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Abstract: Traffic conditions in signalized junctions are highly dynamic and may be subject
to abrupt changes due to unanticipated traffic incidents or network obstructions. These
abrupt changing conditions are represented as different regimes or modes where each mode is
represented by its own distinct model, forming a set of multiple models. At any instance in time,
only one model of the set has the potential of representing the physical system dynamics at that
time. However the dynamics may arbitrarily jump over to a different regime when an abnormal
condition arises. Furthermore, it might be impossible to identify these models a priori. Hence,
a multiple model approach is developed to self-detect these abrupt changes, identify which
member of the set best represents the actual system and automatically self-configure and add
a new model to the set when a previously unmodelled regime arises. This approach makes use
of a real-time joint (dual) estimation algorithm to estimate traffic state variables such as queue
lengths and traffic flow, as well as model parameters such as turning ratios, saturation flow
values and noise covariance resulting from unmodelled dynamics and measurement errors. The
proposed algorithm is validated through simulations on signalized 3-arm and 4-arm junctions
with typical day-to-day traffic conditions including several network irregularities occuring at
different times of the day such as arm closures as a result of traffic incidents. This work is aimed
to form part of adaptive control loops for traffic light systems that are able to autonomously
adjust to changing traffic conditions so as to ensure efficient vehicle flows.

Keywords: intelligent traffic systems, multiple model estimation, jump dynamics, online
estimation, self-detection, self-configuration

1. INTRODUCTION

Traffic conditions of signalized junctions may be sub-
ject to several potential dynamical regimes that change
over abruptly in time due to traffic incidents or unan-
ticipated network obstructions. Under such conditions a
model structure and its parameters are not constant or
varying slowly, but switch value abruptly, a phenomenon
known as jump dynamics (Fabri and Kadirkamanathan,
2001). Hence the dynamics of the traffic system are not
represented by one model, but by a set of different models
each corresponding to a given condition. Furthermore, it
might be impossible to identify these models a priori.
Consequently, a system that is able to detect in real-
time any switching among the multiple regimes as well
as learning and modelling the dynamics of each of these
regimes, will be of great benefit. This is called multiple
model estimation (Soken and Sakai, 2016) and it lends
itself very well to traffic junction scenarios.

Several research efforts have been directed to multiple
model approaches in different applications (Baldi et al.,
2011; Hespanha et al., 2003). Mode switching detection
has been tackled using two predominant techniques: de-
terministic approaches (Baldi et al., 2011) or stochastic
(Hespanha et al., 2003). The essence of both techniques

is based on choosing the model which yields some best
defined estimation accuracy out of all the models available
in a set of candidate models at any point in time.

Multiple model adaptive estimation has been previously
applied for traffic incident detections for freeway condi-
tions. For example, a multiple model extended Kalman
filter was used by Willsky et al. (1980), where known
changing conditions and known models parameters are
assumed. A limited number of known changing conditions
are assumed, hence resulting in a finite set of models.
An extended Kalman filter is proposed for each model
to sequentially estimate the traffic states. The residual
data is produced by comparing measured data with the
estimated states, and probabilities are assigned to each
model based on how closely the residual characteristics
match their respective anticipated values.

Similarly, Wang and Work (2014) applied an interactive
multiple model ensemble Kalman filter, with a known
number of changing conditions and known models. An
ensemble Kalman filter is proposed to solve the sequential
state estimation problem and to accommodate the switch-
ing dynamics and nonlinearity of the traffic incident model.
Unlike the work of Willsky et al. (1980), the Interactive
Multiple Model algorithm (IMM) makes use of Markov
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chains to model the evolution of the transitions from
one model to another. Furthermore, Wang et al. (2016b)
applied multiple model particle filtering for the traffic state
estimation to improve the accuracy of the estimate when
data is limited. Wang et al. (2016a) extends previous works
by proposing an Efficient Multiple Model Particle Filter
(EMMPF) that uses a single sample in each particle filter
to infer the correct model and then all model particles
are evolved forward in time using the most likely model
determined in the selection step.

All the above works on traffic estimation and incident
detection which made use of the extended Kalman filter
and particle filter have been applied and performed well in
freeway traffic conditions. In this work, a novel stochastic
multiple model adaptive estimation algorithm is developed
and applied for urban signalized traffic junctions, where,
similar to previously cited literature, the algorithm needs
to learn the traffic regimes and determine which mode is
active at any given time. However, whereas the reviewed
literature assumed that the monitoring data contained
a limited number of previously modelled regimes, this
work will not be limited to previously known modes.
As proposed by Fabri and Kadirkamanathan (2001) for
general systems, the algorithm is adapted for urban traffic
junctions and is able to learn the various modes in real-
time and hence automatically configure and grow its
model set as new modes are detected. Furthermore, an
online joint state and parameter estimation technique is
applied to estimate the traffic states, apart from the model
parameters and the noise parameters that are not assumed
known a priori, and will be estimated online. This avoids
the need to calibrate such noise parameters based on the
type of sensors present in the junction and the noise they
may produce.

The proposed multiple model adaptive estimation algo-
rithm makes use of an online dual estimation algorithm
to jointly estimate in real-time traffic states such as queue
lengths, occupancies and flows, as well as the model pa-
rameters such as turning ratios, saturation flows and noise
parameters. The approach uses an EM algorithm, modified
for real-time estimation, with a Kalman filter implement-
ing the expectation step and a multivariate gradient-based
approach for the maximisation step, as proposed by Zam-
mit et al. (2019). The algorithm computes residual data by
comparing the measured information with the estimated
states and assigns probabilities to each model in the set.
A new mode is learnt if the residual characteristics do not
match any of the previously learnt modes in the set, as
will be discussed in the next section.

2. MULTIPLE MODEL ESTIMATION

Suppose thatH distinct modes of operation are postulated
initially, each representing one specific regime. Follow-
ing the generic notation of Fabri and Kadirkamanathan
(2001), only one particular mode from these H could
be active at any given time t. Denote this as mode f ,
where f ∈ [1, .., H]. The dynamics of each mode f can
be represented by model Mf in discrete-time stochastic
state-space form, (where in this case, time t denotes the
traffic light cycle index) as the one presented by Zammit
et al. (2019), with state space matrices Af , Bf , Cf and

Df , process and sensor noise covariances Qf and Rf , and
model parametersΘf which could either be known a priori
or else estimated online as presented by Zammit et al.
(2019). Thus for model Mf ,

xf
t+1 = Afxf

t +Bfzt +wt

yf
t = Cfxf

t +Dfzt + vt

(1)

where zt is the control input, representing the proportion
of green traffic signal in a cycle t, wt and vt are zero mean,
Gaussian distributed process and measurement noise. The
state variables in Mf comprise the queue length in arm i,
denoted as ζi(t), the inflow in arm i, denoted as γIi(t) and
the occupancy ϕi(t). The vector of model parameters Θf

is given by Θf=[α12, α13, ..., α1i, α21, α23, ..., α2i, ..., αi1,
αi2, αi3, ..., αi(i−1), κ1, κ2, κ3, ..., κi, β1, β2, β3, ..., βi,
S1, S2, S3, ..., Si, ] as presented by Zammit et al. (2019),
where αij represents the ratio of cars turning from arm i
to arm j, κi and βi characterize ϕi(t) and Si represents
the saturation value for arm i.

Let Ef (t) denote the event that the system dynam-
ics at time t correspond to model Mf with parame-
ters Θf . Also let Sj(t) represent one specific sequence
of such events from start up to time t (e.g. S1(t) =
{E1(1), E2(2), E2(3), ..., E1(t)} denotes an example of one
possible sequence). Since every element of this sequence
has H possibilities, there exist Ht different possible se-
quences at time t, whereby only one of these Ht has
actually taken place.

The question that follows is how to identify which of the
modes is active at time t. This can be addressed by finding
the probability that a model in the set {M1,M2, ...,MH}
is best representing the current observations. A Kalman fil-
ter is matched to each mode and a probabilistic framework
is formulated to identify the posterior probability of the
event that the actual model sequence conditioned on the
observation set,Yt, is Sf . This approach is faced with eval-
uation complications and high computation and storage
requirements (Fabri and Kadirkamanathan, 2001), as the
number of possible sequences to be considered increases
exponentially with time, hence becoming impractical to
implement. Three main possible sub-optimal solutions
have been proposed to mitigate such complications: the
Generalised Pseudo-Bayes (GPB) method, the Interacting
Multiple Model (IMM) method and the lower bounding
approach. The GPB method (Ackerson and Fu, 1970)
and the IMM approach (Blom and Bar-Shalom, 1988)
introduce the concept of pruning to limit the increase in
the number of Kalman filters and merging for the state
estimation information to be propagated to the filters.
These approaches offer a reliable suboptimal solution to
the problem of switching dynamics but computational
complexity could still be rather high.

To reduce the computational demand even further, the
lower bounding approach can be considered. To explain
this approach, the problem of identifying the most proba-
ble model from a given set of possible modes in a non-jump
dynamics scenario is first considered. Bayes’ rule is applied
to infer the posterior probability of model Mf conditioned
on Yt:

Pr(Mf |Yt) =
p(yt|Mf ,Yt−1)Pr(Mf |Yt−1)∑H
j=1 p(yt|M j ,Yt−1)Pr(M j |Yt−1)

(2)
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where Pr() denotes probability and p() denotes a proba-
bility distribution.

Since the models are linear with Gaussian noise, a Kalman
filter matched to each mode can be used to calculate the
mean square estimate of state xt according to each model

Mf , denoted as x̂f
t and the corresponding covariance of

the estimation error, Pf
t|t−1. The likelihood function can

then be evaluated by the normal distribution function:

p(yt|Mf ,Yt−1) = − 1

(2π)
1
2 |Zf

t |
1
2

exp−
1
2 (yt−ŷf

t )
′(Zf

t )
−1(yt−ŷf

t )

(3)

where the corresponding variance Zf
t attributed to model

Mf is estimated as:

Zf
t = CfPf

t|t−1C
f ′

+Rf (4)

ŷf
t denotes the estimate of the observation yt, where:

ŷf
t = Cf x̂f

t +Dfzt (5)

Thus (yt − ŷf
t ) in Equation (3) represents the difference

between the observation yt and its estimate ŷf
t , referred

to as the residual.

In a jump dynamics scenario, where switching between
different modes could occur at any time t, Equation (2)
is used together with a small lower bound placed on the
computed candidate probabilities, to prevent a mode from
being locked-out (Pogoda and Maybeck, 1989) because its
associated probability has gone to zero. Hence the lower
bounding approach requires onlyH Kalman filters at every
time instant, one for each possible mode, as opposed to
GBP which requires a maximum of Hk Kalman filters
pruned down to H after d time steps.

The lower bounding approach that was discussed in this
section will now be applied to signalized traffic junctions.
As noted previously, the model development for the 3-arm
and 4-arm junctions and the online joint estimation algo-
rithm for the model states and parameters, all discussed
by Zammit et al. (2019) will be used.

3. MULTIPLE MODEL APPROACH FOR
SIGNALIZED JUNCTIONS

Suppose that at some cycle t, a set of H candidate models
for different regimes of operation are known, each corre-
sponding to a mode that already occured. A self-organized
model allocation approach (Fabri and Kadirkamanathan,
2001) is applied, whereby any new modes are learnt in real-
time, hence growing the model set if a new mode occurs.
Just after the Hth model has been allocated by the mode
estimation algorithm, as a result of a new mode being
detected active, a freshly initialized model is introduced
by adding a randomly initialized parameter vector for
this model. The probability density function of the freshly
initialized model is initially made wide because it is not yet
tuned to any mode. This narrows as the variance decreases
when it starts learning a new mode. This procedure of
adding a fresh local model once the previous ones have
been allocated is repeated continuously, hence growing the
set of candidate models in the multiple model set. Thus
there is always one spare model ready to accept a new
regime that has not appeared before.

Table 1. Estimation Algorithm

Initialise Θ̂f , Q̂f and R̂f estimates for H local models.
Step 1:
Measure yt.
E-step

Run Kalman-filter recursions for each local candidate

model f to compute x̂f
t , where f = 1...H.

M-step
For each candidate model f , (f = 1...H), minimise

-2E{G(Θf ,Θ̂f
t )} over Θf for dynamic traffic conditions

as presented by Zammit et al. (2019)

Minimise -2E{G(Θf ,Θ̂f
t )} over Q̂f and similarly for R̂f

as presented by Zammit et al. (2019).
Calculate the posterior probability distribution
for such candidate model f given in Equation (2).
Just after the Hth model has been selected, as a result
of a new mode being detected active, freshly initialize a

new model with randomly selected Θ̂f , Q̂f and R̂f , and
Let H → H + 1.

Calculate x̂t using Equation (6) or by x̂t
max:Pr(Mj |Yt)

repre-

sentation.
For the current active model, that is the model which corre-
sponds to the max : Pr(Mf |Yt) update Âf , B̂f , Ĉf , D̂f ,

with Θ̂f
t to reflect the traffic conditions per arm.

Increment t and repeat from Step 1.

Individual state estimates x̂f
t|t are obtained by running

a Kalman filter for each candidate model. The lower
bounding approach together with Bayes’ rule Equation
(2) are applied to estimate which mode is active at a
given time instant. The active mode is the one that gives
the highest posterior probability in Equation (2) from
all the other models. The resultant state estimate, x̂t, is
either calculated as a combination of the individual state
estimates from the set of Kalman filters given by:

x̂t =

H∑
f=1

x̂f
t Pr(Mf |Yt) (6)

or else as the state estimate from the Kalman filter
corresponding to the mode exhibiting maximum posterior
probability in Equation (2), denoted by x̂t

max:Pr(Mf |Yt)

The model parameters Θf for the active mode and the
noise covariances matrices Q̂ and R̂ are also updated
using the multivariate stochastic approximation method
presented by Zammit et al. (2019). Table 1 shows the
complete model allocation, growth and state/parameter
estimation algorithm that is proposed in this work.

Several scenarios that represent different operating regimes
(modes) were considered to be tested by simulation of
signalized traffic junctions, with normal day-to-day traf-
fic conditions and arm closures representing the different
modes, as presented in the next section.

4. SIMULATION EXPERIMENTS

The proposed algorithm for the multiple model estimation
approach were tested and validated by simulating in Aim-
sun (Transport Simulation Systems, 2019), both signalized
3-arm and 4-arm junctions, with geometry represented in
Figure 1 and 2 respectively and with model parameters
presented in Tables 2 and 3. The saturation parameters
of the junction were determined from Aimsun, as these
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correspond to the maximum number of vehicles flowing
through the intersection when subject to a high inflow of
vehicles. For the 4-arm junction, the saturation parameters
were found to be equal to S1= 120 uv/cycle, S2= 127
uv/cycle, S3= 80 uv/cycle and S4= 120 uv/cycle, while
for the 3-arm junction these were found to be equal to
S1= 118 uv/cycle, S2= 120 uv/cycle and S3= 80 uv/cycle.

Fig. 1. 3-arm signalized junction

Fig. 2. 4-arm signalized junction

Table 2. Parameters for the 3-arm junction

Model
parameters

α12 α13 α21 α23 α31 α32 Cycle
time

Actual
mean

0.504 0.496 0.845 0.155 0.805 0.195 104
sec-
onds

Table 3. Parameters for the 4-arm junction

Model
parameter

α12 α13 α14 α21 α23 α24 α31

Value 0.5 0.2 0.3 0.2 0.6 0.2 0.2

Model
Parameter

α32 α34 α41 α42 α43 Cycle time

Value 0.3 0.5 0.2 0.3 0.5 110 seconds

Aimsun micro traffic simulation software was used to gen-
erate traffic data at one second intervals for a typical
working day. This data which includes the inflow in arm
i, γIi , the occupancy ϕi and the outflow from arm i, γOi ,
for i = 1, 2, 3, with each having N = 830 cycles at 104 sec-
onds per cycle (equivalent to 24 hours), was used to form
the sensor measurement vector y input to the proposed

algorithm for the 3-arm junction. Similarly for the 4-arm
junction. Figure 3 shows the flow of vehicles away from the

Fig. 3. Flow away from junction

3-arm junction for one arm for a typical working day from
6:00 am of one day to 6:00 am of the next day. The morning
peak period is between the 37th and 68th cycle (between
7.00am till 8.00am) whilst the evening peak period is
between the 405th and 427th cycle (between 5.45pm till
6.20pm) for the first arm. Similarly for the other arms and
for the 4-arm junction. Furthermore, the dotted windows
represented in Figure 3, show the occurence and duration
of an abrupt jump change due to closures in arm 1 and arm
2. Arm 1 closure is shown in Figure 4, marked with a dark
red cross, where all outflow lanes in arm 1 are blocked.
Similarly for arm 2 closure.

Arm 1 closure occurs between the 43rd and 63rd cycle
(between 7.15am till 7.50am) whilst arm 2 closure occurs
between the 416th and 433rd cycle (between 6.00pm till
6.30pm) during the morning and evening peak periods
respectively. Similar arm closure scenarios were simulated
on the 4-arm junction, where arm 1 closure occurs between
the 43rd and 63rd cycle (between 7.18am till 7.55am)
whilst arm 2 closure occurs between the 416th and 433rd

cycle (between 6.42pm till 7.13pm).

A Root Mean Square Error (RMSE) measure is defined to
determine the accuracy of the estimation results given by

J ≜

√∑
N

(p(t)−p̂(t))2

N , where p is the actual value and p̂ the
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Fig. 4. 3-arm signalized junction with arm 1 closure

estimated value. The RMSE is expressed as a percentage

of
√

1
N

∑
N

p2(t) to yield a normalized measurement.

5. RESULTS

Tests were carried out where the number of modes H is
unknown and hence modes and their models are learnt as
they occur in real-time, while estimating the time-variant
system parameters Θ and the process and measurement
noise covariances Q and R as presented by Zammit et al.
(2019). Only one local model is assumed known initially
and this denotes ‘normal’ traffic conditions without arm
closures. Thus initially H = 2, one model for the normal
conditions and a freshly initialised “spare” second model
prepared to capture a new mode when it arises. Figure 5
shows the estimated switching conditions for this test for
the 3-arm junction with the actual switching conditions
denoting arm closures for such junctions as described in
Section 4.

Fig. 5. Estimated switching conditions for the 3-arm
junction

As shown in Figure 5 spare models are introduced at
the 44th cycle (at 7.16am) and 417th cycles (at 6.01pm)

respectively when closures of the arms are detected for
the 3-arm junction. Before the 44th cycle, there is no trace
in the figure for the probability for ‘blockage - arm 1’,
because this model is introduced at 7.16am. Similarly,
before the 417th cycle, there is no trace for the probability
for ‘blockage - arm 2’, because this model is introduced at
6.01pm. The system switches back to normal conditions
at the 65th cycle (at 7.53am) and at the 435th cycle (at
6.32pm) respectively. This means that the mode detection
algorithm required only a one cycle delay to detect arm
1 and arm 2 closures, and another cycle delay to switch
back to normal conditions following the respective arm
closures. Similar performance was observed when testing
the algorithm on a 4-arm junction. This very minor delay
is attributed to the Kalman filter state estimations that
depend on the estimated states from the previous cycle
and the current measurements.

Table 4 compares the % RMSE of every individual state
variable estimate obtained when applying Equation (6)
with those obtained when applying x̂t

max:Pr(Mf |Yt)
respec-

tively for the 3-arm junction. For comparison reasons, one
figure of merit was computed for both cases, consisting of
the mean % RMSE. This was computed by calculating the
mean value of the % RMSE over all 9 state variables. A
mean % RMSE of 0.687 was obtained for the first case
and 0.686 for the second case. Hence from the estimated
results, there is no significant difference observed between
the maximum aposteriori estimates and the estimates re-
sulting from Equation (2) based upon the combination of
Kalman filters. This occurs because the probabilities of
the inactive models dropped to 0.01%, hence resulting in
no significant differences between the state estimations of
the two cases. Similar results were obtained for the 4-arm
junction.

Table 4. % RMSE of estimates for the max-
imum aposteriori or for the combination of

Kalman filters

Estimates % RMSE on the state
estimates from maxi-
mum aposteriori

% RMSE on the
state estimates from
the combination of
Kalman filters

ζ̂1 1.564 1.565

ζ̂2 0.947 0.945

ζ̂3 1.171 1.171
γ̂I1 0.510 0.510
γ̂I2 0.265 0.266
γ̂I3 0.310 0.311

ϕ̂1 0.510 0.509

ϕ̂2 0.443 0.443

ϕ̂3 0.459 0.458

Average 0.687 0.686

Figure 6 shows the estimation results for turning ratio
α12, one of the parameters selected at random, to show
the performance of the estimation. The estimated values
compare well with the true values. In fact, the estimation
of α12 resulted in a mean of 0.483, for the last 10 cycles
during normal traffic conditions and 0.481 for the last 10
cycles during arm 1 closure, where the expected value for
α12 for both conditions was 0.504. During arm 2 closure
the estimated value was found to be equal to 0.014, when
the expected value was 0. Similarly for the other model
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Fig. 6. Estimated turning ratios

parameters. These results are superior to the estimation
results obtained when executing the same online state
and parameter estimation algorithm but without multiple
model estimation, using the same initial and simulation
conditions as before. For example, the estimation of α12

resulted in a mean of 0.481, for the last 10 cycles during
normal traffic conditions and a mean of 0.481 for the last
10 cycles during arm 1 closure, similar to the previous
case, where the expected value for α12 for both conditions
was 0.504. However, during arm 2 closure the estimated
value was found to be equal to 0.473, when the expected
value was 0. Similar performance was exhibited for the
other model parameters. Hence, these results elucidate the
advantages of using a multiple model estimation approach
as proposed in this work for junctions subject to jump
dynamic scenarios.

6. CONCLUSION

This work proposed a stochastic multiple model joint es-
timation approach for representing jump dynamics within
an urban signalized traffic junction. The proposed algo-
rithm learns the mode dynamics in real-time and deter-
mines which mode is active at a given time. An online dual
estimation algorithm is adopted as presented by Zammit
et al. (2019) to jointly estimate traffic states in real-time,
as well as the model and noise covariance parameters. The
algorithm is also able to learn an unlimited number of
potential dynamical regimes not anticipated a priori and
will automatically configure and grow its model set if new
modes appear in the scene.

The developed algorithm was tested by simulation experi-
ments of 3-arm and 4-arm signalized traffic junctions, with
several arm closures. The results highlight the accuracy in
estimating and detecting the switching conditions, with
a very minor delay of just one cycle. The results also
highlight the accuracy of the estimates when executing the
online estimation algorithm with multiple model estima-
tion as proposed in this paper compared to the the online

estimation algorithm, that is not based on a multiple
model estimation formulation.

Further work is directed to integrate the proposed stochas-
tic multiple model joint estimation approach with adaptive
control methods that are able to autonomously adjust to
jump changing traffic conditions so as to ensure efficient
vehicle flows. This work will be useful in detecting abnor-
mal traffic conditions, such as arm closures, and will select
controllers that are tuned to such structural abnormalities.
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