
A Unified Approach to
Distributed Application
Development for DLT

Ryan Falzon

Supervised by Prof. Gordon Pace

Co-supervised by Dr Joshua Ellul

Centre for Distributed
Ledger Technologies

University of Malta

September, 2021

A dissertation submitted in partial fulfilment of the requirements for the
degree of M.Sc. in Blockchain and Distributed Ledger Technologies.

Copyright ©2021 University of Malta

WWW.UM.EDU.MT

First edition, Wednesday 15th September, 2021

iii

Acknowledgements

First and foremost, I would like to thank my supervisor Prof. Gordon Pace and
co-supervisor Dr. Joshua Ellul for their continual support and guidance through-
out this research study. Additionally, I would like to express my gratitude to all
lecturers of the Centre of Distributed Ledger Technologies for the knowledge they
imparted on throughout their lectures.

Moreover, I would like to thank all my friends and family who in one way or
another supported me during my journey. Above all, I would like to express my
gratitude to my beloved Kylie for her moral assistance and words of encourage-
ment.

iv

Abstract

The widespread interest surrounding blockchain systems, has brought forth the
introduction of decentralized applications. Such applications are built using Smart
Contracts running on a blockchain network. Due to the siloed nature of blockchains
and smart contracts, parts of such applications may have to be deployed on differ-
ent blockchains, or outside the blockchain altogether. For instance, due to privacy
constraints arising from GDPR, keeping private data on a public blockchain may
not be an option, and would have to be kept on a centralized server which com-
municates with the blockchain in question.This shift in development methodology
introduces new challenges for developers to achieve seamless communication and
interaction between off-chain and on-chain code of decentralized applications. The
current solution is to program the parts separately including additional code to han-
dle communication between the different systems. Hence, this is considered as a
source of additional complexity and also a potential source of error.

In this dissertation, we propose UniDAPP, a unified programming model to
decentralized application development. We explored techniques that have been
used to achieve blockchain interoperability, IoT enabled Smart Contracts, as well as
the field of macroprogramming for wireless sensor networks. Our approach takes a
macroprogramming approach, thus allowing for such systems to be programmed as
a monolithic system, but with annotations to add information regarding where each
part of the system should be deployed and executed. Ultimately, our aim is to create
a development environment where developers can easily explore the placement of
data and control flow on different target locations.

In order to demonstrate and evaluate the use of our approach we designed
a software system use-case which would require shifting certain components be-
tween centralized and decentralized environments. The final results were made
possible through the experiment carried out during the evaluation phase. This ex-
periment included development of a number of tasks on the use-case using both the
traditional method and the framework proposed herein.

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Motivation . 2
1.3 Research Questions . 5
1.4 Aims and Objectives . 5
1.5 Report Overview . 6

2 Background 7
2.1 Blockchain . 7

2.1.1 Overview . 7
2.1.2 Blockchain Architecture . 8
2.1.3 Smart Contracts . 10
2.1.4 Chain Interoperability . 14

2.2 Macroprogramming . 15
2.2.1 Overview . 15
2.2.2 Aggregate Programming . 17
2.2.3 Challenges of Macroprogramming 17

2.3 Summary . 19

3 Design and Implementation 20
3.1 Approach & Language Design . 20
3.2 The Use Case . 21
3.3 Proposed Framework . 23

3.3.1 Annotation Grammar . 24
3.3.2 Annotation Semantics . 29

v

Contents vi

3.4 System Architecture . 31
3.5 Implementation Issues . 32

4 Evaluation and Validation 35
4.1 Overview . 35
4.2 Experiment . 36

4.2.1 User Story 1: Centralized to Decentralized Framework 37
4.2.2 User Story 2 - Hybrid Framework 38
4.2.3 User Story 3 - Centralized Privacy Settings 39
4.2.4 User Story 4 - Decentralized Privacy Settings 40

4.3 Further Discussions . 41
4.3.1 Functional & Support Code . 41
4.3.2 Expressiveness of Abstraction . 42
4.3.3 Framework Extensibility . 45

4.4 Summary . 47

5 Related Work 49
5.1 Macroprogramming for Wireless Sensor Networks 49
5.2 Macroprogramming for Blockchain Systems 53
5.3 Summary . 58

6 Conclusions 59
6.1 Achieved Aims and Objectives . 59
6.2 Critique and Limitations . 60
6.3 Future Work . 60
6.4 Final Remarks . 61

Appendix A Implementation Details 62
A.1 Abstract Syntax Tree . 62
A.2 Lexical Analysis . 62
A.3 Source Generation . 63
A.4 Locations Communication Channel . 64

References 71

List of Figures

2.1 Blockchain Architecture . 9

3.1 Short Caption . 22
3.2 UniDAPP Framework . 24
3.3 System Architecture . 31

4.1 Hybrid System Example . 47

A.1 Abstract Syntax Tree . 65
A.2 Lexical Analysis Flowchart . 66
A.3 XChainGenerators UML Diagram . 67
A.4 Source Generation Flowchart . 68
A.5 Off-Chain UML Models . 69
A.6 On-Chain Ethereum UML Models . 70

vii

List of Tables

4.1 User Story 1 . 37
4.2 User Story 2 . 38
4.3 User Story 3 . 39
4.4 User Story 4 . 40
4.5 Traditional Approach . 41
4.6 Annotated Approach . 41

viii

Listings

1.1 Need to Have Off-Chain & On-Chain Code 4
2.1 Bitcoin Script Example . 11
2.2 Solidity Code Example . 12
2.3 Marlowe Example . 13
3.1 Tag Annotation Example . 25
3.2 In-Line Annotation Example . 26
3.3 Block Annotation Example . 27
3.4 Parent Inheritance Example . 28
3.5 Generated C# Code . 29
3.6 Generated Solidity Code . 29
3.7 Annotated Source Code . 33
3.8 Generated Solidity Code . 34
4.1 Get Profile - Traditional Approach . 43
4.2 Get Profile - UniDAPP (Current Version) . 43
4.3 Get Profile - UniDAPP (Incorrect Approach) 44
4.4 Get Profile - UniDAPP (Future Update) . 45
5.1 Wireless Sensor Network Programmed Using Regiment (Newton & Welsh,

2004) . 50
5.2 Wireless Sensor Network Programmed Using Kairos (Gummadi et al., 2005) 50
5.3 Wireless Sensor Network Programmed Using COSMOS (Awan et al., 2007) 52
5.4 Wireless Sensor Network Programmed Using PyoT (Azzara et al., 2014) . 53
5.5 Time-Locked Savings Plan Using Porthos (Mizzi et al., 2019) 54
5.6 Smart Rent Application Using D’Artagnan (Mizzi et al., 2018) 55
5.7 Smart Rent Application Using AlkylVM (Ellul & Pace, 2018) 56
5.8 Smart Rent Application Using AlkylVM . 56

ix

List of Tables x

A.1 Source Tree Code . 62

List of Abbreviations

DLT Distributed Ledger Technology . 1

API Application Programming Interface . 17

DSL Domain Specific Language . 13

GDPR General Data Protection Regulation . 4

EVM Ethereum Virtual Machine . 2

UTXO Unspent Transaction Output . 11

IoT Internet of Things . 17

AST Abstract Syntax Tree . 31

JSON JavaScript Object Notation

RPC Remote Procedure Call

WWW World Wide Web . 11

xi

1

Introduction

1.1 | Overview
Blockchain technology, which is a type of Distributed Ledger Technology (DLT), offers
a trustless environment for individuals without the need of any entity overseeing com-
munication and actions. This is a result of the append-only data structure that such a
network utilizes, thus making it an immutable ledger of transactions that is accessible
by everyone. Data that is generated by the chain is not owned by just one person, but
rather by everyone that participates within this network, which is a step forward when
comparing it to traditional centralized systems that are owned by one entity (Yaga et
al., 2019). DLTs can be categorized in one of two types, public permissionless ledgers,
and private permissioned ledgers. The former allows virtually anyone to access and
participate within the network while the latter requires users to be authenticated and
given access to carry out any form of action within the network. For the scope of this
dissertation we will be focussing the text on public chains.

The first widespread use case of this technology was Bitcoin, a protocol which was
introduced by Satoshi Nakamoto. This allowed for the first peer-to-peer digital cash
system that did not require a trusted party. The Bitcoin network allowed address hold-
ers to submit transactions to the network, indicating a form of payment to a recipient
address, which would later be validated and appended within the next block in the
chain (Nakamoto, 2008).

Instigated by the inclusion of executable on-chain contracts called Smart Contracts,
blockchain technologies have attracted global interest. First coined by Szabo (1994),
these smart contracts allow for self-executable pieces of code once certain conditions
have been met, without the need for any third-party user intervention. Smart contracts
are at the core of decentralized applications, more commonly referred to as dApps.

1

Chapter 1. Introduction 1.2. Motivation

These types of systems typically consist of a user interface that can send and receive
data to and from the back-end Smart Contract found on the blockchain. Just like partic-
ipants, Smart Contracts are given an address when deployed to the network. This ad-
dress is used to call Smart Contract functions by proposing a new transaction where the
recipient is the Smart Contract address. All the security features offered by blockchain
technologies are inherited by such systems, thus providing ease of mind that transac-
tions carried out from such systems utilize the same level of protection that blockchain
transactions have (Cong & He, 2019).

Systems composed of individual pieces of code being executed on different plat-
forms are more commonly referred to as distributed applications. Adopting this prac-
tice meant that relatively complex systems were able to be split into smaller components
executing on different platforms, thus leveraging the benefits of each separate platform.
This brought forth a burden for developers as different execution platforms required
different coding principles and languages, making it a difficult domain for novice de-
velopers.

In an effort to mitigate this problem, macroprogramming principles started being
adopted for developing such systems. Such a technique allows developers to define a
distributed system as a single program which will later be automatically decompiled
down to the separate components that make up the whole system. However building
a macroprogramming framework is non-trivial for various reasons. Primarily, such a
unified model requires the abstraction of all features available by multiple platforms.
Furthermore, the unified model needs to take into consideration how the different com-
ponents will communicate with each other. Finally, achieving interoperability and het-
erogeneity within the unified model are also difficulties one might face.

1.2 | Motivation
Due to different approaches as to how smart contract code is executed, each blockchain
platform has its own domain-specific instruction set and types. Solidity, for example,
one of the smart contract languages for Ethereum, is a Turing complete, statically typed
language that uses JavaScript-like syntax and a Gas mechanism for execution. A gas
mechanism is one which forces users to pay for the execution of any Smart Contract
interaction. Such a mechanism helps in reducing malicious code from consuming all
Ethereum Virtual Machine (EVM) resources and leaving other transactions waiting for
an available resource. On the other hand, Bitcoin Script, used for creating simple Smart
Contracts for the Bitcoin Network, is not Turing complete and can be considered similar

2

Chapter 1. Introduction 1.2. Motivation

to Forth due to being stack-based (Tyurin et al., 2019). These constraints may limit the
developers in terms of what code they can execute on-chain and may therefore need to
move the execution of specific code blocks to a centralized off-chain environment.

Due to mass growth in interest that Smart Contracts have attracted, system operators
are opting to shift to decentralized applications. Similar to distributed applications, de-
centralized applications have multiple execution locations, with the possibility to have
Smart Contract code executing within a blockchain network. Such systems are adopted
for several benefits including:

� Costs – As opposed to centralized systems, decentralized applications require
users to pay a small fee otherwise known as Gas, in order to carry out execu-
tions. Therefore, to minimize the overhead that is created, developers can choose
to have specific code blocks running off-chain.

� Security & Privacy – Blockchain networks utilize an architecture that prioritizes
security above all else, to create what is known as trustless trust such that cryp-
tographic procedures are at the forefront. However, due to regulations such as
the Data Protection Act (2018), specific data should not be stored on-chain due to
it being accessible by anyone participating within the network. By creating a de-
centralized system, developers can therefore choose to have personal data stored
off-chain.

� Storage – In no way was blockchain created to replace centralized database sys-
tems. As it stands, blockchains are not able to store large datasets that many op-
erators have. For instance, systems which allow users to upload files, cannot be
created using only a Smart Contract platform. A decentralized system would al-
low developers to store the physical file off-chain in a centralized database, while
uploading a file’s hash on-chain, therefore allowing users to verify that their files
were not, potentially, maliciously altered.

This shift in development methodology introduces new challenges for developers
to be able to achieve seamless communication and interaction between off-chain and
on-chain code of decentralized applications. Such challenges include:

1. First and foremost, identifying which segments of logic and data should be placed
off-chain and which should be placed on-chain.

2. To achieve seamless communication between on-chain and off-chain code. On-
chain code may not be immediately executed due to requiring time to reach con-

3

Chapter 1. Introduction 1.2. Motivation

sensus in regards to its immutability within the canonical chain. Therefore this
would require off-chain code to halt execution until the on-chain code is executed.

3. Data representation may differ between different software stacks and may require
complex conversions to be carried out when moving data between on-chain and
off-chain code.

4. The application would require to be coded in two or more different parts, most
of the time using different technologies for each part, meaning that decentralized
application development also incurs a learning curve for developers.

Consider Listing 1.1 that demonstrates the need to have a portion of the code run-
ning off-chain and another piece executing on-chain. Written in pseudocode, the func-
tion processes a new user within the system and continues with carrying out a back-
ground search on this user.

1 function ProcessNewUser(Person p)

2 {

3 WriteOnChain(p.Id , p.Name , p.Surname , p.Role)

4 WriteOffChain(p.Id, p.DateOfBirth , p.Salary)

5

6 CarryOutBackgroundSearch(p);

7 }

Listing 1.1: Need to Have Off-Chain & On-Chain Code

From the code found in Listing 1.1, one can deduce the following:

� Date of Birth & Salary Variables - The values found within these variables should
be stored off-chain because this is considered to be private user information. There-
fore, due to the General Data Protection Regulation (GDPR), this data cannot be
publicly shared.

� Name, Surname & Role Variables - These need to be stored on-chain to ensure
immutability of these values.

� Background Search Function - This function should execute off-chain due to being
computationally expensive. Mechanisms are set in place, Gas limits in the case
of Ethereum, to discourage users from executing computationally expensive pro-
cedures on-chain as these would halt the execution environment from processing
other transactions.

4

Chapter 1. Introduction 1.3. Research Questions

1.3 | Research Questions
This study will focus on answering the following research questions:

1. Whether a unified programming model framework can be applied to decentral-
ized application development to address the identified challenges and provide
programmers with the liberty to explore the movement of logical control-flow and
data storage to on-chain and off-chain environments in a straightforward manner?

2. Will this abstraction process still impose any known or new difficulties for the
developer?

3. Can these new difficulties be mitigated in some way or form? In doing so, we
would be providing an in-depth comparative analysis between the traditional ap-
proach of building decentralized applications, and the one being proposed in this
dissertation.

1.4 | Aims and Objectives
This dissertation aims to determine whether a unified approach to distributed appli-
cation development reduces the overheads that need to be undertaken by developers
when building such systems. In hope of achieving our aims, the following set of objec-
tives need to be completed:

� Design a framework which would allow users to write, combined smart contract
and system code.

� Build a decentralized application source generator that takes as input the unified
smart contract and system code, and produces two separate codebases, one to be
deployed off-chain and another to be deployed on-chain.

� Create a communication layer that will be used by the off-chain code to interact
with and seamlessly execute on-chain code.

� Design and develop a real-world decentralized use case that will be used to eval-
uate the above. This use case should reflect everyday design decisions that such
systems incur, such as storing only the objects’ hash on-chain and the object itself
in some form of centralized environment.

5

Chapter 1. Introduction 1.5. Report Overview

The use-case that would need to be developed using both traditional techniques,
and also the proposed framework, shall involve a completely centralized system being
shifted to a decentralized nature. However, due to issues such as GDPR, developers
would have to opt for a hybrid system containing both. For instance, if we consider a
social media platform such as Facebook, all their data is stored in a central database.
This means that users have no way of verifying whether their data has not been mali-
ciously altered. This can, however, be mitigated by storing a copy of the hashed data
on-chain for future verifications.

The research questions will be evaluated through a process whereby a comparison
will be made between code written in the traditional manner and code written using
our framework. Software engineering metrics will be used to record overheads for both
methods, including the number of lines added, deleted and modified, as well as the per-
centage of support and functional code. These metrics will be a result of the experiment
taking place during the evaluation phase.

Any form of code created throughout this research is available through my GitHub
page 1.

1.5 | Report Overview
The rest of this dissertation will be divided in the following manner. Chapter 2 provides
a background to the domain being explored to appreciate the rest of the dissertation.
Chapter 3 explains the design and implementation of the framework being proposed.
Subsequently, in Chapter 4, this framework is evaluated in order to determine whether
it answers the research questions outlined in this chapter. In chapter 5, related work
is described and compared to what has been done in this dissertation. Finally, closing
remarks and future work can be found in the final chapter.

1https://github.com/ryanfalzon/DLT-Dissertation

6

2

Background

This chapter provides an overview of the domains this research touches upon. With
respect to blockchain technologies, an introduction to the underlying architecture and
mechanism is given, as well as an analysis of smart contract applications. It was decided
to position this research of a unified programming model for decentralized applications
in the context of macroprogramming. Thus, a general overview of macroprogramming
and aggregate programming is provided together with the challenges that one might
face when using such approaches. The aforementioned will provide the reader substan-
tial knowledge to understand technical approaches used during the design and imple-
mentation of the proposed framework.

2.1 | Blockchain

2.1.1 | Overview
Ever since Satoshi Nakamoto presented Bitcoin as a solution to the double-spending
problem in 2008, blockchain, a type of DLT, has drastically grown in popularity. Even
though Satoshi Nakamoto did not create blockchain technology, he is responsible for
conceptualizing the first blockchain (Narayanan et al., 2019). The earliest literature of a
data structure that loosely resembles blockchain technology was in a computer science
dissertation with the title “Computer Systems Established, Maintained, and Trusted
by Mutually Suspicious Groups” by David Chaum in 1982 (Sherman et al., 2019). In
1991, Stuart Haber and W. Scott Stornetta proposed a cryptographically secured chain
of blocks to store timestamps without being easily manipulated securely (Narayanan et
al., 2019). To improve the system’s speed and efficiency, they allowed blocks to support

7

Chapter 2. Background 2.1. Blockchain

Merkle Trees as a means of storage so that each block can hold more than one certificate
(Bayer et al., 1993).

The work presented by Satoshi Nakamoto in his whitepaper describes a system
where peers participating within a network can communicate and exchange value within
the ecosystem without the need of any type of intervention from third-party interme-
diaries. Held within a cryptographically secure digital ledger accessible by virtually
anyone within the network are the network transactions. This digital ledger takes the
form of a continuously growing chain of blocks. A consensus algorithm is used to en-
sure that all transactions placed within a mined block are correct and valid (Nakamoto,
2008).

Blockchain owes thanks to cryptocurrencies, mainly Bitcoin, for the mass increase
in interest it gained. However, blockchain has become something more significant than
just a use case for cryptocurrencies. The introduction of smart contracts, which refers
to having executable code within the network, has opened various other doors. Smart
contracts facilitate transactions that, in a centralized nature, would require an interme-
diary to overlook the process whereby certain conditions must be met in order for the
process to continue. In this case, the difference is that the intermediate entity is replaced
with pieces of code located in the chain that automatically executes when predefined
conditions evaluate to true (Raskin, 2016).

2.1.2 | Blockchain Architecture
A blockchain is composed of a chain of blocks linked together with a cryptographic
link. This cryptographic link is none other than the hash of the previous block (Yaga
et al., 2019). A hash is a unique output that results from a one-way unknown process
applied on an arbitrary input. This implies that a hash is unique and that there exists
no process one can follow to go back to the original input from its resulting output. By
reasoning, the first block, otherwise known as the genesis block, does not have a parent
block, thus having an empty previous block hash (Swan, 2015). Figure 2.1 provides a
simple, blockchain architecture diagram.

Consider a malicious user trying to manipulate the data within a particular block
α. Upon editing the slightest details from block α, its hash requires re-calculating. This
implies that the next block β, whose previous block hash is that of block α, requires re-
hashing. The process continues until the last block of the chain is re-hashed. This turns
out to be a lengthy and challenging process for an individual to undertake and makes
tampering with the blockchain not only near impossible but immediately detectable by
other peers within the network.

8

Chapter 2. Background 2.1. Blockchain

Figure 2.1: Blockchain Architecture

Amongst the various properties that one can find within a block header, one can
find the parent hash, timestamp, nonce and consensus algorithm version. These can
be considered as common between the numerous blockchain systems that are currently
live. However, properties such as the consensus algorithm to validate blocks within
the network and the access policy, are properties, amongst others, that differentiate one
network from another. A vast range of consensus algorithms exist, and depending on
the use case that a blockchain is being built for, an adequate consensus algorithm would
be needed. The most used algorithm is the Proof-of-Work technique, in which min-
ers need to provide performance power to safeguard the network and guarantee that
the block they are submitting to the chain is valid. Being mentioned first in Nakamoto
(2008)’s work, this approach consumes more energy due to a larger number of machines
one would need in order to mine a block successfully. As time goes by, we are seeing
the adoption of Proof-of-Stake algorithms more commonly now, just as Ethereum has
adopted another version of their main chain to operate under a Proof-of-Stake environ-
ment. Miners enter a form of lottery and place their cryptocurrency at stake in such
a mechanism, thus guaranteeing that a block is valid. When one considers blockchain
access policies, two options are available, either a public or private network. Within a
private network, only individuals who have access to the network can interact with the
chain. In contrast, in a public network, anyone who downloads a copy of the ledger can
view and submit transactions.

All in all, the blockchain data structure guarantees the integrity of the data found
within each and every block through immutability, transparency and decentralization.
By maintaining the previous block hash within every block, a cryptographic link is cre-
ated whereby it makes it virtually impossible to manipulate data found in the network.
Furthermore, the consensus mechanism ensures that peers within the network commu-
nicate within a trustless environment without the need for a central authority governing
the network. Finally, all interactions occurring within the blockchain network is avail-

9

Chapter 2. Background 2.1. Blockchain

able to anyone through the digital ledger, thus providing transparency to its users.

2.1.3 | Smart Contracts
2.1.3.1 | Overview

The term Smart Contract was first coined by American computer scientist and cryptog-
rapher Nick Szabo in 1994. In his paper ‘The idea of smart contracts’ Szabo expressed
the need to have a digital space, which allows for self-executable code in a trustless en-
vironment. He continued by defining a smart contract as a set of computer instructions
shared with all network entities, having only interested parties agree to a set of pre-
defined rules. These rules, or conditions as they are now more commonly referred to,
are evaluated upon executing the contract, having a specific action occur if these condi-
tions are satisfied (Szabo, 1994). Due to not having the right technology at the time, the
idea remained dormant until recently. Together with the benefits that blockchain tech-
nology brings, the idea of Szabo’s smart contracts enable self-verifiable, self-executable,
and tamper-proof contracts.

A significant benefit that smart contracts bring forth as opposed to standard legal
contracts is that once a smart contract is deployed to the blockchain, nobody can alter or
remove that contract. Moreover, the ability to view the actual contract provides trans-
parency to participants within the network of what the true nature of the contract is.
All this is possible, thanks to the cryptographic nature utilized by blockchain networks
which safeguards transparency through its append-only structure.

Consider a scenario where an individual is applying for a home loan from his local
bank to be able to purchase a house. By nature, this is quite a lengthy process whereby
the individual must go through a multistage process involving several different inter-
mediaries, in order to get fund approvals and subsequently be able to purchase the
house. Lack of trust between the involved parties can be considered as the root cause
for this process. By leveraging the benefits of blockchain technology, smart contracts
offer the trusted execution engine required to carry out such a transaction in the context
of a trustless environment without the need of any intermediaries.

Depending on how blockchain networks operate, individuals who invoke smart
contract functions may be subject to a fee to facilitate execution. More commonly known
as Gas, this fee is set in place to allocate resources on the EVM to allow the code to be
executed in a decentralized environment. Furthermore, Gas also ensures that execution
is bound to finish, thus reducing the risk of having a malicious Smart Contract blocking
other contracts to start execution.

10

Chapter 2. Background 2.1. Blockchain

2.1.3.2 | Programming Languages

Bitcoin Script Bitcoin Script is used to write scripts that can be stored on the Bitcoin
network. The execution model for Bitcoin Script is more commonly referred to as the
Unspent Transaction Output (UTXO) model. In this model, a smart contract is defined
as a number of conditions that need to be met to spend the transaction value. Due to the
limited number of operations that can be executed in such an environment, the types of
applications are therefore also restricted. Bitcoin Script was designed as a non-Turing
complete stack-based low-level language with reverse polish notation. With respect
to syntax, Bitcoin Script loosely resembles Forth1 (Moore & Leach, 1970) syntax such
that any program terminates. Moreover, Bitcoin Script limits developers in terms of the
script file size itself (Tyurin et al., 2019).

1 0 <Signature One > <Signature Two > 2 <Public Key One >

2 <Public Key Two > 2 OP_CHECKMULTISIG

Listing 2.1: Bitcoin Script Example

Listing 2.1 provides an example of a multisig transaction implemented in Bitcoin
Script. Operations are processed from left to right, whose results are populated within
a last-in-first-out stack. The above example requires two signatures, < SignatureOne >
and < SignatureTwo > each originating from a different public key, < PublicKeyOne >
and < PublicKeyTwo > respectively, to approve the transaction. To carry out this check,
the OP_CHECKMULTISIG operation is used.

Solidity Solidity (Wood, 2014) is one of the most commonly used Smart Contract lan-
guage for the Ethereum platform thanks to its simple code syntax. It is a high-level,
statically typed, and object-oriented language whose syntax closely resembles that of
the JavaScript2 language. The contract architecture consists of a contract declaration
that can have user-defined properties and functions. Reference from function decla-
rations can be made to both locally defined properties and functions, as well as those
present within other Smart Contracts. Ethereum smart contracts are compiled down to
bytecode and executed on the Ethereum Virtual Machine. Limiting the duration of ex-
ecution is a Gas mechanism where users are required to submit some cryptocurrencies
to allow for execution. This Gas structure ensures two things; the first being assurance
that validators will get paid even if something goes wrong during execution; the second

1First used in the 1970s, Forth is a procedural, stack-oriented programming language.
2JavScript is one of the core technologies used for the World Wide Web (WWW) and conforms to the

ECMAScript specification.

11

Chapter 2. Background 2.1. Blockchain

is the fact that execution cannot exceed what is allowed through the prepaid amount
(Parizi & Dehghantanha, 2018).

The following code shows an implementation of a multisig wallet smart contract in
Solidity. One can see the resemblance that exists between Solidity and JavaScript. Fur-
thermore, in comparison to the Bitcoin Script implementation above, one can appreciate
the simplicity that Bitcoin Script offers in comparison to a Solidity Smart Contract.

1 contract MultiSigWallet {

2 address payable one;

3 address payable two;

4

5 mapping(address => bool) signed;

6

7 constructor(address payable _one , address payable _two) public

payable {

8 require(msg.value >= 0);

9 one = _one;

10 two = _two;

11 }

12

13 function sign() public {

14 require (msg.sender == one || msg.sender == two);

15 require (signed[msg.sender] == false);

16 signed[msg.sender] = true;

17 }

18

19 function withdraw () public payable {

20 require (signed[one] && signed[two]);

21 require (address(this).balance > 0);

22 uint amountToSend = address(this).balance / 2;

23 one.transfer(amountToSend);

24 two.transfer(amountToSend);

25 signed[one] = false;

26 signed[two] = false;

27 }

28 }

Listing 2.2: Solidity Code Example

12

Chapter 2. Background 2.1. Blockchain

Marlowe Marlowe (Seijas & Thompson, 2018) is a Haskell embedded Domain Specific
Language (DSL) that is used to implement smart contracts for the Cardano blockchain.
However, just like modern programming languages, Marlowe is considered to be "platform-
agnostic" and therefore, both UTXO and account-based platforms can benefit from the
Marlowe programming model. By combining Haskell primitives with a number of ba-
sic constructs, programmers are given the ability to write complex contracts in a simple
way. This is done by splitting a smart contract in smaller and reusable components
which can communicate between them. Marlowe contracts are more notably used to
model financial contracts in the style of Jones et al. (2000).

1 contract :: Contract

2

3 contract = When [Case (Deposit "alice" "alice" ada price) inner]

4 10

5 Close

6

7 inner :: Contract

8

9 inner =

10 When [Case bobChoice

11 (When [Case carolChoice

12 agreement]

13 60

14 Close)

15]

16 40

17 Close

18

19 agreement :: Contract

20 agreement =

21 If

22 (bobChosen `ValueEQ ` Constant 1)

23 (Pay "alice" (Party "bob") ada individualPrice

24 (Pay "alice" (Party "carol") ada individualPrice Close)

25)

26 Close

27

28 choiceName :: ChoiceName

29 choiceName = "choice"

30

31 choice :: Party -> [Bound] -> Action

32

33 choice party = Choice (ChoiceId choiceName party)

34

13

Chapter 2. Background 2.1. Blockchain

35 bobChoice , carolChoice :: Action

36 bobChoice = choice "bob" [Bound 0 1]

37 carolChoice = choice "carol" [Bound 0 1]

38

39 bobChosen , carolChosen :: (Value Observation)

40 bobChosen = ChoiceValue (ChoiceId choiceName "bob")

41 carolChosen = ChoiceValue (ChoiceId choiceName "carol")

42

43 defValue :: (Value Observation)

44 defValue = Constant 42

45

46 price :: (Value Observation)

47 price = Constant 450

48

49 individualPrice :: (Value Observation)

50 individualPrice = Constant 225

Listing 2.3: Marlowe Example

By keeping the same example as previously discussed smart contract languages, that
of a multi sig wallet, one can see how Marlowe offers a totally different instruction set
from what Solidity offers. In the above contract, when Alice deposits funds into the
smart contract, the contract is locked. The contract can be unlocked only when both Bob
and Carol agree, subsequently having the original deposited funds split between them.

2.1.4 | Chain Interoperability
The lack of interoperability that exists between current blockchain systems may end up
being a problem in the future. Interoperability between blockchain systems is the ability
to have cross-platform communication between different blockchain networks without
the need for intermediate entities. In essence, such a mechanism could allow developers
to create smart contracts on the Ethereum platform which allows users to purchase a
share of a digital asset that is found in a consortium network such as Hyperledger and
pay using Bitcoin. Some might consider this as the next step for blockchain technology
through the creation of a number of sidechains designed using a defined DLT standard
which are hooked to each individual blockchain network (Lima, 2018).

While Lima sees a DLT standard as being the solution to achieving chain interop-
erability, Vitalik Buterin stated that although chain interoperability is not easily achiev-
able, this can be done through three stages. The first being that of centralized or mul-
tisig notary schemes. Notary scheme makes use of trusted entities to carry out specific
actions or processes on chain B when something occurs in chain A. On the contrary,

14

Chapter 2. Background 2.2. Macroprogramming

multisig notary schemes would require multiple entities to authorize the transaction.
This is normally achieved by having the individual entities sign a message using their
private key which can later be validated using their public key.

Using sidechains and relays is the second strategy that Buterin describes. Sidechains
refer to when separate blockchains are attached to a parent blockchain using a two-way
channel of communication. These sidechains act as an intermediary between the parent
blockchain and any other non-linked blockchain to facilitate trustless communication
between the two. Instead of relying on an intermediary to acquire information about
another blockchain, relays refer to those blockchains that are specially built to handle
such communication. This is a more direct approach as opposed to notary schemes
which involve a certain level of trust.

Finally, Buterin explains how hashed time-locks can be used to facilitate atomic
swaps in hopes of achieving interoperability. The notion of hashed time-locks is not
new and has been one of the core properties of Bitcoins’ Lightning Network deployed
in 2019. Such a technique involves time-bound transactions and would require the re-
cipient to acknowledge a transaction by creating a cryptographic proof within the spec-
ified time-frame, otherwise the transaction would be declined. Atomic swaps allow for
swapping assets across different blockchain systems. A hash of a secret acts as a trigger
to two different chains, which once revealed, sequentially unlocks the transactions on
the respective chains (Buterin, 2016).

2.2 | Macroprogramming

2.2.1 | Overview
Back when the notion of high-level languages did not exist, developers were forced to
create hand-coded programs that would execute directly on their machines. In addi-
tion to the performance and memory constraints that machines possessed at the time,
developers quickly noticed how difficult it is to create and debug machine-level code,
even with possession of substantial amounts of knowledge in the domain. This acted
as a motivation to create what is now known as high-level languages. High-level lan-
guages are more straightforward to understand as they abstract programming details
to a level that is closer to natural human languages. Furthermore, such languages allow
developers to focus on what needs to be done instead of how the machine should do it.
Each high-level language requires a compiler that translates the source code written in
a high-level language to low-level machine code executed by the machine.

15

Chapter 2. Background 2.2. Macroprogramming

As application requirements started involving more computational power and spe-
cialized functionality that might not be readily available on a single system, develop-
ers began to utilize multiple machines for executing a single system. Doing so proved
beneficial in terms of the features and functionality that each machine offered and also
the benefits of utilizing multiple high-level languages to build a single application. By
adopting such an approach, developers were able to build more robust systems. This
technique is still used to this day where developers choose to have bespoke applica-
tion code on both the client-side and server-side. In normal practices, client-side code
tends to be less demanding than what is found on a server-side. This is done to cater for
lower performance machines that clients might be running, more commonly referred to
as end-user devices.

However, writing applications in this manner had its share of difficulties. Firstly,
developers needed to create different parts of the application separately in different
programming languages, which in the end, needed to run seamlessly together when
deploying the solution. This increased the likelihood of bugs and indirectly made the
process of debugging slower. Furthermore, communication layers would need to be
created to facilitate exchanging messages between the different components. Therefore,
a broader knowledge of programming capabilities needs to be possessed by the devel-
oper to carry out this form of development.

In the early nineties, a solution to the problems mentioned above was exploited:
creating a unified programming model for developing software and hardware applica-
tions that span multiple systems. This meant that an individual with sufficient knowl-
edge of the unified model and a good software development base could develop such
applications using just the unified model and let the compiler decompile and build the
individual components to run on the different environments. Moreover, developers did
not need to worry about creating the intermediate communication layer between the
system’s different components (Page, 1996).

The terminology that describes this process, macroprogramming, was later coined
by Newton and Welsh during the rise in wireless sensor networks’ popularity. Their
contribution relates to using macroprogramming to develop various sensor nodes using
just one abstract programming language. Despite not being the first time that the term
‘macro’ was heard of, it was the first time that it was being used in this context 3. In
macroprogramming, the compiler acts as the defined rule by translating a line of code
to its respective form that can be executed on its target platform (Newton & Welsh,
2004).

3A macro is defined as a rule or pattern that defines an input’s mapping to a separate output.

16

Chapter 2. Background 2.2. Macroprogramming

2.2.2 | Aggregate Programming
While macroprogramming is more commonly used to refer to the creation of a uni-
fied programming model for wireless sensor networks, aggregate programming is the
broader area of such a domain. Beal & Viroli (2016) describe aggregate programming as
creating a layered solution to achieve a unified programming model. The first layer con-
tains all the capabilities and features of each specific device, including communication
medium, states and restrictions a device might have. By abstracting these software and
hardware capabilities, a field calculus construct can be created. Subsequently, a set of
resilient coordination operators are derived from the constructed calculus which is then
made available through the fourth layer via user-friendly Application Programming In-
terfaces (APIs) that can be invoked by the developer to create the application code in
the fifth and final layer. Beal et al. (2015) argue how this layered approach helps in hid-
ing the complexities that programming Internet of Things (IoT) systems consisting of
different edge devices has.

2.2.3 | Challenges of Macroprogramming
Level of Abstraction The first issue with creating a macroprogramming language is
the level of abstraction that needs to be exhibited by the language. Therefore, in order
to choose the correct model, one must take note of a number of differences that exist.
The first being the physical attributes that lie with the languages to be abstracted. Such
attributes include any memory or performance constraints that exist and also the fact
that one system might support multiple types of nodes. Another set of differences that
exist is related to how data is generated and processed, as this may differ from one
system to another. Programmers should be allowed to toggle what happens with data
at ease at the macroprogramming language level. The higher the level of abstraction, the
more work must be overloaded to the runtime and the compilation framework. Thus,
a balance is needed between the level of abstraction and the amount of processing the
compilation framework should carry out. However, this should not hinder the process
of making the unified model platform-independent to allow the developers to focus on
what should be done rather than how it should be done (Pathak & Prasann, 2006).

Runtime System Design Heterogeneity of the systems is another issue that can be
encountered. In the field of wireless sensor networks, this can be an issue as one can
have devices communicating over Wi-Fi and others over Ethernet. On the other hand,
in the blockchain domain, different networks use different methods of validation and
verification of transactions and blocks. The runtime system should be able to consider

17

Chapter 2. Background 2.2. Macroprogramming

this and carry out the necessary changes during runtime and not require the developer
to include this in the macroprogramming code. Pathak and Prasann continue arguing
that modularity is what makes a good runtime system as it helps in code generation
and subsequently future updates and enhancements. A modular runtime design makes
supporting more systems and improvements to the macroprogramming syntax simpler
(Pathak & Prasann, 2006).

Code Generation As opposed to typical compilation carried out by a traditional com-
piler like javac (Used for Java), macro program compilation involves the generation
of code for the individual systems which would later on be compiled using common
compilers for binary retrieval. Because of this, this process is also referred to as code
or source generation. This process is the root of many difficulties that may be experi-
enced by developers when building macroprogramming languages, as source genera-
tion should not only translate the input code to the target code but rather make design
decisions such as which data structure is best suited for each situation. Furthermore, it
would be ideal to create a unified model for creating automatic unit tests for the gen-
erated code to ensure that adequate code coverage exists and no errors and bugs exist
within the generated code (Pathak & Prasann, 2006).

Interoperability An essential component within a unified macroprogramming lan-
guage is the communication layer that needs to exist between the different systems. If
we consider the wireless sensor domain, devices within the network require a commu-
nication channel between each other. On the other hand, in the domain of distributed
applications, the centralized components need to have a way to interact with compo-
nents found on-chain and, in the future, the possibility to have different on-chain code
communicate with each other. Mizzi et al. describe two forms of implementations for
a communication channel; Either with the help of message queues or through a shared
memory approach. The former makes the assumption that each system has a direct con-
nection with the platform it needs to exchange messages with. On the other hand, the
latter requires a portion of memory to be reserved for communication and acts as a form
of shared memory which holds messages that need to be read by other systems. This
approach, although it still uses message passing, raises the level of abstraction of the
communication channel as no individual channels need to be built between the differ-
ent systems supported by the unified model (Mizzi, 2019).

18

Chapter 2. Background 2.3. Summary

2.3 | Summary
A discussion and analysis were carried out on blockchain technology and macropro-
gramming in this chapter. With respect to the blockchain domain, an introduction was
given, followed by a description of the architecture that such a technology adopts. Smart
Contracts as a blockchain use case was also discussed together with a description of sev-
eral smart contract programming languages such as Solidity and Bitcoin Script. Finally,
background was given on macroprogramming and aggregate programming while also
highlighting any challenges and issues that can be encountered by developers creating
a unified programming model.

The aim of this chapter was to educate readers on the domains and technologies
that will be used in the next chapters. Any subsequent work carried out builds on
these technologies by making use of a macroprogramming approach to achieve a unified
model for decentralized application development. To our knowledge, this is the first
attempt of creating such a solution, however, similar approaches have been adopted in
the field of wireless sensor networks. Different DLT dependent challenges were focused
on achieving blockchain interoperability and easier development of IoT-enabled smart
contracts. In Chapter 5 an overview of peripheral related work is provided to highlight
their relevance to our work.

19

3

Design and Implementation

Applications developed in a decentralized manner make use of a mixture of program-
ming languages and concepts to cater for the different locations, and their capabilities,
where different components of the system reside. Components residing in different
locations communicate together via API calls in order to facilitate message and data
passing. This dissertation focuses on identifying a better approach to this development
model to reduce both implementation and runtime overheads mentioned in the first
chapter. To our knowledge, this is the first attempt at creating a unified macroprogram-
ming model for this domain.

3.1 | Approach & Language Design
We aim at identifying a unified model that allows programmers to create combined
source code, containing both off-chain code and on-chain code under one codebase as
we believe that this is a more natural and easy way of programming an application. An
aspect oriented approach was taken whereby code is tagged using some form of annota-
tion to indicate which location framework it should be deployed to. These annotations
will be used to tag whole classes and functions in scenarios where control-flow exists,
but also individual variable properties when data-flow exists.

UniDAPP would in turn automatically generate the code for each respective exe-
cution location, having it ready to be deployed by the programmer. By using this ap-
proach, developers are able to experiment with shifting logic and data control code be-
tween different locations to achieve the best results in terms of costs and performance.

As will be discussed in subsequent sections, the source generator was designed in
such a way as to have the framework easily and efficiently support other blockchain
networks in the future. We see this as being a fundamental concept and requirement of

20

Chapter 3. Design and Implementation 3.2. The Use Case

UniDAPP, as developers will be allowed to build decentralized applications that span
across multiple networks, all while using one codebase.

Our ultimate goal is to create a framework which would abstract and hide the com-
plexities that are coupled with decentralized application development.

3.2 | The Use Case
In order to evaluate the proposed framework, a use case needs to be identified. This
use-case needs to include elements that would satisfy the criteria for a decentralized ap-
plication and design decisions requiring different parts of the application to be deployed
to different locations, i.e., off-chain and on-chain.

A social network application was chosen to serve as the use-case. Social networks
such as Facebook and Instagram process client data on a daily basis, ranging from user
interests to basic user information such as their date of birth. This often results in users
being reluctant that their data is used for reasons that the client is unaware of or ma-
nipulated without the users’ knowledge and consent. If one considers a scenario of two
users, John and Mary, using the Facebook social network, where Mary works as a data
engineer at Facebook. Figure ?? illustrates a post authored by John.

Given Mary’s status and role at Facebook, she can access all user data found on
the platform. Provided that Mary manages to bypass all security protocols that Face-
book has to safeguard their data; in theory, she can change the content of John’s post
without his permission. Nowadays, organizations set up both technological and orga-
nizational guarantees to ensure that such scenarios never occur; however, we have seen
cases where these have failed.

The described scenario can be overcome by shifting the social network on a de-
centralized application. However, due to the likes of GDPR, a Social Network opera-
tor should refrain from executing everything on-chain. This would mean that all the
data will be available to virtually anyone, even individuals who are not social network
members. This results from one of the core properties of public blockchain networks,
whereby data is publicly available to anyone operating a node for the network. This
issue causes the dilemma of central control versus decentralized, but trusted, execution.
For a very long time, centralized intermediaries have been trusted with acting as an
overseer and controller of our data and operations. However, with the introduction of
DLTs, the need for a trusted centralized intermediary is removed and users are granted
the ability to control their own data.

21

Chapter 3. Design and Implementation 3.2. The Use Case

Having said this, social network operators will then have the option to migrate spe-
cific data properties and code execution to an off-chain environment. This would allow
operators to comply with GDPR as sensitive client data would be available only to indi-
viduals enrolled in the social network, but still offering the benefits that on-chain smart
contracts have. Architectural diagrams illustrating how these three types of systems dif-
fer can be seen in Figures 3.1(a), 3.1(b), 3.1(c). If such an approach were to be adopted,
Mary would still be able to change the post authored by John. However now, John
would be in a position to be able to show proof that his post has been changed through
blockchain verification since the history is preserved on a publicly available ledger.

(a) Centralized System (b) Decentralized Smart Contract System

(c) Hybrid System

Figure 3.1: Use Case Architecture

22

Chapter 3. Design and Implementation 3.3. Proposed Framework

3.3 | Proposed Framework
Ellul & Pace (2019) proposed that annotations within a unified programming model
allow developers to tag code fragments with the location where the said piece of code
should execute. The idea here is that one program, written in one language, can be
passed through a source generator to be processed down to separate code files. Ellul &
Pace provide a way of annotating both control flow and data flow code segments in the
same manner.

As we aim to reduce the overheads that developers are exposed to in such an en-
vironment, we propose UniDAPP, a framework developers can utilize to create decen-
tralized applications using a unified programming model. Without deviating away too
much from native C# syntax, three types of annotations were available for use; tag an-
notations, in-line annotations, and block annotations. Despite Ellul & Pace using one
form of annotation for both control flow and data flow in their initial proposition, it be-
came evident that we would be creating a more readable and understandable codebase
by utilizing a mixture of these types of annotations.

Throughout this chapter, the term <LOCATION> is used in instances of annotation
definitions and examples. This term refers to the location where the annotated code
should execute. The current version of UniDAPP supports two locations, Desktop and
Ethereum, meaning that developers can either execute code in a centralized desktop en-
vironment or on the Ethereum chain. One location should be passed within parenthesis
within the annotation itself.

Figure 3.2 provides a high-level illustration of UniDAPP. One can see how the uni-
fied smart contract and system code is passed through a dApp source generator. After
this file is parsed and processed accordingly, the centralized system code and the smart
contract code are automatically generated and ready to be deployed. It is important to
note that the communication channel illustrated in this figure is not necessarily a sin-
gle communication channel, nor is it shared, it is just a means of exchanging messages
between one system and another.

It is also important to note how UniDAPP can also be used on existing systems. In
scenarios where the code for an existing centralized system coded in .NET is available,
this can be used as a starting point and newer features can be added to this source code.
This feature is made possible due to the fact that our source compiler is able to parse
.NET code and interpret it accordingly.

23

Chapter 3. Design and Implementation 3.3. Proposed Framework

Figure 3.2: UniDAPP Framework

3.3.1 | Annotation Grammar
In this section, three annotations will be discussed; tag annotations, in-line annotations
and block annotations. We will dive deeper in the annotations’ grammar and semantics
to understand the design decisions that were taken.

3.3.1.1 | Tag Annotations

These annotations highly resemble standard annotations found in the .NET languages,
were an attribute enclosed within a set of braces is added on top of a line of code. This
means that a specific action needs to be carried out on the expression found underneath
the tag. These labels are intended to be used for data flow syntax, i.e. class, function
and variable definitions and must follow the formal definition found below.

24

Chapter 3. Design and Implementation 3.3. Proposed Framework

〈start〉 ::= ‘[XOn(’ 〈location-definition〉 ‘)]’;

〈location-definition〉 ::= 〈location〉 | ‘OutOnly’;

〈location〉 ::= ‘Desktop’ | ‘Ethereum’;

Such annotations provide a concise and straightforward manner to annotate class
function and variable declarations. In the case of functional logic, such an annotation
would not be ideal as it would require developers to annotate every line of code. Dur-
ing development, it became evident that when defining custom types, developers might
require that certain properties are kept read-only, meaning that only retrieval of such
variables would be allowed. Hence, in addition to a location definition, tag annotations
within the context of our framework accept the ’OutOnly’ attribute. Such an attribute
would instruct the source generator to exclude the annotated variable from any param-
eter listings. Listing 3.1 provides an example of using this annotation.

1 [XOn(All)]

2 public class Profile

3 {

4 [XOn(All)]

5 public int Id;

6

7 [XOn(Ethereum)]

8 [OutOnly]

9 public Bytes32 Hash;

10

11 [XOn(Desktop)]

12 public string Name;

13

14 [XOn(Desktop)]

15 public string Email;

16 }

Listing 3.1: Tag Annotation Example

From the above code block, one can see that the Profile class will be available on
all systems that the framework supports, which at the time of writing, are Desktop and
Ethereum environments. Variables such as the name and email will be only available on
desktop environments, hence ensuring that no private user information is available on
the blockchain network. On the other hand, the profile hash is annotated to be stored
on-chain and can only be read.

25

Chapter 3. Design and Implementation 3.3. Proposed Framework

3.3.1.2 | In-Line Annotations

The use of in-line annotations was reserved for identifying classes that are custom-
defined data objects. Using in-line annotations provides a clear and concise way of
identifying data models from other system logic. Such annotations are required to fol-
low the following grammar rules.

〈start〉 ::= ‘XModel(’ 〈contract-name〉 ‘)’;

Similar to the previously discussed annotation, this tag requires a parameter to be
passed. This parameter should be the name of the Smart Contract, where the model
should be placed. As multiple Smart Contracts definitions can exist within the frame-
work, models would not be required to exist within all of them. Code Listing 3.2 below
is an example of how one could go about using this form of annotation.

1 [XOn(All)]

2 public class Profile : XModel("SocialNetwork")

3 {

4 ...

5 }

6

7 [XOn(Ethereum)]

8 public class SocialNetwork

9 {

10 ...

11 }

Listing 3.2: In-Line Annotation Example

3.3.1.3 | Block Annotations

Finally, for annotating function scopes, block annotations were chosen as the ideal tag-
ging structure over the previously discussed techniques. Block annotations offer the
ability to gather several consecutive expressions into one scope, thus avoiding unnec-
essary overuse of annotations. Such annotations are required to follow the following
grammar rules.

〈start〉 ::= ‘@XOn(’ 〈location-definition〉 〈parameters〉 ‘) {’ 〈scope〉 ‘}’;

〈location-definition〉 ::= ‘Desktop’ | ‘Ethereum’;

〈parameters〉 ::= ‘, ’ 〈parameter〉 | 〈parameters〉 ‘, ’ 〈parameter〉;

26

Chapter 3. Design and Implementation 3.3. Proposed Framework

Finally, Listing 3.3 shows how one would go about using block annotations. It is
important to note that as opposed to other class segments, functions do not require a
preceding annotation. This allows developers to have full control of where each expres-
sion within a function is stored.

1 [XOn(All)]

2 public class SocialNetwork

3 {

4 [XOn(Desktop)]

5 public IDatabaseConnector _databaseConnector;

6

7 $>mapping(int => string) public Profiles;

8

9 public void Register(Profile profile)

10 {

11 @XOn(Desktop , profile)

12 {

13 _dataBaseConnector.AddProfile(profile.Id, profile.Name , profile

.Email);

14 }

15

16 ~@XOn(Ethereum , profile)

17 {

18 Profiles[profile.Id] = profile.Id.Hash();

19 }

20 }

21 }

Listing 3.3: Block Annotation Example

Just like previously discussed annotations, the location parameter indicates where
the code found within the block annotation scope should be placed. This parameter is
followed by a comma delimited list of parameters that indicate the input to the function
created in the respective location. The ‘∼’ in line 11 will be discussed further down.

3.3.1.4 | Additional Aspects

Parent Inheritance The notion of parent inheritance works throughout all the de-
scribed annotation structures. When code fragments are not annotated, the source gen-
erator reverts back to the annotation provided to its parent. This reduces the number
of unnecessary annotations required to be written by the developer. In Listing 3.4 since
all properties incorporated within the Profile class will be automatically placed on the
Ethereum platform as per the annotation applied to the class declaration.

27

Chapter 3. Design and Implementation 3.3. Proposed Framework

1 [XOn(Ethereum)]

2 public class Profile

3 {

4 public int Id;

5

6 public string Hash;

7 }

Listing 3.4: Parent Inheritance Example

Asynchronicity Additionally, another essential aspect of such annotations is the ‘∼’
symbol placed before block annotations. This symbol dictates whether the said block
should be executed synchronously, in the case that the symbol is used, or asynchronously,
if the symbol is not added. Synchronous execution refers to when processes are exe-
cuted one after the other, which results in the caller system blocking until a response is
received. On the other hand, asynchronous calls refer to when processes are executed in
parallel. The ’orchestrator’ system, i.e. the system that should make these synchronous
and asynchronous calls, is set to be the first annotated location identified within a func-
tion scope. Therefore, if we consider Listing 3.3 and apply this reasoning, the Ethereum
scope should be executed synchronously with respect to the Desktop system. Despite
supporting asynchronous calls, due to time constraints there does not exist a way of
reading the response and feedback retrieved via such calls. In such cases asynchronous
calls are only used in cases where the rest of the code is independent of what happens
within the asynchronous call. However, it may be the case that no response is received
because something from the asynchronous call failed, thus, such calls might not be reli-
able to use.

Error Handling In terms of error handling, syntax errors are caught by the compila-
tion stage of the source generator. When a syntax error occurs, the compiler execution
fail and an informative message is returned to the user explaining while compilation
failed. Due to time constraints, the scope of this research does not explore the scenario
where business runtime errors occur when using a system built using UniDAPP. An ex-
ample of such an error would be a require statement residing within a smart contract
function requiring that a certain value is, for instance, larger than 0. In such a case, the
current iteration of UniDAPP simply catches that error at the communication layer and
continues execution to avoid having the application abruptly crash.

28

Chapter 3. Design and Implementation 3.3. Proposed Framework

3.3.2 | Annotation Semantics
If we consider the code fragments found in Listings 3.1, 3.2 and 3.3 which were provided
as an example in the previous sections, the below listings would be the resulting code
generated by the framework. Listing 3.5 provides C# code generated for a Desktop
environment, while Listing 3.6 provides Solidity code generated for an Ethereum Smart
Contract.

1 public class Profile

2 {

3 public int Id { get; set; }

4 public string Name { get; set; }

5 public string Email { get; set; }

6 }

7

8 public class SocialNetwork

9 {

10 public IDatabaseConnector _databaseConnector { get; set; }

11

12 public void Register(Profile profile)

13 {

14 _databaseConnector.AddProfile(profile.Id, profile.Name , profile.

Email)

15 await XCall("Ethereum", "SocialNetwork", "Register", profile.Id);

16 }

17 }

Listing 3.5: Generated C# Code

1 pragma solidity >=0.4.22 <0.7.0;

2 contract SocialNetwork{

3 struct Profile{

4 uint128 Id;

5 bytes32 Hash;

6 }

7

8 mapping(uint128 => bytes32) public Profiles;

9

10 function Register(uint128 id) public{

11 bytes32 hash = keccak256(abi.encodePacked(id));

12 Profiles[Id] = hash;

13 }

14 }

Listing 3.6: Generated Solidity Code

29

Chapter 3. Design and Implementation 3.3. Proposed Framework

The framework would generate two separate files, one containing C# code intended
to be deployed on a centralized desktop environment and another containing an Ethereum
Smart Contract written in Solidity. The framework takes care of creating class and con-
tract definitions for the respective files. Moreover, data type mappings are warranted
accordingly. For instance, an integer denoted by the data type ‘int’ in a C# codebase is
automatically mapped to a ‘uint’ in the case of Solidity syntax. This was done in effort
to keep syntactical notation of the annotation framework as close to .NET C# syntax.
Furthermore, while .NET languages allow functions to accept objects as parameters,
Solidity only allows developers to pass in primitive types. If we take into considera-
tion Listings 3.5 and 3.6, while the off-chain ’Register’ function accepts a parameter of
type ’Profile’, the on-chain function was generated in such a way whereby it accepts
all on-chain properties found within the ’Profile’ object in their primitive types. The
only exception would be the ’hash’ property as this was annotated with the ’OutOnly’
annotation, meaning it would only appear in return statements and not parameters.

As can be seen in Line 13 of Listing 3.5, the Ethereum code block was annotated
as being a synchronous process. In order to call an Ethereum Smart Contract from the
desktop environment, XCall is used. XCall is a run-time library built to achieve seam-
less communication between the different locations supported by the framework and
enables a standard and generic way of communication This library exposes a function
that takes the following arguments:

� Location – Refers to the network the XCall library should initiate communication
with.

� Contract Name - Refers to the name of the smart contract found on the specified
platform.

� Function Name – Refers to the name of the function found within the Smart Con-
tract.

� Parameter List – A comma separated list of parameters that the function accepts.

30

Chapter 3. Design and Implementation 3.4. System Architecture

3.4 | System Architecture
Figure 3.3 illustrates the main components that comprise the framework being pro-
posed. The source generator is a console application that takes as input the path to a
file that contains the annotated code. The annotations need to indicate the intended
deployment location of the code block beneath them. Consequently, separate files are
generated containing the generated code for off-chain and on-chain deployments.

Figure 3.3: System Architecture

The process by which this is achieved is divided into three parts:

� Abstract Syntax Tree (AST) Compilation – During this stage, the input file is parsed
down into an AST. This is achieved by taking the code found in the input file and
creating a hierarchical tree consisting of nodes, where each node resembles a piece
of code from the input file. This tree helps achieve a simpler procedure to iter-
ate the input code and above all, provides all the required details to primarily
analyse the tags associated with each piece code, and subsequently generate the
segregated code files to be deployed to their respective target platform.

31

Chapter 3. Design and Implementation 3.5. Implementation Issues

� Lexical Analysis – During this stage, the source generator parses the code tree
to determine where each piece of code needs to be executed depending on its
annotations. This step produces similar code trees to the previous step for each
location that was identified from the annotations. However, these code trees only
contain the necessary details needed to generate the source code in the following
step.

� Code Generation – During this stage, the source generator takes the parsed data
from the previous step, and generates specific code syntax depending on the loca-
tion of where it needs to be executed.

Subsequently, the connector layer is a class library that allows for seamless commu-
nication between off-chain code and the different code executions happening on differ-
ent on-chain networks. Methods exposed through this class library are referenced by the
code generated by the source generator. Furthermore, this class library exposes several
utility functions and extensions that allow for simpler development of decentralized
applications.

For further information on how the processes mentioned in this section operate,
please refer to Appendix A. The code for both the Source Generator, and also the con-
nector library, is available on my GitHub page 1.

3.5 | Implementation Issues
Achieving Dynamic Source Generation The framework should provide ease of ex-
tensibility, allowing for other developers to support further locations to which the input
source code can be decompiled down to. This ensures that developers are not limited
to just desktop or Ethereum networks for example, but will be able to build decentral-
ized applications to, let’s say the NEO network. While creating a structure whereby
annotations can be dynamically added was easily achieved, the source generation pro-
cedure carried its own set of challenges. These mainly revolved around the aspect of
having different coding structures supported by the different platforms that the frame-
work supports. For instance, while a C# class can consist of a number of properties
and a number of functions, a Smart Contract declaration within Solidity can also have a
list of Structs associated with it. Therefore, the procedure within the source generation
section where all parsed data nodes are linked to their parents, had to be developed in

1https://github.com/ryanfalzon/DLT-Dissertation

32

Chapter 3. Design and Implementation 3.5. Implementation Issues

such a way that can dynamically accept all types of syntax structures, irrespective of the
platform that the data is being constructed to.

Decompiling Custom Model Types Creating custom models to represent the data
stored within a database is essential in any platform that allows for application develop-
ment. This is not an exception when developing decentralized applications. The limita-
tion when developing the framework presented herein is the aspect of return types and
parameters. This issue arises due to programming languages, like Solidity, that do not
accept custom model types as return types and parameters to functions but rather opt to
have the individual properties listed one after the other. Because of this, the lexical anal-
ysis procedure needs to keep track of the defined custom models and produces only the
required properties from these models to be placed instead of return types and function
parameters. An example of this is provided in Listings 3.8 and 3.9 which contain the
annotated source code and the generated Solidity code respectively. Despite this, we
believe that as more languages are supported, the framework’s inherent support would
increase as well.

1 [XOn(Ethereum)]

2 public class Profile

3 {

4 public int Id;

5

6 public string Hash;

7 }

8

9 [XOn(Ethereum)]

10 public class SocialNetwork

11 {

12 public void Register(Profile profile)

13 {

14 @XOn(Ethereum , profile)

15 {

16 ...

17 }

18 }

19 }

Listing 3.7: Annotated Source Code

33

Chapter 3. Design and Implementation 3.5. Implementation Issues

1 contract SocialNetwork{

2 struct Profile{

3 uint128 Id;

4 string Hash;

5 }

6

7 function Register(uint128 id , string memory Hash) public{

8 ...

9 }

10 }

Listing 3.8: Generated Solidity Code

34

4

Evaluation and Validation

4.1 | Overview
To evaluate the approach and language proposed herein, we created an experiment
which requires the development of several tasks using both the traditional approach
and also using UniDAPP. We used the Social Media platform described in Chapter 3.2
as a real-world scenario of a decentralised application that requires the execution of
user-defined stories and tasks defined in this chapter. These user-defined stories will
allow developers to explore the outcomes of shifting logic and control flow to and from
off-chain and on-chain locations by defining a set of development requirements to create
a decentralized system that adheres to GDPR.

The traditional system and its subsequent tasks use a .NET code base for off-chain
execution and Solidity to program the on-chain smart Contract code placed on the
Ethereum network. On the other hand, the annotated code is written solely using
UniDAPP, automatically generating the separate code bases for the individual plat-
forms.

Certain overheads were measured from both approaches to assess whether the re-
search questions laid out in Section 1.3 are answered. In the case of the annotation ap-
proach, we will be measuring the code written by the developer and not the generated
code.

� Lines of Code – A percentage of added, deleted, and modified code from the total
changes. This measurement will be taken for both the traditional and annotated
approaches.

� Support and Functional Code – A ratio of support vs. functional code was read for
both the traditional and annotated approaches. Functional code refers to logical

35

Chapter 4. Evaluation and Validation 4.2. Experiment

code derived from functional requirements such as data validation. Meanwhile,
support code is written with the intent to allow the system to operate. A key
example of such code is the ability to communicate to on-chain smart contracts
from a centralized system.

� Expressiveness of Abstraction – The ability to have platform-specific code written
in a generic form and then be decompiled down to their respective platform code-
base. As opposed to the previous measurements, which are quantitative, this one
is a qualitative measurement.

These measurements are based on related work laid out in Chapter 5. Due to time
constraints, it was decided to leave out the usability aspect of the framework and iden-
tified this as a possible future work in Chapter 6.

4.2 | Experiment
We start first by defining each user story and their subsequent tasks, hence allowing the
reader to understand what the expected outcome of each user story is. User stories are
presented in the first person from the point of view of the user. The user is not limited
to be the end-user of the system, but rather the person or entity that requires the user
story to be completed. For instance, if a user story describes a new feature needed to
be added to the system, in this case, the user is the end-user. However, if, on the other
hand, the story describes a bug fix, the user, in this case, is the software developer.

The metrics calculated from the resulting code using the annotation framework will
be compared to those when using the traditional approach. This allows us to analyse
the usability from an unbiased point due to considering both traditional and annotation
techniques.

36

Chapter 4. Evaluation and Validation 4.2. Experiment

4.2.1 | User Story 1: Centralized to Decentralized Framework
4.2.1.1 | Description

As a software developer, I want to shift the social application from a centralised nature
to a decentralised one to satisfy the need for transparency that end-users desire. The
tasks that would need to be carried out to complete the user story successfully are the
following:

� Outline Smart Contract architecture, including crucial functionality and publicly
available data.

� Migrate custom profile and post object models to on-chain structures. This process
will require creating user-defined structs within the smart contract declaration that
resemble the centralised application’s custom model classes.

� Migrate data and control code to smart contract.

4.2.1.2 | Results

Traditional Annotated

Lines Percentage Lines Percentage
Additions 105 50.24% 52 43.33%
Deletions 104 49.76% 56 46.67%

Modifications 0 0.00% 12 10.00%

Total
209 120

−42.58%

Table 4.1: User Story 1

4.2.1.3 | Discussion

A percentage decrease of 42.58% in the number of lines that needed to be modified was
achieved when opting to use the annotated framework to develop the first user story.
Besides having lower addition and deletion figures, the number of modified lines in-
creased. When using the traditional approach, the developer needed to delete the whole
C# code base and re-code everything using Solidity, including contracts, functions and
model declarations, aspects that did not need changing. When using the annotation
framework, these declarations do not need changing as the source generator automat-
ically generates the required code for the target location. This shows the framework’s

37

Chapter 4. Evaluation and Validation 4.2. Experiment

potential when developers are tasked with shifting data and control flow from a cen-
tralised environment to a decentralised one.

4.2.2 | User Story 2 - Hybrid Framework
4.2.2.1 | Description

As a software developer, I want to have specific data properties stored off-chain rather
than on-chain. All data related to profiles and posts should be stored off-chain. On the
other hand, profile and post hashes are created and stored on-chain to ensure that these
have not been modified. In doing so, the application would be compliant with GDPR.
The tasks that would need to be carried out to complete the user story successfully are
the following:

� Modify user-defined on-chain structs to remove unnecessary object properties.

� Create custom model classes on the off-chain platform to store the data removed
from the on-chain platform.

� Create the necessary code to store off-chain data while modifying the on-chain
code to keep the desired model properties.

� Create a way of having a line of communication between off-chain and on-chain
executions to call the desired smart contract code found on the Ethereum platform.

4.2.2.2 | Results

Traditional Annotated

Lines Percentage Lines Percentage
Additions 172 73.19% 139 71.28%
Deletions 45 19.15% 32 16.41%

Modifications 18 7.66% 24 12.31%

Total
235 195

−17.02%

Table 4.2: User Story 2

38

Chapter 4. Evaluation and Validation 4.2. Experiment

4.2.2.3 | Discussion

In the second user story, despite having a lower percentage decrease when using the
annotated framework, that of 17.02%, one can still see that additions and deletions de-
creased. At the same time, the number of modifications carried out increased. This
lower percentage occurs due to one of the limitations of the current version of UniDAPP.
This limitation, which involves additional code lines to be written to retrieve data from
on-chain code, will be further discussed in Section 4.3.2.2. However, if this limitation is
addressed in future versions of the annotation framework, one would see an increase of
27.23% rather than the 17.02% measured in this experiment.

4.2.3 | User Story 3 - Centralized Privacy Settings
4.2.3.1 | Description

As a software developer, I want to create privacy settings functionality in a centralised
environment. The privacy settings should allow users to toggle both profiles and posts
to either a public or private option. The tasks that would need to be carried out to
complete the user story successfully are the following:

� Create custom model classes on the off-chain platform to store the data of a privacy
setting. The data should include a boolean flag for both profiles and posts, true
referring to a public setting and false referring to a private setting, as well as a
profile identifier.

� Create off-chain code that should verify and store the privacy settings accordingly.

4.2.3.2 | Results

Traditional Annotated

Lines Percentage Lines Percentage
Additions 23 100.00% 26 100.00%
Deletions 0 0.00% 0 0.00%

Modifications 0 0.00% 0 0.00%

Total
23 26

13.04%

Table 4.3: User Story 3

39

Chapter 4. Evaluation and Validation 4.2. Experiment

4.2.3.3 | Discussion

A 13.04% increase in lines of code was incurred when developing the third user story.
The development of the tasks involved the creation of a centralised feature. Therefore,
the traditional approach’s code was identical to the one created in the annotation frame-
work. The additional lines that were needed in the annotated codebase were the anno-
tations that were added to indicate that the code should be stored or executed off-chain.
This means that UniDAPP does not offer any specific benefits when compared to tradi-
tional approaches of developing either a centralised or decentralised feature.

4.2.4 | User Story 4 - Decentralized Privacy Settings
4.2.4.1 | Description

As a software developer, I want to store all the data generated by the privacy settings in
a decentralised environment. While this will not hold any private user data in a public
domain, thus being compliant to GDPR, the users will have the ease of mind that their
privacy settings have not been tampered with.

� Migrate custom privacy settings object models to on-chain structures. This process
will require creating a user-defined struct within the smart contract declaration
that resembles the centralised application’s custom model class.

� Migrate data and control code to smart contract functions.

4.2.4.2 | Results

Traditional Annotated

Lines Percentage Lines Percentage
Additions 20 74.07% 14 60.87%
Deletions 7 25.93% 8 34.78%

Modifications 0 0.00% 1 4.35%

Total
27 23

−14.81%

Table 4.4: User Story 4

40

Chapter 4. Evaluation and Validation 4.3. Further Discussions

4.2.4.3 | Discussion

In contrast to the above, the last user story required the previous story’s functionality
to be shifted from a centralised environment to a decentralised one. In this case, a de-
crease of 14.81% in modified lines of code was experienced. This small percentage can
easily be improved and have a higher gap between the more traditional and annotation
frameworks. This can be achieved by identifying how to create interchangeable logic
code that would only require changing the annotation of its location. This will help
reduce the number of added and deleted lines while adding a small percentage to the
number of modifications due to the annotation change. An example of how this can be
achieved can be seen in the listing below.

4.3 | Further Discussions

4.3.1 | Functional & Support Code
One can see how when using our annotation framework, the percentage of support code
to functional code reduces throughout all the use cases. Use case 1 sees a 100% decrease
in support code, while in use case 2, an 84.26% decrease was achieved. Despite both
traditional and annotated approaches having 0% support code in use case 3, support
code in use case 4 drops by 41.3% when using UniDAPP. This shows how developers
can focus more on the underlying logic, rather than writing support code, when using
the annotation framework.

Support Functional

Use Case 1 4 1.91% 205 98.09%
Use Case 2 46 19.57% 189 80.43%
Use Case 3 0 0.00% 23 100.00%
Use Case 4 2 7.41% 25 92.59%

Table 4.5: Traditional Approach

Support Functional

Use Case 1 0 0.00% 120 100.00%
Use Case 2 6 3.08% 189 96.92%
Use Case 3 0 0.00% 26 100.00%
Use Case 4 1 4.35% 22 95.65%

Table 4.6: Annotated Approach

41

Chapter 4. Evaluation and Validation 4.3. Further Discussions

4.3.2 | Expressiveness of Abstraction
4.3.2.1 | Cross-Platform Code Compatibility

While most of the Solidity programming language highly resembles syntax found within
the C# language, there are forms of Solidity syntax written in a different grammar. This
isn’t just specific to C# and Solidity as some language features are unique to platforms
and some that have commonalities with others. Hence we believe that it is important
that common ones are included and represent the different platforms to a sufficient level
and yet uncommon ones can be supported by allowing for platform specific code.

Let us consider the scenario where a developer needs to create a mapping and store
it on-chain. Traditionally, one would need to create solidity syntax similar to the below:

1 mapping(bytes32 => Post) public Posts;

However, since the above is not part of the .NET syntax, when using UniDAPP, de-
velopers must escape it using the ’\>’ escape character. However, in future versions
of the source generator, such instances should be handled by finding the closest coun-
terpart in the .NET domain and have the source generator decompile that line to its
respective form based on the provided annotation. Hence, the mapping syntax above
could be written as a native C# dictionary in the annotated code, only to be decompiled
down to a Solidity mapping by the source generator as below:

1 [XOn(Ethereum)]

2 Dictionary <int , Post > posts = new Dictionary <int , Post >();

4.3.2.2 | Chaining Annotations

One limitation of the current version of UniDAPP is the flexibility in combining anno-
tations with individual pieces of .NET code. This poses certain overheads that with
traditional techniques are not experienced by developers. Suppose one considers a sce-
nario where a function is created to retrieve a specific profile from an application that
resides on a decentralized platform. In this case, specific properties might need to be
retrieved from an off-chain location, while others from an on-chain location. Traditional
techniques would require developers to create an off-chain function that closely resem-
bles the code in Listing 4.1 below.

42

Chapter 4. Evaluation and Validation 4.3. Further Discussions

1 public Profile GetProfile(int profileId)

2 {

3 var profile = GetProfileQuery <Profile >. Execute(new {Id = id});

4

5 Connector connector = new Connector(credentialManager.PublicKey ,

credentialManager.PrivateKey);

6 profile.Hash = connector.Call("getProfileHash", id, hash);

7

8 return profile;

9 }

Listing 4.1: Get Profile - Traditional Approach

While most profile details are retrieved from an off-chain SQL database, line 6 of
Listing 4.1 shows how the profile hash is retrieved from the Ethereum platform and
assigned to a property found within the Profile object. Arguing how this can be over-
come by retrieving the profile hash from the SQL database would contradict using a
distributed application platform since one would be solely relying on data residing on
a centralised platform that could be susceptible to malicious attacks. By using the anno-
tation library, the development of such a function would be similar to the code found in
Listing 4.2.

1 public Profile GetProfile(int profileId)

2 {

3 ~@XOn(Desktop , profileId)

4 {

5 var profile = GetProfileQuery <Profile >. Execute(new {Id = id});

6 profile.Hash = GetProfileHash(profileId);

7 return profile;

8 }

9 }

10

11 public string GetProfileHash(int profileId)

12 {

13 return @XOn(Ethereum , profileId)

14 {

15 Profile profile = profiles[profileId];

16 return(profile.Hash);

17 }

18 }

Listing 4.2: Get Profile - UniDAPP (Current Version)

43

Chapter 4. Evaluation and Validation 4.3. Further Discussions

As can be seen above, the annotated block found between lines 13 and 17 had to be
placed within its separate function, which is called to initialize the profile hash variable
in line 6. This needs to be done since UniDAPP fails to support the functionality of
having the return value from annotated code blocks initialize a variable. This might
cause an unwanted overhead for the developer as they would still be required to create
two separate functions, just as one would need to do in traditional approaches.

One option to mitigating such a limitation would be to develop the required con-
nectors that would allow developers to populate variables with the return value from
an annotated code block. However, this would require one to have nested annotated
scopes that, in such a scenario, would have different locations of execution. An example
of this is provided in Listing 4.3 below.

1 public Profile GetProfile(int profileId)

2 {

3 ~@XOn(Desktop , profileId)

4 {

5 var profile = GetProfileQuery <Profile >. Execute(new {Id = id});

6 profile.Hash = @XOn(Ethereum , profileId)

7 {

8 Profile profile = profiles[profileId];

9 return(profile.Hash);

10 }

11

12 return profile;

13 }

14 }

Listing 4.3: Get Profile - UniDAPP (Incorrect Approach)

However, such an approach would confuse developers who might be undertaking
code reviews and analysis, as it would provide uncertainty of where the code should
be executed. At first glance, one would expect that anything placed within the anno-
tated desktop code should be executed on a desktop platform, despite having the anno-
tated Ethereum code included within this scope. Alternatively, a more intuitive solution
would be to allow unannotated variable declaration outside of annotation scopes to use
such variables from within annotated scopes. Listing 4.4 provides an example of this
solution.

44

Chapter 4. Evaluation and Validation 4.3. Further Discussions

1 public Profile GetProfile(int profileId)

2 {

3 ~@XOn(Desktop , profileId)

4 {

5 var profile = GetProfileQuery <Profile >. Execute(new {Id = id});

6 }

7

8 var profileHash = @XOn(Ethereum , profileId)

9 {

10 Profile profile = profiles[profileId];

11 return(profile.Hash);

12 }

13

14 @XOn(Desktop)

15 {

16 profile.Hash = profileHash;

17 return profile;

18 }

19 }

Listing 4.4: Get Profile - UniDAPP (Future Update)

As shown in line 8, a variable for holding the profile hash is created and initialised
using the annotated Ethereum scope’s return value. In doing so, the developer creates
a shared variable that can be used across annotated scope blocks found within the en-
closing function. Such an approach can be considered more intuitive for developers as
such practices are already adhered to in traditional programming languages.

4.3.3 | Framework Extensibility
Despite not being a primary aim of this dissertation, throughout the development of the
framework, it became evident that having such a framework supporting additional code
locations is essential. This would mean that systems can be developed using a greater
variety of target platforms, other than .NET and Ethereum Smart Contracts. Having the
framework support a new location would require the addition of the respective location
generator and extending the connector library to allow it to support communication
to and from the new location. The location generator refers to the transformation pro-
cess required to be carried out on the annotated parsed code, in order to have it readily
available for deployment on the target location. On the other hand, implementing the
connector library is dependent on what frameworks are currently available to interact
with the desired location. For instance, connections to .NET platforms are generally

45

Chapter 4. Evaluation and Validation 4.3. Further Discussions

made via API calls, while interactions, such as Smart Contract calls, to the Ethereum
network, can happen via JSON RPC calls to supported clients such as Geth or Parity.
Even though this is neither a framework limitation nor a drawback for its users, it is still
something one needs to consider when creating decentralized applications. As opposed
to traditional development of such systems, where this work would need to be incurred
by the system developers, when using the annotation framework, this work would not
be required as it would already be made available by the annotation framework devel-
opers.

Consider a use case where educational institutions would opt to shift academic cer-
tificates from a centralised environment to a decentralised one. Like the social applica-
tion use case, processing of private user data, such as student names and marks, is es-
sential. Hence, in such a case it would not be ideal to shift to a completely decentralized
system to avoid having sensitive data stored on-chain. An alternative solution would
be to use a hybrid system where both public and private chains are used to leverage the
technology’s benefits. Figure 4.1 below illustrates how such a system would operate.

Let’s assume that a portal written using .NET code is made available to educational
institutes to be able to upload certificates and also to students to view their certificates.
Educational institutes upload the raw certificate to a Hyperledger private chain which is
only accessible by approved entities. This makes the private data consolidated to only
trusted individuals. However, since private networks can be perceived as still being
controlled by a particular entity, a hash of the data uploaded on the private network is
created and subsequently anchored to a public network, thus allowing users to ensure
that their data has not been tampered with.

However, this comes at a cost as developing such a system would require coding on
three separate platforms, .NET, Hyperledger and Ethereum. A framework of the likes
being proposed would benefit developers since they would be allowed to design such a
system while using one codebase. Furthermore, due to the benefits explained thus far,
changing the location where specific data properties reside, would be far more straight-
forward in one environment than manipulating three individual environments. It is
also important to note that due to blockchain still being in its infancy, many application
might not last the face of time, therefore, it might not be worthwhile to invest time in
building such an application.

46

Chapter 4. Evaluation and Validation 4.4. Summary

Figure 4.1: Hybrid System Example

4.4 | Summary
In this chapter, we evaluated the annotation-based framework proposed in this disser-
tation. The research questions set out in the first chapter were validated against the
results achieved from the experiment. The experiment consisted of developing a num-
ber of user stories for the predefined use-case in both the traditional manner and the
proposed annotation framework. For both instances, changes applied to the code were
noted at each step. This was done to find the percentage difference of changes between
the two.

� Research Question 1: Results showed how our annotation framework allows de-
velopers to explore the change in execution location for both logic and data-flow in
a more effortless manner. However, when adding a wholly centralized or decen-
tralized feature, our framework showed no benefits than traditional approaches.

47

Chapter 4. Evaluation and Validation 4.4. Summary

The annotation framework also reduced the amount of support code to functional
code that needed to be written.

� Research Questions 2 & 3: Cross-platform code compatibility and the ability to
have chained annotations were identified as possible drawbacks of the current
version of the framework, and would most likely induce an additional overhead
on the developer. Section 4.3 provides a detailed explanation to possible solutions
of these drawbacks.

48

5

Related Work

Although related work on a unified model for decentralized application is limited, sev-
eral advancements have been carried out in the field of macroprogramming. These
mainly relate to wireless sensor networks. Despite this, efforts have been made in the
blockchain domain to develop suitable models for developing cross-chain smart con-
tracts, and IoT enabled blockchain networks. Therefore, throughout this section, an
overview of work on macroprogramming within the field of wireless sensor networks
will be presented.

5.1 | Macroprogramming forWireless SensorNetworks
Regiment Regiment, a functional language whose syntax closely resembles Haskell’s,
aims to provide an easier way of programming wireless sensor networks. The network
is depicted as a set of spatially distributed time-varying signals, where each set repre-
sents a region of nodes within the network. Compiling a Regiment program will create
an intermediate language-like model between Regiment and the languages supported
by the individual sensor nodes. This intermediate language, coined as the Token Ma-
chine, handles communications and delegations between the individual sensor nodes
by capturing only those operations that each sensor supports. This approach differs
from our annotation framework. While we proposed a unified model that translates
down to the separate code blocks written in their target language, Regiment is a lan-
guage that compiles down to an intermediate language (Newton & Welsh, 2004).

49

Chapter 5. Related Work 5.1. Macroprogramming for Wireless Sensor Networks

1 dosum :: float , (float , int) -> (float , int)

2 fun dosum(temp , (sumtemp , count)) {

3 (sumtemp + temp , count + 1)

4 }

5 tempreg = rmap(fun(nd) {sense("temp", nd)}, world);

6 sumsig = rfold(dosum , (0, 0), tempreg);

7 avgsig = smap(fun((sum , cnt)) {sum / cnt}, sumsig);

8 BASE <- avgsig

Listing 5.1: Wireless Sensor Network Programmed Using Regiment (Newton & Welsh,
2004)

Listing 5.1 provides an example of a program written in Regiment to find the average
temperature within the sensor network. The program makes use of rmap, r f old and
smap, which are constructs defined in the Regiment language. While rmap helps obtain
a reading from all sensors within the specified region, r f old is used to aggregate these
temperatures into a single variable. Finally, smap is applied on the resulting signal to
retrieve the average temperature.

Kairos Kairos, an extension to the Python language, allows programmers to state the
global behaviour of wireless sensor networks explicitly. This is achieved by tackling the
abstraction process in three stages; nodes, one-hop neighbours and remote data access
abstraction. The Kairos programming model also relies on another fundamental aspect
which is eventual consistency. Gummadi et al. (2005) argue that the state of each indi-
vidual intermediate node cannot be guaranteed. However, computational convergence
is bound to happen in the eventuality of a failure. A shared memory model is utilised
where a shared node state is maintained through a message passing technique. This
approach provides a centralised view of the whole network, thus making programming
such networks easier. Despite this, it still does not offer programmers the ease of mind
of not needing to understand such a system’s underlying mechanisms by leaving such
handles to the framework and automatically optimising communication patterns for a
defined topology (Gummadi et al., 2005).

1 void buildtree(node root)

2 node parent , self;

3 unsigned short dist_from_root;

4 node_list neighboring_nodes , full_node_set;

5 unsigned int sleep_interval = 1000;

6

7 // Initialization

8 full_node_set = get_available_nodes ();

50

Chapter 5. Related Work 5.1. Macroprogramming for Wireless Sensor Networks

9 for (node temp = get_first(full_node_set); temp != NULL; temp =

get_next(full_node_set))

10 self = get_local_node_id ();

11 if (temp == root)

12 dist_from_root = 0; parent = self;

13 else dist_from_root = INF;

14 neighboring_nodes = create_node_list(get_neighbors(temp));

15 full_node_set = get_available_nodes ();

16 for (node iter1 = get_first(full_node_set); iter1 != NULL; iter1 =

get_next(full_node_set))

17 for (;;) //Event Loop

18 sleep(sleep_interval);

19 for (node iter2 = get_first(neighboring_nodes); iter2 != NULL;

iter2 = get_next(neighboring_nodes))

20 if (dist_from_root@iter2 +1 < dist_from_root)

21 dist_from_root = dist_from_root@iter2 +1;

22 parent = iter2;

Listing 5.2: Wireless Sensor Network Programmed Using Kairos (Gummadi et al., 2005)

A complete program in Kairos for constructing a routing tree from a given node is
given in Listing 5.2. The use of macroprogramming constructs such as get_available_nodes(),
which gets a list of available nodes found within the network, and get_neighbors(),
which gets a list of one-hop neighbours from the given node, are used. These constructs
make it easier to construct the routing tree as opposed to writing the individual sensor
code required to gather the required data.

COSMOS Another approach to macroprogramming wireless sensor networks was
that of COSMOS. The COSMOS platform consists of the mOS operating system and
the mPL programming language. mPL allows distributed data processing to be speci-
fied in terms of data flow in the form of functional components written using a subset
of the C language. Once developed, these functional components can be reused across
other systems. mOS, on the other hand, serves as a heterogeneous runtime environment
for programs written in mPL. One of the benefits that COSMOS provides is the ability
to introduce additional abstraction features without the need to change the underlying
structure of mOS. Our annotation framework was built using the same thought pro-
cess with the hope that in the future, the proposed framework will be able to support
additional locations that developers can target their code to (Awan et al., 2007).

51

Chapter 5. Related Work 5.1. Macroprogramming for Wireless Sensor Networks

1 // Logical Instances

2 accel_x : accel (12);

3 disp : disp1 , disp2;

4 cpress_fc : cpress;

5 thresh_fc : thresh (250);

6 max_fc : max;

7 fft_fc : fft;

8 ctrl_fc : ctrl;

9

10 // Refining Capability Constraints

11 @ on_mote = MCAP_ACCEL_SENSOR : thresh , cpress;

12 @ on_srv = MCAP_UNIQUE_SERVER : ctrl;

13

14 IA {

15 timer (30) -> accel;

16 accel -> cpress [0];

17 cpress [0] -> thresh [0], max [0];

18 thresh [0] -> fft [0];

19 fft [0] -> disp1;

20 max [0] -> ctrl[0], disp2 | max [1];

21 ctrl [0] -> thresh [1];

22 }

Listing 5.3: Wireless Sensor Network Programmed Using COSMOS (Awan et al., 2007)

From Listing 5.3, one can see how programmers make use of components such as
accel, cpress and thresh, written using native C syntax, to define logical instances. De-
spite this, component interaction and dataflow, found within the IA scope, are defined
using the abstraction model provided by mPL language.

PyoT Similar to UniDAPP, PyoT is a macroprogramming framework for developing a
distributed application in the context of an IoT environment. By abstracting actuators
and sensors as CoAP resources, more commonly referred to in their work as software
objects, they could hide the complexities that such networks are surrounded by. These
software objects can then be programmed using either a web-based UI or through shell
commands. Furthermore, the programmer defines where pieces of code should be exe-
cuted, leaving the interpreter to distribute the code accordingly, similar to the proposed
annotation framework. They conducted experiments aimed at measuring the execu-
tion time, scalability, newly created overheads, and real-world implementations. This
resulted in the conclusion that although there exists an execution time overhead, the
framework is still a flexible and scalable one (Azzara et al., 2014).

52

Chapter 5. Related Work 5.2. Macroprogramming for Blockchain Systems

1 temps = Resource.objects.filter(title='temp ')

2 results = [temp.GET() for temp in temps]

3 avg = sum (results) / len(results)

4 if avg > 24

5 Resource.objects.get(title='fan ').PUT('on ')

Listing 5.4: Wireless Sensor Network Programmed Using PyoT (Azzara et al., 2014)

Listing 5.4 provides an example of how PyoT could be used to activate a fan given
that the average temperature read from the sensors exceeds a specific value. The Resource
construct defines a list consisting of the different sensors that is available within the
wireless sensor network. Each element within this list contains defined functions, such
as GET(), that retrieves the information available from the sensor, and PUT() which
sends signals to the sensor with the aim to manipulate the sensors’ state.

5.2 | Macroprogramming for Blockchain Systems
Porthos Porthos is a DSL, embedded in Haskell, that allows for programming of smart
contracts across several blockchain networks. A smart contract written in Porthos will
enable developers to define the location where each portion of the smart contract should
execute. A compiler creates separate files containing the code needed to be deployed to
the respective chain, for example, a Solidity file for Ethereum and a GO Chaincode file
for Hyperledger. Coupled with the Porthos DSL, a messaging routing mechanism acts
as a communication medium that relays messages from one network to the other. This is
achieved by listening for on-chain events and triggering a specific action once an event
happens. Through the experiments carried out, one could see how by raising the level
of abstraction, such a system could be developed without worrying about the complex
code for communication, thus needing to focus only on the contract logic. While the con-
cept of having annotated code is the same as what is being proposed in this research,
the two are distinct as Porthos was aimed at providing a solution for chain interoper-
able smart contracts. Simultaneously, the annotation framework works at solving the
challenges faced with distributed application development (Mizzi et al., 2019).

53

Chapter 5. Related Work 5.2. Macroprogramming for Blockchain Systems

1 savings :: Participant -> Time -> Contract

2 savings recipient expiryTime =

3 repeatCommit "save" (ETH , isCommitTo recipient)

4 (onTimeout expiryTime (releaseAll end))

Listing 5.5: Time-Locked Savings Plan Using Porthos (Mizzi et al., 2019)

Listing 5.5 above provides an example contract written in Porthos. Placement of
code depends on the asset being used. Since in line 3 the asset in question is ETH,
Porthos automatically translates the required code to be executable on the Ethereum
network.

D’Artagnan Similar to the framework we proposed, D’Artagnan is a high-level macro-
programming language, embedded in Haskell, that allows developers to describe blockchain-
connected IoT devices that provide some form of data to a smart contract dependent
system. A single program written using D’Artagnan is passed through the framework,
which in turn processes and outputs the code for the smart contracts, edge nodes, and
IoT devices. The blockchain edge node acts as a listener for events occurring on-chain
to fire up the necessary action to retrieve data from IoT devices and return to smart con-
tracts. To increase the level of abstraction that the framework offers, Haskell primitives
can be used in the macroprogram. Like our approach, D’Artagnan provides program-
mers with the ability to place code within one of three possible arrangements; IoT-focus,
Edge-focus or Blockchain-focus. This allows developers to experiment with different
locations where data flow and control logic can be placed to reduce the amount of Gas
needed to execute a smart contract for smart contract code and achieve the best per-
formance from IoT devices. Moreover, the communication required to pass messages
from the blockchain network where the smart contract resides to the IoT devices and
vice-versa is all taken care of by the D’Artagnan framework. This is another similarity
with what is proposed in this research, where the communication between the different
locations that developers can place their code is handled by the underlying mechanism
of the proposed framework (Mizzi et al., 2018).

54

Chapter 5. Related Work 5.2. Macroprogramming for Blockchain Systems

1 payPerCycle :: (Int , Stream Bool) -> Stream Int

2 payPerCycle (fee , inUse) = ifThenElse (inUse , (liftS fee , liftS 0))

3

4 payByConsumption :: (Int , Stream Int) -> Stream Int

5 payByConsumption (fee , usage) = liftS fee .*. usage

6

7 meter :: Stream Int -> Stream Int

8 meter feed = let x = pre 0 x .+. feed

9 in x

Listing 5.6: Smart Rent Application Using D’Artagnan (Mizzi et al., 2018)

In Listing 5.6, a smart rent application written using D’Artagnan is given. Such
an application calculates electrical consumption based on the meterage acquired from
household appliances. The beauty of such a solution is that the same application can
be deployed to different environments containing varying types of edge devices. The
D’Artagnan framework automatically generates the code that would be required by
each nodes, thus making it extremely easier for developers to manage as opposed to
writing different low-level code for individual nodes to accommodate the different plat-
forms they might support.

AlkylVM Ellul & Pace (2018) present AlkylVM as a means of integrating resource
constrained devices to blockchain systems. Their proposed solution consisted of the
Aryl Blockchain Node and the Alkyl Virtual Machine. In essence, the Aryl Blockchain Node
connects to an Ethereum network similar to common Ethereum nodes. The Aryl node
is tasked with continuously searching for contract events that would require input from
IoT devices, extract and pass application logic from identified events to IoT devices, and
also with writing blockchain transactions containing the final result. The Alkyl Virtual
Machine, on the other hand, is a virtual machine running on all IoT-enabled devices that
the Aryl Blockchain node has visibility of. The importance of the Alkyl Virtual Machine
is that it is able to execute the instruction extracted from the contract events. Programs
needing to execute on the Alkyl Virtual Machine are written using Alkyl, which is a
strongly typed C-like language. This model not only allows resource constrained IoT
devices to interact with Blockchain networks, but also keeps track of the Intermediate
Representation being executed off-chain, on a trustless environment.

55

Chapter 5. Related Work 5.2. Macroprogramming for Blockchain Systems

1 On PaymentEvent(string encryptPin , uint32_t mins) {

2 string pin = Decrypt(encryptPin);

3 for each (device in devices) {

4 device.SetPin(pin , block.timestamp + (mins * 60))

5 }

6 }

Listing 5.7: Smart Rent Application Using AlkylVM (Ellul & Pace, 2018)

1 char* pin;

2 time_t expires;

3 uint8_t index;

4 bool valid;

5

6 public void SetPin(char* pin , time_t expires) {

7 this.pin = pin;

8 this.expires = expires;

9 this.valid = true;

10 }

11

12 deviceevent void KeyPress(char key) {

13 if (pin[index] != key) {

14 valid = false;

15 }

16

17 index ++;

18 if (index == 4) {

19 index = 0;

20 if (valid) {

21 SystemCall(Unlock);

22 } else {

23 SystemCall(IncorrectBeep);

24 valid = true;

25 }

26 }

27 }

Listing 5.8: Smart Rent Application Using AlkylVM

While Listing 5.7 is an example of a script executing on the Aryl Blockchain Node,
Listing 5.8 illustrates an example of a piece of code meaning to be executed on an
AlkylVM-enabled IoT node. The code allows users to guess the pin, set by the Smart
Contract event. All interactions, i.e. entering a valid or invalid pin, with the IoT device
are recorded on the Ethereum network by using the ’SystemCall’ function.

56

Chapter 5. Related Work 5.2. Macroprogramming for Blockchain Systems

iContractML Hamdaqa et al. (2020) presented a DSL for modelling and deploying
smart contracts to multiple blockchains. By using a model editor, developers are able
to create an abstract model of a smart contract, which can later be deployed to different
blockchain platforms without having to modify the underlying code of the smart con-
tract. This is made possible by using a source generator which takes as input the smart
contract model, and creates the smart contract code depending on where the user wants
to deploy the smart contract. Hamdaqa et al. (2020) evaluated this approach by creating
three distinct smart contracts using iContractML and deploying them to the respective
blockchain platform. By calculating metrics introduced by Guizzardi et al. (2005), i.e.
the lucidity, soundness, laconicity and completeness they were able to deduce whether
the proposed framework holds up to their research questions. Their results showed
that despite iContractML being able to generate the configuration files required, these
are not enough to solely rely on iContractML to deploy blockchain smart contracts, thus
still requiring the intervention of developers prior to deployment.

iContractML is relatively similar to what we are proposing. The technique of model-
once-deploy-anywhere favours for code reusability, however does not address issues
that developers might face when utilizing the smart contract created by iContractML
from a centralized desktop environment for instance. These issues, however, can be
addressed or mitigated through the use of our annotation framework.

57

Chapter5.
Related

W
ork

5.3.
Sum

m
ary

5.3 | Summary
Framework Written In Written For Evaluation Description

Regiment Haskell
Wireless Sensor Net-
works

Feasability of the basic Regiment primites through a highly
restricted subset of the language was explored.

Kairos Python
Wireless Sensor Net-
works

Measurement of performance and convergence time when
using a system built using Kairos and one built in Python.

COSMOS C
Wireless Sensor Net-
works

An evaluation on the performance of the system after a pre-
defined test case had been built using COSMOS.

PyoT Python
Wireless Sensor Net-
works

Tests were performed in an emulated environment and a
real testbed with the aim of measuring execution time, ar-
chitecture scalability, task distirbution overhead and per-
formance.

Porthos Haskell Chain Interoperability
Expressiveness of abstraction, security analysis and exten-
sibility were noted when building a number of use cases
using Porthos.

D’Artagnan Haskell IoT Enabled Blockchain
Code generated automatically by D’Artagnan was com-
pared to one coded manually.

AlkylVM C IoT Enabled Blockchain
An example was provided as to how one would go about
creating an IoT-enabled smart contract application.

iContractML OBEO Designer
Smart Contract De-
ployed On Multiple
Networks

The generated smart contracts of the pre-defined use cases
was analyzed to asses whether the artifacts created are
enough to be deployed to a target blockchain.

58

6

Conclusions

6.1 | Achieved Aims and Objectives
This dissertation’s main aim was to assess whether a unified model can be applied to
distributed application development to address several challenges experienced by de-
velopers during such a process and subsequently identify any new difficulties and ways
of how these can be overcome. Our approach involved designing and creating an an-
notation library that enables users to write unified smart contract and system code by
making use of annotations to distinguish between where code should be placed and
executed.

A framework was designed whereby once the developer creates the annotated code,
this is passed to our interpreter for processing. The interpreter parses the file and identi-
fies each annotation that was listed by the developer. This process automatically creates
separate files, each containing code intended to be executed on the tags’ respective loca-
tion. For instance, generating C] code to replace the annotated code to be run on a desk-
top environment in one file and Solidity code to replace the Ethereum annotated code
in another file. A layer acting as an intermediary between the different target locations
the framework supports was also developed to facilitate easy and efficient exchange of
messages.

This framework was evaluated by comparing the development of several user sto-
ries that needed to be developed using traditional distributed coding techniques and
the UniDAPP framework. Our experiments made it evident that the proposed frame-
work reduces development overheads that developers need to incur to experiment with
the placement of data and control flow code. This can be concluded from the reduced
percentage of modifications required to be carried out to implement the user story when
using UniDaAPP. Furthermore, from the experiment, one can see how the ratio of sup-

59

Chapter 6. Conclusions 6.2. Critique and Limitations

port code to functional code was reduced. This would infer that developers could focus
their attention on more critical logical aspects of the code rather than support function-
ality.*

6.2 | Critique and Limitations
One of the limitations of the current version of the framework is that annotation chain-
ing is not supported. This means that if off-chain code is dependent on the result ob-
tained from an on-chain execution, a developer would need to split these functionalities
up into different methods. Ideally, the ability to link multiple block annotations together
would exist as this would reduce overheads for users.

Furthermore, something which emerged from the evaluation is that specific domain-
specific code has not yet been fully standardized. This would mean that even though
developers can develop decentralized applications under one framework, sometimes
they would still be required to write code specific to the location being deployed to. A
key example of this would be a mapping statement used in a Solidity smart contract.
In .NET, there exists no direct counterpart to a solidity mapping; hence, when using
UniDAPP, developers would need to write Solidity syntax within the UniDAPP file.

6.3 | Future Work
Being the first attempt at creating a solution to the problems laid out in Section 1.4,
several improvements could be made to the proposed language framework to further
improve its usability. These improvements are over and above the enhancements dis-
cussed in the evaluation section which could improve the results obtained thus far. The
items presented hereunder are not limited to technical improvements, but also relate to
future research that can be materialized.

First and foremost, one can explore whether a real-time syntax analyzer, similar to
an ’intellisense’, could be of benefit to developers using the annotation framework. As
it stands, the developer is only notified of any syntax errors that exist in relation to the
written annotations. This means that the source generator still proceeds with creating
the target code despite having syntax errors in native C# and Solidity code. Thus, by
creating a syntax analyzer that runs in the background when the annotated file is being
created, helps notify developers that syntax errors exist within their code. This feature
can be further enhanced by linking the syntax analyzer with the source generator to
have it reject any annotated code containing some sort of syntax error.

60

Chapter 6. Conclusions 6.4. Final Remarks

An important aspect of decentralized application development is the process of test-
ing the system. The on-chain portions of such systems inherit all benefits that on-chain
transactions have, one of them being immutability, meaning that once an on-chain smart
contract is published to the chain, no possible way of editing that smart contract would
exist. This makes testing a crucial phase of developing such systems as it is within the
interest of the developer that a smart contract is deployed without any form of bugs.
Unless developers take a test-driven development approach with coding such a system,
writing tests for a fully-developed system is a repetitive task and very difficult. A pro-
cess whereby a form of verification technique can be carried out on the generated code
can be automatically created and invoked. This process can involve approaches ranging
from simple unit tests to runtime verification like LARVA (Colombo et al., 2009) or even
static verification like KeY (Ahrendt et al., 2015).

Finally, further research can be carried out on the usability of the framework. The
scope of this research was limited to flexibility in terms of logic and data storage. How-
ever, the framework from the point-of-view of the developer was not explored. There-
fore the usability can be further explored by venturing into quantitative research and
creating an experiment where a group of developers will develop the system using both
traditional tools and using the annotation framework. Subsequently, developers would
be interviewed to deduce and analyze their thoughts on the annotation framework.
Doing so will provide a user-acceptance like understanding how elements of the frame-
work can be improved or additional features that could be added that would not have
been brought up without such an experiment.

6.4 | Final Remarks
The main aim of this thesis was to study the use of macroprogramming techniques cou-
pled with annotations to create a framework for developing decentralized applications
in an easier manner than what is currently the norm. It has been shown, that using the
framework being proposed, developers would incur less development overheads when
creating such applications. Nonetheless, by enhancing the framework with the features
discussed in the Section 6.3, and also overcoming the issued identified in Section 6.2, we
believe that the framework can be leveraged for its benefits to be used as the primary
development tool for decentralized applications.

61

A

Implementation Details

A.1 | Abstract Syntax Tree
In order to be able to analyse the annotated code efficiently, the code located in the
input file is parsed down to a hierarchical tree structure. This is done to create a visual
representation of the code that needs to be traversed. Taking as an example the code
found in Listing A.1, this would produce the AST that is illustrated in Figure A.1. One
can notice how details such as access modifiers, parameters, annotations and property
names are depicted as separate nodes within the source tree.

1 [XOn(All)]

2 public class Profile

3 {

4 public int Id;

5 }

Listing A.1: Source Tree Code

A.2 | Lexical Analysis
Throughout this section, a detailed explanation of the lexical analysis process of the
source generator will be provided. Here, the annotated code found in the input file is
parsed down to identify where each code segment should be executed. This can be seen
in the flowchart provided in Figure A.2.

The first step in the parsing process, is to create a source tree from the annotated
code. This is done with the help of the Roslyn library which can create a source tree with
multiple levels of hierarchy, thus allowing for easy analysis of each code block. Once

62

Appendix A. Implementation Details A.3. Source Generation

the source tree is created, a lexical analysis procedure is carried out whereby each level
of the tree is iterated to process each node and determine where it should be placed.

One of the objectives that the source generator needed to meet was the ability to sup-
port further on-chain networks in the future, easily and efficiently. This was achieved
by creating a dynamic factory that returns the appropriate XChainGenerator based on
the attribute defined by the user in the annotation being parsed. An XChainGenerator
is a utility created for this research that stores the parsed data from the lexical analysis
for future use. The class diagram in Figure A.3 shows the inheritance hierarchy of the
XChainGenerators. An interface ‘IXChainGenerator’ contains a set of defined methods
that each XChainGenerator must contain. This interface is inherited by an abstract class
‘XChainGenerator’ that defines and implements functionality that, irrespective of the
location were the code needs to execute, needs to be carried out on the parsed code. Fi-
nally, separate generators implement the aforementioned ‘XChainGenerator’ which in
turn implements the functions defined in the interface in their unique manner. All this
is accessed through the ‘XChainGeneratorFactory’ that returns the appropriate XChain-
Generator.

Let us consider a developer wishing to extend the framework by implementing sup-
port for HyperLedger Chaincode. In such a case, the developer would need to create a
separate class ’XOnChainHyperledgerGenerator’ class which inherits and implements all
methods in the ’XChainGenerator’. This would allow the lexical analyzer to recognize an-
notated code with the ’Locations.Hyperledger’ tag. Together with what will be explained
in Section A.3, developers would be able to fully integrate another target location within
the framework.

A.3 | Source Generation
After a successful lexical analysis process, the final stage of acquiring the separated code
base is to generate the source code from the parsed data. The lexical analysis provides a
list of unlinked models that contain all the relevant information to generate the source
for the individual frameworks the proposed solution supports. Figure A.4 offers a visual
representation of the process by which the source is generated.

The first step of this process is to identify all top-level structures within the list of
models. In essence the program would be filtering out all classes and contract deceler-
ations. This assumption is made based on the decision that these decelerations are not
children of any other form of structure. A consume function is invoked on each of these
top level items to identify their children. This process is repeated on each identified

63

Appendix A. Implementation Details A.4. Locations Communication Channel

child iteratively until the lowest level element is reached and there are no more chil-
dren are left to be identified. Figures A.5 and A.6 illustrate a hierarchy diagram of how
the identified types are structured for off-chain and on-chain Ethereum frameworks re-
spectively. Continuing with the example provided at the end of the previous section, a
developer extending the framework to support another target location would need to
create similar models to the ones shown in Figure A.6.

A.4 | Locations Communication Channel
The Connectors runtime library allows for seamless communication between off-chain
and on-chain code executions. Similar to the source generator, the library needed to be
built in a generic way that would make it easy for the addition of further networks in the
future. A factory mechanism was also adopted here whereby the appropriate connector
is provided based on the parameter that is passed. Such a mechanism allows developers
to extend the framework without needing to modify the underlying logic of the library
itself, thus only requiring the developer to create new code to support the new target
location.

Apart from this, a number of extension methods are also included in this library that
allow simpler code to be written by the developer for both off-chain and on-chain code.
These include the following:

� Hash – This function accepts any arbitrary object and, by using the SHA256 algo-
rithm, produces a a unique hash comprising of a 32-bit string.

� ToHexString – This function accepts a byte array and produces a hexadecimal
string representing that represents the byte array.

� Assert – This function asserts the passed condition and throws an exception if the
condition is not met.

� IsNotNull – With the help of reflection, this function dynamically checks that none
of the properties of the passed object are null or empty. If at least one of the prop-
erties is null or empty, false is returned. Otherwise, true is returned.

64

Appendix
A.

Im
plem

entation
D
etails

A.4.
LocationsCom

m
unication

Channel

Figure A.1: Abstract Syntax Tree

65

Appendix A. Implementation Details A.4. Locations Communication Channel

Figure A.2: Lexical Analysis Flowchart

66

Appendix A. Implementation Details A.4. Locations Communication Channel

Figure A.3: XChainGenerators UML Diagram

67

Appendix A. Implementation Details A.4. Locations Communication Channel

Figure A.4: Source Generation Flowchart

68

Appendix
A.

Im
plem

entation
D
etails

A.4.
LocationsCom

m
unication

Channel

Figure A.5: Off-Chain UML Models

69

Appendix
A.

Im
plem

entation
D
etails

A.4.
LocationsCom

m
unication

Channel

Figure A.6: On-Chain Ethereum UML Models

70

References

Ahrendt, W., Chimento, J. M., Pace, G. J., & Schneider, G. (2015). A specification lan-
guage for static and runtime verification of data and control properties. In Interna-
tional symposium on formal methods (pp. 108–125).

Awan, A., Jagannathan, S., & Grama, A. (2007). Macroprogramming heterogeneous
sensor networks using cosmos. ACM SIGOPS Operating Systems Review, 41(3), 159–
172.

Azzara, A., Alessandrelli, D., Bocchino, S., Petracca, M., & Pagano, P. (2014). Pyot, a
macroprogramming framework for the internet of things. In Proceedings of the 9th ieee
international symposium on industrial embedded systems (sies 2014) (pp. 96–103).

Bayer, D., Haber, S., & Stornetta, W. S. (1993). Improving the efficiency and reliability
of digital time-stamping. In Sequences ii (pp. 329–334). Springer.

Beal, J., Pianini, D., & Viroli, M. (2015). Aggregate programming for the internet of
things. Computer, 48(9), 22–30.

Beal, J., & Viroli, M. (2016). Aggregate programming: From foundations to applications.
In International school on formal methods for the design of computer, communication and
software systems (pp. 233–260).

Buterin, V. (2016). Chain interoperability. R3 Research Paper.

Colombo, C., Pace, G. J., & Schneider, G. (2009). Larva-a tool for runtime monitoring of
java programs. In Ieee computer society (pp. 33–37).

Cong, L. W., & He, Z. (2019). Blockchain disruption and smart contracts. The Review of
Financial Studies, 32(5), 1754–1797.

71

Appendix A. Implementation Details References

Data Protection Act. (2018). Chapter 586 of the Laws of Malta. Retrieved 2021-09-04,
from https://idpc.org.mt/wp-content/uploads/2020/07/CAP-586.pdf

Ellul, J., & Pace, G. (2019). Towards a unified programming model for blockchain smart
contract dapp systems. In 2019 38th international symposium on reliable distributed sys-
tems workshops (srdsw) (pp. 55–56).

Ellul, J., & Pace, G. J. (2018). Alkylvm: A virtual machine for smart contract blockchain
connected internet of things. In 2018 9th ifip international conference on new technologies,
mobility and security (ntms) (pp. 1–4).

Guizzardi, G., Pires, L. F., & Van Sinderen, M. (2005). An ontology-based approach
for evaluating the domain appropriateness and comprehensibility appropriateness of
modeling languages. In International conference on model driven engineering languages
and systems (pp. 691–705).

Gummadi, R., Gnawali, O., & Govindan, R. (2005). Macro-programming wireless sensor
networks using kairos. In International conference on distributed computing in sensor
systems (pp. 126–140).

Hamdaqa, M., Metz, L. A. P., & Qasse, I. (2020). Icontractml: A domain-specific lan-
guage for modeling and deploying smart contracts onto multiple blockchain plat-
forms. In Proceedings of the 12th system analysis and modelling conference (pp. 34–43).

Jones, S. P., Eber, J.-M., & Seward, J. (2000). Composing contracts: an adventure in
financial engineering. ACM SIG-PLAN Notices, 35(9), 280–292.

Lima, C. (2018). Developing open and interoperable dlt\/blockchain standards [stan-
dards]. Computer, 51(11), 106–111.

Mizzi, A. (2019). Macroprogramming using an embedded dsl approach.

Mizzi, A., Ellul, J., & Pace, G. J. (2018). Macroprogramming the blockchain of things.
In 2018 ieee international conference on internet of things (ithings) and ieee green computing
and communications (greencom) and ieee cyber, physical and social computing (cpscom) and
ieee smart data (smartdata) (pp. 1673–1678).

Mizzi, A., Ellul, J., & Pace, G. J. (2019). Porthos: Macroprogramming blockchain sys-
tems. In 2019 10th ifip international conference on new technologies, mobility and security
(ntms) (pp. 1–5).

72

https://idpc.org.mt/wp-content/uploads/2020/07/CAP-586.pdf

Appendix A. Implementation Details References

Moore, C. H., & Leach, G. C. (1970). Forth–a language for interactive computing. Ams-
terdam: Mohasco Industries Inc.

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Decentralized
Business Review, 21260.

Narayanan, A., Bonneau, J., Felten, E., Miller, A., & Goldfeder, S. (2019). Bitcoin and
cryptocurrency technologies. Curso elaborado pela.

Newton, R., & Welsh, M. (2004). Region streams: Functional macroprogramming for
sensor networks. In Proceeedings of the 1st international workshop on data management for
sensor networks: in conjunction with vldb 2004 (pp. 78–87).

Page, I. (1996). Constructing hardware-software systems from a single description.
Journal of VLSI signal processing systems for signal, image and video technology, 12(1), 87–
107.

Parizi, R. M., & Dehghantanha, A. (2018). Smart contract programming languages
on blockchains: An empirical evaluation of usability and security. In International
conference on blockchain (pp. 75–91).

Pathak, A., & Prasann, V. K. (2006). Issues in designing a compilation framework for
macroprogrammed networked sensor systems. In Proceedings of the first international
conference on integrated internet ad hoc and sensor networks (pp. 7–es).

Raskin, M. (2016). The law and legality of smart contracts.

Seijas, P. L., & Thompson, S. (2018). Marlowe: Financial contracts on blockchain. In
International symposium on leveraging applications of formal methods (pp. 356–375).

Sherman, A. T., Javani, F., Zhang, H., & Golaszewski, E. (2019). On the origins and
variations of blockchain technologies. IEEE Security & Privacy, 17(1), 72–77.

Swan, M. (2015). Blockchain: Blueprint for a new economy. O’Reilly Media, Inc.

Szabo, N. (1994). Smart contracts.

Tyurin, A. V., Tyulyandin, I. V., Maltsev, V. S., Kirilenko, I. A., & Berezun, D. A. (2019).
Overview of the languages for safe smart contract programming. , 31(3), 157–176.

Wood, G. (2014). Solidity. Retrieved 2021-09-04, from https://solidity.readthedocs

.io/en/latest/

73

https://solidity.readthedocs.io/en/latest/
https://solidity.readthedocs.io/en/latest/

Appendix A. Implementation Details References

Yaga, D., Mell, P., Roby, N., & Scarfone, K. (2019). Blockchain technology overview.
arXiv preprint arXiv:1906.11078.

74

	Introduction
	Overview
	Motivation
	Research Questions
	Aims and Objectives
	Report Overview

	Background
	Blockchain
	Overview
	Blockchain Architecture
	Smart Contracts
	Chain Interoperability

	Macroprogramming
	Overview
	Aggregate Programming
	Challenges of Macroprogramming

	Summary

	Design and Implementation
	Approach & Language Design
	The Use Case
	Proposed Framework
	Annotation Grammar
	Annotation Semantics

	System Architecture
	Implementation Issues

	Evaluation and Validation
	Overview
	Experiment
	User Story 1: Centralized to Decentralized Framework
	User Story 2 - Hybrid Framework
	User Story 3 - Centralized Privacy Settings
	User Story 4 - Decentralized Privacy Settings

	Further Discussions
	Functional & Support Code
	Expressiveness of Abstraction
	Framework Extensibility

	Summary

	Related Work
	Macroprogramming for Wireless Sensor Networks
	Macroprogramming for Blockchain Systems
	Summary

	Conclusions
	Achieved Aims and Objectives
	Critique and Limitations
	Future Work
	Final Remarks

	Implementation Details
	Abstract Syntax Tree
	Lexical Analysis
	Source Generation
	Locations Communication Channel

	References

