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Abstract. We introduce a general framework for Runtime Verification,
parameterized with respect to a set of conditions. These conditions are
encoded in the trace generated by a monitored process, which a monitor
can observe. We present this parameterized framework in its general form
and prove that it corresponds to a fragment of HML with recursion,
extended with these conditions. We then show how this framework can
be applied to a number of instantiations of the set of conditions.

1 Introduction

Runtime Verification (RV) is a lightweight verification technique that checks
whether a system satisfies a correctness property by analysing the current exe-
cution of the system [20,29], expressed as a trace of execution events. Using the
additional information obtained at runtime, the technique can often mitigate
state explosion problems typically associated with more traditional verification
techniques. At the same time, limiting the verification analysis to the current exe-
cution trace hinders the expressiveness of RV when compared to more exhaustive
approaches. In fact, there are correctness properties that cannot be satisfactorily
verified at runtime (e.g. the finiteness of the trace considered up to the current
execution point prohibits the verification of liveness properties). Because of this
reason, RV is often used as part of a multi-pronged approach towards ensuring
system correctness [5,6,8,14,15,25], complementing other verification techniques
such as model checking, testing and type checking.

In order to attain an effective verification strategy consisting of multiple ver-
ification techniques that include RV, it is crucial to understand the expressive
power of each technique: one can then determine how to best decompose the
verification burden into subtasks that can then be assigned to the most appro-
priate verification technique. Monitorability concerns itself with identifying the
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properties that are analysable by RV. In [21,22] (and subsequently in [2]), the
problem of monitorability was studied for properties expressed in a variant of the
modal μ-calculus [26] called μHML [28]. The choice of the logic was motivated
by the fact that it can embed widely used logics such as CTL and LTL, and
by the fact that it is agnostic of the underlying verification method used—this
leads to better separation of concerns and guarantees a good level of generality
for the results obtained. The main result in [2,21,22] is the identification of a
monitorable syntactic subset of the logic μHML (i.e., a set of logical formulas for
which monitors carrying out the necessary runtime analysis exist) that is shown
to be maximally expressive (i.e., any property that is monitorable in the logic
may be expressed in terms of this syntactic subset). We are unaware of other
maximality results of this kind in the context of RV.

In this work we strive towards extending the monitorability limits identi-
fied in [2,21,22] for μHML. Particularly, for any logic or specification language,
monitorability is a function of the underlying monitoring setup. In [2,21,22],
the framework assumes a classical monitoring setup, whereby a (single) monitor
incrementally analyses an ordered trace of events describing the computation
steps that were executed by the system. A key observation made by this paper
is that, in general, execution traces need not be limited to the reporting of events
that happened. For instance, they may describe events that could not have hap-
pened at specific points in the execution of a system. Alternatively, they may also
include descriptions for depth-bounded trees of computations that were possible
at specific points in an execution. We conjecture that there are instances where
this additional information can be feasibly encoded in a trace, either dynami-
cally or by way of a pre-processing phase (based, e.g., on the examination of logs
of previous system executions, or on the full static checking of sub-components
making up the system). More importantly, this additional information could, in
principle, permit the verification of more properties at runtime.

The contribution of this paper is a study of how the aforementioned aug-
mented monitoring setups may affect the monitorability of μHML, potentially
extending the maximality limits identified in [2,21,22]. More concretely:

1. We show how these aspects can be expressed and studied in a general monitor-
ing framework with (abstract) conditions, Theorems 3 and 4 resp. in Sects. 3
and 5.

2. We instantiate the general framework with trace conditions that describe the
inability to perform actions, amounting to refusals [31], Propositions 1 and 5.

3. We also instantiate the framework with conditions describing finite exe-
cution graphs, amounting to the recursion-free fragment of the logic [24],
Propositions 2 and 3.

4. Finally, we instantiate the framework with trace conditions that record infor-
mation from previous monitored runs of the system, Proposition 4. This, in
turn, leads us to a notion of alternating monitoring that allows monitors to
aggregate information over monitored runs. We show that this extends the
monitorable fragment of our logic in a natural and significant way.



A Framework for Parameterized Monitorability 205

The remainder of the paper is structured as follows. After outlining the necessary
preliminaries in Sect. 2, we develop our parameterized monitoring framework
with conditions in Sect. 3 for a monitoring setup that allows monitors to observe
both silent and external actions of systems. The two condition instantiations for
this strong setting are presented in Sect. 4. In Sect. 5 we extend the parameterized
monitoring framework with conditions to a weak monitoring setup that abstracts
from internal moves, followed by two instantiations similar to those presented in
Sect. 4. Section 6 concludes by discussing related and future work.

2 Background

Labelled Transition Systems. We assume a set of external actions Act and
a distinguished silent action τ . We let α range over Act and μ over Act∪ {τ}.
A Labelled Transition System (LTS) on Act is a triple

L = 〈P,Act,→L〉,

where P is a nonempty set of system states referred to as processes p, q, . . ., and
→L ⊆ P × (Act ∪ {τ}) × P is a transition relation. We write p

μ−→L q instead
of (p, μ, q) ∈ →L. By p

μ−→L we mean that there is some q such that p
μ−→L q.

We use p
μ
=⇒L q to mean that, in L, p can derive q using a single μ action

and any number of silent actions, i.e., p( τ−→L)∗ μ−→L ( τ−→L)∗q. We distinguish
between (general) traces s = μ1μ2 . . . μr ∈ (Act∪ {τ})∗ and external traces t =
α1α2 . . . αr ∈ Act∗. For a general trace s = μ1μ2 . . . μr ∈ (Act∪ {τ})∗, p

s−→L q

means p
μ1−→L

μ2−→L . . .
μr−→L q; and for an external trace t = α1α2 . . . αr ∈ Act∗,

p
t=⇒L q means p

α1=⇒L
α2=⇒L . . .

αr=⇒L q when r ≥ 1 and p( τ−→)∗q when t = ε is
the empty trace. We occasionally omit the subscript L when it is clear from the
context.

Example 1. The (standard) regular fragment of CCS [30] with grammar:

p, q ∈ Proc ::= nil | μ.p | p + q | rec x.p | x,

where x, y, z, . . . are from some countably infinite set of variables Var, and the
transition relation defined as:

Act
μ.p

μ−→ p
Rec

p[rec x.p/x]
μ−→ q

recx.p
μ−→ q

SelL
p

μ−→ p′

p + q
μ−→ p′

SelR
q

μ−→ q′

p + q
μ−→ q′

constitutes the LTS 〈Proc,Act,→〉. We often use the CCS notation above to
describe processes. �

Specification Logic. Properties about the behaviour of processes may be spec-
ified via the logic μHML [4,28], a reformulation of the modal μ-calculus [26].
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Definition 1. μHML formulae on Act are defined by the grammar:

ϕ,ψ ∈ μHML ::= tt | ff | ϕ ∧ ψ | ϕ ∨ ψ

| 〈μ〉ϕ | [μ]ϕ | min X.ϕ | max X.ϕ | X

where X,Y,Z, . . . come from a countably infinite set of logical variables LVar.
For a given LTS L = 〈P,Act,→〉, an environment ρ is a function ρ : LVar →
2P . Given an environment ρ, X ∈ LVar, and S ⊆ P , ρ[x �→ S] denotes the
environment where ρ[X �→ S](X) = S and ρ[X �→ S](Y ) = ρ(Y ), for all Y = X.
The semantics of a μHML formula ϕ over an LTS L relative to an environment
ρ, denoted as [[ϕ, ρ]]L, is defined as follows:

[[tt, ρ]]L = P [[ff, ρ]]L = ∅ [[X, ρ]]L = ρ(X)
[[ϕ1∧ϕ2, ρ]]L = [[ϕ1, ρ]]L ∩ [[ϕ2, ρ]]L [[ϕ1∨ϕ2, ρ]]L = [[ϕ1, ρ]]L ∪ [[ϕ2, ρ]]L

[[[μ]ϕ, ρ]]L=
{

p
∣∣ ∀q. p

μ−→ q implies q ∈ [[ϕ, ρ]]L
}

[[〈μ〉ϕ, ρ]]L=
{

p
∣∣ ∃q. p

μ−→ q and q ∈ [[ϕ, ρ]]L
}

[[min X.ϕ, ρ]]L =
⋂ {

S
∣∣ S ⊇ [[ϕ, ρ[X �→ S]]]L

}

[[max X.ϕ, ρ]]L =
⋃ {

S
∣∣ S ⊆ [[ϕ, ρ[X �→ S]]]L

}

Formulas ϕ and ψ are equivalent, denoted as ϕ ≡ ψ, when [[ϕ, ρ]]L = [[ψ, ρ]]L for
every environment ρ and LTS L. We often consider closed formulae and simply
write [[ϕ]]L for [[ϕ, ρ]]L when the semantics of ϕ is independent of ρ. �

The logic μHML is very expressive. It is also agnostic of the technique to be
employed for verification. The property of monitorability, however, fundamen-
tally relies on the monitoring setup considered.

Monitoring Systems. A monitoring setup on Act is a triple 〈M, I, L〉, where
L is a system LTS on Act, M is a monitor LTS on Act, and I is the instru-
mentation describing how to compose L and M into an LTS, denoted by
I(M,L), on Act. We call the pair (M, I) a monitoring system on Act. For
M = 〈Mon,Act,→M 〉, Mon is set of monitor states (ranged over by m) and
→M is the monitor semantics described in terms of the behavioural state tran-
sitions a monitor takes when it analyses trace events μ ∈ Act∪ {τ}. The states
of the composite LTS I(M,L) are written as m � p, where m is a monitor state
and p is a system state; the monitored-system transition relation is denoted here
by →I(M,L). We present our results with a focus on rejection monitors, i.e.,
monitors with a designated rejection state no, and hence safety fragments of the
logic μHML. However, our results and arguments apply dually to acceptance
monitors (with a designated acceptance state yes) and co-safety properties; see
[21,22] for details.
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Definition 2. Fix a monitoring setup 〈M, I, L〉 on Act and let m be a mon-
itor state of M and ϕ a closed formula of μHML on Act. We say that m
(M, I)-rejects (or simply rejects, if M, I are evident) a process p in L, written
as rej〈M,I,L〉(m, p), when there are a process q in L and a trace s ∈ (Act∪{τ})∗

such that m � p
s−→I(M,L) no � q. We say that m (M, I)-monitors for ϕ on L

whenever

for each process p of L, rej〈M,I,L〉(m, p) if and only if p /∈ [[ϕ]]L.

(Subscripts are omitted when they are clear from the context.) Finally, m (M, I)-
monitors for ϕ when m (M, I)-monitors for ϕ on L for every LTS L on Act.
The monitoring system (M, I) is often omitted when evident. �

We define monitorability for μHML in terms of monitoring systems (M, I).

Definition 3. Fix a monitoring system (M, I) and a fragment Λ of μHML. We
say that (M, I) rejection-monitors for Λ whenever:

– For all closed ϕ ∈ Λ, there exists an m from M that (M, I)-monitors for ϕ.
– For all m of M , there exists a closed ϕ ∈ Λ that is (M, I)-monitored by m. �

We note that if a monitoring system and a fragment Λ of μHML satisfy
the conditions of Definition 3, then Λ is the largest fragment of μHML that is
monitored by the monitoring system. Stated otherwise, any other logic fragment
Λ′ that satisfies the conditions of Definition 3 must be equally expressive to
Λ, i.e., ∀ϕ′ ∈ Λ′ · ∃ϕ ∈ Λ · ϕ ≡ ϕ′ and vice versa. Definition 3 can be dually
given for acceptance-monitorability, when considering acceptance monitors. We
next review two monitoring systems that respectively rejection-monitor for two
different fragments of μHML. We omit the corresponding monitoring systems
for acceptance-monitors, that monitor for the dual fragments of μHML.

The Basic Monitoring Setup. The following monitoring system, presented
in [2], does not distinguish between silent actions and external actions.

Definition 4. A basic monitor on Act is defined by the grammar:

m,n ∈ Monb ::= end | no | μ.m | m + n | rec x.m | x,

where x comes from a countably infinite set of monitor variables. Constant no
denotes the rejection verdict state whereas end denotes the inconclusive verdict
state. The basic monitor LTS Mb is the one whose states are the closed monitors
of Monb and whose transition relation is defined by the (standard) rules in
Table 1 (we elide the symmetric rule for m + n). �

Note that by rule mVrd in Table 1, verdicts are irrevocable and monitors can
only describe suffix-closed behaviour.
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Table 1. Behaviour and instrumentation rules for monitored systems (v∈{end, no}).

Monitor semantics

mRecm[rec x.m/x]
μ−→m′

rec x.m
μ−→m′

mSel m
μ−→m′

m+n
μ−→m′

mAct
μ.m

μ−→m
mVrd

v
μ−→v

Instrumentation semantics

iMon p
μ−→Lq m

μ−→M n

m�p
μ−→I(M,L)n�q

iTer p
μ−→Lq m

μ−→M

m�p
μ−→I(M,L)end�q

iAbs p
τ−→Lq

m�p
τ−→I(M,L)m�q

Definition 5. Given a system LTS L and a monitor LTS M that agree on
Act, the basic instrumentation LTS, denoted by Ib(M,L), is defined by the
rules iMon and iTer in Table 1. (We do not consider rule iAbs for now.) �

Instrumentation often relegates monitors to a passive role, whereby a moni-
tored system transitions only when the system itself can. In rule iMon, when the
system produces a trace event μ that the monitor is able to analyse (and tran-
sition from m to n), the constituent components of a monitored system m � p
move in lockstep. Conversely, when the system produces an event μ that the
monitor is unable to analyse, the monitored system still executes, according to
iTer, but the monitor transitions to the inconclusive state, where it remains for
the rest of the computation.

We refer to the pair (Mb, Ib) from Definitions 4 and 5 as the basic monitoring
system. For each system LTS L that agrees with the full monitoring system on
Act, we can show a correspondence between the respective monitoring setup
〈Mb, Ib, L〉 and the following syntactic subset of μHML.

Definition 6. The safety μHML is defined by the grammar:

θ, χ ∈ sHML ::= tt | ff | [μ]θ | θ ∧ χ | max X.θ | X �

Theorem 1 ([2]). The basic monitoring system (Mb, Ib) monitors for the log-
ical fragment sHML. ��
The proof of Theorem 1 relies on a monitor synthesis and a formula synthesis
function. The monitor synthesis function, �−� : sHML → Monb, is defined on
the structure of the input formula and assumes a bijective mapping between
formula variables and monitor recursion variables:

�tt� = end �ff� = no �X� = x

�[μ]ψ� =

{
end if �ψ� = end

μ.�ψ� otherwise
�max X.ψ� =

{
end if �ψ� = end

rec x.�ψ� otherwise

�ψ1 ∧ ψ2� =

⎧
⎪⎨
⎪⎩

�ψ1� if �ψ2� = end

�ψ2� if �ψ1� = end

�ψ1� + �ψ2� otherwise
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The case analyses in the above synthesis procedure handle some of the redun-
dancies that may be present in formula specifications. For instance, it turns out
that max X.[μ]tt ≡ tt and, accordingly, �max X.[μ]tt� = �tt� = end. The formula
synthesis function is defined analogously (see [2,22] for more details).

Monitoring for External Actions. The results obtained in [21,22] can be
expressed and recovered within our more general framework. We can express a
weak version of the modalities employed in [3,21,22] as follows:

[[μ]]ϕ ≡ max X.([τ ]X ∧ [μ]max Y.(ϕ ∧ [τ ]Y )) and
〈〈μ〉〉ϕ ≡ min X.(〈τ〉X ∨ 〈μ〉min Y.(ϕ ∨ 〈τ〉Y )).

Definition 7. Weak safety μHML, presented in [21,22], is defined by the
grammar:

π, κ ∈ WsHML ::= tt | ff | [[α]]π | π ∧ κ | max X.π | X. �

Definition 8. The set Mone of external monitors on Act contains all the basic
monitors that do not use the silent action τ . The corresponding external monitor
LTS Me, is defined similarly to Mb, but with the closed monitors in Mone as
its states. External instrumentation, denoted by Ie, is defined by the three rules
iMon, iTer and iAbs in Table 1, where in the case of iMon and iTer, action
μ is substituted by the external action α. We refer to the pair (Me, Ie) as the
external monitoring system, amounting to the setup in [21,22]. �

Theorem 2 ([22]). The external monitoring system (Me, Ie) rejection-monitors
for the logical fragment WsHML. ��

3 Monitors that Detect Conditions

Given a set of processes P , a pair (C, r) is a condition framework when C is a
non-empty set of conditions and r : C → 2P is a valuation function. We assume
a fixed condition framework (C, r) and we extend the syntax and semantics of
μHML so that for every condition c ∈ C, both c and ¬c are formulas and for
every LTS L on set of processes P , [[c]] = r(c) and [[¬c]] = P \ r(c). We call
the extended logic μHML(C,r). Since, in all the instances we consider, r is easily
inferred from C, it is often omitted and we simply write C instead of (C, r)
and μHML(C,r) as μHMLC . We say that process p satisfies c when p ∈ [[c]]. We
assume that C is closed under negation, meaning that for every c ∈ C, there is
some c′ ∈ C, such that [[c′]] = [[¬c]]. Conditions represent certain properties of
processes that the instrumentation is able to report.

We extend the syntax of monitors, so that if m is a monitor and c a condition,
then c.m is a monitor. The idea is that if c.m detects that the process satisfies
c, then it can transition to m.
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Definition 9. A basic C-monitor on Act is defined by the grammar:

m,n ∈ MonC
b ::= end | no | μ.m | c.m | m + n | rec x.m | x,

where x comes from a countably infinite set of monitor variables and c ∈ C.
Basic C-monitor behaviour is defined as in Table 1, but allowing μ to range over
Act ∪ C ∪ {τ}. We call the resulting monitor LTS MC

b . �

A monitor detects the satisfaction of condition c when the monitored system
has transitioned to a process that satisfies c. To express this intuition, we add
rule iCon to the instrumentation rules of Table 1:

iCon
p ∈ [[c]] and m

c−→M n

m � p
τ−→I(M,L) n � p

.

We call the resulting instrumentation IC
b . We observe that the resulting monitor

setup is transparent with respect to external actions: an external trace of the
monitored system results in exactly the same external trace of the instrumenta-
tion LTS. However, the general traces are not preserved, as the rule iCon may
introduce additional silent transitions for the instrumentation trace. However,
we argue that this is an expected consequence of the instrumentation verifying
the conditions of C. C-monitors monitor for sHMLC :

Definition 10. The strong safety fragment of μHMLC is defined as:

ϕ,ψ ∈ sHMLC ::= tt | ff | [μ]ϕ | ¬c∨ϕ | ϕ∧ψ | max X.ϕ | X,

where c ∈ C. We note that ¬c ∨ ϕ can be viewed as an implication c → ϕ
asserting that if c holds, then ϕ must also hold. �

It is immediate to see that sHMLC is a fragment of μHMLC and when C ⊆
μHML, it is also a fragment of μHML. Finally, if C is closed under negation,
then ¬c ∨ ϕ can be rewritten as c′ ∨ ϕ, where [[c′]] = [[¬c]], and in the following
we often take advantage of this equivalence to simplify the syntax of sHMLC .

Theorem 3. The monitoring system (MC
b , IC

b ) monitors for sHMLC . ��
We note that Theorem 3 implies that sHMLC is the largest monitorable

fragment of μHMLC , relative to C.

4 Instantiations

We consider two possible instantiations for parameter C in the framework pre-
sented in Sect. 3. Since each of these instantiations consists of a fragment from
the logic μHML itself, they both show how monitorability for μHML can be
extended when using certain augmented traces.
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4.1 The Inability to Perform an Action

The monitoring framework of [2,22] (used also in other works such as [18,19]),
is based on the idea that, while a system is executing, it performs discrete com-
putational steps called events (actions) that are recorded and relayed to the
monitor for analysis. Based on the analysed events, the monitor then transi-
tions from state to state. One may however also consider instrumentations that
record a system’s inability to perform a certain action. Examples of this arise
naturally in situations where actions are requested unsuccessfully by an external
entity on a system, or whenever the instrumentation is able to report system
stability (i.e., the inability of performing internal actions). For instance, such
observations were considered in [1,31], in the context of testing preorders.

In our setting, a process is unable to perform action μ exactly when it satisfies
[μ]ff. For monitors that are able to detect the inability or failure of a process to
perform actions, we set FAct = {[μ]ff | μ ∈ Act ∪ {τ}} as the set of conditions.
By Theorem 3, the resulting maximal monitorable fragment of μHML is given
by the grammar:

ϕ,ψ ∈ sHMLFAct ::= tt | ff | [μ]ϕ | 〈μ〉tt ∨ ϕ

| ϕ ∧ ψ | max X.ϕ | X.

We note the fact that μHML is closed under negation, where ¬[μ]ff = 〈μ〉tt.
Proposition 1. The monitoring system (MFAct

b , IFAct

b ) monitors for the logical
fragment sHMLFAct . ��

A special case of interest are monitors that can detect process stability, i.e.,
processes satisfying [τ ]ff. Such monitors monitor for sHML{[τ ]ff}, namely sHML
from Definition 6 extended with formulas of the form 〈τ〉tt ∨ ϕ.

4.2 Depth-Bounded Static Analysis

In multi-pronged approaches using a combination of verification techniques, one
could statically verify parts of a program (from specific execution points) with
respect to certain behavioural properties using techniques such as Bounded
Model Checking [11] and Partial Model Checking [7]. Typical examples arise in
component-based software using modules, objects or agents that can be verified
in isolation. This pre-computed verification can then be recorded as annotations
to a component and subsequently reported by the instrumentation as part of
the execution trace. This strategy would certainly be feasible for depth-bounded
static analysis for which the original logic HML [24]—the recursion-free fragment
of μHML given below—is an ideal fit.

η, χ ∈ HML ::= tt | ff | η ∧ χ | η ∨ χ | [μ]η | 〈μ〉η.

Again, HML is closed under negation [4]. If we allow monitors to detect the
satisfaction of these kinds of conditions, then, according to Theorem 3, the
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maximal fragment of μHML that we can monitor for, with HML as a condi-
tion framework, is sHMLHML, defined by the following grammar:

ϕ,ψ ::= tt | ff | [μ]ϕ | η ∨ ϕ | ϕ ∧ ψ | max X.ϕ | X,

where η ∈ HML. Another way to describe sHMLHML is as the μHML fragment
that includes all formulas whereby for every subformula of the form ϕ ∨ ψ, at
most one of the constituent subformulas ϕ,ψ uses recursion.

Proposition 2. The monitoring system (MHML
b , IHML

b ) monitors for the logical
fragment sHMLHML. ��

Instead of HML, we can alternatively use a fragment HMLd of HML that
only allows formulas with nesting depth for the modalities of at most d. Since
the complexity of checking HML formulas is directly dependent on this modal
depth, there are cases where the overheads of checking such formulas are deemed
to be low enough to be adequately checked for at runtime instead of checking
for them statically.

5 Extending External Monitorability

We explore the impact of considering traces that encode conditions from Sect. 3
on the monitorability of the weak version of the logic used in [21,22]:

ϕ,ψ ∈ WμHML ::= tt | ff | ϕ ∧ ψ | ϕ ∨ ψ

| 〈〈α〉〉ϕ | [[α]]ϕ | min X.ϕ | max X.ϕ | X.

This version of the logic abstracts away from internal moves performed by the
system—note that the weak modality formulas are restricted to external actions
α as opposed to the general ones, μ. The semantics follows that presented in
Sect. 2, but can alternatively be given a more direct inductive definition, e.g.

[[[[α]]ϕ, ρ]] = {p
∣∣ ∀q. p

α=⇒ q implies q ∈ [[ϕ, ρ]]}.

The main aim of this section is to extend the maximally-expressive monitorable
subset of μHML that was identified in [21,22] using the framework developed in
Sect. 3.

5.1 External Monitoring with Conditions

We define the external monitoring system with conditions similarly to Sect. 3.
The syntax of Definition 8 is extended so that, for any instance of C, if m is a
monitor and c a condition from C, then c.m is a monitor.
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Definition 11. An external C-monitor on Act is defined by the grammar:

m,n ∈ MonC
e ::= end | no | α.m | c.m | m + n | rec x.m | x,

where c ∈ C. C-monitor behaviour is defined as in Table 1, but extending rule
mAct to condition prefixes that generate condition actions (i.e., μ ranges over
Act ∪ C). We call the resulting monitor LTS MC

e .
For the instrumentation relation called IC

e , we consider the rules iMon, iTer
from Table 1 for external actions α instead of the general action μ, rule iAbs
from the same table, and rule iCon from Sect. 3. �

Note that the monitoring system (MC
e , IC

e ) may be used to detect τ -
transitions implicitly—we conjecture that this cannot be avoided in general.
Consider two conflicting conditions c1 and c2, i.e., [[c1]]∩[[c2]]=∅. Definition 11
permits monitors of the form c1.c2.m that encode the fact that state m can only
be reached when the system under scrutiny performs a non-empty sequence of
τ -moves to transition from a state satisfying c1 to another state satisfying c2.
This, in some sense, is also related to obscure silent action monitoring studied
in [2].

We identify the grammar for the maximally-expressive monitorable syntactic
subset of the logic WμHML. It uses the formula [[ε]]ϕ defined as:

[[ε]]ϕ ≡ max X.(ϕ ∧ [τ ]X)

The modality [[ε]]ϕ quantifies universally over the set of processes that can be
reached from a given one via any number of silent steps. Together with its dual
〈〈ε〉〉ϕ modality, [[ε]]ϕ is used in the modal characterisation of weak bisimilarity
[30,34], in which τ transitions from one process may be matched by a (possibly
empty) sequence of τ transitions from another.

Definition 12. The weak safety fragment of WμHML with C is defined as:

ϕ,ψ ∈ WsHMLC ::= tt | ff | [[α]]ϕ | [[ε]](¬c ∨ ϕ)
| ϕ ∧ ψ | max X.ϕ | X,

where c ∈ C. �

Theorem 4. The monitoring system (MC
e , IC

e ) monitors for WsHMLC . ��
We highlight the need to insulate the appearance of the implication ¬c ∨ ϕ

from internal system behaviour by using the modality [[ε]] in Definition 12. For
conditions that are invariant under τ -transitions, this modality is not required
but it cannot be eliminated otherwise; we revisit this point in Example 2.

5.2 Instantiating External Monitors with Conditions

We consider three different instantiations to our parametric external monitoring
system of Sect. 5.1.
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Recursion-Free Formulas. The weak version of HML, denoted by wHML, is
the recursion-free fragment of WμHML. Similarly to what was argued earlier in
Sect. 4.2, it is an appropriate set of conditions to instantiate set C in WsHMLC ,
and the maximal monitorable fragment of WμHML with conditions from wHML
is WsHMLwHML, defined by the following grammar, where η ∈ wHML:

ϕ,ψ ::= tt | ff | [[α]]ϕ | [[ε]](η ∨ ϕ) | ϕ ∧ ψ | max X.ϕ | X.

Proposition 3. The monitoring system (MwHML
e , IwHML

e ) monitors for the log-
ical fragment WsHMLwHML. ��

An important observation (that is perhaps surprising) is that WsHMLwHML

is not a fragment of WμHML, as the following example demonstrates.

Example 2. Although for any (closed) WsHML formula ϕ we have the logical
equivalence [[ε]]ϕ ≡ ϕ (notice that the monitor for ϕ that is guaranteed by
Theorem 2 also monitors for [[ε]]ϕ), this logical equivalence does not hold for a
formula ϕ from WμHML. Consider the formula ϕε below that may be expressed
using a formula from WsHMLwHML:

ϕε = [[ε]]〈〈α〉〉tt ≡ [[ε]](〈〈α〉〉tt ∨ ff) ∈ WsHMLwHML.

Formula ϕε is not equivalent to 〈〈α〉〉tt (e.g. the process α.nil + τ.nil satisfies
〈〈α〉〉tt, but not ϕε) meaning that [[ε]] plays a discerning role in the context of
WμHML. Furthermore, ϕε holds for process τ.α.nil, but not for α.nil+τ.nil, even
though these two processes cannot be distinguished by any WμHML formula. In
fact, it turns out that they are bisimilar with respect to weak external transitions
and this bisimulation characterises the satisfaction of WμHML formulas [24].
Thus, there is no formula in WμHML that is equivalent to ϕε. �

Previous Runs and Alternating Monitoring. A monitoring system could
reuse information from previous system runs, perhaps recorded as execution logs,
and whenever (sub)traces can be associated with specific states of the system,
these can also be used as an instantiation for our parametric framework. More
concretely, in [21,22] it is shown that traces can be used to characterise the
violation of WsHML formulas, or the satisfaction of formulas from the dual
fragment, WcHML, defined below.

Definition 13. The co-safety WμHML is defined by the grammar:

π, κ ∈ WcHML ::= tt | ff | 〈〈α〉〉θ | θ ∨ χ | min X.θ | X �

The witnessed rejection and acceptance traces can in turn be used as part of an
augmented trace for an instantiation for C to obtain the monitorable dual logics
WsHMLWcHML and WcHMLWsHML that alternate between rejection monitoring
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and acceptance monitoring. The logic WsHMLWcHML is defined by the following
grammar, where θ ∈ WsHML:

ϕ,ψ ::= tt | ff | [[α]]ϕ | [[ε]](θ ∨ ϕ) | ϕ ∧ ψ | max X.ϕ | X;

and WcHMLWsHML is defined by the following grammar, where χ ∈ WcHML:

π, κ ::= tt | ff | 〈〈α〉〉π | 〈〈ε〉〉(χ ∧ π) | π ∨ κ | min X.ϕ | X.

Proposition 4. The monitoring system (MWcHML
e , IWcHML

e ) rejection-monitors
for the logical fragment WsHMLWcHML. ��
One should observe that in this case, WsHMLWcHML is a fragment of WμHML,
in contrast to the previous instantiation WsHMLwHML from Sect. 5.2.

Lemma 1. For every [[ε]](η ∨ ϕ) ∈ WsHMLWcHML (where η ∈ WsHML), we
have [[ε]](η ∨ ϕ) ≡ η ∨ ϕ. ��
Corollary 1. For every formula in WsHMLWcHML, there is a logically equiva-
lent formula in WμHML. ��

This entails that WsHMLWcHML can be reformulated using the following,
simpler, grammar (here η ∈ WsHML) which is clearly a fragment of WμHML:

ϕ,ψ ::= tt | ff | [[α]]ϕ | η ∨ ϕ | ϕ ∧ ψ | max X.ϕ | X.

If the monitoring system can use such information from previous runs, there is no
reason to limit this information to just one previous run. If the instrumentation
mechanism can record up to i prior runs, the monitorable logic may be described
as WsHMLi+1, defined inductively in the following way:

– WsHML1 = WsHML and WcHML1 = WcHML; and
– WsHMLi+1 = WsHMLWcHMLi

and WcHMLi+1 = WcHMLWsHMLi

.

Whenever this setup can be extended to unlimited prior runs, the resulting
rejection-monitorable fragment would be WsHMLω =

⋃
i WsHMLi, which is

also described by the following grammar:

ϕ,ψ ::= tt | ff | [[α]]ϕ | ϕ ∨ ψ | ϕ ∧ ψ | max X.ϕ | X.

WsHMLω is a non-trivial extension of WsHML which is still within WμHML.

Failure to Execute an Action and Refusals. In Subsect. 4.1, we instantiated
the condition set C as the set of formulas from μHML that assert the inability of
a process to perform an action. These formulas are of the form [α]ff. We recast
this approach in the setting of weak monitorability. In this setting where the
monitoring system and the specification formulas ignore any silent transitions,
the inability of a process to perform an α-transition acquires a different meaning
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from the one used for the basic system. In particular, we consider a stronger
version of these conditions that incorporates stability; this makes them invariant
over τ -transitions. We say that p refuses α when p  τ−→ and p  α−→. In [31], a very
similar notion is used for refusal testing (see also [1]). Thus, much in line with
[31], we use the following definition.

Definition 14. A process p of an LTS L refuses action α ∈ Act and write
p ref α when p  τ−→L and p  α−→L. The set of conditions that corresponds to refusals
is thus RAct = {[τ ]ff ∧ [α]ff | α ∈ Act}. �

According to Theorem 4, the largest fragment of μHML that we can mon-
itor for, using monitors that can detect refusals, is WsHMLRAct , given by the
following grammar:

ϕ,ψ ::= tt | ff | [[α]]ϕ | [[ε]](〈τ〉tt ∨ 〈α〉tt ∨ ϕ)
| ϕ ∧ ψ | max X.ϕ | X.

Again, 〈τ〉tt ∨ 〈α〉tt ∨ ϕ is best read as the implication ([τ ]ff ∧ [α]ff) → ϕ: if
the process is stable and cannot perform an α-transition, then ϕ must hold.

Proposition 5. The monitoring system (MRAct
e , IRAct

e ) monitors for the logical
fragment WsHMLRAct . ��
Example 3. Consider the formula

ϕs = [[ε]](〈τ〉tt ∨ 〈α〉tt ∨ [[β]]ff) ∈ WsHMLRAct .

Formula ϕs claims that at every stable state that the system can reach, if action
α is impossible, then action β should also be impossible. We can see that ϕs

is true for τ.nil + β.nil, but not for β.nil. However, the two processes cannot
be distinguished by WμHML, as they have the same weak external transitions.
Therefore, WsHMLRAct is not a fragment of WμHML—but, as we have seen, it
is a fragment of μHML. Here we have a part of the formula that clearly is not
part of WμHML. That is 〈τ〉tt, which asserts that the process can perform a
silent transition. �

Example 4. Let us consider an LTS L0 of stable processes—that is, L0 is an
LTS without any silent transitions. L0 offers a simplified setting to cast our
observations. In this case, the [[ε]], [τ ], and 〈τ〉 modalities can be eliminated
from our formulas, and weak modalities are equivalent to strong modalities.
This allows us to simplify the grammar for WsHMLFAct as follows:

ϕ,ψ ::= tt | ff | [α]ϕ | 〈α〉tt ∨ ϕ

| ϕ ∧ ψ | max X.ϕ | X.

Perhaps unsurprisingly, this grammar yields the same formulas as the restriction
of grammar of Subsect. 4.1 on external actions. An instance of a specification that
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can be formalized in this fragment is the following. Consider a simple server-client
system, where the client can request a resource, which is represented by action
rq, and the server may give a positive response, represented by action rs, after
which it needs to allocate said resource to the client, represented by action al.
A reasonable specification for the server is that if it is impossible at the moment
to provide a resource, then it should not give a positive response to the client.
In the above simplification of WsHMLFAct , this specification can be formalized
as [rq](〈al〉tt ∨ [rs]ff). If the LTS includes silent transitions, the corresponding
specification would be written as

ϕr = [rq][[ε]](〈τ〉tt ∨ 〈al〉tt ∨ [[rs]]ff).

In other words, after a request, if the server cannot provide a resource and it
is stable—so, there is no possibility that after some time the resource will be
available—then the server should not give a positive response to the client. �

6 Conclusions

In order to devise effective verification strategies that straddle between the pre-
and post-deployment phases of software production, one needs to understand
better the monitorability aspects of the correctness properties that are to be
verified. We have presented a general framework that allows us to determine
maximal monitorable fragments of an expressive logic that is agnostic of the
verification technique employed, namely μHML. By way of a number of instan-
tiations, we also show how the framework can be used to reason about the mon-
itorability induced by various forms of augmented traces. Our next immediate
concern is to validate the proposed instantiations empirically by constructing
monitoring systems and tools that are based on these results, as we did already
for the original monitorability results of [21,22] in [9,10,12].

Related Work. Monitorability for μHML was first examined in [21,22]. This work
introduced the external monitoring system and identified WsHML as the largest
monitorable fragment of μHML, with respect to that system. The ensuring work
in [2] focused on monitoring setups that can distinguish silent actions to a varying
degree, and introduced the basic monitoring system, showing analogous moni-
torability results for μHML.

Monitorability has also been examined for languages defined over traces,
such as LTL. Pnueli and Zaks in [32] define a notion of monitorability over
traces, although they do not attempt maximal monitorability results. Diekert
and Leuckert revisited monitorability from a topological perspective in [16].
Falcone et al. in [17] extended the work in [32] to incorporate enforcement
and introduced a notion of monitorability on traces that is parameterized with
respect to a truth domain that corresponds to our separation to acceptance-
and rejection-monitorable properties. In [13], the authors use a monitoring sys-
tem that can generate derivations of satisfied formulas from a fragment of LTL.
However, they do not argue that this fragment is somehow maximal. There is
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a significant body of work on synthesizing monitors from LTL formulas, e.g.
[13,23,33,35], and it would be worth investigating whether our general tech-
niques for monitor synthesis can be applied effectively in these cases.

Phillips introduced refusal testing in [31] as a way to extend the capabilities
of testing (see [18] for a discussion on how our monitoring setup relates to testing
preorders). The meaning of refusals in [31] is very close to the one in Definition 14
and it is interesting to note how Phillips’ use of tests for refusal formulas is
similar to our monitoring mechanisms for refusals. Abramsky [1] uses refusals in
the context of a much more powerful testing machinery, in order to identify the
kind of testing power that is required for distinguishing non-bisimilar processes.

The decomposition of the verification burden across verification techniques,
or across iterations of alternating monitoring runs as presented in Sect. 5, can be
seen as a method for quotienting. In [7] Andersen studies quotienting of the spec-
ification logics discussed in this paper to reduce the state-space during model
checking and thus increase its efficiency (see also [27] for a more recent treat-
ment). The techniques used rely heavily on the model’s concurrency constructs
and may produce formulas that are larger in size than the original, but which
can be checked against a smaller component of the model. In multi-pronged
approaches to verification one would expect to encounter similar difficulties
occasionally.
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33. Sen, K., Roşu, G., Agha, G.: Generating optimal linear temporal logic monitors by
coinduction. In: Saraswat, V.A. (ed.) ASIAN 2003. LNCS, vol. 2896, pp. 260–275.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40965-6 17

34. Stirling, C.: Modal and Temporal Properties of Processes. Springer, New York
(2001)

35. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller,
F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-60915-6 6

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/11813040_38
https://doi.org/10.1007/978-3-540-40965-6_17
https://doi.org/10.1007/3-540-60915-6_6
http://creativecommons.org/licenses/by/4.0/

	A Framework for Parameterized Monitorability
	1 Introduction
	2 Background
	3 Monitors that Detect Conditions
	4 Instantiations
	4.1 The Inability to Perform an Action
	4.2 Depth-Bounded Static Analysis

	5 Extending External Monitorability
	5.1 External Monitoring with Conditions
	5.2 Instantiating External Monitors with Conditions

	6 Conclusions
	References


