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Abstract Simple cells in primary visual cortex are believed
to extract local contour information from a visual scene. The
2D Gabor function (GF) model has gained particular popu-
larity as a computational model of a simple cell. However, it
short-cuts the LGN, it cannot reproduce a number of proper-
ties of real simple cells, and its effectiveness in contour detec-
tion tasks has never been compared with the effectiveness of
alternative models. We propose a computational model that
uses as afferent inputs the responses of model LGN cells with
center—surround receptive fields (RFs) and we refer to it as
a Combination of Receptive Fields (CORF) model. We use
shifted gratings as test stimuli and simulated reverse corre-
lation to explore the nature of the proposed model. We study
its behavior regarding the effect of contrast on its response
and orientation bandwidth as well as the effect of an orthog-
onal mask on the response to an optimally oriented stimu-
lus. We also evaluate and compare the performances of the
CORF and GF models regarding contour detection, using two
public data sets of images of natural scenes with associated
contour ground truths. The RF map of the proposed CORF
model, determined with simulated reverse correlation, can be
divided in elongated excitatory and inhibitory regions typical
of simple cells. The modulated response to shifted gratings
that this model shows is also characteristic of a simple cell.
Furthermore, the CORF model exhibits cross orientation sup-
pression, contrast invariant orientation tuning and response
saturation. These properties are observed in real simple cells,
but are not possessed by the GF model. The proposed CORF
model outperforms the GF model in contour detection with
high statistical confidence (RuG data set: p < 1074, and
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Berkeley data set: p < 10™%). The proposed CORF model is
more realistic than the GF model and is more effective in con-
tour detection, which is assumed to be the primary biological
role of simple cells.
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1 Introduction

The majority of neurons in primary visual cortex (area V1)
exhibit orientation selectivity (Hubel and Wiesel 1962). Typ-
ically, such a neuron would respond to an edge or a line of a
given orientation in a given area of the visual field, called
its receptive field (RF). Hubel and Wiesel identified two
main classes of neuron that they called simple and complex
cells. The RFs of simple cells can be divided in excitatory
and inhibitory regions while no such division is possible in
complex cells. These findings gave rise to an active area of
research (Hubel and Wiesel 1974; Macleod and Rosenfeld
1974; Tyler 1978; De Valois et al. 1978, 1979; Albrecht et al.
1980; Von Der Heydt 1987) and the pioneers Hubel and Wie-
sel were later awarded a Nobel prize (Hubel 1982).

The above electrophysiological findings had instigated the
development of various computational models. Simple cells
are typically modeled by linear spatial summation followed
by half-wave rectification (Movshon et al. 1978a; Andrews
and Pollen 1979; Maffei et al. 1979; Glezer et al. 1980;
Kulikowski and Bishop 1981; Daugman 1985; Jones and
Palmer 1987). Marcelja (1980) has suggested that the ele-
mentary one-dimensional signals studied by Gabor (1946)
can be used to model the structure of the RFs of simple
cells. Later Daugman (1985) extended this idea to a family
of two-dimensional (2D) Gabor functions (GFs) that have
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been claimed to fit well the 2D RF profiles of cat simple cells
(Jones and Palmer 1987). The validity of GFs for modeling
of simple cells has also been questioned (Stork and Wilson
1990) and alternative functions have been proposed, such as
differences of offset Gaussians.

The GF model does not take into account the anatomical
structure of the visual system as it uses as inputs the inten-
sity values of an image as these are projected on the retina
and bypasses the lateral geniculate nucleus (LGN) within
the thalamus (Chung and Ferster 1998; Ferster et al. 1996;
Reid and Alonso 1995). Furthermore, it fails to reproduce
some properties of simple cells, such as cross orientation
suppression, independence of orientation tuning on contrast,
and response saturation.

Hubel and Wiesel (1962) speculated that the RF profile of
a simple cell and its orientation selectivity are the result of
the specific alignment of the RFs of LGN cells that provide
input. In this study, we consider such a computational model
of a simple cell and call it the Combination of Receptive
Fields (CORF) model.

The biological role of orientation-selective cells is believed
to be the extraction of local contour information, which is
a fundamental step for further, more complex visual tasks,
such as object recognition (Morrone and Owens 1987; Mor-
rone and Burr 1988; Rosenthaler et al. 1992; Mehrotra et al.
1992; Heitger 1995; Kovesi 1999). The performance of var-
ious computational models of a simple cell in contour detec-
tion tasks has, however, not been quantified and they have not
been compared in that respect. In the following, we evaluate
and compare the performances of the proposed CORF model
and the GF model, using two public data sets of images of
natural scenes with associated contour ground truths. We also
compare their ability to reproduce other properties of simple
cells, such as cross orientation suppression, independence of
orientation tuning on contrast, and response saturation.

The paper is organized as follows. In Sect. 2, we present
the CORF model. In Sect. 3, we demonstrate that it is a model
of a simple cell and compare it with the GF model in differ-
ent respects. Section4 contains a discussion of some aspects
of the model. We give a brief summary in Sect.5 and draw
conclusions in Sect. 6. We explain simulated reverse corre-
lation in Appendix A. In AppendixB, we elaborate on the
choice of an output function for the proposed model and in
Appendix C, we give details about the evaluation method of
contour localization that we use in our experiments.

2 Computational model
2.1 Overview

Figure 1 illustrates the general set-up of the proposed CORF
computational model. Each of the light and dark disks in
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Fig. 1 Sketch of the proposed CORF computational model of a simple
cell. Orientation selectivity is achieved by combining the responses of
two parallel sets of co-linear sub-units: one of center-on (“+”) and the
other of center-off (“—") type. Each sub-unit computes a sum of the
weighted responses of a local group of model LGN cells

Fig. I represents the RF of a sub-unit that receives input from
a pool of center-on (“+”) or center-off (“—) model LGN
cells. Such model LGN cells detect contrast changes. A sub-
unit computes the sum of the weighted responses of the model
LGN cells it receives input from. These model LGN cells
have the same polarity (on or off) and RF size and neighbor-
ing RFs. The RF of the sub-unit is the union of the RFs of
the involved model LGN cells and it has the same polarity
(on or off) as these cells. In this way, a sub-unit detects con-
trast changes, similar to a model LGN cell, but it does so in a
wider area. A sub-unit can be thought of as a dendrite branch
of a simple cell which receives input from a pool of adjacent
LGN cells.

The orientation selectivity of a CORF model cell is
achieved by combining the responses of given sub-units with
appropriate polarities and alignment of their RFs, as illus-
trated in Fig. 1. The model parameters are determined in an
automatic configuration process in which an example edge of
a given orientation and polarity is presented. This input stim-
ulus gives rise to a certain local configuration of model LGN
cell activities in the RF of the concerned CORF model cell.
This local configuration is used to determine the polarity of
the involved sub-units and their mutual spatial arrangement.
The response of the considered CORF model cell is computed
as the weighted geometric mean of the sub-unit responses.
In this way, a CORF model cell generates a response only
when all its afferent inputs are stimulated. In the following
sections, we explain the model configuration process in more
detail.

2.2 Model LGN cells with center—surround RFs

We use a difference of 2D Gaussian functions to model an
LGN cell (Rodieck 1965; Croner and Kaplan 1995):

def 1 x? +y?
DoG/ (x, y) = 57 OP (— (1)
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Fig. 2 a Synthetic input image of a sharp edge. Responses of b cen-
ter-on and ¢ center-off model LGN cells. The response of a model LGN
cell is rendered as the brightness of a pixel on which the RF of that cell
is centered

where o is the standard deviation of the outer Gaussian func-
tion. We fix the standard deviation of the inner Gaussian
function to 0.5¢, which is in accordance with electrophysio-
logical findings of LGN cells in mammals (Irvin et al. 1993;
Xu et al. 2002). A DoG/ (x, y) function corresponds to a
center-on RF, such that the central region is excitatory and
the surrounding is inhibitory. A center-off RF is denoted by
DoG; (x, y) and is defined as the negative of DoGj (x,y):

DoG; (x,y) & —DoG} (x, y) )

The response of a model LGN cell with a RF centered
at image coordinates (x, y) is computed by linear spatial
summation of the intensity distribution 7 (x’, y’) in the input
image, weighted with the function DoG(x — x’, y — y’), fol-
lowed by half-wave rectification':

& (x,y) &1« DoGE |t 3)

where the symbol § represents the polarity (+ for center-on
and — for center-off) of the DoG function used.

Figure2a shows a synthetic input image of a sharp step
edge and in Fig.2b and c, we show the corresponding
responses of center-on and center-off model LGN cells.

2.3 Sub-unit and its parameters

Figure 3 illustrates the process of configuring a CORF model
cell. The outer circle in Fig.3a demarks the RF of that cell.
Its center is positioned on an edge (in the input image) which
gives rise to model LGN cell responses rendered in Fig. 3a.
The eight small spots represent the RF centers of eight sub-
units, four of center-on and four of center-off type. The inclu-
sion of such sub-units in the computational model is decided
on as follows. We take two (in general k) concentric cir-
cles centered on the RF center and consider the responses of
model LGN cells along these circles, Fig.3b. The positions
along these circles at which these responses reach significant

1 'We use  and |.|T to denote convolution and half-wave rectification,
respectively.
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Fig. 3 Configuration of a CORF model cell. a The largest circle
depicts the RF boundary of the model, the center of which is illustrated
by the “+” marker and lies on a vertical edge. b The fop and bottom
plots show the responses of model LGN cells along the outer and inner
interrupted circles in (a), respectively. The labeled small spots repre-
sent the RF centers of eight sub-units, four center-on (white spots with
black boundary) and four center-off (black spots with white boundary)
with coordinates that are determined by the corresponding labeled local
maxima in the considered responses of model LGN cells.

local maxima are the positions at which we include sub-units.
For the considered example, there are four such positions
for each of the two circles, which results in the inclusion of
eight sub-units in the model at hand. The number of sub-units
depends on the number of circles we consider and the specific
input pattern presented at the time of configuration. In our
model, each sub-unit included is represented in parametric
form by a tuple (8, o, p, ¢) where the parameters represent
the polarity § of the sub-unit, the scale parameter o of the
involved model LGN cells in its pool, the radius p and the
polar angle ¢ of the RF center of the sub-unit relative to the
RF center of the CORF model cell, respectively.

We denote by S = {(5;, i, pi, ¢i)|i = 1...n} the set of
4-tuples that represent the configured sub-units above. For
the concerned model in Fig. 3, for ¢ = 5, and two configu-
ration circles (p € {18, 34}) for an image of size 100 x 100
pixels, the method described above results in eight sub-units,
which are specified by the tuples in the following set:

S={
(61 =—,01=5,p1 =34,¢1 = 1.48),
(62 =4,00 =15, 0 =34, ¢y = 1.66),
(83 =+,03 =35, p3 =34, ¢3 = 4.62),
(04 = —, 04 =5, pg = 34, ¢4 = 4.80)
(65 = —,05 =35, p5 = 18,¢5 = 1.41),
(66 = +,06 =5, ps = 18, ¢pg = 1.74),
(87 =4,07 =5, p7 =18, ¢p7 = 4.55),
(6 = —,08 =5, pg = 18, ¢pg = 4.88)
}
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The first tuple in the set S, for instance, describes a sub-unit
that collects its afferent inputs from the responses of center-
off (61 = —) model LGN cells with a RF size characterized
by a standard deviation of (o7 =) 5 pixels, around a position
at a radius of (p; =) 34 pixels and an angle of (¢; =) 1.48
radians with respect to the RF center of the CORF model cell;

[TP%]

the RF center of this sub-unit is marked by “a” in Fig. 3a.

2.4 Sub-unit responses

We denote by 55, 5;.0:,4; (x, y) the response of a sub-unit,

which we compute by linear spatial summation of the half-

wave rectified responses cfif,. (x, y) of model LGN cells with

preferred polarity §; and scale o; around position (p;, ¢;)

with respect to the RF center of the CORF model cell,
weighted with a 2D Gaussian function G,:

3101006 (8 ) = “

DS = Axi — Xy — Ayi = Y)Gor (', )))

x' oy

Ax; = —p;cos¢;, Ay, = —p;sing;,

/

-3¢’ <x/, ¥y <30’

The standard deviation ¢’ of the Gaussian function G, is
alinear function® of the parameter p which is consistent with
neurophysiological evidence for the relationship between the
eccentricity and the average RF diameter of LGN cells (Xu
etal. 2001). Equation 4 presents a convolution of the weight-
ing function G, with the function ¢ (x, y) that is shifted
by (Ax;, Ay;) where this shift vector is determined by the
sub-unit parameters (p;, ;).

2.5 Combining sub-unit responses

We define the response rg of a CORF model cell as the
weighted geometric mean of all sub-unit responses that
belong to the specific selection determined by the set S:

sl
def S| V2isie
rs(x,y) = H (S‘Si»aiypiv‘Pi (x, y))w, ®)
i=1
T G
w: = ex o/ , O = — max i
‘ P 3 il

Computing the product of sub-unit responses means that
the concerned CORF model cell is activated only when all
its afferent sub-units are active. The input contribution of
sub-units decreases with an increasing distance of their RF
centers from the RF center of the CORF model cell.

2 The standard deviation ¢’ of the 2D Gaussian function G- is com-
puted as o’ = (do + ap)/6. We set dy = 2 and o = 0.9.
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Fig. 4 a A syntheticimage (512 x 512 pixels) and b the corresponding
responses of a CORF model that is selective for vertical edges (rs(x, y))

Normalized response of
the CORF model

i

ud 0 s

4 4

Deviation from optimal orientation (radians)
Fig. 5 Orientation selectivity of the CORF model

As illustrated in Fig.4 the configured CORF model cell
responds to a vertical edge in the given synthetic image.

Figure 5 illustrates the orientation selectivity of the con-
cerned model. A maximum response is obtained for the ori-
entation for which the model was configured. The response
declines with the deviation of the orientation of the input
stimulus from the optimal one and practically disappears
when this deviation is greater than m/4 radians. Qualita-
tively, this is in line with the orientation tuning recorded by
De Valois et al. (1982) where the majority of simple cells in
macaque visual cortex have an orientation bandwidth of 0.7
radians at half amplitude.

2.6 Treating different orientations

The orientation preference of a CORF model cell as defined
above depends on the orientation of the edge used for the
model configuration. One can create models with different
orientation preferences by presenting different edges. Alter-
natively, one can manipulate the parameters in the set S,
which corresponds to orientation preference for 0° to obtain
a new set Ny () with orientation preference . We define
Ny (S) as follows:

Ry (8) {01 pi bt + VIV (1,07 pi $i) €S} (6)

For the detection of contours of any orientation, we merge
the responses of CORF models with different orientation
preferences by taking the maximum value at a given loca-
tion (x, y):
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(n)

Fig. 6 a Synthetic input image (512 x 512 pixels). b The maximum
superposition (7s(x, y)) of the ¢—n responses of CORF models that are

. i - . - o -
selective for 12 equidistant orientations. ¢y =0,d ¢ = ¢, ey = 7,
T

fy=Z.gy=Z hy=2iy=njy=2ky="12,
Iy =Fmy="Fny="1

N def
rs(x,y) = f;‘é‘&,‘ {rog.(s)(x, »)} @)

where W is a set of ny equidistant orientations given as ¥ =
{i—’;i|0 < i < ny}. Figureo6a illustrates a synthetic input
image of a bright disk. Figure 6b shows the maximum super-
position 7g(x, y) of the responses, shown in Fig. 6¢c-n, of a
set of CORF models that are selective for (ng =) 12 equi-
distant orientations. As demonstrated in Fig. 6b, the choice

of ng = 12 ensures sufficient response for all orientations.

3 Results: CORF versus GF model comparison
3.1 Is COREF a simple cell model?

A classical means of testing an orientation selective cell for
its type, simple versus complex, is to record its response to
a grating of its preferred orientation and spatial frequency
and observe if the response changes when the grating is
shifted. A complex cell shows unmodulated response while
the response of a simple cell alternates between high and low

AN

cos(wzx + 1) 0 T 27 3r
Grating phase shift ¢

(a) (b)

Normalized
response

Fig. 7 a Vertical sinusoidal grating (cos(wx + ¥)) and b normalized
response (in a given point) of a CORF model cell to this grating as a
function of the phase offset 1. The response of the model alternates
between high and low values with a changing phase offset ¥ (that cor-
responds to shifting the grating) as the response of a real simple cell
would do

—_

o

Normalized response

[
—_

(@) (b) (0

Fig. 8 RF map of a CORF model cell determined with simulated
reverse correlation, rendered as a intensity map and b 2D function.
¢ One-dimensional profile of the function along a RF cross section that
is perpendicular to the preferred orientation

values with the grating shift. We computed the responses of
the concerned CORF model cell to a grating with a chang-
ing spatial phase offset and observed that this response is
qualitatively typical of the behavior of a simple cell, Fig. 7.

An important feature of a simple cell that distinguishes it
from a complex cell is that its RF can be divided into excit-
atory and inhibitory regions. Since the CORF model cell that
we propose above computes the response as a product of
weighted LGN responses, it is not clear that its RF can be
divided in such regions. To explore this aspect of the model,
we apply to it simulated reverse correlation as explained in
detail in Appendix A. Figure 8 shows a map determined in
this way for a CORF model cell. The map exhibits two elon-
gated regions: an excitatory one (rendered bright) in which
the values are positive and an inhibitory one (shown dark)
in which the values are negative, characteristic of the RF
profiles of real simple cells.

We should point out that the map shown in Fig. 8 is not an
impulse response that can be used for weighted summation
of the input stimulus followed by half-wave rectification or
thresholding, as this is the case with the GF model. The GF
model and any other semi-linear model based on weighted
spatial summation will produce a non-zero response that
grows with stimulus contrast for any edge orientation but the
one that is strictly orthogonal to the preferred orientation.
This is a drawback of such models because it is in contrast to
neurophysiological evidence that the orientation bandwidth
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Fig. 9 Orientation tuning curves at four different contrasts obtained
for a a real simple cell (redrawn from Sclar and Freeman 1982), b
a CORF model cell with similar bandwidth, and ¢ a GF model. The
GF model gives response at any stimulus orientation but the one that is

Fig. 10 Model LGN cells with
RFs that fall in homogeneous
areas of the stimulus provide
zero input and therefore the
response of the CORF model
cell is zero. This property causes
the CORF model cell to have a
band-limited orientation tuning
curve

of simple cells is not affected by the contrast of the stim-
uli, Fig. 9a (see e.g., Finn et al. 2007 and references therein).
The orientation bandwidth of the CORF model cell can be
controlled by appropriate selection of the model parameters,
such as the given p and o values. Similar to real simple cells,
the resulting orientation bandwidth of the CORF model cell
is invariant to contrast, Fig. 9b. On the other hand, the orien-
tation bandwidth of the GF model can only be constrained
using a threshold, which will lead to a broadening orienta-
tion tuning with increasing contrasts (the so-called iceberg
effect), Fig.9c.

The key to understanding the orientation tuning of the
CORF model cell is its multiplicative character: the response
is computed as a product of the afferent inputs and if any of
these is zero, the response will be zero, independent of how
strong the other inputs are. For instance, the CORF model
cell, the structure of which is depicted in Fig. 10, gives a zero
response to an edge stimulus of high contrast with an orien-
tation that differs substantially from the preferred orientation
due to the zero input that it receives from some of the afferent
groups (sub-units) of model LGN cells.

Another property of real simple cells, that cannot be repro-
duced by semi-linear spatial summation models such as the
GF model, is a cross orientation suppression (Priebe and Fer-
ster 2006). This means that an oriented mask stimulus that is
orthogonal to a simultaneously presented test stimulus of the
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strictly orthogonal to the preferred orientation. If a threshold is used, the
orientation bandwidth of the GF model becomes dependent on stimulus
contrast, which is not the case with real simple cells

Mask contrast —
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Mask contrast

Fig. 11 The CORF model cell exhibits cross orientation suppression,
while the GF model does not. The plots illustrate the responses of the
COREF and the GF models to the images shown at the fop. In these exper-
iments, the RFs of the models are placed in the center of a given image.
Every image is generated by superimposing a horizontal-edge stimulus
(mask) on a vertical-edge stimulus (test) which is the preferred orienta-
tion stimulus of the concerned models. Similar to real simple cells, the
response of the CORF model cell decreases with an increasing contrast
of the mask stimulus. The linear GF model is not affected by any of the
orthogonal mask stimuli

orientation preferred by the cell inhibits the response. The
proposed CORF model cell also has this property as illus-
trated in Fig. 11. Linear summation models, such as the GF,
do not possess this property, because an orthogonal mask sig-
nal contributes equally to the excitatory and inhibitory areas
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Fig. 12 (First row) Images of
natural objects from the RuG
dataset. (Second row) The
corresponding contour maps
designed by a human observer.
Optimal contour maps obtained
by (third row) the GF and by
(fourth row) the proposed CORF
models. a Rino, b elephants,

¢ Gnu, and d Hyena

Best GF .
contour map Ground truth Input image

Best CORF
contour map

and its net contribution is zero, so that the response to the
main stimulus is not affected.

These two important properties that are exhibited by the
proposed CORF model are attributable to the multiplicative
nature (weighted geometric mean) of the output function
(Eq.5). In AppendixB, we demonstrate that if we use an
addition output function instead of multiplication, the result-
ing model would lose these two properties.

3.2 Performance evaluation for contour detection

In this section, we present a procedure for the evaluation of
the performance of the CORF computational model in a con-
tour detection task. We use the same procedure to evaluate the
performance of the GF model and subsequently we compare
the performances of the two models.

3.2.1 Data sets and ground truth
Figure 12 (first row) shows four images of natural objects and

associated ground truth contour maps (second row) defined
by a human observer. These images belong to a data set that

Uk e,
Sl

-
I L“W&S\

N

has been developed at the University of Groningen (RuG)?.
It comprises 40 such images along with their corresponding
ground truths, and was first used by Grigorescu et al. (2003).
The ground truth images depict only the contours of objects,
while omitting edges that are caused by texture.

Figure 13 illustrates further examples of four input images
taken from a data set of Berkeley (Martin et al. 2001). This
data set comprises 300 images of natural objects, and for
each image the ground truth is provided as a collection of
multiple (5-10) contour maps that are drawn by different
human observers, Fig. 13 (second row).

In the following, we explain how we obtain contour maps
from outputs of the concerned GF and CORF models. We
then define performance measures that we use to evaluate
a contour map obtained by a model with a corresponding
ground truth contour map made by a human observer (Zhang
1996; Shin et al. 1998; Grigorescu et al. 2003).

3.2.2 Binary contour map

To obtain a binary contour map for a given input image we
apply to the output of the concerned model (CORF or GF) a

3 The complete data set is available at http://www.cs.rug.nl/~imaging.
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Fig. 13 (First row) Images of
natural objects from the
Berkeley data set. (Second row)
Ground truth illustrated as a
superimposition of the
collection of multiple contour
maps drawn by different
observers. Darker contours
correspond to the agreement of
multiple hand-drawn contours.
Optimal contour maps obtained
by (third row) the GF and by
(fourth row) the proposed CORF
models. a 302008, b 102061,

¢ 302003, and d 368078

Best GF .
contour map Ground truth Input image

Best CORF
contour map

procedure widely used in computer vision. It consists of edge
thinning by non-maxima suppression followed by binariza-
tion by hysteresis thresholding (Canny 1986; Sonka et al.
1999). The former step essentially determines the ridges in
the operator response. The latter step requires two-parameter
values, referred to as the low and high thresholds. We work
with a value of the low threshold that is a fixed fraction (0.5)
of the value of the high threshold. The resulting contour map
depends on the value of the (high) threshold used: the lower
that value, the larger the number of contour pixels in the map
because weaker responses can pass the threshold.

The third and the fourth rows of Figs. 12 and 13 show the
contour maps obtained in this way from the outputs of the GF
and CORF models, respectively. These maps are obtained for
certain values of the threshold parameter that are explained
below.

@ Springer

(d)

3.2.3 Quantitative performance measure

We use performance indicators called recall R and preci-
sion P to measure the similarity between the contour map
obtained by a given model and the ground truth. Recall R is
defined as the fraction of true contour pixels (according to the
ground truth) that are successfully detected by a given model.
Precision P is defined as the fraction of true contour pixels
from all the detected ones. They are formally defined as:

n n
R déf TP P déf TP (8)

9
nTp + NEN ntp + ngp

where ntp, nrp, and ngy stand for the numbers of true pos-
itives, false positives, and false negatives, respectively. The
values of the recall and precision depend on the threshold
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used for binarization: precision increases and recall decreases
with an increasing value of that threshold.

In order to come to a single performance measure that
would allow for results comparison, as suggested by Martin
et al. (2004), we compute the harmonic mean of recall and
precision, commonly referred to as the F-measure:

def 2PR
" P+R

©))

and consider as an optimal result the filter output for which
this harmonic mean reaches its maximum for a given image.*
The contour maps shown in Fig. 12 correspond to maximum
values of the F'-measure for the corresponding images.

3.2.4 Experimental results

In our experiments, we apply both CORF and GF computa-
tional models to every input image. Below, we specify the
parameter values that were used by the concerned models
and then we present a statistical comparison between their
performances.

The CORF and the GF models that we compare share two
parameters: the number of orientations, ng, which we set to
12 (intervals of 77 /6) and a scale parameter . The GF model
requires two other parameters, which we set as suggested by
Petkov (1995): the wavelength A 0/0.4 and the spatial
aspectratio y = 0.5. These parameter values ensure that the
RF maps of the GF and CORF models are similar.

For every inputimage, we only consider the two maximum
F-measure values, one for each of the two models, across all
nine scales (o € {1, 1.5, ..., 5}) used. For every given value

4 We refer to Appendix C for specification of the way in which we deal
with inexact contour localization.

of o, a CORF model is configured with different values® of
the parameter p.

Figure 14 shows a scatter plot that illustrates a compari-
son between the performances of the two models for the RuG
data set. The names of the images are shown on the x-axis
in a descending order of the performance achieved with the
CORF model. For 30 out of 40 input images, the maximum
F-measure value that is achieved by the proposed CORF
model is greater than the maximum F-measure value that
is achieved by the GF model. For the images where the GF
model performs better, the difference in the corresponding
F-measure values is minimal.

We apply a right-tailed paired-samples ¢ test to the set of
pairs of F-measure values that are achieved by the proposed
CORF model and the GF model and obtain as a result that
the proposed CORF model outperforms the GF model for
both the RuG (1 (39) = 4.39, p < 10_4) and the Berkeley
(1(299) =3.88, p < 10_4) data sets.

Notable is the fact that, compared to the GF model, the
best contour maps obtained by the proposed CORF model,
such as the ones shown in the fourth rows of Figs. 12 and 13,
contain less texture and the high curvature points are better
preserved.

4 Discussion

The ground truth maps of the Berkeley data set were designed
to evaluate performance for region segmentation rather than
object contour detection. For instance, the ground truth maps
shown in Fig. 13 omit the contours of the stripes in the shirt

5Foro € {1,1.5,2} we use three radii (p € {3,7, 14}), for 0 €
{2.5, 3, 3.5} weusefourradii (p € {3, 6, 13,25})andforo € {4, 4.5, 5}
we use S radii (p € {3, 5,9, 18, 34}).
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Input image
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Best GF
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F = 0.947 F = 0.498 F=0.371

Best CORF
contour map

F=1 F =0.921 F =0.743

Fig. 15 (First row) one noiseless and two noisy stimuli with different
signal-to-noise ratios (SNRs). Optimal contour maps achieved by the
(second row) GF model and the (third row) proposed CORF model

(Fig. 13a) and the patterns in the hat (Fig. 13c) of the the two
persons.

Figure 15 shows the optimal contour maps achieved by
the proposed CORF model and the GF model for a synthetic
stimulus without and with noise. The CORF model is more
robust to noise and achieves better edge localization than the
GF model. As pointed out by DuBuf (1993), curved edges
that are detected by the GF model are orientation-quantized
and appear as line segments in the resulting contour maps. In
contrast, the proposed CORF model is able to preserve the
smoothness and orientation of contours. While a high curva-
ture contour is correctly detected by the CORF model, the GF
model detects such a contour as multiple extended edges that
cross each other, see, for instance, the difference in how the
contours of the stripes in the shirt (Fig. 13a) and the pattern
in the hat (Fig. 13c) are detected by the two models.

The class of simple cells is rather broad (DeAngelis et al.
1995). For instance, many simple cells have non-classical
RFs which exhibit inhibition (Grigorescu et al. 2003). These
effects are outside the scope of this study. Furthermore, the
scope of the proposed CORF computational model is limited
to simple cells that respond to static stimuli.

The responses of real simple cells are often not propor-
tional to stimulus contrast. This means that the response
does not double if the contrast of the stimulus grows, for
instance, from 40 to 80 %. This property is known as response
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Fig. 16 Responses of a CORF model cell as a function of stimulus
contrast for the orientation preferred by the model. Here, the responses
of the constituent model LGN cells are modified by a sigmoid function

saturation (Sclar et al. 1990). We can also incorporate this
nonlinear property in our model by applying a sublinear
function with saturation, such as the sigmoid function, to
the model LGN responses. The resulting CORF model cell
shows dependence of response on contrast that is qualita-
tively similar to the one shown by real simple cells, Fig. 16.

While we use geometric mean (essentially multiplication)
as an output function of the proposed CORF computational
model, we did not name it Product but more generally Com-
bination of RF. We did that to keep the possibility open to
use other output functions in the future.

The implementation of the proposed CORF model is
straightforward: it includes convolutions of computed LGN
responses to compute sub-unit responses,’ shifting appropri-
ately these sub-unit responses to take into account that they
need to be taken in different points, and a pixel-wise evalua-
tion of a multivariate output function. Elsewhere, we refer to
this type of filter, built on top of simpler filters, as Combina-
tion Of Shifted Filter Responses, abbreviated as COSFIRE
(Azzopardi and Petkov 2012).

The popularity of the GF model is largely due to the
fact that a GF is a product of two well-known basic func-
tions, a cosine function and a Gaussian function that we all
know since secondary school. Consequently, it can be eas-
ily remembered and its properties are easily understood. At
a higher level, its elegance comes from the joint maximiza-
tion of its compactness in the space domain and the spatial
frequency domain (Daugman 1985). It is amazing that such
a conceptually simple and elegant function is a good first
approximation to the properties of real neurons. The fact that
it cannot reproduce all properties of real simple cells is just
another evidence that the real world is less Platonic than we
might wish it to be.

© This is equivalent to blurring the computed LGN responses.
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5 Summary

In this paper, we proposed a CORF computational model
of an orientation-selective cell in area V1 of visual cortex.
Orientation selectivity is achieved by combining in an AND-
type operation the responses of a collection of model LGN
cells with center—surround RFs that are properly aligned.

By means of simulated reverse correlation, we demon-
strated that the RF of the proposed model cell can be divided
in parallel elongated excitatory and inhibitory regions, an
organization that is characteristic of simple cells. We also
showed that, similar to real simple cells, the response of a
CORFmodel cell to a drifting grating alternates between high
and low values with a changing phase offset of the grating.
Moreover, the proposed CORF model cell exhibits important
nonlinear properties, namely cross orientation suppression,
contrast invariant orientation tuning and response saturation,
which are found in real simple cells. Such properties are not
possessed by models that are based on linear spatial summa-
tion, such as the GF model. Therefore, the proposed CORF
computational model should be seen as a more realistic model
of a simple cell.

We demonstrated the effectiveness of the proposed CORF
model in a contour detection application and compared its
performance with that of the popular GF model. For perfor-
mance evaluation, we used two public data sets of natural
images (RuG and Berkeley) with associated ground truth
contour images. In both cases, the proposed CORF model
outperforms the GF model (RuG: #(39) = 4.39, p < 10~4
and Berkeley: 7(299) = 3.88, p < 107%).

6 Conclusions

The proposed CORF model of a simple cell that relies on
input from model LGN cells is anatomically more realistic
than the GF model. Furthermore, it shares more properties
with real simple cells than the GF model, such as cross orien-
tation suppression, contrast invariant orientation tuning and
response saturation. Finally, the proposed CORF model is
more effective than the GF model in contour detection, which
is assumed to be the primary biological task of simple cells.

Appendix A: Simulated reverse correlation

Reverse correlation (de Boer and Kuyper 1968; Jones and
Palmer 1987; Ringach and Shapley 2004) is an electrophys-
iological technique in which a randomly generated binary
or, more generally, white noise image is presented and the
response of a cell to this stimulus is measured. Many differ-
ent such images are presented and the images which elicit
spikes from a given neuron are added together. Finally, the

average intensity value is subtracted from this accumulated
image. The intensity of a pixel in the resulting image is indic-
ative for the contribution of that position in the visual field
to increase (if the pixel value is positive) or decrease (if it
is negative) the probability of firing of the concerned cell.
Reverse correlation can be applied to determine the spatio-
temporal profiles of visual neurons by taking into account
the delay of a spike after a stimulus image is presented and
computing a separate summation image for each delay bin.
We are not concerned with temporal aspects here.

We use simulated reverse correlation by which we mean
that we present to our CORF model cell random binary
images and measure the computed response of the model
cell in a given location. This response is, however, not binary
(spike or no spike) as with real neurons but a graded value
which is intended to represent an approximation of the firing
rate of a neuron. To take this aspect into account, we weight
the presented binary stimulus image with the response which
the model cell produces in the considered point and sum up
these response-weighted binary input images. We subtract
from the response-weighted sum of binary input images its
mean across all pixels. This is the way in which we obtained
the 2D function shown in Fig. 8a, b.

Appendix B: Nonlinear versus linear CORF response

Figure 17 shows the orientation tuning curves of a linear
CORF model in which the response is computed by sum-
ming up the responses of all afferent sub-units. This model
produces response for all orientations of the presented stim-
ulus, in contrast to the properties of real simple cells. If a
threshold is used to constrain the response, the orientation
bandwidth of the model becomes dependent on the contrast
of the stimulus, while the orientation bandwidth of real sim-
ple cells does not depend on the contrast.

Moreover, a linear CORF model does not possess the prop-
erty of cross orientation suppression. On the contrary, a mask
stimulus that is orthogonal to a simultaneously presented test
stimulus of the orientation preferred by the model increases
rather than suppresses the response, Fig. 18.

Appendix C: Evaluation of inexact contour localization

Localization of detected contours may deviate slightly from
the desired position specified in the corresponding ground
truth. This might either be due to the inaccurate ground truth
itself that is designed by a human observer, or otherwise by
the inaccurate detection localization of the operator. For this
reason, we use the tolerance method proposed by Grigorescu
et al. (2004), where a detected pixel is considered correct if a
corresponding ground truth contour pixel is presentina 5 x 5
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Fig. 17 Orientation tuning curves at four different contrasts obtained
for a linear CORF model, the output of which is computed as the sum
of the responses of all afferent sub-units. This linear CORF model
gives response even at orientations that are orthogonal to the preferred
orientation
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Fig. 18 A linear CORF model does not exhibit cross orientation sup-
pression, but rather it shows the opposite effect. The plots illustrate
the responses of a linear CORF model to the images shown at the fop,
compare with Fig. 11

neighborhood. Every ground truth contour pixel is consid-
ered only once, such that no two or more detected contour
pixels can be matched to the same ground truth contour pixel.
The false negatives and false positives can then be determined
from the remaining unmatched contour pixels.

In the case of the Berkeley data set, where the ground truth
is provided as a collection of multiple contour maps, we apply
the following procedure. First, we match the operator contour
map separately with every contour map in the corresponding
ground truth collection. Subsequently, we compute the num-
ber of true positives as the total sum of the correctly matched
boundary pixels with the set of ground truth contour maps.

@ Springer

Similarly, the number of false negatives is the total sum of
incorrectly unmatched boundary pixels. However, the false
positives are only those boundary pixels that do not match
any of the human observer maps. For further details we refer
to Martin et al. (2004).

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
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