-wise multiplication with a

phase corrector gc(l,m).

Let us now define Gw(u, v) and Gw(u, v) as the Fourier Transform of gw(l,m) and

gw(l,m) respectively, that is

Gw(u, v) = Fgw(l,m) (1.15a)

Gw(u, v) = Fgw(l,m) (1.15b)

Using the Convolution Theorem, we can express Equation 1.13 as a convolution

(Frater and Docherty [27]).

Vc = [FIm(l,m)] ∗Gc(u, v) (1.16)

where ∗ is a two-dimensional convolution. On substituting Equation 1.10 in

Equation 1.16 we get

Vc(u, v) = V0(u, v) ∗Gc(u, v) (1.17)

and since the inverse of gw(l,m), that is gw(l,m) exists, it follows that:

V0(u, v) = Vc(u, v) ∗Gc(u, v) (1.18)

Therefore, a Visibility plane perpendicular to the W-axis is related to the Visibility

plane at w = 0 by a simple convolution.
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General Visibility Plane defined by w = au+ bv + c

We now investigate how a general Visibility Plane defined with w = au + bv + c is

related to Im(l,m) where a, b and c are constants.

For convenience, we shall use the three-dimensional form of the Measurement

Equation, as expressed in Equation 1.8 and reproduced as Equation 1.19.

V ′w(u, v) =
∫
∞
Im(l,m)δ(n−

√
1− l2 −m2)e−j2π(ul+vm+wn)dldmdn (1.19)

Let’s substitute w = au + bv + c. For better readability V ′au+bv+c(u, v) is denoted

with V ′plane(u, v).

V ′plane(u, v) =
∫
∞
Im(l,m)δ(n−

√
1− l2 −m2)e−j2π(ul+vm+[au+bv+c]n)dldmdn (1.20)

We now use the Reverse Chain Rule to simplify Equation 1.20.

Let l′ = l + an and m′ = m+ bn and n′ = n

On applying the Reverse Chain Rule to Equation 1.20 while re-arranging and

cancelling terms, Equation 1.21 is derived. Note that the Jacobian of the

transformation is equal to 1, and integral limits remain the same.

V ′plane(u, v) =
∫
∞
Im(l,m)δ(n′ −

√
1− l2 −m2)e−j2π(ul′+vm′+cn′)dl′dm′dn′ (1.21)

Equation 1.21 shows that a Three-Dimensional Fourier relationship exists between
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Visibility on a plane w = au + bv + c and Im(l,m) but coordinates are distorted.

The intensity distribution is on the surface of a spheroid for the distorted system

with (l′,m′, n′) coordinates.

Let’s now split Equation 1.21 in the Set of Equations 1.22 as to express the equation

as a Two-Dimensional Transform.

V ′plane(u, v) =
∫
∞
I ′m(l′,m′)e−j2π(ul′+vm′)dl′dm′ (1.22a)

I ′m(l′,m′) =
∫
∞
Im(l,m, n)δ(n′ −

√
1− l2 −m2)e−j2πcn′dn′ (1.22b)

The integral in Equation 1.22b can be worked out by noting that δ(n′−
√

1− l2 −m2)

is not equal to zero only at n′ =
√

1− l2 −m2 and therefore:

I ′m(l′,m′) = Im(l′′,m′′)e−j2πc
√

1−l2−m2 (1.23)

where l′′ = l′ − a
√

1− l2 −m2 and m′′ = m′ − b
√

1− l2 −m2.

Substituting in Equation 1.22a we get

V ′plane(u, v) =
∫
∞
Im(l′′,m′′)e−j2π(ul′+vm′+c

√
1−l2−m2)dl′dm′ (1.24)

On comparing Equation 1.24 with the Measurement Equation 1.7, we realise that

they are similar with the exception that the coordinates are distorted. Furthermore,

if we consider the subset of planes where c = 0, that is, Visibility planes defined

by w = au + bv, a two-dimensional Fourier relationship with distorted coordinates

results.
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V ′plane(u, v) =
∫
∞
Im(l′′,m′′)e−j2π(ul′+vm′)dl′dm′ (1.25)

Using the same rationale used to derive Equation 1.18, we get

V ′au+bv(u, v) = V ′au+bv+c(u, v) ∗G′c(u, v) (1.26)

where G′c(u, v) = F [gc(l,m)ej2πc]

Therefore, a Visibility plane defined by w = au + bv + c is related to the parallel

plane defined by w = au+ bv by a simple convolution.

1.4 Irregular sampling of Visibility

The Radio Interferometer relies on its movement relative to a fixed point in the sky

to sample Vw(u, v) at different (u, v, w) coordinates. Vw(u, v) is irregularly sampled

on all three axes as illustrated by the LOFAR observation uv-profile in Figure 1.3.

Let us mathematically explain the effects of irregular sampling. Using Equation 1.14

and the various arguments given in Section 1.3, we can express the Measurement

Equation as shown in Equation 1.27.

F−1Vw(u, v) = Im(l,m)gw(l,m) (1.27)

Now let Sw(u, v) be the sampling function of the Radio Interferometer, and let

sw(l,m) = FSw(u, v) many times referred to as the Point Spread Function (PSF).

The sampling of the sky by the Radio Interferometer can be modelled with
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Figure 1.3: uv-profile of a real LOFAR observation. Every baseline forms a trajectory
as it samples the true sky, controlled by Earth’s movement, relative to a fixed point
in the sky. This observation is used in most of our experiments described in Chapters
4, 5, 6 and 8.
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a point-wise multiplication of Vw(u, v) with Sw(u, v) which by the Convolution

Theorem will result in a convolution of sw(l,m) with Im(l,m)gw(l,m) as per

Equation 1.28.

F−1 [Vw(u, v)Sw(u, v)] = [Im(l,m)gw(l,m)] ∗ sw(l,m) (1.28)

In general, the convolution with the PSF is irreversible, making it impossible to

recover Im(l,m) by a linear process. Therefore irregular sampling distorts Im(l,m)

in a way that in general Im(l,m) can only be recovered through a non-linear process

known as Deconvolution.

1.5 Deconvolution

Deconvolution is not the scope of this thesis. Nevertheless, it is the requirements of

modern Deconvolution algorithms that set the stage for increasing the Performance

of Convolutional Gridding.

There are a vast number of Deconvolution algorithms, and a non-exhaustive list

follows:

• CLEAN (Hogbom [28]) and derivatives such as Clark [29], Cotton-Schwab

(described in a paragraph of Schwab [30]), Multi-Resolution CLEAN

(Wakker and Schwarz [31]), Double Deconvolution (DD) for Multi-Frequency

Synthesis(MFS) (Conway et al. [32]), MS-CLEAN (Cornwell [33]),

MF-CLEAN (Salt and Wieringa [34]), MS-MFS (Rau and Cornwell [35]),

ASP-CLEAN (Bhatnagar and Cornwell [36]), and Joined Channel(JC)

CLEAN (Offringa and Smirnov [37]).
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• Compressed sensing based algorithms1 (Wiaux et al. [39]) including Li et al.

[40], SARA (Carrillo et al. [41]), HyperSARA (Abdulaziz et al. [42]), Purify

(Carrillo et al. [43]), MORESANE (Dabbach et al. [44]), and SASIR (Garsden

et al. [45] and Girard et al. [46]).

• Bayesian-based Deconvolution such as RESOLVE (Junklewitz et al. [47]).

A flowchart of an imaging pipeline meant to serve as an aid for this section is drawn

in Figure 1.4.

In general, three images are involved in Deconvolution. These are called the model,

dirty and residual images. The model is the predicted image of the real sky, while the

dirty image is that image generated from the Interferometer’s measured Visibilities.

The residual is the image that arises when the intensity predicted in the model gets

subtracted from the dirty image. One notes that the residual image is equal to the

dirty image if the model has zero intensity.

Deconvolution works via an iterative method using a feedback loop. In every

iteration (more known as a cycle), the predicted model is updated based on the

residual image and a priori knowledge, generally in the form of an assumption.2

Once the model is updated, the residual is re-calculated for use in the next cycle.

A successful Deconvolution process ends once the intensity present in the residual

is below a given threshold.

There are two methods of how a residual image is calculated in any cycle. In a minor

cycle, updates made to the model within the cycle are convolved with a truncated

PSF (Clark [29]). The result is subtracted from the residual image generated by

the previous cycle. The minor cycle is designed to be fast in execution but is an

approximate approach, prone to a build-up of errors. On the other hand, in a major
1It is worthwhile to note that there are some local contributions to the application of Compressed

Sensing to Radio Interferometry, in particular, Gauci et al. [38].
2For example, in CLEAN (Hogbom [28]) it is assumed that a source exists at the position where

the residual image contains a peak.

18



Chapter 1: Introduction

Start

Visibility 

Records

Dirty 

Image

Generate New 

Model

Model

Major or Minor 

Cycle?
Minor

Approximate 

Generation of 

Residual Image

Major

Image-To-Visibility 

Transform

(G
T )

Model 

Visibility 

Records

Residual 

Image

Visibility-To-Image 

Transform

(G)

-+

Is Residual Image 

intensity below 

threshold?

NoYesStop

Visibility 

Records

Residual 

Visibility 

Records

Visibility-To-Image 

Transform

(G)

Figure 1.4: Flowchart of a general imaging pipeline. The pipeline first generates
a dirty image and then applies Deconvolution. The process coloured in grey is the
process that applies Convolutional Gridding, which this thesis focuses on. The fat
arrows track the major cycle. The output of the pipeline is a model of the observed
sky.
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cycle, a more accurate approach but much slower to execute is taken. As pioneered

by a paragraph in Schwab [30], the subtraction to calculate the residual image

happen in the Visibility space, and the residual image is generated from scratch.

Many Deconvolution algorithms, which we gave a non-exhaustive list at the

beginning of this section, use minor and major cycles together. Many iterations will

be minor cycles, and major cycles are executed intermittently to reset the build-up

of errors. Some Deconvolution algorithms such as Purify and RESOLVE only use

major cycles and do not execute minor cycles.

1.6 Convolution Gridding use case

Let us do a simple formulation to explain how the residual is calculated in a major

cycle to understand where Convolutional Gridding is used.

Let G be a backward Visibility-to-image operator whereby irregularly sampled

Visibility data (records) is transformed into an intensity image (the dirty or the

residual image). Let GT be a forward image-to-visibility operator that transforms an

intensity image (the model) to Visibility data irregularly sampled by the uv-profile

of Vw(u, v)Sw(u, v). Denoting the model image as Imodel(l,m) and the residual image

as Iresidual(l,m), then a major cycle calculates the residual image by applying the

equation:

Iresidual(l,m) = G
[
Vw(u, v)Sw(u, v)− GT Imodel(l,m)

]
(1.29)

The Direct use of the Measurement Equation to execute G or GT is in most

cases evaded as it is computationally too expensive. In general, algorithms

to compute G or GT are based on a convolution-based process called gridding

(Convolution Gridding) for G or degridding (Convolutional Degridding) for GT .

Convolution Gridding and Degridding rely on a two-dimensional convolution with a
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Gridding Convolution Function (GCF) of finite width. Convolutional Gridding and

Degridding cannot handle the A-term and W-term, and algorithms computing G or

GT adjust as to handle the two terms. Adjustments come in two flavours, either

modify the GCF by including in it information on the terms or correct for the terms

outside Convolutional Gridding such as not to modify the GCF.

In this thesis, Degridding is out of scope, and we put all our focus on Convolutional

Gridding using a non-modified GCF. We are proposing modifications to increase

the Performance of Convolutional Gridding when using an unmodified (that is, no

handling of the A-term or W-term within Convolutional Gridding).

Convolutional Gridding together with Convolutional Degridding is likely to

dominate the execution time of the whole imaging process. Noting that sometimes

there can be as many as 105 major cycles (Arras et al. [48]), one can easily infer

that increasing the Performance of Convolutional Gridding benefits a whole class

of Deconvolution algorithms. Similar benefits can also be obtained by increasing

the Performance of Convolutional Degridding, and it is unfortunate that we did not

do any work related to degridding. However, we are tagging such an endeavour

for future work and note that the modifications that we are proposing are easily

adaptable to the simple form of Convolutional Degridding.

We have little interest in cases where Convolutional Gridding is used with a modified

GCF to correct for the A-term and W-term. The reader should always assume

that unless otherwise stated, any reference to Convolutional Gridding in this thesis

implicitly implies the use of a non-modified GCF.
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1.7 Visibility-to-image algorithms

This section will review the various algorithms available for the backward

Visibility-to-Image Transform. The intent is to understand how these algorithms

cater for the W-term and A-term and how Convolutional Gridding is integrated. A

reader naive on Convolutional Gridding might find difficulties following up some of

the content in this section, and in such circumstance, we recommend that the reader

read Section 1.8.

For clarity, let us formalise the Visibility-to-image operator (G): There is a finite set

of Visibility records that we would like to turn into a dirty or residual image, now

denoted by ID(l,m) using the Measurement Equation 1.5. That is, given a set of P

Visibility records {Vwp(up, vp); 0 ≤ p < P and wp, up, vp are coordinates}, we would

like to calculate in the fastest way possible a sampled and bounded (that is, of a

finite number of samples) version of ID(l,m) as expressed by Equation 1.30.

ID(l,m) =
P−1∑
p=0
Vwp(up, vp)ej2π(upl+vpm)Ap(l,m)gwp(l,m) (1.30)

where gw(l,m) was defined in Section 1.3 and Ap(l,m) is A(l,m)/
√

1− l2 −m2 for

the (p + 1)th Visibility record. We are including the quotient
√

1− l2 −m2 in the

A-term (A(l,m)) just for convenience and we are binding the value of the A-term

with a given Visibility record to clarify that the A-term is a function of time and

other factors.

As pointed out before, a direct application of Equation 1.30 to compute G is

computationally too expensive and generally avoided. Therefore, other algorithms

are used to compute G generally based on Convolutional Gridding. Convolutional

Gridding does not implicitly cater to the A-term or W-term. What most

Visibility-to-image algorithms do is to take advantage of various properties of the

Measurement Equation, discussed in Section 1.3, to handle the W-term or A-term.
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Let us now review various Visibility-to-image algorithms, categorised by the term

they cater to and how they cater to the term.

1.7.1 Catering for the W-term

We can categorise four different approaches taken in Radio Interferometry to handle

the W-term, which we shall now discuss.

Ignore the W-term

Thompson [49] states that given a short field of observation such that

(√
1− l2 −m2 − 1

)
w ≈ −0.5(l2 +m2)w ≈ 0 (1.31)

it is acceptable to ignore the W-term and proceed with Convolutional Gridding.

For a wider field of view, Faceting techniques (Kogan and Greisen [50], Cornwell and

Perley [51]) are used to partition the image into smaller images (facets) whose field

of observation is small enough to ignore the W-term. Each facet can be generated

independently using Convolutional Gridding, and at the end, the facets are combined

to generate the needed image.

Include correction for the W-term in the convolution

Through Equation 1.18 we showed that:

V0(u, v) = Vw(u, v)Gw(u, v) (1.32)
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Based on Equation 1.32, Cornwell et al. [25] designed the W-projection algorithm

whereby any Visibility record is projected on the w = 0 plane utilising a convolution

with Gw(u, v) integrated with the GCF of Convolutional Gridding. Therefore, the

GCF is modified and made dependent on the coordinates of the Visibility records.

Correction of the W-term in the (l,m)-plane

We showed in Equation 1.14 that:

Im(l,m) =
[
F−1Vw(u, v)

]
gw(l,m) (1.33)

In W-stacking (Humphreys and Cornwell [52], Offringa et al. [53]) Visibility records

with a similar value of w are gridded using Convolutional Gridding on separate grids.

By virtue of Equation 1.33, the W-term is corrected by applying gw(l,m) on the

output of Convolutional Gridding. All the resultant images are summed together

after correction is applied.

Another approach to correct the W-term on the (l,m)-plane is known as Snapshots

(Cornwell and Perley [51], Cornwell et al. [54], Ord et al. [55], Brouw [56]). In a

given short period of observation time or just one snapshot, the Radio Interferometer

array approximates a coplanar array whereby w is a linear combination of u and

v for the records in that given a short period of observation time. As revealed by

Equation 1.25, if such records are gridded alone using Convolutional Gridding, the

image results with warped coordinates correctable with a simple (l,m)-correction.

Therefore in Snapshots, one generates such images using Convolutional Gridding

and adds them together after correction.
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Hybrid correction

All the approaches to handle the W-term mentioned above can and are integrated

together. For example, in CASA (McMullin et al. [57]), a popular imaging tool,

W-projection, can be used on Facets. In DDFacet (Tasse et al. [58]), a modified

version of W-projection is integrated with Faceting. In W-snapshots (Cornwell et

al. [54]), Snapshots and W-projection are used together. Lately, Pratley et al. [59]

proposed integrating W-projection with W-stacking in a way that is accurate and

scalable.

3D FFT

We showed through the Set of Equations 1.8 that the Measurement Equation

could be expressed as a Three-Dimensional Fast Fourier Transform. Therefore,

the three-dimensional version of Convolutional Gridding can be applied to create a

three-dimensional image. The problem with using Three-Dimensional FFTs is that

the generated cube is mostly empty of true emission (Cornwell et al. [25]), but

lately, Smith et al. [60] proposed a reconsideration of the Three-Dimensional FFT

and Offringa [61] implemented the Three-Dimensional FFT in WSClean (Offringa

et al. [53]).

1.7.2 Handling the A-term

Handling the A-term is a tougher challenge than handling the W-term since the

A-term is a function of time, polarisation and the particular telescope measuring the

sky. In literature, there are fewer techniques for handling the A-term in comparison

with handling the W-term.

A-Projection (Bhatnagar et al. [62]) andWide-Band (WB) A-Projection (Bhatnagar
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et al. [63]) handle the A-term by injection data in the GCF in a similar way to

W-projection. Tasse et al. [64] integrated A-projection with W-projection to create

what is known as AW-projection for the use in an imager for LOFAR known as the

AWImager. Also, in ASKAPSoft (Cornwell et al. [65]), A-projection is integrated

with W-stacking.

Facets can handle the A-term. In the already mentioned DDFacet, the primary use

of Facets is to handle the A-term. Van Weeren et al. [66] describes a Facet based

approach for calibration in LOFAR, used by Williams et al. [67].

1.7.3 Image Domain Gridding

Image Domain Gridding (van der Tol et al. [68], Veenboer et al. [69]) is a new

technique that re-defines the way a convolution is calculated. Low-Resolution

Images are generated from neighbouring Visibility records via the direct use of

the Measurement Equation. The convolution is executed by multiplying with the

Low-Resolution Image. The result is subsequently transformed back to the uv-space

using an FFT and added back to the uv-grid in the appropriate region. Once all

Visibility records are processed, the output image is generated via the usual FFT

and correction.

IDG requires more computation (van der Tol et al. [68], Veenboer et al. [69],

Offringa et al. [70]) than Convolutional Gridding. However, it adapts to parallelism

and is proven to work efficiently on GPUs (Veenboer et al. [69]). Its main advantage

is that it does not use convolution functions in the UV-domain, eliminating

oversampling and removing the need to pre-calculate convolution functions. In

AW-projection for wide-field SKA images, such convolution functions contain

W-term and A-term data, which, if computed, may dominate the imaging process

in terms of execution time (van der Tol et al. [68]).
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1.8 Introduction to Convolutional Gridding and

proposed modifications

We have already stated that the direct application of Equation 1.30 to calculate

ID(l,m) is not feasible in Radio Interferometry, and Convolutional Gridding is a

popular technique used as part of the solution to the problem. A detailed review

of Convolutional Gridding and proposed modifications are provided in Chapter 2.

However, here we give a preliminary description of Convolutional Gridding and the

modifications we propose for better Performance.

When re-stating the problem, we argued that we are interested in a sampled

and bounded version of ID(l,m), and this is because we are using a digital

computer. Convolutional Gridding tries to take advantage of the Fourier Transform

revealed in Equation 1.13, using Fast Fourier Transforms (FFTs) (Cooley and

Tukey [71]). FFTs operate only on a regularly sampled grid of finite width (a

bounded grid). Convolutional Gridding maps Visibility records to such a grid

by convolving the Visibility records with a real-valued multiplicatively separable

Gridding Convolutional Function (GCF) of finite width and at the same time sample

the result to the said grid. Once all records are gridded, an Inverse Fast Fourier

Transform (IFFT) is applied over the grid and afterwards corrected to generate an

output image.

The output image will not be equal to the sampled and bounded version of ID(l,m)

for two main reasons. First and foremost, as stated before, the simple form

of Convolutional Gridding we are describing does not take care of the W-term

denoted by gwp(l,m), and the A-term denoted by Ap(l,m). Another reason is

that Convolutional Gridding suffers from aliasing, since ID(l,m) is expected to be

aperiodic and infinitely wide in all dimensions, implying no sampling satisfies the

requirements of the Nyquist Rate.
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Let us now introduce in brief our proposed modifications. A detailed analysis with

necessary proofs is given in Chapter 2 while Figure 1.5 gives a simple illustration.

We take advantage of the fact that in real implementations, the GCF is oversampled,

that is, sampled at finer intervals than the prior mentioned grid, by a factor of β,

and stored in a lookup table. The Convolutional Gridder will then consult with the

lookup table using a Nearest Neighbour (NN) Interpolation scheme to calculate the

GCF for each record during gridding. We realise and prove in Chapter 2 that such

an approach is identical to gridding records using NN Interpolation on a virtual grid

oversampled by a factor of β, which we call the NN Grid. Afterwards, the NN Grid

is downsampled by convolving with the GCF. Convolutional Gridding does these

two steps concurrently. In our modifications, we split these two steps to morph the

Convolutional Gridding into two modified gridding algorithms, collectively referred

to as the modified gridding algorithms and individually named Hybrid Gridding

and Pruned NN Interpolation. In Hybrid Gridding, we split the two steps for one

dimension, while in Pruned NN Interpolation, we split the two steps for the two

dimensions.

Finally, we modify the downsampling step of the modified gridding algorithms to

try to suppress aliasing generated by the downsampling step below arithmetic noise.

This latter modification pushed us to re-review the use of convolution to downsample

an oversampled regular grid to accelerate its Fourier inversion. We refer to this

process as Convolution-Based FFT Pruning, which is analysed in Chapter 2.

One can quickly realise that the modified gridding algorithms can replace

Convolutional Gridding in a Visibility-to-image algorithm if and only if the GCF

in Convolutional Gridding is multiplicative separable and invariant for all records

gridded, that is, the GCF is not dependent on any Visibility record to be gridded.

For this reason, the modified gridding algorithms cannot be directly applied for those

Visibility-to-image algorithms that include W-term and A-term information in the

GCF of Convolutional Gridding, since the GCF loses its multiplicative separable
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and invariant properties.

Table 1.1 lists all the Visibility-to-image algorithms previously reviewed and state if

Convolutional Gridding whit-in each Visibility-to-image algorithm can be replaced

with the modified gridding algorithms. The rules are straightforward and based

on what is explained in the previous paragraph. The modified gridding algorithms

can be applied to all Visibility-to-image algorithms that do not modify the GCF

in their Convolutional Gridding step by replacing Convolutional Gridding with

the modified gridding algorithm. Suppose a Visibility-to-image algorithm modifies

the GCF. In that case, the modified gridding algorithms can only be applied

if the Visibility-to-image algorithm is first modified to re-establish the use of

an unmodified, multiplicative separable and invariant GCF. Suppose it is not

possible, or there is no sense in modifying the given Visibility-to-image algorithm.

In that case, the modified gridding algorithms are incompatible with the stated

Visibility-to-image algorithm.

1.9 Thesis layout

This thesis is laid out as follows:

At the start of this chapter, we stated our thesis’ primary goal. Afterwards, we gave

context to our goal by reviewing Radio Interferometry and how image synthesis

works. Such a review led us to briefly introduce Convolutional Gridding and our

modified gridding algorithms called Hybrid Gridding and Pruned NN Interpolation.

It was also identified in which algorithms that handle the W-term and A-term the

modified gridding algorithms could be integrated.

Chapter 2 is an in-depth theoretical and mathematical review of Convolutional

Gridding building towards a proper formulation of the modified gridding algorithms,
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Visibility-to-image algorithm Compatible with the modified
gridding algorithms?

Ignore w-term Yes
Facets Yes
W-projection No
W-stacking Yes
Snapshots Yes
Facets with W-projection Maybe†

DDFacet Maybe†

W-snapshots Maybe†

W-projection + W-stacking No
3D FFT Maybe?

A-projection No
Wide-Band A-Projection No
AW-Projection No
Facets handling the A-term Maybe‡

Image Domain Gridding Not Applicable

Table 1.1: Table listing all mentioned Visibility-to-image algorithms mentioned in
Section 1.7, and stating if they are compatible with the modified gridding algorithms.
† The use of W-projection in the given Visibility-to-image algorithm needs to be
changed to W-stacking for the modified gridding algorithms to be compatible.
? The modified gridding algorithms need to be applied for three dimensions.
‡ Any Visibility-to-image algorithm that use Facets handling the A-term is compatible
with the modified gridding algorithms given the A-term is corrected in the image plane
and W-stacking is used instead of W-projection.
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including Convolution-Based FFT Pruning. From theory, we derive expectations

(claims) for these modified gridding algorithms, where such expectations will be

experimentally tested at the end of the thesis.

From Chapter 3 onwards, we discuss the implementations made to be able to verify

our expectations of the modified gridding algorithms experimentally.

Chapter 3 introduces various concepts of CUDA programming which we will use

in subsequent chapters, and delivers essential notes on our experimental setup and

the general structure of the studied implementations. At the end of the chapter we

define the many Performance metrics that we are to measure in experiments and

use for an in-depth analysis of Performance.

The three subsequent chapters specialise in discussing in full our implemented

Gridders3 of Convolution Gridding (Chapter 4), Hybrid Gridding (Chapter 5) and

Pruned NN Interpolation (Chapter 6). Each chapter includes an in-depth analysis

on the Performance of the Gridder in question, based on experimental results.

Chapter 7 discusses in detail our implementation of Convolution-Based FFT Pruning

as needed by Hybrid Gridding and Pruned NN Interpolation. The discussion

progresses in a similar way to how discussions in previous chapters progress. At

the end of the chapter, some experimental analyses are included on the suppression

of aliasing in Convolution-Based FFT Pruning.

In all chapters we mentioned so far, we report on the studied implementations of

Gridders and Pruners, and in Chapter 8 we put everything together to provide a

comparative experimental analysis on Performance and aliasing between our studied

implementations. The ultimate goal is to show if any of the modified gridding

algorithms can perform better than Convolutional Gridding with no decrease in the

suppression of aliasing.
3A Gridder is an implementation of a Gridding Step, defined in Chapter 2.
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In the previous chapters, we consciously avoid discussing the validation of the

gridders in terms of image quality (particularly alias distortions) and Performance.

We left such validation to the currently discussed Chapter 8, since all validations

are done through comparisons. In particular, at the beginning of the chapter, we

experimentally validate our implementation of Convolutional Gridding with other

well-known gridders since the Convolutional Gridder is used as a reference for

validating and comparing the other studied implementations.

Finally, we conclude in Chapter 9 by summarising what we discussed in this thesis

and citing the main results. A mandatory future work section then follows.

1.10 Publications

At the writing of this thesis, we did not yet publish any content in peer-reviewed

journals. However, we refer to Muscat and Bernardi [72], which is a Square Kilometre

Array Science Data Processor (SDP) Memo authored by ourselves, as part of an

international collaboration done during the tenure of the PhD with the said SDP.

We intend to publish most of the content in this thesis. In particular, we are planning

to publish Chapter 4 (The Convolutional Gridder), Chapter 5 (The Hybrid Gridder),

Chapter 6 (The NN Gridder), and Chapter 7 (The Pruners) as separate papers. We

envisage integrating content from the other chapters in the said papers.

1.11 Conclusion

In this chapter, we briefly introduced Image Synthesis in Radio Interferometry and

the main thesis’ goal with the modifications in Convolutional Gridding that we

are to examine to reach our goal. In Section 1.9, we explained the thesis layout,
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and afterwards, we discussed content from this thesis that we intend to publish in

peer-reviewed journals.
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Chapter

Theory and Mathematical
Review

Chapter

2
This chapter gives a theoretical and mathematical review of Convolutional

Gridding that builds towards and reviews the proposed modifications that morph

Convolutional Gridding to Hybrid Gridding and Pruned Nearest Neighbour (NN)

Interpolation, collectively referred to as the modified gridding algorithms.

The modified gridding algorithms downsample a grid using convolution, which is

a well-known technique affected by aliasing. At the end of the chapter, we will

re-consider this technique as Convolution-Based FFT Pruning, whereby with the use

of the least-misfit gridding functions, we try to suppress aliasing below arithmetic

noise.

We have organised this chapter as follows: In Section 2.1 we define notations,

terminology, function and assumptions that we use throughout the chapter. In

Section 2.2 we reformulate the problem Convolutional Gridding tries to solve,

and in the subsequent section, we review Convolutional Gridding in detail. In

Section 2.4, we review simple NN Interpolation and progress to define and review

the modified gridding algorithms. At the end we dedicate Section 2.5 to discuss

Convolution-Based FFT Pruning.

2.1 Notations, terminology and assumptions

This section defines the notation we are using in this chapter, together with some

terminology and assumptions. Each sub-section discusses some particular topic

indicated by its title.
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2.1.1 Spaces, and multiplicative separability

For our analyses, we define two Euclidean spaces of two dimensions, which are the

lm-space and its Fourier equivalent uv-space. Vectors x = (l,m) and ξ = (u, v) are

Cartesian co-ordinates for the respective spaces.

All functions presented in this chapter are multiplicative separable, implying that

they can be re-adapted to cater for any number of dimensions. A function D(x)

is multiplicative separable, if there exists functions D1(l) and D2(m) such that

D(x) = D1(l)D2(m). We refer to the work of Tan [73] for proof that Convolutional

Gridding is multiplicative separable.

2.1.2 Grids and normalisation

Directly related to the lm-space and uv-space are the lm-grid and uv-grid. Since

computation is on a digital machine, many of the functions we will define are

regularly sampled with a given interval and laid out on the said grids which are

bounded. We will use the term pixel to refer to a point on a grid and set the origin,

x = (0, 0) and ξ = (0, 0), on a pixel at the centre.

In order to simplify our workings, we will always assume that the final output

intensity image of any algorithm laid out on the lm-grid is of dimensions N × N

pixels with a two-dimensional sampling interval ∆x = (∆l,∆m). We normalise all

our work such that N∆l = N∆m = 1, implying ∆l = ∆m. We do stress out that

the output image is square in size just for convenience and all the work we present

here can be re-adapted to cater for rectangular images.
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2.1.3 Functions and notations

We group functions into two, the so-called helper functions and the other functions.

We define helper functions in Section 2.1.4 and discuss notation of the other functions

below.

Most of the other functions, hereafter referred to just as functions, are defined with

a domain of two or more variables, with the last variable being the oversampling

factor β, provided it has relevance in the context of the discussion being pursued.

We denote all functions that exist in the lm-space with a small letter, and the Fourier

equivalents in the uv-space with the same letter but capital.

We affix to the right, a superscript with the letter g to any function that is sampled

over a grid. The helper functions IIIΨ(x), and IIIΨ(ξ) are purposely defined in

Section 2.1.4 to sample a function on a bounded grid.

We denote functions describing the same things in different algorithms with the same

symbol and affix a two-letter suffix to the subscript to distinguish for which algorithm

the function is defined. The letters used for the said suffix are an abbreviation of

the algorithm in question and given in Table 2.1. For example, the output of Hybrid

Gridding is f g
hy(x, β), while the output of Pruned NN Interpolation is f g

pn(x, β).

2.1.4 Helper functions

We now define all helper functions. One notes that these functions operate on

the uv-space differently than on the lm-space. Notation of the helper functions is

different than that of the other functions and most of them have a suffix Ψ on which

the helper function depends. In many cases, the suffix Ψ has some relation with the

oversampling factor β, and in various equations, Ψ will be set to β.
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For simplification, we define all helper functions in one dimension, which, given that

they are multiplicative separable, means that a defined helper function DΨ(l) or

DΨ(u) is to be considered defined in two dimensions using the relationship DΨ(x) =

DΨ(l)DΨ(m) or DΨ(ξ) = DΨ(u)DΨ(v) respectively.

Dirac Delta Function δ(l) and δ(u)

The Dirac Delta Function is the unit impulse function defined in the Set Of

Equations 2.1.

δ(l) = δ(u) =


+∞ if l = u = 0

0 otherwise
(2.1a)

∫
∞
δ(l) =

∫
∞
δ(u) = 1 (2.1b)

Shah function IIIΨ(l) and IIIΨ(u)

The Shah function is an infinite impulse train which we define for the lm-space and

uv-space as Fourier Transforms of each other as shown in Equations 2.2 and 2.3.

IIIΨ(l) =
∑
b∈Z

δ(l −Ψb) (2.2)

IIIΨ(u) =
∑
b∈Z

δ(u−Ψ−1b) (2.3)

where Z denotes the set of integers.
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rectΨ(l) and rectΨ(u)

We define the one-dimensional rectΨ(l) and rectΨ(u) through Equations 2.4 and 2.5.

rectΨ(l) =


1 if − 0.5Ψ < l ≤ 0.5Ψ

0 otherwise
(2.4)

rectΨ(u) =


1 if − (2Ψ)−1 < u ≤ (2Ψ)−1

0 otherwise
(2.5)

sincΨ(l) and sincΨ(u)

We define the one-dimensional sincΨ(l) and sincΨ(u) through Equations 2.6 and 2.7

sincΨ(l) = sin(πΨ−1l)
πΨ−1l

(2.6)

sincΨ(u) = sin(πΨu)
πΨu (2.7)

We note that sincΨ(u) is the Fourier transform of rectΨ(l) while rectΨ(u) is the

Fourier transform of sincΨ(l).

IIIΨ(l) and IIIΨ(u)

We will use IIIΨ(l) and IIIΨ(u) to sample a given function on a regular bounded

grid.
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Algorithm Suffix
Convolutional Gridding co
Nearest Neighbour Interpolation nn
Pruned Nearest Neighbour Interpolation pn
Hybrid Gridding hy
Convolution-Based FFT Pruning pr

Table 2.1: Algorithm abbreviations used in suffixes.

IIIΨ(l) =
∑
b∈Z

δ(l − b∆l)rectΨ(l) (2.8)

IIIΨ(u) = IIIΨ(u)rect1(u∆l) (2.9)

We note that the value of Ψ in IIIΨ(l) affects only the boundaries of the lm-grid

while in IIIΨ(u) the value of Ψ controls the sampling interval of the uv-grid.

2.2 Problem formulation

We already formulated the problem through Equation 1.30, but that equation

contains various terms which, as discussed in the previous chapter, our modified

gridding algorithms do not handle directly. Therefore, we here re-formulate the

problem that Convolutional Gridding and the modified gridding algorithms try to

solve in a more convenient form.

Let F (ξ) be a function on the uv-space. F (ξ) is zero-valued everywhere, except for

P values of ξ exclusive members of the set Ξ, that is F (ξ) = 0 if ξ /∈ Ξ. Note that

F (ξ) is equivalent to the irregularly sampled Vw(u, v) with the exception that we

are dropping w. We still use the term record or Visibility record to refer to elements

in Ξ together with the value of F (ξ) for the given element in Ξ.
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Let f(x) be the Inverse Fourier Transform of F (ξ). Equation 2.10 defines the

relationship between f(x) and F (ξ).

f(x) =
∑
ξ∈Ξ

F (ξ)e−j2π(x·ξ) (2.10)

where ’·’ is the dot product, that is x · ξ = ul+ vm. f(x) is similar to ID(l,m) but

without the A-term and W-term.

The problem is to calculate the regularly sampled and bounded version of f(x)

which we denote with f g(x) and define by the DFT Equation 2.11.

f g(x) = f(x)III1(x) =
∑
ξ∈Ξ

F (ξ)e−j2π(x·ξ)III1(x) (2.11)

We remind the reader that for convenience we are assuming that f g(x) is of size

N ×N pixels.

2.3 Convolutional Gridding

In this section, we will define and analyse Convolutional Gridding. We will only

introduce and discuss oversampling in Section 2.3.6 and therefore, from this point

onwards until the stated section, the reader should not assume any oversampling of

the GCF.

The general algorithm for Convolutional Gridding is laid out in Algorithm 2.1. The

GCF is denoted by Cco(ξ) and the operator * denotes a convolution. An illustration

of the Gridding Step (Equation 2.12) is given in Figure 2.1.
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Input: F (ξ), Cco(ξ)

Helper Input: GCF: Cco(ξ), Corrector: hco(x)

Output: f g
co(x)

Assumptions: The Bounded Records Assumption

Gridding Step:
Each non-zero sample of F (ξ) is convolved with Cco(ξ) and simultaneously

sampled on the uv-grid:

W g
co(ξ) = [F (ξ) ∗ Cco(ξ)] III1 (ξ) (2.12)

IFFT Step:
An Inverse Fast Fourier Transform (IFFT) is performed over W g

co(ξ) to get

wg
co(x):

wg
co(x) = [f(x)cco(x) ∗ III1(x)] III1(x) (2.13)

Correction Step:
A corrector hco(x) is applied to obtain f g

co(x) which approximates fg(x):

f g
co(x) = [f(x)cco(x) ∗ III1 (x)] III1(x)hco(x) (2.14)

Algorithm 2.1: The general Convolutional Gridding Algorithm. We discuss
the Bounded Records Assumption in Section 2.3.1.
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Figure 2.1: Diagram illustrating the Gridding Step (Equation 2.12) in Convolutional
Gridding. A record in F (ξ) is being convolved with Cco(ξ) and sampled over the grid.
Only a small region of the grid is drawn in the diagram.
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2.3.1 The Bounded Record Assumption

In formulating all the gridding algorithms in this thesis, it is assumed that F (ξ) ∗

Cco(ξ) is zero-valued outside the uv-grid boundaries. We refer to this assumption

as the Bounded Records Assumption, which is in line with how other publications

describe Convolutional Gridding such as Jackson et al. [74] and Greisen [75]. The

said assumption is also implemented in various Radio Interferometric Imagers such

as CASA (McMullin et al. [57]), lwimager and WSClean (Offringa et al. [53]),

whereby any record not abiding to this assumption is ignored.

The rationale behind the stated assumption is related to the fact that f g
co(x) is

sampled at an interval ∆x and for reasons rooted in the Sampling Theorem the

IFFT will only use the pixels in the uv-grid that are within the boundaries of the

uv-grid.

We point out that it is possible to override the Bounded Records Assumption in

Convolutional Gridding by modifying the Gridding Step to implement Equation

2.15 instead of Equation 2.12.

W g
co(ξ) = [F (ξ) ∗ Cco(ξ) ∗ III1(ξ �∆x)]III1(ξ) (2.15)

where � is the Hadamard product, that is ξ�∆x = (u∆l, v∆m). The convolution

with III1(ξ �∆x) in Equation 2.15 aliases back any records that are outside the

boundaries mimicking the aliasing effects in the uv-space induced by sampling f(x)

to f g(x).

2.3.2 Component analyses

We find it useful to formulate how every record in F (ξ) gets distorted by

Convolutional Gridding based on the value of ξ. We measure distortion per
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component using the function lco(δξ,x) as defined by Equation 2.16.

f g
co(x) =

∑
ξ∈Ξ

[
F (ξ)e−j2πξ·xlco(δξ,x)

]
III1(x)hco(x) (2.16)

The vector δξ is equal to the vectorial distance of a record at ξ from the nearest

pixel with uv-coordinates k ∈ Z2, where Z2 is the set of all two-element integer

vectors [a ∈ Z, b ∈ Z]. Therefore ∀δξk ∈ ξ, 0.5 ≤ δξk < 0.5 and ξ = k + δξ.

Substituting the Equation 2.10 in Equation 2.14 we get

f g
co(x) =

∑
ξ∈Ξ

F (ξ)e−j2πξ·xcco(x) ∗ III1 (x)
 III1(x)hco(x) (2.17)

Substituting ξ = k+δξ and re-expressing convolution with III1 (x) as a summation

(refer to Equation 2.2) we get:

f g
co(x) =

∑
ξ∈Ξ

F (ξ)
∑
b∈Z2

e−j2π(k+δξ)·(x−b)c(x− b)
 III1(x)hco(x) (2.18)

Which leads to:

f g
co(x) =

∑
ξ∈Ξ

F (ξ)e−j2πδξ·x
∑
b∈Z2

���
��:1

e−j2πk·b e−j2πδξ·(x−b)c(x− b)
 III1(x)hco(x)

(2.19)

Comparing Equation 2.19 with Equation 2.16 we get:

lco(δξ,x) =
∑
b∈Z2

e−j2πδξ·(x−b)c(x− b) (2.20)

One notes that lco(δξ,x) is neither dependent on F (ξ) nor k which implies that

records with equal δξ are distorted with a constant, only dependent on the
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lm-coordinate. Therefore, if all records have equal δξ there exists a corrector hco(x)

that can cancel all distortions. Conversely, if some of the records have a different

δξ, a corrector cancelling all distortions is unlikely to exist. What we just stated is

a way to explain the existence of aliasing in Convolutional Gridding and in the next

sub-section we give a second approach to explain and measure the distortion caused

by aliasing.

2.3.3 Aliasing

As pointed out many times, Convolutional Gridding suffers from aliasing. Therefore,

excluding exceptional circumstances, f g
co(x) can only approximate f g(x). The

Gridding Step induces aliasing when F (ξ) ∗ Cco(ξ) is sampled to the grid.

f(x)cco(x) = F−1[F (ξ)∗Cco(ξ)] is generally infinitely wide and therefore, there exits

no sampling rate that qualifies as the Nyquist Rate for the sampling of F (ξ)∗Cco(ξ).

It is worth to analyse the effects of aliasing by converting the convolution in Equation

2.14 into a sum and rewriting it into the following set of equations:

f g
co(x) = [og

co(x) + ag
co(x)] III1(x)hco(x) (2.21a)

og
co(x) = f(x)cco(x) (2.21b)

ag
co(x) =

∑
b∈Z2,b 6=0

f(x− b)cco(x− b) (2.21c)

og
co(x) is the term containing the data from which we can recover f g(x) while ag

co(x)

defines all the irreversible distortions caused by aliasing. In the unlikely case that

ag
co(x) = 0 and provided hco(x) = 1/cco(x) then og

co(x)hco(x) = f g(x).

The above set of equations show that aliasing causes f(x)cco(x) to wrap around,
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which leads to some crucial statements:

1. Structures in f(x) outside the grid boundaries will appear in f g
co(x). Therefore,

aliasing is a function of f(x) and the level of distortion caused by aliasing is

dependent on the values of f(x) outside the boundaries of the lm-grid.

2. A good choice of cco(x) tries to reduce aliasing by attenuating or zeroing f(x)

outside the boundaries of the grid prior sampling occurring in the uv-space.

Therefore, Cco(ξ) is an anti-aliasing lm-space filter.

3. For best anti-aliasing results, the ratio ag
co(x)/og

co(x) should approach zero.

Therefore, cco(x) should have values as high as possible within the boundaries

and approach zero elsewhere. Due to the needed properties of Cco(ξ) (refer to

Section 2.3.4 ), cco(x) is expected to be continuous, infinitely wide, and unable

to abruptly change from a high value to zero at the boundaries of the lm-grid.

Instead, there is a region near the boundaries where cco(x) rolls-off from high

values to values approaching zero as the lm-coordinates move away from the

origin. f g
co(x) is generally ignored in this region, by means of padding, since it

suffers from a severe level of aliasing distortion (Jackson et al. [74], O’Sullivan

[76]).

Exceptions

At the beginning of this section, we have hinted that in exceptional circumstances,

Convolutional Gridding can give accurate results with no aliasing effects. We now

list some of these exceptions.

A trivial case is when F (ξ) = 0, which beyond any doubt will lead to f g
co(x) =

f g(x) = 0

Another exception is, when all records have coordinates with equal values of δξ, say
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y. We already discussed this scenario in Section 2.3.2 and if the corrector is set to

hco(x) = 1/lco(y,x) Convolutional Gridding will output f g
co(x) = f g(x). Our claim

can be verified by making the necessary substitutions in Equation 2.16.

f g
co(x) =

∑
ξ∈Ξ

[
F (ξ)e−j2πξ·xlco(y,x)

]
/lco(y,x) (2.22)

f g
co(x) =

∑
ξ∈Ξ

[
F (ξ)e−j2πξ·x

]
��

���
���

��:1
lco(y,x)/lco(y,x) = f g(x) (2.23)

The same claim can also be verified through Equation 2.14 by considering f(x) as

periodic on all dimensions, since δξ is equal for all records, implying f(x) = f(x−b)

where b ∈ Z2.

Note that the just stated exception is trivial since we are applying Convolutional

Gridding over an input already regularly sampled with an interval equal to that

of the uv-grid. Therefore, a simple Nearest Neighbour Interpolation Scheme with

phase correction is enough to generate f g(x) accurately.

A more interesting exception is when cco(x) is zero outside the grid boundaries,

which will lead to ag
co(x) = 0, and therefore no aliasing. O’Sullivan[76] shows that

cco(x) = rect1(x), implying Cco(ξ) = sinc1(ξ) is the ideal solution, but realise

that sinc1(ξ) is infinitely wide, making it impossible to implement (O’Sullivan[76],

Jackson et al. [74]). However, we point out that the modification in Convolutional

Gridding presented in Section 2.3.1 makes the use of such a function possible. The

Gridding Step can be implemented as a circular convolution on the uv-grid with

J(ξ), defined as follows:

J(ξ) = [sinc1(ξ) ∗ T (ξ)]R(ξ) (2.24a)
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where

T (ξ) =
∑
b∈Z2

δ(ξ +Nb) (2.24b)

and

R(ξ) =


1 if −N/2 ≤ u, v < N/2

0 otherwise
(2.24c)

2.3.4 The form of the GCF

Let us now discuss the form of the GCF for Convolutional Gridding in Radio

Interferometry.

Greisen [75] argues that Cco(ξ) should be real, symmetric, multiplicative separable

(Jackson et al. [74]) of small finite support (Jackson et al. [74], O’Sullivan[76]) and

stored in a lookup-table. We note that the assumption that Cco(ξ) is multiplicative

separable is fundamental in this thesis as already stated and in general, the functions

that Cco(ξ) separates to are equivalent. Storing in a look-up table leads to Cco(ξ)

getting oversampled, which we discuss in Section 2.3.6.

In this thesis, we define support of a GCF as the maximum amount of neighbour

pixels on the uv-grid a record maps to when convolved with the said GCF. Support

is given per dimension, and in Convolutional Gridding we set the support of the

GCF at S × S, S ∈ N, where N is the set of natural numbers.

The need for Cco(ξ) to have small finite support, independent from the uv-grid size

arises from the desire to have the Gridding Step scale with S2 rather than N2. The

use of the infinite sinc as modified in Section 2.3.3 has to be ruled out since S is

equal to N . Note that we deliver an analysis of time complexity in Section 2.4.6.

There are various studies proposing different GCFs for use in Radio Interferometry.

Ye et al. [77] claims that Elizabeth Waldram was using a Gaussian, the Truncated
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sinc function and Gaussian times sinc function for gridding since 1961. She is

possibly the first to use Convolutional Gridding, provided we do not consider Nearest

Neighbour Interpolation as Convolutional Gridding (refer to Section 2.4.1).

At the time of writing this thesis, the most commonly used function is the Prolate

Spheroidal Function [78] of order one which has a one dimension support of six. It

was singled out by Schwab [79, 80], after assessing its anti-aliasing properties through

a weighted ratio between the concentration of cco(x) in the region of interest versus

all cco(x). The metric is a modified version of a simpler metric proposed by Brouw

[81]. Before the Prolate Spheroidal Function of order one became the main-stream

choice for a GCF, the Prolate Spheroidal Wave function of order zero based on

works by Slepian and Pollak [82] and Landau and Pollak [83] was regarded as the

best function (Schwab [79]). Nevertheless, Kaiser-Bessel functions (Kuo and Keiser

[84]) were also used (and are still used, such as in WSClean), in view that such

functions are a good approximation of the Prolate Spheroidal Wave function of

order zero. Kaiser-Bessel functions are also easier to implement than the Prolate

Spheroidal Wave function (Greisen [75] and Jackson et al. [74]). The Gaussian

function was also previously used by Brouw [56].

Lately Ye et al. [77], in extending the work of Tan [73], discovered and proposed

the least-misfit gridding functions for use as GCFs. Ye et al. [77] derived these

functions by minimising the difference between the DFT, and the corrected output

of Convolutional Gridding, within a defined central region described by a parameter

x0. Ye et al. [77] claims that some of these least-misfit gridding functions suppress

aliasing below arithmetic noise in the previously mentioned central region. However,

we warn the reader that as per Ye et al. [77], to attain such suppression, the

oversampling factor β, needs to be at least 106.
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2.3.5 The form of the corrector

Traditionally the corrector hco(x) is set to 1/cco(x) (Greisen [75]). Such a corrector

choice will amplify og
co(x) to the desired output f g(x) but will inevitably amplify

the undesired ag
co(x) term (Jackson et al. [74]). In the inner region where

ag
co(x)/og

co(x) approaches 0, such a setting is fine, but in the outer region with

elevated values of ag
co(x)/og

co(x), setting hco(x) < 1/cco(x) can be beneficial. Tan

[73] and subsequently Ye et al. [77] argue that based on a least misfit calculation a

better choice of corrector is:

hco(x) = cco(x)∑
b∈Z2

cco(x− b)2 (2.25)

Tan [73] and Ye et al. [77] also clarify that this corrector is approximately equal to

1/cco(x) in the central region.

2.3.6 GCF oversampling

As previously noted, Greisen [75] states that Cco(ξ) should be stored in a

lookup table, as to reduce computation. This practice, which we refer to

as GCF oversampling is until today a standard rule in the implementation of

Convolutional Gridding (for example CASA), since the convolution function is

usually computationally intensive to calculate for each record during the gridding

process (Merry [85]).

The lookup table is filled with GCF values sampled at a rate higher than the

sampling rate of the uv-grid. The ratio between the sampling rate of the GCF

and that of the uv-grid is known as the oversampling factor β ∈ N. The gridder

will consult the lookup table to retrieve the value of Cco(ξ) using Nearest Neighbour
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Interpolation. Though it is possible to have a different oversampling factor for each

dimension, we will assume that β is constant over all dimensions, since it is generally

the case in main stream imagers as there is no reason to treat separate directions

differently. When Cco(ξ) is multiplicatively separable into identical functions, the

lookup table can be populated with the one-dimensional version of the GCF as

argued by Ye et al. [77] and implemented in lwimager and CASA for Interferometric

Gridding with no w-projection.

It is obvious that GCF oversampling affects the output of Convolutional Gridding

and we here investigate how. Greisen [75] argues that we are changing the

convolution function from Cco(ξ) to Cco(ξ, β) as follows (Muscat [21]):

Cco(ξ, β) = [Cco(ξ)IIIβ(ξ)] ∗ rectβ(ξ) (2.26)

cco(x, β) is given by Equation 2.27.

cco(x, β) = {cco(x) ∗ IIIβ(x)} sincβ(x) (2.27)

Substituting in Equation 2.13 the output of the IFFT Step in Convolutional

Gridding using GCF oversampling wg
co(x, β) is:

wg
co(x, β) = [f(x) {cco(x) ∗ IIIβ(x)} sincβ(x) ∗ III1 (x)] (2.28)

and the output of Convolution Gridding using GCF oversampling f g
co(x, β) is:

f g
co(x, β) = [f(x) {cco(x) ∗ IIIβ(x)} sincβ(x) ∗ III1 (x)] III1(x)hco(x, β) (2.29)

In gridding implementations such as in CASA and lwimager the corrector hco(x, β)
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is set as follows when w-projection is enabled:

hco(x, β) = 1
cco(x)sincβ(x) (2.30)

The corrector is clearly not equal to the inverse of cco(x, β) as suggested by Greisen

[75] and Jackson et al. [74] but given that the chosen GCF has good anti-aliasing

properties, it should approximate it well. Obviously Tan’s [73] proposition for the

corrector can also be considered.

2.4 Nearest Neighbour (NN) Interpolation and

the modified gridding algorithms

In this section we derive and describe in detail our proposed modified gridding

algorithms, known as Hybrid Gridding and Pruned NN Interpolation. We first get

to the fundamentals and analyse NN Interpolation over an oversampled grid and its

relation with Convolutional Gridding using an oversampled GCF. Once all necessary

analyses are made, we define in detail the modified gridding algorithms and do more

analyses.

2.4.1 NN Interpolation on an oversampled uv-grid

In Radio Interferometry, Nearest Neighbour Interpolation is a precursor technique

to Convolutional Gridding. Hogg et al. [86] makes a simple implementation of the

technique. Flavours of this technique in Radio Interferometry are known as Cell

Averaging (Thompson and Bracewell [87]) and Cell Summing (Mathur [88]). Pan

and Kak [89] and others also published work on NN Interpolation.
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In NN Interpolation, each record is mapped to the nearest pixel on the uv-grid

with no modification to the Visibility value of the record. It can be modelled as

Convolutional Gridding with the GCF set to a pillbox function as illustrated in

Figure 2.2.

We are interested in NN Interpolation applied over a uv-grid oversampled by a factor

of β. We refer to the oversampled uv-grid as the NN Grid, whose normalised form

has a sampling interval of β−1 on all dimensions and is of size Nβ ×Nβ pixels.

Algorithm 2.2 describes NN Interpolation over an oversampled uv-grid. The

Gridding Step of NN Interpolation is equivalent to that of Convolutional Gridding

with a GCF equal to Cnn(ξ, β) = rectβ(ξ). The reader can refer to Figure 2.4 fro an

illustration of the Gridding Step. If we stick to Greisen’s [75] proposal, the corrector

hnn(x, β) should be set to:

hnn(x, β) = 1
sincβ(x) (2.31)

2.4.2 Nearest Neighbour Interpolation and GCF

oversampling

In Section 2.3.6 we modelled Convolutional Gridding with an oversampled GCF by

changing the form of the GCF. We shall now establish that Convolutional Gridding

with a GCF oversampled by a factor of β can also be modelled by splitting the

Gridding Step into two. In the first step, records of F (ξ) are NN interpolated to a

uv-grid oversampled by a factor of β. In the second step, the resulting oversampled

uv-grid is downsampled through a convolution with the GCF. Details are laid out

in Algorithm 2.3.

54



Chapter 2: Theory and Mathematical Review

 

Input Record

The Pillbox Gridding 

Convolution Function 

(GCF) of support 1×1 

Pixel on the gridPixel on the grid

Updated pixel on 

the grid

Updated pixel on 

the grid

u
0 1 2 3 4 5 6-1 0 1 2 3 4 5 6-1

u
0 1 2 3 4 5 6-1

7

0

1

2

3

4

5

6

-1

0

1

2

3

4

5

6

-1

vv

u
0 1 2 3 4 5 6-1

7

0

1

2

3

4

5

6

-1

v

Figure 2.2: Diagram illustrating NN Interpolation. A record in F (ξ) is mapped to
the nearest pixel. One can model NN Interpolation as Convolutional Gridding with
the GCF set to a pillbox function. Only a small region of the grid is drawn in the
diagram.
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Input: F (ξ)

Parameters: Oversampling factor: β ∈ N

Helper Input: Corrector: hnn(x, β)

Output: f g
nn(x, β)

Assumptions: The Bounded Records Assumption.

Gridding Step:
Each record is mapped to the nearest pixel on the oversampled uv-grid. We

model this as a convolution with Cnn(ξ, β) = rectβ(x) and simultaneous

sampling using IIIβ(ξ).

W g
nn(ξ, β) = [F (ξ) ∗ rectβ(ξ)] IIIβ(ξ) (2.32)

IFFT Step:
An IFFT is performed over W g

nn(ξ, β) to get wg
nn(x, β). Note that the latter

is over an lm-grid β times larger than needed on each dimension, but the

grid interval is still ∆x.

wg
nn(x, β) = [f(x)sincβ(x) ∗ IIIβ(x)] IIIβ(x) (2.33)

Correction Step:
Apply the corrector hnn(x, β) and cut out the un-needed part of wg

nn(x, β)

(represented here with a multiplication with III1(x)).

f g
nn(x, β) = wg

nn(x, β)III1(x)hnn(x, β) (2.34)

Algorithm 2.2: General Algorithm for Nearest Neighbour Interpolation.
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The output of Algorithm 2.3 is f g
co(x, β), which we now prove to be equivalent

to the output of Convolutional Gridding with a GCF oversampled by a factor of

β as modelled in Section 2.3.6. Since the Correction Step is identical in the two

algorithms, it suffices to prove that wg
co(x, β) = wg

co(x, β).

wg
co(x, β) is derived in Equation 2.28 and reproduced here-under:

wg
co(x, β) = [f(x) {cco(x) ∗ IIIβ(x)} sincβ(x) ∗ III1(x)] III1(x) (2.40)

Expressing the two convolutions with the Shah function as summations we get:

wg
co(x, β) =

 ∑
p1∈Z2

f(x− p1)


∑
p2∈Z2

c(x+ p2β − p1)

 sincβ (x− p1)

 III1(x)

(2.41)

Let p3 = p1 − p2β

Implying p1 = p3 + p2β

Substituting in Equation 2.41 we get

wg
co(x, β) = ∑

p3∈Z2

∑
p2∈Z2

f(x− p3 − p2β)c(x+���p2β −���p2β − p3)sincβ (x− p3 − p2β)

 III1(x)

(2.42)

wg
co(x, β) =

 ∑
p3∈Z2

∑
p2∈Z2

f(x− p3 − p2β)c(x− p3)sincβ (x− p3 − p2β)

 III1(x)

(2.43)

Re-grouping
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Input: F (ξ)

Helper Input: GCF: Cco(ξ, β), Corrector: hco(x, β)

Output: f g
co(x, β)

Assumptions: The Bounded Records Assumption

NN Interpolation Step:
Records are Interpolated over the Oversampled Grid. This step is identical

to the Gridding Step of Algorithm 2.2.

W g
nn(ξ, β) = [F (ξ) ∗ rectβ(ξ)] IIIβ(ξ) (2.35)

Convolution Step:
W g

nn(ξ, β) is convolved with Cco(ξ) and the output is re-sampled. The output

of this step is a function overlaid on a grid with no oversampling.

W
g
co(ξ, β) = [W g

nn(ξ, β) ∗ Cco(ξ)] III1(ξ) (2.36)

IFFT Step:
Apply an IFFT to obtain wg

co(x, β)

wg
co(x, β) =

[{
F−1W g

nn(ξ, β)
}
cco(x) ∗ III1(x)

]
III1(x) (2.37)

wg
co(x, β) = [{f(x)sincβ(x) ∗ IIIβ(x)} cco(x) ∗ III1(x)] III1(x) (2.38)

Correction Step:
Apply correction hco(x, β). Output is f g

co(x, β)

f
g
co(x, β) = wg

co(x, β)hco(x, β) (2.39)

Algorithm 2.3: Equivalent Algorithm for Convolutional Gridding with GCF
Oversampling. The output of this algorithm is set to f g

co(x, β), which we prove
in Section 2.4.2 that it is equal to f g

co(x, β).
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wg
co,β =

 ∑
p3∈Z2


∑
p2∈Z2

f(x− p3 − p2β)sincβ (x− p3 − p2)

 c(x− p3)

 III1(x)

(2.44)

wg
co,β =

 ∑
p3∈Z2

{f(x− p3)sincβ (x− p3) ∗ IIIβ(x)} c(x− p3)

 III1(x) (2.45)

wg
co,β = [{f(x)sincβ(x) ∗ IIIβ(x)} cco(x) ∗ III1(x)] III1(x) (2.46)

Comparing Equation 2.38 with Equation 2.46, we find they are equivalent and

therefore wg
co(x, β) = wg

co(x, β), proving our claim.

2.4.3 Contributions of the convolution step

We now review the contributions of the Convolution Step to Algorithm 2.3. We note

that without the Convolution Step, Algorithm 2.3 is identical to Algorithm 2.2. Until

otherwise stated, we will refer to Algorithm 2.3 as Convolutional Gridding and refer

to Algorithm 2.2 as NN Interpolation. The reader must always assume that the

uv-grid output of the NN Interpolation Step in Convolutional Gridding (Algorithm

2.3) and the uv-grid in NN Interpolation (Algorithm 2.2) are both oversampled with

a factor of β. It is also important for the reader to realise that the Gridding Step

in NN Interpolation is equivalent to the NN Interpolation Step of Convolutional

Gridding since Equations 2.32 and 2.35 are equivalent.
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Aliasing

Let us analyse Equations 2.36 and 2.37, reproduced here:

W
g
co(ξ, β) = [W g

nn(ξ, β) ∗ Cco(ξ)] III1(ξ) (2.47)

wg
co(x, β) =

[{
F−1W g

nn(ξ, β)
}
cco(x) ∗ III1(x)

]
III1(x) (2.48)

These two equations are Fourier equivalent to each other and indicate that in

Convolutional Gridding, the Convolution Step generates aliasing over and above

that of the NN Interpolation Step. The main indication comes from the convolution

in Equation 2.48, whereby we point out that F−1W g
nn(ξ, β) is the inverse Fourier

equivalent of the NN Interpolation Step.

Therefore, we conclude that NN Interpolation suffers less from aliasing than

Convolutional Gridding. The output of NN Interpolation is expected to be a better

approximation to f g(x) than the output of Convolutional Gridding.

Memory Footprint

The Convolution Step is reducing the memory footprint. The output of NN

Interpolation is a grid β2 times larger than that of the Convolution Step. Therefore,

the IFFT Step of NN Interpolation needs to handle a larger grid than the same step

in Convolutional Gridding, directly implying more memory use.

60



Chapter 2: Theory and Mathematical Review

Computation Footprint

The Convolution Step is increasing the computation footprint of the Gridding Step.

As a matter of fact, the NN Interpolation Step requires only one complex addition

to a complex-valued pixel while Convolution Gridding requires S2 multiplications of

real GCF values with a complex-valued record and a further S2 complex additions

to lay the convolution on the uv-grid. On the other hand, the Convolution Step is

reducing the IFFT Step computation footprint since IFFT needs to handle smaller

grids.

Conclusion

It is clear that Convolution Gridding, when compared to NN Interpolation, is trading

for less intensive IFFTs and memory footprint at the expense of a higher level of

aliasing and a more computationally taxing gridding. We extend the statement by

stating that the Convolution Step is pruning the IFFT, but carefully clarify that a

prima facie while pruning, the Convolution Step is injecting aliasing.

2.4.4 The modified gridding algorithms

Based on the above deliberation, we define the new proposed modified gridding

algorithms named Hybrid Gridding and Pruned NN Interpolation. These modified

gridding algorithms are based on what we proved about Convolutional Gridding,

that is, the Gridding Step is equivalent to NN Interpolation with simultaneous

downsampling of the uv-grid using a convolution. In the modified gridding

algorithms, we modify Convolutional Gridding by moving downsampling of the

uv-grid from the Gridding Step to what we call the Pruning Step. The Pruning

Step is executed after all records are gridded and therefore is part of finalisation. In
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Hybrid Gridding, downsampling by convolution is moved to the Pruning Step in one

dimension. In contrast, in Pruned NN Interpolation, downsampling by convolution

is moved to the Pruning Step in all dimensions.

We give a bit of spice to the Pruning Step, whereby we propose the use of the

least-misfit gridding functions in a bid to have the Pruning Step virtually alias-free

by having distortions caused by aliasing below arithmetic noise. In order to reach

the desired effect, the uv-grid is downsampled by an integer factor α divisor of β.

We are very cautious in the use of the term pruning in our algorithms. The definition

given by Markel [90] on FFT Pruning is about eliminating operations where zeros

are involved or eliminating other operations that calculate output pixels that are

not required. Using a convolution to downsample changes operations rather than

eliminating them and might not qualify as pruning, especially if one considers the

fact that downsampling using convolution injects aliasing. However, since our

proposal is intended to be virtually alias-free, we feel that we can categorise our

downsampling idea as Convolution-Based FFT Pruning, which we discuss in detail

in Section 2.5.

2.4.5 Details on the studied gridding algorithms

Let us now get to the details on how we implemented Convolutional Gridding,

Hybrid Gridding and Pruned NN Interpolation, such that we can experimentally

study their Performance and aliasing behaviour.

We shall collectively refer to Convolutional Gridding, Hybrid Gridding and Pruned

NN Interpolation in the form studied in this thesis as the studied algorithms.

Furthermore, we will refer to their implementation over the P100 as the studied

implementations. We also define the terms Gridder and Pruner to mean an

implementation of the Gridding Step and Pruning Step, respectively.
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Algorithms 2.4, 2.5 and 2.6 define the studied algorithms as implemented, and

experimented upon in this thesis. Further details follow in the next paragraphs.

In all the studied algorithms, the Bounded Record Assumption still applies to the

extent that a linear or a circular convolution in the Pruning Step will output the

same result. We assume β to be an even positive number greater than 2, such that

the Pruning Step can downsample the grid to an oversampling factor of two, which

implies a downsampling factor of α = β/2. Note that it is still acceptable to use

β = 1 or β = 2 for the studied algorithms, but the Pruning Step becomes useless

and should be removed. For β = 1, there is no sense in using any of the algorithms,

and NN Interpolation with no grid oversampling is enough.

We now clarify about the form of the GCF used in the Gridding Step of Hybrid

Gridding (Algorithm 2.5) denoted by Chy(ξ, β), and set to Cco(u, β)rectβ(v). In all

the studied algorithms, the Gridding Step is always modelled as a two-dimensional

convolution. Therefore the form of Chy(ξ, β) is set in such a way that it causes

a convolution with Cco(u, β) in the first dimension and a Nearest Neighbour

Interpolation in the second dimension modelled as a convolution with rectβ(v). We

use the GCF of Convolutional Gridding as to make it clear that we will use the

same one-dimensional form of the GCF, in the Gridding Step of the Hybrid and

Convolutional Gridding. Finally, we state that the support of Chy(ξ, β) is equal to

S × 1, since the function is in two dimensions.

Some clarification on the Pruning Step and the GCF used are now in order. We

denote the GCF used in pruning with Z(ξ) or Z(v). One dimensional support is

denoted with Sz. There is no need to consider the fact that the GCF will be sampled

and put in a lookup-table since the input to the Pruning Step is a regular grid. We

note that Z(ξ) and Z(u) have the form used if we were going to downsample the grid

to an oversampling factor of 1. We want to downsample the grid to an oversampling

factor of 2, and therefore we need to convolve with a shortened convolution function

Z(2ξ) or Z(2v).

63



Chapter 2: Theory and Mathematical Review

Finally, Equations 2.49, 2.50 and 2.51 give our choice for the algorithms’ corrector

which are according to the suggestion given by Greisen [75] and Jackson et al. [74].

hco(x, β) = 1
[cco(x) ∗ IIIβ(x)] sincβ(x) (2.49)

hpn(x, β) = 1[
z(0.5x) ∗ IIIβ/2(x)

]
sincβ(x)

(2.50)

hhy(x, β) = hco(l, β)hpr(m,β) (2.51)

2.4.6 Comparison of aliasing, and computational

complexity

We finalise our discussion and analyses on the studied algorithms by theoretically

comparing their level of aliasing, time complexity and memory consumption.

Aliasing

Referring to what we already discussed in Section 2.4.3, we expect Pruned NN

Interpolation to be the least to suffer from aliasing effects. Hybrid Gridding should

suffer from a higher level of aliasing while Convolutional Gridding should suffer the

most.
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Input: Records in F (ξ)

Parameters: Oversampling factor: β = 2(n+ 1) n ∈ N

Helper Input: Oversampled GCF: Cco(ξ, β), Corrector: hco(x, β)

Output: f g
co(x, β)

Assumptions: As per Section 2.4.5

Gridding Step:
Each non-zero sample of F (ξ) is convolved with the oversampled Cco(ξ, β)

and simultaneously sampled on the uv-grid:

W g
co(ξ, β) = [F (ξ) ∗ Cco(ξ, β)] III1 (ξ) (2.52)

IFFT Step:
An IFFT is performed over W g

co(ξ, β) to get wg
co(x, β):

wg
co(x, β) = [f(x) {cco(x) ∗ IIIβ(x)} sincβ(x) ∗ III1 (x)] III1(x) (2.53)

Correction Step:
The corrector hco(x, β) is applied to obtain the output f g

co(x, β)

f g
co(x, β) = [f(x) {cco(x) ∗ IIIβ(x)} sincβ(x) ∗ III1 (x)] III1(x)hco(x, β)

(2.54)

Algorithm 2.4: The studied Convolutional Gridding Algorithm using an
oversampled GCF.
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Input: Records in F (ξ)
Parameters: Oversampling Factor: β = 2(n+ 1) n ∈ N
Helper Input: Oversampled GCF: Chy(ξ, β) = Cco(u, β)rectβ(v), Pruning

GCF: δ(u)Z(v), Corrector: hhy(x, β)
Output: f g

hy(x, β)
Assumptions: As per Section 2.4.5

Gridding Step:
Each record is mapped to the nearest pixel on the oversampled uv-grid with
oversampling factor β.

W g
hy(ξ, β) = [F (ξ) ∗ Chy(ξ, β)] III1(u)IIIβ(v) (2.55)

Pruning Step:
W g

hy(ξ, β) is sampled down on the second dimension by a factor of β/2
through a convolution.

V g
hy(ξ, β) =

[
W g

hy(ξ, β) ∗ {δ(u)Z(2v)}
]
III1(u)III2(v) (2.56)

IFFT Step:
An IFFT is performed over V g

hy(ξ, β) to get vg
hy(x, β).

vg
hy(x, β) =

[{
wg

hy(x, β)z(0.5l)
}
∗ {III1(l)III2(m)}

]
III1(l)III2(m) (2.57a)

wg
hy(x, β) = [f(x)chy(x, β)] ∗ {III1(l)IIIβ(m)} III1(l)IIIβ(m) (2.57b)

chy(x, β) = [{cco(l)δ(m)} ∗ {IIIβ(l)δ(m)}] sincβ(x) (2.57c)

Correction Step:
Apply the corrector hhy(x, β) and cut out the un-needed part of vg

hy(x, β)
(represented here with a multiplication with III1(x)).

f g
hy(x, β) = vg

hy(x, β)hhy(x, β)III1(x) (2.58)

Algorithm 2.5: The studied Hybrid Gridding Algorithm.
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Input: Records in F (ξ)

Parameters: Oversampling Factor: β = 2(n+ 1) n ∈ N

Helper Input: Pruning GCF: Z(ξ), Corrector: hnn(x, β)

Output: f g
pn(x, β)

Assumptions: As per Section 2.4.5

Gridding Step:
Each record is mapped to the nearest pixel on the oversampled uv-grid with

oversampling factor β.

W g
pn(ξ, β) = [F (ξ) ∗ rectβ(ξ)] IIIβ(ξ) (2.59)

Pruning Step:
W g

pn(ξ, β) is sampled down by a factor of β/2 through a convolution.

V g
pn(ξ, β) =

[
W g

pn(ξ, β) ∗ Z(2ξ)
]
III2(ξ) (2.60)

IFFT Step:
An IFFT is performed over V g

pn(ξ, β) to get vg
pn(x, β).

vg
pn(x, β) =

[{
wg

pn(x, β)z(0.5x)
}
∗ III2(x)

]
III2(x) (2.61a)

wg
pn(ξ, β) = {[f(x)sincβ(x)] ∗ IIIβ(x)} IIIβ(x) (2.61b)

Correction Step:
Apply the corrector hpn(x, β) and cut out the un-needed part of vg

pn(x, β)

(represented here with a multiplication with III1(x)).

f g
pn(x, β) =

{[
wg

pn(ξ, β)z(0.5x)
]
∗ III2(x)

}
hpn(x, β)III1(x) (2.62)

Algorithm 2.6: The studied Pruned NN Interpolation Algorithm.
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Figure 2.3: Diagram illustrating the Gridding Step (Equation 2.55) of Hybrid
Gridding. A record in F (ξ) is being convolved with Chy(ξ) of support 6 × 1 and
sampled over the grid. The grid is oversampled on one of its dimensions. Only a small
region of the grid is drawn in the diagram.
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oversampled grid, modelled as a convolution with rectβ(ξ) and a subsequent sampling
to the grid. Only a small region of the grid is drawn in the diagram.
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Step Convolutional
Gridding

Hybrid
Gridding

Pruned NN
Interpolation

Gridding O(PS2) O(PS) O(P )
Pruning O(N2βSz) O(N2β2Sz

2)
IFFT O(N2logN2) O(2N2log[2N2]) O(4N2log[4N2])
Correction O(N2) O(N2) O(N2)

Table 2.2: Time complexity of the studied algorithms’ steps using the Big-O
notation.

Time Complexity

Table 2.2 gives the time complexity in Big-O notation for each step in the studied

algorithms. We already implied in Section 2.4.3 that the removal of convolution

in the Gridding Step reduces the computation footprint of the said step. Such a

statement is well reflected with the time complexities given for the Gridding Steps

of the studied algorithms.

Hybrid Gridding and Pruned NN Interpolation feature a Pruning Step which

contributes to more computation for the stated algorithms, but at the same time

reduces the time complexity of the IFFT Step. If the Pruning Step is not applied

in the said algorithms, then the IFFT Step time complexity of Hybrid Gridding

would increase to O(N2βlog[N2β]) and of Pruned NN Interpolation would increase

to O(N2β2log[N2β2]). We note that even with the Pruning Step enabled time

complexities of the IFFT Step for Hybrid Gridding and Pruned NN Interpolation

are still higher than that of Convolutional Gridding, because the Pruning Step

downsamples to an oversampling factor of two instead of one.

We note that the time complexity of the Gridding Steps of all algorithms is

dependent on P (the number of input records) and independent from N and β.

In contrast, the Pruning Step and IFFT step are dependent on N and β but

independent of P , which in conjunction with our other observations leads us to

make the following claims which we try to support via experimentation in Section
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8.2.1:

1. Convolutional Gridding is favourable for a small set of records (low value of

P ).

2. Hybrid Gridding is favourable for a larger set of records (increased value of P )

that can overcome the inclusion of the Pruning Step and the extra time taken

by the IFFT step to transform a grid double in size to that of Convolutional

Gridding.

3. Pruned NN Interpolation should only be favourable for a much larger set of

records.

Memory Consumption

It is easy to verify that the output uv-grid of the studied algorithms’ Gridding Step

increases by a factor of β from one algorithm to another in the order of Convolutional

Gridding, Hybrid Gridding and finally Pruned NN Interpolation. The Pruning Step

will then reduce such grids such that the IFFT is presented with grids that only

increase for every algorithm by a factor of two in the same order previously given.

2.5 Convolution based FFT Pruning

In Section 2.4.4, we discussed the possibility of downsampling an oversampled grid

using convolution as a means to prune an IFFT of the said grid. Downsampling a

grid using convolution is a well-known technique, and one can view this idea as a

re-application of Convolutional Gridding using as input the regularly oversampled

grid. Such a technique is inherently susceptible to aliasing. However, with the

use of the least-misfit gridding functions (Ye et al. [77]), we hope that aliasing
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gets suppressed below arithmetic noise in order to re-propose downsampling using

convolution as Convolution-Based FFT Pruning.

In this section, we discuss such Convolution-based FFT Pruning, whereby in the

first sub-section, we discuss FFT Pruning and give a review of published work

on FFT Pruning. In the subsequent sub-section, we lay out a general algorithm

for Convolution-Based Pruning in one-dimension, which in Chapter 7 we adapt,

implement and test for the use in Hybrid Gridding and Pruned NN Interpolation.

We then finalise our discussion in the last two sub-sections, by describing aliasing

and time complexity of the algorithm.

We clarify that all the work we are proposing applies for FFT and IFFT pruning.

Convolutional Gridding can also be applied inversely. We tend to speak about

pruning an IFFT because it is of primary interest in this thesis, but we call it FFT

Pruning as it is the general way such algorithms are called irrespective if they are

applied for FFT or IFFT.

2.5.1 Definition and review of FFT Pruning

An inherent property of FFT algorithms such as the original radix-2 (Cooley and

Tukey [71]), higher radix (Bergland [91]), mixed-radix (Singleton [92]), prime factor

(Kolba and Parks [93]), Winograd [94], split-radix (Sorensen et al. [95]) and others

is that the output has the same number of pixels as the input. While this is a

reasonable assumption for most applications using FFTs, some applications can

benefit from better computational efficiency resulting from ignoring zero-valued

pixels in the input or output pixels that the application does not need. FFT Pruning

is a group of algorithms that try to increase the computational efficiency of an FFT

by eliminating operations that do not give any contribution to the final required

result. Operations on zeros, caused by the input containing zeros do not contribute
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to the final results and therefore can be eliminated. Operations that contribute solely

to output pixels that are not required by an application can also be eliminated.

There are many different published algorithms for FFT Pruning, and we here

mention a few. Merkel [96] proposed the first FFT Pruning Algorithm whereby

zero-valued pixels in the input grid are ignored by pruning using a Decimation in

Frequency (DIF) method. Subsequently, Skinner [97] proposed a pruned Decimation

in Time (DIT) FFT algorithm to operations contributing to non-required output.

Sreenivas and Rao [98, 99] enhanced Skinner’s algorithm to handle zero-valued

input and the non-required output while Nagi [100] proposed an alternative DIT

based FFT pruning algorithm using frequency shift. All the above mentioned FFT

Pruning algorithms work only for when the non-zero input or required output is in

a continuous range within their respective grids, and the range has a size equal to

2m m ∈ N pixels. Alves et al. [101] proposed a general FFT pruning algorithm that

overcomes this limitation.

Sorensen and Burrus [102] proposed another pruning method known as

Transform Decomposition since it decomposes the FFT into several smaller FFTs.

Medina-Melendrez et al. [103] further enhanced it to handle ignorable input. Yuan et

al. [104] discusses pruning for split-radix FFT, and lately, Qin et al. [105] proposed

a pruned algorithm targeted for use in 5G mobile technology.

2.5.2 The Algorithm

We describe a general form of one-dimensional Convolution-Based FFT Pruning in

Algorithm 2.7. It prunes by ignoring an outer non-required region of the output

since the input grid is oversampled. We remind the reader that we are assuming

that the origin of any grid is at the centre. In our description, we are still assuming

the normalisation set in Section 2.1.2 but applied for one-dimension.
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Input: G(u, β)

Parameters: ζ = β/α where ζ, α, β ∈ N

Helper Input: Pruning GCF: Z(u), Corrector: hpr(l, β, ζ)

Output: gg
pr(l, β, ζ)

Downsampling Step:
Apply a circular convolution between G(u, β) and Z(ζu) and down-sample

instantaneously to an oversampling grid of oversampling factor of ζ. The

output of this step is W g
pr(u, ζ)

W g
pr(u, β, ζ) =

[
G(u, β) ∗ Z(ζu) ∗ III(Nζ)−1(u)

]
IIIζ(u) (2.63)

The extra convolution with III(Nζ)−1(u) in Equation 2.63 is to cater for

circular convolution.
IFFT Step:

Apply an IFFT over W g
pr(u, β, ζ) to get wg

pr(l, β, ζ):

wg
pr(l, β, ζ) =

∑
p2∈N

g(l − p2ζ, β)
{
z([l − p2ζ]ζ−1) ∗ IIIβ(l)

} IIIζ(l) (2.64)

where g(l, β) = F−1G(u, β) and the derivation of wg
pr(l, ζ) is given in

Section 2.5.2.
Correction Step:

Apply corrector hpr(l) and cut out the un-needed outer region to obtain

gg
pr(l, β, ζ) which approximates gg(l, β) = g(l, β)III1(l):

gg
pr(l, β, ζ) =

∑
p2∈N

g(l − p2ζ)
{
z([l − p2ζ]ζ−1) ∗ IIIβ(l)

}hpr(l, β)III1(l)

(2.65)

Algorithm 2.7: A General Algorithm for Convolution-based FFT Pruning in
one dimension.
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The input to Algorithm 2.7 is G(u, β), a one-dimensional function oversampled on

a u-grid by a factor of β. Its size is Nβ pixels, and by definition, it obeys the

relationship G(u, β) = G(u, β)IIIβ(u). The Inverse Fourier Transform is g(l, β) and

due to sampling in G(u, β) the relationship g(l, β) = g(l − pβ, β) ∀p ∈ Z applies.

Our interest is to try to calculate gg(l, β) = g(l, β)III1(l).

G(u, β) is down-sampled by a factor of α ∈ N to an oversampling factor of ζ ∈ N

using a convolution with a GCF Z(u). Z(u) is of the form needed if ζ = 1 and

therefore in Equation 2.63 Z(u) is contracted according to the value of ζ.

A good choice of ζ ∈ N depends on the aliasing behaviour of the GCF and in general

ζ must be set to a value greater or equal to the inverse of the central interval length

of z(l) where the GCF is expected to suppress aliasing below arithmetic noise. For

example, in the Pruning Step of the studied algorithms, we set ζ = 2 since Ye et

al. [77] claimed that the least-misfit gridding functions we intend to use, suppress

aliasing below arithmetic noise in the half central region.

The output of Algorithm 2.7 is gg
pr(l, β, ζ) and lies on an l-grid of size N .

Finally, in Equation 2.64 of Algorithm 2.7 we left out the derivation for wg
pr(l, β, ζ)

which we give hereunder.

On applying the IFFT to W g
pr(u, β, ζ) we get wg

pr(l, β, ζ)

wg
pr(l, β, ζ) =

[
F−1W g

pr(u, β, ζ)
]
IIIζ(l) (2.66)

Now substituting Equation 2.63 in Equation 2.66 and working out the Inverse Fourier

Transform, we get:

wg
pr(l, β, ζ) =

{[
g(l, β)z(ζ−1l)III(Nζ)−1(l)

]
∗ IIIζ(l)

}
IIIζ(l) (2.67)
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and expressing convolution with IIIζ(l) as a summation, we get:

wg
pr(l, β, ζ) =

∑
p1∈Z

g(l − p1ζ, β)z([l − p1ζ]ζ−1)III(Nζ)−1(l − p1ζ)
 IIIζ(l) (2.68)

One notes that III(Nζ)−1(l − p1ζ)IIIζ(l) = IIIζ(l) and therefore:

wg
pr(l, β, ζ) =

∑
p1∈Z

g(l − p1ζ)z([l − p1ζ]ζ−1)
 IIIζ(l) (2.69)

We also note that since G(u, β) = G(u, β)IIIβ(u) and g(l, β) = g(l + βp, β) ∀p ∈ Z.

wg
pr(l, β, ζ) =

∑
p2∈Z

∑
p1∈Z

g(l − p1ζ)z
(
[l − p2β − p1ζ] ζ−1

)
 IIIζ(l) (2.70)

wg
pr(l, β, ζ) =

∑
p1∈Z

g(l − p1ζ)
∑
p2∈Z

z
(
[l − p2β − p1ζ] ζ−1

)
 IIIζ(l) (2.71)

2.5.3 Aliasing and the corrector

With no reason for doubt, the effects of aliasing discussed in previous sections still

apply for the proposed Convolution-Based FFT Pruning Algorithm 2.7. However,

since we know that the input lies on a regularly sampled grid, extra considerations

are in order.

Let us again analyse the effects of aliasing like we did in Section 2.3.3 and rewrite

Equation 2.65 into the following set of equations:

gg
pr(l, β, ζ) = og

pr(l, β, ζ) + ag
pr(l, β, ζ) (2.72a)

og
pr(l, β, ζ) = g(l, β)

{
z(lζ−1) ∗ IIIβ(l)

}
hpr(l, β, ζ) (2.72b)
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Step Time complexity
Downsampling . O(NβSz)
IFFT O(Nζlog[Nζ])
Correction O(N)
Direct IFFT of Input O(Nαζlog[Nαζ]) = O(Nβlog[Nβ])

Table 2.3: Time complexity of the steps in Convolution-Based FFT Pruning
(Algorithm 2.7) using the Big-O notation. The last row gives the time complexity
for an IFFT without pruning. Note that β = αζ.

ag
pr(l, β, ζ) =

 ∑
p1∈Z,p1 6=0

g(l − p1ζ)
{
z([l − p1ζ]ζ−1) ∗ IIIβ(l)

}hpr(l, β, ζ) (2.72c)

On comparing the set of Equations 2.72 with the set of Equations 2.21, it is

clear that ag
pr(l, β, ζ) and og

pr(l, β, ζ) are different from the respective ag
co(l) and og

co.

g(l, β) is periodic and some summation terms in Equation 2.72b embedded in the

convolution with IIIβ(l) that are considered as part of irreversible aliasing distortion

in Convolutional Gridding are now reversible, for any GCF choice.

We note that if the GCF has the required anti-aliasing properties that suppress

aliasing below arithmetic noise, then {z([l − p1ζ]ζ−1) ∗ IIIβ(l)} should approach 0

∀p1 ∈ Z, p1 6= 0 such that ag
pr(l, β, ζ) ≈ 0.

As a corrector choice, we want to have gg
pr(l, β, ζ) = og

pr(l, β, ζ), and therefore we

choose:

hpr(l, β, ζ) = 1
z (lζ−1) ∗ IIIβ(l) (2.73)
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2.5.4 Time complexity

Algorithm 2.7 is geared towards accelerating the IFFT, and therefore it is worth

to make a comparison of time complexity between the said algorithm and a direct

IFFT without any pruning. All the time complexities are stated in Table 2.3.

For the trivial case of ζ = β, the IFFT Step has equal time complexity with the

direct FFT, and therefore since there is still the Downsampling and the Correction

Steps to add, Algorithm 2.7 should be slower. Increasing β or decreasing ζ causes

the IFFT step to decrease in time complexity when compared with the direct IFFT.

Therefore, there is an increase in the possibility that the computation required by

the Downsampling and Correction Steps is less than what is saved in the IFFT and

therefore Algorithm 2.7 delivers more Performance than a direct IFFT. Hence we

conclude that our Convolution-Based FFT Pruning is mostly suited for a high value

of β with a low value of ζ.

2.6 Conclusion

This chapter gave a theoretical and mathematical review of Convolutional

Gridding building towards reviewing the new modified gridding algorithms, named

Hybrid Gridding and Pruned NN Interpolation. At the end of this chapter

Convolution-Based FFT Pruning is reviewed.

78



Chapter

Methodology

Chapter

3
In this chapter and those that follow, we shall be discussing our novel

implementations of Convolutional Gridding (Algorithm 2.4), Hybrid Gridding

(Algorithm 2.5) and Pruned NN Interpolation (Algorithm 2.6) collectively referred

to as the studied algorithms. This chapter is meant to serve as an introduction to

all the work we are to present, define terminology and introduce various concepts

that are used in subsequent chapters.

The layout of this chapter is as follows:

In Section 3.1, we discuss various topics related to CUDA and programming on the

P100. The main goal of the section is to define various terms and review useful

concepts in GPU programming that we will refer to in subsequent chapters.

In Section 3.2, we give notes on the implementation of the studied algorithms that

are common in all three algorithms. The section includes how the Correction Step

and the IFFT Step were implemented. We will not be discussing the implementation

of these two steps elsewhere.

In Section 3.3, we give details on the Brute Force Search, a manual process we used

to tune our Gridders and Pruners.

In Section 3.4, we describe our Experimental Setup, including details of how we

conducted experiments and presented results in plots.

We conclude with Section 3.5, whereby we list and define what we call Performance

Metrics, through which we will measure and analyse Performance.
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3.1 Notes on CUDA and GPUs

CUDA (Nickolls et al. [106]) is an acronym standing for Compute Unified Device

Architecture and is a platform developed by NVIDIA. It provides a toolkit and

programming interface for NVIDIA GPUs (Graphics Processing Units). We used

CUDA version 10.1 to develop all the Gridders and Pruners to execute on the P100.

Originally, GPUs were specialised processors capable of accelerating graphics

rendering (Das and Deka [107]). They evolved, and today GPUs are also used as

general processors to achieve a high level of Performance. They are parallel devices

capable of impressive computational power through their ability to execute thousand

of threads concurrently. The P100 [2] is a GPU specialised for high-Performance

computing, based on the Pascal microarchitecture developed by NVIDIA and

equipped with one GP100 chip and HBM2s (High Bandwidth Memory 2) [108].

As of the writing of this thesis, the P100 is not the latest generation GPU. NVIDIA

released GPUs based on the Volta and Turing microarchitectures that succeed the

Pascal microarchitecture. More information on the P100, including specifications,

is given while progressing through this chapter, mainly in Table 3.1.

Most of the information given in this section is based on documentation provided by

NVIDIA on CUDA, mainly the Programming Guide [109], the Best Practices Guide

[110], the Pascal Tuning Guide [111], the Profiler User’s Guide [112] and the CUDA

Runtime API Reference Manual [113]. A simple diagram depicting the various GPU

components that will be mentioned through out this section is available in Figure

3.1.

Our main goal in this section is to introduce concepts in CUDA and discuss some

related terms that are used in this thesis. The information is given in various

sub-sections, with each sub-section discussing a particular topic.
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Figure 3.1: Diagram depicting the various GPU components that are mention
in Section 3.1. Note that different GPUs have a different number of components.
Therefore, the number of the same components appearing in this diagram is not equal
to the number of the same components a given GPU has, including the P100.
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3.1.1 The CUDA grid layout, warps and SMs

The programming model of CUDA defines threads that are organised in blocks and

a grid. When we refer to such threads, blocks and grid, we shall use the terms

CUDA thread, CUDA block and CUDA grid. If the term CUDA is dropped, then

we are referring to something else.

A complete piece of execution code that is intended for consumption by a CUDA

GPU is called a CUDA kernel. The entity within the GPU that executes a CUDA

kernel is known as a Streaming Multiprocessor (SM). The P100 has 56 of such SMs.

A CUDA kernel is executed with a configurable CUDA grid layout. The layout

consists of several CUDA blocks made of a configurable number of CUDA threads.

From a hardware perspective, CUDA threads in a CUDA block are organised in

32 thread-wide warps. SMs schedule warps not CUDA threads, and by design, the

hardware concurrently executes the same instruction for all the CUDA threads in a

warp. The CUDA block is therefore made up of a configurable number of warps that

gets dispatched to one SM, whereby dedicated resources such as shared memory get

assigned, and the block is launched in full for execution. All warps in a CUDA block

will reside on the SM until the CUDA block execution finishes.

3.1.2 Registers

Each CUDA thread avails itself of a set of dedicated registers. These are on the SM,

and the amount allocated per CUDA thread depends on the needs of the CUDA

kernel set out during code compilation. The compiler provides a way to control

the number of registers assigned per-thread by controlling the minimum amount of

concurrent CUDA blocks executing on each SM, for which the compiler will have to

control the number of registers allocated per CUDA thread to comply.

82



Chapter 3: Methodology

3.1.3 Latency and Instruction Level Parallelism

A given instruction needs some time to be fully executed, and such time is loosely

referred to as latency. The SM is made up of many modules able to execute different

type of instructions in parallel. As some module in the SM is executing an instruction

for a given warp, the SM is capable of scheduling and executing further instructions

of the same warp. Such scheduling and execution are possible if resources to execute

the instruction are available, and all dependencies to execute the new instructions

are fulfilled. Dependencies include results from previous instructions which might

not yet be available due to latency. The warp is said to be stalled if for any reason

a new instruction cannot be executed.

The SM mitigates the effects of warp stalls by having a pool of warps from which

it can try to schedule the execution of a new instruction. However, for sufficient

mitigation, there must be a certain amount of Instruction Level Parallelism.

Instruction Level Parallelism is a measure of how many instructions can be executed

simultaneously for a CUDA thread, possibly because such instructions do not depend

on the results of each other. Increasing Instruction Level Parallelism helps in

reducing stalls related to latency.

3.1.4 Memory

The CUDA programming model defines various memory spaces that the CUDA

kernel can avail of and here we are interested in three of these spaces which are

shared memory, global memory and local memory.

Before discussing the three memory spaces, we clarify two terms used in the context

of memory, which are the request and the transaction. A request is an instruction

to access some memory module, while a transaction is the movement of a unit of
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memory data generally from one memory module to an other.

Shared memory is a dedicated on-chip per SM memory resource. It is dedicated

to a given CUDA block throughout the lifetime of the CUDA block. Since shared

memory is on-chip, it is quite fast to access and much faster than device memory.

Global memory is a memory shared by all the CUDA grid and persists across CUDA

kernel launches. In the P100, global memory resides in the device memory which

is outside the GPU chip and is exclusively accessed by a two-layered cache system

composed of the Unified Cache and the L2 Cache.

The Unified Cache resides on the SM while the L2 Cache is shared with all SMs.

Memory requested to global memory are always transacted via the Unified Cache.

If the Unified Cache cannot deliver a transaction (a MISS) it will forward the

transaction to the L2 Cache which in turn forwards it to device memory if there is

also a MISS on the L2 Cache.

We do note that in our implementations, we instruct the P100 to load input record

data without caching in the Unified Cache, as to reserve the Unified Cache store

for the GCF. In such circumstances, the requests will still pass through the Unified

Cache where temporary storage is allocated for the use of coalescing (Pascal Tuning

Guide [111]).

Local memory is local to a CUDA thread and used only when the compiler could not

find a way to use registers. For example, registers cannot be referenced dynamically,

and when arrays are used in a way that the compiler cannot determine a constant

way to access them, then the compiler is forced to use local memory. Registry

spilling is also another reason why the compiler is forced to use local memory. It

happens when there are not enough registers available for a CUDA thread due to

limits set either by the hardware, or set programmatically such as when setting a

minimum for the CUDA blocks per SM, as discussed previously.
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In the P100, local memory is cached on the Unified Cache and uses the same

structures used for global memory. In general, the so-called optimal solutions (refer

to Section 3.3) for the Gridders and Pruners do not make use of local memory.

3.1.5 Shared memory access

There are some best practice guidelines to adhere to, for efficient access of a warp to

shared memory. Shared memory in the P100 is composed of thirty-two four-bytes

wide banks. Best practice mandates that the access patterns to shared memory

should be such that bank conflicts are avoided. A bank conflict happens when two

or more CUDA threads in a warp try to access distinct data stored on the same

bank. When access to shared memory causes a bank conflict, the GPU is forced to

serialise such access.

3.1.6 Global memory access and the optimal access pattern

In the P100, the two caches and device memory do transactions only with

thirty-two-byte memory aligned words. The access pattern of the request dictates

the Performance of a warp request to access global memory. We define the optimal

access pattern as that access pattern of the request that leads to best Performance.

There are two important requirements that an access pattern has to abide by in order

to be optimal, which we call the coalescing requirement and the vicinity requirement.

We now define the stated requirements:

1. Coalescing requirement: The Best Practices Guide [110] states that for

the P100, the most efficiently executed requests are those which access whole

thirty-two-byte memory aligned words where neighbour threads request data

from the word in a sequential manner. With such a request, the P100 will

85



Chapter 3: Methodology

coalesce (merge) the request over the warp in thirty-two-byte transactions

containing only needed data.

2. Vicinity requirement: Through experimentation, we found out there is a

degradation in Performance if the words requested by the warp are far apart

in memory. Therefore, an optimal access pattern has to generate transactions

with words in the vicinity of each other but not necessarily adjacent to each

other.

We will state that an access pattern is degraded if that access pattern does not

adhere to any of the two requirements.

A degradation in access pattern is very likely to penalise Performance by injecting

latency in the CUDA kernel execution. This fact is crucial in what we call grid

committing since in-general such committing generates severely degraded optimal

patterns that visibly and unequivocally push down Performance. Grid committing

is that action in a Gridder or Pruner that updates the output grid. Such updates are

executed using atomic reductions for which the optimal access pattern still applies.

3.1.7 Utilisation and boundedness

As mentioned before, the GPU is composed of various modules that execute in

parallel instructions meant for the different modules. For example, in a single SM,

the GPU is capable of executing a memory-related instruction on the Unified Cache,

and at the same time execute an integer arithmetic instruction on that module that

handles integer arithmetic instructions. We find it useful to measure the utilisation

of some of these modules, since it indicates whether GPU resources are being well

used. We say that a module or set of modules bound the CUDA kernel execution if

the utilisation of such module or set of modules is so high that is inhibiting further

increase in Performance.
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Let us describe further boundedness. In our analyses, we will measure memory

bandwidth utilisation of the shared memory, Unified Cache, L2 Cache and device

memory. We will also present utilisation measures of compute. In general, a CUDA

kernel execution is considered memory-bound if the memory bandwidth of any

memory module is utilised over 60% of the peak. If compute utilisation is above 60%

then we consider the execution CUDA kernel as compute-bound. It is possible to

have CUDA kernel executions that are neither compute-bound nor memory-bound,

and in such a case the CUDA kernel execution is probably riddled with latency.

We do have to point out that the Performance Metrics (refer to Section 3.5) related

to memory utilisation are integers that scale from 0 to 10. Therefore, we consider

any memory utilisation equal to or above the value of 6 as memory-bound.

3.1.8 Occupancy

In Section 3.1.3, we briefly mentioned that the SM manages a pool of warps which

are being actively executed. The maximum size of this pool depends on an imposed

hardware limit and resources requested by the CUDA kernel. In the P100, the

hardware limit is at 64 warps per SM (See Table 15 of the Programming Guide

[109]), but the maximum pool size will be reduced if the SM does not have enough

shared memory or registers to handle the needs for all the warps in the pool.

Theoretical Occupancy, which in this thesis, shall be referred to as just Occupancy,

is a measure of the maximum size of the pool of active warps as imposed by the

CUDA kernel against the hardware limit. Occupancy with a value of 100% implies

that the SM has enough registers and shared memory to have the warp pool size

reach the maximum set by hardware.

Occupancy is not directly related to Performance, though a too low Occupancy might

lead to latency issues. Volkov [114] showed that, in CUDA kernels with a high-level
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of global memory access, lowering Occupancy is beneficial, and in discussing our

implementations in the next chapters, we shall refer to this matter various times.

3.1.9 Profiling

The CUDA toolkit provides two tools that we used extensively to profile our

implementations in order to do in-depth analyses.

The first tool is nvprof [112], which is a text-based profiler. We used it to collect

data needed for Performance Metrics.

The second tool is the NVIDIA Visual Profiler [112], which we used to visualise

some of the data generated by nvprof to help us report better some of the findings.

NVIDIA is deprecating the two tools, but they served very well to our needs.

3.2 Notes on implementation

In this section, we discuss various aspects of our novel implementations. We shall

also define and discuss some terminology that will be used from now on.

3.2.1 Use of mt-imager

We implemented all our studied algorithms on the mt-imager such that they can be

tested and analysed.

The mt-imager is a GPU-based Radio Interferometric Imager we developed for

Muscat [21], which, during the tenure of the doctoral studies we restructured and

enhanced, with Double-Precision arithmetic and the implementation of CLEAN [28],
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MS-MFS [35] and other algorithms. We reported some of the stated enhancements

in the Transfer Report (Muscat [115]).

The mt-imager provides all needed infrastructure such that we could implement

and test all the algorithms with ease. In particular, the mt-imager provides for the

loading of Radio Interferometric observation data from MeasurmentSets (Kemball

and Wieringa [116]), movement of data, GPU management via the General Array

FrameWork (Muscat [21]), measurement of execution for a CUDA kernel, and saving

of the output images in a FITS file (Pence et al. [117]).

3.2.2 Precision

We developed the studied implementations, to work with Single and Double

Precision. Input Visibility values available in MeasurmentSets are generally

Single-Precision and on enabling Double-Precision, all steps in the studied

implementations are computed using Double-Precision. The input Visibility values

are converted to Double-Precision in a pre-processing phase, before being presented

to a given Gridder for consumption.

3.2.3 Multi-polarised channels - Npol

All our Gridders take advantage of multi-polarisation to maximise Performance.

Radio Interferometers measure all Visibility polarisations simultaneously, implying

equal (u, v, w) coordinates. Therefore, all polarised images are generated together

to reduce some compute common to all polarisations. We define Npol as the number

of polarisations handled simultaneously, by the Gridder or Pruner. Npol can take

values from one to four.

We note that Taylor coefficients in MS-MFS (Rau and Cornwell [35]) also have
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equal (u, v, w) coordinates. Therefore all our implementations can handle Taylor

Coefficients in the same way they handle multi-polarisation.

3.2.4 Pre-processing

When implementing the studied algorithms, we followed a similar structure to the

implementation of the w-projection algorithm in Muscat [21]. The input Visibility

records are subject to a pre-processing step that alters the input record stream in a

way that is best suitable for digestion by the Gridder.

We designed the pre-processing step to handle work that can be done once in a

Deconvolution process with many major cycles. Therefore, we regard pre-processing

as part of an initialisation step that will not run for every major cycle and therefore

not subject to a study of its Performance in this thesis. Similar reasoning was made

by Merry [85] in analysing an enhanced Convolutional Gridder for w-projection.

The main inputs to the implemented algorithms are a stream containing (u, v, w)

coordinates of the multi-polarised Visibility records and another stream containing

the multi-polarised Visibility values, obtained from a MeasurementSet. Such input

is pre-processed before presenting it to a Gridder for processing. The (u, v, w)

coordinates of the input are transformed1 into a set of integers usable by the Gridder

to efficiently find the position of the record on the output grid and where applicable

the right choice of the GCF. Pre-processing also does a full compression of the input

which is discussed in one of the succeeding sub-sections.
1The w coordinate is ignored since our algorithms do not cater for w.
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Ordering Modes

The pre-processor, in conjunction with other infrastructure within mt-imager, sorts

records in the streams in three different configurable Ordering Modes, which we now

list and explain.

1. No-Interleave (NI): In NI mode, records are grouped by Antenna Pair,

and Frequency Channel and each group is ordered in increasing time of

measurement. This mode of ordering is the same as that given in Muscat

[21] when frequency channel interleaving is disabled.

2. Interleave-Forward-Back (IFB): In IFB mode, records are grouped by

Antenna Pair and ordered similarly to NI mode, with the exception that there

is interleaving over the Frequency Channels as shown in Figure 3.2.

3. NN Grid sorted (SS): In SS mode all records are ordered based on the

position of records on the virtual NN Grid as would be stored in memory.

The virtual NN Grid would be stored in a row-major order where every row

contains pixels with constant v values and columns contain pixels with constant

u values.

Full Compression

In Muscat [21], we argued that if two Visibility records fall on the same grid pixel

in the virtual NN Grid, then they can be added together prior to gridding with no

effect on aliasing. We called this process of addition of records compression in view

that this reduces (compresses) the input record stream to one with fewer elements.

In Muscat [21] we implemented compression in a way that only neighbour records

on the stream that falls on same NN Grid pixel are added. The stream would have

been sorted either in NI or a frequency channel interleaved Ordering Mode similar
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Interleave Forward-Back (IFB) Ordering ModeNo Interleave (NI) Ordering Mode

Frequency Channel Baseline Trajectory

Record on a Trajectory

Arrow showing ordering of records in IFB mode

Arrow showing ordering of records in NI mode

Figure 3.2: A sketch of 12 records sampled in 3 frequency channels in UV-space,
showing how the records get ordered in the Interleave-Forward-Back (IFB) (left
sketch) and the No-Interleave (NI) (right sketch) Ordering Modes. The arrows
indicate the order of sorting. In NI mode, records from different frequency channels
are not interleaved. In IFB mode, records are interleaved, and the ordering of records
from different frequency channels is such that the ordering will go back and forth
through the channels as illustrated by the arrows.
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to IFB.

In this thesis, we enhanced compression, whereby any records in the stream that

falls on the same NN Grid pixel gets added. We call this full compression. Except

when otherwise stated, full compression is enabled in all experiments we present in

this thesis.

We note that, by its nature, full compression ensures that the input number of

records to the Gridder is constant for a given size of the NN Grid, irrespective of

the Ordering Mode, and varies with varying size of the NN Grid.

3.2.5 Gridding Step

As we stated in previous chapters, the implementation of a Gridding Step is referred

to as a Gridder. The exact name of each Gridder will be according to which

algorithm it is to be applied. Therefore we have the Convolutional Gridder for

Convolutional Gridding (Algorithm 2.4), the Hybrid Gridder for Hybrid Gridding

(Algorithm 2.5) and the NN Gridder for Pruned NN Interpolation (Algorithm 2.6)

All Gridders are composed of one CUDA kernel, which in our experiments, grids all

input records in one execution of the CUDA kernel.

The output of any Gridder is a multi-polarised grid, where its layout in memory

depends on the Gridder. The Convolutional Gridder outputs a non-interleaved,

multi-polarised grid with origin set at the centre. In contrast, the Hybrid Gridder

outputs a non-interleaved, multi-polarised grid with the origin at the corner, and

the NN Gridder outputs a polarisation-interleaved grid with the origin at the corner.

As pointed out in Section 3.1.6, all Gridders access the output grid via atomic

reductions. We are calling the process of updating a pixel as committing, in view

that in most implementations, the value that will be added is generally the result
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of an accumulation in registers that will be added (committed) to the grid.

The Convolutional and Hybrid Gridders make use of what we call Sub-Warp

Gridders. In the stated Gridders, the number of CUDA threads required to grid

one record is less than the total CUDA threads per warp. Therefore, we sub-divide

the warp in Sub-Warp Gridders that grid in full a subset of the input records, with

no dependency on the other Sub-Warp Gridders.

Specifics of the three studied Gridders are discussed in detail in Chapters 4,5 and 6

3.2.6 Pruning Step

In Chapter 7 we deliver a detailed discussion on our implementation of the Pruning

Step. In this sub-section, we just note that in the implementation of Pruned NN

Interpolation, the Pruner de-interleaves the grid as to make it easier for the IFFT

step to handle its input grid.

3.2.7 IFFT Step

The IFFT Step is implemented using the cuFFT library [118] supplied with CUDA.

The library works only with multi-polarised grids with the origin at the corner, and

supports polarised-interleaved grids and also non-interleaved grids. For any value

of Npol, IFFTs of the polarised grids, are executed as a batch to guarantee minimal

execution time on GPU for the IFFT.

We note that there is a Performance penalty in cuFFT when handling

polarisation-interleaved grids and therefore the Pruning Step ability to de-interleave

helps cuFFT to be more performant.

We also note that since the Convolutional Gridder outputs a grid with the origin at
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the centre, we implemented an extra pre-FFT step to convert the grid accordingly,

which is similar to the one documented in Muscat [21].

3.2.8 Correction Step

The Correction Step is implemented as a simple CUDA kernel which re-layouts

the IFFT output with the origin set at the centre, multiples with a pre-calculated

corrector and truncates the image to its meant size. The mt-imager generates the

corrector as pre-processing, and its Performance will not be analysed.

In general, in Radio Interferometry the output of the Correction Step is expected

to be real-valued and therefore the said CUDA kernel discards the imaginary while

correcting.

In this thesis we shall not deliver any Performance analyses specific to the Correction

Step. Its implementation is trivial, and in general, its effects on the overall

Performance for any of the studied implementations is minimal.

3.3 Tuning and Brute Force Search

When implementing the Gridding and Pruning Steps, we did whatever we could

to achieve the highest Performance possible. We did so through common-sense,

best-practice, and by tuning the use of GPU resources, such as registries per threads,

shared memory size and memory I/O.

Tuning is a challenging task since the solution is dependent on many factors such

as Precision, Npol and even the input uv-profile of the observation controls memory

access to the output grid. Tuning in this thesis is done on parameters that we refer to

as Tuning Parameters. In coding our implementations, we do extensive use of C++
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templates [119] where most of the Tuning Parameters are implemented as C++

template parameters. The use of C++ Templates enabled us to have one unique

code for all combinations of selected values of the Tuning Parameters with Precision

and Npol, the latter two being also generalised as C++ template parameters.

We achieve fine-tuning of the Tuning Parameters via a Brute Force Search. Such

a search gave us more insights on the Performance of the studied implementations.

For each Tuning Parameter, we select a set of reasonably good values and

run performance tests over the implementations, instantiated with all possible

combinations of the selected values of all Tuning Parameters. We then do a

manual analysis to find a combination (a solution) of Tuning Parameters values

that perform well. We do note that many times in our test scenarios, there were no

unique solutions, and our selection is a manually chosen best fit achieving optimal

Performance, for some group of test scenarios. We refer to such solutions as

the optimal solutions, and we used the term optimal Performance to mean some

Performance which is near the maximum reported by the Brute Force Search. The

Performance Metric Optimality Factor defined in Section 3.5.2 will measure how

optimal is an optimal solution.

For the Gridders, the Brute Force Search is also used to measure various Performance

Metrics which are defined in Section 3.5.4.

3.4 Experimental setup

Let us now describe the setup used to perform experiments geared to understand

the Performance behaviour of the Gridding and Pruning Steps of the studied

implementations.
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Specification Value
Product Name Tesla P100-SXM2-16GB
Clock Frequency (λ) 1480MHz
Memory Size 15.899GiB
L1 Cache Size 24KB per SM
L2 Cache Size 4MiB
Single Precision Performance 10.612 TeraFLOPS
Double Precision Performance 5.306 TeraFLOPS
CUDA compute ability 6.0
Number of SMs (NSM) 56
Maximum Instructions Per Cycle
for each SM (MaxIPCSM)

3

Table 3.1: List of selected specifications of the four P100s, over which we executed
most of the experiments presented in this thesis. These specifications were in general
retrieved from profiling (displayed by the Visual Profiler) except for the L1 Cache Size,
which was retrieved from the Programming Guide [109] and the Clock Frequency (λ),
which was manually set.

3.4.1 Hardware setup

Our Performance-related experiments are run on a High-Performance server with

two "Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz" [120] and four P100s [2] with

clocks set to 1480 MHz. Some specifications worth to note for the said GPUs are

given in Table 3.1. A given experiment is exclusively run on one and only one GPU.

When possible, multiple experiments were executed concurrently on different GPUs.

3.4.2 Input and Simulation Parameters

Unless otherwise specified, input for all simulations related to gridders is

a quad-polarised 16-frequency channel LOFAR observation, with 6501600

multi-polarised records per frequency channel. Figure 1.3 gives the (u, v)-coverage of

the input observation. The observation is fully compressed by mt-imager, and Table

3.2 gives the number of input multi-polarised records presented to any Gridder after

full compression.
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Nnn Number of Records
216 = 65, 536 19,754,479
214 = 16, 384 3,198,831
213 = 8, 192 976,536

Table 3.2: Table giving the input number of multi-polarised records presented
to any Gridder after the 16-frequency channel LOFAR observation with 6501600
multi-polarised records per frequency channel is fully compressed. In all experiments,
the virtual NN Grid is always of equal length and width and therefore we need only
give the size in pixels of one of its dimensions (Nnn).

mt-imager is instructed to produce an output image with a constant pixel width and

length of 4.7arcsec. The pixel size ensures that all records from the observation fit

within the central region of the output uv-grid of any Gridder, which is a common

practice in Radio Interferometry.

Most of our Performance analyses is based on tracking various measured

Performance Metrics (See Section 3.5) while we change values of various parameters,

which we call Simulation Parameters. In this way, we can identify changes happening

within the Gridder or Pruner execution that are varying Performance.

There are in all five Simulation Parameters which we now list and discuss next.

Precision

We discussed Precision in Section 3.2.2 and in our experiments, we shall consider

Single and Double Precision.

Number Of Polarisations (Npol)

We discussed the handling of multi-polarised data in Section 3.2.3. In our

experiments and subsequent analyses, we will consider imaging with Npol equal to

one, two, three or four polarisations.
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NN Grid Size (Nnn)

In all our experiments, the NN Grid is always with equal length and width, and

we, therefore, quote one dimension of the NN grid size denoted by Nnn. For our

analyses, we considered experiments with Nnn = 2n, n ∈ N, 6 ≤ n ≥ 16, but we

only chose to present results for two values for each Gridder in this thesis. For the

Convolutional and Hybrid Gridders, we chose to present results for Nnn = 65536 and

Nnn = 16384 while for the NN Gridder we chose to present results for Nnn = 8192

and Nnn = 16384. The difference in choice was necessary since simulations for NN

gridder with Nnn = 65536 were not possible due to memory limitations on the P100.

Our choices of Nnn ensure that full compression leaves enough records to let the

studied Gridders saturate the GPU.

Oversampling factor β

In our experiments, we consider oversampling factor (β) values of 2n, n ∈ N, n <

10, Nnn/β ≥ 128. We note that the output image size in pixels is equal to Nnn/β.

Record Ordering Mode

We discussed the way records are ordered and presented to the studied Gridders in

Section 3.2.4. In our analyses, we will consider all described modes: INO, IFB and

SS, but we will not always provide detailed analyses for every Ordering Mode.

3.4.3 The GCF

In all experiments, we set the GCF used by the Convolutional and Hybrid Gridders

to the Prolate Spheroidal of order one. We chose the stated GCF since it is the

99



Chapter 3: Methodology

GCF we know of, with the smallest support and acceptable anti-aliasing properties

for use in Radio Interferometry. We are assuming that the smaller the GCF

is, the more performant is the Convolutional Gridder. We thrive in making the

Convolutional Gridder as performant as possible to ensure its validity as reference

in the comparative analyses given in Chapter 8.

We discussed the use of the Prolate Spheroidal in Section 2.3.4, and we note that

in our experiments, the function is generated using the same mathematical method

as used in CASA.

We also note that different GCFs are considered for the Pruning Step, and we detail

this matter in Chapter 7.

3.4.4 Maximum Performance Experiments

For all Gridders, we shall perform special experiments that we call the Maximum

Performance Experiments. These experiments try to estimate the maximum

Performance, a given Gridder using the optimal solution, can deliver for specific

values of Precision and Npol. We perform such experiments by hacking in the

pre-processing phase to vary the coordinates of the input records to make the Gridder

give the highest Performance. We do this exercise after acquiring knowledge on the

given Gridder from other results.

We give Performance results of the Maximum Performance Experiments in tables.

3.4.5 Layout for plotted results

As we shall detail in Section 3.5, we use what we call Performance Metrics to measure

and analyse Performance. Except for the results of the Maximum Performance
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Experiments, we sub-divided these metrics into groups that are plotted in separate

figures. These groups are listed and detailed as sub-sections in Section 3.5.

We plot each Performance Metrics group using line or bar plots in figures containing

an array of graphs. Each row in the array is dedicated to one Performance Metric.

For results related to the studied Gridders, each column represents a given value of

Npol. For Performance results related to the Pruners, what a column represents is

defined in the applicable figure.

Note that for the studied Gridders, we generally report results for Single and Double

Precision, in separate figures, but when convenient we do amalgamate the Single and

Double Precision results as two sub-figures in one figure.

We use line plots wherever we report measurements of Performance Metrics against

β or α. In Chapter 6 we use bar plots since plotting against (β) for the NN Gridder

is meaningless.

All given line plots for the Convolutional and Hybrid Gridders has the value of Nnn

and Ordering Mode constant. Since β varies over the line plot, then the output grid

of the Gridder will also vary in size.

Various plots have missing data at the head and tail because we were unable to

perform related experiments either due to memory limitations imposed by the P100

or because of Nnn/β < 128.

Unless otherwise specified, line and bar plots for the Gridders are labelled with

the format Ordering Mode-Nnn. For example, a line plot for results with Ordering

Mode set to IFB and Nnn = 65536 is labelled IFB-65536. When considering the

Convolutional Gridder an extra suffix (either -L or -H) is sometimes added to a

plot’s label as to distinguish between the so-called Low Commit Rate solutions (-L)

and the High Commit Rate solutions (-H). For example, a line plot labelled with

IFB-65536-L gives results for a Low Commit Rate solution.
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3.5 Measuring Performance

As alluded previously, we measure and analyse Performance through Performance

Metrics. These metrics are mostly derived from direct measurement of quantities

made via profiling using nvprof combined with other known information.

All Performance metric and related quantity names are written with typewriter

typeface. If a quantity is measured directly by nvprof, then the name of the

Performance metric is the name given by nvprof, pre-appended with the text

"P100:". Documentation of all quantities measured by nvprof is available in the

Profiling Guide [112].

As discussed before, we divide all Performance Metrics into five groups, where each

group is graphed exclusively in its own figure. Each group is discussed in the next

sub-sections, but in the first sub-section, we define some useful quantities that will

be used by many of the metrics.

3.5.1 Useful quantities

CUDA Kernel execution time

CUDA Kernel execution time means the time taken by a given CUDA kernel or

a group of CUDA kernels to execute. The CUDA Kernel execution time is one

of the few quantities that is not measured through profiling and instead measured

using CUDA events. The CUDA Runtime API Reference Guide [113] gives the

impression that CUDA events can measure execution time on GPU with a resolution

of 0.5 microseconds,2 but warns that the practice can induce some noise in the

measurement. Such noise was evident in our experimental setup, and we mitigate
2Refer to the documentation of function cudaEventElapsedTime() in https://docs.nvidia.

com/cuda/cuda-runtime-api/group__CUDART__EVENT.html#group__CUDART__EVENT
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the error by measured the execution duration of the CUDA kernel/s executed serially

twenty times at one go using identical input. We repeat experiments three times and

pick the lowest reported execution time as the measured value of the CUDA Kernel

execution time.

Gridded Records

Definition of Gridded Records slightly varies from when used in the context of a

Gridder or Pruner.

A Gridded Record for a Gridder is that multi-polarised record presented to the

Gridder after full compression is applied. Therefore in a Gridder context, Gridded

Records is equal to what is given in Table 3.2.

For the Pruners, a Gridded Record is one single-polarised pixel in the multi-polarised

input grid. Therefore an input multi-polarised grid of dimensions G × H × Npol

provides GH ·Npol Gridded Records.

Note that the term record is equivalent to the term Gridded Record in this thesis.

3.5.2 The Optimal Solution Performance Group

Performance Metrics in the Optimal Solution Performance Group are used to

measure aspects of Performance of a given optimal solution.

Gridding Rate

The Gridding Rate is the main metric measuring Performance of Gridders and

Pruners. It measures how fast a Gridder or Pruner is to execute in a given
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experiment using Equation 3.1:

Gridding Rate = Gridded Records
CUDA Kernel execution time

(3.1)

All measurements for the Gridding Rate are given in Giga Records per second

(GRecs/s).

Efficiency

Efficiency measures how efficient a Gridder is to tap the GPU’s arithmetic power

in order to make grid point updates. We measure this metric only for the Maximum

Performance Experiments of the Convolutional Gridder.

A record updates S2 multi-polarised grid points when gridded by the Convolutional

Gridder, and every update consumes four floating-point operations (FLOPs) for

each polarisation. Therefore, Efficiency is computed by Equation 3.2. We remind

the reader that S denotes support of the GCF as defined in Section 2.3.4 and that in

all our experiments such support is set to six (S = 6) since we are using the Prolate

Spheroidal of order one as per Section 2.3.4.

Efficiency = 4S2 · Gridding Rate ·Npol

P100 Maximum FLOPS
(3.2)

Values for the P100 Maximum FLOPS are available in Table 3.1.
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Optimality Factor

The Optimality Factor is a ratio given in percentage defined by Equation 3.3. It

measures how optimal the solution is in a given experiment.

Optimality Factor = Gridding Rate
Best Gridding Rate

· 100% (3.3)

where Best Gridding Rate is a Performance Metric defined in Section 3.5.4.

Note that the Optimality Factor is not measured for the Maximum Performance

Experiments.

Compute Rate

We want to measure how much compute is required on average to grid a record in

the Gridders and Pruners. We do so by measuring the average number of warp-level

non-memory related instructions executed per record, as given by Equation 3.4.

Compute Rate = P100:inst_executed− Total Executed Memory Instructions
Gridded Records

(3.4)

where the Total Executed Memory Instructions is equal to the summation of all

the P100 metrics listed in Table 3.3

Care must be taken when interpreting this metric vis-a-vis Performance, since the

metric is void from various factors that affect Performance, such as the different

amount of cycles different instructions need to execute as shown in Table 3 of the

Programming Guide [109].
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Metric
P100:inst_executed_global_loads
P100:inst_executed_local_loads
P100:inst_executed_shared_loads
P100:inst_executed_surface_loads
P100:inst_executed_global_stores
P100:inst_executed_local_stores
P100:inst_executed_shared_stores
P100:inst_executed_surface_stores
P100:inst_executed_global_atomics
P100:inst_executed_global_reductions
P100:inst_executed_surface_atomics
P100:inst_executed_surface_reductions
P100:inst_executed_shared_atomics
P100:inst_executed_tex_ops

Table 3.3: Table listing all metrics reported by the profiler that report memory
related executed instructions.

Measurements of the Compute Rate are given in Instructions per record

(Inst/rec).

P100:l2_tex_hit_rate and P100:global_hit_rate

In the implementations of the Convolutional Gridder and Hybrid Gridder, we would

like the P100 caching system to deliver GCF Data from the cache-store (which

will cause a HIT on the Cache) rather than retrieving it from Device Memory

(which is a MISS on the two caches). We use the metrics P100:l2_tex_hit_rate

and P100:global_hit_rate to measure the HIT rate of the cache system. The

P100:global_hit_rate gives the HIT rate of the Unified Cache for transactions

related to loading, while the P100:l2_tex_hit_rate gives the HIT rate of

transactions at L2 level which will see traffic that did not HIT on the Unified Cache.

The two metrics are expresses as ratios with values between 0 (everything was a

MISS) and 1 (everything was a HIT). It is important to note that these two metrics,
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factor in the loading of input record data, which in general is expected to MISS on

the Unified and L2 Cache.

Commit Rate

We measure grid committing via the Commit Rate metric defined in Equation 3.5.

Commit Rate = P100:atomic_transactions
Gridded Records

(3.5)

P100:atomic_transactions is equal to the total atomic transactions made during

the profiled CUDA kernel execution. Since the metric measures transactions, it

partially factors in coalescence and memory alignment, meaning, that a lack of

the coalescence requirement for optimal memory access patterns will increase the

P100:atomic_transactions.

All measurements for the Commit Rate are given in Transactions per Gridded

Record (Trans/Rec).

We need to report unexpected behaviour in the P100:atomic_transactions

metric. We did an experiment whereby a CUDA kernel is executed with just one

warp and commits only once in Single-Precision to global memory using an optimal

access pattern where the transactions generated are not adjacent in memory to

each other. In repeated execution of this experiment nvprof aperiodically reports

P100:atomic_transactions with a value of 6 rather than 4. We have filed a bug

report on the matter, but up to the time of writing this thesis, we had no clarification

if this is a bug or something else. Note that we did not reproduce such behaviour

when repeating the experiment with Double-Precision.
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DRAM Read Rate

The DRAM Read Rate measures how many read transactions are made to the device

memory per gridded record as defined by Equation 3.6. Any read transaction that

HITs the cache system is not counted.

DRAM Read Rate = P100:dram_read_transactions
Gridded Records

(3.6)

All measurements for the DRAM Read Rate are given in Transactions per Gridded

Record (Trans/rec).

3.5.3 The Utilisation Group

Performance Metrics in the Utilisation Group measure the utilisation of various

modules or group of modules in the P100. For better readability of figures that plot

the Utilisation group the Gridding Rate metric is also plotted in the said figures.

Compute Utilisation

In this thesis, we define the Compute Utilisation metric as the ratio between the

executed instructions related to compute in a given CUDA kernel execution against

the theoretical maximum instructions the P100 could execute. Equation 3.7 shows

how the metric is calculated.

Compute Utilisation = Compute Rate× Gridded Records
MaxIPCSM × NSM × λ× τ

× 100 (3.7)

where τ is the CUDA Kernel execution time, while MaxIPCSM, NSM, λ are given in
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Table 3.1.

We note that the Visual Profiler provides a measurement similar to our Compute

Utilisation Performance Metric. Unfortunately, the measurement is only available

in a bar chart, and we were unable to find trustworthy documentation on the metric

so that we can reproduce the measurement in our plots. This issue forced us to

define our own Compute Utilisation metric, on which we did factual verification

that it tracks well the metric presented in the Visual Profiler.

P100:tex_utilization

The P100:tex_utilization metric measures the utilisation of the Unified Cache

expressed in terms of the peak utilisation. The measurement is an integer ranging

from 0 to 10, where 0 implies the Unified Cache was idle while 10 implies full

utilisation.

P100:l2_utilization

The P100:l2_utilization metric measures the utilisation of the L2 Cache

expressed in terms of the peak utilisation. The measurement is an integer ranging

from 0 to 10, where 0 implies the L2 Cache was idle while 10 implies full utilisation.

P100:dram_utilization

The P100:dram_utilization metric measures the utilisation of the device memory,

expressed in terms of the peak utilisation. The measurement is an integer ranging

from 0 to 10, where 0 implies the device memory was idle while 10 implies full

utilisation.
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P100:shared_utilization

The P100:shared_utilization metric measures the utilisation of the shared

memory, expressed in terms of the peak utilisation. The measurement is an integer

ranging from 0 to 10, where 0 implies shared memory was idle while 10 implies full

utilisation.

3.5.4 The Brute Force Search Group

Performance Metrics in the Brute Force Search Group are metrics measured through

a Brute Force Search.

Best Gridding Rate

The Best Gridding Rate is equal to the Gridding Rate of the most performant

solution considered by the Brute Force Search for a given combination of the

Simulation Parameters. In the Maximum Performance Experiments, since the Brute

Force Search is not done, the Best Gridding Rate is equal to the Gridding Rate

.

Max Best Gridding Rate

The Max Best Gridding Rate is equal to the Gridding Rate of the most

performant solution considered by the Brute Force Search for a given combination

of the Simulation Parameters excluding the Ordering Mode.

This metric is not plotted anywhere, but we use it to calculate other metrics.
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Polarisation Gain

Polarisation Gain measures how much we gain by having the Gridder handling a

number of polarisations together. It is defined by Equation 3.8.

Polarisation Gain = Best Gridding Rate× N_pol
Best Gridding Rate at N_pol=1

(3.8)

Wsplit=x Optimality Factor

The Convolutional and Hybrid Gridders split the warp into independent Sub-Warp

Gridders counted by Wsplit. Wsplit is a Tuning Parameter which we call the Warp

Split Factor. We use the metric Wsplit=x Optimality Factor to measure the effect

ofWsplit on the Performance of the Gridders. x is an integer with possible values from

1 to 5 that represents the value of Wsplit the metric is measuring for. The metric is

measured for a given combination of Simulation Parameters, whereby through Brute

Force Search the maximum Gridding Rate of all runs withWsplit = x is found. This

maximum is compared with the Best Gridding Rate as per Equation 3.9.

Wsplit=x Optimality Factor =
Gridding Rate for fastest run with Wsplit = x

Best Gridding Rate
× 100% (3.9)

3.5.5 The Gridder Advantage Group

The Gridder Advantage of the Hybrid or the NN Gridder measures by what factor

the stated Gridder performs better than the Convolutional Gridder, for a given
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combination of the Simulation Parameters excluding the Ordering Mode. It is

defined by Equation 3.10.

Gridder Advantage =
Max Best Gridding Rateof Hybrid or NN Gridder

Max Best Gridding Rate of the Convolutional Gridder (3.10)

When analysing the NN Gridder, we will also measure the Gridder Advantage of

the NN Gridder over the Hybrid Gridder. In this case, the Performance Metric will

be called NN Gridder Advantage over Hybrid and calculated by Equation 3.11.

NN Gridder Advantage over Hybrid =
Max Best Gridding Rate of the NN Gridder

Max Best Gridding Rate of the Hybrid Gridder (3.11)

3.5.6 The Pruning Gain Group

Performance Metrics in the FFT Pruning Gain Group measure Performance gain

caused by the Pruning Step in the inversion of the grid to an image. We only use

this group of metrics in Chapter 7.

Let us define some quantities which will be used to define Performance Metrics

in this group. Let Grid Inp be the input for the Pruning Step. The grid will be

downsampled to Grid Out1 by a Column Pruner3. In Pruned NN Interpolation Grid

Out1 will be further reduced to Grid Out2 by a Row Pruner. The Output Grids

Out1 or Out2 are then IFFTed and corrected. We define the quantity FFTInp as the

execution time taken to IFFT Grid Inp. We also define FFTOut1 and FFTOut2 as the

execution time taken to IFFT Grid Out1 and Out2 respectively.
3Details of the Column and Row Pruners are given in Chapter 7.

112



Chapter 3: Methodology

Note that in this group of metrics, we do not factor in the execution time of the

Correction Step, since our implementation of the Corrector Step has an invariant

execution time over the implementations of the different algorithms.

Column Pruning Gain

The Column Pruning Gain measures the gain in Performance in the Fourier

inversion when applying the Column Pruner as defined in Equation 3.12.

Column Pruning Gain = FFTInp

PrunerCol + FFTOut1
(3.12)

Row Pruning Gain

The Row Pruning Gain measures the gain in Performance in the Fourier inversion

on applying the Row Pruner as defined in Equation 3.13.

Row Pruning Gain = FFTOut1

PrunerRow + FFTOut2
(3.13)

Accumulated Pruning Gain

The Accumulated Pruning Gain measures the gain in Performance in the Fourier

inversion on applying the Column Pruner and subsequently the Row Pruner as

defined in Equation 3.14.

Row Pruning Gain = FFTInp

PrunerCol + PrunerRow + FFTOut2
(3.14)
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Column Pruner Footprint

The Column Pruner Footprint is the ratio between the execution time of the

Column Pruner and the total execution of the Fourier inversion of Grid Inp to

Grid Out1 as defined by Equation 3.15.

Column Pruner Footprint = PrunerCol

PrunerCol + FFTOut1
(3.15)

3.6 Conclusion

This chapter introduced all the work we are to present in the subsequent chapters.

Terminology was defined, and various concepts that are used in subsequent chapters

were discussed.

CUDA programming and GPUs are the first topics discussed and proceeded

with common information to all implementations. Afterwards, tuning and the

experimental setup were discussed, and the chapter concludes with a list of

Performance metrics measured in the many experiments we are to report for studying

Performance.
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Chapter

The Convolutional
Gridder

Chapter

4
This chapter discusses and provides analyses to our original implementation of the

Convolutional Gridder for the P100. Our Convolutional Gridder implementation is

based on a moving window strategy proposed by Romein [121], which we refer to

as Romein’s strategy. We will modify and enhance the original implementation by

Romein [121] to make it perform at its best for GCFs of support 6× 6.

This chapter is organised as follows: The first section reviews Romein’s strategy and

related literature, while the second section details our novel implementation of the

Convolutional Gridder. Right afterwards, in another section, we disclose and discuss

results related to Brute Force Search and progress to yet another section where we

report more detailed results, together with an in-depth analysis. We conclude in

Section 4.5 by giving a summary of the main results.

We remind the reader that validation of our Convolutional Gridding implementation

is discussed in Chapter 8, including that of the Convolutional Gridder.

4.1 Romein’s moving window strategy

Enhanced by Muscat [21] and Merry [85], Romein’s strategy is the fastest algorithm

which we are aware of, able to grid on GPUs. It acquires high-performance by taking

advantage of the trajectory of records for a given baseline. Neighbour records on the

same trajectory are very near each other, facilitating the accumulation of grid-point

updates on the fast on-chip registers rather than directly added to the grid via the

much slower global memory.
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4.1.1 High-level description

We can view Romein’s strategy as an enhanced version of a simple scatter strategy

(NVIDIA [122]). In an easy simple multi-threaded scatter strategy, an independent

group of threads equal to the convolution function affected pixel area (S×S pixels),

grid full records. Each thread sequentially reads the coordinates and value of records

to grid from a stream, calculates the convolution for a given pixel and immediately

commits (adds) to the grid. Since a GPU is a highly parallel device, there will be

many groups of such threads sharing the workload, and collisions during committing

are probable, mandating the need for atomic additions (reductions) to evade race

conditions.

The main disadvantage of a scatter strategy is its intense grid committing, whereby

every record will generate S × S complex atomic reductions. Romein’s strategy

reduces such atomic reductions by giving the threads responsibility of a fixed set of

points on the grid, enabling the possibility of accumulating updates rather than

committing for every record. Such a strategy works for Radio Interferometric

Imaging because a baseline measures Visibility records over a trajectory on the

uv-grid, and the records tend to be near each other, making said accumulations

probable.

Thread configuration

Figure 4.1 illustrates the thread configuration for Romein’s strategy. Given a grid

of dimensions N × N pixels, S × S threads are allocated for gridding a stream

of records. Let us index each thread using a two-dimensional index (a, b) where

0 ≤ a, b < S. We also index the grid using another two-dimensional index (c, d)

where 0 ≤ c, d < N . A thread is given the responsibility to accumulate updates on

grid pixels with index (a + k1S, b + k2S) where k1, k2 ∈ Z, which ensures that the
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Figure 4.1: Diagram showing the thread configuration of Romein’s strategy. The
diagram features a grid of size 18x18 pixels, to which a record is gridded using a GCF
of size 6x6. The moving window shows the area on the grid the record will affect for
gridding. A thread such as that indexed by (1,4) is responsible for updating several
pixels on the grid, but only one pixel is inside the window for any given record.
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thread updates one and only one pixel for a given record. Given records on a given

baseline trajectory are fed to the strategy one after the other, the given thread will

likely need to update the same grid point for neighbouring records, making it doable

for the thread to accumulate the updates internally. When the neighbouring records

move enough such that the given thread has to update a different grid point, then

and only then the thread commits to the grid using atomic reductions.

In some literature (NVIDIA [122]), Romein’s strategy is referred to as a moving

window strategy since there is accumulation for grid pixels within a window of size

S × S moving in-sync with the (u, v) co-ordinates of the input record stream.

4.1.2 Past work and results

Before discussing our implementation of the Convolutional Gridder, we here review

published work related to Romein’s strategy.

Romein [121] introduces the strategy and in his analysis, considers a quad-polarised

(Npol = 4) LOFAR observation gridded using Single-Precision with complex-valued

GCFs and support equal or greater to 16× 16. Input records were not compressed.

In Muscat [21], we introduced trajectory compression, and analysed a modified

Convolutional Gridder implementation based on Romein’s [121] implementation.

We considered various values of Npol, and delivered the first analyses of gridding

with a complex 6× 6 GCF. All analyses were made using Single-Precision, with no

consideration for Double-Precision.

Merry [85] proposed a performance enhancement to Romein’s implementation by

combining several threads into one. Such a combination of threads is known as

thread coarsening. Strategically, Merry [85] chose to combine neighbour thread on

the grid in a bid to reduce Logic. He reports a best case of 90% improvement for

a large complex GCF of dimensions 128× 128, but does not deliver any results for
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GCFs of support near or equal to 6 × 6. However, his results hint that if there is

any gain using his implementation of thread coarsening, it should be small due to

the introduction of some waste.

In an SDP Memo, NVIDIA [122] compared Romein’s strategy with a scatter

and gather strategy and delivered a Performance analysis for Single and Double

Precision gridding over the NVIDIA Tesla K40 GPU Accelerator. NVIDIA reported

Romein’s strategy to perform best for small GCFs (smaller or equal to 32× 32) and

lacked behind the gather strategy for larger GCFs. No study for the 6 × 6 GCFs

was presented. NVIDIA [122] also argued that thread coarsening should increase

Performance of Romein’s strategy.

We finalise this short review by pointing out that there are other studies that focus

on alternative Convolutional Gridding deployments on GPU not based on Romein’s

strategy. In general, they focus on complex GCFs with varying support. Examples of

such studies are Edgar et al. [123], Luo et al. [124], Lao et al. [125], van Amesfoort

et al. [126], Dingle et al. [127] and Antao [128].

4.1.3 Contribution

To the best of our knowledge, up to the writing of this thesis, there has been no

published study of a Convolutional Gridder using Romein’s strategy that runs over

GPUs using Single or Double Precision with a real-valued GCF of small dimensions

such as 6× 6. This chapter is dedicated to such a Gridder.
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4.2 Implementation details

We now explain our novel implementation of the Convolution Gridder based on

Romein’s strategy. The implementation targets gridding using a real-valued GCF

of support 6 × 6, and it can easily be modified to cater for real or complex valued

GCFs with support of 8× 8.

4.2.1 CUDA grid layout

The CUDA grid layout is subject to tuning via a Brute Force Search discussed

in Section 3.3, whereby we define two Tuning Parameters, BWarps and GBlocks, to

control the way warps are organised over the whole CUDA Grid. BWarps configures

the number of warps CUDA blocks contain, while GBlocks defines the maximum

number of blocks the Convolutional Gridder CUDA kernel gets launched with. In

case GBlocks is too large for the workload given, the CUDA kernel is launched with

fewer blocks than defined by GBlocks.

The value of BWarps impacts performance. As clarified in Section 4.2.3, BWarps has

a control on Occupancy and shared memory size that in turn controls the choice of

XLoad (discussed in Section 4.2.3).

The value of GBlocks can also impact Performance. While in general it is

recommended to have GBlocks as high as possible, our Convolutional Gridder can

benefit with an increase in Performance by lowering GBlocks (and also lowering

BWarps) since such a decrease can reduce grid committing.
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4.2.2 Sub-Warp Gridders and thread coarsening

In our implementation, we split the warp into several Sub-Warp Gridders equal to

the Tuning Parameter Warp Splitting Factor (Wsplit), with possible values of 1,2,4

and 5. The Sub-Warp Gridder1 is an independent Gridder that grids in full a group

of neighbour records in the input streams. It also loads input data using its CUDA

threads, eliminating the need for synchronisation between warps.

The use of Sub-Warp Gridders makes our implementation much different from that of

Romein [121]. Romein focused on gridding with GCFs considerably larger than 6×6,

and as a consequence, he chose a CUDA block of warps to make the independent

Gridder.

Sub-Warp Gridders have fewer CUDA threads available than Romein’s strategy

mandates, and to reduce the number of needed threads, we merge threads together

through thread coarsening. The merged threads are programmatically interleaved

on the CUDA thread, to increase Instruction Level Parallelism. Such Interleaving

caused some Logic to become redundant, and therefore removed.

We do stress that our adoption of thread coarsening is different from that of Merry

[85]. Merry focused on reducing Logic, which requires the GCF to be padded,

differing from our implementation.

Figure 4.2 illustrates the way threads are merged and organised over the warp for

different values of Wsplit. One easily notices that some of the CUDA threads are

disabled, which is unavoidable for 6 × 6 GCFs.2 In the case of Wsplit = 1, two

CUDA threads are disabled for every eight CUDA threads, and half of the active

CUDA threads only merge one thread instead of two. When the CUDA threads are

executing for the second merged thread, the CUDA threads with no second merged
1We introduced the Sub-Warp Gridder in Section 3.2.5.
2The issue vanishes when modifying the implementation for 8× 8 GCF using the same layout

strategy of 6× 6 GCFs.
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Figure 4.2: Diagram showing how CUDA threads are organised within a warp in
the Convolutional Gridder for the different values of the Warp Split Factor (Wsplit).
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thread get automatically disabled. For Wsplit equal to two or four, the situation is

somehow better, since all active CUDA threads have merged the same number of

threads, and in Wsplit = 5 only two CUDA threads out of thirty-two are disabled.

An increase inWsplit brings in some issues whose effects can overcome the advantages

brought in by thread coarsening. First of all, an increase in thread coarsening reduces

the parallelism of the Convolution Gridder. Every record requires fewer CUDA

threads for gridding, giving rise for the need of larger workloads to saturate the

GPU. Merry [85] already raised such an issue in his work, but in our implementation,

this issue is much more taxing, since the GCF is very small. Another issue is

that when threads are merged, register pressure increases, that is, a given CUDA

thread requires more registers to do the job. Higher register pressure can lead

to a reduction in Occupancy, and we control register pressure through the Tuning

Parameter SM , which sets the minimum concurrent CUDA blocks actively executing

on each Streaming Multiprocessor (SM), as discussed in Section 3.1.2.

A final disadvantage arising from thread coarsening and unique to our

implementation, is that asWsplit increases, more shared memory is needed per warp.

Shared memory is a limited resource, and it affects Occupancy too. We will discuss

this argument further in the next sub-section.

4.2.3 Input record data, and use of shared memory

Input record data is split into various input streams listed hereunder:

1. A 128-bit memory aligned index made of four 32-bit integers.

2. One 32-bit integer type index acting as a pointer to the selected GCF data.

3. Npol streams with each stream containing Visibility data of one polarisation.
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The first and second streams are generated in the pre-processing phase from the

(u, v)-coordinates of the input records. They are the same indexes used in Romein’s

original implementation, with the only difference being that Romein choose to load

the (u, v)-coordinates and convert them to these indexes within the Gridder itself.

Shared memory is used as an intermediate store of record data. Each Sub-Warp

Gridder loops between loading XLoad records in shared memory and then gridding

the chunk up. In stark difference with Romein’s original implementation, our

Convolutional Gridder retains accumulated grid point updates in the registers while

switching between gridding and data loading.

XLoad is a Tuning Parameter subject to our Brute Force Search. Its value, together

with the values of Wsplit and BWarps defines the size of shared memory allocated per

CUDA block as per:

Shared memory size per CUDA block = Record size×Wsplit ×BWarps (4.1)

The record size in shared memory is dependent on Precision and Npol and is given

in Table 4.1. The size of the allocated shared memory per CUDA block can affect

Occupancy, and therefore the choice of XLoad combined with Wsplit and BWarps can

affect Performance as they exert control on shared memory.

Let us now explain how the record data is laid out in shared memory. Since CUDA

threads are able to load or store a maximum of 128 bits at one go, we divide a record

in chunks of 128 bits, with the final chunk possibly smaller as given in Table 4.1.

Each different chunk is assembled during loading and stored in shared memory with

a 128-bit store instruction. It is also retrieved from shared memory as a chunk with

a 128-bit load instruction.

Shared memory is divided in such a way that each warp has an exclusive area in

shared memory where to load and store a particular chunk type. The layout of such
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Figure 4.3: Figure depicting the layout of 128-bit chunks of the same type (for
example I4) in shared memory for the Convolutional Gridder. The warp shown
in the figure is split into two Sub-Warp Gridders (Wsplit = 2) with XLoad = 8.
With this layout, a warp request to store chunks in shared memory is executed
with two transactions with each transaction utilising all the shared memory banks.
Furthermore, a warp request to retrieve chunks from shared memory is executed with
one transaction and no bank-conflicts.
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Precision Npol C1 C2 C3 C4 C5 C6 Record size

single

1 I4 IC+P+V1 32
2 I4 V1+V2 IC† 36
3 I4 IC+P+V1 V2+V3 48
4 I4 V1+V2 V3+V4 IC† 52

double

1 I4 V1 IC† 36
2 I4 V1 V2 IC† 52
3 I4 V1 V2 V3 IC† 68
4 I4 V1 V2 V3 V4 IC† 84

Table 4.1: This table shows how record data is split in 128-bit chunks such that they
can be laid out efficiently in shared memory. The last column gives the amount of
space in bytes a record consumes in shared memory.
Cx: Chunk No x
I4: 4-Integer Index
IC: Convolution Index
IC†: Chunk made up of the GCF index only. Such a chunk is only 32 bits wide
P: A 32-bit pad, needed to secure a 128-bit chunk when a Single-Precision Visibility
and the Convolution Index form a chunk.
Vx Visibility value of the xth polarisation. Single-Precision Visibility values are 64-bit
wide while Double-Precision Visibility values are 128-bit wide.

areas is depicted in Figure 4.3, explaining how Sub-Warp Gridders in a given warp

store and retrieve chunks. The layout ensures storage of chunks in shared memory

with a good access pattern and retrieval of chunks from shared memory with no

bank conflicts.

4.2.4 Loading of the GCF

Gridding a record requires the loading of a set of GCF values from global memory.

We rely on the P100 cache system to retrieve such data as fast as possible, where

we use the __ldg() function to explicitly instruct the compiler to cache GCF data

in the Unified Cache. At the same time, we instruct the compiler for a default

caching policy that does not cache in the Unified Cache, such that record data is

not cached by the Unified Cache while being loaded. With this setup, we maximise
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the availability of cache memory in the Unified Cache for the storage of GCF data.

4.2.5 Output grid

As already discussed in Section 3.2.5, the Convolutional Gridder outputs a

non-interleaved multi-polarised grid with its origin at the centre.

4.3 Brute Force Search Results

We execute a Brute Force Search on the Convolutional Gridder over the stated

Tuning Parameters as discussed in Section 3.3. Measured Brute Force Search

Performance metrics described in Section 3.5.4 are plotted in Figure 4.4 for

Single-Precision and Figure 4.5 for Double-Precision.

From the Brute Force Search, we discovered optimal solutions which we report and

analyse in Section 4.3.3 and Table 4.2.

In the next sub-sections, we analyse the stated Brute Force Search results.

4.3.1 Best Gridding Rate and Polarisation Gain

Results of the Brute Force Search shows that the Performance of the Convolutional

Gridder varies with the Ordering Mode and β suggesting that Performance is

dependent on the uv-profile as inputted to the Gridder, which is similar to what

Merry [85] observed. Performance also varies with Npol and Precision, which is due

to a change in the required GPU. It is interesting to note that the Convolution

Gridder performed relatively well in our experiments when the SS Ordering Mode
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Figure 4.4: Brute Force Search results for the Single-Precision Convolutional
Gridder. The layout is as described in Section 3.4.5. Performance metrics plotted
in this figure are defined in Section 3.5.4.
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Figure 4.5: Brute Force Search results for the Double-Precision Convolutional
Gridder. The layout is as described in Section 3.4.5. Performance metrics plotted
in this figure are defined in Section 3.5.4.
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was used.

Polarisation Gain is clearly dependent on β, whereby little gain or even a loss is

registered for the lowest values of β, but then increases with an increased value of

β. This behaviour is primarily due to grid committing, which we discuss further on

in Section 4.4.5.

4.3.2 The Warp Split Factor and Thread Coarsening

We now discuss the effects of Wsplit on Performance and remind the reader that in

the Convolutional Gridder, the value of Wsplit directly controls the level of thread

coarsening.

From the results given in Figures 4.4 and 4.5, it is clear that except for the various

Single-Precision experiments with Npol = 1, Wsplit = 2, is in general the right

optimal choice. For Wsplit = 2, three threads are merged. The maximum increase

in Performance when increasing Wsplit from 1 to 2 is well over 60%. On increasing

furtherWsplit from 2 to values of 4 and 5, Performance is generally affected negatively,

except for the Single-Precision, Npol = 1 experiments which generally reach optimal

Performance at Wsplit = 5.

4.3.3 Optimal Solutions

Using Brute Force Search, we did not find any optimal solutions that are independent

of β and Ordering Mode, suggesting that tuning is dependent on the Commit Rate.

Such behaviour is in agreement with the work of Merry [85], whereby he observes

that tuning of his Gridder is dependent on the input’s uv-profile.

We choose two optimal solutions for every combination of Precision and Npol, that
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Solution Precision Npol Wsplit XLoad SM BWarps GBlocks Occupancy

Low
Commit
Rate

single

1 2 16 4 16 1600 37.5
2 2 16 1 8 1600 62.5
3 2 16 1 8 3000 50
4 2 16 4 8 3000 50

double

1 2 16 6 8 3000 75
2 2 16 2 8 3000 50
3 2 16 3 8 3000 37.5
4 2 16 1 8 3000 25

High
Commit
Rate

single

1 2 16 1 1 600 50
2 1 64 1 16 600 25
3 1 32 2 1 600 50
4 2 64 1 1 200 14.1

double

1 2 48 1 8 1600 25
2 1 32 1 1 600 50
3 2 64 1 4 1600 6.2
4 1 64 1 2 200 18.5

Table 4.2: Optimal Solutions for the Convolutional Gridder that we discovered and
chose through Brute Force Search. For each value of Npol and Precision we study
two solutions known as the Low Commit Rate solution and the High Commit Rate
solution. The last column gives the theoretical Occupancy.

we will analyse in-depth in Section 4.4. These optimal solutions are described

in Table 4.2 and will be referred to as the Low Commit Rate and High Commit

Rate solutions. The Low Commit Rate solutions deliver optimal Performance for

those experiments with oversampling factors of roughly 16 and over, where the

Commit Rate is relatively low. On the other hand, the chosen High Commit Rate

solutions are optimal for those experiments with the lowest β using the NI Ordering

Mode, where the Commit Rate is at its highest (refer to Figures 4.6 and 4.7). It is

interesting to note that, excluding three exceptions, the High Commit Rate solutions

have a lower Occupancy than their counter-part Low Commit Rate solutions. The

High Commit Rate solutions are likely adapting to higher memory usage from grid

committing by reducing Occupancy.
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Figure 4.6: Optimal Solutions Performance results for the Single-Precision
Convolutional Gridder. The layout is as described in Section 3.4.5. Performance
metrics plotted in this figure are defined in Section 3.5.2.

132



Chapter 4: The Convolutional Gridder

0
1
2
3
4
5
6
7

0

20

40

60

80

100

0

50

100

0.01
2
5

0.1
2
5
1
2
5

10
2
5

100

0

10

20

30

40

0

20

40

60

80

100

1 2 4 8 16 32 64 128
256
512

0

20

40

60

80

100

1 2 4 8 16 32 64 128
256
512
1 2 4 8 16 32 64 128
256
512
1 2 4 8 16 32 64 128
256
512

IFB-16384-L IFB-65536-L NI-16384-L NI-65536-L SS-16384-L SS-65536-L

IFB-16384-H IFB-65536-H NI-16384-H NI-65536-H SS-16384-H SS-65536-H

β
(N pol =1)

β
(N pol =2)

β
(N pol =3)

β
(N pol =4)

Gridding Rate (GRecs/s)

Optimality Factor (%)

Compute Rate (Inst/rec)

P100:global_hit_rate (%)

P100:l2_tex_read_hit_rate (%)

Commit Rate (Trans/rec)

DRAM Read Rate (Trans/rec)

Figure 4.7: Optimal Solutions Performance results for the Double-Precision
Convolutional Gridder. The layout is as described in Section 3.4.5. Performance
metrics plotted in this figure are defined in Section 3.5.2.
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Figure 4.8: Utilisation results for the Single-Precision Convolutional Gridder. The
layout is as described in Section 3.4.5. Performance metrics plotted in this figure are
defined in Section 3.5.3.
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Figure 4.9: Utilisation results for the Double-Precision Convolutional Gridder. The
layout is as described in Section 3.4.5. Performance metrics plotted in this figure are
defined in Section 3.5.3.
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4.4 In-depth analyses

Optimal Solution Performance results are plotted in Figures 4.6 and 4.7 while

Utilisation results are plotted in Figures 4.8 and 4.9. Results given are all about the

optimal solutions stated in Table 4.2.

Table 4.3 gives the results for the Maximum Performance Experiments, whereby

Efficiency is included. The Maximum Performance Experiments were only

executed on the Low Commit Rate solutions whereby we modified the pre-processing

phase and forced all records to have co-ordinates mapping to the same NN Grid pixel.

In this way we reduced to a minimum the adverse effects on Performance caused by

GCF data retrieval and grid committing. Compression is also switched off, so as to

increase the workload and minimise the Commit Rate.

In order to help us in the detailed analyses that follows, we split results into three

regions dependent on β. The Low-β Region includes all experiment results with

values of β ranging from 1 to that value where Performance stops to increase in a

fast way and stabilises to values near the peak. The second range known as the

Mid-β Region includes results with values of β ranging between where the previous

range stopped and until Performance peaks at β = 64. The High-β Region includes

experimental results with β ≥ 128.

We now provide detailed analyses of the stated results in the next sub-sections.

4.4.1 Utilisation and boundedness

The Single-Precision Maximum Performance Experiments are compute-bound

since the Compute Utilisation metric nears or exceeds 60%. In contrast, the

Double-Precision Maximum Performance Experiments are memory-bound at the

Unified Cache since P100:tex_utilization is at a value of 6 and above. We realise
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Npol 1 2 3 4
Single-Precision

Gridding Rate (GRecs/s) 6.33 4.29 3.83 3.62
Efficiency (%) 8.59 11.6 15.6 19.7
Polarisation Gain 1 1.35 1.81 2.29
Compute Rate (Inst/rec) 23.4 35 37.5 42.2
P100:global_hit_rate (%) 62.5 72.6 68.5 64.8
P100:l2_tex_hit_rate (%) 18.4 0.321 0.294 0.314
Commit Rate (Trans/rec) 1.35e-02 7.25e-03 2.03e-02 2.70e-02
DRAM Read Rate (Trans/rec) 0.875 1.13 1.38 1.63
Compute Utilisation (%) 59.5 60.4 57.7 61.4
P100:tex_utilization 5 4 4 4
P100:l2_utilization 1 1 1 1
P100:dram_utilization 3 3 3 3
P100:shared_utilization 2 2 2 2

Double-Precision
Gridding Rate (GRecs/s) 4.00 3.81 3.23 2.84
Efficiency (%) 10.8 20.7 26.3 30.8
Polarisation Gain 1 1.35 1.81 2.29
Compute Rate (Inst/rec) 32.9 36.1 39.6 42.2
P100:global_hit_rate (%) 79.9 73.3 67.7 62.9
P100:l2_tex_hit_rate (%) 0.66 0.696 0.757 0.807
Commit Rate (Trans/rec) 1.35e-02 2.70e-02 4.05e-02 5.41e-02
DRAM Read Rate (Trans/rec) 1.13 1.63 2.13 2.63
Compute Utilisation (%) 53 55.2 51.5 48.2
P100:tex_utilization 7 7 6 6
P100:l2_utilization 1 1 1 1
P100:dram_utilization 3 3 4 4
P100:shared_utilization 2 2 3 3

Table 4.3: Results of the Maximum Performance Experiments for the Convolutional
Gridder.
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that for all the Maximum Performance Experiments Compute Utilisation and

P100:tex_utilization are substantially high. Probably the change in boundedness

between Single and Double-Precision happened because the increased utilisation of

memory to handle Double-Precision records and GCF data surpassed the increase

in compute.

Experiments in the Mid-β Region using the Low Commit Rate solutions showed

similar Compute Utilisation (Refer to Figures 4.8 and 4.9) to the Maximum

Performance Experiments, but lower P100:tex_utilization and a considerable

increase in P100:l2_utilization that bounds the Double-Precision experiments.

The increased utilisation of the L2 Cache is due to pressure on the Unified Cache

caused by the loading of the GCF data, which we discuss in Section 4.4.3.

Experiments in the High-β Region using the Low Commit Rate solutions are

memory-bound at the device memory (refer to P100:dram_utilization in Figures

4.8 and 4.9), which is to due to more pressure on the caching system caused by

loading of GCF data, which we also discuss in Section 4.4.3.

Without doubt, experiments in the Low-β Region are in general neither compute

nor memory bound and suffer from latency, probably injected by the elevated level

of grid committing which we discuss in Section 4.4.5.

Experiments using the High Commit Rate solutions are neither compute nor memory

bound and suffer from latency. It is interesting to note that when they deliver higher

Performance, than their counter-part Low Commit Rate solutions, both memory and

compute utilisation increase.

4.4.2 Compute

We argue that compute has a considerable impact on the Maximum Performance

Experiments and the Mid-β Range experiments using the Low Commit Rate

138



Chapter 4: The Convolutional Gridder

solutions. Suggesting so are the high values of the Compute Utilisation metric.

Nevertheless, the high utilisation of the caching modules hints that a hypothetical

reduction in the Compute Rate would not bring any substantial Performance

enhancements.

For all the other experiments not mentioned in the previous paragraph, we note

that compute has minimal impact on Performance since Compute Utilisation is

considerably low, and is not the factor that bounds Performance.

It is worth doing a more in-depth analysis of compute. We split compute between

FMA instructions, which take care of the accumulation in registers and all other

instructions, which we collectively refer to as Logic. For Wsplit = 2, the FMA

Warp-level instructions per record are equal to 3×Npol. Using the measurements for

the Compute Rate metric (ref to Figures 4.6 and 4.7 and Table 4.3) we find out that

the ratio between instructions related to Logic and all the compute instructions is

at minimum 71%, implying that impact of compute on Performance is dominated

by Logic.

It is worth to note that the increase in Compute Rate due to an increase in Npol

in the Maximum Performance Experiments is mostly FMA instructions and the

Compute Rate is not too far from being inversely proportional to the Gridding

Rate. Such behaviour suggests that the Polarisation Gain measured for the

Maximum Performance Experiments is limited by Logic, and to attain higher gains,

Logic has to be reduced. In this suggestion, we are assuming that there is no way

to reduce FMA instructions, and that the schedulers in the P100 SMs are working

at nearly full capacity, which we verified to be true by means of profiling.

We now finalise our deliberation on compute by having a look at the Efficiency

metric given for the Maximum Performance Experiments in Table 4.3. Values

stated are by far much lower than what Merry [85] achieved with thread coarsening.

However, one needs to consider that Merry’s work is for complex-valued GCFs and
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not real-valued GCFs, where handling complex-valued GCFs generally doubles the

FMA warp-level instructions. We again point out that Merry did not report on

gridding with 6× 6 GCFs.

It is interesting to note that on comparing Double-Precision Maximum Performance

Experiments with their counter-part Single-Precision Maximum Performance

Experiments, we find out that Efficiency is higher in Double-Precision. At the

same time, Compute Utilisation is lower and Compute Rate is nearly invariant

except for Npol = 1 where Wsplit differs. We see it likely that this behaviour has to

do with the fact that the P100 computes integer and Single-Precision arithmetic on

the same module, but computes Double-Precision on a different module, implying

that the P100 can parallelise better in Double-Precision experiments.

4.4.3 GCF data retrieval

We observed that GCF data retrieval generates around six memory transactions

per record for Single-Precision3 and twelve memory transactions per record for

Double-Precision. These values are much higher than the amount needed to

load data of one record.4 Furthermore, they are a lot higher than the memory

transactions per record generated by grid committing, implying that GCF data

retrieval has a substantial share in memory utilisation. Therefore, in experiments

where there is high utilisation of some memory modules, GCF data retrieval should

tangibly impact Performance.

We find it reasonable to expect that the level of impact on Performance by GCF

data retrieval is related to the ability of the caching system to retrieve data from its

memory store (a HIT) rather than retrieving it from device memory (a MISS). Such
3For the Single-Precision, Npol = 1 case the values are smaller due to a different value of Wsplit.
4The memory transactions needed to load a record for a given Precision and Npol is

approximately equal to the measured DRAM Read Rate in the Maximum Theoretical Performance
Experiments given in Table 4.3 and is constant on varying β.
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ability is dependent on the full size of the GCF data stored in device memory equal

to β2S2 Single or Double Precision floating point numbers where S = 6. The said

ability is also tight to the distribution of the requested GCF data which we verified

to be nearly flat.

As discussed in Section 3.1.4, the cache system in the P100 is made up of two

cascading layers of cache known as the Unified Cache and L2 Cache. We consult

the Performance Metrics P100:global_hit_rate and P100:l2_tex_hit_rate to

understand the cache behaviour while clarifying that these metrics do not just

measure HIT rates for GCF data retrieval but also include MISSed record data

loading.

All experiments at a given β value show similar patterns for the stated

metrics. Initially, at β = 1, P100:global_hit_rate is at a near peak, and

P100:l2_tex_hit_rate is nearly 0. We can assume that GCF data HIT rate

is at a near 100% since the GCF data size is small and P100:l2_tex_hit_rate

is near 0, indicating minimal GCF data related traffic is reaching the L2 Cache,

which would otherwise result in higher values of P100:l2_tex_hit_rate. The

Single-Precision, Npol = 1, Low Commit Rate experiments are an exception whereby

P100:l2_tex_hit_rate is at 20%. The culprit of such a behaviour is because when

Wsplit = 5, the loading of records data from global memory is not fully aligned. Such

a misalignment will cause some transactions related to record data loading to repeat

and HIT the L2 Cache.

We took caution in stating that at β = 1, the P100:global_hit_rate is at a

near peak rather than at the peak. Sometimes the peak is reached at some low

value of β but not at β = 1. There is a simple explanation for this behaviour,

whereby at low values of β, there is a high probability that Sub-Warp Gridders in

a given warp request the same GCF data, which the GPU will coalesce (merge)

in the same group of transactions. Such merging lowers the average memory

transactions executed per record for loading GCF data, which quantifies itself as

141



Chapter 4: The Convolutional Gridder

a decrease in P100:global_hit_rate, since the transactions needed for loading

record data for each record is constant. The stated probability should generally

decrease with increasing β, implying that at low β, it is possible to have a rising

P100:global_hit_rate with a rising β for a constant HIT ratio of the loading of

GCF data. We note that in the Maximum Performance Experiments, the stated

probability is at 100% and in fact, the reported values of P100:global_hit_rate

are lower than for experiments with β = 1.

Results show that increasing β from one to about eight, the P100:global_hit_rate

and P100:l2_tex_hit_rate vary slightly, implying no significant changes in the

behaviour of the caching system. The Gridding Rate increases, but this is due to

less grid committing which we discuss in Section 4.4.5.

A further increase of β up to a value of 128, pushes down the P100:global_hit_rate

and raises the P100:l2_tex_hit_rate. The Unified Cache is now under pressure

and begins to MISS GCF related transactions. L2 is backing up the Unified Cache

and serves MISSed GCF data with HITs on its cache memory. At β = 8, the size of

the GCF data is 2KiB for Single-Precision, similar to the size of the Unified Cache.

Therefore, the pressure on the Unified Cache is expected. Interestingly enough, all

experiments reach a peak in Gridding Rate at β = 64, and the peak values of the

Gridding Rate are not too far from the Maximum Performance Experiments. We

see such behaviour as indicative that in the region of β we are discussing, the change

in behaviour of the caching system has only a minor impact on the Gridding Rate.

Finally, upon increasing β from 128 to 256 and further, the P100:l2_tex_hit_rate

goes down. The Gridding Rate also goes down, and, as we stated in Section

4.4.1, experiments become memory bound. It is clear that now the L2 Cache is

under pressure and, as also indicated by the DRAM Read Rate metric, a substantial

amount of GCF data is transacted from the device memory. At β = 256, the full

Single-Precision stored GCF data has a size of around 8MB, which is two times

bigger than the L2 Cache size, so the pressure on L2 Cache is understandable. It is
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clear that in this discussed region of β, which we previously defined as the High-β

Region, GCF data retrieval has a substantial impact on the Performance of the

Convolutional Gridder, and is the main culprit pushing down Performance.

Chocking effects of the GCF

We suspect that the GCF data retrieval might be choking up other memory

operations. Feeding our suspicion is the nearly constant P100:dram_utilization

for the Low-β Region experiments, whereby in this region, the Commit Rate metric

increases with decreasing β. By design, in the P100, all memory-related operations

need to compete for Unified Cache since there is no direct access to the device

memory. In the Maximum Performance Experiments, the Unified Cache is very

busy. While we do not regard any of the evidence we gave here as conclusive, we

believe as likely that retrieving GCF data is impacting Performance of the other

memory operations, by forcing a ceiling on the P100:dram_utilization.

4.4.4 Loading of records data and use of shared memory

The loading of record data contributes less than 20% of the total memory

transactions, and therefore, we see no concern in regards to the impact on

Performance by such loading. However, the chocking effect discussed before might

be slowing down record data loading.

Shared memory usage is not limiting Performance, in view that the

P100:shared_utilization metric is always less or equal to 3.

143



Chapter 4: The Convolutional Gridder

4.4.5 Grid committing

We expect grid committing to be an inefficient and relatively slow process, since it

requires to read and write on global memory with degraded access patterns. Possibly,

grid committing might also be choked by the GCF data retrieval, as discussed in

Section 4.4.3.

Evidence shows that grid committing is the main reason for Performance variation

upon changes in β and Ordering Mode and controls Polarisation Gain. In the

following paragraphs, we discuss the evidence.

Grid committing is the only step in the Convolutional Gridder that is controlled

by a predicate. Therefore, Performance should have a dependency on the frequency

that Grid Committing executes, measured by the Commit Rate Performance Metric.

Results for the Low and Mid-β Region experiments clearly show a correlation

between Commit Rate and Performance, whereby an increase in Commit Rate results

in loss of Performance. The High-β Region experiments do not follow suit, but this

is due to GCF Data Retrieval biting in.

By design, the Commit Rate is expected to obey the approximate relationship:

Commit Rate ≈ (Commit Rate at Npol = 1)×Npol (4.2)

Minor variations in the relationship are due to different tuning. The relationship

implies that Grid Committing does not contribute to an increase in Polarisation

Gain, but rather pushes the metric towards a value of one. Therefore, increased

Commit Rate values imply lower Polarisation Gain, as validated by results at

low β. They have the highest Commit Rate values and lowest Polarisation Gain.

Results show that a high Commit Rate pushes down the utilisation of compute and

all considered memory modules, causing the Convolutional Gridder to be crippled
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with latency. In our view, this is caused by the degraded memory access patterns

of grid committing, whereby they neither meet the vicinity requirement nor the

coalescence requirement (refer to Section 3.1.6).

Finally, we point out that the increase in Compute Rate with a decrease in β is due

to an increase in the Commit Rate since grid committing, by design, requires the

execution of some extra compute related instructions.

4.5 Summary

This chapter discussed our implementation of a Convolutional Gridder on the P100

for real-valued GCFs of support 6 × 6. We are here summarising in point form the

main Performance results.

• In our experiments, the Convolutional Gridder delivered acceptable

Performance for all Ordering Modes, and the highest Performance with the

IFB Ordering Mode.

• Maximum Performance of the Convolutional Gridder in ideal conditions per

Precision and Npol is stated in the below table.

Npol 1 2 3 4

Single-Precision Maximum Gridding Rate
(GRecs/s) 6.33 4.29 3.83 3.62

Double-Precision Maximum Gridding Rate
(GRecs/s) 4 3.81 3.23 2.84

• When running with maximum Performance, the Convolutional Gridder has a

high level of Compute Utilisation and Memory Utilisation at the Unified Cache.

Compute bounds the Convolutional Gridder when running in Single-Precision,
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while utilisation of the Unified Cache bounds the Convolutional Gridder when

running in Double-Precision.

• The two main limiters that push down Performance from its maximum are

the loading of GCF data, and grid committing. Loading of GCF data will

considerably degrade Performance when there is pressure on the L2 Cache

such that it cannot hold all the GCF data, in its store as to provide the best

HIT rates. In our experiments, such pressure was felt for β ≥ 128, where the

experiments turned Memory-bound on device memory.

• Grid committing degrades Performance according to the frequency at which it

is predicated to occur. In our experiments, elevated levels of grid committing

occured for low values of β, whereby the Convolutional Gridder was not

anymore bound by memory or compute. Instead, The Convolutional Gridder

was riddled with latency injected by the degraded access patterns of grid

committing.

• The Polarisation Gain of the Convolutional Gridder when delivering at

maximum Performance is limited by Logic.
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Chapter

5
This chapter describes and provides analyses to our novel implementation of the

Hybrid Gridder targeted for the P100. It is laid out similarly to Chapter 4.

Validation of the implemented Hybrid Gridder is discussed in Chapter 8.

5.1 Modified Romein’s strategy

We implement the Hybrid Gridder using the same Romein’s strategy used for the

Convolution Gridder, but cosmetically modified as to reflect the use of GCFs with

support S × 1.

Figure 5.1 illustrates the modified thread configuration of Romein’s strategy for

Hybrid Gridding. We use the same line of thought made in Section 4.1.1. Given

a grid size of N × βN , S threads are allocated for gridding a stream of records.

Let’s index each thread using a 1D index (a) where 0 ≤ a < S and index the

two-dimensional grid using a two-dimensional index (c, d) where 0 ≤ c < N and

0 ≤ d < βN . Each thread is given the responsibility to update grid pixels with

index (a+ k1S, k2), where k1, k2 ∈ Z.

The shape of the GCF forces us to reconsider which Ordering Mode for the

input records is best suited for a performant Hybrid Gridder. Romein’s strategy

obtains Performance through the accumulation of grid pixel updates with no grid

committing, where such accumulation is only possible when the window moves

sideways. Therefore, it is likely that SS Ordering Mode delivers better Performance

results than NI or IFB.
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Figure 5.1: Diagram showing the thread configuration of the Romein’s strategy as
cosmetically modified for the Hybrid Gridder. We are showing a grid of size 18 × 36
pixels, over which a record is gridded using a GCF of support 6 × 1. The moving
window shows the area on the grid a gridded record updates. A thread such as that
indexed by (2) is responsible for updating a set of pixels on the grid. Nevertheless,
any given gridded record only updates one pixel from the set.
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5.2 Implementation

Our implementation of the Hybrid Gridder is based on the Convolutional Gridder.

In an attempt to simplify this text, we describe the Hybrid Gridder using the same

sub-sections, and flow of ideas given in Section 4.2, while stating what differs from

the Convolutional Gridder. We note that our implementation is focused on delivering

Performance for a real-valued GCF of support 6× 1. However, the implementation

can easily be modified to cater for GCFs with support up to 32× 1.

5.2.1 CUDA grid layout

The CUDA grid layout is equivalent to that of the Convolutional Gridder. Therefore

the Hybrid Gridder is tuned with the Tuning Parameters BWarps and GBlocks, which

retain the same definition stated for the Convolutional Gridder. We expect the

parameters to influence Performance in the same way discussed in Section 4.2.1.

5.2.2 Sub-Warp Gridders and Instruction Level Parallelism

Similar to the Convolutional Gridder, a warp in the Hybrid Gridder is split into

several Sub-Warp Gridders according to the Tuning Parameter Wsplit. The values

considered for Wsplit in the Brute Force Search are 1,2,4 and 5, and the respective

CUDA thread configuration for each value of Wsplit value is illustrated in Figure 5.2.

Since there are few threads involved in gridding a record, we did not consider the

use of thread coarsening in the Hybrid Gridder, and took a different approach

to obtain an increase in Instruction Level Parallelism and mitigate latency. The

Sub-Warp Gridder is programmed in such a way that it grids two records at one go

by interleaving the execution of Logic and retrieval of GCF data. Such programming
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is possible because much of the gridding Logic for a given record is independent of

the gridding Logic of other records.

Our method for increasing Instruction Level Parallelism in the Hybrid Gridder

requires more registers per thread, which, similar to thread coarsening in the

Convolutional Gridder, can impact Performance. We again use SM as a Tuning

parameter to control the number of registers used per thread.

5.2.3 Input record data and use of shared memory

Input Record Data is split in various streams as listed hereunder.

1. A 128-bit memory aligned four integer index.

2. Npol streams with each stream containing Visibility data of one polarisation.

The first stream is generated from the records’ (u, v)-coordinates and is not

equivalent to the four-integer index input stream used in the Convolutional Gridder.

Shared Memory is used as interim storage, much like how it is used in the

Convolutional Gridder. The loading of record data from global memory is the same,

whereby the Tunning Parameter XLoad defines how many records are loaded at one

and then immediately gridded. Equation 4.1 is still valid for the Hybrid Gridder,

but the record size differs and is tabulated in Table 5.1.

Shared memory is laid out using the same methods used in the Convolutional

Gridder, but chunks are defined differently, and are always 128-bit long. Table

5.1 tabulates the contents in the chunks. We note that, since the Hybrid Gridder

grids two records at one go, some chunks have Visibility data of two records to

ensure 128-bit chunks.
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Figure 5.2: Diagram showing how CUDA threads are organised within a warp for
the different values of the Warp Split Factor (Wsplit). Except for Wsplit = 5, CUDA
threads crossed out are not used for gridding but still used to load record data from
global memory.
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Precision Npol C1 C2 C3 C4 C5 Record size

single

1 I4 V1(2×) 24
2 I4 V1+V2 32
3 I4 V1+V2 V3(2×) 40
4 I4 V1+V2 V3+V4 48

double

1 I4 V1 32
2 I4 V1 V2 48
3 I4 V1 V2 V3 56
4 I4 V1 V2 V3 V4 64

Table 5.1: This table shows how record data is split in 128-bit chunks for the Hybrid
Gridder. The split is in such a way that it can be laid out efficiently in shared memory.
The last column gives the amount of space in bytes a record consumes in shared and
device memory.
Cx: Chunk No x
I4: A four-integer index (128 bits long)
Vx: Visibility value of the xth polarisation.
Vx(2×): Visibility values of the xth polarisation of two consecutive records, ensuring
a chunk length of 128 bits.

5.2.4 Loading of the GCF

Our implementation of the Hybrid Gridder uses the same methods used in the

Convolutional Gridder implementation for loading GCF data. Caching of the GCF

data is forced using the __ldg() function, and loading of record data is set not to

be cached in the Unified Cache.

5.2.5 Output

The Hybrid Gridder outputs non-interleaved multi-polarised grids with the origin

set at the corner of the grid. Internal indexes assume that the origin of the grid is

at the centre, and conversion of indexes takes place during Grid Committing. As we

shall show through experiments, the Hybrid Gridder is not compute-intensive, and

the extra Logic needed for the conversion has only a minor impact on Performance.
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5.3 Brute Force Search results

We execute a Brute Force Search on the Hybrid Gridder over the stated Tuning

Parameters, in the way discussed in Section 3.3. Measurements for the related

group of Performance Metrics described in Section 3.5.4 are plotted in Figure 5.3

for Single-Precision and Figure 5.4 for Double-Precision. Results for the Gridder

Advantage metric are plotted in Figure 5.5.

From the Brute Force Search, we discover optimal solutions, which we report and

analyse in Section 5.3.3.

In the next sub-sections, we analyse the stated Brute Force Search results.

5.3.1 Best Gridding Rate, Polarisation Gain and Gridder

Advantage

A look at the Best Gridding Rate shows excellent Performance for experiments

done with SS Ordering Mode, but poor Performance otherwise. Based on what we

discussed in the previous chapter, such a variation in Performance is due to the

Commit Rate, which we will discuss further on.

The Polarisation Gain metric shows that the Hybrid Gridder is less capable than

the Convolution Gridder to take advantage of gridding multi-polarisation together.

The reasons why are discussed in the detailed analyses.

The measured Gridder Advantage shows that the Hybrid Gridder Performs faster

than the Convolutional Gridder, but only when the SS Ordering Mode is used.

Gridder Advantage goes down with an increase in Npol.
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Figure 5.3: Brute Force Search results for the Single-Precision Hybrid Gridder. The
layout is as described in Section 3.4.5. Performance metrics plotted in this figure are
defined in Section 3.5.4.
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Figure 5.4: Brute Force Search results for the Double-Precision Hybrid Gridder.
The layout is as described in Section 3.4.5. Performance metrics plotted in this figure
are defined in Section 3.5.4.
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Figure 5.5: Gridder Advantage results for the Single and Double Precision Hybrid
Gridders. The layout is as described in Section 3.4.5. The Gridder Advantage metric
is defined in Section 3.5.5.

5.3.2 Effects of the Warp Splitting Factor

Wsplit = 4 is clearly the optimal choice for experiments using the SS Ordering Mode.

Splitting the warp in five instead of four reduces Performance slightly, and we

hypothesise that this is due to the loading of data which is not fully aligned in

the Wsplit = 5 case, which we leave it as a hypothesis.

Interestingly enough, Wsplit = 1 is optimal for the IFB and NI Ordering Modes

and the gain in Performance when compared to Wsplit = 4 is at maximum around

37%. In this thesis, we will not seek to understand the nature of this gain, in view
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Precision Npol
Tuning Parameters

Wsplit XLoad SM BWarps GBlock

single

1 4 16 1 8 1600
2 4 16 1 16 800
3 4 16 1 16 800
4 4 16 1 8 1600

double

1 4 16 1 16 1600
2 4 16 1 16 800
3 4 16 1 8 1600
4 4 16 1 4 1600

Table 5.2: Optimal Solutions for the Hybrid Gridder that we discovered and chose
through Brute Force Search.

that the Hybrid Gridder does not perform well with NI and IFB Ordering Modes.

Nevertheless, it is very likely that the Hybrid Gridder is adapting to a high level of

grid committing.

5.3.3 Optimal solutions

Table 5.2 lists solutions we found through Brute Force Search that are optimal for

SS and NI Ordering Modes. They are unsuitable for experiments using the IFB

Ordering Mode.

5.4 In-depth analyses

In Figures 5.6 and 5.7, we plot the Optimal Solution Performance results, and in

Figures 5.8 and 5.9, we plot the Utilisation results for experiments on the optimal

solutions given in Table 5.2.

We tabulate the results of the Maximum Performance Experiments in Table 5.3. We
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Figure 5.6: Optimal Solutions Performance results for the Single-Precision Hybrid
Gridder. The layout is as described in Section 3.4.5. Performance metrics plotted in
this figure are defined in Section 3.5.2.

158



Chapter 5: The Hybrid Gridder

0
2
4
6
8
10
12
14
16

0

20

40

60

80

100

0

5

10

15

20

0.01

0.1

1

10

100

0

10

20

30

40

0

20

40

60

80

100
2 4 8 16 32 64 128

256

512

0

20

40

60

80

100

2 4 8 16 32 64 128

256

512
2 4 8 16 32 64 128

256

512
2 4 8 16 32 64 128

256

512

IFB-16384 IFB-65536 NI-16384 NI-65536 SS-16384 SS-65536

β
(N pol =1)

β
(N pol =2)

β
(N pol =3)

β
(N pol =4)

Gridding Rate (GRecs/s)

Optimality Factor (%)

Compute Rate (Inst/rec)

P100:global_hit_rate (%)

P100:l2_tex_read_hit_rate (%)

Commit Rate (Trans/rec)

DRAM Read Rate (Trans/rec)

Figure 5.7: Optimal Solutions Performance results for the Double-Precision Hybrid
Gridder. The layout is as described in Section 3.4.5. Performance metrics plotted in
this figure are defined in Section 3.5.2.
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Figure 5.8: Utilisation results for the Single-Precision Hybrid Gridder. The layout
is as described in Section 3.4.5. Performance metrics plotted in this figure are defined
in Section 3.5.3.
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Figure 5.9: Utilisation results for the Double-Precision Hybrid Gridder. The layout
is as described in Section 3.4.5. Performance metrics plotted in this figure are defined
in Section 3.5.3.
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conduct these experiments using the same rationale we used for the Convolutional

Gridder, whereby we modify the pre-processing phase and force the coordinates of

all records to point to the same NN Grid Pixel. We also disabled compression, but

due to memory limitations, we only gridded 12 frequency channels from the input

uv-profile.

We now present an in-depth analysis of the Hybrid Gridder’s Performance based on

the results obtained. We also include comparisons with the Convolutional Gridder.

5.4.1 Boundedness and utilisation

Utilisation Results show that the Hybrid Gridder is in general memory-bound on

the device memory, since the P100:dram_utilization metric is in general equal

to 6 or higher. The only exception is when β is low, whereby such experiments

are neither compute nor memory bound, since none of the utilisation metrics reach

the 60% threshold. In stark difference with the Convolutional Gridding, utilisation

of the L2 Cache and the Unified Cache never bound the Hybrid Gridder, and the

Compute Utilisation is always lower than 40%, implying that the Hybrid Gridder

is far from being compute-bound. In-line with what we have discussed in Section

3.1.6, the loss of boundedness and increase in latency at low value of β is due to a

high level of grid committing with degraded access patterns.

5.4.2 Compute

Based on the findings on utilisation we just discussed, it is reasonable to conclude

that the level of compute, as measured by the Compute Rate metric, has only a

minor impact on the Performance of the Hybrid Gridder.

Let us give some observations regarding the Compute Rate.
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Npol 1 2 3 4
Single-Precision

Gridding Rate (GRecs/s) 17.6 13.6 11 9.55
Gridder Advantage 2.78 3.17 3.58 2.63
Polarisation Gain 1 1.54 1.87 2.17
Compute Rate (Inst/rec) 5.44 6.19 6.82 7.63
P100:global_hit_rate (%) 24.9 19.9 16.6 14.2
P100:l2_tex_hit_rate (%) 0.0728 0.0734 0.0891 0.0918
Commit Rate (Trans/rec) 2.4e-03 4.81e-03 7.21e-03 9.62e-03
DRAM Read Rate (Trans/rec) 0.75 1 1.25 1.5
Compute Utilisation (%) 38.6 33.8 30.1 29.3
P100:tex_utilization 4 4 4 3
P100:l2_utilization 2 2 2 2
P100:dram_utilization 6 6 7 7
P100:shared_utilization 4 4 4 4

Double-Precision
Gridding Rate (GRecs/s) 14.3 10.5 7.73 6.32
Gridder Advantage 3.58 2.76 2.39 2.23
Polarisation Gain 1 1.47 1.62 1.76
Compute Rate (Inst/rec) 5.53 6.39 7.21 8
P100:global_hit_rate (%) 33.2 24.9 19.8 16.5
P100:l2_tex_hit_rate (%) 0.161 0.169 0.188 0.188
Commit Rate (Trans/rec) 4.81e-03 4.81e-03 7.21e-03 4.83e-03
DRAM Read Rate (Trans/rec) 1 1.5 2 2.5
Compute Utilisation (%) 31.8 27 22.4 20.3
P100:tex_utilization 6 5 4 4
P100:l2_utilization 2 2 2 2
P100:dram_utilization 7 7 7 7
P100:shared_utilization 4 4 4 4

Table 5.3: Results of the Maximum Performance Experiments for the Hybrid
Gridder.
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• As stated in Section 5.2.5, grid committing requires some extra Logic, which

is responsible for the increase in Compute Rate when there is an increase in

Commit Rate.

• There is a slight increase in Compute Rate with a decrease in Nnn. We

attribute the increase to instructions related to initialisation that average out

less in the metric because of a decrease in workload.

5.4.3 GCF data retrieval

Loading of the GCF through the Unified Cache presented a similar behaviour to

that of the Convolution Gridder. However, since the Hybrid Gridder deals with a

smaller sized GCF, there are some differences worth to note.

• Trends in P100:l2_tex_hit_rate and DRAM Read Rate clearly show that the

L2 Cache is never under pressure, even at the highest β considered. We can

explain this behaviour by pointing out that the L2 Cache in the Hybrid Gridder

has enough space to store all the GCF data even at β = 512, since the GCF

data size is 6β times smaller than the GCF data size of the Convolutional

Gridder.

• We find no evidence in our results showing any chocking effects. The Hybrid

Gridder requires far fewer transactions per record to load GCF data than the

Convolutional Gridder, and therefore GCF data loading should be competing

less for Unified Cache resources.

• The P100:global_hit_rate is visibly lower for the Hybrid Gridder when

compared to the Convolutional Gridder. This behaviour happens because the

loading transactions per record ratio between GCF data loading and record

data loading is much lower for the Hybrid Gridder than for the Convolutional

Gridder.
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• The P100:global_hit_rate never peaks at β = 1, since, by design, all

Sub-Warp Gridders will request the same GCF data at β = 1, which will be

coalesced in the same transactions. Using argumentation made for a similar

observation in the Convolutional Gridder (Section 4.4.3) we can explain why

P100:global_hit_rate never peaks at β = 1 in the Hybrid Gridder.

5.4.4 Loading of records from global memory and use of

shared memory

We state that loading of records from global memory controls the Performance of the

Hybrid Gridder, particularly in experiments where the Commit Rate is relatively low.

The fact that the Maximum Performance Experiments are device memory bound

corroborates our statement, in view that P100:dram_utilization in the Maximum

Performance Experiments is mostly related to record data loading. The reader can

validate our last statement by noticing that the DRAM Read Rate in the Maximum

Performance Experiments is always equal to the record size given in Table 5.1 when

expressed in terms of 32-bytes transactions.

In experiments with a high Commit Rate, loading of record data needs to compete

for device memory utilisation against grid committing. Therefore, an interplay

between loading of record data and grid committing is controlling Performance.

As a direct consequence of our statement, Polarisation Gain is controlled by the

loading of record data and grid committing. When Commit Rate is low enough to

cause a negligible impact on Performance, Polarisation Gain is mostly controlled

by the savings made in record size, while increasing Npol.1

In regards to shared memory usage, the measured P100:shared_utilization
1There is a saving in record size of 4 integers for a unit increase of Npol.
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metric is sometimes higher than what we measured for the Convolutional Gridder,

but in no way high enough to indicate any considerable limitations in Performance

caused by the use of shared memory.

5.4.5 Grid committing

As expected, grid committing controls Performance of the Hybrid Gridder in a

similar way to the Convolutional Gridder. Results show a good correlation between

the Commit Rate and Gridding Rate, with some exceptions when changing the

value of Nnn. Based on experience, these exceptions are probably due to a

deteriorating vicinity requirement.

The Hybrid Gridder did not perform well for NI and IFB Ordering Modes, because

the Commit Rate is high enough to dominate Performance over the loading of record

data.

When decreasing β in the SS Ordering Mode experiments, Commit Rate increases

and begins to dominate Performance in such a way that the Gridding Rate and

Polarisation Gain decrease with decreasing β. The Polarisation Gain is set

to drop with an increase in Commit Rate, because atomic reductions of grid

committing push Polarisation Gain towards 1 when increasing Npol.

5.5 Summary

This chapter discussed our implementation of a Hybrid Gridder on the P100 for

real-valued GCFs of support 6×1. We are here summarising in point form the main

Performance results.
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• In our experiments, the Hybrid Gridder delivered acceptable Performance for

the SS Ordering Mode only.

• Maximum Performance of the Hybrid Gridder in ideal conditions per Precision

and Npol is stated in the below table.

Npol 1 2 3 4

Single-Precision Maximum Gridding Rate
(GRecs/s) 17.6 13.6 11 9.55

Double-Precision Maximum Gridding Rate
(GRecs/s) 14.3 10.5 7.73 6.32

• When delivering maximum Performance, the Hybrid Gridder is memory-bound

on device memory, where device memory utilisation is dominated at near 100%

by the loading of record data.

• The main limiter that pushes down Performance from the Hybrid Gridder

maximum is grid committing.

• In stark difference from the Convolutional Gridder, GCF data retrieval does

not considerably degrade Performance in any of our experiments. In our

experiments, there was never pressure on L2 Cache, since it was always able

to hold all the GCF data in its store as to provide the best HIT rates.

• Grid committing degrades Performance according to the frequency at which it

is predicated to occur. In our experiments, elevated levels of grid committing

occurred for low values of β in the SS Ordering-Mode, and for all values of β

in the IFB and NI Ordering Modes. At elevated values of grid committing,

the Hybrid Gridder loses memory-bound status, since grid committing injects

latency due to its degraded pattern in accessing global memory.

• When the Hybrid Gridder is delivering at maximum Performance,

Polarisation Gain is limited by the loading of record data from device

memory.
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• In our experiments Gridder Advantage varied from a low of 1.45 to a peak

of 6.8.
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Chapter

6
This chapter discusses and provides analyses to our naive and straightforward

implementation of the NN Gridder.

This chapter is organised into four sections. The first section describes the

implementation of the NN Gridder and the following section states and provides

analyses on Brute Force Search results. Another section progresses towards an

in-depth analyses of results for experiments on the optimal solutions. The last

section is a simple summary of the main results.

Note that validation of the NN Gridder is discussed in Chapter 8.

6.1 Gridder implementation

Our implementation of the NN Gridder is simple, since all that is required is to

add input Visibility records to a pixel on the output grid. The main trick for good

Performance is to seek ways how to access global memory with access patterns that

try to adhere as much as possible to the coalescing and vicinity requirements.

6.1.1 Inputs and output

The NN Gridder gets record data in two input streams as given hereunder:

169



Chapter 6: The NN Gridder

1. Position of records on the output NN Grid expressed by a 32-bit unsigned

integer.

2. A stream containing polarisation-interleaved Visibility data.

The NN Gridder grids on a multi-polarised interleaved Grid with the origin at the

corner.

6.1.2 Occupancy reduction

We expect the NN Gridder to be memory bound, and try to control Occupancy via

two Tuning Parameters, BWarps and Mshared. BWarps sets the number of warps in a

CUDA block, similar to how it is defined for the other Gridders. Mshared states the

size in bytes of shared memory to be allocated per CUDA block. The NN Gridder

does not use shared memory, but the allocation of shared memory sets up a ceiling

on Occupancy.

We also define the Tuning Parameter GBlocks for the NN Gridder, in the same way

we did for the two other Gridders. In general, we do not expect GBlocks to have any

effect on Performance, and we just included it to keep some similarities with the

other Gridders.

6.1.3 Thread configuration

In the NN Gridder, we consider the whole CUDA Grid as just one big Gridder. All

CUDA threads in the CUDA Grid are indexed in their natural order, with every

2Npol CUDA threads grouped and assigned to grid a full record as depicted in Figure
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Figure 6.1: Layout of the CUDA threads in a warp for the NN Gridder.

6.1. Consecutive groups of CUDA threads are assigned to grid consecutive input

records, such that a warp grids 32/(2 ·Npol) records in parallel, given Npol = 1, 2 or

4. For Npol = 3, some records will be gridded by two warps. All threads will load the

data required from the input streams and immediately commit to the output grid.

If the CUDA grid provides fewer CUDA threads than needed to grid all records,

then the CUDA threads will cycle through more than one record, in a way that the

previously stated layout is kept intact.

The layout ensures access to global memory to load input record data with optimal

access patterns. The layout also helps to have access patterns for grid committing

to be as close as possible to optimal, but at the end of the day, such optimally

will depend on the input uv-profile. Interleaving the output grid helps to enhance

the degraded access patterns, in particular the coalescence requirement for optimal
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access patterns.

An increase in Npol will generally force an increase in coalescence for a warp

grid commit request, since all polarisations of a given record are adjacent to each

other. There is a guarantee that the NN Gridder fully adheres to the coalescence

requirement if run in Single-Precision with Npol = 4 or Double-Precision with

Npol = 2 or Npol = 4. We would also like to get as close as possible to reach

the vicinity requirement, for which we see that our best chances are when the input

record data is ordered in SS Mode.

Finally, we note that the layout sets a minimum for the Commit Rate, which

is obtained when grid committing adheres to the coalescence requirement. This

minimum is described in Equation 6.1

Minimum Commit Rate = sizeof(Precision)× 2Npol

32 (6.1)

where sizeof(Single-Precision) = 4 and sizeof(Double-Precision) = 8

6.2 Brute Force Search

We execute a Brute Force Search on the NN Gridder over the stated Tuning

Parameters. Measurements for the Best Gridding Rate and Polarisation Gain

described in Section 3.5.4 are plotted in Figure 6.2. Gridder Advantage results are

plotted in Figure 6.3.

We discovered optimal solutions which we report and analyse in Section 6.2.2.

Due to memory limitations, we could not analyse the behaviour of the NN Gridder
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for Nnn = 65536, and instead presented analyses on the behaviour of the NN Gridder

with Nnn = 8192.

In the next sub-sections we analyse the stated Brute Force Search results.

6.2.1 Best Gridding Rate, Polarisation Gain and Gridder

Advantage

As expected, in our test scenarios, the NN Gridder grids fastest when the SS

Ordering Mode is used, and Performance decreases when changing to the IFB

and NI Ordering Modes. There is a trend whereby the NN Gridder has the

best Polarisation Gain for the Ordering Mode that has the least Performance.

Detailed analyses showed that the varying behaviour observed is related to grid

committing, which we discuss in Section 6.3.4.

The Gridder Advantage results show that the NN Gridder grids faster than the

Convolutional Gridder but the Hybrid Gridder beats the NN Gridder for all β ≥ 16.

6.2.2 Optimal solutions

Through the Brute Force Search, we discovered a solution that is optimal for all

combinations of Precision and Npol for the experiments analysed in this chapter.

This solution is tabulated in Table 6.1.
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Figure 6.2: Brute Force Search results for the Single and Double Precision NN
Gridders. The layout is as described in Section 3.4.5. Performance metrics plotted in
this figure are defined in Section 3.5.4.
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Figure 6.3: Gridder Advantage results for the Single and Double Precision NN
Gridders. The layout is as described in Section 3.4.5. Performance metrics plotted in
this figure are defined in Section 3.5.5.
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Figure 6.4: Optimal Solutions Performance results for the Single-Precision NN
Gridder. The layout is as described in Section 3.4.5. Performance metrics plotted
in this figure are defined in Section 3.5.2.
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Figure 6.5: Optimal Solutions Performance results for the Double-Precision NN
Gridder. The layout is as described in Section 3.4.5. Performance metrics plotted in
this figure are defined in Section 3.5.2.
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Figure 6.6: Utilisation results for the Single-Precision NN Gridder. The layout is as
described in Section 3.4.5. Performance metrics plotted in this figure are defined in
Section 3.5.3.
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in Section 3.5.3.
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Precision Npol Mshared BWarps GBlocks

single

1

49152 32 16002
3
4

double

1

49152 32 16002
3
4

Table 6.1: Optimal Solutions for the NN Gridder that we discovered through Brute
Force Search.

6.3 Detailed analyses

In Figures 6.4 and 6.5, we plot the Optimal Solution Performance results and in

Figures 6.6 and 6.7 we plot the Utilisation results. The results we plot are of

experiments done with the discovered optimal solutions stated in Table 6.1.

We tabulate the results of the Maximum Performance Experiments in Table 6.2. In

these experiments, we modify the pre-processing phase to force input record data to

have an incremental position on the NN Grid to ensure an optimal access pattern

for grid committing.

6.3.1 Boundedness and utilisation

The Maximum Performance Experiments are memory-bound on the device memory,

whereby the measured P100:dram_utilization metrics are at a value of six for

Single-Precision and eight for Double-Precision. Utilisation values for the two caches

(Unified and L2) are low. In the other experiments P100:dram_utilization,

degrades. We attribute such degradation to the degrading access patterns of grid

committing, which we discuss in Section 6.3.4.
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Npol 1 2 3 4
Single-Precision

Gridding Rate (GRecs/s) 15.3 7.85 5.4 4.06
Gridder Advantage 2.42 1.83 1.41 1.12
NN Gridder Advantage over Hybrid 0.87 0.58 0.49 0.44
Polarisation Gain 1 1.03 1.06 1.06
Compute Rate (Inst/rec) 0.467 0.867 2.76 1.65
Commit Rate (Trans/rec) 0.25 0.5 0.75 1
DRAM Read Rate (Trans/rec) 0.625 1.13 1.63 2.13
Compute Utilisation (%) 2.87 2.74 5.98 2.7
P100:tex_utilization 1 1 1 1
P100:l2_utilization 3 3 3 3
P100:dram_utilization 6 6 6 6
P100:shared_utilization 0 0 0 0

Double-Precision
Gridding Rate (GRecs/s) 9.98 5.14 3.47 2.63
Gridder Advantage 2.50 1.35 1.07 0.93
NN Gridder Advantage over Hybrid 0.70 0.49 0.45 0.42
Polarisation Gain 1 1.03 1.04 1.05
Compute Rate (Inst/rec) 0.518 0.965 2.9 1.85
Commit Rate (Trans/rec) 0.5 1 1.5 2
DRAM Read Rate (Trans/rec) 1.13 2.13 3.13 4.13
Compute Utilisation (%) 2.08 2 4.06 1.96
P100:tex_utilization 1 1 1 1
P100:l2_utilization 2 2 2 2
P100:dram_utilization 8 8 8 8
P100:shared_utilization 0 0 0 0

Table 6.2: Results of the Maximum Performance Experiments for the NN Gridder.
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All results show that compute is utilised minimally in the NN Gridder, whereby

Compute Utilisation is always below 20%.

6.3.2 Compute

Based on the discussion made in the previous sub-section, compute should have

no major impact on the NN Gridder’s Performance. We now explain some of the

behaviour of the Compute Rate metric.

1. The variation in Compute Rate with a change in Nnn is due to initialisation

logic averaging out differently.

2. There is no variation in the Compute Rate for a change in Ordering Mode,

which is expected, since there are no predicates based on the record that can

vary execution. In particular, grid committing is guaranteed to happen for

every record processed.

3. By design, Compute Rate increases with an increase in Npol, but for Npol = 3,

the increase does not follow the trend. The compute for Npol = 3 is much

larger than suggested by the trend since Logic related to division and modulus

with the integer 3 need more instructions to compute than with integers 1,2

and 4.

6.3.3 Loading of input record data

The loading of input record data is responsible for a maximum of 44% of device

memory transaction which happens in the Maximum Performance Experiment for
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Single Precision at Npol = 1. Variations in the percentage are dependent on the

Commit Rate, Npol and Precision. Since Performance of the NN Gridder is impacted

by memory usage, we conclude that the loading of input record data from memory

has an impact on Performance.

6.3.4 Grid committing

We first point out that the measurement of Commit Rate taken for the

Single-Precision experiments with Npol = 4 show the unexpected behaviour

discussed in Section 3.5.2 when the Commit Rate metric was being defined.

Grid committing is the central player in limiting and varying Performance. The

access patterns generated by grid committing play a central role in Performance.

The Maximum Performance Experiments provide optimal access patterns which

minimise the Commit Rate and maximise P100:dram_utilization. The

P100:dram_utilization tracks very well the measured Gridding Rate when

comparing experiments with equal Npol and Precision. In the context of the NN

Gridder, a decrease in P100:dram_utilization implies an increase in latency

brought up by degrading grid committing access patterns.

An increase in Commit Rate seen in experiments with equal Npol and Precision is

also another indication that access patterns are degrading. However, the Commit

Rate only changes when access patterns degrade for the coalescing requirement and

not the vicinity requirement. For example, there is no change in commit rate for

Double-Precision experiments with Npol = 2 and Npol = 4, where adherence to the

coalescence requirement is guaranteed.

We previously stated that the Maximum Performance Experiments minimise the

Commit Rate and we validate this statement by noting that the Commit Rate of the
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Maximum Performance Experiments abide with Equation 6.1, which states what

the minimum Commit Rate should be.

We finalise our analyses by commenting on the behaviour of the Polarisation

Gain. All Maximum Performance Experiments reported a Polarisation Gain

of just a little bit more than one. Theoretically, if we had to consider the grid

committing access pattern, we expect a value exactly equal to one. The extra small

increase in Polarisation Gain is probably due to the increase in workload when

increasing Npol. Such an increase forces each CUDA thread to grid more records,

which reduces the impact of initialisation Logic in all CUDA threads.

As we stated in Section 6.2.1, Polarisation Gain seems to be highest for the least

performant Ordering Modes. It stands to reason that, since the worst Performing

Ordering Modes should produce the most degraded grid committing access patterns,

the mandatory improvement in the access patterns caused by an increase in Npol

gives the best boost in Performance.

6.4 Summary

This chapter discussed our implementation of an NN Gridder on the P100. We are

here summarising in point form the main Performance results.

• In our experiments, the NN Gridder delivered the highest level of Performance

using the SS Ordering Mode. Performance decreases for the IFB and NI

Ordering Modes in the order mentioned.

• Maximum Performance of the NN Gridder in ideal conditions per Precision

and Npol is stated in the below table.
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Npol 1 2 3 4

Single-Precision Maximum Gridding Rate
(GRecs/s) 15.3 7.85 5.4 4.06

Double-Precision Maximum Gridding Rate
(GRecs/s) 9.98 5.14 3.47 2.63

• When running with maximum Performance, the NN Gridder is memory-bound

on device memory, which is utilised by the loading of record data and grid

committing. The main limiter that pushes down Performance from the NN

Gridder maximum is the quality in memory access pattern of grid committing.

• Polarisation Gain of the NN Gridder is controlled by the improvement made

in the grid committing global memory access patterns while increasing Npol.

• In our experiments, Gridder Advantage varied from a low of 0.94 to a peak of

7.05. Nevertheless, the NN Gridder Advantage over Hybrid was below one

for most of the Single-Precision experiments with β > 8 and Double-Precision

experiments with β > 4.
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The Pruners

Chapter

7
This chapter discusses and provides analyses on two Pruners, called the Column

Pruner and Row Pruner, used in the Pruning Step of Hybrid Gridding and Pruned

NN Interpolation. Pruned NN Interpolation uses the Column and Row Pruners,

with the Column Pruner entrusted to de-interleave the grid. In contrast, Hybrid

Gridding makes use only of the Column Pruner, with de-interleaving disabled.

We do remind the reader that our Pruners are convolution-based, with the theory

discussed in Section 2.5. They implement Equations 2.56, 2.60, and 2.63 which

apply a convolution and downsample the grid. They do not apply an IFFT, and in

our implementations, the IFFT is still executed by the cuFFT library as explained

in Section 3.2.7. We shall use α to represent the down-sampling factor, which in our

studied implementations is always equal to β/2.

Our primary goal in this chapter is to investigate how much Performance and

Pruning Gain the Pruners can deliver in the context of the studied implementations.

We also have a secondary goal, which is to verify the aliasing suppression properties

of the least-misfit gridding functions (Ye et al. [77]) when used as GCFs for our

Pruners. We shall investigate how well aliasing is suppressed below arithmetic noise.

This chapter is organised as follows: In the first section, we describe the

implementation of the Row and Column Pruners. In Section 7.2 we explain the

Performance-related experiments of which results are given and analysed in the

subsequent four sections. In Section 7.7 we deliver results for experiments related to

aliasing, which serves as a validation of the Pruners, and then finalise the chapter

in Section 7.8 with a small summary of the important results.
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7.1 Implementation details

We implement the Row and Column Pruners using the same design, with the main

difference being the layout of the CUDA threads within the CUDA grid. In the

next sub-sections, we shall explain the commonalities of the two Pruners by first

making some mathematical formulation to help us define the Input Chunk and

then in various sub-sections, delve into the main concepts. Finally, in the last

two subsections, we give details specific to a given Pruner.

7.1.1 Mathematical formulation

Let us first do some mathematical formulation that serves as an aid to discuss the

implementation of the Pruners.

Let M be equal to the number of pixels in a row or column to be pruned. We

define I = {i−αS/2, i−αS/2+1, ..., i0, i1, ..., iM−1, iM , iM+1, ..., iM+αS/2−1} to be a series

of pixels, input to the Convolution-Based Pruner. I is circularly convolved with a

GCF of support Sz in tandem with downsampling by a factor of α. The output is

the series O = {o0, o1, ..., oM/α−1}. We assumeM to be always divisible by α and for

convenience we included in I extra elements at the head and tail to help in applying

circular convolution. At the head of I, extra elements are with an index m < 0 and

they are equivalent to the elements with index (M +m). At the tail, extra elements

are with index m > M−1, and they are equivalent to elements with index (m−M).

We conveniently order the GCF values that are used in the computation in a series

of vectors Cα = {C ′0,C ′1, ...,C ′α−1} whereby a given element C ′n is a vector defined

by C ′n = {cn,0, cn,1, ..., cn,S−1}, which contains ordered values of the GCF such that

oj ∈ O is computed using Equation 7.1.
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oj =
S−1∑
s=0

α−1∑
a=0

cb,siα(j−S/2+s)+a (7.1)

For better readability we define the Sz long vectors Ij,b =

{iα(j−S/2)+b, iα(j−S/2)+b+α, ..., iα(j−S/2)+b+(S−1)α} such that Equation 7.1 can be

re-written as:

oj =
α−1∑
a=0
C ′a · Ij,a (7.2)

It is important to realise that Ij+1,a becomes equal to Ij,a after removing the first

element of Ij,a and adding a new element at the end. The main takeaway from

Equation 7.2 is that elements in Ij,a will only need C ′a to calculate the output and

no other vector elements in Cα

We want to parallelise the computation of O and the first step we do is define the

Tuning Parameter T such that we independently calculate α/T partial output series

Op = {op,0, op,1, ..., op,M/α−1}, 0 ≤ p < α/T , where T ∈ N, T 6= 0 and T divides α.

Op is described by the set of Equations 7.3.

oj =
α/T−1∑
p=0

op,j (7.3a)

op,j =
pT+T−1∑
a=pT

C ′b · Ij,a (7.3b)

We note that all elements in Ij,a are all involved in calculating elements in one

partial output series Op and are never involved in calculating other partial output

series.
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We now define Ip as the series of all elements in I that calculate Op.

Ip =
pT+T−1⋃
b=pT

M−1⋃
j=0

Ij,b (7.4)

where the operator ⋃ is the union of vectors or series, outputting a series containing

all elements in the vectors and ordered by the value of their index in I.

We can now split Ip into Input Chunks (Zp,x), sometimes referred to just as chunks.

Each chunk except for the last one contains Szα/T neighbouring elements from Ip,

as described in Equation 7.5.

Zp,x =


pT+T−1⋃
b=pT

xSz+x−1⋃
j=xSz

Ij,b if (x+ 1)Sz < M − 1
pT+T−1⋃
b=pT

M−1⋃
j=xSz

Ij,b if (x+ 1)Sz ≥M

(7.5)

The Input Chunk is defined such that we can apply Algorithm 7.1. A given Input

Chunk "finalises" the calculation of S neighbouring elements in Op, while it prepares

some calculations for the next S elements in Op.

We achieve parallelism in our implementations via the Input Chunks, whereby the

processing of different Input Chunks is generally distributed over different CUDA

threads. However, a given Input Chunk is guaranteed to be processed only by one

CUDA thread.
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Input: Zp,x = {z0,0, z0,1, ..., z0,T−1, z1,0, ..., z1,T−1, ..., zS−1,0, zSz−1,1, ..., zSz−1,T−1}

Parameters: GCF Support (Sz), Tuning Parameter T

Helper Input: GCF Data: {C ′pT ,C ′pT+1, ...,C
′
pT+T−1},

Sz Pre-filled Accumulators: Acc[S]

(From calculation of previous chunk Zp,x−1)
Output: Sz neighbour elements of Op denoted by {op,0, op,1, ..., op,Sz−1}, Sz

Accumulators Acc[Sz] for use in when calculating with the next chunk

Zp,x+1.

begin

for a ← 0 to S-1 do

for t ← 0 to T-1 do

Load zt,a;

for all s ← 0 to S-1 do

g ← (s+ a)modS;

Acc[g] = Acc[g] + zt,acpT+t,s;

end

end

Save op,a = Acc[a] ;

Acc[a]← 0;

end

end

Algorithm 7.1: Algorithm showing how an Input Chunk Zp,x is used to
calculate Sz partial outputs. It needs accumulated data generated through the
previous Input Chunk Zp,x−1 and will generate accumulated data for the use
of the next Input Chunk Zp,x+1.
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7.1.2 Regularity and constant indexing

We use Algorithm 7.1 to take advantage of the regularity of the input and output

grids to reduce some of the Logic previously needed by the Convolutional and

Hybrid Gridders and enable the use of constant indexing. Constant indexing is

a type of indexing that can be evaluated at compile-time and therefore optimised

out from execution. Constant indexing is necessary to store C++ arrays exclusively

in registers, whereby we use such arrays to store Sz accumulators and GCF data.

In implementing Algorithm 7.1, we explicitly request the compiler to unroll all the

loops, in order to enable constant indexing and optimise out Logic. We apply a

slightly different code to handle the first Input Chunk as to handle the elements

with a negative index, and we modify Algorithm 7.1 for the last chunk since the last

chunk differs in size. The latter modification includes the introduction of predicates

which breaks constant indexing of the accumulators. Through various experiments,

we were able to conclude that loss of constant indexing in the processing of the last

chunk has only a minor impact on Performance.

7.1.3 Distribution of chunks and use of shared memory

We distribute calculation of chunks for specific rows or columns over different blocks,

in a bid to increase parallelism. Too few chunks processed by a CUDA block leads

to a substantial increase in Commit Rate. Therefore, as to control such increase,

we define the Tuning Parameter Minimum Chunks Per Thread (Minchunks) to state

a minimum of chunks that a CUDA thread has to handle.

By design, we entrust warps in a given CUDA block to calculate the same chunks of

specific rows or columns but with different index p. In this way, we can use shared

memory to add partial outputs together before committing to global memory. When
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it is time to save a partial output as specified in Algorithm 7.1, the partial output is

written to shared memory. Once Sz partial outputs are written in shared memory,

the block is synchronised, and one warp performs additions over shared memory and

commits the result to the output grid.

7.1.4 Handling GCF data

As we hinted before, on initialisation, we load and store GCF data into C++ arrays

and use such data throughout the whole execution of a CUDA thread without

repeated loading from global memory. Such loading is possible because of constant

indexing that allows the C++ array to be stored in the CUDA thread registers. In

this way, we get rid of latency reported for the Hybrid Gridder and the chocking

issue reported for the Convolutional Gridder, due to loading of the GCF data. Since

registers are a scarce resource, it is often not viable to load all the GCF data in

one CUDA thread, and this is the reason why T was earlier defined as a Tuning

Parameter, controlling the GCF data to be loaded by a given CUDA thread. We

do point out that an increase in T implies more registers being used to store GCF

data in each CUDA thread, which drives Occupancy down. The Column Pruner

tends to be memory bound, implying a reduction in Occupancy might be beneficial

to Performance.

7.1.5 Column Pruner specifics

In the Column Pruner, we consider the complex-valued column as two real-valued

columns and assign consecutive CUDA threads in a warp to handle input chunks

(Zp,x) from consecutive real-valued columns with equal p and x indexes. In this
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way we ensure that a warp loads input pixels from global memory with an optimal

access pattern, honouring the coalescing and vicinity requirements.

As mentioned previously, the warps of a CUDA block work all on the same columns

processing input chunks with equal x but different p. We define the Tuning

Parameter BWarps to control the number of warps in a CUDA block, and we do

not allow BWarps > α/T .

As mentioned earlier, the Column Pruner can de-interleave an interleaved grid in

tandem with downsampling. Such de-interleaving forces the Column Pruner to

commit with a degraded access pattern that does not adhere to Coalescence and

Vicinity requirements and therefore impacts Performance negatively.

7.1.6 Row Pruner specifics

We found the implementation of a Row Pruner quite challenging, particularly in

finding a way to have the loading of data and grid committing done with optimal

access patterns.

In order to attain optimal access patterns, we force the Tuning Parameter T to be

always equal to 1 and in general, have a CUDA warp assigned a part of a row to

convolve. A CUDA thread handles either the imaginary or real part of the chunk,

and therefore we use a pair of consecutive CUDA threads to handle a complex-valued

Input Chunk in a row. Consecutive CUDA thread pairs on the warp are assigned to

handle Input Chunks of same index x but increasing index p. The discussed thread

layout requires 2α threads to handle all partial outputs for Input Chunks with equal

index x. If α < 16 a warp provides more CUDA threads than needed, and in such

a case, the warp is sub-divided to handle chunks with different x at one go, thus

breaking the vicinity requirement for the loading of record and grid committing. For
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α > 16 more CUDA threads are required than supplied by a warp, and in this case,

the necessary number of warps (that is α/16 warps) are assigned within the same

CUDA block to calculate all chunks of the same row with equal index x.

7.2 Experiments

The experiments on the Pruners we here report are different from what we reported

for the Gridders.

We report results for experiments done using quad-polarised (N_pol=4) grids only

and consider GCFs with support Sz of 6, 8, 10, 12 and 14. We do three different

sets of experiments which we now list and describe.

1. Interleaved Square Grid Experiments: In this set of experiments, the

input to the Pruners is an 8192×8192 polarisation-interleaved grid with Npol =

4 which is downsampled to 8192α−1 × 8192α−1 by first applying the Column

Pruner and subsequently the Row Pruner. The Column Pruner de-interleaves

the grid.

We designed the Interleaved Square Grid Experiments to study the Pruning

Step of Pruned NN Interpolation (Algorithm 2.6).

2. Non-Interleaved Square Grid Experiments: This set of experiments is

nearly identical to the Interleaved Square Grid Experiments, but the input

grid is not interleaved, such that the Column Pruner does not de-interleave.

We designed this set of experiments for comparison with the Interleaved Square

Grid Experiments.

3. Non-Interleaved Rectangular Experiments: In this set of experiments
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a quad-polarised non-interleaved grid of size 65536(2α)−1 × 65536 is fed to

the Column Pruner as to down-sample the Grid to a size of 65536(2α)−1 ×

65536α−1.

We designed this set of experiments to study the Pruning Step of Hybrid

Gridding (Algorithm 2.5).

7.3 Brute Force Search results

We executed a Brute Force Search over the stated Tuning Parameters for the

Column and Row Pruners and discovered solutions whose Performance is with an

Optimality Factor well above 90% for all the experiments we are reporting. Tables

7.1 and 7.2 list our choice of optimal solutions on which we deliver an in-depth

analysis.

7.4 Performance of the Column Pruner

We plot the Optimal Solution Performance results of the Column Pruner in

Figures 7.1 and 7.2 and Utilisation results in Figures 7.3 and 7.4. We remind the

reader that in context of the Pruners and the measured Performance Metrics, a

Gridded Record, many times referred to just as a record, is one single-polarised

complex-valued pixel, in the input grid.

Performance obtained for the Column Pruner can be summarised with the following

five statements:
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α Sz
Single Precision Double Precision

T BWarps Minchunks T BWarps Minchunks

2 6,8,10,12,14 1 2 10 1 2 10
4 6,8,10,12,14 1 4 10 1 4 10
8 6,8,10,12,14 1 8 10 1 8 10

16
6,8 1 16 10 2 8 10
10 2 8 10 1 16 10
12 2 8 10 4 4 10
14 4 4 10 2 8 10

32

6 8 4 10 8 4 10
8 8 4 10 4 8 10
10 2 16 5 2 16 10
12 4 8 10 2 16 10
14 4 8 10 2 8 10

64

6 4 16 10 8 8 10
8 8 8 5 4 8 10
10 2 32 5 2 16 10
12 4 16 10 4 8 10
14 4 8 5 2 8 5

128
6,8 1 8 5 2 2 5
10 1 8 5 1 8 1
12 1 8 5 2 8 1
14 1 8 5 2 8 5

256
6 2 4 5 2 4 5
8 1 4 10 2 4 5

10,12,14 2 4 5 2 4 5
512 6,8,10,12,14 1 4 10 1 4 10

Table 7.1: Optimal Solutions for the Column Pruner that we discovered and chose
through Brute Force Search.
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α Sz
Single-Precision Double-Precision
BWarps Minchunks BWarps Minchunks

2

6 16 10 8 10
8 16 10 8 10
10 16 10 8 10
12 2 10 8 10
14 2 10 8 10

4

6 4 10 2 5
8 8 5 4 10
10 4 5 4 5
12 4 5 4 5
14 4 5 2 5

8

6 4 10 4 10
8 8 5 4 5
10 2 5 2 5
12 4 10 8 5
14 4 10 2 5

16

6 4 10 4 10
8 8 5 4 5
10 2 10 4 10
12 4 10 8 5
14 4 10 2 5

32

6 4 10 4 15
8 4 10 4 15
10 4 5 4 5
12 4 10 4 5
14 4 5 2 5

64

6 4 10 4 10
8 4 5 4 10
10 4 5 4 5
12 4 5 4 5
14 4 5 4 5

Table 7.2: Optimal Solutions for the Row Pruner that we discovered and chose
through Brute Force Search.
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Figure 7.1: Optimal Solutions Performance results of the Column Pruner, in the
Interleaved and Non-Interleaved Square Grid Experiments. The layout is as described
in Section 3.4.5. Performance metrics plotted in this figure are defined in Section
3.5.2.
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Non-Interleaved Rectangular Grid Experiments. The layout is as described in Section
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Figure 7.3: Utilisation results of the Column Pruner, in the Interleaved and
Non-Interleaved Square Grid Experiments. The layout is as described in Section
3.4.5. Performance metrics plotted in this figure are defined in Section 3.5.3.
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• Maximum Performance reported in the results for the Column Pruner is 67.7

GRecs/s for Single-Precision and 34.8 GRecs/s for Double-Precision.

• Minimum Performance reported in the results for the Column Pruner is 17.7

GRecs/s for Single-Precision and 13.0 GRecs/s for Double-Precision.

• Performance of the Column Pruner depends on α. The trend is that

Performance increases with increasing α until reaching a peak, whereby

afterwards there is a slight decrease with further increase in α.

• Performance of the Column Pruner degrades when de-interleaving is enabled.

Such degradation is mostly felt at low α for Single-Precision.

• In general, the Column Pruner is memory-bound on device memory with

Compute Utilisation always less than 50%.

Let us now analyse in further detail the Performance behaviour of the Column

Pruner.

A look at the Utilisation metrics show that in general, the experiments are

memory-bound on device memory, with the P100:dram_utilization metric usually

well above 6, implying that access to device memory is a central player in controlling

Performance. On the other hand, Compute Utilisation is well below 50%, making

it unlikely that compute has any significant effects on Performance. Clearly, in

order to understand the Performance of the Column Pruner, we need to assess the

utilisation of device memory.

Two processes require access to the device memory: the loading of records from the

input grid, and the committing to the output grid. In general, much as expected,

Commit Rate reduces with increasing α, implying less access to device memory, and

thus promoting the noted trend of increased Performance with an increase in α.

The trend tends to break from α = 32 and higher, due to a change in the optimal

solution, which is adapting for significantly higher demand on GPU resources (such
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as registers and shared memory). The same argument stands to explain the visible

changes in Performance with changing values of Sz in experiments with α ≥ 32.

We now explain why de-interleaving causes a decrease in Performance, particularly

for the Single-Precision experiment with α = 2. In de-interleaving, grid committing

accesses memory with a degraded pattern, whereby neither the coalescence nor the

vicinity requirements are honoured. In the results, the worst degradation happened

for Single-Precision where only 8 bytes are merged in one 32-byte transaction. In

Double-Precision, 16 bytes are merged in one 32-byte transaction, implying an access

pattern that is less degraded than that for Single-Precision.

As it is always the case in our analyses, the Commit Rate indicates the level of

Performance penalisation caused by the degraded access pattern. Commit Rate

is highest for the smallest α, and therefore we expect Performance to be mostly

penalised for the lowest values of α, particularly for Single-Precision as stated before.

We finalise this discussion by analysing compute. Let us compare the maximum

Compute Rate measured for the Column Pruner using Sz = 6 GCFs with the least

measured value of Compute Rate for the Hybrid Gridder at Npol = 1. In all Column

Pruner experiments with Sz = 6, the measured Compute Rate was always lower than

2 Inst/rec, which we shall take as a maximum. The minimum measured Compute

Rate for the stated Hybrid Gridder is 5.53 Inst/rec, which is 2.7× larger than the

maximum Compute Rate of the Column Pruner. The stated values show that Logic

in the Column Pruner is optimised out as suggested in Section 7.1.2, which we

corroborated through a visual inspection of the generated assembly code for the

Column Pruner.
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Figure 7.5: Optimal Solutions Performance results for the the Row Pruner. The
layout is as described in Section 3.4.5. Performance metrics plotted in this figure are
defined in Section 3.5.2.
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Figure 7.6: Utilisation results for the Row Pruner. The layout is as described in
Section 3.4.5. Performance metrics plotted in this figure are defined in Section 3.5.3.
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7.5 Performance of the Row Pruner

We plot Optimal Solutions Performance results of the Row Pruner in Figure 7.5 and

Utilisation results in Figure 7.6. The Row Pruner Performance is less than that of

the Column Pruner by a factor of between 2 and 3, whereby the maximum Gridding

Rate we are reporting for the Row Pruner is 25.4 GRecs/s for Single-Precision and

19.2 GRecs/s for Double-Precision. A look at utilisation suggests that except for

one experiment, the Row Pruner is neither compute-bound nor memory-bound and

riddled with latency. Based on the experience we achieved in examining Performance

of the Column Pruner, we see it likely that forcing T to 1 is the main cause of latency

since it minimises Instruction Level Parallelism.

7.6 Pruning Gain

The main goal of the Pruners in this thesis is to reduce the time of inversion of the

Hybrid and NN Gridders’ output grid. We will now analyse such reductions using

the Pruning Gain Group of metrics defined in Section 3.5.6, of which measurements

are plotted in Figures 7.7 and 7.8. Note that for these results, we conducted more

experiments to measure the execution time of IFFT that would be done if the

Pruning Step was absent.

7.6.1 Column Pruning Gain

Let us first review gains related to the Column Pruner. Results show a maximum

Column Pruning Gain of approximately 8 for the case of Double-Precision
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Figure 7.7: Pruning Gain results for the Row and Column Pruners in the Interleaved
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3.4.5. Performance metrics plotted in this figure are defined in Section 3.5.6.
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Interleaved Square Grid Experiment at α = 64 and a minimum Column Pruning

Gain of approximately 1.1 for the case of Single-Precision Non-Interleaved Square

Grid Experiment at α = 2. We regard the results obtained for the Column Pruning

Gain as proof that Convolution-based Pruning, as applied in this thesis, can deliver

good gains.

Let us now delve into some details related to the Column Pruning Gain.

• Column Pruning Gain is lowest at the lowest α and in general increases with

an increase with α.

Two factors are controlling the Column Pruning Gain. These are the

Performance of the Column Pruner and the reduced execution time of the

IFFT due to downsampling. For the latter, we can assume that in general, the

higher α is, the more IFFT execution time is reduced since IFFT will operate

on smaller grids. When this assumption is coupled with the fact that the

Performance of the Column Pruner generally increased with α, we understand
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why the Column Pruning Gain behaves in the way stated.

• Column Pruning Gain is higher for the Interleaved Square Grid Experiments

than for the Non-Interleaved Square Grid Experiments.

We remind the reader that cuFFT, the library we are using to perform IFFTs,

incurs some Performance loss when handling interleaved grids. The Column

Pruner also incurs some penalties in Performance when handling interleaved

grids. However, such penalties are less in such an amount that pruning is

recouping some of the lost Performance in IFFTs when such IFFTs handle

de-interleaving of a grid with no pruning.

• In general, the Column Pruning Gain metric shows little variation in

Performance with a change in Sz.

The result follows from the Performance of the Column Pruner where in

general, there is little variation in Performance with a varying Sz. This result

indicates that in real-life scenarios, it is worth considering a GCF for pruning

with the largest Sz, when they have the best anti-aliasing properties since we

expect only a minor impact on the Performance of the Pruners.

7.6.2 Row Pruning Gain and Accumulated Pruning Gain

In Figure 7.7, we report Row Pruning Gain measurements. The maximum

measured Row Pruning Gain is around 3.3, for the Double-Precision

Interleaved/Non-Interleaved Square Experiments at α = 64. The lowest measured

Row Pruning Gain is at around 0.7 (implying a loss) for the Single-Precision

Interleaved/Non-Interleaved Square Experiments at α = 2,.

Comparing the Accumulated Pruning Gain with the Column Pruning Gain, we

deduce that the contribution of the Row Pruner towards the Accumulated Pruning
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Gain is near to negligible. As shown by the measured Column Pruner Footprint

for large values of α, the Column Pruner dominates the execution time of the whole

inversion, not leaving much for the Row Pruner to contribute to the Accumulated

Pruning Gain. On the other hand, for the low values of α, the Row Pruner can give

a significant contribution to the Accumulated Pruning Gain but lacks sufficient

Performance to do so.

7.7 Aliasing in Convolution-Based FFT Pruning

We now present an experiment targeted to verify if applying the least-misfit gridding

functions to the Pruners will lead to a Convolution-Based Pruning Algorithm that

suppresses aliasing below arithmetic noise.

7.7.1 Experiment description and results

In this experiment, we prune the 2nd dimension (column) of a two-dimensional image

I(x, y, a) of initial size 256× 256α to a size of 128× 128. x ∈ Z is the 1st dimension

coordinate, and y ∈ Z is the 2nd dimension coordinate of a pixel in the image. The

third argument denoted as a, controls aliasing in a way that will be evident further

on in the text. The downsampling factor α is equal to 4.

We execute pruning of I(x, y, a) using two different methods, which we call the

Reference Method and the Pruning Method, described hereunder.

Reference Method:

1. Apply Fourier Transform on image to get a Fourier grid of size 256× 256α.
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2. Apply Inverse Fourier Transform on grid to get back image of size 256×256α.

3. Remove outer region of the image to reduce the image to a size of 128× 128.

Pruning Method:

1. Apply Fourier Transform on image to get a Fourier grid of size 256× 256α

2. Apply Column Pruner to grid to reduce its size to 256× 256.

3. Apply Inverse Fourier Transform on the pruned grid to get an image of size

256× 256.

4. Remove outer region of the image to reduce the image to a size of 128× 128.

We repeat the two methods for Single and Double-Precision. We furtherly repeat

the Pruning Method using five GCFs with different support (Sz) which are the

Prolate Spheroidal used in CASA (Sz = 6), and the least-misfit gridding functions

(x0 = 0.25) of support 8, 10, 12 and 14. The latter four GCFs were supplied by Ye

[129] through a python script.

Let us now describe I(x, y, a), whereby we will assume the origin is at the centre

with x = y = 0.

We are using a two-dimensional image, because the Column Pruner works on

two-dimensional grids. In truth, we show no interest in the first dimension for

this experiment, so much so that we set all columns to be identical to each other,

that is I(x, y, a) = I(0, y, a) ∀x.

We now refer to Figure 7.9 containing a plot of I(0, y, 0.5) against y for α = 4 and

meant as an aid for the below explanation.

We refer to the region in I(0, y, a) within the interval 0 ≤ y ≤ 64 as the zero region

whereby I(x, y, a) = 0. All regions that in the Pruning Method will distort through
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Figure 7.9: Plot of I(0, y, A) vs pixel coordinate y for a = 0.5

aliasing the zero region are set to zero. In this way, the zero region in the output

image will only contain arithmetic noise.

We refer to the region in I(x, y, a) within the interval −64 ≤ y < 0 as the aliasing

region. As we show in Figure 7.9, the aliasing region is populated with a square

function with a minimum of 0.1, a maximum of 1 and a wave period of 8 pixels.

All regions in I(x, y, a) that in the Pruning Method will cause distortion to the

aliasing region, are populated by a square function with a wave period of 16 pixels,

a minimum of 0.1a, and a maximum of a. In this experiment, we will consider a with

values of 0.5, 10, and 100 where such values control the level of aliasing distortion

in the aliasing region, when the Pruning Method is used.

Results are given in Figure 7.10 where we plot the absolute difference between the

original I(0, y, a) and the image we get after pruning through the two methods for

the region −64 ≤ y < 64.

7.7.2 Discussion

Unfortunately, some of the results given in Figure 7.10, though promising, do

not reach the expectations set by Ye et al. [77]. For Single-Precision, the

expectations were that all the four least-misfit gridding functions suppress aliasing
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Figure 7.10: Results of aliasing experiment for Convolution-Based FFT Pruning as
described in Section 7.7.

below arithmetic noise. In our results the least-misfit gridding functions with

Sz = 8 and Sz = 10 fail such expectations for a = 10 and a = 100. As for

Double-Precision, expectations were that the least-misfit gridding function with

Sz = 14 would suppress aliasing below arithmetic noise. However, in our results,

none of the functions reached such a level of aliasing suppression. Nevertheless,

there is a trend in the results that suggest the existence of a least-misfit gridding

function with Sz = 20 that delivers the sought level of alias suppression.

On the bright side, the least-misfit gridding functions delivered a much better

aliasing suppression than the Prolate Spheroidal and their ability in suppressing
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aliasing increased with increasing Sz, which is as expected from Ye et al. [77].

Results show that arithmetic noise generated through the Pruning Method is at an

acceptable level in the aliasing and zero regions. Sometimes such arithmetic noise

is at a lower level than that produced by the Reference Method, mainly when a is

on the high side.

7.8 Summary

In this chapter, we discussed and analysed the Pruners for Performance and aliasing

suppression.

Following is a list of the most important results.

• The following table gives the maximum Performance of the two Pruners

together with their maximum Pruning Gain that resulted in our experiments.

Pruner Single-Precision Double-Precision
Maximum
Gridding

Rate
(GRecs/s)

Maximum
Pruning

Gain

Maximum
Gridding

Rate
(GRecs/s)

Maximum
Pruning

Gain

Column 67.7 8 34.8 8

Row 25.4 1.72 19.2 3.4

• In most experiments, the Column Pruner was memory-bound while the Row

Pruner was neither compute-bound nor memory-bound and riddled with

latency.

• The Row Pruner did not deliver any substantial contribution to the

Accumulated Gain.
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• In our aliasing related experiments, using the least-misfit functions as GCFs,

we were not able to reproduce in full the expected results by Ye et al. [77]. In

our test scenarios, the least-misfit functions did not always suppress aliasing

below arithmetic noise.
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Chapter

8
This chapter finalises our study in this thesis by making final comparisons between

the studied implementations to show if and how we reached the thesis’s primary

goal. We stated the primary goal at the beginning of Chapter 1, which is to seek

modifications to Convolutional Gridding that perform better on the P100, without

causing any increase in aliasing.

We divide our analysis into two main sections. In the first section, we validate our

implementation of Convolutional Gridding in terms of Performance and aliasing,

by comparing results with other well-known Gridding implementations. We require

such validation since, in the second section, we do a comparative study between the

three studied implementations in which the Convolutional Gridding implementation

will be the reference. In the said study we show how our proposed modifications that

morphed Convolutional Gridding to Hybrid Gridding and Pruned NN Interpolation

reach the primary goal.

8.1 Validation of the Convolutional Gridding

implementation

In order to validate our implementation of Convolutional Gridding, we do

experiments to compare Performance, aliasing and arithmetic noise of our

implementation with other Gridding implementations. In the first sub-section,

we will investigate how our implementation of the Convolutional Gridder fairs in

terms of Performance with two other well known Gridders. In the sub-section
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that follows, we provide a comparative analysis of aliasing and arithmetic noise,

to ensure that our Convolutional Gridding implementation does not cause aliasing

distortion and arithmetic noise above what is expected. Such expectation is set by

the implementation of Convolutional Gridding in CASA.

We clarify that unless otherwise stated, the terms Convolutional Gridder and

Convolutional Gridding refer to our implementation of the Convolutional Gridder

and Convolutional Gridding.

8.1.1 Performance of the Convolutional Gridder

We compare the Performance of the Convolutional Gridder with two well-known

Gridder implementations. These are the CPU-based Convolutional Gridder of

WSClean (Offringa et al. [53]) hereafter referred to as the WSClean Gridder and the

GPU-based Image Domain Gridder (IDG) (van der Tol et al. [68], Veenboer et al.

[69] ), as integrated into WSClean, hereafter referred to as the IDG Gridder. The

WSClean Gridder computes in Double-Precision and grids polarisation channels one

at a time. On the other hand, the IDG Gridder computes in Single-Precision solely

for Npol = 4. In our experiments, the IDG Gridder is set to work in hybrid mode,

which is the recommended mode to use in running IDG over GPUs [130].

We aim to estimate by what factor the Convolutional Gridder is more performant

than the WSClean and IDG Gridders, through a comparison of the Gridding Rate.

The procedure we followed to make such an estimate is as follows: We performed

a Brute Force Search over the WSClean Gridder and the IDG Gridder in order

to measure a respective Best Gridding Rate. The Tuning Parameters for the

WSClean Gridder were the output image size, oversampling factor (β), number of

w-planes and various parameters that control parallelisation over the CPUs. The

Tuning Parameters for the IDG Gridder were just the image size and number of
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w-planes1. Once we found the Best Gridding Rate of the WSClean and IDG

Gridders, we calculated a Minimum and Maximum Gain of the Convolution Gridder

over the WSClean and IDG Gridders. With the term Gain, we mean that factor by

which the Convolutional Gridder performs better than the other Gridders in terms

of Gridding Rate. We calculate the Minimum Gain by comparing the measured

Best Gridding Rate of the WSClean and IDG Gridder with the Minimum Best

Gridding Rate reported for the Convolutional Gridder, which is at β = 1. We

calculate the Maximum Gain by comparing the same Best Gridding Rate of

the two well-known Gridders with the Gridding Rate reported by the Maximum

Performance Experiments performed on the Convolutional Gridder.

We ran all experiments using a compiled from source WSClean version 2.8 with the

IDG library integrated. We used the same hardware we used throughout the thesis

and described in Chapter 3. As input, we used the same LOFAR observation we

used when experimenting with our Gridders in Chapters 4, 5 and 6 and we kept

the pixel size of the output image to 4.7arcsec. We left the support of the GCF

for the WSClean Gridder to the default. We took measurements of the execution

time of the two well-known Gridders, by inspecting the output log of WSClean,

which logs such measurements. It is worth to note that WSClean does not support

compression, and therefore the WSClean and IDG Gridders had to grid the whole

6501600× 16 records available in the LOFAR observation.

We measured the Best Gridding Rate for the WSClean Gridder at 5.6MRec/s

for single polarised-records. The measured value is higher by a factor of 1.3× than

what is reported by van der Tol et al. [68], possibly because of the different hardware

used. We measured Best Gridding Rate for the IDG Gridder at 68.3MRec/s for

quad-polarised records which is similar to what Veenboer et al. [69] reported.

Resultant Gains are calculated in Table 8.1 and 8.2, where we report four-digit

Maximum Gains for the Convolutional Gridder against the WSClean Gridder and
1Note that the oversampling factor has no meaning in the IDG Gridder.
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Npol
WSClean Gridder Convolutional Gridder Gain

Best Gridding
Rate

(GRec/s)

Maximum
Gridding

Rate
(GRec/s)

Minimum
Gridding

Rate
(GRec/s)

Maximum Minimum

1 0.00530 4.00 0.45 754× 84×
2 0.00265 3.81 0.33 1438× 124×
3 0.00177 3.23 0.22 1825× 124×
4 0.00133 2.84 0.16 2135× 120×

Table 8.1: Table giving the estimated Minimum and Maximum Gains of the
Convolution Gridder over the WSClean Gridder. The WSClean Gridder does not
grid polarisations concurrently, and so we calculated the Best Gridding Rate of the
WSClean Gridder for Npol > 1 to be the Best Gridding Rate at Npol = 1 divided
by Npol. We only consider Double-Precision results since the WSClean Gridder
only computes in Double-Precision. The Maximum Gridding Rate values for the
Convolutional Gridder is taken as the ones we reported for the Double-Precision
Maximum Performance Experiments available in Table 4.3. The Minimum Gridding
Rate values are taken as the minimum value of the Best Gridding Rate reported in
Figure 4.5.

.

two-digit Maximum Gains for the Convolutional Gridder against the IDG Gridder.

Based on the just stated results and the many results we delivered in Chapter 4, we

see it reasonable to conclude that our implementation of the Convolutional Gridder

performs well. Performance is at such a level that it is valid for the use as a reference

in comparing Performance of the studied implementations.

We do have to stress out that the experiments in this section were solely designed

to validate the Convolutional Gridder for its use as a reference and in no way to

discuss any possible superiority of the Convolutional Gridding against the two other

gridders. One should consider more factors to compare for the superiority of any

gridder. For example, the IDG Gridder was designed to perform against scenarios

that use W-projection and A-projections, which the Convolutional Gridder does

not support. Also, the image sizes considered for the IDG Gridder and WSClean

Gridder in the Brute Force search were at maximum 1024× 1024 pixels.
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Npol
IDG Gridder Convolutional Gridder Gain

Best
Gridding

Rate
(GRec/s)

Maximum
Gridding

Rate
(GRec/s)

Minimum
Gridding

Rate
(GRec/s)

Maximum Minimum

4 0.0683 3.62 0.129 53× 1.88×

Table 8.2: Table giving the estimated Minimum and Maximum Gains of the
Convolution Gridder against the IDG Gridder. Only Single-Precision computation
at Npol = 4 is considered because the IDG Gridder works only for Npol = 4 and
Single-Precision. The Maximum Gridding Rate values for the Convolutional Gridder
is taken as the ones we reported for the Single-Precision Maximum Performance
Experiments available in Table 4.3. The Minimum Gridding Rate values are taken
as the minimum value of the Best Gridding Rate reported in Figure 4.4.

8.1.2 Aliasing in the Convolutional Gridder

We now discuss experiments meant to validate our Convolutional Gridding

implementation in terms of aliasing suppression. We do so by comparing images

outputted by our Convolutional Gridding implementation with the output of CASA,

using its implementation of Convolutional Gridding henceforth referred to as CASA

Gridding. We do have to point out that any measurement of aliasing distortions

will always include arithmetic noise. Therefore our experiments will inherently

verify that the level of arithmetic noise generated by our Convolutional Gridding

implementation is at acceptable levels and no higher than that of CASA Gridding.

The GCF used in the two Gridders is the Prolate Spheroidal of order 1 with support

6. It is the only supported GCF in CASA, and for our implementation, the GCF is

calculated similarly to how the GCF is calculated in CASA.

In all the experiments presented in this section, we use three observations, which

we named after the telescopes that made the observation: the GMRT, EVLA, and

LOFAR. The LOFAR observation is a different observation from what was in the

other Chapters. For experiments in this section, we use the Visibility data measured
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Telescope Pixel Interval (arcsec)
GMRT 5× 5
VLA 0.1× 0.1

LOFAR 1.65× 1.65

Table 8.3: Table giving the pixel interval and image size used for different
observations in experiments presented in Sections 8.1.2 and 8.2.2. The three different
observations are identified by the telescope that made the particular observation.

in the stated observations and generate duplicates with all Visibility measurements

set to unity, therefore generating PSFs. We differentiate the duplicates from the

original by including the term PSF in the observation given name. For example, the

duplicate of the VLA observation is called the VLA PSF observation.

In all experiments, we generate an output image of size 4096×4096 pixels with pixel

intervals, set as shown in Table 8.3.

The observations we use in this section are also used in Section 8.2.2.

For the set of experiments discussed in this section, we generate an image from the

six sets of data using the following three methods:

1. DFT method: In this method, we use an in-house built GPU-based

implementation that computes the output image with Double-Precision

using the DFT Equation 2.11. The generated output image is void from

aliasing effects, and therefore we use it as a reference. We validated this

implementation against a CPU-based DFT implementation in WSClean,

whereby the two implementations returned identical results, once we

programmatically disabled the final beam correction in the WSClean. We

used our implementation instead of that of WSClean, since it is considerably

faster to compute on the P100.

2. CASA method: In this procedure, we use the imager tool available in

CASA, to generate the image using CASA Gridding. W-projection is switched
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off as to enable the Normal Interferometric Gridding mode. In this mode,

CASA automatically computes with Double-Precision using a hard-coded

oversampling factor (β) of 100.

3. Conv100 method: In this method we generate the image using our

implementation of Convolutional Gridding computing in Double-Precision,

with β set to 100. We will use the results outputted by this method to compare

with the results of the CASA method.

We measure the sum of aliasing effects and arithmetic noise by computing the Root

Mean Square (RMS) of the difference between the image produced by the reference

DFT method and the image produced either by the CASA or Conv100 methods. We

measure the RMS in two regions of the image, which are the Central Half (64× 64)

Region and the Full Region, which is all the image. To help us understand better

the difference between RMS readings of the two methods we define the ratio Γ as

per Equation 8.1.

Γ = RMS of Conv100 Method− RMS of CASA method
RMS of CASA method

× 100% (8.1)

Note that a negative value of Γ implies that the Conv100 method returned a lower

RMS value than the CASA method.

All images generated by the experiments in this section are reproduced in Figures

8.1 and 8.2 while we tabulate the quantitative results in Table 8.4.

A visual inspection of the images in Figures 8.1 and 8.2 do not show any visible

difference between what is generated by the three methods. The quantitative results

in Table 8.4 captured some slight variations with the absolute value of Γ generally

less than 0.1%. Results of the VLA PSF are an exception where Γ = 1.162. Taking

into account that for the VLA PSF the RMS is in the region of 10−6, while maximum

intensity in the generated images is 1, the stated value of Γ is not indicative of any
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Observation CASA Conv100 Γ (%)
Central Half Region

GMRT 6.909e-06 6.910e-06 1.540e-02
GMRT PSF 8.999e-07 9.006e-07 8.172e-02
VLA 3.583e-04 3.583e-04 -1.019e-02
VLA PSF 1.034e-06 1.046e-06 1.162
LOFAR 7.331e-05 7.333e-05 2.532e-02
LOFAR PSF 7.788e-04 7.787e-04 -1.175e-02

Full Region
GMRT 2.185e-03 2.186e-03 4.827e-03
GMRT PSF 3.713e-04 3.714e-04 7.382e-03
VLA 5.618e-02 5.618e-02 6.635e-03
VLA PSF 8.520e-04 8.521e-04 1.035e-02
LOFAR 1.183e-02 1.183e-02 3.393e-03
LOFAR PSF 8.555e-04 8.555e-04 1.453e-03

Table 8.4: Table giving the RMS and Γ values measured by experiments validating
our implementation of Convolutional Gridding against an implementation in CASA.
Conv100 refers to our implementation of Convolutional Gridding with β set to 100.

increase in aliasing distortions or unacceptably high arithmetic noise. Therefore, we

conclude that the implementation of the Convolutional Gridding is valid for use as

a reference in our subsequent experiments.

8.2 Comparative analysis of the studied

implementations.

In this section, we will do the final analysis that shows if and how we reached

the primary goal of this thesis. We also prove many of the claims we established

theoretically in Chapter 2.

This section is divided into two sub-sections. In the first sub-section, we do a

comparative analysis on the Performance of the studied implementations to identify

which modifications perform better than Convolutional Gridding. In the subsequent
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Figure 8.1: Images generated with the GMRT, VLA and LOFAR observations by
the experiments of Section 8.1.2. There is no apparent visual difference between the
images generated by the three different methods.
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Figure 8.2: Images generated with the GMRT PSF, VLA PSF and LOFAR PSF
observations by the experiments of Section 8.1.2. There is no apparent visual difference
between the images generated by the three different methods.
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sub-section, we make sure that Pruned NN Interpolation and Hybrid Gridding do

not decrease the level of aliasing suppression, which is a must mandated by the

primary goal of this thesis.

8.2.1 Performance comparison of the studied algorithms

Let us do a Performance comparative analysis of the three implemented algorithms.

In previous chapters, we have already compared the Performance of the Gridders

via the Gridder Advantage group of metrics, and we here complete the analysis by

including the effects of finalisation in each algorithm. We will rely on the Minimum

Record Density Function for this comparison which we will derive, explain and take

measurements of in this section.

Summary

Let us summarise what we know so far. In the previous chapters, we showed

that our implementations of the Hybrid and NN Gridders are faster than our

implementation of the Convolutional Gridder. Nevertheless, in our test scenarios,

the NN Gridder is faster than the Hybrid Gridder only for low values of β. The

output grid of the Hybrid and NN Gridders are larger than that of the Convolutional

Gridder by a factor of β and β2 respectively. Therefore, finalisation in Hybrid

Gridding and Pruned NN Interpolation require more compute than in Convolutional

Gridding, which risks cancelling the gains made by the respective Gridders over the

Convolutional Gridder. In order to mitigate the risk, we prune the output grid

using convolution, where we prove that it can reduce the execution time of the

finalisation stage. However, in no way it can be as fast as the finalisation stage of

the Convolutional Gridder. Therefore, we argue that finalisation plays a vital role in

determining how the three implementations fare against each other and, that there

should be a threshold number of input records at which two given implementations
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will fare equally from a Performance perspective. We will use such a number of

records to provide a Performance comparison between the algorithms.

The Minimum Record Density Function - D(A1, A2)

Let A1 and A2 be any of the three implemented Algorithms 2.4, 2.5, 2.6, and let

R(A1, A2) be the number of input records at which we evaluate that A1 and A2 take

the same time to execute, given Npol, Precision,Nnn and β are kept equal. R(A1, A2)

is calculated using the relationship expressed in Equation 8.2.

fin(A1)+ R(A1, A2)
Max Best Gridding Rate(A1)

= fin(A2)+ R(A1, A2)
Max Best Gridding Rate(A2)

(8.2)

where Max Best Gridding Rate(A) is the highest Best Gridding Rate for the

Gridder of Algorithm A when considering all Ordering Modes. fin(A) is the GPU

execution time taken for finalisation in Algorithm A which includes the IFFT and

correction together with pruning for Hybrid Gridding and Pruned NN Interpolation

or a pre-FFT processor for Convolutional Gridding.

Since the total execution time of finalisation has some dependency on Nnn, we see

it more meaningful to express R(A1, A2) as a ratio with the size of the NN Grid,

and define such a ratio as the Minimum Record Density function D(A1, A2) given

by Equation 8.3.

D(A1, A2) = R(A1, A2)× 100%
Nnn ×Nnn

(8.3)

We note that if D(A1, A2) > 100%, then R(A1, A2) is larger than the size of the NN

Grid, and with full compression enabled, it is impossible to have the input number

of records equal or greater than R(A1, A2). If D(A1, A2) < 0, then A1 is always
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faster or slower than A2 irrespective to the number of input records.

We give arguments A1 and A2 in D(A1, A2) the values of co, hy and pn to represent

Convolutional Gridding (Algorithm 2.4), Hybrid Gridding (Algorithm 2.5) and

Pruned NN Interpolation (Algorithm 2.6) respectively.

Results and analyses

Table 8.5 tabulates the Minimum Record Density Function for various test scenarios

on which we base the comparative analyses made in the next paragraphs. In

calculating the Minimum Density Function, we extracted the Max Best Gridding

Rate from the relevant Best Gridding Rate results given in Figures 4.4, 4.5, 5.3,

5.4 and 6.2. We measured the time taken in finalisation for a given implementation

via new experiments that we did for this purpose.

It is clear from Table 8.5, that Pruned NN Interpolation requires very High Record

Densities to beat Convolutional Gridding, because of the large output grid, that

requires a lot of execution time to be finalised. When comparing Pruned NN

Interpolation with Hybrid Gridding, D(hy, pn) is either below 0 or larger than 100%,

implying that within our test scenarios with full compression enabled, Pruned NN

Interpolation is always slower than Hybrid Gridding.

D(co, hy) shows that Hybrid Gridding can be faster than Convolutional Gridder

provided a certain threshold in the number of input records is reached. We know

from results in Chapter 5 that best gains are for β > 64, where for such values of

β, D(co, hy) is below 0.5%. We remind the reader that the Hybrid Gridder requires

an output grid which is larger than that of the Convolutional Gridder by a factor of

β and the Hybrid Gridder delivered good Performance when using the SS Ordering

Mode. At the same time, the Convolutional Gridder can deliver good Performance

in all Ordering Modes.
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β
Single-Precision Double-Precision

Npol
1

Npol
2

Npol
3

Npol
4

Npol
1

Npol
2

Npol
3

Npol
4

D(co, pn), Nnn = 16384
4 30.8 36.9 43.2 38.4 60.2 69.2 n/a n/a
8 25.7 38.6 63.0 58.1 50.4 81.5 n/a n/a
16 20.7 43.3 86.6 114.3 35.8 95.0 259.7 n/a
32 18.2 43.4 95.9 140.9 36.0 98.3 -3361.7 n/a
64 16.4 42.2 102.8 146.6 37.3 114.7 -586.4 n/a
128 16.7 40.2 85.8 134.6 25.1 56.3 117.9 n/a

D(hy, pn), Nnn = 16384
4 136.3 145.9 236.8 194.8 489.7 442.8 n/a n/a
8 285.9 579.3 -4127.7 635.7 -559.4 -553.1 n/a n/a
16 -3758.2 -310.2 -155.1 -201.3 -162.7 -152.3 -127.8 n/a
32 -210.1 -126.4 -83.0 -96.8 -105.0 -107.9 -91.4 n/a
64 -154.4 -97.3 -65.9 -71.3 -89.1 -90.6 -74.7 n/a
128 -117.8 -86.7 -63.3 -61.4 -86.0 -85.8 -71.8 n/a

D(co, hy), Nnn = 16384
4 9.4 10.6 9.2 8.5 14.1 15.5 14.2 13.4
8 4.2 5.8 7.0 7.7 6.7 9.8 9.5 9.9
16 1.6 2.8 3.7 5.2 2.3 4.4 6.3 6.5
32 0.8 1.2 1.7 1.9 1.2 2.0 3.6 3.7
64 0.4 0.6 0.9 0.8 0.6 0.9 1.4 1.6
128 0.3 0.3 0.4 0.4 0.3 0.3 0.3 0.4

D(co, hy), Nnn = 65536
4 9.4 n/a n/a n/a n/a n/a n/a n/a
8 4.0 6.4 n/a n/a 7.7 n/a n/a n/a
16 1.6 2.8 3.9 4.7 2.5 4.3 n/a n/a
32 0.7 1.2 1.8 2.5 0.9 2.0 2.9 3.9
64 0.3 0.6 0.8 1.0 0.5 1.0 1.4 1.7
128 0.1 0.2 0.4 0.4 0.2 0.3 0.4 0.4
256 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.1
512 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

Table 8.5: Table giving the measured Minimum Density Functions D(co, pn),
D(hy,pn) and D(co,hy) for various values ofNnn and Precision. Values given as "n/a"
imply the Hybrid Gridding or the Pure NN Interpolation implementations could not
be executed due to memory limitations on the P100. The GCF for the Gridding Step
is with S=6, and the GCF of the Pruning Step is with Sz = 14.
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Conclusion

In conclusion, based on our test scenarios, we state that when comparing the studied

implementations from a Performance perspective and as implemented on the P100,

the following results:

1. Convolutional Gridding is fastest for Small Record Densities or when the

SS Ordering Mode is not viable. One has to remember that Convolutional

Gridding is the most memory-efficient from all the studied implementations.

Therefore, in case of memory limitations, it might be the only viable

implementation to use among the three studied implementations.

2. Hybrid Gridding is fastest when there is a high Record Density, and the SS

Ordering Mode is viable.

3. Pruned NN Interpolation is not viable for any tested scenario, since Hybrid

Gridding always provides less memory consumption and more Performance

than Pruned NN Interpolation.

The first and second results agree with the first and second claims we made at the end

of the Time Complexity sub-section in Section 2.4.6. Nevertheless, the third result

does not entirely tally with the third claim made in said sub-section. Sometimes

the NN Gridder was less performant than the other Gridders, pushing D(co, pn)

or D(hy, pn) to be below zero. Alternatively, the records required for Pruned NN

Interpolation to be more performant than the other implementations were higher

than the size of the NN Grid, therefore pushing D(hy, pn) or D(co, pn) over 100%.

8.2.2 Aliasing comparison

Let us now discuss experiments designed to ensure that Hybrid Gridding and

Pruned NN Interpolation suppress aliasing at a level equal or higher than that
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of Convolutional Gridding. In this way, we prove the claims made in the Aliasing

sub-section of Section 2.4.6 and ensure that Hybrid Gridding is valid from an aliasing

perspective and meets the aliasing requirement set by the primary goal of this thesis.

Experimental setup and definition of R(X)

We equipped the mt-imager with an internal simulator capable of simulating

a sky over the input uv-profile having one point source of unity intensity,

positioned precisely on a pixel in the output image. The simulator computes using

Double-Precision and applies a DFT. In our experiments we shall simulate a point

source at position (X,X), where position (0, 0) is the origin on the central pixel of

the image and X ∈ Z, 0 ≤ X < 64. We define K(X) to be the intensity value

of the pixel at position (X,X) of the simulated output image generated by the

studied implementations. We also define R(X) to be equal to the absolute value of

[1–K(X)]. R(X) measures aliasing effects, and arithmetic noise at position (X,X)

in such a way that if the two quantities are zero on the stated pixel, R(X) will have

a value of zero since the point source is simulated with unity intensity.

We used the same observations from GMRT, VLA and LOFAR used in Section

8.1.2, and generate 64 images of size 128 × 128 for each observation and studied

implementation in Single and Double-Precision. In each set of 64 images the point

source of unit intensity moves diagonally for all possible positions (X,X), beginning

from (0, 0) and ending at (63, 63). Pixel interval is set as per Table 8.3, while the

oversampling factor (β) is set to 128. The GCF used in the Gridders is the Prolate

Spheroidal of order 1, and the Pruners use the least-misfit function with Sz = 14

and the parameter x0 = 0.25. We first evaluate the effects of aliasing through a

visual inspection of the generated images and then measure aliasing distortion and

arithmetic noise through R(X).
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Results and analyses
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Figure 8.3: Various graphs plotting R(X) against the point source position X for
the aliasing experiments discussed in Section 8.2.2.

We reproduce the output images for X = 0, X = 30 and X = 62 in Figures 8.4 to

8.9 while plotting all measurements of R(X) in Figure 8.3.

Let us first do a visual inspection of the output images. It is easy to see that

all images for X = 62 and X = 30 generated through Convolutional Gridding

feature conspicuous aliasing distortion near the left and bottom edges, identified

by a reddish glow near the stated edges. The X = 0 images generated by the

VLA observation also features such visible distortions. Aliasing distortions at the

bottom edge vanishes2 in the respective images generated by Hybrid Gridder, while

all visible aliasing distortions vanish in the respective images generated by Pruned

NN Interpolation. Such reduction in aliasing is as expected and gives the first proof
2In our discourse, we need to clarify that "vanishing" alias distortions do not mean that there

is no more aliasing but that such distortions do not cause enough change in intensity to be visibly
detectable.
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Figure 8.4: A selection of images computed in Single-Precision by the experiments
of Section 8.2.2 using the GMRT observation.
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Figure 8.5: A selection of images computed in Double-Precision by the experiments
in Section 8.2.2 using the GMRT observation.
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Figure 8.6: A selection of images computed in Single-Precision by the experiments
of Section 8.2.2 using the VLA observation.
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Figure 8.7: A selection of images computed in Double-Precision by the experiments
of Section 8.2.2 using the VLA observation.
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Figure 8.8: A selection of images computed in Single-Precision by the experiments
of Section 8.2.2 using the LOFAR observation.
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Figure 8.9: A selection of images computed in Double-Precision by the experiments
of Section 8.2.2 using the LOFAR observation.
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that Hybrid Gridding and Pruned NN Interpolation suppress aliasing at a level

higher than that of Convolutional Gridding.

Let’s now analyse the measured R(X) plotted in Figure 8.3. We first need to point

out that aliasing distortions measured through R(X) are independent of Precision.

On the other hand, arithmetic noise depends on Precision, where Double-Precision

should have less noise, as the results indicate. Therefore, it is best to look at

experiments conducted in Double-Precision to analyse aliasing distortions.

In general, R(X), in the Double-Precision and Single-Precision experiments, was

highest for Convolutional Gridding, decreased for Hybrid Gridding, and was

measured to be lowest for Pruned NN Interpolation. Therefore, we proved our

arguments made in Section 2.4.6, whereby we claimed that Pruned NN Interpolation

should suppress aliasing more than Hybrid Gridding, which in turn suppresses

aliasing more than Convolutional Gridding. Consequently, these results show that

Hybrid Gridding suppresses aliasing at least at the same level as Convolutional

Gridding.

The Single-Precision Experiments show an understandably relatively high level of

arithmetic noise. Interestingly, aliasing effects in Pruned NN Interpolation were

below arithmetic noise, and this gave rise to a situation whereby arithmetic noise

cancelled aliasing in a way to have some experiments reporting an R(X) of zero. Due

to this phenomenon, we shied away from presenting averaging results over an image

as we did for the validation of the Convolutional Gridding implementation against

CASA. Such averaging can lead to results that falsely suggest that Single-Precision

is more accurate than Double-Precision.
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8.3 Discussion

Following the Performance results of Section 8.2.1, it is essential to discuss how

Hybrid Gridding can be applied in an actual image synthesis scenario as part of

a Visibility-to-image transform in a major cycle in Deconvolution. We noted that

Hybrid Gridding has two drawbacks compared to Convolutional Gridding: the need

to sort the set of Visibility records in the SS Ordering Mode and the need for more

memory than the Convolutional Gridder.

Sorting might take a substantial amount of execution time. However, given that

sorting is executed once in an initialisation phase and not repeated in every major

cycle of which there may be thousands of such cycles, we expect the impact of sorting

to be irrelevant to the imaging pipeline’s total execution time.

Memory needs can make some imaging scenarios impossible with Hybrid Gridding.

The major problems arise when β is large, say 128. Small images of size, say

256× 256 should be fine to image, but less likely for large wide-band images of say

8192×8192, imaged using w-stacking with Hybrid Gridding at β = 128. In this case,

each w-plane will need an amount of memory far larger than what the P100 provides.

One might think to use facets with w-stacking to work with the small facets. In such

a case, we expect each facet to need less memory to be imaged than one full w-plane,

potentially making it possible to image the facet on the P100. It is essential to keep

in mind that β in each facet will likely need to be increased (therefore requiring

more memory) to keep under control the level of aliasing distortions.

If we are required to image with a small value of β say β = 8, then large images of

size, say 8192 × 8192, (Nnn = 65536), should be imageable with w-stacking using

Hybrid Gridding as well revealed by the many results we gave in this chapter and

Chapter 5.
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8.4 Conclusion

In this chapter, we concluded our analyses for this thesis. We showed that

as implemented on the P100, Hybrid Gridding can be more performant than

Convolutional Gridding, with no reduction in the suppression of aliasing. Therefore,

we reached the primary goal of this thesis.
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In this thesis, we proposed modifications to Convolutional Gridding for better

Performance (faster execution). We took advantage of the oversampling of the

GCF, to design Hybrid Gridding (Algorithm 2.5) and Pruned NN Interpolation

(Algorithm 2.6). Through novel implementations on the P100 of the three mentioned

algorithms, we successfully proved that Hybrid Gridding could indeed perform faster

than Convolutional Gridding. In some test scenarios, the Hybrid Gridder was more

than 6× faster than the Convolutional Gridder. In other test scenarios, the NN

Gridder was also faster than the Convolutional Gridder, but many times slower

than the Hybrid Gridder. To top it up finalisation of Pruned NN Interpolation

made the implementation always slower in execution than Hybrid Gridding, with

full compression enabled.

Based on the many results we gave in this thesis, we recommend the use of Hybrid

Gridding in favour of Convolutional Gridding provided that sorting of records is

viable and the number of records to grid is substantial. If any of the stated two

conditions are not met, we recommend the use of the Convolutional Gridding. We

do not recommend the use of the Pruned NN Interpolation in any scenario since

Hybrid Gridding always performed better than Pruned NN Interpolation provided

there is full compression enabled.

The two new algorithms feature FFT pruning through downsampling of an

oversampled grid using a convolution. We proposed the use of the recently discovered

least-misfit functions (Ye et al. [77]) to potentially reduce the effects of aliasing

caused by the downsampling below arithmetic noise. Our experiments showed that

such pruning could reduce the inversion time of an oversampled grid by 8×. Results
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related to reducing aliasing effects below arithmetic noise were promising, but we

were not always able to reproduce fully the works of Ye et al. [77]. We recommend

the use of downsampling of a grid using a convolution with the least-misfit functions

as a possible Convolution-Based FFT Pruning technique. Nevertheless, we tag as

future work the need for discovery of more least-misfit functions and more in-depth

analyses of how they work out in the context Convolution-Based FFT Pruning.

9.1 Future work

As future work, we point out our intention to publish most of the contents of this

thesis, in well respected peer-reviewed journals. Following are various ideas that we

wish to propose going forward.

We heavily suggest the implementation of full faceting or w-stacking using Hybrid

Gridding to have a comprehensive picture of how Hybrid Gridding plays out in

a complete setup. We also suggest revisiting the new algorithms for possible

implementation on a CPU and other computing devices such as FPGAs.

We did implement the Hybrid and Convolutional Gridders to handle GCFs of

support eight. However, in this thesis, we provided no analyses of their Performance

and we, therefore, suggest such analyses. It is also worth to modify the Convolutional

Gridder to support complex-valued GCFs and review its Performance. A gridder

handling complex GCFs is very useful in w-projection.

In our analyses of the Convolutional Gridder, we raised our suspicion that the GCF

data retrieval is choking grid committing and the loading of record data. It would

be interesting to consider the possibility of calculating the GCF on the fly instead of

loading any GCF data from memory, using the ideas proposed in Image Domain

Gridding. We have conflicting thoughts on the Performance results of such an

implementation. We expect the level of compute to substantially increase, which
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might back-fire on Performance since the Convolutional Gridder is already high on

the utilisation of compute. At the same time, such an implementation would reduce

memory access which can help increase the Performance of the Gridder. We warn

the reader that there is a national patent in the Netherlands (van der Tol [131]) in

regards to IDG. Therefore, any research considerations that includes IDG should

include possible legal limitations that ASTRON might enforce through the patent.

In this thesis, we also worked on another algorithm whose analysis was not finalised

due to time limitations. It is similar to Hybrid Gridding, but instead of a

convolution, we considered a DFT. Finalisation is done using one-dimensional FFTs

operated on the columns. A preliminary analysis of this algorithm gave promising

performance results up to image sizes of dimensions 256 × 256, and we think it is

worth to finalise all the analyses of the algorithm and publish results.

In Section 1.6 we briefly mentioned the process of degridding which calculates

Visibility values from an intensity model. It forms part of the major cycle in

most Deconvolution algorithms and dominates the execution time of a major cycle

similar to gridding. Therefore, we recommend the re-adaption of the three studied

implementations for degridding.

Finally, we would like to conclude this thesis with a personal note. Through the

tenure of our doctoral studies, we have been able to gather extensive expertise in

GPU development. We have indications from correspondence with collaborators

that the Gridders we developed will be quite useful to the Radio Interferometric

community. We also believe that the ideas for future work should give results

which are publishable and give further contribution to Radio Interferometry. We

are grateful to have had the opportunity to do such work and eager and hopeful to

be able to continue to evolve this work further.
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