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Abstract

Inference is a central aspect of Natural Language Processing (NLP); the Natural
Language Inference task (NLI), also called Recognizing Textual Entailment (RTE), is
the task of determining whether a hypothesis text fragment corroborates (positvely
entails), contradicts (negatively entails) or bears no relation to (no entailment) a
premise text fragment. Prior work on this task has nearly exclusively focused on
the monolingual English inference; in this study, we aim to address cross-lingual
NLI. We study the area of cross-lingual natural language inference by addressing
two different formulations of the task; cross-lingual transfer, where we explore how
an inference model trained for English can be fine-tuned to perform inference in an-
other language; and purely cross-lingual inference, where we train a model to detect
inference for sentence pairs in different languages. Within our study, we experiment
with two neural network architectures to address these tasks, a bidirectional LSTM
and a decomposable attention model, employing aligned word embeddings to rep-
resent language. Results show that the bidirectional LSTM neural network performs
best across all tasks. Moreover, we also show that employing machine translation to
deal with cross-lingual NLI provides the best results. Although the use of word em-
beddings to encode sentences does not perform as well sentence embeddings, our
proposed architecture using word embeddings requires significantly less computa-
tional resources due to the lower dimensionality of the embeddings. Our approach
presents a results with less than a 10% loss of accuracy, and as little as a 5% loss
in the best case, while using a fraction of the computational resources required by
solutions employing sentence embeddings.
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Introduction

Language is diverse. The five most spoken languages are used by around 25% of the
world’s population, whilst 75% share approximately an additional 6,500 languages. Fur-
thermore, over half of the world’s population is bilingual (Simons and Fennig, 2017).
This diversity is not reflected in the field of natural language processing; a digital di-
vide exists between languages (Bender, 2019). Only a few high-resource languages pos-
sess collections of digitized text and speech which are annotated sufficiently to be used
for language processing tasks. The list includes English, Mandarin, Arabic and French;
to a lesser extent, German, Portuguese, Spanish and Finnish also qualify. The remain-
ing low-resource languages have far fewer resources, with several hundreds of languages
having close to no available resources (Bender, 2019).

As a result, research in the field of natural language processing (NLP) is predomi-
nantly monolingual, and carried out in English by default. In fact, a large proportion of
English-language work neglects to specify the language for which its approach caters,
with work on other languages being considered niche, and, therefore, secondary to their
monolingual English counterparts (Bender, 2019, 2011).

This status quo is undesirable for several reasons. Firstly, with NLP progression
only available for a few languages, the majority of the world’s population risks falling
behind in terms of technological progress (Rehm, 2013) as work within the field of mul-
tilingual NLP is key to the fostering of technological inclusion. More importantly, the
lack of consideration for how approaches to NLP may be applied to different languages
is not amenable to a true natural language understanding system. Several approaches
perform poorly when ported to different languages, calling their validity into question
with respect to how they contribute to achieving computational natural language un-
derstanding (Ruder, 2020). Finally, it is expensive to develop a new monolingual NLP
for each language or task (Ruder et al., 2019).
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While potentially overcoming these disadvantages, computational NLP on a large,
multilingual scale requires a different approach, one which is better equipped to reflect
the ultimate goal of a maintainable and inclusive natural language understanding. For
these reasons, our goal is to explore the area of cross-lingual natural language process-
ing, particularly with respect to building a ’generalized’ natural language understand-
ing system.

In this chapter, we introduce the task of natural language inference as the corner-
stone for language understanding in order to explore the limits of NLP within a cross-
lingual context. We propose a set of aims to assess language understanding across lan-
guages, as well applying current approaches to address the task.

1.1 | Motivation
Searle (1990) illustrates computational linguistic understanding by introducing the "Chi-
nese Room" experiment. Searle imagines himself in a room, where he is prompted by
Chinese characters which are passed under his door. Searle is able to respond to the
prompts in an intelligible way, by following a set of instructions and a database of Chi-
nese symbols, even though he doesn’t know any Chinese and is not understanding ei-
ther the prompt or his own reply. The system described by Searle allows questions to be
answered without any comprehension of the Chinese words involved, disputing that
form alone is not sufficient to achieve true understanding. In the experiment, Searle
satisfies the Turing Test, but the manner in which he satisfies it raises the question of
whether the mastery of form alone is sufficient to constitute understanding. The task
of inferring non-symbolic representation, semantic meaning, from symbolic form is de-
scribed as the symbol grounding problem (Harnad, 1990).

A key property of symbol grounding is the ability to identify referents between
words, in order to infer meaning (Fodor, 1975) - given a set of linguistic representations,
one observes the semantic interpretation of the representations by inferring meaning
through their relationship. Computational formulations of the inference task broadly
attempt to determine whether two text representations are likely to be inferred from
each other. Cooper et al. (1996) describe natural language inference as "not only a cen-
tral manifestation of semantic competence but is in fact centrally constitutive of it."

The inference task is initially formalized in the Recognizing Textual Entailment Chal-
lenge (RTE) (Bentivogli et al., 2011; Dagan et al., 2005; Giampiccolo et al., 2007), where
a model is tasked with determining whether two text fragments, a premise and a hypoth-
esis, entail each other. In more recent literature, the same task has been referred to as

2
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Natural Language Inference (NLI) (Conneau et al., 2018; Hu et al., 2020; Wang et al.,
2018).

The task has predominantly taken the form of a three-way classification problem,
with models classifying whether a premise (P) positively entails (substantiates), nega-
tively entails (contradicts) or has no relation to a hypothesis (H):

RTE ∈ {(P ` H), (P `!H), (P 0 H)} (1.1)

For example, the premise "The boy jumped over the wall in the garden." would positively
entail a hypothesis sentence "There is a wall in the garden." Conversely, the same premise
would negatively entail "The boy is inside the living room" and bear no relation to (neutral)
the hypothesis "The boy is wearing a green shirt."

In section 2.1 we provide a more nuanced selection of examples, explaining how the
inference task relates to determinacy of entities, events and time.

The SNLI (Stanford Natural Language Inference) (Bowman et al., 2015) and MultiNLI
(Multi-Genre Natural Language Inference) (Williams et al., 2018) benchmarks provide
corpora for modeling inference. However, due to its inherently nuanced nature, devel-
oping corpora which allow the study of inference in all its complexity remains an open
objective (Bender and Koller, 2020; Glockner et al., 2018). This fact alone is testament to
the complexity of the NLI task, and its relationship to language understanding.

Recent work within the area of machine learning have seen several advances re-
lated to architectures used to approach natural language processing, particularly in the
area of deep learning (Liu et al., 2017). The use of deep neural networks, particularly
Recurrent Neural Networks, has replaced previous state of the art models built using
hand-crafted features (Gers et al., 1999; Hochreiter and Schmidhuber, 1997; Rocktäschel
et al., 2015). Other, more recent approaches employ attention mechanisms to capture
contextual relationships that exist between different words or phrases (Bahdanau et al.,
2015). The most recent advances suggest approaches which exclusively employ atten-
tion, replacing traditional neural network architectures altogether (Bender and Koller,
2020; Vaswani et al., 2017).

These developments have triggered advances in the way word representations are
learnt from corpora, adopting predictive approaches as opposed to frequency-based
representations (Baroni et al., 2014; Mikolov et al., 2013a). Predictive language models
and word embeddings provide another area for research in cross-lingual NLP through
alignment of word embedding representations to provide translation for different lan-
guages (Ruder et al., 2019).

3
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Within the cross-lingual context, the inference task can be approached with differ-
ent aims in mind. For instance, one can seek to improve NLI performance within low-
resource languages by leveraging models learned on high-resource languages. Inspired by
recent advancements in the field of transfer learning (Aytar and Zisserman, 2011; Pan
and Yang, 2010; Thrun and Pratt, 1998; Torrey and Shavlik, 2009), researchers have pro-
posed a number of benchmarks for transferring inference learned on English to other
languages (Conneau et al., 2018). This line of work follows other transfer learning ap-
proaches dealing with reusing models for different tasks (Hu et al., 2020; Wang et al.,
2018). Another approach is to re-frame the inference task within a cross-lingual context,
where the premise and the hypothesis are in different languages (Mehdad et al., 2010). For
example, the inference relation is classified over the text fragments "The boy jumped over
the wall in the garden", in English, and "Hay una pared en el jardín" in Spanish. The goal
of such tasks is to build truly cross-lingual inference capabilities.

Beyond achieving the ultimate goal of massively multilingual natural language un-
derstanding, there exist more practical applications of addressing the inference task.
Such applications include question answering (Harabagiu and Hickl, 2006), information
retrieval (Clinchant et al., 2006), information extraction (Romano et al., 2006), document
summarization (Lloret et al., 2008) and content synchronization (Negri et al., 2013).

Within our work, we contribute research towards achieving massively multilingual
natural language understanding in a practical manner, in order to ensure technological
inclusion within NLP advances. As the field of NLP progresses, we must ensure that
applications improve across all languages.

1.2 | Aims and Objectives
As discussed above, the area of cross-lingual natural language processing is under-
explored, and in its early stages. The overarching aim of our study is to apply current
state-of-the-art approaches within a cross-lingual context, in order to examine different
possibilities within the field. Our secondary goal is to address the larger challenge of
cross-lingual understanding. We do this by selecting the language inference task as the
target task for our study. Thus, the main aim of this work is to explore two key ideas:

� Investigate the use of transfer learning to improve the inference task across dif-
ferent languages. This can be done by taking a model trained for NLI within a
high-resource language (English), we aim to improve inference within other lan-
guages.

4
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� Investigate the application of deep learning approaches for the cross-lingual NLI
formulation where the premise and the hypothesis are in different languages.

Our aims will be accomplished by developing a number of different components
with the following objectives:

1. Build a number of word embedding models which cater for our aims, particularly
a set of aligned word embeddings for cross-lingual natural language processing;

2. Design and adapt neural architectures for transfer learning within the inference
task. We explore two options, the first consisting of a Cross-lingual transfer sce-
nario, and the second considering a situation where translation is employed as an
intermediate step, porting the inference task to a translation task.

3. Design and adapt neural architectures for approaching the cross-lingual inference
formulation, where the premise is in one language (English) and the hypothesis is
in another language.

4. Evaluate and investigate the performance of our methods with established bench-
marks.

5. Suggest further work in the area of cross-lingual inference, and more broadly,
cross-lingual natural language processing.

Within our research, we use the term MONOLINGUAL to refer to English language
approaches.

1.3 | Approach
The aim of our research is twofold. Our first aim is to explore whether inference models
learned on a high-resource language can be transferred to other languages; we refer to
this as the cross-lingual transfer learning task. In this task, the premise and the hypothesis
are both within the same language.

Secondly, we aim to address the alternative cross-lingual formulation of the infer-
ence task, where the premise and hypothesis are in different languages. We refer to this
task as purely cross-lingual inference. Moreover, for the purposes of our research we
only consider the case where the premise is in English and the hypothesis is in another
language.

The XNLI data set (Conneau et al., 2018) provides a benchmark for evaluating mul-
tilingual inference models. The primary challenge posed by XNLI is the application of
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fine-tuned inference models, initially trained for English NLI, to perform inference in
different languages. Baselines presented within the paper are trained on the monolin-
gual English MultiNLI corpus (Williams et al., 2018). We provide a brief history of these
corpora and their predecessors in Section 2.1.2.

We adopt the XNLI challenge as the primary resource for our research since it pro-
vides adequate representation of languages. The corpus is composed of 7,500 premise
and hypothesis pairs, collected through crowd sourcing, which are translated into four-
teen different languages. Available languages include French, Spanish, German, Greek,
Bulgarian, Russian, Turkish, Arabic, Vietnamese, Thai, Chinese, Hindi, Swahili and
Urdu. With the exception of English, French, German and Chinese, all of these lan-
guages can be considered relatively low-resource, with Swahili and Urdu representing
the most poorly supported languages (Bender, 2019).

Our approach adopts a sentence encoder architecture. We use word embeddings
to create vector representations which are uses to initialize the neural networks. To
construct these embeddings, we train separate word embedding models for different
languages. At a later stage, these embeddings are aligned into a single vector space,
creating cross-lingual word representations.

We select the fastText framework (Joulin et al., 2016a) to generate our word embed-
dings, selecting word level alignment as our choice of alignment. In Section 2.3 of the
next chapter, we describe the possible approaches for aligning embeddings.

The aligned embeddings are used to initialize different neural architectures which
we design to address our goals. For the Cross-lingual transfer learning task, we design
two target architectures in order to compare their performance. Our first architecture is
a stacked bidirectional LSTM model (Bowman et al., 2015; Liu et al., 2016a); our second
approach follows a decomposeable attention model (Parikh et al., 2016). We outline the
techniques behind these architectures in Section 2.2.

Our models are tested in three of scenarios to address our objectives:

� Cross-lingual transfer: We train the model on the MultiNLI (Williams et al., 2018)
corpus, and fine-tune the model for the XNLI task.

� Translation Test Inference: We investigate a scenario where cross-lingual infer-
ence is ported to a translation task. Pairs from the XNLI data set are translated to
English, thus converting the cross-lingual task to a monolingual task and offload-
ing the complexity of dealing with different languages to a machine translation
task. Next, we train our models on the MultiNLI (Williams et al., 2018) corpus and
evaluate them on the translated XNLI corpus. The translation software used for
this experiment is Google Translate (Google, 2006).

6
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� Purely Cross-Lingual Inference: We construct a variation of the XNLI corpus
where English premises are paired with hypotheses in a different language. Next,
we train the model on the MultiNLI corpus and fine-tune the model using the
constructed data set.

Within our evaluation and discussion, we aim to assess the effectiveness of our mod-
els employed within each separate scenarios. Moreover, we compare and contrast the
different models in terms of their utilization of attention mechanisms.

7
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1.4 | Chapter Overview
The contents of this document is organized as follows:

Introduction Our Introduction provides an overview of the current state of natural
language processing in terms of multilingual research, exploring the motivations for
conducting such research. We explain why we chose to address the task of natural lan-
guage inference, and why it is desirable to do so within a multilingual context. Finally,
we provide a brief overview of our aims and objectives and the approach undertaken to
achieve the said aims.

Background and Literature Review In this chapter, we explore the different ideas
which relate to our research area. We first outline the inference task with examples,
paying particular attention to the complexities of the task; we then introduce the task
within a cross-lingual context, making a clear distinction between transfer-learning ap-
proaches and alternate formulations for cross-lingual tasks. In subsequent sections, we
delve deeper into neural network approaches within NLP, with a particular emphasis
on inference architectures and word embeddings.

Methodology Within the methodology chapter, we briefly summarize the findings
within our background research and explain the approaches selected in terms of the re-
search. We explain our target architecture, the design of our models, our development
process and the methodology for designing experiments to reach our aims.

Evaluation and Results In this chapter we outline a series of experiments conducted
to investigate the aims described in the Introduction Chapter. In particular, we assess
the quality of the word embeddings built and the performance of our implemented
neural architectures.

Discussion In this chapter we discuss the results achieved within our evaluation in the
context of the current baselines and our stated aims. Furthermore, we seek to provide
an overview of our contribution to the area of cross-lingual NLP.

Conclusion In our conclusion we reiterate the motivations for our work, summarizing
our approach and the results achieved. Finally we propose future work which can be
undertaken to further improve the current state of multilingual natural language pro-
cessing.

8



2

Background and Literature Review

The task of natural language inference, also known as ’recognizing textual entailment’
(RTE), is widely studied within the field of monolingual natural language processing.
Various approaches have been employed in tackling the problem within a monolingual
setting, including symbolic logic, knowledge bases, neural networks and distributed
representations. In this section, we introduce the task of language inference within a
monolingual context, explaining the core ideas behind neural networks. Subsequently,
we explore recent advances within the areas of distributed representations and neural
learning, to explore how these could be applied to language inference within a cross-
lingual context. Finally, we explore different methods for evaluating such systems.

2.1 | Natural Language Inference
Natural language inference (NLI) is the task of establishing whether a pair of text frag-
ments possess an inferential, contradictory or neutral relationship as judged by human
reasoning. Cooper et al. (1996) initially identify the inference task to be "the best way of
testing NLP system’s semantic capacity", identifying the logical concept of inference in
relation to linguistic phenomena.

The task has since been redefined to adopt a more probabilistic approach as opposed
to previous formulations, which rely on theoretic semantics. Dagan et al. (2005) define
inference as a directional relationship between two text fragments. Given a pair of text
fragments, a premise P and a hypothesis H, P is said to entail H (P ⇒ H) if H can be
inferred from P. This relation is referred to as positive entailment. Conversely, if P con-
tradicts H (p ; h), the relation is categorized as negative entailment (or, more commonly,
contradiction). Text fragments which possess neither an inferential nor a contradictory
relationship are said to be not entailed or neutral.

9
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Premise On 15 April 2019, France came close to losing its most famous cathedral
when a fire broke out beneath the roof of Notre-Dame de Paris cathedral in Paris.

Hypothesis The Notre-Dame cathedral is located in France.

Label Positive Entailment/Inference

Premise At 18:52 smoke was visible outside the cathedral, flames appeared
in the next ten minutes, as firefighters arrived.

Hypothesis Firefighters arrived on site within ten minutes after the fire alarm was raised.

Label Neutral/No Relation

Premise Paris prosecutors said that no sources have come forward with information and that there is
no evidence of the cathedral fire being caused by deliberate act.

Hypothesis A volunteer church assistant has confessed to starting a fire that severely damaged the cathedral.

Label Negative Entailment/Contradiction

Table 2.1: Examples of entailing, neutral and non-entailing text fragments.

Table 2.1 shows a number of examples of entailing, neutral and contradictory text
fragments related to a fire which broke out at the Cathedral of Notre-Dame. The first is
positively entailing, given that a human would infer the location of the cathedral from
the leading statement that the country came within reach of losing an iconic cathedral.
The second statement is neutral; while it may be implied that the visual indicators of
smoke and flames triggered the alarm, the statements contain no specific information
about the relationship between the events. Lastly, the third statement is negatively en-
tailed, given a direct contradiction between the facts that no sources spoke of the fire
and that a confession was received by a church volunteer.

As shown in the above examples, the task of language inference is inherently nu-
anced, depending on several inferential factors including temporal relationships, prior
knowledge, and semantic meaning:

� Consider the first example, omitting leading statement "France came close to los-
ing..." would require a human to depend on prior knowledge that Paris is located
in France, especially considering that there are several cities called Paris (Paris is
also a city in Texas, introducing ambiguity), in order to conclude positive entail-
ment.

� Within the second example, the visual indicators (smoke and flames) are not nec-
essarily indicative of the fire alarm (a device) being raised. The order of events and
semantic relationship between the indicators have no relation. Such tight coupling
of temporal and semantic factors may even cause disagreement among humans.

� A human’s conclusion that the final statement is contradictory is dependent on
the knowledge that the semantics of the word confession implies that an individual
has come forward with relevant information.

10
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� Minor changes to the samples may change the resultant label entirely. In the sec-
ond statement, omitting the word "fire" from "fire alarm" would change the con-
text. In that case, it would be implied that the visual indicators of smoke and
flames constitute an alarm, thus resulting in positive entailment.

A key element of language inference is identifying the determinacy of different en-
tities and events in reference to each other, strictly restricted to information within the
texts. One exception to this restriction is the incorporation of multi-modal representa-
tions, such as images, within the task (Bergsma and Van Durme, 2011; Calixto et al.,
2017; Gella et al., 2017). Moreover, our examples only address a single context: that of
a news article. Other contexts may present different challenges due to variations in the
choice of language, presupposition of prior knowledge and context from which the text
is sourced. The data used within our research, MutliNLI and XNLI, source data from
different contexts (Conneau et al., 2018; Williams et al., 2018).

2.1.1 | Cross-Lingual Natural Language Inference
The study of natural language inference within the cross-lingual context is in its early
stages, with most research revolving around monolingual English-language inference.
Nonetheless, two lines of work exist, providing task formulations:

1. Cross-lingual transfer: Catering specifically to improving monolingual inference
for different languages, leveraging models learnt in a source language (typically
English) to improve accuracy in other high-resource (for example French) or low-
resource (for example Swahili) languages (Conneau et al., 2018). A related line of
work focuses on cross-lingual learning across different task, expanding the trans-
fer learning idea across domains (languages) and other tasks (paraphrasing, part-
of-speech tagging, question answering) alongside NLI (Hu et al., 2020; Wang et al.,
2018).

2. Alternative Formulations: A second line of work exists in the form of purely cross-
lingual inference, where the inference task is adapted to work premise and hypoth-
esis fragments in different languages (Mehdad et al., 2010).

In this section, we briefly introduce the different approaches to dealing with cross-
lingual inference, outlining the methods and benchmarks that they provide.
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2.1.1.1 | Cross-lingual transfer Learning

Inspired by recent advances within the field of computer vision, one approach is to
frame cross-lingual NLP as a cross-domain transfer learning problem. In such ap-
proaches, models are trained to transfer knowledge for a given task across different
domains (Aytar and Zisserman, 2011; Pan and Yang, 2010; Thrun and Pratt, 1998; Torrey
and Shavlik, 2009).

Within the context of language processing, domains are represented by different lan-
guages. A model is trained on a source language L1 to perform a task in target language
L2, this task remaining unseen during the course of the training. A large body of re-
search surrounds the performance of transfer learning across languages for a variety
of tasks, particularly machine translation (Aharoni et al., 2019; Artetxe and Schwenk,
2019b; Conneau and Lample, 2019; Eriguchi et al., 2018; Schuster et al., 2019). In such
cases, research aims to leverage knowledge learned from a high-resource source lan-
guage to increase performance in low-resource target languages.

Such approaches typically follow three phases: a pre-training phase, an adaptation
phase and a transfer phase. Within the pre-training phase, a cross-lingual representation
is learned, including vocabulary from both languages, with the aim of building a gener-
alized cross-lingual language model. The pre-trained model is then adapted to a specific
task within the source language; such tasks include machine translation, or, in our case,
natural language inference. During the adaptation phase, the model learns task-specific
parameters on top of the cross-lingual representation. During a final transfer phase, the
model is fine-tuned using data from the target language, known as Cross-lingual transfer,
to apply inference in the target language. Cross-lingual transfer learning methods are
frequently referred to as Cross-lingual transfer methods.

A cross-lingual transfer learning approach focuses on employing existing NLP archi-
tectures across different languages to improve accuracy. Within the context of NLI, such
approaches deal with applying cross-lingual transfer to improve monolingual inference
in different languages.

2.1.1.2 | Alternative Formulations

Mehdad et al. (2010) suggest re-framing the NLI task to address purely cross-lingual
inference, where text fragments are in different languages. The task is adapted such
that the task is to detect inference between a premise P in one language L1 (for example
English), and the hypothesis H in another language L2 (for example German). As dis-
cussed in Section 1.1, such cross-lingual inference is classified over the text fragments
where for example "The boy jumped over the wall in the garden", in English, and "Hay una
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pared en el jardín" in Spanish. Such cross-lingual inference can be achieved using two
general approaches.

In the first approach, we port the cross-lingual challenge to a machine translation
(MT) task, by translating H to L1 and carrying out NLI within a monolingual context.
This approach allows for a modular system which is tightly coupled to machine trans-
lation. Given strong NLI performance within L1, one can leverage advances in MT in
order to improve NLI performance in L2. The main disadvantage of this approach is
that MT, particularly within low resource languages, may not be sufficient to deliver
the necessary improvements within the NLI task.

A second approach suggests the use of translation as a pre-processing step, prior
to the inference task itself. Rather than translating either the premise or hypothesis
fragments, we learn about statistical relations between text fragments within and be-
tween the language fragments. This approach is possible by extracting relations be-
tween phrases in L1 and L2 to fuel inference mechanisms. For example, such approaches
would detect entailment relations between landmark, in English, and the phrases das
Wahrzeichen, der Orientierungspunkt and der Grenzpfahl in German (all of which loosely
translate to landmark); all three German phrases in this example express entailment
to the English phrase to varying degrees. This approach provides for building more
expressive entailment relations. However, they further tightly couple the NLI task to
the MT task, resulting in a less modular (and therefore less portable) cross-lingual NLI
system.

2.1.2 | Benchmarks and Corpora
The complexity of the inference task is well-researched in linguistics. In particular, the
notions of presupposition (Grzymala-Busse, 1999) and indeterminacy (Halpern, 1990;
Kenney and Smith, 1996) are addressed. Several researchers have presented the task
in different forms in order to address the issues within a computational context; ini-
tially within the monolingual English domain, and eventually extended to the cross-
lingual transfer context. We also review multi-task benchmarks, which provide alterna-
tive baselines for our research.

2.1.2.1 | Monolingual Natural language Inference

The PASCAL Recognizing Textual Entailment Challenge (RTE) presented the inference task
for the first time in 2005, investigating different scenarios in subsequent annual chal-
lenges (Bar-Heim et al., 2006; Dagan et al., 2005). The task includes text fragments
sourced from English Wikipedia and news articles and is initially framed as a binary
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inference challenge, presenting a data set where text pairs have two potential target la-
bels, entailment and no entailment. In subsequent challenges, the problem is re-framed as
a three-way challenge, including a ’neutral’ class, as presented in Section 2.1 (Giampic-
colo et al., 2008).

Other challenges have presented longer sentences in order to mimic more realistic
scenarios (Giampiccolo et al., 2007), scoping the problem as a search task or a novelty
detection task (Bentivogli et al., 2009, 2010, 2011). More widely, and outside of the PAS-
CAL RTE Challenge, there have also been attempts to address text fragments’ appeal to
world knowledge or to tie the inference task to question-answering (QA) applications
(Khot et al., 2018; Levesque et al., 2012). Although these attempts have provided inter-
esting alternative benchmarks, the three-way multi-class inference task described in the
previous section remains the predominant target inference task within the field.

Following the initial framing of the problem as RTE, several other works have pro-
posed alternate methods of collecting corpora, in order to increase the size of the corpus
and to address different linguistic nuances. Marelli et al. (2014b) propose the SICK cor-
pus for inference, composed of image and video captions which are modified to contain
particular linguistic properties such as alternate syntax, negation and quantifiers. Both
data sets provide a larger benchmark in comparison to the initial RTE task, but such
automated corpus construction has produce data of questionable quality (Marelli et al.,
2014a).

Bowman et al. (2015) present the Stanford Natural Language Inference (SNLI) challenge
data set, generated by prompting humans to produce entailment, neutral or contradictory
hypothesis sentences. Data is generated by prompting human annotators using images,
resulting in a data set of text pairs addressing the task. The SNLI data set provided a
larger and richer benchmark to its predecessors, triggering wide interest in the inference
task. Yet the data set shared a common disadvantage due to reliance on image captions;
such descriptions do not effectively represent linguistic phenomena such as tense.

The RepEval 2017 Shared Task poses the inference challenge inspired by the SNLI cor-
pus, proposing an alternative benchmark to address its shortcomings. The task presents
the Multi-Genre Natural Language Inference (MultiNLI) corpus which captures data
covering a wider range of genres, representing both written and spoken styles of lan-
guage (Nangia et al., 2017; Williams et al., 2018).

Several monolingual inference solutions to the SNLI and MultiNLI challenges have
been proposed, particularly ones that leverage deep learning approaches which use con-
volutional neural networks (CNN) and recurrent neural networks (RNN). We provide
an in-depth overview of these approaches in Section 2.2.2.1.

Chen et al. (2017b) present a CNN model with bidirectional LSTM cells, reporting
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the highest accuracy for the MultiNLI task at 74.9%. The input layer is composed of
two concatenated embeddings: a word-level vector representation of the sentence as
represented by a pre-trained GloVe model (Pennington et al., 2014) (described later in
Section 2.3.1), and a character-level vector representation of the sentence. Inputs are
fed to three bidirectional LSTM layers, in a sentence encoding layer. Another hidden
layer employs a specific gated-attention LSTM (Xue et al., 2020) with maximum pooling
before feeding the final result multi-layer perception layer. The authors report that the
application of the gated-attention LSTM increase accuracy from 73.9% to 74.9%.

In contrast, Nie and Bansal (2017) propose a three-layer bidirectional LSTM RNN,
achieving 74.5% accuracy without incorporating cross-attention. The input sentences
(premise and hypothesis) are separately encoded into fixed length vectors which are
fed as inputs; a third input composed of both the premise and the hypothesis is input to
the network. The outputs are fed to a multi-layer-perceptron classifier to calculate the
output.

2.1.2.2 | Cross-Lingual Natural Language Inference

Conneau et al. (2018) present XNLI, a benchmark data set for the cross-lingual con-
text, inspired by previous monolingual data sets (Bowman et al., 2015; Williams et al.,
2018). The task treats the inference task for different languages when only English data
is available at training time, also known as cross-lingual transfer from English. XNLI is
composed of 7500 premise and hypothesis pairs from the English MNLI (Williams et al.,
2018) corpus translated into fourteen languages, spanning across high resource and low
resource languages. The languages include French, Spanish, German, Greek, Bulgarian,
Russian, Turkish, Arabic, Vietnamese, Thai, Chinese, Hindi, Swahili and Urdu.

The authors propose two distinct approaches to cross-lingual NLI, translation-based
approaches and sentence encoding approaches, suggesting possible solutions using each
approach and providing a benchmark. The approaches make use of cross-lingual word
embeddings and bidirectional LSTMs (BiLSTM) which we review in Sections 2.3.2 and
2.2.2 respectively.

� Translation-based Approaches: In such systems, one ports the cross-lingual NLI
to a translation task; either by first translating the source language data to the tar-
get data and then training the inference classifier on the target language (TRANS-
LATE TRAIN), or by training the classifier in the source language, and translating
at target time (TRANSLATE TEST). In both cases, the solution relies on the qual-
ity of the machine translation for the target language. The authors benchmark
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two BiLSTM models for the TRANSLATE TRAIN and TRANSLATE TEST, using a
proprietary translation system.

� Multilingual Sentence Encoders: Such systems exclusively rely on word em-
beddings to build a multilingual classifier (cross-lingual word embeddings). In
turn, the neural architecture performs a cross-lingual encoding process. The au-
thors provide two baseline architectures: a continuous bag of words architecture
(X-CBOW); and a BiLSTM architecture (Hochreiter and Schmidhuber, 1997) (X-
BILSTM) trained on English MultiNLI data (Williams et al., 2018). Word embed-
dings for these approaches are trained using the MUSE framework (Lample et al.,
2018), and aligned using a sentence-level mapping-based approach. This is further
explained in Section 2.3.2.

Results show that the translation-based approaches outperform all other models in
all languages, with accuracy ranging from 59.3% for Urdu to 73.7% for English. The
X-CBOW model preforms worst of all the models, corroborating previous claims that
the inference task requires sequence information as opposed to only word information
(Bowman et al., 2015; Conneau et al., 2017a).

To date, the XNLI corpus is the only multilingual NLI benchmark available. The
task also forms part of the XTREME multilingual multi-task challenge (Hu et al., 2020),
which includes the XNLI baseline alongside baselines for paraphrasing, part-of-speech
(POS) tagging, named entity recognition (NER), question answering (QA) and sentence
extraction, all within a cross-lingual context.

A number of baseline models are provided for the XTREME task, particularly trans-
former based models (explained in section 2.2.2.2) with different training objectives:

� Cross-lingual transfer: Models are trained using English data, and tested using
the target language data.

� Translate-train: Models are trained on English training data which is translated to
the target language, and tested in the target language.

� Translate-test: Models are trained on the English data, and evaluated on the target
language data translated to English.

� In-Language models: Models are trained on the target language data and tested
on the target language data.

For the cross-lingual transfer case, mBERT (Devlin et al., 2019) and XLM (Conneau
and Lample, 2019) transformer models achieve 65.4% and 79.2% accuracy respectively.
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An additional translation encoder achieves 67.4% accuracy. Meanwhile, mBERT obtains
accuracy between 74% and 76.8% with the translate-train and translate-test objectives.
Additionally, the benchmark provides metrics for human evaluation of each task; the
human accuracy for cross-lingual inference stands at 92.8%.

2.2 | Approaches to Cross-Lingual NLI
In the previous section, we introduced the natural language inference task, also referred
to as the ’recognizing textual entailment’ task, as a multi-class classification problem,
which classifies whether two text fragments positively entail, negatively entail or do not
entail each other. We also briefly introduced the current state-of-the-art benchmarks and
corpora for the task within an English monolingual and cross-lingual context. Natural
Language Inference solutions are typically composed of two components: the first, a
language modeling component, which aims to model inferential relationships in text;
the second, an inference model, which aims to classify the inferential relation described
in the task.

In this section we explore different approaches to inference. First, we briefly in-
troduce traditional inference models which employ feature engineering to model the
language and classify the relationship. Second, we explore more recent approaches em-
ploying neural networks.

2.2.1 | Feature Engineering in Inference Models
Negri et al. (2013) introduce the task of cross-lingual language inference within the con-
text of content synchronisation. The task further extends our previous definition in
section 2.1 by specifying the relation of entailment (bidirectional, forward, backward)
in synchronisation, addressing one of the main applications for cross-lingual NLI. The
task presents a data set of 1,500 textual entailment pairs for a combination of languages
coupled with English, these include Spanish, Italian, French and German.

Solutions to the task can be broadly categorized across two dimensions; the reliance
on initial translation, as initially proposed by Mehdad et al. (2010); and the target label
for the inference task - partly relying on a binary YES or NO meta-classification (as in
Levesque et al. (2012)), or a multi-class classification as described by the task definition.

One approach, BUAP (Vilarino et al., 2013), uses English as a pivot language, by trans-
lating the premise and hypothesis into each language in the pair. The authors propose a
number of different approaches for extracting features from the pairs of same-language
fragments. Sentences are represented as N-grams, spanning across words and part-
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of-speech tags, and similarity measures, including Eucledian distance, Manhattan dis-
tance and Jaccard coefficient. Additionally, other features include a system of various
binary classification models representing different judgements. All features are com-
bined within a voting system that uses a majority criterion to detect entailment. The
model’s best performance achieves a 39% accuracy, with the application of similarity
measures proving to be the most effective.

Softcard (Jiménez et al., 2013) also uses English as a pivoting language, computing
the Edit Distance and Jaro-Winkler similarity measures. However, it uses character-level
N-grams (Q-Grams). In addition, it applies Support Vector Machine (SVM) to predict
the multi-class label, achieving an overall average accuracy that varies between 42.6%
and 45.8%.

ALTN, an alternate approach proposed by Turchi and Negri (2013), trains an align-
ment model on sets of parallel texts in different languages. Features are subsequently
extracted from the alignment process in order to train an SVM for multi-class categori-
sation. All features are language agnostic, including the proportion, length and counts
of aligned word sequences. The approach yields a relatively consistent performance
across language pairs ranging from 38.8% to 45.2% accuracy.

2.2.2 | Deep Learning Approaches
Neural Network models have been proposed as an alternative to traditional machine
learning approaches with success for several language processing tasks. As discussed
in the previous section, traditional NLI approaches require the manual construction of
features in order to cater for different linguistic attributes; these include linguistic and
syntactic features. However, natural language is notoriously complex, as it consists of
a high-dimensional space. This results in highly-complex models, which are specific to
the task and thus difficult to port to different domains. Meanwhile, neural networks
allow for a generalized, self-correcting method of modeling non-linear and complex
relationships. The application of neural networks within NLP has produced several ad-
vances across different tasks. Such methods are employed separately at different levels
of NLI solutions. The concepts behind such neural architectures feature strongly in our
research, since we consider applications at two different phases for cross-lingual natural
language inference:

1. Language Representations: In the first phase, we attempt to learn a language
model from a given corpus. In Section 2.3.1, we describe different neural network
applications to building language models.
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2. Classification: We also consider a neural architecture to specifically address the
multi-class classification problem of natural language inference. The models ex-
tracted during the first phase are used to initialize the neural models described for
the second phase.

We will now provide a brief overview of neural networks, in order to provide ade-
quate background for a discussion of the language modeling and the target architecture
of our inference solutions.

2.2.2.1 | Neural Networks

The most primitive form of neural network is the Feed-Forward network (FFNN), which
is composed of an input layer that encodes the training data, a hidden layer, an inter-
mediate layer of weighted values, and the output layer, which presents the result of the
learning process. Neural networks with single hidden layers are described as shallow;
conversely, networks with several hidden layers are described as deep. Thus, neural net-
working models with several hidden layers are frequently described as deep learning ap-
proaches (Duda et al., 2012). Figure 2.1 shows the FFNN alongside more complex neural
architectures. Weights from hidden layers are combined by an activation function, the
choice of which is critical in neural network design. Several options exist, including Bi-
nary Step Functions, Linear Activation Functions and Non-Linear Activation Functions
(Duda et al., 2012).

Rumelhart et al. (1986) introduce the idea of back-propagating neural networks, in
which weights for hidden layers are repeatedly adjusted based on the output vector.
Within back-propagation, we evaluate candidate weights in terms of the desired out-
put; this is achieved by calculating a loss function, quantifying a model’s loss (or gain).
Consequently, neural network weights are adjusted at every learning step based on the
the loss function to achieve a global maximum. In Section 2.3.2 we discuss different loss
functions for aligning word embeddings.

Several variants of the initial FFNN have been proposed to address different learning
tasks. These variants typically involve deeper networks, broadly described as deep neu-
ral networks (DNN): these include Convolutional Neural Networks (CNN), networks
designed to learn temporal data; and Recurrent Neural Networks (RNN), networks de-
signed to learn sequential structures (Gers et al., 1999; Liu et al., 2017; Wen et al., 2016;
Yin et al., 2017). Figure 2.1 shows the three neural architectures side-by-side.

Convolutional Neural Networks (CNN) employ the concept of a sliding window (or
kernel) function applied to an input matrix in order to learn weights. Given an input
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Figure 2.1: The Feed-Forward, Convolutional and Recurrent Neural Architectures, side
by side, distinguished by the structure within hidden layers.

matrix, the kernel is applied on a subsection of the matrix to compute elements of a
convolved feature matrix. Convolutions over the input layer compute the output. These
convolutions are expressed as one or more hidden layers (Duda et al., 2012; Liu et al.,
2017). After convolution, CNNs apply pooling layers to sub-sample the resultant output.
We explain this process in terms of an NLP task below.

Given an input sentence of length n with a vocabulary size of d, we represent the
sentence as an n*d matrix input. Every row in the matrix input would correspond to
one word. A kernel of width d and height m would select m words at every convolution.
Convolution vectors are sub-sampled and fed to an activation function to produce the
output.

The CNN model disregards the position of input entities; this intuition may not be
useful within language processing, where the location of words within a sentence is
of great importance. However, there are cases where such an approach is desirable.
Vu et al. (2016) report a higher performance for CNN for relational classification tasks.
Moreover, the CNN approach reportedly performs better with longer text fragments
and local context dependencies (Adel and Schütze, 2017; Wen et al., 2016; Yin et al.,
2017).
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Recurrent Neural Networks (RNN) allow previous outputs from hidden layers to be
uses as inputs for other hidden states. This has several benefits. Hidden layers are
trained within the context of their previous inputs; this is beneficial in order to represent
relationships between sequences of inputs. On the other hand, the size of the hidden
layer is not limited as in the CNN case, where a kernel size must be pre-defined.

In figure 2.2, we show an RNN whose hidden layer feeds to itself; the RNN can also
be represented as FFNN, where each neuron within the hidden layer is fed values from
another hidden layer. The relationships between hidden layers can take different forms:
one-to-many, where outputs are feed hidden layers; many-to-one and many-to-many ,
where hidden layers feed other hidden layers (Duda et al., 2012; Gers et al., 1999; Liu
et al., 2017; Luong et al., 2016).

The ability to leverage RNNs to represent sequences is critical to neural natural lan-
guage processing, particularly in order to learn dependencies along long sequences.
However, the initial construct does not perform this function well when combined with
backward propagation; this is described as the vanishing gradient problem (Bengio
et al., 1994; Hochreiter and Schmidhuber, 1997). As the network adjusts weights to
search for the global minimum of the cost function, weights are multiplied across sev-
eral recurring cells. Such multiplications cause gradient values to shrink such that the
values become inconsequential; this causes the network to lose memory of previous
sequences.

Hochreiter and Schmidhuber (1997) initially propose the idea of a Long Short-Term
Memory (LSTM) variation of the RNN, which is the predominant form of recurrent
networks in contemporary literature. The idea defines an LSTM memory cell as the basic
building block of a hidden layer; a hidden layer is of composed of several LSTM cells.

The cell’s architecture is composed of several gate units; an input gate, an output
gate and a forget gate, representing read, write and reset operations for the memory.
Such gates deduce which information is to be discarded, while processing new states
to be fed to other hidden states (Gers et al., 1999). Other cells, such as Gated Recurrent
Units (GRU), with a different gate configuration have also been proposed (Cho et al.,
2014). The application of LSTM and GRU cells within RNN and also CNN architectures
is largely responsible for the recent renaissance of deep learning. Comparison between
the two architectures and hidden cell types for different tasks remains an active area of
research (Yin et al., 2017).

Another concept which builds upon the idea of LSTMs is that of neural attention.
Initially proposed by Bahdanau et al. (2015), attention is intended to calculate a set of
attention weights which quantify how much a word from one sentence attends to an-
other; particular outputs may naturally give higher importance to particular inputs.
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This is particularly useful within machine translation, where each word in the output
sentence specifically attends to particular words in the input sentence (Sutskever et al.,
2014). The attention α<t,t′> is defined as the amount of attention an output yt should pay
to an input at′ ; this is achieved by training a separate FFNN concurrently. Rocktäschel
et al. (2015) apply the concept of attention to the natural language inference problem,
suggesting word-by-word attention across the premise and hypothesis.

2.2.2.2 | Transformers

Recent optimizations for advancements in neural models has given birth to a new breed
of neural architectures, which forego the recurrence and convolutions concepts dis-
cussed in the previous section. Vaswani et al. (2017) propose exclusively leveraging
a neural network’s attention to increase the reference window of a neural network, pro-
viding a theoretically-infinite memory mechanism. Chiefly, the framework presents a
decoder which generates the output in steps using the encoder’s representation and
previous decoder outputs. Both the encoder and decoder a series of self-attention layers
and FFNN utilizing the ReLu activation function. Input vectors are augmented with
positional encoding, giving the encoder knowledge of the sequence. This is in contrast
with a traditional recurrent approach, which learns the sequence at different time steps.

The key innovation in this method is the self-attention layer. In self-attention layers,
inputs are each fed into distinct input layers to compute distinct query, key and value
vectors. The query and keys are used to compute a score matrix, which determines how
much a word attends to another. Scaled attention scores are fed to a Softmax activation
function, and multiplied by the values to gain the output. The self-attention mechanism
is repeated on several vectors throughout the process, in conjunction with position-wise
feed-forward networks.

Transformer based models have achieved state-of-the-art results on several tasks
(Devlin et al., 2019). However, the achieved results are poorly understood (Jain and Wal-
lace, 2019; Serrano and Smith, 2019; Wiegreffe and Pinter, 2019), and some researchers
have indicated that attention-based models rely on biases and shortcuts to provide pre-
dictions (Kovaleva et al., 2019).

2.2.3 | Neural Network Inference Architectures
Challenge datasets such as the SNLI (Bowman et al., 2015) and MultiNLI (Williams et al.,
2018) provide a rich reference point for monolingual neural inference architectures. The
latter of these presents training examples which are more representative of linguistic
phenomena such as tense and belief (Nangia et al., 2017). Several approaches have been
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proposed to address the inference task, employing a variety of techniques which include
attention (Wang and Jiang, 2015), memory (Munkhdalai and Yu, 2017) and parse struc-
ture (Mou et al., 2016). In this section, we give a brief overview of two classes of models.
The first class employs recurrence, typically using bidirectional LSTM networks, while
the second class employs attention-based models as a form of neural alignment (Parikh
et al., 2016).

Bowman et al. (2015) initially propose a baseline architecture that makes use of sen-
tence embeddings in the input layer. The network accepts two concatenated 100d (em-
bedding of 100 dimensions) inputs which are in turn fed to three consecutive tanh layers
of 200d. In turn, the output is fed to a softmax classifier, trained jointly with the sentence
embedding model. The approach is benchmarked against a generic bidirectional LSTM
(BiLSTM) RNN. Both models are initialized using GloVe (Pennington et al., 2014) word
embeddings (see Section 2.3), and trained using the AdaDelta (Zeiler, 2012) optimizer.

Building upon ideas within the baseline, another sentence encoding model pre-
sented by Liu et al. (2016a) also employs a biLSTM with average pooling. The authors
also introduce an attention mechanism operating on the same sentence, quantifying
which words attend to each other within the source and target sentence. This is in
contrast to initial formulations of attention, which deal with words attending to each
other between the source and target sentences (Sutskever et al., 2014). Inter-attention
relates the intuition that humans can approximate meaning from a single sentence. The
sentence vectors, together with their attention weights, are passed through a sentence
matching module composed of three relations: the concatenation of the two representa-
tions, the element-wise product and the element-wise difference (Mou et al., 2016).

Parikh et al. (2016) also make use of an attention model, with three distinct phases.
In the first two phases, elements of the input sentences are aligned and subsequently
compared to produce a set of vectors for each sentence. These phases are constructed
through a feed-forward network which normalizes the attention weights and compares
aligned phrases, resulting in vectors which represent the aligned sub-phrases for each
sentence. Finally, the resultant vectors are aggregated and used to predict the entailment
relation. The comparison vectors are aggregated using a summation which is fed to a
classifier. Other similar approaches suggest using BiLSTM cells instead of feed forward
networks for constructing attention weights (Chen et al., 2017a).

A different class of neural architectures exists in Transformer models, which were
introduced in the previous section. Such approaches exclusively employ attention out-
side of the traditional RNN and CNN constructs. However, as discussed in the previous
section, results behind such models are poorly understood (Jain and Wallace, 2019; Ko-
valeva et al., 2019; Serrano and Smith, 2019; Wiegreffe and Pinter, 2019). Thus we con-
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sider such models to be outside the scope of our research, as we have chosen to focus
on deep neural networks exclusively. We outline the results achieved by these methods,
as well as the techniques employed in table 2.2.

Approach Test Accuracy
Publication Model Attention Mechanism SNLI MultiNLI
Qian Chen et al. ’17 Inter Attention with BiLSTM Encoders Inter-Attention 85.5% 74.9%
Tao Shen et al. ’17 Bidirectional Self-Attention Self-Attention 85.6% 67.1%
Parikh et al. ’16 Decomposable Attention Self-Attention 86.5% -
Nie Bansal et al. ’17 Stacked Bidirectonal LSTM RNN None 86.1% 73.5%
Bowman et al. ’16 SNLI Baseline: Sum of Words None 75.3% -
Bowman et al. ’16 SNLI Baseline: LSTM RNN None 77.6% -
Radford et al. ’18 Transformer Model Attention 89.9% 81.4%
Wang et al. ’19 sturctBert Transformer Model Attention 91.7% -

Table 2.2: An overview of results for different inference architectures.

2.3 | Cross-Lingual Language Representations
In the previous section, we discussed language inference models in terms of two dif-
ferent components; a word embedding component, which aims to model inferential re-
lationships between words; and an architecture component, which carries out the final
classification. We now focus on advances in language modeling brought about through
the application of neural networks, as opposed to traditional feature engineering ap-
proaches.

2.3.1 | Word Embeddings
Several models dependent on hand-crafted features incorporate N-Gram and term fre-
quency for modeling language as discussed in Section 2.2.1. Typically researchers have
employed word and N-Gram co-occurance to model sequences of words. However,
as the length of modeled sequences increases, an ever-increasing number of features is
required to accurately build generalizations, creating high-dimensional spaces (Bengio
et al., 2003). This phenomenon, commonly referred to as the ’curse of dimensionality,’
necessitates a different approach to language modeling, where one aims to learn an
entire distributed representation of words using distribution probabilities. Such repre-
sentations take the form of distributed word vectors or word embeddings, describing a
word’s position within a vector space learned using a probabilistic approach.

Several models exist for learning distributed word representations, including La-
tent Semantic Analysis (LSA) (Deerwester et al., 1990; Landauer et al., 1998), Latent
Dirichlet Allocation (LDA) (Zhila et al., 2013), Feed Forward Neural Networks (FFNN)
(Rumelhart et al., 1986) and Recurrent Neural Networks (Mikolov et al., 2010). Rumel-
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hart et al. (1986) initially propose the application of neural network back-propagation
to learn such word representations, which has been applied successfully to several NLP
tasks (Collobert and Weston, 2008; Mikolov et al., 2012; Schwenk, 2007; Weston et al.,
2011).

The initial formulation of the Feed Forward Network for constructing word embed-
dings involves encoding sentences as neural network inputs. Given a word as part of
a sentence, N previous words are encoded and projected to a layer of NxD dimension-
ality, where D is the selected length of the vector. Given an increasing N, (size of the
projection and hidden layers) complexity increases significantly with either N or the
source vocabulary. While more computationally efficient, a Recurrent Neural Network
possesses similar attributes. While precise, these techniques alone pose the challenge of
increasing computational complexity as source data increases (Mikolov et al., 2013a).
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Figure 2.2: A CBOW model identifies a central word ("STARTED") from a context of
words ("FIRE", "IN"), while a Skip-Gram model identifies context words ("FIRE","IN")
from a central word ("STARTED"). In this example N=3.

Mikolov et al. (2013a) initially introduce two techniques for simplifying neural net-
works in order to reduce the classifier to log-linear complexity. Instead of encoding
entire sequences of prior words, we aim to model the word’s context. Both models use a
two layer neural network. Consider that a target word is surrounded by context words,
the two approaches are described as follows (Goldberg and Levy, 2014):

� Continuous Bag of Words (CBOW): Given the context words, the model attempts
to identify the central word. The model aims to maximize the probability of a
central word using context word co-occurrences within a distance N. The network
is composed of an input layer, a hidden layer and an output layer (omitting the
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projection layer). Context words are encoded as inputs and the predicted output
denotes the central word.

� Continuous Skip-gram Negative Sampling Model (SGNS): Given the central
word, the model attempts to identify potential surrounding words. The skip-gram
model aims to maximize the probability of a word, based on co-occurrences within
a [-N,+N] window. The input contains an encoded central word, with the target
vectors denoting surrounding words.

The quality of a word embedding is typically determined by evaluating the model’s
lexical induction capability. An effective monolingual word embedding would map
other related words close to each other. Within an effective monolingual word embed-
ding, a word’s nearest neighbours typically include synonymous words. From a quanti-
tative perspective, the measured cosine similarity between two words (n and m) should
be indicative of semantic relatedness:

cos(n, m) =
n ·m
‖n‖‖m‖ =

∑n
i=1 nimi√

∑n
i=1 (ni)2

√
∑n

i=1 (mi)2
(2.1)

An over-concentration of nearest neighbours, based on the respective relatedness
metric, reduces the quality of word embeddings. Radovanovic et al. (2010) describe
this phenomenon as hubness, where some observations are surrounded by many other
observations, impacting the quality of embedding spaces.

2.3.1.1 | Frameworks for Learning Word Embeddings

Figure 2.2 shows the difference between the two models, with the Continuous Skip-
Gram model representing the opposite of the CBOW model. Various frameworks have
been proposed using such models. Mikolov et al. (2013b) introduce Word2vec, a frame-
work utilizing the Skip-gram method with a Hierarchical SoftMax activation function
and Negative Sampling. Data fed to the network is pre-processed by replacing named
entities with unique tokens; this allows named entity phrases to be modeled without sig-
nificantly increasing the vocabulary size. The resultant model achieves accuracy rang-
ing from 66% to 72% on a word analogy task, reporting that the Skip-gram approach
significantly outperforms complex neural models. Moreover, the model demonstrates
additive compositionality, allowing reasoning to be extracted from arithmetic vector
calculations.

Another application is the Global Vectors (GloVe) framework (Pennington et al.,
2014), which leverages a hybrid method, applying a co-occurrence matrix alongside the
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skip-gram model. The primary motivation for this approach is to learn sub-structures
within the vector space, to increase performance in word analogy tasks. The model per-
forms slightly better on the word analogy task, although requiring more computational
resources.

Such word embedding frameworks have shown promising results in speech recog-
nition and machine translation, but they do not convincingly outperform prior state-of-
the-art techniques in all tasks (Baroni et al., 2014; Joulin et al., 2016b; Wang and Man-
ning, 2012). One drawback of such frameworks is poor performance in relation to rare,
or out-of-vocabulary, words. A key innovation which treats out-of-vocabulary words is
the application of similar techniques to character level n-grams.

Joulin et al. (2016a) propose Fasttext, a framework for learning character-level word
embeddings. Whereas previous systems such as Word2vec and GloVe learn vectors for
n-grams of words, the proposed system learns characters within the words alongside
the entire word. Given the word "<grand>", the Fasttext framework would consider
the tokens [<g,gr,ra,an,nd,d>], where < and > denote the start and end of the word. This
would allow the model to learn sub-word information. If the model encounters the
out-of-vocabulary word grandiose, the rare word can be embedded near the word grand
due to shared sequences of text. Within word-level word representations, rare words
share fewer context words, resulting in poor results, but sub-parts of words neighbour
a greater number of tokens. However, increasing the granularity of the n-gram model
increases the computational requirements.

2.3.1.2 | Contextualized Word Embeddings and Attention Models

Another approach in the area of word representations is contextualized word embedding;
in such methods, representations are processed as functions of an entire sentence, rather
than singular words or sub-words. The main benefit of such a approach is dealing with
polysemy, the various possible meanings of a word (Peters et al., 2018). This method
shows significant improvements in the NLP tasks of named entity recognition, entity
co-referencing and question answering. More recent innovations build upon the idea
of contextualized word embeddings, adopting different approaches. For example, one
such trend leverages a neural network’s attention, specifically the weighted average of
neural network inputs, in order to derive a composite embedding. We briefly outline
attention and transformer models in Section 2.2.2.2. Attention-based models rely on
deriving context within the same sentence; attention functions as a relationship score for
inter-sentence relationships (Devlin et al., 2019; Radford et al., 2018b). Such models have
achieved a new state of the art on several tasks, including inference. However, several
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researchers indicate that the results behind these improvements are poorly understood
(Jain and Wallace, 2019; Serrano and Smith, 2019; Wiegreffe and Pinter, 2019).

Kovaleva et al. (2019) quantify the influence of attention on the model’s increased
performance, indicating that attention is not directly responsible for improvements, par-
ticularly for the task of natural language inference. At the time of writing, the benefits
of attention-based models remain contested, with indications that improvements could
possibly be attributed to undiscovered phenomena. Moreover, the ability of such ap-
proaches to capture meaning has been called into question. Bender and Koller (2020)
discuss attention models within the context of form, representing the concrete represen-
tation of text, and meaning, representing relationships which relate to concepts external
to language. The authors argue that given that such approaches do not sufficiently ad-
dress the meaning within different asks in spite of achieving new, state-of-the-art results.

2.3.2 | Cross-Lingual Word Embeddings
Recent advances in the area of word representations have proven highly effective in
improving the latest deployments of natural language processing. One of the primary
advantages of vector representations is their capability to perform arithmetic logic that
can express the relationship between words (Goldberg and Levy, 2014; Mikolov et al.,
2013b). While such research has predominantly focused on the English language, there
is a renewed interest in cross-lingual natural language processing, fueling a sub-line of
research related to creating cross-lingual word embeddings. This idea is attractive for
two reasons. Firstly, a single word embedding may be used across different languages,
reducing training cost; secondly, high-performing models within a high-resource lan-
guage (such as English) may be leveraged to improve models in other low resource
languages (such as Swahili).

Cross-lingual embeddings aim to create a common representational space contain-
ing text from both languages. This is achieved by aligning two monolingual models
(Artetxe et al., 2018; Lample et al., 2018; Smith et al., 2017; Xing et al., 2015), or by si-
multaneously learning a common representational space (Gouws and Søgaard, 2015;
Klementiev et al., 2012; Kočiskỳ et al., 2014; Xiao and Guo, 2014). Ruder et al. (2019)
provide a comprehensive overview of the state of word embedding alignment for cross-
lingual tasks. In this section, we summarize the findings while delving deeper into the
predominant approaches.

Approaches differ along three different dimensions; the linguistic unit of alignment;
the data leveraged to learn the embedding; and the method by which the representa-
tions are learned. We briefly outline the differences in terms of linguistics units and
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source data in order to adequately scope our discussion. Vector representation learning
can occur at different linguistic units such as words, sentences and documents. In each
case, we learn vectors which represent different units and map them to a cross-lingual
vector space. The data used to learn these representations can be parallel or comparable.

Most research within the area treats parallel word- and sentence-aligned multilin-
gual representations. Parallel word-level data is readily available in multiple languages
(including low-resource ones) in the form of dictionaries. One example of such parallel
data is the Europarl Corpus (Koehn, 2005), composed of direct translations of text frag-
ments from dialogue within European institutions, providing a relatively rich source of
data for parallel sentence alignment methods.

Whereas parallel alignment treats text pairs across different languages, which are typ-
ically obtained through translation, comparable alignment methods use pairs of corpora
treating the same subject or domain which are not direct translations. Comparable align-
ment methods at the word and sentence level may leverage a multi-modal embedding
space, using images and linguistic features such as part-of-speech tags (Bergsma and
Van Durme, 2011; Calixto et al., 2017; Gella et al., 2017; Gouws et al., 2015). This area of
work is under explored, and the multi-modal nature of the work does not directly relate
to textual entailment.

At the document level, parallel document data, where bilingual corpora consist of di-
rectly translated documents, is scarce, particularly when considering low-resource lan-
guages and different subject areas. Comparable document alignment typically involves
learning representations of documents about a common topic in different languages.
However, while it is theoretically possible, research has shown that it only provides mi-
nor auxiliary value (Ruder et al., 2019). Moreover, document-level alignment methods
are contextualized in terms of sentence-level approaches. Thus, we limit our research
to word-level and sentence-level parallel alignment, intentionally excluding comparable
and document level approaches. In this section, we first explain approaches within the
parallel word-level area, and then explain how they are extended to the sentence-level.

Lastly, we must distinguish between bilingual alignment and multilingual alignment,
i.e. the alignment of word representations from two languages rather from than multi-
ple languages. While some research suggests that there are several benefits to consid-
ering multilingual application (Duong et al., 2016; Levy et al., 2017), most research is
focused on aligning bilingual pairs. The multilingual scenario can be scoped to several
bilingual sub-alignments by selecting a single resource-rich language, such as English,
as the pivot language (Duong et al., 2017). Thus, approaches to bilingual alignment can
thus be easily leveraged within a multilingual setting.
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2.3.2.1 | Word-Level Alignment

In Section 2.3.1 we introduced the concept of learned word representations as a vector
space, discussing the Continuous Bag of Words and Continuous Skip-Gram Negative Sam-
pling approaches. The approaches in this section employ either CBOW or CSGNS as the
core learning mechanisms, depending on the learning objective.

Mapping-Based Alignment The most prominent method for aligning word embed-
dings, particularly at the word-level, is the mapping-based approach. The approach
assumes that the geometric structure of words which are mapped in one monolingual
space closely resembles the structure of their translated counterparts within another
monolingual space. Thus, we aim to transform one vector space to another, using a
seed vocabulary.

Consider source language s and target language t. The learning process aims to
learn a transformation matrix Ws→t. The seed lexicon is derived from n most frequent
words in s, translated to t. The seed lexicons used can be acquired through a variety of
methods; some approaches use off-the-shelf data sets (Lazaridou et al., 2015; Mikolov
et al., 2013a), while others attempt to learn a lexicon from the corpus using supervised
and unsupervised methods (Lample et al., 2018; Smith et al., 2017; Søgaard et al., 2018).

A common method to learn this mapping is a regression which minimizes the mean
squared error (MSE) of the transformation matrix Ws→t between a source seed word
xs→t

i and its translation xt→s
i . The loss function can be expressed as follows:

ΩMSE =
n

∑
i=1
||Wxs→t

i xt→s
i || (2.2)

Given that the monolingual representations are trained separately, and that the re-
sultant cross-lingual representation is trained as expressed above, the objective can be
revised to express the combination of optimizing all three learning processes. Thus the
objective for skip-gram negative sampling can be expressed as follows, where X repre-
sents the embedding matrices for a seed vocabulary:

J = LSGNS(Xs) + LSGNS(Xt) + ΩMSE(Xs, Xt, W) (2.3)

One challenge with this approach is in similarity measures within the monolingual
word representation task and the alignment method. The CBOW and SGNS methods
proposed use cosine similarity to estimate the relatedness of words, whereas the mapping
process uses a Euclidean MSE. Resultant alignment causes high monolingual variance.
Xing et al. (2015) propose limiting the regression, using an orthogonal normalization
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constraint, in order to address this issue. This constraint allows us to create more con-
sistent mappings (Smith et al., 2017; Zhang et al., 2016).

Haghighi et al. (2008) propose an alternative approach to the regression method.
Rather than aligning two monolingual word embeddings, the source and target lan-
guage are mapped to a single shared space. The proposed Canonical Correlation Analy-
sis determines the orthogonal linear correlations for each corpus, learning two separate
transformation matrices. In turn, vectors with the highest correlation are selected. How-
ever, improvements gained from this approach are not widespread across all language
pairs, and the approach is considered equivalent to orthogonal constrained regression
(Artetxe et al., 2017).

The above approaches frequently incorporate nearest-neighbour retrieval to refine
or evaluate the resultant word embeddings. Translations for source words are sourced
from the cross-lingual mapping by selecting the most similar words using a similarity
measure (Artetxe et al., 2018; Lample et al., 2018). In turn, this retrieval can be used to
refine the model by incorporating the translation into the seed lexicon. To enhance the
quality of retrieval, a symmetry constraint is typically imposed; a pair is considered to
be a translation if they possess mutual nearest neighbours in the vector space.

Significant work has revolved around improving the retrieval process in order to
reduce the challenge of ’hubness,’ (Radovanovic et al., 2010) or the over-concentration
of nearest neighbours. Smith et al. (2017) propose a globally corrected retrieval process,
normalizing the probability over source words. Lample et al. (2018) propose a new mea-
sure, cross-domain similarity local scaling (CSLS) as an alternative to cosine similarity.
The CSLS metric builds a bipartite neighborhood graph, with the aim of maximizing
the selection of word pairs within the selected neighbourhood.

Pseudo-bilingual Corpora and Joint Methods While less popular, there are alterna-
tive approaches to learning word-level mappings. Xiao and Guo (2014) propose to con-
struct pseudo-bilingual corpora. Instead of learning the mapping between the source
and target language, a pseudo-bilingual corpus is constructed by replacing words in a
source language with their translations. Similarly, Gouws and Søgaard (2015) construct
a pseudo-bilingual corpus by concatenating the corpora for both languages, replac-
ing words whose translations are available with their translated equivalent. Such ap-
proaches have shown increased benefits with dealing with polysemy in the cross-lingual
context, and also show promising results when applied to low-resource languages. A
disadvantage of this approach is that such word embeddings can only be used for a
single alignment task, whereas mapping-based approaches can reuse their monolingual
component across several alignments. Mapping-based approaches are more computa-
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tionally efficient on several levels: both in terms of training on a concatenated corpus,
and in terms of the re-usability of models.

The idea of constructing pseudo-corpora has also been used in conjunction with
mapping-based approaches. Each of the methods discussed above seeks to optimize the
same task; the mapping-based approach seeks to optimize monolingual losses along-
side the cross-lingual regularization term, while pseudo-bilingual approaches aim to
optimize the single cross-lingual loss through data manipulation. A particular line
of research is centred around applying both approaches in tandem (Klementiev et al.,
2012)(Kočiskỳ et al., 2014). While alternatives to mapping-based approaches are inter-
esting to explore in the case of low-resource languages, the approaches described above
are theoretically equivalent.

Ruder et al. (2019) show that such approaches can be reduced to a Constrained Bilin-
gual Skip-Gram approach, which makes use of negative sampling. The word embed-
ding models initially suggested by Mikolov et al. (2013a), leveraging skip-gram negative
sampling, are equivalent to pseudo-bilingual sampling.

2.3.2.2 | Sentence-Level Alignment

As discussed in Section 2.3.2, parallel sentence-level alignment requires a corpus of sen-
tences which are directly translated between the source language s and the target lan-
guage t. Such data is expensive to collect, particularly for low-resource languages; how-
ever, one rich data set comes in the form of the Europarl corpus. We discuss different
approaches to parallel sentence level alignment, some of which are conceptually similar
to word-level mapping-based approaches.

Word-Alignment Matrices: Considering two sentences in the source and target lan-
guage, Ss with length n and St with length m, words from Ss are mapped to words from
St (Dyer et al., 2013). Thus we capture an alignment matrix of words, Ms⇒t , which
denotes the occurrence of alignment.

Such approaches minimize the difference between the source embeddings with the
corresponding alignment matrix, and the target embeddings (Zou et al., 2013). The
method draws a direct parallel to the mapping-based approach of parallel word-level
data; with the slightly modified minimum squared error being expressed as follows,
where M is the alignment matrix for given seed vocabularies X:

Ωs⇒t = ||Xt −Ms⇒tXs|| (2.4)

J = L(Xt) + Ωs⇒t = ||Xt −Ms⇒tXs|| (2.5)
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Drawing further comparison to mapping-based word-level alignment, several re-
searchers have sought to better fulfil the optimization goal by applying constraints to
the alignment. The adjacency matrix can be factorized to be constrained accounting for
a separate monolingual objective, contextual relationship or sparseness (Huang et al.,
2015; Shi et al., 2015; Vyas and Carpuat, 2016).

Sentences as Sums of Word Embeddings: Other research proposes considering the
sentence embedding as a sum of word embeddings. Hermann and Blunsom (2013) pro-
pose conceptualizing the representations of sentences in s and t as the sum of embed-
dings, optimizing the minimum distance between the sentences. Similarly Lauly et al.
(2014), encode the source and target sentence within a single auto encoder, optimizing
the cross-lingual task jointly.

Skip-Gram Models: Another approach is to extend the monolingual skip-gram model
(Mikolov et al., 2013a) to learn cross-lingual embeddings. Analogous to the orthogonal
regression mapping-based word-level alignment, these models optimize for losses (L)
for each language together and an additional cross-lingual regularization term (J):

J = Ls + Lt + Ω

Research in the area of parallel sentence-level alignment is lacking in comparison
to its word-level counterpart. Moreover, there is no definite benefit to adopting an
exclusively sentence-level approach; however there are indications that augmenting
sentence-level alignment with word-level alignment can reduce the impacts of hubness
(Radovanovic et al., 2010)(Ruder et al., 2019).
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2.4 | Summary
In this chapter, we discussed literature relevant to the task of cross-lingual natural lan-
guage inference. We observe that over the past decade, natural-language processing
approaches in general have been overhauled significantly. The introduction of neural-
network models and word embeddings have ushered in a renaissance of new advances
and state-of-the-art approaches. This is particularly evident with the recent proliferation
of transformer models over the past year, which forego the recurrent and convolutional
neural network approaches considered modern and state-of-the-art until recently. How-
ever, as discussed, such models are poorly understood.

Cross-lingual natural language processing is a relatively under-researched area, with
most task-specific research hitherto focusing only on monolingual cases; neural net-
work architectures and word embeddings are still active and under-explored research
areas in the cross-lingual context. The task of cross-lingual natural language inference is
also under-explored; the corpus and benchmark provided through XNLI Conneau et al.
(2018) is the first of its kind. To our knowledge, there are no alternative RNN or CNN
architectures aside from the XNLI benchmarks. The only other architectures which exist
are generalized multi-task transformer models, proposed as baselines in the XTREME
Hu et al. (2020) task. The two tasks will serve as a strong baseline for our research.

Both XNLI and XTREME were proposed within the past two years, while the XTREME
task is currently open at the time of writing. Thus, we conclude that the research area is
nascent and rapidly evolving, with strong potential for novel contributions.

Within this section, we dedicated a considerable amount of attention to monolingual
neural network approaches, particularly word embeddings and neural architectures.
This serves as an important background to source ideas and concepts which can be
adapted within the cross-lingual context. Moreover, we also dedicated a considerable
amount of attention to word alignment processes; these methods underpin the quality
of word embeddings proposed in the XNLI baselines.

In the next section we will outline our system’s design based on our research through
which we conclude that:

� The current state of the art (SOTA) in cross-lingual NLI is the transformer-based
XLM (Conneau and Lample, 2019) model, with an accuracy of 79.2%. Human
cross-lingual NLI has an accuracy of 92.8%.

� While showing strong results, transformer models are not as well understood as
recurrent and convolution neural networks. The SOTA for LSTM-based English
monolingual NLI is 71%.
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� Translation based approaches, which are considered undesirable for cross-lingual
NLI approaches, currently outperform all cross-lingual transfer approaches.

� Word-level word embedding alignment is the most popular word embedding
alignment method. Research indicates that there is potential in using word-level
and sentence-level alignment methods simultaneously (Ruder et al., 2019).
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3

Methodology

Our study poses two research questions. First, we aim to design a system where infer-
ence knowledge learned in a high-resource language is transferred to other languages.
Second, we wish to examine whether current neural architectures can be applied in an
inference scenario where the premise and hypothesis are in different languages.

In this chapter, we detail our approach for achieving these goals, discussing our
choices in terms of the research cited within the previous chapter, in order to achieve
our objectives (restated below):

1. Build a number of word embedding models catered to our aims, particularly a set
of aligned word embeddings for cross-lingual natural language processing.

2. Design and adapt neural architectures for transfer learning within the inference
task. We explore two options, the first consisting of a Cross-lingual transfer scenario,
and the second considering a situation where the inference task is ported to a
translation task.

3. Design and adapt neural architectures for approaching the cross-lingual inference
formulation, where the premise is in one language (English) and the hypothesis is
in another language.

We begin by reviewing the overall solution architecture, describing how each com-
ponent relates to the other and the application of our architecture for different tasks.
Next, we describe each component in detail, reviewing the process for learning word
embeddings, and two neural architectures proposed in our research.
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3.1 | Solution Overview
Our system consists of a central inference model which is trained for monolingual en-
tailment classification on one language L1; the model is then fine-tuned for an inference
task in a second language L2. In our examples, L1 is English and L2 is Spanish. How-
ever as discussed in Chapter 4, we evaluate our approach using a number of different
languages.

Premise Embedding Layer Hypothesis Embedding

Deep Neural Network

English
Aligned Word Embeddings

Premise Embedding Layer Hypothesis Embedding

Deep Neural Network

English NLI Classification
Spanish NLI Classification

Zero-shot Transfer

Spanish
Aligned Word Embeddings

Inference ExamplesInference ExamplesEnglish
Inference Examples

Premise

Hypothesis

Inference ExamplesInference ExamplesSpanish
Inference Examples

Premise

Hypothesis

Figure 3.1: The target architecture, primarily consisting of a neural architecture which
is trained on English and adapted or fine-tuned to another language. The network em-
ploys sentence representations built from learned word embeddings. Within our solu-
tion, we first train a neural network using English word embeddings, and an English
NLI data-set. Next, we re-use and fine-tune the model using word embeddings and
inference examples in the source language (for example, Spanish). The figure shows
the fine-tuning process for the transfer learning case, where a model learned in English
is fine-tuned to address inference in Spanish. Within subsequent sections, we explain
how we modify the data sets used within this example to address other cross-lingual
inference scenarios.

Each architecture is composed of three distinct components: an embedding model,
which creates a language model based on an input corpus; a sentence encoding compo-
nent, which leverages the embedding model to represent sentences; and an neural net-
work architecture which learns the inference relation or is fine-tuned for the target lan-
guage. The latter of these components is adapted and fine-tuned based on the language.
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In Section 3.2 we outline our choice of word embeddings and the training and alignment
process used, specifying how our approach differs from previous approaches. In Sec-
tion 3.3, we compare and contrast two different neural network architectures employed
within our solution.

3.1.1 | Data sets
The MultiNLI (Williams et al., 2018) data set is used to train the initial inference model
in English. Fine-tuning is performed in English and other languages using data sourced
from the XNLI data set (Conneau et al., 2018), which provides examples in fourteen
different languages alongside English. Alongside the XNLI data set, fine tuning is per-
formed using two additional data sets, constructed to tackle a total of three distinct
scenarios. We outline each scenario below.

In our first scenario, we address the Cross-lingual transfer learning task using the
original XNLI data set. An inference model learned on one language is transferred and
fine-tuned to perform inference on a second language, as shown in Figure 3.1. This ap-
plication is bench-marked against a second application in our second scenario, where
inference examples are translated to English. We do this by constructing a second data
set, which we call TRAN-XNLI, where examples in the original XNLI data set (Conneau
et al., 2018) in languages other than English are translated to English. As in Figure 3.1,
a model is adapted and fine-tuned to perform inference on the target language, whose
examples are translated. The translation is carried out using the Google Translate API
(Google, 2006) and the original English-language examples are omitted from the data
set. In this second scenario, we are effectively porting the inference task to a machine-
translation task. This approach has shown to be the strongest baseline in previous re-
search (Conneau et al., 2017a), and will therefore serve as an important benchmark for
evaluating the results of our own research.

For our final scenario, we construct an additional data set where the premise is in
English and the hypothesis is in another language, also using examples from the original
XNLI corpus. We refer to this corpus as CROSS-XNLI. The data set is constructed by
iterating over all non-English inference pairs, and replacing the premise by their English
counterparts. Similarly to the TRAN-XNLI data set, original English-language inference
pairs are also omitted from this corpus.

Our solution is unique in terms of previous solutions to the inference task. Con-
neau et al. (2018) propose baseline architectures which employ sentence embeddings
and aligned encoders to address the Cross-lingual transfer and Translation scenarios de-
scribed above. Such sentence embeddings are high dimensionality, consisting of 1024
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TRAN-XNLI DatasetXNLI Dataset

Pair 7492; Language: English

While statement is better, answer gives the mental picture of completion.

Statement gives more details.

Pair 7492; Language: Spanish

Aunque la aseveración es mejor, una respuesta da una imagen mental de compleción.

La declaración proporciona más detalles.

P

H

P

H

Pair 7492; Language: English

While statement is better, answer gives the mental picture of completion.

Statement gives more details.

Pair 7492; Language: Spanish

Although the statement is better, an answer gives a mental picture of completion.

The statement provides more details.

P

H

P

H

CROSS-XNLI Dataset

Pair 7492; Language: English

While statement is better, answer gives the mental picture of completion.

Statement gives more details.

Pair 7492; Language: Spanish

While statement is better, answer gives the mental picture of completion.

La declaración proporciona más detalles.

P

H

P

H

Figure 3.2: Alongside the original XNLI data set used for fine-tuning, we construct two
additional benchmarks; TRAN-XNLI, which ports the inference task to a translation
task; and CROSS-XNLI which addresses pure cross-lingual inference.

dimensions. Conversely, our solution employs word embeddings which results in a
training process which is faster and consumes less resources. Moreover, our solution
employs alignment at the word embedding layer as opposed to the encoding layer. We
discuss the implementation details for these components in the next section.

3.2 | Cross-Lingual Word Embeddings
The first task in applying our solution architecture is to represent language in a way
which can be employed by a neural architecture. In Section 2.2 we introduce the con-
cept of word embeddings, which represent words as vectors within a high-dimensional
space. Within our research, we employ the fastText (Joulin et al., 2016a) framework to
learn word representations from input corpora in different languages from the XNLI
corpus. Subsequently, we align these embeddings to a common vector space, in order
to provide a single cross-lingual representation of words. The aligned word embed-
dings which result allow us to encode sentences in different languages to be employed
within our target architecture. In this section we briefly outline our decisions in terms
of learning such word embeddings and their aligned vector space.

3.2.1 | Monolingual Word Embeddings
Our system employs the fastText (Joulin et al., 2016a) framework for constructing mono-
lingual word embeddings. The framework learns word representations for character n-
gram vectors using the continuous skip-gram model. We consider this choice of frame-
work along two dimensions; on one hand, the selection of word representations as op-
posed to sentence representations; and on the other hand, the particular method for learn-
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ing the word representations, which makes use of character n-grams.

Conneau et al. (2018) propose a sentence-encoder architecture for cross-lingual in-
ference which uses multilingual sentence embeddings (Schwenk and Douze, 2017). The
sentence embeddings are constructed through a separate neural architecture to that
which performs inference. Within this architecture, input corpora are tokenized using
the fastBPE (Sennrich et al., 2016) and fed to a BiLSTM sentence encoder. The resul-
tant vectors are of 1024 dimensions. In contrast, word embedding frameworks typi-
cally achieve promising results using smaller vectors of 300 dimensions (Joulin et al.,
2016a; Mikolov et al., 2013b; Pennington et al., 2014). Larger representations, as in the
case of sentence representations, are intuitively better suited for complex classification
tasks, although modeling increased complexity requires increased resources. One of
the primary motivations for our study is to perform cross-lingual learning with as little
resources as possible. To this end, research has shown that, in some cases, word em-
beddings may render comparable results using less computational resources (Li et al.,
2018). Thus, we select word embeddings to be employed within our solution architec-
ture as an alternative to sentence embeddings. Our approach can thus be contrasted
with previous approaches employing sentence embeddings.

Another consideration in our selection process is the method though which the word
embeddings are learned. Several frameworks for learning word representations exist
(Joulin et al., 2016a; Mikolov et al., 2013b; Pennington et al., 2014; Peters et al., 2018);
a distinguishing factor between different examples of such frameworks is their repre-
sentation of word morphology. Words are typically composed of smaller meaningful
units, base words, in conjunction with optional prefixes and suffixes. Learning repre-
sentations for different languages require us to consider such morphological differences
between languages, particularly in cases where less data is available. Within smaller
corpora for particular languages, certain words may appear to be rare if morphology
is not taken into account (Joulin et al., 2016a). The fastText word embedding frame-
work represents words as character n-grams, applying the continuous skip-gram model
(described in Section 2.2) on a character level as opposed to a word level. Within our
approach, we construct fastText word embeddings for each language learned from a
corpus composed of a concatenation of the all Wikipedia (Wikipedia contributors, 2004)
entries for the language. Embeddings are constructed for all languages available within
the XNLI corpus: English, French, Spanish, German, Greek, Bulgarian, Russian, Turk-
ish, Arabic, Vietnamese, Thai, Chinese, Hindi, Swahili and Urdu.
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3.2.2 | Aligned Word Embeddings
Given a set of monolingual word embeddings learned on our input corpora, the sec-
ond phase of word embedding construction involves aligning the embeddings into a
single vector space. We apply the approach proposed by Joulin et al. (2018), which
aligns neighbourhoods of words for source and target languages Ls and Lt using cross-
domain similarity local scaling. The approach considers a bipartite neighborhood graph
as shown in Figure 3.3; given a word w, its word vector x and its K connected nearest
neighbours in a different language, a graph is constructed such that vertices can be di-
vided into two separate sets U and V and such that every vertex in U is connected to
V.

Figure 3.3: The word embedding alignment process using CSLS as described by Con-
neau et al. (2017b)

Given Ny(x), the set of K nearest neighbours of a word vector x, we calculate the
similarity to near target word vectors y using cosine similarity (Joulin et al., 2018):

CSLS(x, y) = −2cos(x, y) +
1
k ∑

y′∈Ny(x)
cos(x, y′) +

1
k ∑

x′∈Nx(y)
(3.1)

As a result, the approach presents a metric for matching words between the two lan-
guages; a neighbourhood for a word in source language corresponds to a similar neigh-
bourhood within the target language. The alignment process is assisted by a number of
bilingual dictionaries, sourced from the MUSE framework (Conneau et al., 2017b). In
order to address the issue of hubness, where particular words are surrounded by a signif-
icant number of neighbours, convex relaxations are applied, constraining the mapping
along orthogonal matrices as described in Section 2.3.2.1. Following the alignment pro-
cess, we obtain a set of word embeddings (with words represented by 300-dimension
vectors) which are aligned to a single vector space.
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3.3 | Natural Language Inference Architecture
In this section, we briefly outline the neural network architectures which are imple-
mented within our solution. Within our solution, we employ word embeddings as
inputs for our neural architectures. In turn, the networks encode the sentences using
these embeddings in order to perform the inference task. We implement two neural ar-
chitectures to assess different approaches to using word embeddings, which are bench-
marked for the three selected cross-lingual tasks. Our first model is an attention-based
model, which decomposes the task into sub-problems to be processed in parallel. We
implement an adapted version of the decomposable attention model initially proposed
by Parikh et al. (2016). In Section 3.3.1, we discuss the implementation of this network
within our architecture.

We select the BiLSTM architecture as our second solution since, as discussed previ-
ously, the XNLI benchmark provides reliable benchmarks for our solution, and serve
as a guideline for potential target architectures. These benchmarks propose a stacked
bidirectional LSTM (BiLSTM) (Hochreiter and Schmidhuber, 1997) as the baseline ar-
chitecture for the task (Conneau et al., 2018). Other approaches have employed similar
architectures for the inference task (Chen et al., 2017b; Ghaeini et al., 2018) achieving
similar state of the art results. However, our work is different from the approach pro-
posed within the XNLI benchmark. Whereas the benchmark uses sentence embeddings,
our networks employ word embeddings as inputs. In this, our approach is influenced
by previous monolingual inference architectures employing word embeddings. In fact,
our methodology can be considered as adapting prior methods which employ word
embeddings to a cross-lingual context.

Novel architectures exclusively employing attention mechanisms have been pro-
posed, achieving promising results for transfer learning (Hu et al., 2020; Vaswani et al.,
2017). We briefly outline the rationale behind such models, Transformer Models, within
our literature review. However, we choose to exclusively concentrate on employing
recurrent architectures to the inference task. Within our evaluation, we refer to the im-
plemented decomposable attention architecture and BiLSTM as DATTEN and BiLSTM
respectively. Below, we outline the implementation of both algorithms.

3.3.1 | Decomposable Attention
The decomposable attention model is inspired by attention mechanisms in sequence-to-
sequence (seq2seq) learning (Luong et al., 2016; Sutskever et al., 2014); within such sys-
tems, given two encoded sentences, the input states for words are softly aligned through
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an attention mechanism. Attention serves the purpose of aligning states within a neural
context.

Consider two sentences: "the boy is asleep" and "the boy is not awake." The neural net-
work is tasked with learning dependencies between phrases such that the words "asleep"
and the phrase "not awake" attend to each other. Similarly, the phrase "the boy" attends to
each other within both sentences, referring to the same subject.

F(the,the) =
F(the,boy) = 
F(the,is) = 

...
F(is,not) = 

F(is,awake) = 
F(asleep,awake) =

the boy is asleep

the

is

not

awake

boy

G(the,the) =
G(the,boy) = 
G(the,is) = 

...
G(is,not) = 

G(is,awake) = 
G(asleep,awake) =

Attend Compare

Aggregate

y = (                       )+ +

Figure 3.4: The decomposable attention model consists of three distinct phrases; the
attend, compare and aggregate phases. (Parikh et al., 2016)

Parikh et al. (2016) propose an approach for attention modeling within inference
tasks. The approach follows a three-phase process. In the first phrase, we align sub-
phrases of the two sentences using a feed-forward network. The attend phase produces
a series of aligned vectors which are subsequently compared within a comparison phase.
These phases can be expressed as two functions: F for the alignment and G for the
comparison.

Within the attend phase, F consists of computing the dot product eij, for which we
take the weighted sum to compute attention weights αj and βj respectively. The atten-
tion weights αj and βj calculate the weighted attention for a sub-phrase in the premise
attending to a sub-phrase the hypothesis and vice versa. Subsequently the attention
weights are compared to create a vn,i and vn,j as outputs for each sentence:

eij = F(ai)
T F(Bj) (3.2)

αj = ∑n
j=1

exp(eij)

∑n
k=1 exp(ekj)

β j

β j = ∑n
j=1

exp(eij)

∑n
k=1 exp(ekj)

αj
(3.3)
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v1,j = G(αi, βi)

v1,j = G(β j, αj)
(3.4)

The two vectors are summed and inputted to another feed-forward network in order
for the inference classification to be performed.

3.3.2 | Bidirectional LSTM
We propose an alternative architecture in the form of a bidirectional LSTM (BiLSTM)
model (Hochreiter and Schmidhuber, 1997) to be considered in contrast to the decom-
posable attention model. The chosen architecture is inspired by the initial baseline pro-
vided by the XNLI data set (Conneau et al., 2018).

Embedding Layer Embedding Layer

Projection Layer Projection Layer

BiLSTM

MLP

NLI Classification

BiLSTM Cell BiLSTM Cell

Figure 3.5: The proposed BiLSTM architecture, composed of embedding, projection,
bidirectional LSTM and multi-layered perceptron layers.

Our model follows the recurrent neural-network architecture, leveraging LSTM cells.
Embeddings for the premise and hypothesis sentences are fed into the input layer of the
network, which are then passed to a projection layer. The baseline approach involves
the alignment of the encoding layer (shown above as projection and embedding layers),
but alignment is carried out within the source embeddings in our case.
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3.4 | Implementation Details
In this section we briefly specify the tools used within our implementation. As pre-
viously discussed, our development process consists of two phases; learning of word
representations and neural architectures for classifying inference. All implementation
described in this section is carried out using Python Version 3.6.9.

We learn our embeddings using Wikipedia (Wikipedia contributors, 2004) corpora
downloaded from publicly-available Wikipedia database backups for different languages
(Wikipedia, 2004). The backup is subsequently cleaned and restructured using the Python
Genism package (Řehůřek and Sojka, 2010), providing a clean, plain-text version of
the corpus. Word embedding learning and alignment employ the Fasttext framework
(Joulin et al., 2016a) and MUSE frameworks (Conneau et al., 2017b), deploying paral-
lel resources for the different languages. Minor modifications to the process to refine
alignment are performed in Python.

All processing for constructing the word embeddings is carried out on a CPU op-
timized AWS EC2 (Amazon, 2006) instance, with 36 virtual cores and 72GB of RAM.
Throughout our implementation, we prioritize CPU optimization for our server, since
the fastText framework solely relies on CPU cores for processing.

During the second phase of our implementation, we implement neural networks
using the PyTorch Python package (version 1.3.0), making use of data sets provided by
the TorchText Python package (version 0.7.0). We develop custom data loaders for all
our data sets, including MultiNLI (Williams et al., 2018), XNLI (Conneau et al., 2018),
TRAN-XNLI and CROSS-XNLI; of these, MultiNLI and XNLI are constructed program-
matically, employing the Google Translate API (Google, 2006) where applicable. Our
networks are run on a GPU-optimized AWS EC2 instance (Amazon, 2006) with 16 VPU
cores, 1 GPU core, 122GB of RAM and 8GB of GPU memory. All training employed the
GPU for processing, with a few exceptions to optimize for memory usage.
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3.5 | Summary
In this chapter we gave a brief overview of the methodology to be used to explore the
cross-lingual inference task towards the stated aims. Three separate components of our
methodology can be identified:

1. Data: We source and construct the relevant data sets for evaluating our system.
We source the MultiNLI (Williams et al., 2018) data set for training our neural
networks in English, and the XNLI (Conneau et al., 2018) data set for fine-tuning
the networks to perform the inference task on different languages. Additionally
we build two additional datasets: TRAN-XNLI, a version of the XNLI data set
where all example pairs other than English are translated to English; and CROSS-
XNLI, a version where hypothesis examples in languages other than English are
replaced with their English counterpart.

2. Word Embeddings: We learn a number of monolingual word embeddings using
the Wikipedia corpus for different languages, and align them using cross-domain
similarity local scaling.

3. Neural Architectures: We propose two different neural architectures: a decom-
posable attention neural network (referred to as DATTEN here under) and a Bidi-
rectional LSTM (BiLSTM) network to perform the inference task.

Within the next section, we perform a number of experiments to assess the perfor-
mance of our system. For the Cross-lingual transfer task, we train our networks on the
MultiNLI corpus, and fine-tune the network using the XNLI corpus. Subsequently, our
other two tasks employ the TRAN-XNLI and CROSS-XNLI data sets for fine-tuning.
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4

Results and Evaluation

In this chapter, we shall outline the evaluation process carried out in our research on
cross-lingual natural language inference. The aims of our study is to assess two scenar-
ios for cross-lingual inference: the Cross-Lingual transfer scenario, which additionally in-
cludes the Translate Train experiment; and the Purely Cross-Lingual Inference scenario. For
each experiment, we present two different neural architectures, a bidirectional LSTM
and a decomposable attention network. We also briefly describe the hyper-parameters
selected for each model, highlighting the differences in the training processes. Our eval-
uation is structured as follows:

1. Aligned Word Embeddings: We evaluate the word embedding models constructed
to encode sentences within our neural networks. In particular, we aim to evaluate
the quality of the aligned word embeddings.

2. Cross-Lingual Transfer: We evaluate our neural architectures on the cross-lingual
transfer by comparing the performance of the two networks across the two sce-
narios. In the first scenario, we fine-tune a network trained on English to per-
form inference in another language, covering the Cross-Lingual Transfer case; in
the second scenario, we translate the inference pairs to English in order to per-
form monolingual inference, offloading the cross-lingual component of the task to
a machine-translation task. We also take a deeper look into our results by evaluat-
ing the best model’s performance across different inference labels (contradiction,
entailment, and neutral).

3. Purely Cross-Lingual Inference: We evaluate our models on the cross-lingual in-
ference formulation where the premise is in English and the hypothesis is in the
target language. Similarly to the previous task, we also evaluate the best model’s
performance across different inference labels.
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For the purposes of our evaluation, we consider a subset of languages provided by
the XNLI data set—English, French, Spanish, German, Greek, Bulgarian and Russian,
which provides a mix of Romance, Germanic and Indo-European languages.

4.1 | Aligned Word Embeddings
As described in Chapter 3, we train word embeddings for each language using the fast-
Text framework (Joulin et al., 2016a). Our word embeddings are generated using an
unsupervised Skip Gram Negative Sampling approach in 300 dimensions. The model is
fed data from the Wikipedia (Wikipedia, 2004) and Europarl (Koehn, 2005) corpora for
each language, where available. Subsequently, we align our word embeddings using
the MUSE framework (Conneau et al., 2017b), and a modified version employing or-
thogonal constraints as described by Joulin et al. (2018). Within all our experiments, we
select the English embedding as the source language for the alignment, mapping other
target languages to align words, finally producing a set of aligned embeddings for both
the source and the target language. We perform an intrinsic evaluation for our aligned
embeddings, assessing the quantifiable accuracy of our alignment (Mikolov et al., 2013a;
Søgaard et al., 2018; Vulić and Moens, 2013).

Our evaluation metric follows a standard benchmark for machine translation. We
source English dictionary translations for each language from the MUSE framework
(Conneau et al., 2017b). For each translation pair, we retrieve the top ten nearest neigh-
bours from the aligned embedding using Euclidean distance. Accuracy is scored by
evaluating whether the selected nearest neighbours contain the direct translation as
provided by the dictionary; calculated as the fraction of entries found in the dictionary
whose translation is found in the top k retrieved words (where k=10). Thus, we report
our results as the percentage of words whose translation was correctly retrieved by the
nearest-neighbour retrieval:

Accuracy =
count_selected_words

count_translations_top_k_selection
(4.1)

Our results show that the orthogonal constraints applied during the training pro-
cess increased the accuracy for translation retrieval. These results corroborate previous
research on the topic Joulin et al. (2018), achieving comparable results across different
language pairs.

Although our chosen approach aligns two separate word embeddings, resulting in
two separate but aligned vector spaces, we also experiment with different approaches.
For example, we merge the aligned embeddings into a single vector space, creating
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Europarl
Sentences

Wikipedia
Articles

en 2,218,201 6,181,238
fr 2,190,579 2,260,765
es 2,123,835 1,636,226
de 2,176,537 2,494,151
el 1,517,141 183,044
bg 411,636 266,604
ru - 1,671,334

Table 4.1: Sizes of the Europarl (Koehn, 2005) and Wikipedia (Wikipedia contributors,
2004) corpora which were used for constructing Word Embeddings

Language MUSE Constrained
fr 78.3% 84.2%
es 76.2% 86.5%
de 68.9% 75.8%
el 53.1% 64.2%
bg 53.3% 64.8%
ru 58.2% 70.3%

Table 4.2: Accuracy for the nearest neighbour retrieval task for each alignment method,
where MUSE refers to embeddings aligned using the MUSE framework and constrained
refers to the same approach with orthogonal constraints applied as described in Section
3.2.2. Our results show that orthogonal constraints have a positive effect on word em-
beddings.

a single-word embeddings space composed of aligned vectors. Given two aligned vec-
tors for a given language pair, such as English and French, we simply append the vectors
into a single file prior to evaluation. This results in a single vector space which would
supposedly be used to encode sentences in different languages. Similarly, we also ex-
periment with learning word embeddings over a mixed language corpus to create a
single multilingual vector space without the need of alignment. However, both these
approaches yield poor results when applied to our neural networks. For this reason, we
will opt to employ our word embeddings separately within our neural networks.

4.2 | Cross-Lingual Natural Language Inference
We present a number of different experiments in our exploration of cross-lingual in-
ference. As discussed in Chapter 3, we train a neural network on entailment pairs for
English and fine-tune the network to perform entailment in a different languages. All
experiments employ the MultiNLI (Williams et al., 2018) data set for initial training in
English. Meanwhile, we experiment with different cross-lingual entailment scenarios
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during our fine-tuning phase: Cross-Lingual Transfer, Cross-Lingual Transfer relying on
Translation (Translate-Train) and Purely Cross-Lingual Inference.

For each of our experiments, we test two neural architectures; a stacked Bidirectional
LSTM (bilstm) network and a Decomposable attention (datten) network as discussed in
Chapter 3. During the tuning process, we adopt a learning rate schedule wherein if
the validation loss does not decrease within three epochs (the patience parameter), the
learning rate is reduced. We perform a simple grid search over the selected optimizer,
dropout ratio, epochs, learning rate and patience to select the ideal hyper-parameters
for each approach. While we do not attempt to exhaustively evaluate this process, we
provide an overview of the selected hyper-parameters in Table 4.3. Both approaches
were tested using 1000 epochs and a batch size of 128. We observed that the algorithms
typically reached a maxima within this training period.

Batch Size Hidden Layer Size Dropout Ratio Epochs Learning Rate Patience Optimizer
bilstm 128 200 0.5 1000 0.01 3 adam
datten 128 200 0.3 1000 0.1 3 adagrad

Table 4.3: The hyper-parameters selected for each architecture.

We find that the Bidirectional LSTM model performs best using an Adam optimizer
and a learning rate of 0.01. Meanwhile, the decomposable attention model performs
best using an Adagrad optimizer and a larger learning rate of 0.1. Both algorithms
employ three ReLU dropout layers, which achieves best performance with 30% and
50% dropout respectively.

Prior to testing our methods on different cross-lingual inference tasks, we carried
out our initial experiments on the monolingual inference task presented by the SNLI
(Bowman et al., 2015) and MultiNLI (Williams et al., 2018). The monolingual inference
models trained during this phase of our evaluation are later fine-tuned to address the
cross-lingual inference task. Table 4.4 shows a summary of our results on the monolin-
gual inference task, compared to other approaches. The monolingual task is outside of
the scope of this research, but the task serves as an important reference point to validate
our approaches. The current state of the art within the monolingual task is achieved by
Transformer Models, a different architecture to that which we employ. Thus, we seek to
compare our methods to similar approaches that employ RNN and CNN models. When
compared, the results for our approaches achieve similar performance, thus validating
our implementation.
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Dataset Approach Accuracy
MultiNLI bilstm 71.7%

datten 70.5%
Transformer Model (SOTA) (Radford et al., 2018a) 81.4%
CNN + Max-Pooling (Chen et al., 2017b) 74.9%

SNLI bilstm 84.7%
datten 69.2%
Transformer Model (SOTA) (Pilault et al., 2020) 92.1%
600D BiLSTM Encoder (Liu et al., 2016b) 83.2%

Table 4.4: Results for our approaches to monolingual inference tasks in English versus
previous approaches. Although the current state of the art methods employ transformer
models, the results for our approach are comparable to previous approaches using sim-
ilar architectures, thus validating our approach.

4.2.1 | Cross-Lingual Transfer
In our first two experiments, we explore cross-lingual transfer learning for monolingual
inference. Given a neural network trained for inference in English, we fine-tune the
network to learn inference for text fragments in a different language.

We study the Cross-Lingual transfer scenario of cross-lingual inference, where we as-
sess whether a proposed neural architecture trained in one language can be fine-tuned to
perform inference classification in another language. We compare this approach against
the alternative of relying on machine translation, where the neural network is fine-tuned
for inference pairs which are translated from the target language to English. In the Cross-
Lingual transfer case, for example, we train a neural network on entailment pairs for
English and fine-tune the network using entailment pairs in Spanish. Within the Trans-
late Train case, we train a neural network on entailment pairs for English and transfer
the network to classify Spanish entailment pairs translated to English. This effectively
reduces the cross-lingual transfer task to a monolingual task, where translation acts as
an intermediary. Previous work has shown that this method yields the best results,
providing a strong baseline upon which it is difficult to improve (Conneau et al., 2018;
Hu et al., 2020). The experiments are carried out using the XNLI (Conneau et al., 2018)
and an additionally constructed TRAN-XNLI data set as described in Chapter 3. We
compare our results with benchmarks from approaches presented alongside the XNLI
(Conneau et al., 2018) corpus; the authors propose a bidirectional LSTM architecture
which, in contrast to our approach, employs sentence embeddings as opposed to word
embeddings. The sentence embeddings employed in the baseline approach are of sig-
nificantly higher dimensionality: whereas our approach employs 300 dimension word
embeddings, sentence embeddings are of 1000 dimensions.

Table 4.5 shows the results for our experiments in cross lingual transfer. There is a
sizable difference in performance for the two approaches - the Bidirectional LSTM (bil-
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stm) architecture consistently outperforms our Decomposable Attention (datten). An-
other observation is that our method, which employs word embeddings, yields poorer
results than the baselines, which employ sentence embeddings. The loss of accuracy is
significant, averaging a 10% loss in the cross-lingual transfer case, and a 7.5% loss in the
Translate Train case. In some cases, the loss is as little as 5%.

While the loss described above is significant, it should also be assessed by consid-
ering the lower dimensionality of the word embeddings, and the impact this has on
computational resources, of which our training process requires significantly less. In
quantifiable terms, models employing sentence embeddings take at least 30 hours of
training time (Schwenk and Schwenk, 2020), processing 2,000 sentences per second,
whereas the approaches employed within our solution are trained in under 3 hours.
Thus, we present a trade-off which results in models being cheaper to train, accepting
a degree of loss of accuracy in favour of cheaper training. This provides an interesting
direction for future work, where more optimal solutions employing word embeddings
may approach the results achieved by sentence embeddings.

Cross-Lingual Transfer Approaches Languages
Task Dataset Model en fr es de el bg ru

Cross-Lingual Transfer xnli bilstm 64.3% 58.9% 59.9% 58.7% 59.6% 52.3% 53.4%
datten 52.6% 50.5% 51.0% 52.9% 53.6% 48.3% 49.8%

XNLI Baseline (Conneau et al., 2018) 73.7% 67.7% 68.7% 67.7% 68.9% 67.9% 60.6%
Translate Train tranxnli bilstm - 62.0% 62.5% 61.3% 63.2% 61.7% 60.6%

datten - 48.8% 48.7% 50.5% 50.6% 48.3% 48.0%
XNLI Baseline (Conneau et al., 2018) - 70.4% 70.7% 68.7% 68.1% 70.4% 67.8%

Table 4.5: Results for our experiments in cross-lingual transfer for the inference task. We
present the results for two architectures, a bidirectional LSTM (bilstm) and decompos-
able attention (datten), which we compare to baseline Bidirectional LSTM approaches
presented alongside the XNLI corpus. In contrast to our approach, the baseline archi-
tectures employ sentence embeddings as opposed to word embeddings.

When considering the cross-linguistic performance of our models, both models per-
form consistently with a 5% to 8% variation, although a number of key observations
can be made. Firstly, results for languages which come from the same language family
are similar. French and Spanish, languages from the Romance branch of languages, con-
sistently achieve high results in our experiments; German and Greek, solely representing
Germanic and Hellenic languages respectively, achieve similar results. Meanwhile, the
pair of languages achieving the poorest performance, Russian and Bulgarian, achieve
similar results, perhaps due to the fact that they both use the Cyrillic alphabet. We also
observe that, within the case of cross-lingual transfer, the variation is higher, with the
model performing worse on languages which are more distant to English. Slavic lan-
guages such as Bulgarian and Russian, where we achieve the worst results, differ signif-
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icantly more from English when compared to French and Spanish, where we achieve the
best results. In fact, this variation disappears within the Translate Train scenario where
the text is translated to English; there is no observable variation across languages in this
case.

The results also show that the Translate Train approach consistently outperforms
the Cross-Lingual Transfer approach, corroborating previous research (Conneau et al.,
2018). Complexity introduced due to the cross-lingual nature of the fine-tuning pro-
cess is offset by the high accuracy of current machine-translation models. This posits
the idea that massively-multilingual inference could be achieved by well-researched
machine-translation approaches; translating a sentence from a target language (for ex-
ample Spanish) to English yields better accuracy than performing inference in the target
language. Furthermore, the difference in performance between the Cross-Lingual Trans-
fer and Translate Train approaches, within our implementation as well as in the baselines
which use sentence embeddings, is similar. Thus, we conclude that offloading the com-
plexity of cross-lingual inference to machine translation remains the most promising
approach to the task, even when employing word embeddings.

Next, we take a deep dive into the results by analyzing the performance of the mod-
els across different labels. A brief analysis of results for our Decomposable Attention
(datten) model shows that the model fails to classify inference adequately for all tasks.
Results for the contradiction and entailment classes are particularly low, ranging from
0% to 30% and 10% to 30% respectively. Conversely, the approach achieves a very
high accuracy for the neutral class, ranging between 85% and 90%. For this reason,
we exclusively scope our analysis to the bidirectional LSTM (bilstm) approach. Table
4.6 shows the performance of the Bidirectional LSTM model for different labels for the
cross-lingual transfer task.

Task Language Contradiction Entailment Neutral
XNLI en 65.3% 72.2% 55.7%

fr 54.3% 73.9% 46%
es 59.2% 72.9% 47.4%
de 58% 66.2% 51.1%
el 64% 62.4% 50.7%
bg 55.7% 26.6% 72.2%
ru 57.2% 23.8% 73.1%

TRANXNLI fr 70.2% 74.7% 47%
es 67.4% 68.4% 52.2%
de 65.2% 67.8% 50.8%
el 68% 70.4% 51.3%
bg 68.9% 72.8% 46.5%
ru 66.2% 66.8% 48.7%

Table 4.6: Table of results for the bidirectional LSTM (bilstm), by language and target
label.
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Our results show that predicting the Neutral label is most challenging - the results
for the Neutral label vary the most, with the models obtaining roughly 50% accuracy.
We conclude that detecting entailment, whether positive (Entailment) or negative (Con-
tradiction), is the most challenging part of the task, both for the monolingual translated
and the cross-lingual scenarios.

However, this does not always hold true - our models yield anomalous results in the
cases of Bulgarian and Russian within the cross-lingual transfer case, where we achieve
high accuracy for the Neutral label, but low accuracy for the Entailment label. We put
forward the idea that these results may be related to the nature of the languages - all
languages within our set, with the exception of Bulgarian and Russian exhibit some strict
form of word order. Briefly, word order relates to how strict rules are in terms of word
placement. Such order dictates whether a sentence is a statement or a question. Given a
sentence "Nigel started a fire.", alternative ordering of words such as "A fire Nigel started"
may convey different intentions. Certain languages, such as Bulgarian and Russian, ex-
hibit free word order, such that the order of words is not as semantically deterministic.
This is in contrast to other languages with strict word order, such as English, French,
Italian, Greek, and to a lesser extent, German. We suggest that the free word order char-
acteristic for the Slavic languages of our language set may yield higher results for the
Neutral label. In fact, within the Translate Train task, this phenomenon disappears due
to inference being carried out in English. Perhaps unsurprisingly, results for the trans-
late train scenario are very similar to those presented for English within the cross-lingual
transfer scenario.

4.2.2 | Purely Cross-Lingual Inference
In our third experiment, Purely Cross-Lingual Inference, we train our neural network on
English and fine-tune the network to classify inference pairs where one sentence is in
English and the other sentence is in another language such as Spanish. The data set
used in this experiment is the CROSS-XNLI data set, which is based on the original
XNLI (Conneau et al., 2018) data set as discussed in Chapter 3. Currently there are no
baselines addressing this scenario, thus our work in this area is novel.

Table 4.7 shows the results of our approach when applied to the purely cross-lingual
inference task. Similar to the previous task, the bidirectional LSTM outperforms the de-
composable attention model, albeit with a lower margin. Results are consistent across
all languages with no major variations. Moreover, performance across different lan-
guages varies less than in the cross-lingual transfer task described in the previous section.
Although the purely cross-lingual task is inherently more complex due to detecting in-

56



Chapter 4. Results and Evaluation 4.2. Cross-Lingual Natural Language Inference

Cross-Lingual Transfer Approaches Languages
Task Dataset Model en fr es de el bg ru

*Purely Cross-Lingual
Inference crossxnli bilstm - 55.3% 54.0% 52.4% 50.6% 50.2% 53.1%

datten - 48.2% 47.8% 52.3% 46.1% 46.1% 50.6%
Baseline (Artetxe and Schwenk, 2019a) - 72.2% 72.2% 72.8% 71.6% 72.0% 71.4%

Table 4.7: Table showing the results achieved on the purely cross-lingual inference task,
where the premise is in English and the Hypothesis is in another language. We compare
our results to a similar architecture which employs sentence embeddings as opposed to
word embeddings (Artetxe and Schwenk, 2019a).

ference across two languages, one of the sentences is in English. We put forward the idea
that such consistency is due to the fact that the cross-lingual task includes English sen-
tences, and thus the model requires less fine-tuning. When compared to the baseline,
our approach using word embeddings as opposed to sentence embeddings performs
significantly more poorly than our previous experiment in cross-lingual transfer; thus
the two approaches are not comparable. We posit that the loss of accuracy in this case
may be due to the fact that sentence embeddings provide a better representation when
comparing sentences across languages.

Task Language Contradiction Entailment Neutral
CROSSXNLI en 64.1% 69.2% 51.3%

fr 59.9% 63.7% 41.9%
es 53% 48.6% 59.7%
de 60.3% 52.2% 44.8%
el 52% 63.2% 33%
bg 56.9% 58.9% 30.1%
ru 57.5% 63.2% 38.3%

Table 4.8: Table of results for the bidirectional LSTM for the purely cross-lingual infer-
ence task.

Similar to our analysis in the previous section, we analyze the results for our best
performing architecture in more detail, by breaking down the accuracy by target label.
Table 4.8 shows that the Neutral label is the most challenging label to predict - with few
cases surpassing 50% accuracy. This corroborates the idea presented in the previous
section, that detecting entailment is more challenging than detecting the nature of the
entailment. We observe that poorer prediction for the Neutral class is responsible the loss
of accuracy in our two poorest models - Greek and Bulgarian. However, interestingly our
model for Russian, which hails from the same language family as Bulgarian, performs
well amongst the other languages in the set. Thus we find no conclusive evidence that
linguistic attributes may influence performance in this task.
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4.3 | Summary
In this section, we presented the results for our approach for aligning word embeddings
and cross-lingual inference, noting the following observations:

� Incorporating translation as an initial pre-processing to deal with cross-lingual
inference remains a strong approach which is difficult to surpass.

� Word embeddings do not perform as well as sentence embeddings for the infer-
ence task. However the difference in performance is not that great, with a 5% to
10% percentage loss of performance. This presents a trade-off which can be made
in favour of a more computationally efficient training process.

� Perhaps unsurprisingly, the purely cross-lingual inference task which is unique to
our research is significantly more complex than the transfer task.

� Our implementation of decomposable attention did not sufficiently detect entailment
in text.

� Languages hailing from the same language families tend to render the same results
within our approach.
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5

Conclusions

Our research proposes the exploration of cross-lingual natural language inference, pri-
marily motivated by the lack of exploration in the area, and with the broader goal of
achieving more maintainable and inclusive natural language processing. We select the
inference task specifically, due to its nature as a manifestation of semantic competence
(Cooper et al., 1996). To facilitate our exploration, we investigate two lines of work
which provide different formulations of cross-lingual inference with the aim to investi-
gate:

� The use of transfer learning to improve the inference task across different lan-
guages; this is done by taking a model trained for NLI within a high-resource
language (English), aiming to improve inference within other languages. Within
our experiments, we describe this as the Cross-Lingual Transfer task, where a model
is trained for the English inference task, and fine-tuned to carry out inference on
another (target) language. Additionally, we explore an approach which relies on
machine translation, the Translate Test scenario, where examples within the target
language are translated to English. The latter scenario offloads the complexity of
the cross-lingual task to machine translation.

� The application of deep learning approaches for the cross-lingual NLI formulation
where the premise and the hypothesis are in different languages. We call this
scenario the Purely Cross-Lingual Inference task. Our choice to address this task
provides novelty due to the lack of research in the area.
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5.1 | Achieved Aims and Objectives
The above goals are reflected within the approach described in Chapter 3 which achieve
two aims; the construction of a set of aligned word embeddings for different languages,
to be employed within our neural network architectures; and the design and adapta-
tion of neural architectures for the scenarios described previously. Both these aims are
achieved within our implementation. To adequately represent cross-lingual inference,
we selected a subset of languages which provide a strong mix of Latin, Germanic and
Indo-European languages - English, French, Spanish, German, Greek, Bulgarian and
Russian. Our phased approach, considering input word embeddings and neural archi-
tectures separately, provides for an evaluation at different levels of the architecture.

In Chapter 4, we present the results for our approach; the solution implemented and
subsequent results obtained address the objectives set out in Chapter 1:

1. To build a number of word embedding models to cater for cross-lingual inference;
particularly a set of aligned word embeddings for cross-lingual NLP. Our aligned
word embeddings achieve similar accuracy to the current state of the art for the
nearest neighbour translation tasks, validating our choice of approach. Subse-
quently, we validate the application of the embeddings as part of our overall solu-
tion.

2. To design and adapt neural architectures for transfer learning within the infer-
ence task. We experiment with two different architectures adapted to the task,
addressing Cross-Lingual Transfer and translation-based approaches for the same
task. Within the Cross-Lingual Transfer case, our results corroborate previous find-
ings by Conneau et al. (2018) regarding the effectiveness of employing machine
translation as a part of the method. However in contrast to previous approaches,
our work is different insofar that it exclusively employs word embeddings as op-
posed to sentence embeddings - this provides for a more computationally efficient
training process due to the lower dimensionality of word embeddings. While not
negligible, the lower accuracy achieved by our approach should be considered
against the gains made in computational efficiency. With increased training data
during training time, our approach may prove to provide a beneficial trade-off.

3. To design and adapt neural architectures for transfer learning within the purely
cross-lingual inference task, where the premise is in English and the hypothesis is
in another language, as initially proposed by Mehdad et al. (2010). The results
achieved in this task are notably lower than performance for the Cross-Lingual
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Transfer tasks. We attribute this to the increased complexity of detecting inference
across different languages.

We perform a thorough evaluation of our solution in Chapter 4, providing sugges-
tions for future work in this Chapter. Thus we conclude that our work has achieved the
goals set out within our introduction, with our main contributions being a more efficient
approach to cross-lingual transfer providing comparable results; and a benchmark for
purely cross-lingual inference. More broadly, our work provides a reference point for
future work in cross-lingual inference, which remains a nascent research area.

Our findings clearly indicate that employing translation within cross-lingual infer-
ence remains a strong baseline which is difficult to surpass; offloading the complexity
of a cross-lingual task to be handled by established and well-researched machine trans-
lation algorithms achieves higher accuracy than attempting fine-tuning. This gives rise
to the question of whether it is indeed worth pursuing cross-lingual inference as a task.
However, there are several arguments in favour of pursuing cross-lingual NLI never-
theless.

Chiefly, one must consider the methods through which translation systems are eval-
uated. When evaluating machine translation systems extrinsically, we are required to
deduce the relationship between two text fragments in different languages, in order
to evaluate whether the translation is correct. This deduction involves classifying the
inferential relationship between the sentences; in essence, the cross-lingual entailment
classification can be employed to evaluate translation systems. Work within the fields
of machine translation and cross-lingual inference are symbiotically beneficial. In turn,
work in the area of cross-lingual inference will assist in improving translation systems;
and subsequent improvements in translation systems can be used to further improve
cross-lingual inference task. Moreover, one must also consider the broader aims of AI
and natural language understanding. Considering AI to be the successful replication
of human learning, one must consider how humans acquire language. Bilingual and
multilingual speakers do not acquire languages in isolation; on the contrary, humans
acquire languages by drawing experiences from other learned languages. Thus from an
abstract standpoint, pursuing cross-lingual inference remains a worthy goal in the hope
of replicating human language acquisition within a computational context. We there-
fore conclude that not only does cross-lingual inference remain a worthy task to pursue,
but it is also necessary for further improving machine translation tasks.
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5.2 | Limitations and Future Work
In Chapter 4, we presented the results for our approach. Although our research provides
a number of unique contributions to the area of cross-lingual inference, our methods
present a number of areas for improvement. Firstly, we observed that one of our archi-
tectures, the Decomposable Attention architecture, did not learn inference sufficiently -
we suggest that additional hyper-parameter tuning is required to exhaustively to rule
out this approach. Moreover, our approach exclusively employs word embeddings as
opposed to sentence embeddings - we propose that a combination of sentence embed-
dings and word embeddings, or alternatively a more complex encoding architecture,
may provide a solution which achieves higher accuracy while striving to keep training
time low.

As discussed within our introduction, research within the area of cross-lingual NLP,
and more so within cross-lingual inference, is sparse. Task formulations within the
area are not well defined - with the phrase ’cross-lingual’ holding different meanings
depending on the research considered. Recent research has nearly exclusively concen-
trated on cross-lingual transfer (Conneau et al., 2018). Thus our research casts a wide net
in its exploration of cross-lingual inference with the aim of providing a reference point
for future work. The three scenarios addressed, two within the ’cross-lingual transfer’,
and one which we term ’purely cross-lingual inference’, cover a broad range of com-
putational tasks. More work is required within the area of cross-lingual semantics to
establish the road-map towards massively multilingual NLP, particularly in the form of
better defined and understood task definitions. Moreover, each different formulation
would benefit from dedicated research.

Our work is also motivated by improving NLP performance for low-resource lan-
guages. Within our experiments we select a few languages to sufficiently test our ap-
proach. Resources for the selected languages are available to a lesser extent than En-
glish, however other languages with fewer digitised resources exist, such as Swahili
and Urdu. Applying our approaches to such languages presents an avenue for future
work, possibly adopting variations to our approach, particularly in the area of training
word embeddings.

Within our study, we choose to exclusively focus on employing traditional neural
architectures. This is primarily due to the fact that in spite of recent advances, the appli-
cation of neural networks within cross-lingual natural language processing remains an
under-explored area. However as discussed previously, recent work within the area of
natural language processing has suggested novel architectures which exclusively em-
ploy attention, Transformer models (Devlin et al., 2019; Hu et al., 2020). Such models
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have achieved the a new state of the art on a variety of tasks, including inference, how-
ever the ability of such models to truly capture inference has been called into question
(Kovaleva et al., 2019). At the time of writing, this area of research is rapidly evolving
and thus provides an avenue for future work on the topic.

5.3 | Final Remarks
Cross-lingual NLP is a nascent area within natural language processing with the vast
majority of natural language processing research has revolving around English, There
are several reasons as to why achieving multilingual NLP is attractive, chief among
which is fostering technological inclusion within communities which do not speak En-
glish.

The nature of cross-lingual intelligence adds an additional layer of complexity to
NLP tasks, challenging previous approaches to be applied to address different linguis-
tic phenomena. Within our research, we opt to address inference, which is arguably one
of the more complex tasks within the area due to its inherently nuanced nature. Tes-
tament to this is the research around constructing inference data sets which represent
a broad range of inferential reasoning. Moreover, in this chapter we also explain how
the inference task itself can be used to improve machine translation, which in turn can
also play an important role in improving cross-lingual inference. Further research in the
area will result in more robust solutions, benefiting both the advancement of NLP in
languages other than English, and NLP in English itself. Amongst these tasks, inference
is particularly complex due to the nature of linguistic phenomena.

Although our methods do not provide improvements in accuracy, our research makes
two unique contributions to further research - to our knowledge no approach has been
presented using word embeddings, with previous baselines exclusively using sentence
embeddings; moreover, we address the purely cross-lingual inference task using neu-
ral networks, a task for which no previous work is available. Thus we believe that
our exploration offers a strong contribution in pushing for continuous development of
cross-lingual inference approaches.

In conclusion, our work makes a number of contributions to the field of Artificial
Intelligence; it provides an investigation into cross-lingual transfer learning for the in-
ference task; and the application of deep learning approaches within such tasks. These
research contributions help foster technological inclusion, ensuring that the field contin-
ues to progress NLP for different language; while also aiming to inspire systems which
closely mimic human natural language acquisition.
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