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Abstract 

Vehicle detection is an important area in Transport and Artificial Intelligence. Through vehicle detection techniques, vehicles can 
be located across different images. Some of these models are robust enough to identify parts of vehicles in images where the vehicle 
might be partially occluded. Recent advances in detection methods gave rise to a range of different techniques that can be used for 
recognition and detection of vehicles. Although each technique has its merits, it is not always the case that the adopted model 
works well for scenarios involving IP Cameras. The motivation for this study is to compare several state-of-the-art techniques, 
including deep learning models and computer vision approaches. A set of experiments are developed in order to test these models 
on a number of low quality IP camera footages set in the transport domain in order to measure detection and recognition accuracy. 
The final evaluation compares detection accuracy using mean average precision, the semantics of the recognised vehicle as well 
as recognition robustness when applied to a dataset that contains images with different light conditions. The study also looks at 
persistence in recognition across frames in video data and a detailed description of the dataset used to train the evaluated models. 
Finally, the paper also goes through some scenarios that applies the results obtained in this study to ITS systems that use IP camera 
feeds. 
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1. Introduction 
 

One of the uses of Computer Vision (CV) and Artificial Intelligence (AI) is in conjunction with the areas of traffic 
management and Intelligent Transport Systems (ITS). There is already a large selection of different algorithms and 
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intelligent models that are used to count cars, predict traffic flow, predict vehicle speed as well as identify dangerous 
drivers Engel et al. (2017). Notwithstanding the challenges faced when developing these transport systems, there  are 
already several models that are considered state of the art. These models use a range of features to output results, 
including, vehicle size, colour and GPS location. These features and the process of selecting the best approach provides 
an opportunity to study the effect of applying object detection models to different datasets and scenarios. Thus, the 
primary contribution of this paper is not to develop a new pipeline for vehicle detection, but, to develop a methodology 
that allows transport experts to evaluate and find the best models for their particular Intelligent Transport System needs. 
This paper also focuses on feeds obtained from live data mined over the internet. Apart from the standard dataset used 
for the evaluation of this study, we introduce a new dataset in section 3.2 made up of live footage captured through IP 
cameras. This dataset offers a new set of challenges in itself as the video feed is of low quality. When developing ITS, 
the approaches described in McQueen and McQueen (1999) initially create isolated cases where  the individual traffic 
control models work. For example, finding the best camera angle to capture incoming traffic and increase detection 
accuracy. Additionally, vehicle detection is improved by adding light fixtures and other video enhancing tools to 
optimise visibility. This process can be time-consuming and not always feasible. Thus, one of the main motivations 
of this study was to evaluate the different state of the art object detection models on datasets that contain low-quality 
footage mined over the internet. This process is done in order to introduce a more effective way of developing ITS 
systems that use vehicle detection algorithms and models that do not need custom implementations or a lot of resources 
to deploy. This paper evaluates vision models that are used for vehicle detection. As previously mentioned, these 
algorithms are often used in a different context when building ITS systems. This paper is split into four different 
sections; the background section identifies the current state of the art approaches to vehicle detection and delves into 
the configuration of these models. This section is then followed with the Methodology that expands on the evaluation 
metric used, a detailed explanation of the datasets and setup. The third section goes into detection accuracy results for 
both datasets, followed by a discussion that expands on possible usage for the results obtained and which models might 
better fit different ITS applications. The concluding section of the paper summarises the results obtained and future 
work in the area. 

 
 
 
 
 

2. Background 
 

Deep learning has become a state of the art approach to solving machine learning problems, given how effective 
these models are when successfully applied to various fields of study, such as speech recognition and computer vision. 
Machine learning is a field of study comprised of a collection of statistical models that are trained on datasets made 
up of different features in order to, classify or predict information Bishop (2006). For example, a model trained upon 
weather information would be able to predict the weather for a given date Cramer et al. (2017). This process  is 
straightforward but requires fine-tuning in terms of data as well as network (model) configuration. Furthermore, with 
the advent of big data, companies such as Google, Microsoft and Apple that have access to large volumes of data have 
consistently pushed the field of Deep Learning and have applied it to well-known systems such as Siri  for Apple and 
Google Translate for Google. Deep Learning is not a new concept LeCun et al. (2015) it has gained popularity in 
recent years due to advancement in technology. Processing units such as GPU have in the past years become cheaper, 
coupled with the significant increase in processing power of these chips has paved the way for more research in Deep 
Learning technologies Coates et al. (2013). Deep Learning Models are a set of techniques based on neural networks 
that exploit current technology to create network configurations built using a large number of layers as well as trained 
upon big data. This network design choice leads to the deep learning model’s ability to exploit this architecture for 
use in unsupervised learning and pattern classification. Thus, significantly increasing the accuracy output of the 
models compared to their more shallow implementations Schmidhuber (2015). In the next section, a number of 
Convolutional Neural Networks (CNN) architectures are explored. The networks include, the You Only Look Once 
(YOLO), RetinaNet single stage detector as well as the Region Based Convolutional Neural Networks (RCNN). 
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2.1. Convolutional Neural Networks for Object Detection 
 

CNN is a type of feedforward neural network model. Variations of this network have been successfully applied to 
several different computer vision problems. CNN’s use the concept of convolution in order to create an architecture 
using several layers of convolution and nonlinear activation functions Krizhevsky et al. (2012) Karpathy et al. (2014). 
Yann LeCun pioneered one of the earliest convolutional networks in 1990 LeCun et al. (1990) . The resulting archi- 
tecture called LeNet was used for character recognition for zip codes and numerical digits. What makes convolutional 
networks attractive is the fact that no features apart from the images are used when training the network. A property 
that makes CNN stand out with respect to other neural network model’s is its ability to process and find patterns in 
images LeCun et al. (1995). There are several different CNN architectures used for object detection. A distinction that 
is important to note is that there is a difference between network configuration, that is, the number and type of layers 
used and the network architecture when dealing with object/vehicle detection models. The latter is usually compro- 
mised of several CNN’s as well as other Machine Learning models to increase detection accuracy and speed. In the 
following sections, we explore a number of different state-of-the-art models used in object detection. 

 
2.2. You Only Look Once 

 
Most object detection models divide images into regions of interests (ROI) or segments. A detection algorithm is 

then applied to these ROI/segments in order to classify any object or part of an object. The YOLO) model, on the 
other hand, applies a single neural network to a whole image Redmon et al. (2016). It is then the job of the network 
itself to divide the image into classified segments and ROI. Another step is then applied by the model to sum the ROI 
with the same label to finally output the detected object label and location in the image, as seen in Figure 1. This 
significant change in procedure allows the network to detect and classify images at extremely high speeds allowing 
for real-time image detection Redmon and Farhadi (2017). The only problem, with this network, is that it does not 
handle the detection of tiny objects well because the network attempts to output detection results at one go. The latest 
version of YOLO, on the other hand, manages to more accurately detect smaller objects due to several classification 
steps introduced in the network ?. The most salient feature of version three (v3.0) is that it makes detections at three 
different scales. The only downside to this is a slight reduction in processing speed; in fact, it is about 15 fps slower 
then YOLOv2.0. 

 

Fig. 1. A representation of how YOLO applies prediction on a single network and how final classification is realised from the amalgamation of the 
various detected segments. 

 
2.3. RetinaNet 

 
The RetinaNet model implements a similar algorithm to the YOLO detection model. In both cases, the models 

apply a neural network on a single image. These type of detection networks referred to as single stage detection 
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models tend to fail with respect to two-stage detectors in terms of detection accuracy. This failure is mostly due      to 
extreme class in balance encountered when training Lin et al. (2017b). Lin et al. manage to solve this issue by applying 
a focal loss. Focal loss is the reshaping of cross entropy loss such that it down-weights the loss assigned to well-
classified examples. The novel focal loss focuses on training on a sparse set of hard examples and prevents the vast 
number of easy negatives from overwhelming the detector during training. RetinaNet also manages to compare around 
100,000 different segments for one image in contrast to models such as YOLO that classifies between 98 to 2000 
segments depending on the version. As shown in Figure 2 this model uses ResNet for deep feature extraction as well 
as a Feature Pyramid Network (FPN) Lin et al. (2017a) on top of the ResNet to build a rich feature set that can discern 
between different image patterns and correctly classify multiple objects. 

 
 

Fig. 2. The RetinaNet network architecture uses a Feature Pyramid Network (FPN) backbone on top of a feedforward ResNet architecture Lin et al. 
(2017b) 

 

2.4. Region Based Convolutional Neural Network 
 

The final detection model architecture evaluated in this study is the RCNN model. Unlike YOLO and Retinanet, 
RCNN splits the detection process into two separate stages. The first stage evaluates an image in order to extract 
possible ROI. In the first version of the RCNN model Girshick et al. (2016), the number of extracted ROI amount to 
2000 regions. A CNN is then applied on each ROI as a feature extractor in combination with a Support Vector Machine 
(SVM) as the classification network, as shown in Figure 3. Additionally, the algorithm also outputs four different 
dimensions describing the presence of the detected object in the ROI. Thus, managing to localise the object better and 
find the border of the detected object. An essential feature for Autonomous Vehicle (AV) systems is the boundary that 
differentiates between incoming cars and traffic. The RCNN architecture has improved over the past four years with 
the latest version introducing two different processes to the original RCNN architecture Ren et al. (2015). The ROI 
extracted in the initial stage was done through a greedy search. Faster RCNN applies a pre-processing step that applies 
convolution to the whole image, followed by a network that is trained to find ROI. The last step substantially reduces 
computational time and improves upon the accuracy of the model Girshick (2015). 

 
 

 

Fig. 3. Process diagram showcasing the breakdown of an image into segments and final detection for an RCNN network Girshick et al. (2016) 
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3. Methodology 
 

3.1. Evaluation Methodology 
 

The evaluation was conducted by first building a simple pipeline to convert the video clips into separate frames. 
Each video frame was individually annotated with, the number of vehicles in the frame, position of vehicles, type   of 
vehicle (if available) a selection of consequent frames were selected upon two different criteria. The first criteria 
looked for difficulty based on occlusion (vehicles occluded each other); the second criteria were based upon difficulty 
due to weather or light conditions. The object detection models were then applied to the datasets, and the following 
metrics were measured: 

 
• Detection accuracy 
• Number of evaluated frames per second (FPS) 

Detection Accuracy is computed by using the mean average precision metric (mAP). This metric is calculated by 
first measuring the precision value, that is, the percentage value of correct predictions, which in object detection is the 
number of pixel values that are correctly detected. The second metric is the recall value. This value is a measure that 
calculates the effectiveness of the True Positive (TP) values. Intersection over union (IOU) is the final measure used. 
This value determines the number of overlap between the bounding box for the detected object and the ground truth. 
The final mAP value is calculated by measuring the precision and recall values at different IOU for each frame (image) 
?. FPS is the number of frames (images) displayed per second it is a value that determines how smooth an animation 
or video is. The higher the FPS, the smoother the animation but results in a more computationally expensive video or 
animation. The FPS value is an important metric as it determines the speed of the detection algorithm. Faster algorithms 
are more suited for real-time applications but, usually results in a loss in detection accuracy (mAP) as shown in the 
results section of this paper. In addition, all models are trained on Common Objects in Context (COCO) dataset Lin et 
al. (2014). The dataset is made up of 123,287 images and contains 886,284 instances of 81 different categories of 
objects. This dataset as it is a standard detection dataset used in several different evaluations He et al. (2016). This 
step also ensures uniformity across training. Although not a transport detection network in itself, the COCO dataset 
contains numerous examples of vehicles split into cars, trucks, buses, bikes and motorcycles, as shown in Figure 4. The 
architectures identified for testing include YOLOv3.0, Faster RCNN and RetinaNet. 

 

Fig. 4. a,c,b,d are a sample of vehicle detection images found in the COCO dataset. The coloured shapes mask the edge of the vehicles. This is used 
both for training as well as testing to measure the accuracy of the detection model. 

 
3.2. Setup 

 
The evaluation process undertaken in this study takes into consideration the speed of detection. Thus, it is also 

important to go through the setup of the machine used for evaluation: 
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• CPU: Intel Core i7-8750h CPU 2.20GHz 
• RAM: 32.0GB 
• GPU: GeForce GTX 1050 Ti 
• OS: 64-Bit OS Windows 10 

3.3. UA-DETRAC Dataset 
 

UA-DETRAC Wen et al. (2015) is a challenging real-world multi-object detection and multi-object tracking bench- 
mark. The dataset consists of 10 hours of video footage. The video is captured with a Canon EOS 550D camera at 24 
different locations at Beijing and Tianjin in China as seen in Figure 6. Each video is recorded at 25 frames per seconds 
(FPS), with a resolution of 960540 pixels. There are more than 140 thousand frames in the UA-DETRAC dataset and 
8250 vehicles that are manually annotated, leading to a total of 1.21 million labelled bounding boxes of objects. 

 
 

Fig. 5. Sample images taken from the UA-DETRAC dataset 
 
 

3.4. GFRT Dataset 
 

The GFRT (Gozo ferry road transport) dataset is a unique dataset based upon the IP camera capture feeds mined 
from the internet. The dataset is made up of over 20,000 frame images of 1 min clips taken from 5 different IP cameras 
across the same road network at different times during the day. This challenging dataset contains 640x320 pixel images 
under sometimes extreme light invariance conditions. The dataset has been physically annotated by the authors and 
will be released online later on during the progression of the current research. 

 
 

 

Fig. 6. Sample images taken from the GFRT dataset made up of traffic captured at different times during the day 
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4. Results 
 

Table 1 compares mean average precision (mAP) Yue et al. (2007) values and FPS obtained using three different 
models and applied to two different datasets. Although the detection accuracy is not impressive on its own, one must 
keep in mind that the dataset chosen for training is not fine-tuned on the dataset itself. Furthermore, we also found 
that given that the models were trained on the COCO dataset which includes high-resolution images, the mAP for the 
GRFT was impacted as the quality of the images supplied was not as good. This meant that in some cases, object 
where incorrectly misclassified due to the resolution difference. As further discussed in the following section, several 
ITS apply some form of detection on video feeds. This means, that although a vehicle might not be detected in 1 frame, 
it can still be detected in other frames as it changes angle or increases in size, thus, increasing overall robustness of 
the system. 

 
Table 1. Vehicle detection accuracy results  

Object Detection Model Dataset mAP FPS 

YOLOv3.0-608 UA-DETRAC 56.5 12 
YOLOv3.0-608 GFRT 54.3 8 22 
YOLOv3.0-tiny UA-DETRAC 25.8 120 
YOLOv3.0-tiny GFRT 18.9 144 
Retinanet-101-800 UA-DETRAC 61.2 0.2 
Retinanet-101-800 GFRT 59.5 1 
RCNN UA-DETRAC 58.4 2 
RCNN GFRT 57.8 3.3 

 
 

5. Discussion 
 

When developing ITS, different use cases require fine tuning in various aspects of the system. ITS use vehicle 
detection in order to process camera feeds that extract traffic information from IP camera feeds. These systems use 
techniques that calculate traffic flow, vehicle speeds as well as tracking of dangerous drivers. If the ITS aims to operate 
control structures such as traffic lights that change value depending on traffic flow, then, based upon the results and 
study conducted on this research YOLOv3.0 gives the best results. This is because such a system would require an IP 
camera footage to be processed in real time but remain relatively accurate. On the other hand, if traffic flow is needed 
for training other machine learning models, the mAP is more important, and Retinanet would, in that case, be the best 
option. YOLOv3.0 obtained the highest FPS, but it also had the lowest mAP. In the case of areas with heavy traffic, 
mAP might not be that important, especially if the tracking process results in a workable system. This trade-off is due 
to the accuracy of tracking algorithms if a vehicle is at least detected once (across different frames) than that vehicle 
can be tracked and counted in traffic monitoring ITS system. RCNN provided the most balanced result with high 
accuracy to frame-rate ratio. Finally, if the setup is upgraded to the latest hardware FPS as well as accuracy would 
increase. For example, in the latest benchmarks, YOLOv3.0 achieved an impressive FPS of 220 Redmon and Farhadi 
(2018). The results obtained can be used to drive the ITS implementation choice for different purposes. For example, 
smart parking systems do not require the detection to occur in real-time as availability of parking spots requires 
accuracy rather than speed. On the other hand, traffic monitoring systems need more real-time detection to fine tune 
traffic control structures such as traffic light the micro changes in traffic. 

 
6. Conclusion 

 
In this paper, a methodology for evaluating vehicle detection models for ITS is presented. The models were applied 

to two different datasets. An initial dataset used for vehicle detection as well as a new dataset used for the first time in 
this study. Finally, the results show that YOLOv3.0 and Faster RCNN are the most balanced models when comparing 
mAP and FPS. Further research needs to be done to measure the effect that the detection accuracy has on vehicle 
tracking models as well as possible pre-processing techniques that can be used to improve image quality when working 
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with low-quality IP camera feeds. Future work also includes how detection accuracy changes due to IP camera feed 
quality and resolution as well as the infrastructural costs in terms of processing and data rates needed for ITS systems 
using IP camera for data gathering. 

————– 
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