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Abstract We investigate galactic rotation curves in f (T )

gravity, where T represents a torsional quantity. Our study
centers on the particular Lagrangian f (T ) = T+αT n , where
|n| �= 1 and α is a small unknown constant. To do this we
treat galactic rotation curves as being composed from two
distinct features of galaxies, namely the disk and the bulge.
This process is carried out for several values of the index n.
The resulting curve is then compared with Milky Way profile
data to constrain the value of the index n while fitting for the
parameter α. These values are then further tested on three
other galaxies with different morphologies. On the galactic
scale we find that f (T ) gravity departs from standard New-
tonian theory in an important way. For a small range of values
of n we find good agreement with data without the need for
exotic matter components to be introduced.

1 Introduction

Over the past several decades, the consistent missing mass
or dark matter problem has attracted increasing interest in
modified and alternative theories of gravity. This is one of
the biggest potential contentions between general relativity
(GR) and observational astronomy [1]. In fact, in essentially
every observed galaxy, it appears that the expected rotational
velocities of Newtonian gravity do not conform with the mea-
sured values. Since the discrepancy was first noted, observa-
tional techniques have drastically improved, making it pos-
sible to study and constrain the motions of luminous matter
with much greater precision [2] then ever before. The �CDM
model solves this problem by assuming a much larger dark
form of matter present in every galaxy and cluster of galax-
ies. However, over the decades no observation has confirmed
the existence of this material either way [3–5].
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The unmodified Newtonian picture treats each galaxy as
a collection of N individual sources with a typical mass M�,
and then combines the respective Newtonian potentials. This
generates a global outline of the Newtonian potential. Assum-
ing a thin disk shaped galaxy with an exponential radial light
distribution �(R) = �0e−R/βd , where βd is the disk scale
radius and �0 characterizes the central surface brightness,
the resulting circular velocity for a test particle at a radial
distance R from the center of the disk is given by the Free-
man formula [6,7]

ve
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2β3
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[
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)
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where G is Newton’s constant of gravity, and In and Kn (n =
0, 1) are modified Bessel functions of the first and second
kind respectively [8].

The central surface brightness distribution can not be
expressed by the disk on its own. As such another component
of the galaxy, the bulge component, is defined. These bulges
have a higher stellar concentration than the stellar disk. The
bulge mass distribution is approximately spherically sym-
metric, with stellar orbits being roughly circular. Thus the
individual sources would follow the velocity relation [9]

VeT EGRb
=
√
GMb(R)

R
, (2)

where the mass, Mb(R), is determined through the surface
density calculation [10]

ρ(R) = 1

π

∫ ∞

R

d�b(x)

dx

1√
x2 − R2

dx, (3)

and �b(R) is the de Vaucouleurs profile for the surface mass
density
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�b(R) = �beExp

[
−κ

((
R

Rb

)1/4

− 1

)]
, (4)

with κ = 7.6695, �be = 3.2 × 103 M�pc−2, and Rb =
0.5 kpc. In the following work, we follow suit and treat these
two observable regions separately.

Teleparallel gravity is one alternative to GR where the
mechanism by which gravitation is communicated is tor-
sional rather than curvature based. This theory was first
proposed by Einstein himself in order to unify gravitation
and electromagnetism [11]. The equivalent reformulation
remained dormant until the relatively recent resurgence in
alternative and modified theories of gravity. Now, the result-
ing theory is equivalent at the level of equations and phe-
nomenology. However, the resulting action can be general-
ized much like the f (R) proposition. This is the origin of the
distinction between the two theories in that the equivalence
no longer holds. In fact, while the f (R) field equations are
fourth order, the f (T ) field equations are second order.

Galactic rotation curves were first tackled in f (T ) grav-
ity in Ref. [12]. While this study provides promising results
there are some issues with the procedure and theory. Firstly,
in the work, the separate regions of galaxies are not treated
individually. Secondly, the mass profile is considered to be
spherically symmetric. This may be true for the surrounding
dark matter halo but not for the luminous matter segment of
the galaxy. Finally, the choice of tetrad, eaμ, for the metric
should be treated with somewhat different field equations.
We expand on this in Sect. 2 but the main point is that certain
choices of tetrad require an associated quantity (spin con-
nection) to be defined so that the theory continues to respect
local Lorentz invariance, as explained in Ref. [13]. However,
the work does result in flat rotation disks in general.

The paper is divided as follows. In Sect. 2 we give a brief
overview of f (T ) gravity with an emphasis on the relevant
solution to the field equations. In Sect. 3 the mechanics of
galactic rotation curves are worked through for the current
setting. The resulting dynamics are then applied to Milky
Way data for several instances of the general model under
consideration in Sect. 4. The best model is highlighted, and
then a three-parameter fitting for the bulge and disk masses
as well as the new coupling parameter is described and deter-
mined. In Sect. 5, we tackle the broader problem of galaxies
with other morphologies. Finally, the results are discussed in
Sect. 6.

2 f (T ) gravity

GR and its modifications are largely based on the metric ten-
sor, gμν , which solves the field equations and acts as the
fundamental dynamical variable. The metric acts as a poten-

tial quantity with curvature being represented through the
Levi-Civita connection (torsion-free), 
λ

μν . In teleparallelism
this connection is replaced by the Weitzenböck connection,

̂λ

μν . This new connection is curvature-free and is based on
two fundamental dynamical variables, namely the tetrads (or
vierbein) and the spin connection. The tetrads, eaμ, are four
orthonormal vectors that transform inertial and global frames
in that they build the metric up from the Minkowski metric
by means of an application of this transformation. They also
observe the metricity condition. Physically, they represent
the observer and can be related to the metric tensor by means
of [14]

gμν = ηabe
a
μe

b
ν . (5)

where ηab = diag(1,−1,−1,−1). The tetrads obey the fol-
lowing inverse relations

eaμe
ν

a = δν
μ eaμe

μ
b = δab . (6)

These conditions are not enough to fully constrain the tetrad,
and so there is an element of choice in forming the tetrad
frames.

The other necessary ingredient to describe f (T ) gravity
is the spin connection, ωb

aμ [13,15]. This is not a tensor
and its particular form depends heavily on the system under
consideration, that is, it accounts for the coordinate system
such that the theory remains covariant. The choice of tetrad
plays a deciding factor in whether the spin connection van-
ishes or not. This leads to a division in tetrads [16], there are
pure tetrads whose associated spin connection vanishes, and
impure tetrads who spin connection gives a nonzero contri-
bution. In the current case, we will consider pure tetrads and
so will not consider the spin connection any further.

With the introduction of the spin connection, the tetrad
remains the fundamental dynamical field on the manifold
since every tetrad ansatz produces a well-defined associ-
ated spin connection. The question of the inheritability of
solutions in GR to teleparallel gravity is then resolved since
TEGR is equivalent to GR at the level of equations [13].
As vacuum GR solutions are also solutions to f (R) gravity,
TEGR (or GR) solutions are also solutions of f (T ) gravity.

In GR, curvature is communicated between tangent spaces
through the Levi-Civita connection. Teleparallel gravity rests
on the Weitzenböck connection which takes the form of [17]


̂λ
μν = e λ

a ∂μe
a
ν . (7)

This naturally leads to the torsion tensor [14]

T λ
μν = 
̂λ

μν − 
̂λ
νμ. (8)

123



Eur. Phys. J. C (2018) 78 :560 Page 3 of 18 560

While the resulting TEGR theory is equivalent to GR at the
level of equations, the ingredients leading up to this are not.
The difference between the Weitzenböck and the Levi-Civita
connections is represented by the contorsion tensor

Kμν
a = 1

2

(
T μν
a + T νμ

a − Tμν
a

)
. (9)

Lastly, the superpotential tensor is introduced

S μν
a = Kμν

a − e ν
a T αμ

α + e μ
a T αν

α. (10)

This is defined purely for convenience in the resulting equa-
tions [14] but plays an important role in the gravitational
energy-momentum tensor of teleparallel gravity. These ten-
sors can be contracted to form the torsion scalar, T =
T a

μνS
μν

a , which is the Lagrangian for TEGR.
The distinction between GR and TEGR can now be made

clearer, i.e. the relationship between the Ricci scalar, R and
the torsion scalar, T , can be expressed explicitly. The differ-
ence between the two quantities obviously lies in a boundary
term since they produce the same theory at the level of equa-
tions [14]. The distinction in the difference can be quantified
through [18]

R(e) = −T + B, (11)

where B = 2
e ∂

μ
(
eT λ

λμ

)
= 2∇μT λ

λμ is the boundary term.

This relation represents the source of the disparity between
the f (R) and f (T ) generalizations since the boundary term
no longer remains a total divergence term when the general-
ization is taken. Thus, GR and TEGR would be indistinguish-
able in terms of observations. However, while astrophysical
observations cannot test distinctions between curvature and
torsion, they can compare the predictions of the models avail-
able. Once enough tests have been compiled, a multi-test
survey would be the best way to compare and contrast the
individual models of the two theories.

Thus, taking the Lagrangian −T + B will precisely repro-
duce the Ricci scalar. As with the generalization of the GR
Lagrangian to the f (R) class of theories [19–21], TEGR
can also be generalized to f (T ). However, the relation
between the resulting theories stops being equivalent since
f (R) �= f (−T ) + B ( f (R) = f (−T + B)). In fact, the
ensuing field equations are unique in that, out of the three
possible quantities involved, namely R, T , and B, f (T ) is
the only Lagrangian that produces second order field equa-
tions [18,22].

Therefore the action with arbitrary functional form of the
torsion scalar, f (T ), is given by

S = 1

4κ̃

∫
d4xe f (T ), (12)

where κ̃ = 4πG and e = det
(
eaμ
)
. Taking a variable with

respect to the tetrad results in the field equations [14]

E μ
a ≡ e−1 fT ∂ν

(
eS μν

a

)+ fT T S
μν

a ∂νT

− fT T
b
νa S

νμ
b + 1

4
f (T )e μ

a = κ̃� μ
a , (13)

where �
μ

a ≡ 1
e

δLm
δeaμ

, fT and fT T denote the first and second

derivatives of f (T ) with respect to T , and Lm is the matter
Lagrangian.

In Ref. [23], the power-law instance of the Lagrangian is
investigated, i.e. f (T ) = T + αT n where α is a coupling
constant and |n| �= 1 is any other real number. The following
weak field solution is found

ds2 = (1 + A(r))dt2 − (1 + B(r))dr2

− r2dθ2 − r2 sin2(θ)dφ2, (14)

where

A(r) = −2GM

r
− α

r2−2n

2n − 3
23n−1, (15)

and

B(r) = 2GM

r
+ α

r2−2n

2n − 3
23n−1 (16)

(−3n + 1 + 2n2). (17)

For this case the torsion scalar is defined as follows

T = (−1 − B(r))(3 + B(r))

r2

×
[

1 + 1 + B(r)

2
+ r(1 + A(r))A′(r)

]
(18)

In the limit of vanishing α, GR is again recovered. By
determining the galactic rotation curve dynamics for this
solution, we will investigate the effect of various n values
on the resulting behavior.

3 Galactic rotation curves in f (T )

In order to determine the rotational curve profile we consider
a point particle with energy, E , and angular momentum, L ,
performing orbits about the galactic core. In the following
we investigate this type of orbit with a focus on the effective
potential. We then use this result to determine the velocity
profile for the disk and the bulge separately.
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3.1 Effective potential

In order to obtain an effective potential we follow the pro-
cedure described in Wald [24]. We start by determining the
conservation relations for the energy and angular momentum
from the background metric in Eq. (14). These are given by

E = −gμνζ
μuν = (1 + A(r))

dt

dτ
, (19)

and

L = gμν�
μuν = r2 dϕ

dτ
, (20)

where ζμ = (δ/δt)μ and �μ = (δ/δφ)μ are the static and
rotational killing vectors respectively. The background met-
ric naturally leads to the radial differential relation below

1 = E2

(1 + A(r))
− (1 + B(r))

(
dr

dτ

)2

− L2

r2 , (21)

where Eqs. (19–20) were used.
The effective potential, Ve, can be read off from Eq. (21)

by comparison with Ref. [24]

(
dr

dτ

)2

= E2

2
− Ve. (22)

As a gravitational source, the system under consideration is
not being treated as having any rotation, and so we can set
L = 0. Finally, if we assume roughly circular orbits, i.e.
dr

dτ
= 0, and simplify the resulting expression, then we find

an effective potential

Ve = (1 + A(r))

2

= 1

2
− GM

r
− α

r2−2n

2n − 3
23n−2. (23)

Here we see that the effective potential includes the GR
potential as well as an extra f (T ) contribution which can
be divided as follows

VeT EGR
= 1

2
− GM

r
, (24)

and

Veα = −α
r2−2n

2n − 3
23n−2. (25)

Since the velocity contribution of the GR potential is known,
we will now continue with the derivation for the f (T ) com-
ponent.

With the effective potential in hand, it is now possible to
obtain the velocity curve profile. To do this, we consider the
centripetal and gravitational acceleration equations [25]

ac = v2

r
, (26)

and

ag = −dVef f
dr

. (27)

Assuming circular paths for the orbiting stars and dust,
the effective velocity profile for the central mass turns out to
be [6]

ve f f
2 = −r

dVef f
dr

, (28)

where the potential is inherently negative.

3.2 Disk and bulge

Given the ge ometric diversity of the galactic disk and bulge
regions, the two sectors are treated separately in the following
calculations. In particular, the core contrast in the treatment
is related to the difference in their mass density distributions
which clearly affects the whole calculation due to the stark
change in the effective potential.

3.2.1 Disk

In order to determine the velocity curve profile of the disk
component of galaxies we follow the method developed
in [26–28]. Consider a system of N galactic bodies. The
calculation of the velocity profile will necessarily involve
the sum of the combined potential of the individual sources
within the galaxy. To measure the potential for a particu-
lar position with radius R, all other source will be summed
together. Consider the nth source with radius R′ from the
galactic center; the distance between the position where the
potential is being measured and thenth source will be denoted
by r . This is depicted in Fig. 1 where cylindrical coordinates
are used.

With this picture in mind, we can proceed to express the
unknown radius r in terms of other radial terms as follows

r = (R′2 + R2 − 2RR′ cos (φ − φ′)

+ (z − z′)2)
1
2 , (29)

where z′ is the height of the nth source, and (φ, z) represents
an arbitrary reference position which we choose to take as
the origin.
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Fig. 1 For a position with radius R, the relative distances of an nth
source are shown, where the radius of the source is denoted by R′,
and the r represents the distance between the source and the position
where the potential is being measured. All distances are in cylindrical
coordinates

In order to obtain the combined potential of the whole
disk we integrate over the whole range of source positions
available

Ve
αd

= −α23n−2

2n − 3

∫
ρr2−2ndV

= −α23n−2

2n − 3

∫ ∞

0
dR′

∫ 2π

0
dφ′

×
∫ ∞

−∞
dz′R′ρ(R′, z′)r2−2n, (30)

where ρ is the mass density distribution given by [29]

ρ(R′, z′) = δ(z′)M0Ne
− R′

βd

β2
d2π

, (31)

where M0 represents one solar mass, N is the total number
of sources in the disk sector, and βd is the scale radius of the
galactic disk.

It is at this point that the index n cannot be left arbitrary
in value, i.e. we must consider a set of values in order to
proceed. The division is as follows: Integer values in the range
−∞ < n < 0, n = 0, all values in the ranges 0 < n < 1
and 1 < n < 3

2 . The core of the problem has to do with the
expansion of the radial factor in the last integral of Eq. (30).
For the instances of integer values in the range −∞ < n < 0
and n = 0, this results in the integral

Ve
αd

= −α23n−2

2n − 3

∫ ∞

0
dR′

∫ 2π

0
dφ′
∫ ∞

−∞
dz′R′

× δ(z′)M0Ne
− R′

βd

β2
d2π

×
[
R′2 + R2 − 2RR′ cos (φ − φ′) + (z − z′)2

]1−n
.

(32)

The calculations for the other ranges are presented in the
appendices since they are more intricate. The resulting veloc-
ity curve profiles for the disk sector are given below for var-
ious n values

n = −4 :

ve
αd

2 =α M0 N 5 R

90112

(
R9 + 120R7β2

d + 7200R5β4
d

+ 201600R3β6
d + 1814400Rβ8

d

)
, (33)

n = −3 :

ve
αd

2 = α M0 N R

2304

(
R7 + 72R5β2

d + 2160R3β4
d + 20160Rβ6

d

)
,

(34)

n = −2 :

ve
αd

2 = α 3 M0 N R

896

(
R5 + 36R3β2

d + 360Rβ4
d

)
,

(35)

n = 0 :

ve
αd

2 = α M0 N R2

6
, (36)

0 < n < 1 :

Ve
αd

= − α 23n−2 N M0

(2n − 3) 2π β2
d

∫ ∞

0
dR′R′e− R′

βd

×
(

2π (R2 + R′2)−1−n
(n)

{
(R2 + R′2)2

× 2F1

[{
n

2
,

1 + n

2

}
, {1}, 4R′2R2

(R2 + R′2)2

]}

− 2nR′2R2
2F1

[{
1 + n

2
,

2 + n

2

}
, {2},

× 4R′2R2

(R2 + R′2)2

])
. (37)

This range of n results in an integral that does not have a
solution. Thus we solve it numerically in the next section.

1 < n < 3
2 :

ve
αd

2 = α 8n−2 N M0R2β−5−2n
d 
(4 − 2n)


(
n − 3

2

)
(2n − 3)
(n − 1)

×

⎛
⎜⎜⎝4n

√
πR3−2nβ2n

b

⎡
⎢⎢⎣4(5 − 2n)β2

b

×
1F2

[{ 3
2

}
,
{

π
2 − n, π

2 − n
}
, R2

4β2
d

]



(

π
2 − n

)


(

π
2 − n

)
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+3R2
1F2

[{
5
2

}
,
{ 9

2 − n, 9
2 − n

}
, R2

4β2
d

]



( 9

2 − n
)


( 9

2 − n
)

⎤
⎥⎥⎦

−128β5
b
(n)

1F2

[
{n}, {2, n − 1

2

}
, R2

4β2
d

]


(2)

(
n − 1

2

)
⎞
⎟⎟⎠ . (38)

3.2.2 Bulge

The bulge velocity profile calculation differs from the disk
significantly in that it can be completed independently of the
value of n. Following Refs. [29,30], we initially treat the
bulge as a spherical mass which straightforwardly leads to

ve
αb

2 = R
dVe

αb

d R

= R
d

dR

(
−α

R2−2n

2n − 3
23n−2

)
M

= −α 23n−2(2 − 2n)

(2n − 3)
R2−2nM. (39)

For this region of the galaxy, the spherical mass distri-
bution can be described through the de Vaucouleurs profile
shown in Eq. (4) which directly leads to the modified velocity
profile

ve
αb

2 = −α 23n−2(2 − 2n)

(2n − 3)
R2−2nM(r), (40)

where the mass is calculated through the density distribution
in Eq. (3) and

M(r) =
∫

ρ(r)dV , (41)

which can turned into an integration over the individual
spherical shells, giving

M(r) = 4π

∫ R

0
ρ(r)r2dr . (42)

The contribution from the modified f (T ) gravity terms to
the velocity profile then turns out to be

ve
αb

2 = α 23n−2(2 − 2n)

(2n − 3)
R2−2n

×
∫ R

0

∫ ∞

r

d�b(x)

dx

r2

√
x2 − r2

dxdr

= α 23n−2(2 − 2n)

(2n − 3)
R2−2n

×

⎛
⎜⎜⎜⎜⎝

8388608
(

1
βb

) 1
4
κ �be eκ Mg(R)

π3

(
κ8

β2
b

) 9
8

⎞
⎟⎟⎟⎟⎠ , (43)

where Mg(R) is the Meijer G–function defined through [31]

Mg(R) ≡ G8,1
1,9

(
R2κ8

16777216β2
b

∣∣∣∣ 1
9
8 , 5

4 , 11
8 , 3

2 , 3
2 , 13

8 , 7
4 , 15

8 , 0

)
.

(44)

For the TEGR case, using the potential in Eq. (24) in the
calculation in Eq. (39) leads directly to the velocity profile

veT EGRb

2 =
8388608κG

(
1
βb

) 1
4

�be eκ Mg(R)

π3 R

(
κ8

β2
b

) 9
8

, (45)

where βb is the bulge scalar radius [30].
Now that both velocity profile sectors are derived, the full

velocity profile can be derived for the f (T ) = T + αT n

Lagrangian. This results in the velocity profile

v =
√

veT EGRd
2 + veT EGRb

2 + ve
αb

2 + ve
αb

2, (46)

where both TEGR and modified f (T ) gravity components
are added for the disk and bulge segments of the galaxy.

4 The Milky Way galaxy

In the first part of this section we compare results for the
velocity profile with Milky Way data using the combined
velocity equations in Eq. (46) to determine the best range of
values of n in the Lagrangian, f (T ) = T + αT n . At this
stage, we simply fit for the constant α. In the second part of
the section the determined best range of n will be used to fit
for the surface mass density of the bulge �be, the mass of
the disk, M and the coupling constant α to further test the
velocity profile against real world data.

4.1 Determination of best range of index n

The data set being utilized is collected from two sources,
namely Refs. [30,32]. A representative sample of this data is
shown in Table 1; this spans the breath of the region under
consideration. Here, R is the radial galactic distance shown
in Eq. (29), v is the rotational velocity of the sources at that
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Table 2 Disk and bulge values

Disk

N M0 βd

(1010) (1030kg) (1017km)

6.5 1.988 1.08

Bulge

�be βb κ

(106kg km−2) (1016km)

6.68 1.543 7.66945

radial distance, and eu and el are the upper and the lower
error bars of the velocity values respectively.

In Table 2 we present the necessary values of the con-
stants to calculate the rotation curve profile contribution of
the Milky Way bulge and disks for the various ranges of n
respectively [30].

The velocity profile presented in Eq. (46) can now be
used to find suitable values of the coupling parameter, α. We
do this by employing a least-squares approach to minimize
the difference between the predicted and observed values.
This is performed by setting v(Rm)e

αb

2 = αu(Rm)e
αb

2 and

v(Rm)e
αd

2 = αu(Rm)e
αd

2 and using the relation

α ≈ 1

Dmax

Dmax−1∑
m=0

v2
m − (

ve
TEGRd

2 + ve
TEGRb

2
)

(
ue

αb
2 + ue

αb
2
) . (47)

Here Dmax represents the size of the data set, i.e. the number
of velocity points considered.

In Fig. 2 we present plots for a range of values of n with
best fits for α; this ranges from n = −4 to n = 1.4. The cor-
responding GR plot is also being shown. Each plot consists
of data points with associated error bars, the GR prediction
for the Milky Way galaxy, and the best fit curve for the f (T )

model being considered where the coupling parameter α is
being fitted. On a similar note, every plot has an embedded
figure showing the difference between the best fit and the
GR result. As both predicted curves plateau so does their
associated difference in the embedded figure.

The first row shows negative values of n where the behav-
ior of the best fits are fairly similar in that they quickly diverge
for data points in the disk region. Moreover, the predicted
curves are completely nonphysical. In the following row, the
special case of n = 0 is considered. This corresponds to
Einstein’s GR with a constant similar to the cosmological
constant. However, in this case the constant is designed to
account for the anomalous rotation curves of galaxies. Nat-
urally, the constant gives a near linear increase in velocity
against the galactic radius. Again, the resulting velocity curve

is unrealistic. The linear behavior is best seen in the embed-
ded figure. As with the instances of negative n, the behavior
performs worse when compared with GR.

Next we consider the 0 < n < 1 range. The predictions
from the f (T ) functional model become much more promis-
ing in this region as compared with the preceding values. As
with the previous cases, the behavior in the core of the galaxy
is relatively well behaved. Although as larger radial values
are considered, we find that the predicted curve overshoots
the velocity curve data points. The predicted curves get bet-
ter as the value of n approaches unity. However, this value
of n was excluded from the solution presented in Eq. (14)
[23]. In the limit of n actually taking on the unity value, the
Lagrangian tends to a re-scaling of GR.

Finally the 1 < n < 3
2 range is investigated against the

Milky Way velocity curve. These provide the best behavior
of graphs from all the ranges considered in this work. As
in the other plots, a cut-off value for the maximum radius
considered is set to R = 3 × 1018. The predicted velocity
profile does not have much interest for us beyond that point.
The basic result from this range of values of n is that as n gets
closer to unity the resulting velocity curve profiles behave
better as compared to the observational points in question.

The best behaved value of index of the f (T ) Lagrangian is
given by n = 1.00001 which results in the best fit coupling
parameter α = −2.428+1.303

−1.577 × 10−34 km2.00002 kg−1 s−2.
This is shown in Fig. 3. The resulting curve agrees with GR in
the core part of the galaxy with slight variations in the central
region. The difference between the two curves then plateaus,
with the f (T ) function behaving better against observation
than GR without dark matter contributions.

4.2 The three parameter fitting

Heaving determined that the best range of values for n is 1 <

n < 3
2 , we now move to the next stage of the process which

is to produce a three parameter fitting for the f (T ) rotation
curve. This method should fit the surface mass density of the
bulge �be, the Mass of the Disk M and the coupling constant
α. In this case, the fitting function proves to be nonlinear and
as such an iterative method accompanied by a cross validation
fitting is employed to determine these three parameters.

The results of this fit are presented in Table 3 where the first
column consists of the tested values of n, the second column
is the minimized sum of the square of the residuals for the
fitting function used, S, the third and fourth columns are the
fits for the surface mass density of the galactic bulge, �be, and
the mass of the disk, M , respectively and the final column
is the fit for the coupling constant α. The resulting plots
from these values can be seen in Fig. 4. From the plots it is
possible to narrow down the best fit to two values of n, namely
n = 1.00001 and n = 1.000001. The choice between these
two instances can then be made using the second column of
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Fig. 2 f (T ) gravity rotational velocities with n values from −4.0 to
1.4. The coupling constant for each graph was obtained through fitting
as governed by Eq. (47). The data points are rotational velocity values
obtained from a combination of two data sets, namely Refs. [30,32].

The red dashed curve represents the general relativistic rotation curve
while the full green curve represents the fitted f (T ) velocity curve with
the resulting α value being indicated in every case. In all instances, the
difference between the GR and the fitted f (T ) value is shown
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Fig. 3 Best fit model for the
rotation profile in f (T ) gravity
for the Milky Way galaxy with
n = 1.00001 and fit coupling
parameter α = −2.428+1.303

−1.577 ×
10−34 km2.00002 kg−1 s−2

Table 3 Fit of bulge surface
mass density, disk mass and
f (T ) coupling constant values

n S �b (106 kg km−2) M (1010 M�) α (km2nkg−1s−2)

1.4 4.44 × 1028 5.78 3.30 − 1.03 × 10−25

1.3 2.15 × 109 5.66 7.62 − 7.68 × 10−31

1.2 2.15 × 109 5.56 3.04 − 1.47 × 10−31

1.1 2.15 × 109 6.21 2.26 − 2.69 × 10−34

1.01 2.15 × 109 5.97 7.49 − 1.74 × 10−47

1.001 2.15 × 109 5.51 7.43 − 1.08 × 10−45

1.0001 2.15 × 109 5.76 7.21 − 1.15 × 10−45

1.00001 2.15 × 109 5.94 4.08 − 4.51 × 10−34

1.000001 1.43 × 1029 6.49 3.56 − 5.82 × 10−33

Table 3. The S values for n = 1.00001 and for n = 1.000001
are 2.78 × 109 and 1.43 × 1029 respectively. This clearly
indicates that n = 1.00001 provides us with the best f (T )

rotation curve fit.
The best fit value for n results in a bulge surface mass

density of 5.94×106 kg km−2, a disk mass of 4.08×1010M�
and a coupling constant of −4.51 × 10−34 km2n kg−1 s−2.
The Surface mass density of the bulge �be is directly related
to the bulge mass through the equation

M(r) = 4
∫ R

0

∫ ∞

r

d�b(x)

dx

r2

√
x2 − r2

r2dxdr , (48)

where

�b(x) = �beExp

[
−κ

((
x

βb

)1/4

− 1

)]
. (49)

Given the fit values for �be and using Eqs. (48) and (49),
the total mass of the bulge can be calculated to be 1.2 ×
1010M�. Thus, this gives a total galactic luminous matter
mass of 5.36 × 1010M� for the Milky Way.

We now compare this value to known values for the mass
of the Milky Way without dark matter. Ref. [36] reports a
total combined mass of 5.22 × 1011M� of the Milky Way
which includes the dark matter contribution. In Ref. [35], it
is given that the bulge mass is 0.91±0.07×1010M� and the
disk mass is 5.17 ± 1.11 × 1010M� giving a total mass of
6.08±1.14×1010M�. The total mass of these contributions
to the galaxy obtained in this work agrees with the order of
the total masses from both Refs. [35,36]. Furthermore, the
values of the total mass, and the disk mass obtained here even
fall within the error bars of the respective masses given by
Ref. [35].

Finally we compare this fit, which for ease of reference is
given in Fig. 5, with the best fit while just fitting for α, Fig. 3.
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Fig. 4 f (T ) gravity rotational velocities with n values ranging from 1.4 to 1.000001, with a fitted bulge surface mass density �be, disk mass M
and coupling constant α

Fig. 5 Best fit model for the
rotation profile in f (T ) gravity
for the Milky Way galaxy with
n = 1.00001 and fit coupling
parameter α = −4.51 ×−34 km2n

kg−1 s−2, bulge surface mass
density of 5.94 × 106 kg km−2

and disk mass 4.08 × 1010M�

With this new three parameter fitting the f (T ) rotation curve
successfully interprets the rotational data profile at the inner
parts of the galaxy while still retaining the plateau effect
obtained in the first fit. Having a value of n that is greater

than 1 also prevents the possibility that the velocity curve
will tend to infinity at larger radii, which would lead to an
unrealistic prediction.
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Table 4 Best fit of galactic mass for NGC 3198, UGC 128 and DDO 154

Name βd (1016 km) MGR (1010 M�) n M (1010 M�) α (10−34 km2n kg−1s−2) References

βd MGR

NGC3198 9.69 4.500 1.00001 2.49 −4.51 [33] [37]

UGC128 18.36 4.300 1.00001 2.47 −4.51 [33] [38]

DDO154 1.23 0.003 1.00001 0.15 −4.51 [34] [34]

5 What about other galaxy morphologies?

In this section we consider three other galaxies apart from the
Milky way which adhere to separate galaxy morphologies.
Specifically we consider the bright spiral galaxy NGC 3198,
the low surface brightness galaxy UGC 128 and the irregular
dwarf galaxy DDO 154. These were chosen so as to test the
fit on different types of galaxies since these clearly exhibit
their own separate morphologies.

The rotation curve data for these galaxies is shown in
Table 5. The data used for NGC 3198 and UGC 128 was
obtained from Ref. [33], and the data for DDO154 was
obtained from Refs. [33,34].

In these three cases the surface mass density of the galax-
ies’ bulges, �be, is assumed to be zero as they are variants
of disk galaxies. The mass of their disks, M , was fit while
keeping the coupling constant α fixed at the value obtained
by the best fit of the Milky Way in the previous section. The
results for the fit can be seen in Table 4. The first column
of Table 4 represents the name of the galaxy considered, the
second column gives the disk scale radii, βd , the third col-
umn gives the galactic masses as predicted by GR, MGR and
the fourth gives the value of the constant n at which these
galaxies were fit. The fifth and sixth columns provide the fit-
ting values for the disk masses and the value of the coupling
constant α considered respectively. Finally the last column
provides the data sources for βd and MGR. Using these results
the three plots shown in Fig. 6 were generated.

The first galaxy considered, NGC 3198, is a bright spiral
galaxy [37]. The data available clearly shows that the rota-
tional velocities plateau at around 150 km s−1. Using the
same fitting method used to fit the f (T ) rotation curve for
the Milky Way results in a luminous matter disk mass of
2.49 × 1010 M�. The mass obtained is of the expected order
and is smaller than the mass predicted by GR. Overall the
f (T ) fit is by far more accurate than the General Relativistic
one. Up to a galactic radius of around 3 × 1017 km the rota-
tion curve fits perfectly with the data, while further out the
predicted curve falls below the velocities of the data points.
The reason for this drop in the fit curve may be attributed to
the fact that no spiral arm equation was included in the fit
which could also be the partly the reason why the mass is
somewhat less than expected.

The second galaxy considered was UGC 128, a low sur-
face brightness disk galaxy [39]. Here the data points once
again produce an evident plateau at around 140 km s−1.
Once again the order of the disk mass is as expected though
the magnitude is smaller than that predicted by the GR val-
ues. It should be noted that in both this case and the case
of NGC 3198 the masses where fit while also fitting for the
mass of non-luminous matter. As such, the larger values can,
at least in part, be attributed to a missing distribution of mass
from non-luminous to luminous. From the plot in Fig. 6-2 we
observe that the f (T ) fit is accurate throughout accept for
a drop in the data velocity magnitudes between 3 × 1017km
and 7 × 1017km.

The third and last galaxy considered, DDO 154, is an irreg-
ular dwarf galaxy. In this case it proved not possible to fit the
f (T ) rotation curve to the data points. This can clearly be
seen in the last plot presented in Fig. 6-3. The reason for this
is that most of DDO 154’s mass is dominated by a distri-
bution of gasses [34] that can neither be classified as being
part of the disk nor a type of bulge. As such in order to cor-
rectly test this galaxy and others like it one would have to
derive the correct velocity contributions of such gas distribu-
tions. The red dashed line is the GR disk contribution which
also behaves much worse than the other galaxy morphology
types.

6 Conclusion

In this paper we have considered galactic rotation curves in
f (T ) gravity while taking f (T ) = T + αT n as the working
model of the gravitational action. A weak field metric [23]
was utilized for this purpose. We compared various regions
of values for the index n with observations of the Milky Way,
and three other galaxies which represented other galaxy mor-
phologies. In all cases, the galactic velocity profile was dealt
with in terms of a bulge and a disk radial region. This way of
decomposing a galaxy better explains the various segments
that make up the profile. For every fitted parameter being
considered, Eq. (46) was used to determine the combined
effect on the final velocity profile.

The Milky Way galaxy was then used to determine which
regions of n are more realistic than others. For each index
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Fig. 6 In these plots the full green curve represents the f (T ) gravity
rotational velocity curves with n = 1.00001, with α = −4.51 ×−34

km2n kg−1 s−2, and with masses as shown in Table 4. The red dashed
curve represent the general relativistic rotation curve and the data points
are the rotational velocity data sets provided in Table 5

value, we fit the unknown coupling parameter α. Besides the
effect on the value of this constant, the various values ofn also
had an effect on the units of the constant. In the grid figures of
Fig. 2, we show plots of all the regions under consideration.
The index regions of negative n, n = 0, and 0 < n < 1
are discarded due to their velocity profile never vanishing for
very large radii. Moreover, the intermediate region behaves
very poorly in several instances of those regions.
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The most promising region for n is 1 < n < 3
2 . For values

of n close to 1, rotation curves were produced which fit very
well with large values of R. These curves also harbored the
possibility of eventually going to zero if the limitations of
the functions used were to be surpassed. Such a property
is also important as it means that galactic potentials would
not interfere on the cosmological scale which would cause
serious problems in the theory. The only disadvantage of this
range of values of n with this type of fitting is that there is
a slight overshooting of the velocity profile for the region
of R between 0.1 × 1018 and 0.4 × 1018 km. That being
said, the curve is still within the error bars for a large part
of the data points available. One potential solution would be
to consider a variation of the teleparallel Lagrangian being
investigated in this work, possibly a combination of power
laws. Unfortunately, as of yet metrics for such Lagrangians
do not exist in teleparallel gravity but are intended to be
developed and tested in the near future.

For the Milky Way, the best fit galactic velocity profile in
this formulation of f (T ) gravity was found when applying a
multi parameter fitting instead of just a fitting for the coupling
constant α. Through this fitting we conclude that n = 1.0001
gives the best fit accompanied by a bulge surface mass density
of 5.94×106 kg km−2, a disk mass of 4.08×1010M� and a
coupling constant of −4.51×−34 km2n kg−1 s−2. With these
parameters no problems are observed in the small R limit
and it fits perfectly with the whole data range given while
conserving the possibility that the curve eventually falls to
zero. The resulting masses for the galactic components were
also consistent with current luminous matter estimates.

The other three galaxies that were considered were NGC
3198 (bright spiral galaxy [37]), UGC 128 (low surface
brightness disk galaxy [39]), and DDO 154 (an irregular
dwarf galaxy). These were considered to test the dexterity
of the general result for large variance in the components
being considered. In Fig. 6-1, -2, a bright spiral galaxy and
a low surface brightness disk galaxy are fit consistently for
parameter values also found for the Milky Way. This shows
the broadness of the result. In Ref. [40] a series of low surface
brightness galaxies were considered in the power-law incar-
nation of the generalized f (R) class of theories. The results
in that case were similarly relatively good when compared to
GR. These types of galaxies are supposed to be dark matter
dominated in comparison to other types of galaxies however
using power law models in either f (R)or f (T ) (present case)
the rotation curve profiles can be almost entirely accounted
for using a modified gravitational action.

In the case of the irregular galaxy shown in Fig. 6-3, the
fit is very poor due to the dominance of a third component
in the galaxy dynamics, namely the role of gas. It would
be very interesting to model this component using the f (T )

Lagrangian being advanced in this work. In Ref. [41], this
very case is considered for the power-law model in f (R)

theory. The results are very promising and cast further doubt
on the need for a dark matter contribution to describe the
galactic rotation curve profile. This would be the natural next
step for our analysis.

While the work conducted is promising, it is of paramount
importance that such results are tested with regards to larger
galaxies surveys that include weighted proportions of the
various galaxy morphology types. The parameters obtained
here are to be compared with those obtained in each case
and if the model allows, a best fit for all galaxy types is
to be acquired. This proposed analysis would also test the
universality of the coupling parameters, namely n and α. A
larger multi-galaxy analysis of the results obtained here is
thus intended to be conducted in a future work. Moreover,
it would be of utmost interest to compare this model with
other modified theories of gravity, such as the f (R) gravity
models advanced in Refs. [40,41] among others. Beyond the
question of the need for dark matter, the galactic rotation
curve profile problem may also advance the question of a
preferred model of gravity.
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Appendix I: Calculating the velocity profile for the range
0 < n < 1

For the region 0 < n < 1, the velocity curve can be repre-
sented through the integral

Ve
αd

= − α23n−2M0N

(2n − 3)β2
d2π

∫ ∞

0
dR′

∫ 2π

0
dφ′

×
∫ ∞

−∞
dz′R′δ(z′)e− R′

βd r2−2n . (50)

Noting that

r = (R′2 + R2 − 2RR′cos(φ − φ′)

+ (z − z′)2)
1
2 , (51)
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we define a new variable x such that

x1−n ≡ r (2−2n)

=
(
r2
)1−n

= (R′2 + R2 − 2RR′cos(φ − φ′)
+ (z − z′)2)1−n . (52)

Assuming that the value of n is restricted between but not
including 0 and 1, we define the following inverse transfor-
mation

F(k) =
∫ ∞

0

e−xk

x

(
x1−n

)
dx

= kn−1
(1 − n), (53)

for the function

f (x) = x1−n

= 1


(n)

∫ ∞

0
xe−kx kn−1dk. (54)

With this new expression for x1−n in hand, we substitute
it into Eq. (50). Assuming a flat disk and noting that

∫ ∞

−∞
δ(z′)z′e−kz′dz′ = 0, (55)

and
∫ ∞

−∞
δ(z′)e−kz′dz′ = 1, (56)

we obtain the following form for this equation

Ve
αd

= − α23n−2M0N

(2n − 3)
(n)β2
d2π

∫ ∞

0
dk kn−1

×
∫ ∞

0
dR′R′e− R′

βd

∫ 2π

0
dφ′xe−kx . (57)

Substituting for x and integrating with respect to φ′ we
find that

∫ 2π

0
dφ′xe−kx = e−R2k−R′2k

[
2π
(
R2 + R′2) I0 (2RR′k

)

− 4πR′RI1
(
2RR′k

) ]
. (58)

Integrating with respect to k we obtain the following form
of the potential

Ve
αd

= − α 23n−2 N M0

(2n − 3) 2π β2
d

∫ ∞

0
dR′R′e− R′

βd

×
(

2π (R2 + R′2)−1−n
(n)

{
(R2 + R′2)2

×2F1

[
{n

2
,

1 + n

2
}, {1}, 4R′2R2

(R2 + R′2)2

]}

−2nR′2R2
2F1

[{
1 + n

2
,

2 + n

2

}
, {2}, (59)

4R′2R2

(R2 + R′2)2

])
. (60)

this last integral has to be worked through numerically since
no analytic solution exists. This is shown in the respective
velocity profiles shown in Fig. 2.

Appendix II: Calculating the velocity profile for the range
1 < n < 3

2

For the case of Lagrangian index in the range 1 < n < 3
2 ,

the velocity curve profile takes on the following effective
potential

Ve
αd

= − α23n−2M0N

(2n − 3)β2
d2π

∫ ∞

0
dR′

∫ 2π

0
dφ′

×
∫ ∞

−∞
dz′R′δ(z′)e− R′

βd r2−2n . (61)

As in the first appendix, we set the following transformation
and inverse transformation pair s

F(k) =
∫ ∞

0
J0(kr)

(
r2−2n

)
dr

= 41−nk2n−3

( 3

2 − n
)



(
n − 1

2

) , (62)

and

f (r) = r2−2n

= 23−2n
(2 − n)


(n − 1)

∫ ∞

0
k2n−3 J0(kr)dk. (63)

Given that the integral involves a Bessel function, we need
the following relation to move forward in the calculation [8]

J0(kr) =
∞∑

m=−∞
Jm(kR)Jm(kR′)emi(φ−φ′)−k(z−z′), (64)

Considering the galaxy as a flat disk and using

∫ ∞

−∞
δ(z′)ekz′dz′ = 1, (65)
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we find that

Ve
αd

= − α23n−2M0N

(2n − 3)β2
d2π

(
23−2n
(2 − n)


(n − 1)

)

×
∫ ∞

0
dkk2n−3

∫ ∞

0
dR′R′e− R′

βd

×
∫ 2π

0
dφ′

∞∑
m=−∞

Jm(kR)Jm(kR′)emi(φ−φ′). (66)

We now note that m = 0 is the only value for which
the integral gives a non-zero value for the φ′ integral. After
integrating over R′ and k as in Refs. [8,28] we obtain the
final form of the effective potential contribution

Ve
αd

= −α23n−2M0N
(4 − 2n)

(
n − 3

2

)
(2n − 3)β3

d64

×
⎛
⎝4n

√
πR5−2n

1F2

[{ 3
2

}
,
{ 7

2 − n, 7
2 − n

}
, R2

4β2

]


(n − 1)

( 7

2 − n
)2

+
64β5−2n

1F2

[
{1 − n} ,

{
1, n − 3

2

}
, R2

4β2

]

(1)


(
n − 3

2

)
⎞
⎠ (67)

Finally we use Eq. (28) to obtain the velocity curve equa-
tion for this region.

v2
e
αd

= α8n−2M0N R2β−5−2n
(4 − 2n)

(
n − 3

2

)
(2n − 3)
(n − 1)

×
⎛
⎝42√πR3−2nβ2n

[
4(5 − 2n)β2

× 1F2

[{ 3
2

}
,
{ 7

2 − n, 7
2 − n

}
, R2

4β2

]



( 7

2 − n
)2

+3R2
1F2

[{
5
2

}
,
{ 9

2 − n, 9
2 − n

}
, R2

4β2

]



( 9

2 − n
)2

⎤
⎦

−128β5
(n)
1F2

[
{n} ,

{
2, n − 1

2

}
, R2

4β2

]

(2)


(
n − 1

2

)
⎞
⎠ (68)

References

1. R.H. Sanders, The Dark Matter Problem: A Historical Perspective
(Cambridge University Press, Cambridge, 2010)

2. V.C. Rubin, One hundred years of rotating galaxies. Publ. Astron.
Soc. Pac. 112(772), 747 (2000)

3. G. Bertone, D. Hooper, J. Silk, Particle dark matter: Evidence,
candidates and constraints. Phys. Rept. 405, 279–390 (2005)

4. X.-J. Bi, P.-F. Yin, Q. Yuan, Status of dark matter detection. Front.
Phys. (Beijing) 8, 794–827 (2013)

5. M. Cirelli, Indirect searches for dark matter: a status review. Pra-
mana 79, 1021–1043 (2012)

6. K.C. Freeman, On the disks of spiral and S0 galaxies. Astrophys.
J. 160, 811 (1970)

7. S.S. McGaugh, The third law of galactic rotation. Galaxies 2(4),
601–622 (2014)

8. G.N. Watson, A Treatise on the Theory of Bessel Functions (Cam-
bridge Mathematical Library, Cambridge University Press, Cam-
bridge, 1995)

9. Y. Sofue, M. Honma, T. Omodaka, Unified rotation curve of the
galaxy—decomposition into de vaucouleurs bulge, disk, dark halo,
and the 9-kpc rotation dip. Publ. Astron. Soc. Jpn. 61, 227 (2009)

10. J. Binney, S. Tremaine, Galactic dynamics. Princeton Series in
Astrophysics (Princeton University Press, Princeton, 1987). ISBN:
9780691084459

11. A. Einstein, Hamiltonisches prinzip und allgemeine relativitats-
theorie Das Relativitatsprinzip (Verlag der Akademie der Wis-
senschaften, Berlin, 1923)

12. M. Jamil, D. Momeni, R. Myrzakulov, Resolution of dark matter
problem in f(T) gravity. Eur. Phys. J. C72, 2122 (2012)

13. M. Krššák, E.N. Saridakis, The covariant formulation of f(T) grav-
ity. Class. Quant. Grav. 33(11), 115009 (2016)

14. Y.-F. Cai, S. Capozziello, M. De Laurentis, E.N. Saridakis, f(T)
teleparallel gravity and cosmology. Rept. Prog. Phys. 79(10),
106901 (2016)

15. R. Aldrovandi, J.G. Pereira, Teleparallel gravity: an introduction.
fundamental theories of physics (Springer, Amsterdam, 2012)

16. N. Tamanini, C.G. Boehmer, Good and bad tetrads in f(T) gravity.
Phys. Rev. D 86, 044009 (2012)

17. K. Hayashi, T. Shirafuji, New General Relativity. Phys. Rev. D 19,
3524–3553 (1979) [Addendum: Phys. Rev. D 24, 3312 (1981)]

18. S. Bahamonde, C.G. Bohmer, M. Wright, Modified teleparallel
theories of gravity. Phys. Rev. D 92(10), 104042 (2015)

19. T.P. Sotiriou, V. Faraoni, f(R) theories of gravity. Rev. Mod. Phys.
82, 451–497 (2010)

20. S. Capozziello, M. De Laurentis, Extended theories of gravity.
Phys. Rept. 509, 167–321 (2011)

21. S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Modified gravity theo-
ries on a nutshell: inflation, bounce and late-time evolution. Phys.
Rept. 692, 1–104 (2017). https://doi.org/10.1016/j.physrep.2017.
06.001

22. S. Bahamonde, M. Zubair, G. Abbas, Thermodynamics and cos-
mological reconstruction in f (T, B) gravity. Phys. Dark Universe
19, 78–90 (2018)

23. M.L. Ruggiero, N. Radicella, Weak-field spherically symmetric
solutions in f(T) gravity. Phys. Rev. D. 91(10), 104014 (2015)

24. R.M. Wald, General Relativity (University of Chicago Press,
Chicago, 1984)

25. A. Toomre, On the distribution of matter within highly flattened
galaxies. Astrophys. J. 138, 385 (1963)

26. S. Casertano, Rotation curve of the edge-on spiral galaxy NGC
5907: disc and halo masses. Mon. Not. R. Astron. Soc. 203, 735–
747 (1983)

27. M. Milgrom, A modification of the Newtonian dynamics: implica-
tions for galaxies. Astrophys. J. 270, 371–383 (1983)

28. P.D. Mannheim, Alternatives to dark matter and dark energy. Prog.
Part. Nucl. Phys. 56, 340–445 (2006)

29. Y. Sofue, Mass Distribution and Rotation Curve in the Galaxy.
in Planets, Stars and Stellar Systems: Volume 5: Galactic Struc-
ture and Stellar Populations. (Springer, Dordrecht, 2013), pp. 985–
1037

30. Y. Sofue, M. Honma, T. Omodaka, Unified rotation curve of the
galaxy—decomposition into de vaucouleurs bulge, disk, dark halo,
and the 9-kpc rotation dip. PASJ 61, 227–236 (2009)

31. L.C. Andrews, Special Functions for Engineers and AppliedMath-
ematicians (Macmillan, New York, 1985)

123

https://doi.org/10.1016/j.physrep.2017.06.001
https://doi.org/10.1016/j.physrep.2017.06.001


560 Page 18 of 18 Eur. Phys. J. C (2018) 78 :560

32. P. Bhattacharjee, S. Chaudhury, S. Kundu, Rotation curve of the
milky way out to 200 kpc. Astrophys. J. 785(1), 63 (2014)

33. F. Lelli, S.S. McGaugh, J.M. Schombert, SPARC: mass models for
175 disk galaxies with Spitzer photometry and accurate rotation
curves. Astron. J. 152, 157 (2016)

34. C. Carignan, C. Purton, ”Total” Mass of DDO 154. Astron. J.
506(1), 125 (1998)

35. T.C. Licquia, J.A. Newman, Improved estimates of the Milky Way’s
Stellar mass and star formation rate from hierarchical Bayesian
meta-analysis. Astron. J. 806, 96 (2015)

36. G.M. Eadie, W.E. Harris, Bayesian mass estimates of the Milky
Way: the dark and light sides of parameter assumptions. Astron. J.
829, 108 (2016)

37. E.V. Karukes, P. Salucci, Modeling the mass distribution in the
spiral galaxy NGC 3198. J. Phys. Conf. Ser. 566(1), 012008 (2014)

38. G. Hensler, G. Stasinska, S. Harfst, P. Kroupa, C. Theis, The evo-
lution of galaxies: III—from simple approaches to self-consistent
models (Springer, Amsterdam, 2003) (978-94-017-3315-1)

39. Verheijen Marc and de Blok Erwin The HSB/LSB, Galaxies NGC
2403 and UGC 128. Astrophys. Space Sci. 269, 673–674 (1999)

40. S. Capozziello, V.F. Cardone, A. Troisi, Mon. Not. R. Astron.
Soc. 375, 1423 (2007). https://doi.org/10.1111/j.1365-2966.2007.
11401.x. arXiv:astro-ph/0603522

41. S. Capozziello, P. Jovanović, V.B. Jovanović, D. Borka, JCAP
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