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Abstract

Knowledge is an important resource for manufacturing enterprises, hence the col-
lection, storage and analysis of data is a key function within such firms. An im-
portant source of data is the Industrial Internet of Things (IIoT), where sensors em-
bedded on industrial machines produce data that can provide insights about the
operations and condition of the machines. This data brings about new challenges
but also new opportunities. One such opportunity is Predictive Maintenance (PdM)
that aims to reduce maintenance costs by maximising the use of the various ma-
chine parts and inventory whilst minimising unplanned machine outages. In PdM,
machine failures are predicted by monitoring some machine health or performance
indicators that come in the form of IIoT data. The challenge, however, is to collect
and store the various IIoT data, that are heterogeneous in nature, and to exploit
them for PdM. Research shows that Enterprise Knowledge Graphs (EKGs) are flexi-
ble data structures that are capable of integrating heterogeneous data, and can thus
provide a solution to this challenge.

In this dissertation we investigated the use of the EKG as an integration paradigm
for the IIoT data generated by wire bonding machines, and as the foundations of a
PdM framework for these machines. The use of the EKG for PdM is scarce in litera-
ture, which gave us motive to contribute another case study based on this coupling.
We designed and built an ontology modelling the wire bonders, their states, sensors
and the observations of these sensors. The ontology was then used to transform the
IIoT data into an EKG. Machine Learning (ML) models were also trained to pre-
dict wire bonder faults upon the IIoT data. These were then integrated into a PdM
framework that extracts IIoT data from the EKG to forecast possible faults of the
wire bonders.

The results obtained are promising and show that the ontology and the EKG were
adequate for storing IIoT data, achieving an accuracy of 1.0. They also show that
the PdM framework was able to predict wire bonder faults with an F1-score of 0.75
up to two hours in advance. The EKG served to integrate the disparate data sources
that were needed for PdM, and to standardise the vocabulary of such data. This
simplified the PdM framework that would have otherwise needed to cater for the
different data structures and vocabularies when retrieving the IIoT data. Further-
more, the EKG was able to infer new knowledge through the ontological reasoning,
thus completing the knowledge extracted from the wire bonders. These results also
demonstrate that the EKG can be leveraged for PdM.
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1

Introduction

Industry 4.0 has been the topic of many studies conducted by research centres and uni-
versities (Hermann et al., 2016). It encapsulates a set of concepts that define the fourth
industrial revolution, where Smart Factories connect people, products, machines and
data to innovatively redesign their business processes. It implies that unless manufac-
turing enterprises exploit knowledge about their internal and external environments,
they will lose competitiveness in the market.

1.1 | Motivation
A modern factory generates large volumes of data on a daily basis (Ringsquandl et al.,
2017a,b). Such data comes in many forms and from various sources. Of particular inter-
est for this dissertation is the data generated by industrial machines and their embedded
sensors. This is referred to as the Industrial Internet of Things (IIoT), where a network of
sensors, middleware and software produce data that, through advanced analytics, can
provide a deeper insight of the company’s operations and assets (Gilchrist, 2016). The
diversity of machines and software that produce this data makes their integration quite
challenging (Schabus and Scholz, 2017). Such data, however, is paramount for analytics
and decision making. The challenge is to collect and store this data in a way that it can
be used to improve the decision making function and operations in general.

Several studies look at the Enterprise Knowledge Graph (EKG) as a solution to this prob-
lem (Medina-Oliva et al., 2014; Ringsquandl et al., 2017a,b; Schabus and Scholz, 2017;
Song et al., 2017). The properties of an EKG make it a flexible data structure that can rep-
resent heterogeneous data sources as a network of related entities (Ringsquandl et al.,
2017a). Moreover, the semantic enrichment detaches the data from its original structure
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and vocabulary, which are normally bound to a particular sub-system, and transforms
it into a generic reusable form that can be applied to other similar sub-systems (Medina-
Oliva et al., 2014). For example, a machine (a system of several parts and components)
hosts a number of sensors each observing some property of interest. Such sensors are in
turn sub-systems of the machine and produce data that may or may not have a homoge-
neous form. In the wider scope, when considering the numerous machines contributing
within a production line, these varying in function, brand and model, the diversity of
data formats increases. The flexibility of the EKG allows for the adaptation of this het-
erogeneous data into a generic data structure that facilitates data analytics on a broader
perspective (Medina-Oliva et al., 2014; Ringsquandl et al., 2017a,b; Schabus and Scholz,
2017; Song et al., 2017).

One way to benefit from data analytics on IIoT data is Predictive Maintenance (PdM)
(Ran et al., 2019). Machine maintenance is an important activity within a manufactur-
ing environment, but also a costly one. Apart from the actual cost of maintenance with
respect to resource allocation, machine parts and other inventory, companies also con-
sider the reduced capacity utilisation caused by idle machinery, which results in less
production. Even costlier are unplanned outages that usually constitute a longer ma-
chine downtime due to the need to mobilise resources at short notice. A PdM strategy
aims to forecast outages at an early stage to allow for the planning and execution of
maintenance activities thus reducing machine downtime, however, the amount of time
a fault can be predicted in advance depends on the fault being investigated (Susto et al.,
2015). Another advantage of PdM is that machine maintenance would only be applied
when required, thus reducing maintenance activities on the machine (Ran et al., 2019).

There are many architectures that an enterprise can consider for its PdM framework.
The predictive model can obtain the machine health indicators directly from flat files
(Calabrese et al., 2020; Susto et al., 2015) or from a data lake (Spendla et al., 2017). Alter-
natively, NoSQL databases can be used (Kovalev et al., 2018). Kharlamov et al. (2017),
Schmidt et al. (2017), Medina-Oliva et al. (2014) and Voisin et al. (2013) opted for an
EKG as the knowledge base that supports their PdM framework. When considering the
advantages that the EKG offers on other data models, the number of research projects
that use this approach is relatively small. The EKG is regarded as an Enterprise Infor-
mation System, that integrates the various data sources within an enterprise to facilitate
decision making and reporting (Galkin et al., 2017), and this could possibly be one of
the reasons for the limited research on the use of the EKG for PdM. This gives us motive
to contribute another case study based on a real-life scenario, which demonstrates how
the EKG can be leveraged for PdM.

2
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1.2 | Problem Definition
In this dissertation we consider an actual use case from a local semiconductor chip man-
ufacturer. One of the initiatives taken by the company to improve operations is the
adoption of PdM in order to reduce unplanned stoppages in production. One of the
types of machines used along the production line of semiconductor chips are the wire
bonders, that are the scope of this research.

Wire bonders are more prone to failures in comparison with other machines used in
semiconductor production, mainly due to the complexity of the function they auto-
mate (Klingert et al., 2017). Wire bonders connect the die, a silicon block featuring an
Integrated Circuit (IC), to the underlying substrate using fine threads of wire (Tsai et al.,
2016). As shown in Figure 1.1, the wire bonds are formed between the pads on the die
and the lead frame on the substrate and this requires extreme precision due to the small
size of the components.

Figure 1.1: A representation of wire bonds connecting the die to the substrate, repro-
duced from Tsai et al. (2016).

Whilst in operations, wire bonders generate a lot of data in the form of event logs and
sensor observations. Such data differs in terms of vocabulary, format and the frequency
of the recordings. The harmonisation and integration of the data is essential for the data
to be used for PdM, hence the choice of a data integration paradigm and a flexible data
structure that can store all this data is imperative. Moreover, we need to identify which
features from this data are indicative that the machine is progressing towards a failure
and find means how such predictions can be made as early as possible.

3
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1.3 | Research Question
The main research question of this dissertation is the following:

Can an Enterprise Knowledge Graph (EKG) be leveraged to perform Predictive
Maintenance (PdM)?

The below, more granular questions will be tackled to help us provide an answer to the
main research question.

(RQ1) Can an EKG effectively store IIoT data?
For an EKG to support PdM it needs to store the IIoT data generated by wire bonders
upon which faults can be predicted. Therefore, the main research question cannot be
answered unless we determine that an EKG can fit IIoT data.

(RQ2) Can wire bonder failures be predicted from IIoT data and machine logs?
We need to determine whether the IIoT data and logs that are generated by the wire
bonders can be used to predict their faults. This question investigates whether such
data have the prerequisites to perform PdM.

(RQ3) Can an EKG structure support a PdM framework?
This question investigates whether the EKG can supply a PdM framework for wire bon-
ders with the necessary data in a timely manner and whether the EKG provides any
advantages over other data structures.

1.4 | Aims and Objectives
The aims of this research are (i) to build an EKG by combining the various data collec-
tions within a manufacturing production line, and (ii) to demonstrate that the EKG is
a valid data structure to support a PdM framework and offers a number of advantages
over other data models.

These aims can be achieved by fulfilling the following objectives:

1. Design an ontology to model enterprise-level data consisting of data on wire
bonding machines, their sensor network and their measured observations.

This objective aims to partly answer RQ1. The challenge here is to design a struc-
ture that is flexible enough to fit the heterogeneous data sources, yet sufficiently
descriptive to preserve as much as possible of the original data.

4
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2. Transform the data generated by the wire bonders into an EKG in real-time using
automated or semi-automated approaches.

The volumes of data generated by the wire bonders do not permit the updating
of the EKG to be done manually, therefore, we must find a way for this to be
automated. Moreover, the IIoT data needs to be transferred into the EKG in real-
time so that machine faults are predicted as early as possible. This objective also
aims to answer RQ1.

3. Train ML models to predict faults of wire bonders with enough lead time to allow
for corrective actions.

This objective aims to answer RQ2. It includes finding which ML models are suit-
able to predict such faults, which features from the data are useful for the predic-
tions, which data preprocessing methods facilitate the models’ performance, and
how much in advance can the faults be predicted.

4. Build a PdM framework that consumes the EKG for sensor observations and takes
advantage of its characteristics.

This objective aims to demonstrate that the EKG can supply the PdM framework
with the required sensor observations to make the predictions. Moreover, to pre-
dict wire bonder faults as early as possible, the time lag between the sensor obser-
vations and the data reaching the PdM framework should be kept to a minimum.
This objective aims to answer RQ3.

1.5 | Contributions
In this research we demonstrate the effectiveness of the EKG in storing the observa-
tions produced by the various sensors deployed on industrial machines, and in sup-
porting a PdM framework. The set up is based on that of Schmidt et al. (2017) and
we use data produced by wire bonding machines from an actual production line of a
local semiconductor manufacturing firm. We use three datasets - the Equipment Track-
ing System (ETS) event logs, the machine logs and the IIoT data. The ETS logs consist
of a series of messages and events generated by the machines throughout their opera-
tions while the machine logs consist of a series of sensor observations together with the
records of the settings of the machine. The IIoT dataset, on the other hand, consist of
a series of sensor observations. Whilst the ETS logs are generated whenever an event
occurs, the machine logs and IIoT records are generated every five minutes and three
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minutes respectively. The structure, format and vocabulary of all three datasets is dif-
ferent. The datasets cover a stretch of 23 days of operations for four wire bonders. More
details about the datasets are provided in Appendix A.

Using the method outlined by Noy et al. (2001), we design and build an ontology
that models the machines, their states, their sensors and sensor observations, then we
build and validate an EKG based upon this schema. We also follow the approach of
Ringsquandl et al. (2017a) and use Extract Transform and Load (ETL) scripts that ex-
tract data from the machine datasets, transform it into the required structure and load
the data into the EKG, thus automating the ingestion of data into the knowledge store.

We use the datasets generated by the wire bonders to train different Machine Learning
(ML) models to predict faults. Based on the approaches of Soares (2015), Calabrese et al.
(2020) and Gandhi et al. (2018), we experiment with different preprocessing methods in
order to find the optimal set-up for the predictive models. The best performers are then
integrated into the PdM framework, which is shown in Figure 1.2, and is built using
a producer/consumer design pattern. The producer consists of the wire bonders that
generate the data and the ETL scripts that extract this data and load it into the EKG. On
the other hand, the consumer retrieves real-time sensor observations that are used by the
predictive models to forecast possible faults. The consumer also features a dashboard
that serves to project the necessary information to the plant personnel.

Figure 1.2: A high-level representation of the PdM framework produced.

The results are encouraging and demonstrate that the EKG was well suited to store IIoT
data. A retrospective evaluation (Paulheim, 2017) of the EKG results in an accuracy
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score of 1.0. Moreover, on experimenting with the different models and preprocessing
set-ups, we achieve a fault prediction with an accuracy of 0.664 and an F1-score of 0.75,
120 minutes ahead of the actual fault. These results are achieved by training a Random
Forest (RF) model on a dataset that is scaled using L2 normalisation and smoothened
using a simple moving average with a 30-minute rolling time window. The dataset
is reduced using a filter feature selection method and class balanced using SMOTE.
Similarly, we obtain a fault prediction with an accuracy of 0.672 and an F1-score of 0.707,
90 minutes ahead of the fault occurrence, by training a Gradient Boosting Classifier
(GBC) on a similar dataset.

We finally integrate the EKG and predictive models into the system featured in Fig-
ure 1.2. The end result is a PdM framework operating on top of an EKG and forecasting
wire bonder faults 120 minutes and 90 minutes in advance.

1.6 | Document Structure
This chapter provided an introduction to the domain of this dissertation. It also ex-
plained our motivation and the research questions that this dissertation was aimed to
answer. An overview of the main contributions of this research project was also pro-
vided. The remaining part of the document is organised as follows.

More context to this dissertation is given in Chapter 2 by explaining the semiconductor
manufacturing process, with particular emphasis on the wire bonding procedure and
the various maintenance strategies that a manufacturing firm can adopt. It also intro-
duces the Knowledge Graph (KG) and its specialised version, the EKG. Consequently,
the chapter discusses PdM as well as its advantages and disadvantages. It also explains
how Machine Learning is used for Predictive Maintenance.

Chapter 3 presents the methodology we adopted throughout this research. First, the
datasets used in this dissertation are explained. Then the approach used to design, cre-
ate and populate the EKG is described. The chapter proceeds to explain how a number
of ML models were trained and validated and how the optimal models were chosen via
experimentation. Finally, the resulting PdM framework is presented as the integration
of the various components created throughout this research project.

Chapter 4 features an evaluation of the deliverables produced in this dissertation. The
results of the evaluation are presented and discussed. The chapter closes with an inter-
pretation of the results obtained.
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Finally, Chapter 5 concludes this dissertation by discussing the achievements of this
research against its objectives and how the research questions were answered. It also
proposes further work that can be explored in the future to extend this research.
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2

Background & Literature Overview

In this chapter we provide a backdrop to this dissertation by describing the semicon-
ductor manufacturing process, with particular emphasis on wire bonding and machine
maintenance. We proceed by reviewing the state of the art of Knowledge Graphs, fo-
cusing on Enterprise Knowledge Graphs. We also describe how these are used to model
sensor networks and the various ontologies that are available in this regard. Conse-
quently, we delve into Predictive Maintenance and explain the role that machine health
indicators play in the forecasting of machine failures. Finally, we go through the steps
involved in producing a Machine Learning model for Predictive Maintenance.

2.1 | The Semiconductor Manufacturing Process
The production floor of a semiconductor manufacturing plant is divided into two parts:
the front-end and the back-end (Ovacik and Uzsoy, 2012). The front-end is where the
semiconductor components are worked upon whilst in their raw form, while in the
back-end the components are sealed into a covering shell and therefore less sensitive to
contamination. The front-end requires a cleanroom1 controlled environment to reduce
the risk of contamination.

2.1.1 | Die preparation
The manufacturing process starts with raw silicon wafers upon which ICs are fabricated
(Ovacik and Uzsoy, 2012). Each wafer can contain thousands of such circuits. A photo-
resistant substance is applied to the wafer, which is then exposed to ultra violet light
passing through a mask with the pattern of the circuit. The wafer is then baked and

1ISO 14644-1:2015 Cleanrooms and associated controlled environments
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cleaned from impurities. Each circuit on the wafer is then electrically tested by means
of thin probes. Defective circuits are marked to be later discarded.

The wafers are mounted onto a machine that cuts the circuits loose thus forming dies,
small semiconductor blocks each featuring an IC (Ovacik and Uzsoy, 2012). The dies
are then attached to strips of substrate components, a process called die attach.

2.1.2 | Wire bonding
The wire bonding process is a delicate step in the semiconductor production process. It
physically wires the die/s to the underlying substrate (Schuettler and Stieglitz, 2013).
Extreme precision is required due to the small size of the components. The wire used
consists of a thin thread of bare metal, usually copper, silver or gold, depending on the
needs of the component being produced. The wire diameter normally ranges between
17.8 µm and 25.4 µm.

The wire bonding method used is known as the ball-wedge method. The steps taken
by the machine to produce a wire bond are shown in Figure 2.1, and are described by
Schuettler and Stieglitz (2013) as follows:

1. The machine positions the capillary with the wire thread passing through it over
the pad and applies a high voltage spark to the tip of the wire.

2. The wire melts forming a ball at the tip.

3. The capillary presses the ball against the pad whilst applying heat or ultrasound
energy to produce the first bond.

4. The capillary lifts off.

5. The capillary positions itself above the lead frame.

6. Once again the capillary presses against the lead frame whilst applying heat or
ultrasound energy to produce the second bond.

7. A clamp within the capillary closes to trap the wire so that when the capillary lifts
off the wire breaks itself from the wire bond.
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Figure 2.1: The wire bonding process, reproduced from Schuettler and Stieglitz (2013).

2.1.3 | Microchip Closure and Testing
The bonded components are then transferred to the back-end of the production floor
where the devices are sealed into a resin casing (Ovacik and Uzsoy, 2012). The mi-
crochips are then marked with the name of the manufacturer and a serial number.

The devices are then put to a series of tests to ensure an adequate quality of the product
(Ovacik and Uzsoy, 2012). Such tests are carried out under different environmental
conditions such as varying temperature and humidity. Moreover, the microchips are
subjected to thermal stress tests by being subjected to high currents at a temperature
of approximately 125 °C for not less than 24 hours. The microchips are also inspected
visually for defect such as bent leads or chipped casings.

2.1.4 | Maintenance Strategies
Machine maintenance is an essential activity within manufacturing companies. Mob-
ley (2002) states that maintenance activities account for between 15% and 60% of the
total cost of goods produced. Therefore the maintenance strategy adopted by an en-
terprise can impact its competitiveness with regards to prices, quality and performance
(Ran et al., 2019). On one hand, frequent maintenance is costly in terms of parts and
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inventory, but also due to the slow-down in productivity as a result of idle machinery.
On the other hand, scarce maintenance leads to unexpected machine outages that re-
sult in longer equipment downtime and even costlier maintenance (Mobley, 2002). So
an effective maintenance strategy should strike a balance between machine health and
maintenance costs.

The simplest strategy an enterprise can adopt is Reactive Maintenance (RM), where
maintenance is only applied when a machine breaks down (Mobley, 2002). This run-to-
failure approach reduces the burden of maintenance planning and scheduling, however,
Mobley (2002) found that companies using this method on average spend three times as
much on maintenance activities and need to have extensive inventories when compared
with companies employing other strategies. Mobley (2002) continues that although RM
was a popular method in the past it is rarely used nowadays.

In Preventive Maintenance (PM), it is assumed that a machine degrades in a similar
way to its counterparts (Mobley, 2002). Maintenance is applied on a timely basis so as
to prevent potential breakdowns. The frequency of maintenance depends on the Mean
Time Between Failures (MTBF) of the type of machine. A typical degrading pattern can
be seen in Figure 2.2, which shows that the probability of a machine failure is higher
in the beginning due to installation problems and after exhausting its expected lifetime.
The problem with PM is that parts are replaced based on the MTBF statistic and not
their condition, which results in parts being replaced before their end-of-life.

Preventive Maintenance (PM) remains the most common maintenance strategy but in-
dustry leaders are moving towards Predictive Maintenance (PdM) (Shin and Jun, 2015).
PdM, which is also known as Condition Based Maintenance (CBM), involves the mon-
itoring of some machine health or performance indicator/s, based on which machine
failures can be forecasted (Mobley, 2002). The goal is to maximise the interval between
maintenance activities whilst minimising unscheduled outages. An advantage of PdM
over PM is that in the latter, parts are replaced on a schedule basis, irrespective of their
wear or condition (Ran et al., 2019). This results in parts being discarded before the end
of their useful life. In PdM, it is the health condition of the machine that calls for main-
tenance and therefore, parts are used until the end of their useful life. So by avoiding
running to failure and experiencing unforeseen stoppages, and by postponing main-
tenance activities until really needed and maximising the utilisation of machine parts,
PdM is more cost effective than the other maintenance strategies (Ran et al., 2019).
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Figure 2.2: A plot showing the number of failures throughout a typical lifetime of a
machine, reproduced from Mobley (2002).

2.2 | Knowledge Graphs
Knowledge Graphs (KGs) are founded on the principles of the Semantic Web. In Berners-
Lee et al. (2001), the authors describe a World Wide Web (WWW) where agents, pieces
of software that can understand the meaning of data through the use of semantics, can
communicate and exchange knowledge without the need for human interaction. Such
agents and data are connected yet decentralised. The authors also stress the impor-
tance of the Resource Description Framework (RDF) in fulfilling the idea of a Seman-
tic Web. RDF is based on the Extensible Markup Language (XML) and allows data
to be structured as triples, each made up of a subject, a predicate and an object. Each
triple represents a fact and its structure is very similar to the way humans express
knowledge (Berners-Lee et al., 2001). For example, the fact “Moby-Dick was written
by Herman Melville” would be loosely expressed as <ex:Moby-Dick> <ex:hasAuthor>

<ex:HermanMelville>, where ex represents an example namespace2. The full RDF syntax
to represent this statement is presented in Listing 2.1. The subject and predicate consist
of a Universal Resource Identifier (URI). The object can either be a URI or a value. The
URI is a global identifier that distinguishes the resource from other such resources on
the WWW.

2The namespace is a prefix that together with the suffix form the URI. For example <ex:Moby-Dick>
represents the URI http://www.example.com/Moby-Dick.
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@prefix ex: <http://www.example.com/> .

@prefix rdf: <http://www.w3.org /1999/02/22 -rdf -syntax -ns#> .

@prefix xsd: <http://www.w3.org /2001/ XMLSchema#> .

<http: //www.example.com/Moby -Dick> a ex:Book ;

ex:hasAuthor ex:HermanMelville .

<http: //www.example.com/HermanMelville > a ex:Person .

Listing 2.1: An example RDF syntax.

Knowledge Graphs (KGs) grew in popularity in 2012, when Google announced their
KG as the backbone of the search engine, allowing users to search for things rather than
strings (Ehrlinger and Wöß, 2016; Gomez-Perez et al., 2017). The success story of the
Google KG also inspired others to follow suit. In Paulheim (2017), the author defines
the basic characteristics of a KG. He states that a KG should be an entity-centric graph
describing real-world entities and their interrelations. It should also have a formally
defined schema, also referred to as the Tbox (terminology box) or the ontology. Whereas
the actual entity instances form the assertion part or the Abox. A KG also permits having
interrelations between arbitrary entities. Moreover, a KG should cover various topical
domains.

2.2.1 | Ontologies
Ontologies can be seen as the conceptualisation of a real-world domain (Uschold et al.,
1996). They express some shared understanding of the domain by defining the concepts
of the domain and their inter-relationships. They are an integral part of a KG as they
define its formal specification (Schmidt et al., 2017). Not only do they stipulate the
vocabulary that is used within the KG, but they also specify the relationships that can
exist between entities and formulate a set of rules that model the real-life domain. They
also formalise any assumptions about the domain (Noy et al., 2001). Ontologies are
meant to be reused or extended so that the domain specifications are applied to other
KGs modelling the same domain, thus minimising the implementation effort.

In the Semantic Web sphere, ontologies are specified using the Resource Description
Framework Schema (RDFS) or Web Ontology Language (OWL) languages (Powers,
2003). OWL is more expressive and allows for explicit constraints on the statements
within the KG. In RDFS constraints are loosely imposed.
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2.2.1.1 | Ontology Construction

Most commonly, ontologies are created manually (Pan et al., 2017). This is not a straight-
forward task and requires an in-depth knowledge of the domain being modelled. More-
over, the authors of the ontology must be aware of the planned use of the KG.

Uschold et al. (1996) presents a procedural approach to build an ontology. The pro-
cess indicated by the authors starts by determining the ultimate use of the ontology
and establishing its scope. The ontology is then built by producing a list of the domain
concepts lying within the established scope and their inter-relationships. The concepts
and relationships should be defined using an unambiguous vocabulary. One should
also consider other existing ontologies covering the same domain to potentially inte-
grate them into the ontology being built either wholly or partially. The ontology is then
coded using a formal representation language. Uschold et al. (1996) proceeds by refer-
ring to the evaluation methods suggested by Gómez-Pérez et al. (1995), that says the
ontology should be evaluated against the initial requirements, using competency ques-
tions or tested in the real-world. Lastly the ontology should be documented.

The method to build an ontology described in Noy et al. (2001) is slightly different than
that in Uschold et al. (1996). Once again the process starts by establishing the domain
and scope of the ontology. The authors suggest that a number of competency questions
are set at the beginning. These are questions that the final ontology should be able to an-
swer and help to establish the scope. Contrary to Uschold et al. (1996), Noy et al. (2001)
suggests that existing ontologies for the domain are considered before any attempt to
build a new ontology. Ontologies can be reused wholly or partially, but the reuse can
significantly reduce the effort involved in building an ontology. The actual building of
the ontology starts by drawing up a list of concepts that acts as a sketch of the ontology.
Consequently, the actual classes are defined either following a top-down approach, that
starts with the general concepts to then specialise into more specific concepts, or by us-
ing a bottom-up approach. The authors indicate that a mixture of both approaches can
also be used. For each class that is identified, its properties (also referred to as slots) are
specified followed by the inter-relationships between classes. The rules and constraints
(also called facets) for the properties and relationships are also specified. Finally, the
actual instances of the classes are created.

2.2.2 | Enterprise Knowledge Graphs
Enterprise Knowledge Graphs (EKGs) are specialised KGs. It is the enterprise charac-
teristics of the EKG that distinguishes it from a KG (Galkin et al., 2017). Unlike the
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characteristics defined by Paulheim (2017) requiring a KG to incorporate various do-
mains, Galkin et al. (2017) and Jetschni and Meister (2017) state that the EKG should
consist of a collection of knowledge within the organisational domain. In Galkin et al.
(2017), the authors compare the EKG to other data integration paradigms, such as data
warehouses, data lakes and enterprise search, to determine the best fit for an Enter-
prise Information System. The qualities considered in this comparison are whether they
integrate conceptual or operational data, their ability to integrate heterogeneous data,
their ability to integrate internal (i.e. from within the enterprise) and external data, the
number of data sources the paradigm can integrate, whether the integration is physical
or virtual, the domain coverage, and their ability to incorporate semantics for machine
data consumption. The findings of Galkin et al. (2017) show that the EKG is the only
paradigm that incorporates both conceptual and operational data, through the Tbox
and Abox parts of the KG respectively. EKGs are also suitable to integrate diverse data
models or structures, and can also integrate both internal and external data thus offer-
ing high domain coverage. Thanks to the use of URIs, EKGs also score the highest in
semantic integration. Galkin et al. (2017) concludes that the EKG is a very strong candi-
date among the data integration paradigms an enterprise may consider when choosing
its Enterprise Information System.

Galkin et al. (2017) also positions the EKG within the ecosystem of enterprise appli-
cations. It consumes the various heterogeneous data sources as shown in Figure 2.3.
The Ontological Coherence Layer consists of the various ontologies. Such ontologies
can either be domain specific, and therefore define the various content of the EKG to-
gether with their interrelations and rules, or they can define higher level concepts, such
as for instance a security ontology that restricts access to the data according to specific
business rules. Both the EKG and the ontologies are not static, but rather follow the
knowledge evolution process within the organisation (Jetschni and Meister, 2017). An
Application Programming Interface (API) layer is also featured in Figure 2.3. This API
layer exposes the EKG for the consumption of the various enterprise applications.

2.2.2.1 | EKG Implementation

In an abstract form, an EKG can be seen as having three main components: the Knowl-
edge Acquisition and Integration layer, the Knowledge Storage layer and the Knowledge Con-
sumption layer (Pan et al., 2017). The subcomponents of each layer are shown in Fig-
ure 2.4, where the Knowledge Acquisition and Integration consists of a cycle of knowl-
edge management stages that ingest knowledge into the Knowledge Storage and the
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Figure 2.3: The position of an EKG within the ecosystem of enterprise applications,
reproduced from Galkin et al. (2017).

Knowledge Consumption incorporates a number of services facilitating the use of the
acquired knowledge.

a) Knowledge Acquisition and Integration: The first cycle within the knowledge life-
cycle is the construction of the EKG (Pan et al., 2017). The EKG can be built in a bottom-
up manner, that is by examining the data and identifying entities and relations, or in
a top-down manner by defining a number of use cases for the EKG to then determine
which data is needed to satisfy the use cases. Ensuing cycles of the knowledge lifecycle
lead to the ingestion of new knowledge into the EKG.

The first step in the Knowledge Acquisition and Integration cycle involves the develop-
ment of the ontology, which we discussed in Section 2.2.1.1. In the Data Lifting and Data
Annotation steps, the data that is earmarked to be transferred into the EKG is mapped
onto the developed ontology and transformed into the required structure (Pan et al.,
2017). There are different ways how to go about this. The mappings between existing
data and the ontology are at times created manually (Petersen et al., 2017; Schmidt et al.,
2017). The data is then transformed and migrated into the EKG using Extract Transform
and Load (ETL) scripts. Sometimes the large amounts of mappings required make it

17



Chapter 2. Background & Literature Overview 2.2. Knowledge Graphs

Figure 2.4: A high-level view of an EKG, reproduced from Pan et al. (2017).

very time consuming for these to be done manually, so a semi-automatic approach is
taken (Song et al., 2017). One such approach is Named Entity Recognition (NER) that
can identify entities and their classes from pieces of text. NER methods can be either
rule-based or use a supervised learning method. Finally, the Quality Assurance step en-
sures the correctness of the resultant EKG.

b) Knowledge Storage: This layer is the actual container of the data. To materialise an
EKG an enterprise can resort to an RDF store (Pan et al., 2017). Popular RDF stores in-
clude Apache Jena3, GraphDB4, Virtuoso5, Stardog6 and AllegroGraph7. Medina-Oliva
et al. (2014) and Song et al. (2017) use RDF stores for implementing their EKGs.

Since most data in enterprises is already stored in structured repositories, such as rela-
tional databases, one can opt for an Ontology Based Data Access (OBDA) implementa-
tion (Pan et al., 2017). Using this paradigm an ontological layer (Tbox) is created on top
of the existing data sources, together with mappings between the ontology and the data
sources. Such an architecture is depicted in Figure 2.5, where the EKG consumers can

3https://jena.apache.org/ (last accessed 21/09/2020)
4http://graphdb.ontotext.com/ (last accessed 10/10/2020)
5https://virtuoso.openlinksw.com/ (last accessed 21/09/2020)
6https://www.stardog.com/categories/rdf/ (last accessed 21/09/2020)
7https://allegrograph.com/ (last accessed 21/09/2020)
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extract knowledge found in the original data sources by querying the ontological layer.
The Abox in this case can either be virtual, that is the data is kept solely in their original
source and retrieved whenever needed, or materialised, that is the knowledge is ex-
tracted into the EKG via the mappings and refreshed periodically. Petersen et al. (2017)
and Schmidt et al. (2017) use this paradigm for their EKG implementation by using the
R2RML8 mapping language. Kharlamov et al. (2017) use a tailor-made OBDA-based
method to map onto streaming data.

Figure 2.5: An EKG architecture using OBDA, reproduced from Pan et al. (2017).

Another alternative is the use of Labelled Property Graphs (LPGs) (Pan et al., 2017).
Although KGs are normally attributed with RDF, they can also be implemented us-
ing LPGs. LPGs consist of graph structures having entities as nodes and their inter-
relationships as edges. In addition nodes and edges may have additional properties
in the form of key-value pairs. Schabus and Scholz (2017) implement their EKG using

8https://www.w3.org/TR/r2rml/ (last accessed 21/09/2020)
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Neo4j9, one of the leading LPG platforms.

c) Knowledge Consumption: This layer acts as an interface to the EKG for consump-
tion by its users, whether human or other software agents (Pan et al., 2017). It comprises
a number of services that allow the users to query the EKG and get a result in return.
Queries over the EKG are normally expressed using SPARQL10, however, some KG im-
plementations incorporate Natural Language Processing (NLP) techniques that allow
its human users to ask questions using natural language.

An example of the Knowledge Consumption layer can be seen in Figure 2.6, and shows
the EKG that was implementated in Petersen et al. (2017). The software applications,
being either machine agents or end-user programs, interact with the EKG via SPARQL
endpoint APIs. In this case the EKG follows the OBDA paradigm. A SPARQL endpoint
is also used for information retrieval in Schmidt et al. (2017), while in Schabus and
Scholz (2017), the authors use the Cypher11 API of Neo4j.

Figure 2.6: A blueprint of the EKG implementation used in Petersen et al. (2017).

In Song et al. (2017), the authors explain how in their implementation of the EKG they
integrated an NLP tool that translates questions posed using natural language into

9https://neo4j.com/ (last accessed 10/10/2020)
10https://www.w3.org/TR/rdf-sparql-query/ (last accessed 22/09/2020)
11https://neo4j.com/docs/http-api/current/introduction/ (last accessed 10/10/2020)
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SPARQL queries. In this way, non-technical users of the EKG can retrieve knowledge
using plain English.

2.2.2.2 | Applications of the EKG

Enterprises resort to EKGs for different reasons but some common themes have been
observed in literature. These are discussed hereunder while Table 2.1 (Pg 23) provides a
summary of our findings by listing the various literature and indicating the reason why
the authors opt for a KG structure.

a) As a tool to aid decision making: Decision makers need information at their fin-
gertips and the data integration capabilities of the EKG makes it a strong tool to assist
decision making (Galkin et al., 2017). In Schabus and Scholz (2017), the authors describe
how an EKG facilitated decision making within a semiconductor manufacturing firm by
integrating data from several data repositories using ETL tools. By querying the EKG,
decision makers were able to identify and address bottlenecks in the production process.
The authors also describe a scenario where a contamination in the production floor oc-
curred and the floor managers could trace potentially contaminated products through
the EKG. These could then be examined to determine their validity for consumption.

Petersen et al. (2016) and Petersen et al. (2017) tackle the lack of a single data container
and of a single interface to all enterprise data of a multinational manufacturing company
by implementing an EKG. The authors describe how, before the EKG implementation,
the information model within the company was complex and scattered, and this was
a barrier for the management to compile the information they required to base their
decisions upon. The company kept track of its assets through an application that sits on
top of the EKG and when inventory was needed at a plant the management could locate
the nearest facility that had the inventory in store by querying the EKG. The EKG was
also used to forecast expenses based on past operations data.

In Golebiowska et al. (2001), the authors explain how an EKG was developed for an
automobile manufacturer to preserve knowledge acquired in past projects. This knowl-
edge was then exploited when taking decisions in new projects. Moreover, Kharlamov
et al. (2017), Schmidt et al. (2017), Medina-Oliva et al. (2014), Voisin et al. (2013) and
Efthymiou et al. (2012) use an EKG to support PdM. These are discussed in more detail
in Section 2.3.3.
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b) To merge heterogeneous data: The diversity of data structures hinders interoper-
ability and data integration, but EKGs can facilitate this (Galkin et al., 2017). In Schabus
and Scholz (2017), the EKG incorporates data about production assets, equipment, spa-
tial information of the production floor, historical production data and planned produc-
tion operations. Such data comes from a variety of proprietary IT systems, each having
their own format. The authors consider the use of an EKG as a solution to this prob-
lem. Petersen et al. (2017) describes a similar situation where the authors implement an
EKG to integrate large volumes of data in different formats and from various sources to
establish a single container for all enterprise data.

Medina-Oliva et al. (2014), Schmidt et al. (2017) and Kharlamov et al. (2017) integrate
sensor readings data that originates from various machines. This data is heterogeneous
in terms of structure and format due to the diversity of machines being used within
the respective scenario. Once again the authors considered the EKG a suitable data
integration paradigm to integrate not only the heterogeneous IIoT data, but also the
data about the machines, parts and operations that give context to these data.

Another use of an EKG for integrating heterogeneous data was found in Golebiowska
et al. (2001) whereby an RDF database that was developed as part of this research study
merges structured data coming from different databases to unstructured data emerg-
ing from project documents. Once again the EKG structure proved flexible enough to
incorporate such data.

c) To standardise the vocabulary: Data coming from different data sources, whether
heterogeneous or not, can make use of different semantics (Medina-Oliva et al., 2014).
A semantic model at a higher level is necessary to find the commonalities between the
data so that these can be integrated. The ontology layer in EKGs provides this semantic
integration. In doing so, it also provides a common vocabulary and therefore a common
understanding of the concepts involved. Such an approach is also seen in Schmidt et al.
(2017), Petersen et al. (2016) and Petersen et al. (2017) where the schemas of the low-
level data is mapped to the ontologies so that the software applications that sit on top
of the EKG can use a common vocabulary that is defined in the ontologies.

d) For context awareness: Another reason to use EKGs is to achieve context-aware
software and/or machines. Laroche et al. (2016) discusses the factories of the future
where workers have software assistants that understand the current situation and pro-
vide the help and knowledge needed by the person at the right place and time. The
authors state that although factories have not reached such a stage, the technologies are
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already available and these are EKGs. The capturing and storing of the knowledge is
crucial, as is the ontology that formalises the knowledge. The authors also present a
prototype of this software assistant, that incorporates a web interface where the human
worker can ask questions and the assistant, by implicitly understanding the situation
provides the right information. Moreover, through Augmented Reality, the assistant
can determine the state and place of the product being manufactured and advise the
worker without being prompted. Garofalo et al. (2018) also speaks about context-aware
robots that interact with EKGs. When handling materials, such robots can determine
the positions of other robots and stations and determine the shortest travel path to save
time and energy.

Petersen et al. (2016) also tackles context awareness by introducing an EKG to act as a
semantic layer on top of the data sources of the factory. Consequently, the applications
consuming the data can make use of their semantic properties to provide a better output
to its users. For example, when the user is looking for inventory, the application can
determine the user’s location and locate the nearest store having the required inventory.

Reference A B C D

Efthymiou et al. (2012) X X
Garofalo et al. (2018) X X
Golebiowska et al. (2001) X X
Kharlamov et al. (2017) X X
Laroche et al. (2016) X
Medina-Oliva et al. (2014) X X X
Petersen et al. (2016) X X X X
Petersen et al. (2017) X X X
Schabus and Scholz (2017) X X
Schmidt et al. (2017) X X X
Voisin et al. (2013) X X

Table 2.1: The reasons why a KG paradigm was chosen (A - Decision making; B - Het-
erogeneous data; C - Standard vocabulary; D - Context awareness).

2.2.3 | Use of Knowledge Graphs for Sensor Networks
Knowledge Graphs (KGs) are also used to model sensor networks and their readings.
In the manufacturing domain, Petersen et al. (2016), Schmidt et al. (2017) and Khar-
lamov et al. (2017) model sensor networks in a KG, which also incorporates sensor ob-

23



Chapter 2. Background & Literature Overview 2.2. Knowledge Graphs

servations. These observations are then used for decision making (Petersen et al., 2016)
and for machine fault prediction and fault diagnosis (Kharlamov et al., 2017; Schmidt
et al., 2017). Medina-Oliva et al. (2014) also capture sensor observations in a KG that
is then used for PdM of ship engines. In all four research projects, it was primarily the
KG’s ability to integrate heterogeneous data that drove the authors towards using this
paradigm.

Umiliacchi et al. (2011) also implements a KG that incorporates the readings of the vari-
ous sensors deployed on trains. The sensors transmit their observations to a central KG
and are then used for PdM. The authors explain how the ontology provides a gener-
alised view of the subsystems of a train, for example a propulsion engine, whether it is
diesel or electric powered, is identified by the software as an engine without the need
to be specifically coded to cater for the differences between the two variants. Hence the
software is able to monitor the condition of both types of propulsion engines as if they
were the same. In Klotz et al. (2018), a KG integrates the readings of sensors deployed
on cars. The authors suggest that a KG structure would be suitable to integrate sensor
data irrespective of the properties (brand, model, etc.) of the source sensor. It also helps
to achieve a common vocabulary for all sensor readings. The authors indicate that such
a KG can be exploited for fleet monitoring and trajectory mining.

Sensor networks are also widely used to measure meteorological conditions. In Cather-
ine et al. (2019), the authors capture sensor readings in a KG that can then be used to
analyse weather conditions. They argue that the flexibility of RDF and the fact that it is
an open standard make the KG usable to a number of stakeholders that are interested
in monitoring weather conditions. Gray et al. (2011) presents another use case where a
KG is implemented as the backbone of a flood emergency response system. The authors
exploit the KG’s properties to integrate sensor readings with information originating
from relational databases and maps.

2.2.3.1 | Ontologies Modelling Sensor Networks

In Compton et al. (2012), the World Wide Web Consortium (W3C) introduced the Semantic
Sensor Network (SSN) ontology12. Although similar ontologies were available before
the SSN ontology, most were problem specific and had a narrow scope of application
(Wang et al., 2015). Others, like CSIRO (Compton et al., 2009) and OntoSensor (Rus-
somanno and Goodwin, 2008), lacked expressiveness. The SSN ontology provides a
generic, field-independent model with full expressive power (Wang et al., 2015).

12https://www.w3.org/2005/Incubator/ssn/ssnx/ssn (last accessed 10/11/2020)
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Successors of the SSN build upon it to address its limitations, either to focus on a partic-
ular application or to extend the ontology by filling particular gaps (Wang et al., 2015).
WSSN (Bendadouche et al., 2012) and SCO (Müller et al., 2013) extend the SSN by adapt-
ing the ontology to be used for wireless sensors and cloud connected sensors respec-
tively. Schlenoff et al. (2013) propose a more specialised ontology for the manufactur-
ing industry by adding concepts such as action (of a robot), state and physical location.
Moreover, the W3C produced the Sensor, Observation, Sample, and Actuator (SOSA)
ontology13 as an extension of the SSN to incorporate lessons learned since its release
(Janowicz et al., 2019). Part of the SOSA ontology that can be used to model machines
(platforms in SOSA vocabulary), their sensors and sensor readings (observations) can
be seen in Figure 2.7. A summary of the contributions brought by the various sensor
ontologies reviewed in this research project is provided in Table 2.2.

Figure 2.7: A partial representation of the SOSA ontology, reproduced from Janowicz
et al. (2019).

Notwithstanding the advantages of reusing existing ontologies and the availability of
ontologies for modelling sensor networks and their observations, some implementa-
tions we found in literature opt to create their own ontologies (Kharlamov et al., 2017;
Medina-Oliva et al., 2014; Schmidt et al., 2017; Umiliacchi et al., 2011). This goes against
the practices described in Uschold et al. (1996) and Noy et al. (2001), but results in an
ontology that is specialised to the problem under review. On the other hand, Gray et al.

13https://www.w3.org/TR/vocab-ssn/ (last accessed 10/11/2020)
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Ontology Reference Contributions

OntoSensor Russomanno and
Goodwin (2008)

Addresses the lack of a formal conceptualisa-
tion of sensor networks in a computer-readable
form.

CSIRO Compton et al. (2009) Introduced the ability to describe sensor compo-
sitions.

SSN Compton et al. (2012) Introduced a generic, field-independent ontol-
ogy that addresses the lack of expressivity of
previous ontologies.

WSSN Bendadouche et al.
(2012)

Extends the SSN by introducing a new commu-
nication pattern for wireless sensor networks.

SCO Müller et al. (2013) Extends the SSN by introducing concepts for
sensors deployed in a cloud environment.

NIST Schlenoff et al. (2013) Specialises the SSN to the manufacturing indus-
try by introducing new concepts such as robots,
their actions and states.

SOSA Janowicz et al. (2019) Redefines the SSN ontology by addressing gaps
exposed through its usage and updates the on-
tology to modern trends in sensor networks.

Table 2.2: A summary of the contributions made by each sensor ontology.

(2011) and Petersen et al. (2016) make use of the SSN ontology, while Klotz et al. (2018)
and Catherine et al. (2019) use both the SSN and the SOSA ontologies.

2.2.4 | Evaluating Knowledge Graphs
Knowledge Graph (KG) evaluation can be split into two stages - the evaluation of the
ontology, and the evaluation of the KG as a whole. Raad and Cruz (2015) lists a number
of quality criteria upon which an ontology can be validated. Not all of these criteria
are equally important for every ontology, as this depends on the ultimate use of the
ontology. The quality criteria for ontologies as identified in Raad and Cruz (2015) are:

� Accuracy

� Completeness

� Conciseness

� Adaptability

� Clarity
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� Computational efficiency

� Consistency

According to Raad and Cruz (2015), when there is already an ontology that is consid-
ered to be a gold standard for the domain of interest, this should be taken into consider-
ation when evaluating an ontology. By mapping the concepts (classes), properties and
relationships of the ontology to the gold standard, one can assess the accuracy, com-
pleteness and conciseness of the developed ontology. The drawback of this approach
is that a gold standard is hard to find. The authors refer to another evaluation method
whereby an ontology is compared to a text corpus that describes the domain. Term ex-
traction methods are used to compile a list of important concepts that are then mapped
onto the ontology. This also measures the accuracy, completeness and conciseness of the
ontology.

Task-based evaluation methods measure the extent to which an ontology improves a
task (Obrst et al., 2007; Raad and Cruz, 2015). This method is useful when the ontology
is meant to be used for a particular task. The evaluation methodology measures the
accuracy of knowledge base on responses provided by its inferential component (Obrst
et al., 2007). On the other hand, criteria-based evaluation methods assess the ontology
against a set of predefined criteria, be it structural or in terms of quality metrics. These
two methods are more focused on measuring the adaptability, clarity, computational
efficiency and consistency of an ontology (Raad and Cruz, 2015).

Gold standards are also used to evaluate KGs (Paulheim, 2017). In such cases, parts
of the KG are constructed manually by domain experts and the automatically or semi-
automatically generated KG is evaluated against the gold standard. Another evaluation
approach is retrospective evaluation, where the KG (or parts of it) is inspected by human
experts (Paulheim, 2017). The quality metric used in such an evaluation is normally
the accuracy, that is a ratio of correct statements with respect to the total statements
inspected (Paulheim, 2017). This approach is used by Rychtyckyj et al. (2017) who state
that the EKG was tested via a number of queries (competency questions) whose results
were manually scrutinised. When inconsistencies were found in the results these were
investigated and the ontology corrected. A similar approach was used in Golebiowska
et al. (2001) and Schabus and Scholz (2017) where the EKG was tested through its ability
to retrieve the right information.

27



Chapter 2. Background & Literature Overview 2.3. Predictive Maintenance

2.3 | Predictive Maintenance
Predictive Maintenance (PdM) received increasing attention with the rise of Industry
4.0, both in research and in industrial application (Ran et al., 2019). As discussed in
Section 2.1.4, PdM has a number of advantages on the other maintenance strategies,
however, it also brings about a number of challenges. PdM relies on the availability of
machine health indicators, upon which machine faults are predicted (Ran et al., 2019).
To produce these indicators, the enterprise must have a sensory infrastructure, which is
not always readily available and involves an additional investment to implement. The
industrial machines must be equipped with several sensors (or other capturing devices
such as cameras) that are networked with the supporting software and hardware com-
ponents that make up the PdM framework. Moreover, the business processes involved
are more complex than their counterparts in other maintenance strategies.

The traditional approach to PdM involves the use of knowledge-based systems such as
Expert Systems, where the domain knowledge is expressed as a number of if-then rules
that specify the consequences of the various factors affecting a machine (Ran et al., 2019).
Mathematical models are also used to model the physical processes of machines and to
predict machine failure. In Rao et al. (2009), the authors use Symbolic Dynamic Filters
to detect anomalies in time-series data while in Efthymiou et al. (2012) they are used to
estimate the Remaining Useful Life (RUL) based on IIoT data. Kinghorst et al. (2017)
also uses a mathematical model to predict machine failure. The authors use the Hidden
Markov Model applied on sensor readings to predict the possibility that machine tools
which are used in the production of semiconductor wafers become contaminated and
therefore halt the production cycle.

Knowledge-based systems are expensive and time-consuming to implement as they re-
quire a deep knowledge of the machine (Ran et al., 2019). Moreover, industrial machines
are complex systems that are hard to model. Knowledge-based systems are also unable
to adapt to changes in the environment, such as the deterioration of the machine with
long-term use or the introduction of new faults.

Another approach to PdM involves the use of ML, where one or more ML models are
used to predict machine faults. Two types of predictions can be made: whether or not
a machine will fail within a specified time period (classification problem) or predicting
the RUL, that is the remaining time to the next fault (regression problem) (Yang et al.,
2016). In some cases, as described by Yang et al. (2016), both types of models are used
together so that when the classifier predicts a failure, the regression model can estimate
the RUL. ML models are powerful predictive tools and their ability to identify hidden
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relationships in multivariate data makes them suitable for PdM (Carvalho et al., 2019).
These methods require historical data to train the model, so availability of such records
can be a determining factor of whether or not to opt for this method. In this dissertation
we focus primarily on the ML approach to PdM.

2.3.1 | Machine Health Indicators
Predictive Maintenance (PdM) is based on the assumption that a machine gradually
progresses towards a failure (Deloux et al., 2009). By monitoring the health condition of
the machine, it is possible to determine when it is progressing towards a failure before
the failure actually happens. The process of machine health degradation with time is
shown in Figure 2.8. Once the machine health starts to deteriorate, a potential failure
(P) can be predicted. If no remedial action is taken, the machine progresses to the point
of functional failure (F) (Lorenzoni and Kempf, 2015). The period between P and F is
referred to as the P-F interval. The P-F interval can be used to decide on the frequency
of the machine health condition inspections. If the inspection intervals are longer than
the P-F interval, there is the risk that the fault goes unnoticed and the machine runs
to failure. On the other hand, frequent inspections may incur additional burden, both
operational and financial.

Figure 2.8: The P-F curve - a plot showing the machine health deterioration with time
until the point of functional failure (F). The period between a potential failure (P) and
the actual failure (F) is referred to as the P-F interval. The figure was reproduced from
Lorenzoni and Kempf (2015).

The health indicators that measure the machine condition vary according to the type of
machine (Hashemian, 2010). For instance, pressure measurements are important health
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indicators for pumps and valves, but give little information about the condition of elec-
tric motors, where sound is much more indicative. Other commonly used health indica-
tors include vibrations, temperature, surface friction and ultrasonic readings (Mobley,
2002).

All machines that involve motion vibrate. Changes in the vibration profile of a machine
can be indicative of a deteriorating condition (Mobley, 2002). In the manufacturing in-
dustry, vibrations are used as health indicators for various types of machines. Schmidt
and Wang (2018) present a case within the automobile manufacturing industry where
vibrations of ball-bar components are used to measure for PdM. Similarly, Kharlamov
et al. (2017) capture vibrations measurements for diagnostics of faults of power gener-
ating equipment. On the other hand, Seryasat et al. (2010) predict ball bearing failures
based on machine vibrations, while Paolanti et al. (2018) measure the vibrations for PdM
of cutting tools.

Temperature is also a common health indicator for industrial machines (Amihai et al.,
2018; Kharlamov et al., 2017; Schmidt and Wang, 2018). Moreover, temperature together
with pressure measurements have been used by Bruneo and De Vita (2019) for PdM of
jet engines. In Umiliacchi et al. (2011), the authors describe how the various sensors
deployed on trains contribute to the PdM of their mechanical equipment. Among the
machine health indicators measured by these sensors are air pressure, current, voltage
and the speed at which the motorised doors close.

Kovalev et al. (2018) describe the PdM and fault diagnosis of various devices found
within households. Sensors were installed on power transformers, pumps, air heating,
cooling and ventilation systems, gas boilers and lighting fittings. Such sensors mea-
sure sound, temperature, pressure, current and voltage, water and gas consumption,
air velocity and water and gas leaks. Based on these health indicators, the authors use
ML methods to predict possible faults of the devices and use data mining methods to
diagnose the cause of the fault.

Another data source that is used in literature to determine the machines’ condition are
the logs generated by the same machines (Calabrese et al., 2020; Sipos et al., 2014). NLP
techniques are used to extract features out of the unstructured text within the files. In
Calabrese et al. (2020), the features are then used for PdM of woodworking industrial
machines, while in Sipos et al. (2014), they are used for PdM of medical scanners.

To summarise this section, Table 2.3 lists the relevant literature together with the ma-
chine health indicators that were used to assess the condition of the machine. It shows
how the health indicators measured vary according to the type of equipment.
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Reference Equipment
Machine Health Indicator

VBR TMP PRS SND CUR LOG OTH

Amihai et al. (2018) Pumps and motors X X
Bruneo and De Vita (2019) Jet engines X X
Calabrese et al. (2020) Woodworking industrial machines X
Efthymiou et al. (2012) * X X X X
Farokhzad et al. (2012) Centrifugal water pumps X
Gandhi et al. (2018) Ball-bar components X
Kanawaday and Sane (2017) Slitting machines X X
Kharlamov et al. (2017) Power generating machines X X X
Kovalev et al. (2018) Household devices X X X X X
Paolanti et al. (2018) Wood cutting machines X X X
Schmidt and Wang (2018) Ball-bar components X X X
Seryasat et al. (2010) Ball bearings X
Sipos et al. (2014) Medical scanners X
Susto et al. (2015) Ion implantation tools X X X
Umiliacchi et al. (2011) Mechanical equipment on trains X X X

Table 2.3: The machine health indicators used for the various types of equipment. Machine health indicators are denoted
as follows: VBR - Vibrations; TMP - Temperature; PRS - Pressure; CUR - Current/Voltage; LOG - Log files; OTH - Other
indicators. (* Not specified)
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2.3.2 | The Machine Learning Approach to Predictive Maintenance
The major steps of the ML approach to PdM are outlined in Figure 2.9. First, the data is
identified, collected and stored, proceeding with the modification of such data to make
it more suitable for the learning activity (Soares, 2015). Consequently, a suitable model is
trained and validated. Finally, the PdM system is deployed and maintained. While the
steps are sequential in nature, the process is reiterated periodically to allow the model
to be retrained with newly acquired data, thus making the system adaptable to changes
in the environment (Sipos et al., 2014; Soares, 2015).

Figure 2.9: The life cycle of the Machine Learning approach to Predictive Maintenance
(adapted from Soares (2015)).

2.3.2.1 | Historical Data Selection

The Historical Data Selection step deals with capturing the data and storing it (Soares,
2015). The data consists of event data keeping trace of what happened and the ma-
chine health indicators that were discussed in Section 2.3.1, which are mostly IIoT data
(Efthymiou et al., 2012). The type of health indicators needed depend on the type of
equipment under surveillance, so these must be chosen accordingly (Hashemian, 2010).
The integration of IIoT data provides a number of challenges. Such data is hetero-
geneous since it originates from different sensors that measure different phenomena
(Khaleghi et al., 2013; Schmidt et al., 2017). Moreover, Khaleghi et al. (2013) state that
sensors tend to be inaccurate and multiple sensors measuring the same phenomenon
will produce conflicting observations. The authors suggest resolving these conflicts by
taking a consensus average in order to have an approximation of the truth. Another
difficulty in integrating IIoT data is that the sampling frequencies of the various sensors
may vary (Soares, 2015). Some measurements, such as the chemical concentration of a
substance, are more expensive to obtain than others, so these would have a slower sam-
pling frequency. Nonetheless, the integration of the data sources is fundamental for the
success of the PdM model.

The data storage component can take many forms. Data can be kept in flat files (Cal-
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abrese et al., 2020; Susto et al., 2015) or stored in a data lake (Spendla et al., 2017). NoSQL
databases such as Apache Hive14 are also used (Kovalev et al., 2018). Schmidt et al.
(2017), Medina-Oliva et al. (2014) and Kharlamov et al. (2017) store the IIoT data within
an EKG. In Schmidt et al. (2017), the authors opt for an OBDA architecture while Khar-
lamov et al. (2017) use an adaptation of the OBDA architecture that catered for streaming
data. On the other hand, Medina-Oliva et al. (2014) use an RDF store.

The data storage component may also take the form of a Time Series Databases (TSDBs)
(Zhang et al., 2019). These databases are designed to handle the storage of continuous
data streams, such as IIoT, where all the data is time bound. A drawback of TSDBs is
that they lack semantic support, hence when storing IIoT data the relationship between
the sensor observations and the sensor generating the data is not captured. In Zhang
et al. (2019), the authors address this limitation by proposing a semantically enriched
TSDB that is achieved by having an ontological layer on top of the TSDB.

2.3.2.2 | Data Preprocessing

The goal of the Data Preprocessing step is to produce a dataset that facilitates the learn-
ing process of the ML model (Soares, 2015). It consists of four activities: data cleaning,
data transformation, data reduction and data labelling.

a) Data cleaning: IIoT data is often imprecise, noisy and incomplete (Soares, 2015). So
the data is cleaned by handling any missing information and by correcting erroneous
measurements.

Records with missing data are either imputed or discarded (Soares, 2015). Imputations
replace a missing value with an estimate, which can be calculated as the mean for the
respective variable (Soares, 2015) or a moving average (Kanawaday and Sane, 2017).
Another method is to carry forward the last known value (Soares, 2015). Regression
models can also be used to estimate the missing values. In some cases, incomplete data
is discarded. For example, in Amihai et al. (2018), if the recordings from a sensor are
available for less than a day then the records for the respective sensor are discarded.
Any dimensions that are not useful, such as constant dimensions, are also removed
(Borgi et al., 2017).

Incorrect data samples are hard to identify unless they are outliers (Soares, 2015). Out-
liers are data samples that are inconsistent with the remaining data. Outlier detection
techniques can be categorised into two - univariate that take into consideration only the

14https://hive.apache.org/ (last accessed 01/10/2020)
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variable under review, and multivariate that consider multiple variables. Multivariate
methods are mostly effective when the variables are highly correlated since the method
exploits the correlation to detect abnormalities. The identified outliers are either re-
moved or replaced by an imputation. Another method is to average the data to reduce
the impact of outliers (Amihai et al., 2018). Rolling averages maintain the trend of the
data recorded but dilute the effect of noise (Kinghorst et al., 2017). The window length
of such rolling averages must be chosen carefully as a time window that is too long
would dilute the trend of the variable whilst one that is too short will not reduce the
effect of noise.

b) Data transformation: In this activity the data is transformed into a form that favours
the learning process of the ML model. The variables within the data normally have dif-
ferent magnitudes and this can hinder the learning process (Soares, 2015). Normalisation
and scaling techniques are used to transform the variables to a common magnitude.
Some examples of these techniques are:

Min-max normalisation transforms the features to a range between a minimum and a
maximum number (Soares, 2015). The normalised value v′ is obtained through Equation
2.1 where v is the original unnormalised value, and Amin and Amax are respectively the
minimum and maximum values of feature A. For example, Bruneo and De Vita (2019)
use this technique to rescale all variables to values between -1 and 1.

v′ =
v− Amin

Amax − Amin
(2.1)

Z-score normalisation (sometimes referred to as standardisation) transforms the data
such that they have a mean of 0 and a standard deviation of 1 (Soares, 2015). This is
obtained through Equation 2.2 where value v is transformed into a normalised value
v′. Ā is the mean of feature A and σA is the standard deviation of A. This technique
is particularly useful when the minimum and maximum of a feature are not known or
when the data contain outliers (Soares, 2015).

v′ =
v− Ā

σA
(2.2)

Decimal scaling divides all values of a feature by a common denominator so that all
new normalised values v′ fall in the range 0 < v′ < 1 (Han et al., 2011). This is achieved
through Equation 2.3 where v is the unnormalised value and j is the smallest integer
such that max(v′) < 1.
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v′ =
v

10j (2.3)

In production, machine failures are rare when compared normal operations and this is
reflected in the collected dataset (Ran et al., 2019). This causes a class imbalance, where
the samples representing a machine failure are considerably less than those describing
normal operations. Such a bias diminishes the learning potential of the ML model and
should be addressed at preprocessing stage. This is done through resampling, where
either artificial samples are generated for the lesser class (known as oversampling), or by
removing samples from the dominant class (known as undersampling) (Kovalev et al.,
2018).

c) Data reduction: IIoT data is typically high dimensional and contains a large num-
ber of samples (Fernandes et al., 2019). Such volumes of data increase the computational
requirements of the learning process and decrease the learning capabilities of most ML
algorithms. The latter is due to the increased risk of overfitting when certain models
are trained on very large datasets (Fernandes et al., 2019). Moreover, IIoT data tends
to be highly correlated, meaning that some dimensions do not add new information
(Khaleghi et al., 2013). There are two categories of data reduction methods, one aimed
at reducing the feature space and another aimed at reducing the number of samples
(Soares, 2015). The former is further sub-categorised into dimensionality reduction tech-
niques and feature selection techniques.

Through dimensionality reduction, the data is transformed into a smaller space by pro-
jecting it into dimensions that are made up of a combination of the original dimensions
(Soares, 2015). A popular dimensionality reduction technique is Principal Component
Analysis (PCA), that was also used in Kovalev et al. (2018) and Baptista et al. (2018).

In feature selection, a subset of features is chosen from the original feature space and
these include three classes: filter, wrapper and embedded (Soares, 2015). Filter models
rank the features by some evaluation metric (such as Pearson’s correlation) to then take
only the best performing features. Wrapper methods, on the other hand, use a learning
algorithm to determine the relevance of a feature subset to the target concept. Some ML
models have feature selection embedded within the learning algorithm, hence the em-
bedded method (Fernandes et al., 2019). All three feature selection methods are used for
PdM, for example Gandhi et al. (2018) uses a filter method while Sipos et al. (2014) and
Kinghorst et al. (2017) use a wrapper method. The embedded method comes with the
use of ML algorithms with in-built feature selection such as Random Forest and Support
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Vector Machines (SVM), such as those used in Baptista et al. (2018), Calabrese et al. (2020)
and Sipos et al. (2014).

Some machine health indicators, such as vibrations, are measured as waveforms (Seryasat
et al., 2010). In such cases, Fast Fourier Transform (FFT) is used to transform waveforms
to the frequency domain that can then be binned into frequency bins. The value of
each frequency bin can then represent the waveform as data. Given the vast range of
frequencies, such data results in a lot of dimensions. Seryasat et al. (2010), Farokhzad
et al. (2012) and Amihai et al. (2018) use mathematical functions to compute single-
dimensional properties of the FFT data, thus reducing the number of dimensions. Seryasat
et al. (2010) and Amihai et al. (2018) calculate the Root Mean Square (RMS) of the wave
and use it as a feature, while Farokhzad et al. (2012), in addition to the RMS, also com-
putes the mean, standard deviation, variance, kurtosis, skewness and slippage.

In the case of text-based features, such as log files, the bag of words method can be used
to extract the most important features from the text (Calabrese et al., 2020). This reduces
the long strings into word vectors. Moreover, when the training data contains too many
instances, numerosity reduction is applied (Soares, 2015). A sample of the dataset is
taken in order to reduce the volume.

d) Data labelling: The final activity of the Data Preprocessing step is the labelling of
the various samples within the training dataset. For classification learning, the samples
are labelled to the corresponding class (Calabrese et al., 2020; Susto et al., 2015), while for
RUL learning the label would consist of a continuous variable (Ran et al., 2019). More-
over, for classification-based PdM, Susto et al. (2015) state that since the ML model needs
to predict the machine fault a time t in advance, the samples corresponding to t before
a fault are attributed to the positive class. So for a machine failure at time f, all samples
observed between time f − t and f are labelled as positive. The authors also state that
the time a fault can be predicted in advance depends on the fault being observed and
that this should be determined through experimentation with different fractions of the
maintenance cycle. Such experimentation is used by Amihai et al. (2018), Calabrese et al.
(2020) and Sipos et al. (2014). While Amihai et al. (2018) and Sipos et al. (2014) consider
time windows of between one and seven days ahead in their experiments, Calabrese
et al. (2020) consider time windows of 10 to 30 days ahead. Paolanti et al. (2018) state
that this time window can be determined by examining the data.
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2.3.2.3 | Model Selection, Training and Validation

The purpose of this step is to train and validate an ML model for a PdM problem. Soares
(2015) describes two methods for choosing a model - a white-box and a black-box method.
The former is model-driven and the physical mechanics of the machine or device are
modelled mathematically. Such method is very complex and requires input from the
domain experts. In the ML approach, the black-box method is often used, where the
method is data-driven. In this case, little domain knowledge is required since the model
will learn from the data provided (Soares, 2015). Finding the right model and fine-
tuning it requires some experimentation.

Before training the model, a portion of the training data is set aside for testing the model
(Calabrese et al., 2020; Kanawaday and Sane, 2017). This testing set is typically between
20% to 30% of the training data. The remaining part of the training data is split into
the training set and the validation set. Then, a number of ML models are trained and
validated using varying hyperparameters (Calabrese et al., 2020). Overfitting may oc-
cur when training a model and this happens when the ML algorithm performs well on
the training data but poorly on unseen samples (Soares, 2015). To prevent overfitting,
cross-validation is used where the training and validation steps are iterated, changing the
training and validation sets in each iteration. In many cases, k-fold cross-validation is used
(Calabrese et al., 2020; Gandhi et al., 2018; Sipos et al., 2014; Soares, 2015). This consists
of the training set being split into k parts (folds) and the training-validation cycle is it-
erated k times, each time a different fold is chosen as the validation set. However, since
in PdM the dataset is temporal, this fold iteration causes a situation where the past is
predicted based upon the future (Bergmeir and Benítez, 2012). In Bergmeir and Benítez
(2012), although the authors found k-fold cross-validation to perform equally well on
time-bound data, they recommend the use of block cross-validation when dealing with
such datasets, where the order of the folds is preserved during the iterations. Following
cross-validation, the combination of hyperparameters that perform best are then evalu-
ated using the testing data to decide upon the ultimate model to be used in production
(Calabrese et al., 2020). Table 2.4 (Pg 40) shows the various ML models used in litera-
ture and whether these address a classification problem or a regression problem (RUL).
It also shows the evaluation metrics used in each research project.

As shown in Table 2.4 (Pg 40), the Root Mean Square Error (RMSE) is often used to
evaluate regression models. This is calculated using Equation 2.4, where n is the number
of samples in the test set, ŷi is the predicted value and yi is the actual value.
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RMSE =

√
1
n

Σn
i=1(ŷi − yi)2 (2.4)

On the other hand, for classification problems, Accuracy, Precision and Recall are most
commonly used. These are calculated by Equation 2.5 to 2.7 respectively, where TP
is the number of True Positives, TN is True Negatives, FP is False Positives, and FN
is False Negatives. Precision and recall are important metrics in PdM since the former
measures the fraction of positive predictions that are correctly classified, whilst the latter
measures the fraction of positive predictions that are correct (Susto et al., 2015). In PdM,
a low precision implies more false positives, hence unnecessary stoppages and unused
machine/parts lifetime, while a low recall signifies more false negatives and therefore
unexpected stoppages. Another way to use Precision and Recall is to use the F1-score,
that calculates the harmonic mean of both measures (Han et al., 2011). The F1-score is
calculated using Equation 2.8.

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(2.5)

Precision =
TP

(TP + FP)
(2.6)

Recall =
TP

(TP + FN)
(2.7)

F1 =
2 · precision · recall
precision + recall

(2.8)

The results achieved by other studies tackling PdM vary. Calabrese et al. (2020) report a
precision of 0.991 and a recall of 0.996 when using a GBC to predict faults of woodwork-
ing industrial machines 30 days in advance. Susto et al. (2015), on the other hand, report
a precision of 0.613 and a recall of 0.63 for PdM of ion implantation tools using an SVM.
Paolanti et al. (2018) obtained an accuracy of 0.95, a precision of 0.94 and a recall of 0.95
when using an RF to predict failures of cutting machines, while Kanawaday and Sane
(2017) measured an accuracy of 0.987 in predicting failures of slitting machines using a
deep neural network.
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Reference
Prediction
Type

ML Model/s
Evaluation
Metrics

Amihai et al. (2018) RUL Random Forest RMSE
Baptista et al. (2018) RUL k-Nearest Neighbors

Random Forest
Neural Networks
Support Vector Regression
Linear Regression

RMSE

Bruneo and De Vita
(2019)

RUL Long Short-Term Memory RMSE

Calabrese et al. (2020) Classification Gradient Boosting
Random Forest
Extreme Gradient Boosting

Accuracy
Precision
Recall

Farokhzad et al. (2012) Classification Neural Networks MSE
Gandhi et al. (2018) RUL Decision Tree

Random Forest
*

Kanawaday and Sane
(2017)

Classification Support Vector Machines
Naive Bayes
Deep Neural Networks
Decision Trees

Accuracy

Kovalev et al. (2018) Both Long Short-Term Memory
Recurrent Neural Networks
Hidden Markov Model

No. of FP
No. of FN

Lorenzoni and Kempf
(2015)

Classification Bayesian Networks *

Paolanti et al. (2018) Classification Random Forest Accuracy
Precision
Recall

Sipos et al. (2014) Classification Support Vector Machines AUC
Precision
Recall

Susto et al. (2015) Classification Support Vector Machines
k-Nearest Neighbors

Accuracy
Precision
Recall

Umiliacchi et al. (2011) RUL Bayesian Networks *

Table 2.4: A summary of the ML models used in the various research projects and the
metrics used to evaluate the models. (* Not specified)

2.3.2.4 | System Maintenance

The System Maintenance step consists of activities related to the upkeep of the PdM
system in order to maintain the required performance (Soares, 2015). Changes in the
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production environment, such as the introduction of new machines or the replacement
of sensing devices, may lead to a degradation of the system performance. These changes
must be reflected in the system:

1. by ensuring that any new data sources are captured by the system;

2. by ensuring that the required data transformations are carried out on the newly
acquired data; and

3. by ensuring that the predictive model is representative of the new reality.

2.3.3 | Predictive Maintenance Supported by Knowledge Graphs
In Section 2.2.2.2 we discussed the uses of an EKG, amongst which is PdM. The imple-
mentation described by Schmidt (2018) uses an EKG as the basis for PdM of industrial
machines within an automobile manufacturer. The EKG combines three heterogeneous
data sources to store information about machines, parts and sensor observations. The
author tests different ML models, amongst which kNN, SVM, RF and GBC, on four
years of data for 29 similar machines to predict failures of a cutting tool. In this study,
the EKG is leveraged as a data integration paradigm for the data, that would have oth-
erwise been challenging due to the diversity of the data sources. The data integration
capabilities of the EKG are also exploited in Kharlamov et al. (2017), where the authors
refer to a manufacturer of energy generating machines that offers a PdM service to its
clients whereby it monitors the performance of the said machines in production to de-
tect potential issues. When such issues are detected, the manufacturer’s experts extract
the required data about the machine and analyse it to eventually decide on a way for-
ward. The data analytics are carried out over an EKG that combines data from various
sources and takes various forms. The authors state that without a strong data inte-
gration paradigm such as the EKG, the company would need specialised personnel to
query the complex databases for the intended data.

Medina-Oliva et al. (2014) and Voisin et al. (2013) tackle PdM of ship engines, where
the data generated by the different components is integrated in a KG. Apart from using
the KG to integrate heterogeneous data, it serves to standardise the vocabulary so that
different databases can be queried using the same semantics. The authors also exploit
the ontology to define a rules about the domain, for example, a fuel engine cannot de-
velop an electrical fault, thus the consistency of the data is ensured. Furthermore, in
Efthymiou et al. (2012) the authors make use of a KG to store knowledge about the char-
acteristics of past machine failures and the maintenance steps taken. This is put to use
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when a fault is predicted to provide a diagnosis and suggest a solution. Once again, the
authors take advantage of the KG’s ability to combine data having different structures
to preserve the knowledge that comes from various sources.

2.4 | Summary
In this chapter, we briefly described the semiconductor manufacturing process and
how wire bonding machines contribute towards the end products. We also introduced
Knowledge Graphs and how ontologies are used to define them. We proceeded by
discussing Enterprise Knowledge Graphs and the benefits they can contribute to an
enterprise, especially where it comes to decision making and the integration of hetero-
geneous data sources. We also saw how the properties of the EKG makes it a powerful
paradigm for modelling sensor networks.

We then switched focus to Predictive Maintenance, explaining the benefits it offers and
the challenges involved in its implementation. We also discussed machine health indi-
cators and how these were used in previous research for PdM. Moreover, we described
to Machine Learning approach to PdM and the state of the art of their implementations.
Finally, we saw how KGs can be used to support PdM
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Methodology

In this chapter we explain how this research was conducted. First, we introduce the
datasets that were used in this dissertation and describe how this data was collected.
We proceed to describe the steps taken to design an ontology and implement an EKG,
and how the latter was populated with the industrial data. Next, we move on to explain
how we trained and evaluated various ML models, and the experiments we carried
out in order to choose the ones that gave the best performance. Finally, we describe
how we produced a PdM framework consisting of a graphical interface that used the
predictive models and was supported by the EKG. The system projected key machine
health indicators to its users and also alerted them of possible upcoming faults.

3.1 | The Data
The data used in this dissertation is actual industrial machine data that was generated
in a semiconductor manufacturing environment. These datasets were made available to
us by the manufacturing firm for the purpose of this research. We held several meetings
with the domain experts to gain insights about the processes, machines, data and mal-
functions of the said machines. Furthermore, we complemented this knowledge with
relevant information obtained from the machine manuals and documentation.

The machines in question were wire bonders, that as explained in Section 2.1.2, play an
important role in the manufacturing of ICs. We scoped the study to four wire bonding
machines, all of the same brand and model, namely the IConn PLUS1 ball bonder by
Kulicke & Soffa.

1https://www.kns.com/Products/Equipment/Ball-Bonder/IConn-PLUS (last accessed 05/10/2020)
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Three datasets were used for this dissertation, that were produced by different compo-
nents of the wire bonders. These were the Equipment Tracking System (ETS) event logs,
the machine logs and the IIoT data. The machine logs were in JavaScript Object Nota-
tion (JSON) format while the other datasets consisted of Comma Separated Values (CSV)
files. Some additional details about the datasets are provided in Table 3.1.

Dataset
Number

of
machines

Number
of days

in dataset

Number
of files

Number
of

variables

Number
of

samples

Total
size

ETS event
logs

489 23 47 27 2,082,554 563 MB

Machine logs 435 40 167 91 4,938,937 10.7 GB
IIoT data 4 113 236,845 1,093 236,845 2.7 GB

Table 3.1: Information about the datasets used in this dissertation.

We explored the datasets to get a better understanding of the data. We first merged
all the data scattered across numerous files into one file per dataset. To do this, we
wrote Python2 (version 3.7.2) scripts using the Pandas3 library (version 0.24.2). For the
machine logs, the Json4 library (version 2.0.9) was also used. Apart from merging them
into one file, the machine logs were converted from nested JSON format to CSV. The
Matplotlib5 (version 3.0.3) library was used to visualise the data in Python.

a) Equipment Tracking System (ETS) event logs: The ETS keeps track of all machines
in operations. It captures machine events and operations, which are then stored in CSV
files. The system generates two such files per day, one covering the day shift (between
06:00 and 18:00) and another for the night shift (between 18:00 and 06:00). These files
are stored on a file server.

Each file contains the events for all machines in operations. Each row within the file
describes an event that happened, whether it is a production step, an error or a change
in the state of the machine. Events are recorded once ended. So if a machine prompted
an error at time t and the operator took n minutes to act upon it, the event is recorded
with timestamp t+n. The duration of the event (n) is still recorded, so to determine when
an error occurred both the timestamp and the duration must be taken into account.

2https://www.python.org/downloads/release/python-372/ (last accessed 17/10/2020)
3https://pandas.pydata.org/pandas-docs/stable/whatsnew/v0.24.2.html (last accessed

17/10/2020)
4https://docs.python.org/3.7/library/json.html (last accessed 17/10/2020)
5https://matplotlib.org/3.0.3/contents.html (last accessed 17/10/2020)
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The variables that were useful for this dissertation are described in Table 3.2. More vari-
ables are described in Appendix A. The dataset contained events for all wire bonders for
the period between 20/03/2019 and 12/04/2019. The timestamp consisted of a concate-
nation of the date and time as a string in the format YYYYmmdd HHMMSSfff6. It was also
observed that, while the description of the event is normally chosen from a list of prede-
fined messages, in some cases the description was manually inputted by the operators.
This created multiple strings referring to the same event.

Variable Datatype Description

MANUFACTURINGMODULE String The physical location of the machine
(known as tunnels).

EQUIPMENTNAME String The name of the machine, also used as its
unique identifier.

TXNTIMESTAMP Datetime The timestamp of the record. This is taken
to be the end time of the event.

DURATION Float The duration of the event.
EQPSTATE String The state of the machine.
REASONCODEID String A description of the event.

Table 3.2: The main variables of the Equipment Tracking System event logs.

b) Machine Logs: The wire bonders generate their own logs. Every five minutes, all
the machines dump their log entries into the same JSON file that is stored on a file
server. A new log file is started every six hours. The dataset contained logs for the
period between 03/03/2019 and 12/04/2019.

The log entries consisted of a timestamp and the wire bonder name, followed by a set
of readings from various sensors deployed on the machine. The log also contained the
settings of the machine as at the time of recording. The sensor observations include the
bond forces, the current applied to cause the spark, ball placement errors and the tem-
peratures at various zones of the machine. The timestamp is presented as a Posix epoch.
It was observed that whenever the sensor reading is undetermined, the value was set
to 999 or -999. The dataset also contained several dimensions that were constant. More
details on the variables that were used for this dissertation are presented in Appendix A.

c) IIoT data: The manufacturing firm installed more sensors on the wire bonders to
gain additional insights about the machines. These sensors measure the acceleration, vi-
brations, sound, magnetism, temperature, pressure and humidity of the machine. The

6Y - year; m - month; d - day; H - hour; M - minute; S - second; f - milliseconds.
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acceleration, vibrations and magnetism are captured in three dimensions (x, y and z
axis). Apart from the temperature, pressure and humidity, all observations are mea-
sured in waveforms. These waveforms are transformed to the frequency domain using
Fast Fourier Transform (FFT) and binned in frequency bins. Acceleration, vibrations
and magnetism waveforms are binned into 64 frequency bins for each axis (x, y and
z axis), while sound is binned into 512 frequency bins. The mean amplitude for each
frequency bin is then recorded.

Each machine produces a set of observations every three minutes, which are stored as
a CSV file. Each file contains only one sample, which is made up of a timestamp and
the set of sensor observations. The timestamp for the IIoT is also represented as a Posix
epoch. The machine identifier (its name) does not feature within the data but is part of
the file name. Moreover, the CSV file does not have any headers. As with the other data
files, the IIoT data files are stored on a file server.

The dataset contained sensor observations from four machines for the period between
30/11/2018 and 12/04/2019. In analysing the data we found that there are a lot of
outliers in the data. Outliers were measured using the z-score statistic and visualised
through box plots. Two such plots are featured in Figure 3.1, that show the outliers in
the Pressure and Humidity variables. We also noticed that the FFT variables are highly
correlated. We used the Pearson correlation coefficient to measure the pairwise linear
correlation. A heatmap of the pairwise Pearson correlation coefficient for the FFT di-
mensions of vibrations along the x-axis is portrayed in Figure 3.2. As can be seen in the
chart, many pairs have a coefficient towards the upper end of the spectrum. The other
FFT variables show a similar scenario. More details on the IIoT dataset are presented in
Appendix A.

Figure 3.1: Box plots showing outliers in the (a) Pressure and (b) Humidity variables.
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Figure 3.2: A heatmap showing the pairwise correlation between the FFT dimensions
for vibrations along the x-axis.

3.2 | Creation of the Enterprise Knowledge Graph
To design and build the EKG, we followed the approach of Pan et al. (2017), that we
described in Section 2.2.2.1. We first developed the ontology of the EKG. Next, we
developed ETL-like scripts that transform the data into the required structure and push
them into the EKG. Lastly, we tested the EKG for correctness and completeness.

3.2.1 | Ontology Development
The approach we took to develop the ontology is based on the one described in Noy
et al. (2001), discussed in Section 2.2.1.1. This approach constitutes a simple yet ef-
fective procedural method, that can be considered as a beginner’s guide to ontology
development. Moreover, in contrast with the method proposed by Uschold et al. (1996),
this approach considers reusing existing ontologies at the very beginning of the process,
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which, in view of the number of existing ontologies in the sphere of sensor networks,
we considered that this method would speed up our work.

Step 1 - Determining the domain and scope of the ontology: The domain was de-
termined by the ultimate use of the EKG, that is PdM. Therefore, our domain is the
industrial domain and more specifically industrial machines. The scope was in part dic-
tated by the data and variables we had at hand, which we described in Section 3.1. We
also considered the questions that the EKG would need to answer in order to predict
machine faults. These questions are listed below:

In which state was wire bonder x at time t?
What is the latest temperature observation of wire bonder y?
Which sensors measure vibrations?
Which wire bonder have a sensor of type a?
What are the latest sensor observations of wire bonder z?
What was the change in temperature for wire bonder x between time t and time t+n?

Based on such questions, we determined that the scope of the ontology should be the
wire bonders, their states and events, their sensors and the observations made by these
sensors.

Step 2 - Reusing existing ontologies: As we discussed in Section 2.2.3.1, there already
exist several ontologies that model sensor networks and their observations. These were
examined and considered. The one presented by Schlenoff et al. (2013) is an adaptation
of the SSN ontology (Compton et al., 2012) specialised for the manufacturing domain
and was fit for our purpose. However, the actual OWL ontology was not publicly avail-
able.

The SSN ontology (Compton et al., 2012) and its latest improvement, the SOSA ontology
(Janowicz et al., 2019) were also adequate. Although these ontologies did not cover the
full scope of our ontology, they catered for most concepts. Relevant concepts from the
SSN and SOSA ontologies are shown in Figure 3.3, where concepts in blue derive from
the SSN ontology and concepts in green from the SOSA ontology. These concepts were
taken into account in designing the ontology.

Step 3 - Listing important terms: We devised a list of prominent terms in a brain-
storming manner. The list was then short-listed by grouping similar terms or removing
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Figure 3.3: A partial representation of the SSN and SOSA ontologies. (Reproduced from
https://www.w3.org/TR/vocab-ssn/)

those less relevant. The identified terms are shown in Table 3.3. The terms operator,
product and work order were deemed less relevant for PdM and therefore discarded.

Term Class

Wire bonder Platform
Sensor Sensor
Sensor observation Observation
Pressure; Vibrations; Temperature; etc. ObservableProperty
Error; Machine state State
Tunnel Place
Operator; Product; Work order -

Table 3.3: The relevant terms identified and their mapped classes.

Step 4 - Defining the classes and their hierarchy: We mapped the terms listed in the
previous step onto the SSN and SOSA classes. This left only three unmatched terms.
These are: error, machine state and tunnel. Then we considered generalising the terms to
form the hierarchy. Thus error and machine state were generalised into state and tunnel
into place. For the latter, we considered the existing class within the DOLCE+DnS Ultra-
lite (DUL) ontology, that is compatible with the SSN ontology. The final mappings are
shown in Table 3.3.

Step 5 - Defining slots and facets: The slots (properties) for each class were defined
subject to the data we had available. For example, a wire bonder has a name and an
alias while a sensor has a name, a description and a type. The facets (rules such as slot
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cardinality, and permitted types and values) present in the SSN, SOSA and DUL on-
tologies were reviewed to ensure they applied to our case. These had an impact on the
design of our ontology, for example, for the Wire Bonder class to host a sosa:Sensor, it
must be a sub-class of sosa:Platform. Using the OWL language, this slot is defined as
shown in Listing 3.1, where the sosa:isHostedBy property can belong only to the domain
sosa:sensor in relation to objects of the class sosa:Platform. Similarly, for the Wire Bonder
to be located in a Tunnel, the latter being a sub-class of dul:Place, it must also be a sub-
class of dul:Entity. We were also forced to add another class sosa:Procedure due to a facet
in the sosa:Sensor class, which mandates that a sensor has at least one procedure describ-
ing how an observation is made. We also considered using the class dul:State to record
the different states of the wire bonders, however, the facets of this class mandate the
inclusion of other classes, that would have over-engineered the ontology. We therefore
discarded this option and created a new class.

sosa:isHostedBy rdf:type owl:ObjectProperty ;

schema:domainIncludes sosa:Sensor ;

schema:rangeIncludes sosa:Platform ;

rdfs:isDefinedBy <http://www.w3.org/ns/sosa/> ;

rdfs:label "is hosted by"@en .

Listing 3.1: The definition of the isHostedBy relationship between a Sensor and a Plat-
form.

Although the method described by Noy et al. (2001) is sequential, from Step 4 we iter-
ated back to Step 2 to ensure that we reuse as much as possible from existing ontologies,
without adding unnecessary effort. Finally, the OWL 2 ontology was developed using
Protégé7 (version 5.5.0). A partial representation of the resulting ontology is shown in
Figure 3.4, where classes shown in blue belong to the SOSA ontology, classes in green
belong to the DUL ontology and classes in yellow were created specifically for this re-
search project. The white boxes represent literal values. The full ontology model can be
seen in Appendix B.

The Wire Bonder class hosts sosa:Sensor instances and is located in a Tunnel, that is a
sub-class of dul:Place. Wire bonders can also have a State that is defined by a name
and a timestamp. Sensors, on the other hand, observe some sosa:ObservableProperty and
can make observations (sosa:Observation) that consist of a timestamp and a value. An
example of an observation as modelled by the ontology is illustrated in Figure 3.5.

7https://protege.stanford.edu/ (last accessed 08/10/2020)
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Figure 3.4: A partial representation of the ontology produced.

Figure 3.5: A representation of a sensor observation mapped onto the ontology.
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3.2.2 | Knowledge Store
The knowledge storage platforms taken into consideration were an OBDA architecture,
an LPG and an RDF store. The different architectures are discussed in Section 2.2.2.1.
Given that the source data resides in several files and that new files are constantly being
generated as explained in Section 3.1, an OBDA architecture was not deemed suitable
as this would result too expensive to maintain with new mappings. On the other hand,
for both an LPG and an RDF store, ETL-like scripts can be developed to extract and
transform new source data to be pushed into the knowledge store via their APIs. The
advantage of using an RDF store over an LPG is that in the former a standard language
(SPARQL) is used for interactions, whereas LPGs make use of proprietary languages,
such as Cypher in the case of Neo4j. The use of open standards would avoid vendor
lock-in should there be the need to replace the platform. Moreover, RDF stores are able
to infer new knowledge by exploiting the ontological logic, a feature that LPGs lack.
After these considerations, we opted to use an RDF store.

We chose Ontotext GraphDB8 for our knowledge store implementation. We considered
various factors when choosing the right RDF store. The maturity of the product was
taken into account as this influences its stability and robustness. We also wanted a plat-
form that is scalable, as with the amount of data generated daily the system was bound
to grow. The software portability was also considered. Ontotext GraphDB satisfied all
these criteria. It has been around for a number of years and also offers a detailed docu-
mentation. It can operate on Linux, MS Windows and iOS and also includes a number
of APIs to interface with. Moreover, enterprise packages are available that are scalable
and also include vendor support.

Ontotext GraphDB Free version 9.1.0 was used for this dissertation. It was implemented
on a computer running on Microsoft Windows 10 Pro.

3.2.3 | Data Lifting and Annotation
The Tbox of the EKG was uploaded directly into the knowledge store via the GraphDB
user interface. In a similar approach to those we discussed in Section 2.2.2.1, the transfer
of the data into the EKG was done via ETL scripts. We wrote scripts using Python
(version 3.7.2) that read the data from its original sources, transformed it into triples
and stored it into the RDF store. Different scripts were written for each of the three data
sources. The scripts also catered for the mappings onto the ontology and to generate the

8https://graphdb.ontotext.com/ (last accessed 10/10/2020)
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appropriate URIs. The triples were then stored into GraphDB via the RDF4J9 API using
the RDFLib10 (version 4.2.2) library in Python. The SPARQLwrapper11 (version 1.8.5)
library was also used to query the RDF store via its SPARQL endpoint.

3.2.4 | Knowledge Graph Validation
Since our ontology was developed to cater for PdM, and there was no ontology that is
recognised as a gold standard for PdM, we considered the task-based method (Obrst
et al., 2007; Raad and Cruz, 2015) for the evaluation of the ontology. We posed a number
of competency questions in the form of SPARQL queries to determine whether the EKG
was able to provide an answer. Some of the facts we queried were not explicitly written
into the EKG by the ETL scripts and therefore required the knowledge store to infer such
knowledge based on the rules of the ontology. For example, the ETL scripts specified
that a wire bonder m “hosts” a sensor s and that sensor s “madeObservation” o at time t.
Then we queried what observations were made at time t by a sensor that “isHostedBy”
m and analysed the result.

Once again, to evaluate the EKG we did not have a gold standard to compare to. The
EKG was validated using a retrospective evaluation approach described by Paulheim
(2017). The results of the competency questions were manually inspected for correct-
ness. A similar evaluation approach was also used by Golebiowska et al. (2001), Rychty-
ckyj et al. (2017) and Schabus and Scholz (2017). The accuracy of the results was mea-
sured as the ratio of correct triples retrieved (Paulheim, 2017).

3.3 | Producing the Predictive Models
Our goal was to produce an ML model that effectively predicts wire bonder faults. We
opted for a classification approach to PdM, where the model output determines whether
the wire bonder is running under normal conditions, or whether it is approaching a
possible failure (within a predefined time window). We used a similar approach to the
ones used in Soares (2015), Calabrese et al. (2020) and Gandhi et al. (2018), which we
described in Section 2.3.2. In our approach, we conducted experiments by using differ-
ent preprocessing methods to prepare the datasets and training different ML models on

9https://graphdb.ontotext.com/documentation/free/using-graphdb-with-the-rdf4j-api.

html#rdf4j-api (last accessed 10/10/2020)
10https://rdflib.readthedocs.io/en/4.2.2/ (last accessed 10/10/2020)
11https://pypi.org/project/SPARQLWrapper/ (last accessed 10/10/2020)
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these datasets in order to determine what worked best for our problem. These experi-
ments are discussed in more detail in Section 3.3.3.

The Historical Data Selection part of the method, that consists of the acquisition and stor-
age of the machine health indicators was explained in detail in Section 3.1 and Sec-
tion 3.2.2 respectively. However, we must stress that for training the predictive models
we did not make use of the EKG mentioned in Section 3.2 but rather we trained and
validated the ML models using datasets in CSV format. The EKG was used at a later
stage as described in Section 3.4. The preparation of the training datasets is explained
hereunder.

In producing the predictive models, the following software and libraries were used:

� Python12 version 3.7.6

� Jupyter Notebook13 version 6.0.3

� Numpy14 version 1.18.1

� Pandas15 version 1.0.1

� Scikit-learn16 version 0.22.1

� Imbalance-learn17 version 0.7.0

� Matplotlib18 version 3.1.3

3.3.1 | Data Preprocessing
The goal of this step was to produce several datasets that can potentially facilitate the
learning process of the ML model (Soares, 2015). As discussed in Section 2.3.2.2, data
preprocessing consists of four activities: data cleaning, data transformation, data reduc-
tion and data labelling.

12https://www.python.org/downloads/release/python-376/ (last accessed 11/10/2020)
13https://jupyter-notebook.readthedocs.io/en/stable/ (last accessed 11/10/2020)
14https://pypi.org/project/numpy/1.18.1/ (last accessed 11/10/2020)
15https://pandas.pydata.org/pandas-docs/version/1.0.1/index.html (last accessed 11/10/2020)
16https://scikit-learn.org/0.22/ (last accessed 11/10/2020)
17https://pypi.org/project/imbalanced-learn/ (last accessed 11/10/2020)
18https://matplotlib.org/3.1.3/index.html (last accessed 11/10/2020)
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a) Data cleaning: The timespan covered by the three datasets that were at our disposal
varied. Thus to integrate the data into a dataset that can be used to train and validate
the models, only the timespan common throughout all datasets was taken. This cov-
ered twenty-seven days of operations. The machines for which data was available also
differed across the datasets. Likewise, we kept the data coming from wire bonders that
were common across all datasets. The remaining data was considered out of scope and
hence discarded. Constant dimensions were also removed since these gave no added
information about the condition of the machine. Furthermore, undetermined sensor
readings that were set by the wire bonders a default value were reset to a null value.

Next, we harmonised the format of the timestamp across all datasets so that these were
comparable. We integrated the machine logs and IIoT datasets to have a complete time
series of machine health indicators. As mentioned in Section 3.1, the sampling frequency
for both datasets differed. Since the IIoT had a shorter sampling frequency, the records
in the machine logs were merged with their closest reading in the IIoT dataset. This,
however, resulted in several missing values for the machine logs. The gaps were im-
puted by the carry-forward method described in Soares (2015), where missing machine
log records were filled-in with their last known values. This step also imputed null
values set for undetermined sensor readings.

b) Data transformation: As discussed in Section 2.3.2.2, the aim of this activity was
to transform the data into forms that facilitated the learning process. We experimented
with different normalisation methods in order to find the one that best fits our prob-
lem. The methods we used were min-max normalisation, z-score normalisation and
L2 normalisation. Moreover, we also used two methods that handle class imbalance,
an over-sampling technique (SMOTE) and an under-sampling method (random under-
sampling).

As stated in Section 3.1, the data contained outliers, which may or may not be erroneous
values. To reduce the effect of these outliers, the data was averaged using a sliding
window, a method similar to that used by Amihai et al. (2018). Different datasets were
prepared with different window lengths.

c) Data reduction: In order to reduce the risk of overfitting and to minimise the model
complexity, we resorted to data reduction. Once again, more than one technique was
tried so that we could choose according to the results obtained. We used Pearson’s cor-
relation coefficient to identify highly correlated variables as discussed in Section 3.1. For
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variable pairs with Pearson’s coefficient greater or equal to 0.9 (> 0.9), we discarded one
of the variables since these added little to no new information to the learning algorithm.
We also experimented with PCA, a method used in several studies we found in litera-
ture (see Section 2.3.2.2). We also used a univariate filter method that uses the ANOVA
F-value between the variables and the class to choose the best k variables, where k is a
parameter to the method. Additionally, some of the models we used, such as random
forest, also have feature selection strategies embedded within their algorithm.

Since most of the training data consisted of raw FFT variables, one way to reduce the
numerous dimensions is the method used by Seryasat et al. (2010), Farokhzad et al.
(2012) and Amihai et al. (2018). This method uses mathematical functions to derive new
features out of the FFT variables, which can then replace the FFT variables in the train-
ing data but still describe the waveform. The functions used include the RMS, mean,
standard deviation, variance, kurtosis, skewness and crest factor. Using this method,
we reduced the number of dimensions from 1,178 to 161.

d) Data labelling: We used the ETS event logs to identify machine faults. Some faults
were highlighted by the domain experts in our discussions, but the logs contained sev-
eral other messages. We tried to distinguish between errors and other messages, how-
ever, some logs were hard to interpret due to the technical nature of the descriptions.
Whenever we were unable to determine whether a log entry was a fault, we assumed
it to be so. Adhering to the method outlined by Susto et al. (2015) and Amihai et al.
(2018), for each fault, we labelled the datasets based on the time the model should pre-
dict a fault in advance. For example, to train a model to predict machine faults 60 min-
utes in advance, for each error identified we labelled the samples for the respective wire
bonder between 60 minutes ahead of the error and the time of the error as positive in-
stances. For simplicity we refer to this “time ahead” as the prediction window. Similar
to the method described in Amihai et al. (2018), we prepared several training datasets
with varying prediction windows so that different classifiers can be trained to predict
machine faults at different instances ahead of the fault. For example, two models can be
trained, one warning of a possible fault two hours in advance and another model raising
the alarm one hour in advance. In PdM, the aim is to detect faults as early as possible,
possibly days (Amihai et al., 2018; Sipos et al., 2014) or weeks ahead (Calabrese et al.,
2020), however, since our data showed that the wire bonders typically fail four to eight
times a day, we resorted to prediction windows shorter than four hours. An empirical
analysis of the data did not yield any noticeable different between the behaviours of
the variables in times of normal operations and when approaching faults, so we experi-
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mented with prediction windows ranging between 60 and 180 minutes to determine the
P-F interval of the wire bonders.

The domain experts identified some errors that are more expensive than others when
they occur. We created training datasets such that only these errors are labelled as pos-
itives, with the aim that the learning algorithm is trained to predict these errors in par-
ticular. These errors were non-stick on pad, where the wire bonder fails to bond the wire
thread on the pad of the die; non-stick on lead, where the wire bonder fails to bond with
the lead frame; and short tail, where the second bond (or tail bond) is too weak and
breaks when the capillary lifts off.

3.3.2 | Model Selection, Training and Validation
As discussed in Section 2.3.2, following the preparation of the training datasets dur-
ing the data preprocessing stage, the ML models were trained and validated. Since we
had data for four wire bonding machines, we used the data for three wire bonders for
training the models and the data for the fourth machine to evaluate the models’ perfor-
mance. In this way, we could simulate the models’ performance in production, where
the predictions will be based on data that was unseen by the model during the learning
process. The test set consisted of five days of data for a machine that was excluded from
the training data. We also considered training ML models for each wire bonder, how-
ever, given the numerous wire bonders used within the manufacturing firm, this would
result in a complex and expensive system to maintain. Hence the idea was shelved.

We chose different ML algorithms based on the literature we discussed in Section 2.3.2.
Since we were approaching PdM as a classification problem, we opted for the following
models:

� k-Nearest Neighbours (kNN) (Susto et al., 2015)

� Random Forest (RF) (Calabrese et al., 2020; Kanawaday and Sane, 2017; Paolanti
et al., 2018)

� Naïve Bayes Classifier (NBC) (Kanawaday and Sane, 2017)

� Gradient Boosting Classifier (GBC) (Calabrese et al., 2020)

� Support Vector Machine (SVM) (Kanawaday and Sane, 2017; Sipos et al., 2014;
Susto et al., 2015)
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We followed the method used in Calabrese et al. (2020) and trained each of the chosen
ML models using different datasets transformed using the various preprocessing meth-
ods discussed in Section 3.3.1. This method allowed for finding the preprocessing and
model combination that gave the best results through a series of experiments. We also
trained the models using datasets with different prediction windows. In our training,
we used cross-validation to validate the models. We experimented with both k-fold cross-
validation and block cross-validation as suggested by Bergmeir and Benítez (2012). When
using cross-validation, the samples were not shuffled within the folds or blocks so as to
preserve the temporal aspect of the data. We also employed a randomised hyperparam-
eter search to determine the hyperparameters that gave the best results.

Finally, the models were evaluated on the test set that was set aside before the train-
ing process. The testing of the models on unseen data ensured that the models were
not overfit. Following practices we found in literature (see Table 2.4) we measured the
accuracy (Equation 2.5), precision (Equation 2.6), recall (Equation 2.7) and f1-score (Equa-
tion 2.8) to measure the performance of the models.

3.3.3 | Experimental Methodology
We conducted a number of experiments to determine the best arrangement for the pre-
dictive model to be used for PdM of wire bonders. These were planned in a way to test
all the major activities involved in the ML approach to PdM. In each experiment, only
one element was varied whilst keeping the other elements constant, so that the impact
of the element under test can be observed. For example, when testing the data reduction
methods, the data transformations and labelling used within the experiment were kept
constant to reveal the impact of the reduction methods on the results. A matrix show-
ing which experiments were aimed to investigate which activity of the ML process is
presented in Table 3.4. The experiments were carried out using Jupyter Notebook on a
Python environment. Notebooks were created for the various experiments, which used
a randomized search cross-validation to look for the optimal hyperparameters in train-
ing and validating the models. The experiments were run using the datasets prepared
through different preprocessing methods, as described in Section 3.3.1. After the cross-
validation, the trained ML model was evaluated upon its performance on the test set.
In each experiment, the accuracy, precision, recall and f1-score were measured. The results
of both the cross-validation and the evaluation on the test set were recorded. Finally,
the models scoring the best results on unseen data throughout all the experiments were
considered for the PdM framework.
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Activity
Experiments

1 2 3 4 5 6 7 8

Data Cleaning X
Data Transformation X X
Data Reduction X
Data Labelling X X
Model Selection X
Training & Validation X

Table 3.4: The experiments aimed to investigate each activity within the ML process.

3.3.3.1 | Experiment 1 - Testing the different models

Aim - The purpose of this experiment was to determine which ML models were able to
classify possible failures from normal machine operations.

Method - All the models were trained on the same dataset. Their performance was val-
idated using a 5-fold cross-validation. Consequently, the models were evaluated on
unseen data.

Models under test - kNN, RF, NBC, GBC and SVM.

Dataset/s - A dataset that was normalised using L2 normalisation and labelled with a
90-minute prediction window was used.

Following the poor performance obtained by the SVM in this experiment, the model was
not included in other experiments. More details on this are provided in Section 4.2.1.

3.3.3.2 | Experiment 2 - K-fold cross-validation vs. Blocked cross-validation

Aim - This experiment served to determine which cross-validation method was best
suited to facilitate the learning process in line with Bergmeir and Benítez (2012).

Method - Since this experiment aimed at testing the cross-validation methods and not
the models themselves, not all models were put to test. Two ML models were trained
and validated on the same dataset using two distinct cross-validation techniques: the
k-fold cross-validation and the blocked cross-validation. Five folds where used in the
k-fold method and five blocks were used in the blocked cross-validation. The trained
models were also evaluated on unseen data. Since the experiment was aimed at testing
the cross-validation method and not the predictive performance, some ML models were
excluded from the experiment.

Models under test - RF and GBC.
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Dataset/s - A dataset that was normalised using L2 normalisation and class-balanced by
using SMOTE was used. The dataset was labelled with a 90-minute prediction window.

3.3.3.3 | Experiment 3 - Testing the different scaling methods

Aim - This experiment was scoped to demonstrate how the performance of the models
was affected by the different scaling methods.

Method - The ML models were trained and validated on three datasets that were trans-
formed using different scaling methods. The training and validation was done using a
5-fold cross-validation method. Each trained model was eventually evaluated on un-
seen data.
Models under test - kNN, RF, NBC and GBC.

Dataset/s - Three identical datasets that were scaled using different methods. The first
using L2 normalisation, the second using min-max normalisation and the third using z-
score normalisation, and all of which were labelled with a 90-minute prediction window
were used in this experiment.

3.3.3.4 | Experiment 4 - Testing methods handling class imbalance

Aim - The purpose of this experiment was to find out whether techniques handling class
imbalance improved the performance of the learning algorithms.

Method - The models were trained and validated using three sets of datasets, each set
having a different prediction window. This was necessary because the sample distri-
bution among the classes differed across the different prediction windows. A 5-fold
cross-validation was used for training and validation, with the trained models later be-
ing evaluated on unseen data.

Models under test - kNN, RF, NBC and GBC.

Dataset/s - Three prediction windows were used, these being 60, 90 and 120 minutes.
For each of the prediction windows, two datasets normalised using L2 normalisation
were created and were treated for class imbalance, one using SMOTE and another using
random under-sampling. Another dataset was created for each prediction window that
was also normalised using L2 normalisation but were not treated for class imbalance.
This resulted in a total of nine datasets.
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3.3.3.5 | Experiment 5 - Testing data reduction methods

Aim - This experiment aimed to show the impact that different data reduction methods
had on the predictive performance of the various models.

Method - Three data reduction methods were tested: PCA, a filter method based on
the ANOVA F-value and the feature engineering method described in Farokhzad et al.
(2012). Datasets were preprocessed using these reduction methods and then used for
training and validation. Once again, a 5-fold cross-validation was used to train and
validate the models, which were later evaluated on unseen data.

Models under test - kNN, RF, NBC and GBC.

Dataset/s - Three identical datasets scaled using L2 normalisation, treated for class im-
balance using SMOTE and labelled using a 90-minute prediction window were used.
Each of these datasets was reduced using one of the three data reduction methods being
tested.

3.3.3.6 | Experiment 6 - Testing the performance on noise-smoothened data

Aim - The aim was to determine whether the performance improved by reducing the
effect of outliers and which time window provides the best results as stated in Kinghorst
et al. (2017).

Method - All the models were trained and validated on three datasets, two were treated
for outliers using a rolling average while the other was not. A 5-fold cross-validation
was used for training and validation, with the trained models later evaluated on unseen
data.

Models under test - kNN, RF, NBC and GBC.

Dataset/s - Two datasets scaled using L2 normalisation were resampled using a simple
moving average with a rolling time window of 15 and 30 minutes respectively. The
datasets were labelled using a 90 minute prediction window and treated for class im-
balance using SMOTE. The features were reduced using a filter method based on the
ANOVA F-value.

3.3.3.7 | Experiment 7 - Testing different prediction windows

Aim - This experiment was scoped to determine the relationship between the prediction
window and the performance of the models.
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Method - All the models were trained on datasets labelled using different prediction win-
dows. Their performance was validated using a 5-fold cross-validation. Consequently,
the models were evaluated on unseen data.

Models under test - kNN, RF, NBC and GBC.

Dataset/s - Datasets normalised using L2 normalisation but labelled using different pre-
diction windows were used. The prediction windows were 60, 90, 120, 150 and 180
minutes. All the datasets were balanced using SMOTE and smoothened using a simple
moving average with a rolling time window of 30 minutes. The features were reduced
using a filter method based on the ANOVA F-value.

3.3.3.8 | Experiment 8 - Forecasting selected faults

Aim - In this experiment we tested the models’ ability to learn to identify that an up-
coming fault falls within a set of preselected expensive faults.

Method - The models were trained on a dataset that was labelled on selected faults only.
A 5-fold cross-validation was used to train and validate the models on each dataset. The
trained models were then evaluated on unseen data.

Models under test - kNN, RF, NBC and GBC. The SVM was excluded from the experiment
due to its poor performance in previous tests.

Dataset/s - A dataset was prepared that was labelled only on expensive faults with a 90-
minute prediction window.It was scaled using L2 normalisation and smoothened using
a simple moving average with a rolling time window of 30 minutes. SMOTE was used
to deal with class imbalance and the features were reduced using a filter method based
on the ANOVA F-value.

3.4 | The Predictive Maintenance Framework
The PdM framework brought together the various components that collectively provide
the necessary information to the user to take an informed decision. As discussed in Sec-
tion 2.1.4, such a decision is not taken lightly as stopping the machine for maintenance
is costly. Thus, providing relevant and timely information is important. The various
components that made up our PdM framework are shown in Figure 3.6. For simplicity,
the diagram features a single wire bonder, but the system was meant to gather data from
multiple machines concurrently and harvest the data into the EKG for its consumption
by the dashboard.

61



Chapter 3. Methodology 3.4. The Predictive Maintenance Framework

Figure 3.6: A schematic view of the PdM framework produced through this research
project.

3.4.1 | Extract Transform and Load Scripts
As discussed in Section 3.1, the wire bonding machines generate three sets of data: the
ETS event logs in CSV format, the machine logs in JSON format and the IIoT data, which are
also in CSV format. We developed ETL scripts that read the data from these files, trans-
form the data by mapping it onto the ontology explained in Section 3.2.1 and storing it
in the EKG. The scripts were written using Python (version 3.7.6). The main libraries
that were used are Pandas (version 1.0.1), RDFLib (version 4.2.2) and SPARQLwrapper
(version 1.8.5).
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3.4.2 | The Enterprise Knowledge Graph
The EKG was implemented on Ontotext GraphDB Free (version 9.1.0) and the process
to design, build and populate it is explained in Section 3.2. It consisted of two parts,
the Tbox that formally defined its schema and the Abox, that represents the actual entity
instances. Our EKG stored information about the wire bonders, their sensors and sen-
sor observations, together with the timeline of states that the machines went through
during their operations. The IIoT data stored within the EKG was then used by the
PdM framework to predict faults of the wire bonders. The properties of the EKG were
exploited to harmonise the heterogeneous data into a homogeneous structure using a
common vocabulary, thus simplifying the retrieval of the indicators that were required
as features for the predictive models. Without the EKG, the PdM framework would
have to cater for the complexities brought by the diversity of the data structures and vo-
cabularies found within the different data files generated by the wire bonders. The EKG
was evaluated using the KG validation methods described in Section 3.2.4, which gave
assurance that the data contained within it was correct and complete, and therefore that
the fault predictions were based on the intended data.

3.4.3 | The Predictive Models
The predictive models forecasted wire bonder faults based upon a vector of IIoT fea-
tures. The models were binary classifiers, therefore the prediction indicated whether
or not a wire bonder would give an error within a specific time window. Two predic-
tive models were used, one forecasting a fault within the next 120 minutes and another
with a prediction window of 90 minutes. The approach of having multiple prediction
windows was derived from Amihai et al. (2018).

The models were chosen based on the results of the experiments described in Sec-
tion 3.3.3. They were trained using Python (version 3.7.6), and the chosen models were
then packaged for reuse using the Pickle19 (version 4.0) library.

3.4.4 | The Dashboard
The ultimate aim of the PdM framework was to support the decision making process
with respect to maintenance of the wire bonders. The dashboard was the component
closest to the user and was intended to provide the necessary information for the user
to take an informed decision. We implemented our dashboard using the Plotly Dash20

19https://docs.python.org/3.7/library/pickle.html (last accessed 15/10/2020)
20https://plotly.com/dash/ (last accessed 15/10/2020)
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(version 1.8.0) framework on top of Python (version 3.7.6) to project a number of key
machine health indicators in the form of charts. As shown in Figure 3.6, the dashboard
requests the latest sensor observations from the EKG via a SPARQL query. The EKG
in turn responds with the result of the query as an RDF message. Consequently, the
dashboard interprets the RDF message and updates the charts with the latest sensor
observations. Moreover, these observations are transformed as a feature vector, which
is passed on to the predictive models. The dashboard then receives the output of the
predictive models and plots them in the form of a gauge chart.

A snapshot of the resultant dashboard is shown in Figure 3.7. For a given wire bonder,
the dashboard projected in the form of charts a series of vibrations observations, and the
pre-bonding and post-bonding temperatures, both for the past hour. These indicators
originate from the IIoT data and machine logs respectively and were selected based
on the literature discussed in Section 2.3.1, where vibrations and temperature are most
frequently considered as an indication of the machine health. Moreover, the dashboard
featured two gauge charts that measured the number of positive predictions returned
by the models in the last 30 minutes. The top gauge had a prediction window of 90
minutes while the bottom one had a prediction window of 120 minutes.

The dashboard was designed to focus on one wire bonder at a time. The machine under
review is chosen from a menu featured on the dashboard.

As the PdM framework could not be tested on the actual factory floor obtaining readings
directly from the machines, a simulation was used for testing. We took the data for
twelve hours out of the datasets and created a dummy process that updated the EKG
every three minutes. Simultaneously, the dashboard requested the latest data available
from the EKG every three minutes and updated the charts with the latest information.

3.5 | Summary
In this chapter we presented our approach to produce a PdM framework, which was
based on the literature discussed in Chapter 2. Our goal was to determine whether an
EKG was a suitable paradigm to store IIoT data and if it could be exploited for PdM.
To do so, we obtained actual industrial machine data, which we described in the first
part of this chapter. Consequently, in Section 3.2, we discussed how we designed and
implemented an EKG, that we later populated with data for wire bonders through the
use of ETL scripts.
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Figure 3.7: The dashboard interface that projects the latest vibrations and temperature
observations together with the number of positives returned by the predictive models.

In Section 3.3, we described how we trained and evaluated different ML models and the
experiments we carried out to determine the configuration that gave us the best results.
Finally, in Section 3.4, we explained how all the components were integrated together
in the form of a PdM framework. The framework also features a dashboard that, in
addition to the prediction results, projected real-time IIoT data to its users.
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Evaluation

Following the methodology discussed in Chapter 3, in this chapter we discuss at length
the results obtained and how these contribute to the achievement of our objectives. The
objectives of this dissertation included the designing of an ontology to model wire bond-
ing machines, their sensors and the observations of these sensors. This ontology could
then act as the backbone of the EKG, which stored the data produced by the wire bon-
ders. We review our EKG implementation in line with these objectives and discuss the
results obtained. We also present and discuss the results of the experiments carried
out on the predictive models in line with our objective to forecast faults in a particu-
lar industrial machine. Lastly, we discuss the outcome of the implementation of the
PdM framework, where the EKG and the predictive models were integrated with other
components to form a software ecosystem that furnishes its users with the necessary
information to take informed decisions with regards to machine maintenance. This was
also an objective of this dissertation.

4.1 | Evaluation of the Enterprise Knowledge Graph
The method we adopted to implement the EKG is described in Section 3.2. We first
developed an ontology, then formed the knowledge store and created ETL scripts that
transfer the machine data into the EKG. Finally, we validated both the ontology and the
EKG.

4.1.1 | The Ontology
We designed and developed our ontology using a method based on Noy et al. (2001), as
described in Section 3.2.1. The availability of existing ontologies in the sensor network
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domain facilitated our work. We considered the SOSA ontology (Janowicz et al., 2019)
as the most suitable candidate for our needs and took on a number of classes from this
ontology. We extended it by adding classes from the DUL ontology as well as classes of
our own.

Since there was no ontology that could be considered as a gold standard in the PdM
domain, we considered the task-based method (Obrst et al., 2007; Raad and Cruz, 2015)
to evaluate our ontology. This method aims to quantify the extent to which an ontology
improves a given task. To measure the contribution of our ontology, we loaded data
into the knowledge store without uploading the ontology and then posed a number of
competency questions in the form of SPARQL queries. The competency questions we
used were the ones identified while designing the ontology (see Section 3.2.1). We took
note of the results and repeated the process after uploading the ontology. Once again
we took note of the results. The competency questions were designed in a way to cover
all major classes of the ontology and by keeping in mind the context of PdM. There
were other valid questions that we intended to include but could not due to the lack of
data. For example, questions like “When was maintenance last applied to wire bonder x?”
and “How long after the last maintenance did wire bonder y fail?” would have potentially
contributed new insights that could be used for PdM, however, these were not included
as we did not have access to maintenance records.

The results of this exercise are shown in Table 4.1, that lists the competency questions
posed to the knowledge store and an indication of whether any results were returned.
For three of the questions, namely 1, 4 and 6, the EKG could only provide a reply once
we applied the ontology. Therefore, we deduced that the ontology was playing a role by
defining logic upon which the EKG could infer new knowledge to answer these ques-
tions. The replies of these three questions were taken as the sample upon which we eval-
uated the ontology. To determine the accuracy of the ontology, we manually analysed
the resulting triples for correctness by comparing them against the original datasets. It
resulted that all three questions were correctly answered, therefore the accuracy of the
ontology was calculated to be 1.0.

Based on this result, we concluded that the ontology we developed was suited for its
intended purpose. The ontology allowed the inference engine of the knowledge store
to add new triples through the rules and logic defined in the said ontology. For ex-
ample, when recording an observation o, the ETL script generated triples defining the
observation as well as a statement that o was “madeBySensor” s. By applying the logic
within the ontology, the knowledge store inferred that sensor s “madeObservation” o.
Such inferencing simplified the ETL scripts and made them more efficient as not all
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Competency Question
Without

Ontology
With

Ontology

1. In which state was wire bonder x at time t? 7 X
2. What is the latest temperature observation of wire bonder
y?

X X

3. Which sensors measure vibrations? X X
4. Which wire bonders have a sensor of type a? 7 X
5. What are the latest sensor observations of wire bonder z? X X
6. What was the change in temperature for wire bonder x
between time t and time t+n?

7 X

Table 4.1: The results of the competency questions (X- question answered; 7 - no reply).

facts needed to be explicitly specified. Moreover, the completeness of the EKG was
maintained as shown in Figure 4.1 that depicts the knowledge explicitly specified by
the scripts (solid arrows) and that inferred through the ontology (dotted arrows).

Figure 4.1: A partial representation of the knowledge that was explicitly stated by the
ETL scripts (solid arrows) and that inferred by the knowledge store (dotted arrows).
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4.1.2 | The Enterprise Knowledge Graph
As discussed in Section 2.2.4, KGs can be evaluated against a gold standard, where
the generated KG (or parts of it) is compared to a manually created equivalent for cor-
rectness and completeness (Paulheim, 2017). Paulheim (2017) states that when a gold
standard is not available, retrospective evaluation may be used. In this method, samples
of the KG are taken and manually checked for correctness. The evaluation metric used
is normally the accuracy and is calculated as the ratio of correct triples retrieved to the
total triples. Since no gold standard was at our disposal, we evaluated our EKG using
to the retrospective approach described by Paulheim (2017).

We used the results of the six SPARQL queries for the competency questions listed in
Table 4.1 as the samples upon which we evaluated our EKG. These results were taken
after the ontology was applied and therefore the knowledge could be completed by the
inferencing engine. We considered these samples as representative of the EKG since
they covered all the major classes involved. We manually analysed the results for cor-
rectness and completeness by comparing them against the original data. The results for
all six queries were found to be correct and complete with an accuracy of 1.0.

The results of the evaluation were positive and showed that the EKG was suitable to
integrate the various heterogeneous data sources into a homogeneous data structure.
This is consistent with the findings discussed in Section 2.2.2.2. Furthermore, in line
with other research studies that were discussed in Section 2.2.3, the results also indicate
that the EKG was able to store IIoT data.

4.2 | The Predictive Models
In Section 3.3, we explained the method we used to produce the predictive models.
This method was based on the approaches of Soares (2015), Calabrese et al. (2020) and
Gandhi et al. (2018), and involved experimenting with different ML models to find the
one that gave the best results. We split the data into a training dataset and a test set.
Since we had data for four wire bonders, we took the data for a single machine as the test
set and the remaining data for training and validation. We used different preprocessing
techniques to transform the training data into various datasets that were then used in
our experiments. Cross-validation was used to train and validate different ML models
using the various preprocessed datasets. The resulting accuracy, precision, recall and
F1-score were measured and recorded. The trained models were then evaluated on the
test set, where once again the evaluation metrics were measured and recorded. Our
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evaluation method was based on the methods used in Calabrese et al. (2020), Paolanti
et al. (2018) and Susto et al. (2015).

In this part of the document we present the results of the experiments that we conducted
to find the optimum set up for our predictive models. An explanation of the set up of
each experiment can be found in Section 3.3.3.

4.2.1 | Experiment 1 - Testing the Different Models
The aim of this test was to determine which ML models were able to classify a set of
IIoT observations as an indication of normal machine operations or an indication of a
possible upcoming fault. Several ML models were trained, validated and tested. The
outcome of the experiment is shown in Table 4.2, which features the results of a 5-fold
cross-validation and the testing on unseen data.

Model Accuracy Precision Recall F1-score

V
al

id
at

io
n KNN 0.583 0.571 0.707 0.632

RF 0.521 0.519 0.725 0.605
NBC 0.506 0.509 0.685 0.584
GBC 0.501 0.505 0.724 0.595
SVM 0.507 0.507 1.000 0.672

Te
st

in
g

KNN 0.613 0.615 0.678 0.645
RF 0.488 0.505 0.611 0.553
NBC 0.526 0.527 0.839 0.647
GBC 0.573 0.672 0.345 0.456
SVM 0.519 0.519 1.000 0.683

Table 4.2: The results measured in Experiment 1.

The results show that all the models could classify the samples to some extent, except
for SVM. Although SVM had a recall score of 1.0 and an F1-score of 0.683, in reality
all instances were classified as positives, thus the model could not distinguish between
the two classes. Although the SVM model obtained positive results in Kanawaday and
Sane (2017), Sipos et al. (2014) and Susto et al. (2015), it did not fit our problem and
following this result the model was omitted from further tests. The NBC and kNN
performed best with an F1-score of 0.647 and 0.645 respectively. The kNN, however,
had a better precision and a better accuracy. A plot of the F1-score measured for each
model is featured in Figure 4.2.
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Figure 4.2: The F1-score measured on unseen data for the 90-minute prediction window
in Experiment 1.

We observed that the accuracy achieved by the models ranges between 0.5 and 0.6,
which is close to an accuracy obtained when predicting by pure chance. Moreover,
in the majority of cases, the models exhibited a recall in the region of 0.7 but a precision
towards 0.5, which indicates a high rate of false positives. We also observed that in some
cases the models performed better on unseen data than on the validation. This can be at-
tributed to the different class imbalance found in the validation and testing sets, which
favoured certain models. Such bias could have been reduced by using preprocessing
methods to handle class imbalance.

4.2.2 | Experiment 2 - K-Fold Cross-Validation vs. Blocked Cross-
Validation

In k-fold cross-validation, the training set is split into k parts and each training-validation
iteration uses a different part of the data as the validation set. When the training dataset
consists of a time series, this shuffling of segments of the dataset creates a situation
where the learning algorithm is trained on data that is in the future with respect the
the validation set. In Section 2.3.2.3, we refer to the statement made by Bergmeir and
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Benítez (2012) about this issue. The authors state that blocked cross-validation can be
used when dealing with time series data, since the this method preserves the temporal
aspect of the data. They also state that when they contrasted the results of k-fold and
blocked cross-validation they noticed no significant change in performance between the
two methods.

The goal of this experiment was to test which cross-validation method gives the best
model performance. Since the experiment examined the cross-validation method and
not the predictive ability of the models, we only trained two ML models and validated
them on the same training data using both k-fold cross-validation and blocked cross-
validation. The experiment results for the 5-fold cross-validation are presented in Ta-
ble 4.3, while the corresponding results for blocked cross-validation (using five blocks)
are shown in Table 4.4.

Model Accuracy Precision Recall F1-score

Validation
RF 0.546 0.541 0.686 0.605
GBC 0.505 0.508 0.724 0.597

Testing
RF 0.477 0.496 0.529 0.512
GBC 0.591 0.628 0.518 0.568

Table 4.3: The results of Experiment 2 for K-fold cross-validation.

Model Accuracy Precision Recall F1-score

Validation
RF 0.495 0.501 0.639 0.561
GBC 0.505 0.508 0.724 0.597

Testing
RF 0.470 0.490 0.511 0.500
GBC 0.591 0.628 0.518 0.568

Table 4.4: The results of Experiment 2 for Block cross-validation.

The results show no difference in the performance of the GBC, while RF performed
marginally better when trained using k-fold cross-validation but the difference is neg-
ligible. This concurs with the findings of Bergmeir and Benítez (2012). The results po-
tentially indicate that although in k-fold cross-validation the folds were shifted hence
breaking the temporal order of the data, since the order within the folds was preserved
(by not shuffling the data), each fold can be seen as a shorter time series in itself. Thus
the models were still able to learn when using this method.
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4.2.3 | Experiment 3 - Testing the Different Scaling Methods
The aim of this experiment was to demonstrate the impact of the various scaling meth-
ods on the ML models’ performance. We trained the ML models on datasets trans-
formed using L2 normalisation, min-max normalisation and z-score normalisation and
observe the model performance. The outcome from the experiment are presented in
Table 4.5 that shows the results of a 5-fold cross-validation and those measured when
testing the models on unseen data.

Model Scaling Accuracy Precision Recall F1-score

V
al

id
at

io
n

KNN
L2 0.583 0.571 0.707 0.632
MinMax 0.586 0.604 0.528 0.564
Z-score 0.518 0.526 0.483 0.503

RF
L2 0.521 0.519 0.725 0.605
MinMax 0.485 0.494 0.705 0.581
Z-score 0.478 0.489 0.673 0.567

NBC
L2 0.506 0.509 0.685 0.584
MinMax 0.528 0.521 0.855 0.648
Z-score 0.481 0.486 0.417 0.449

GBC
L2 0.501 0.505 0.724 0.595
MinMax 0.525 0.525 0.660 0.585
Z-score 0.525 0.525 0.660 0.585

Te
st

in
g

KNN
L2 0.613 0.615 0.678 0.645
MinMax 0.455 0.481 0.633 0.546
Z-score 0.501 0.510 0.937 0.661

RF
L2 0.488 0.505 0.611 0.553
MinMax 0.514 0.517 0.983 0.677
Z-score 0.502 0.511 0.915 0.656

NBC
L2 0.526 0.527 0.839 0.647
MinMax 0.519 0.519 1.000 0.683
Z-score 0.472 0.491 0.480 0.485

GBC
L2 0.573 0.672 0.345 0.456
MinMax 0.518 0.518 0.995 0.682
Z-score 0.518 0.518 0.995 0.682

Table 4.5: The results obtained from Experiment 3.

We observed that the L2 normalisation method resulted in a better precision for all mod-
els. Moreover, MinMax and z-score normalisation resulted in RF and GBC classifying
most examples towards the positive class. This is shown by the high recall score and
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the relatively low precision. The same applies for kNN using z-score and NBC using
MinMax. In these cases the data scaling hindered learning.

4.2.4 | Experiment 4 - Testing Methods Handling Class Imbalance
This test aimed to measure the effect methods handling class imbalance have on the
performance of the learning algorithms. We used three datasets, labelled using a differ-
ent prediction windows (60, 90 and 120 minutes) since the class imbalance varied across
the different datasets. For example, the positively labelled samples for the 120-minute
prediction window were twice as much those for a 60-minute prediction window. Some
of the results of the experiment are displayed in Table 4.6 and Table 4.7, that show the
precision and F1-score as measured on unseen data respectively.

The results show that the impact of the two methods handling class imbalance on the
model performance vary according to the model itself. This is also evident from Fig-
ure 4.3 that shows a plot of the F1-score recorded for the various models for a 90-minute
prediction window. The largest impact was observed on the GBC, where SMOTE im-
proved its performance for both the 90-minute and the 120-minute prediction windows,
while under sampling decreases the model performance. The other models were ei-
ther unaffected of their performance was deteriorated when using the methods tested.
However, it should be noted that since the datasets were imbalanced towards the neg-
ative class, when no class imbalance handling methods were applied there was a bias
towards models predicting a majority of negatives. Potentially, this may have distorted
the results.
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Model
60-minute 90-minute 120-minute

No Imbalance
Handling

SMOTE
Under

Sampling
No Imbalance

Handling
SMOTE

Under
Sampling

No Imbalance
Handling

SMOTE
Under

Sampling

KNN 0.400 0.476 0.473 0.615 0.614 0.606 0.545 0.705 0.697
RF 0.421 0.412 0.457 0.505 0.489 0.512 0.498 0.646 0.559
NBC 0.432 0.495 0.534 0.527 0.532 0.532 0.620 0.623 0.624
GBC 0.373 0.529 0.765 0.672 0.628 0.693 0.460 0.726 0.765

Table 4.6: The Precision measured for the various models as measured on unseen data in Experiment 4.

Model
60-minute 90-minute 120-minute

No Imbalance
Handling

SMOTE
Under

Sampling
No Imbalance

Handling
SMOTE

Under
Sampling

No Imbalance
Handling

SMOTE
Under

Sampling

KNN 0.543 0.529 0.546 0.645 0.644 0.627 0.692 0.683 0.667
RF 0.528 0.553 0.499 0.553 0.498 0.513 0.606 0.503 0.528
NBC 0.593 0.589 0.613 0.647 0.619 0.620 0.748 0.678 0.678
GBC 0.469 0.186 0.117 0.456 0.568 0.301 0.585 0.600 0.293

Table 4.7: The resulting F1-score for the various models as measured on unseen data in Experiment 4.
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Figure 4.3: The F1-score measured on unseen data for the 90-minute prediction window
in Experiment 4.

4.2.5 | Experiment 5 - Testing Data Reduction Methods
We conducted this experiment to determine whether data reduction methods improved
the learning ability of the ML models and which method gave the best outcome. Three
data reduction methods were put to test - PCA, a filter method and the feature engineer-
ing method used by Farokhzad et al. (2012), where the numerous FFT dimensions were
replaced by other features that described the properties of the waveform. The ML mod-
els were trained and validated on datasets that are reduced using the three reduction
methods and their performance was measured. The trained models were then tested on
unseen data. The experiment results are shown in Table 4.8.

When we compared the obtained results against those obtained in previous experi-
ments, we observed that the reduction methods gave a similar performance to that seen
in Experiment 1 for kNN and NBC. The filter method, however, improved the F1-score
for GBC from 0.456 as measured in Experiment 1 to 0.597. RF suffered a drop in perfor-
mance that may be attributed to the embedded feature selection technique within the
model’s algorithm. Moreover, the method used in Farokhzad et al. (2012) gave results
for kNN and NBC that are comparable to those measured in Experiment 1, but with the
advantage of having less dimensions.
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Model Reduction Accuracy Precision Recall F1-score
V

al
id

at
io

n

KNN

No reduction 0.584 0.572 0.705 0.632
PCA 0.574 0.559 0.752 0.642
Filter Method 0.587 0.578 0.683 0.626
Farokhzad et al. (2012) 0.590 0.573 0.742 0.647

RF

No reduction 0.540 0.536 0.690 0.603
PCA 0.490 0.498 0.920 0.647
Filter Method 0.531 0.521 0.917 0.664
Farokhzad et al. (2012) 0.532 0.526 0.765 0.624

NBC

No reduction 0.500 0.505 0.631 0.561
PCA 0.454 0.437 0.271 0.334
Filter Method 0.598 0.616 0.544 0.578
Farokhzad et al. (2012) 0.506 0.509 0.685 0.584

GBC

No reduction 0.505 0.508 0.724 0.597
PCA 0.570 0.557 0.736 0.634
Filter Method 0.571 0.579 0.561 0.570
Farokhzad et al. (2012) 0.426 0.429 0.401 0.415

Te
st

in
g

KNN

No reduction 0.612 0.614 0.676 0.644
PCA 0.611 0.611 0.685 0.646
Filter Method 0.483 0.502 0.591 0.543
Farokhzad et al. (2012) 0.608 0.612 0.671 0.640

RF

No reduction 0.469 0.489 0.508 0.498
PCA 0.510 0.515 0.970 0.673
Filter Method 0.519 0.519 1.000 0.683
Farokhzad et al. (2012) 0.613 0.709 0.430 0.535

NBC

No reduction 0.527 0.532 0.741 0.619
PCA 0.544 0.662 0.248 0.361
Filter Method 0.652 0.691 0.595 0.639
Farokhzad et al. (2012) 0.526 0.527 0.839 0.647

GBC

No reduction 0.591 0.628 0.518 0.568
PCA 0.514 0.517 0.990 0.679
Filter Method 0.621 0.665 0.542 0.597
Farokhzad et al. (2012) 0.519 0.556 0.362 0.439

Table 4.8: The results for Experiment 5.
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4.2.6 | Experiment 6 - Testing the Performance onNoise-Smoothened
Data

The IIoT data was noisy and contained outliers. In this experiment we smoothened
the data using a simple moving average to lessen the effect of outliers. The aim of
the experiment was to measure the impact of such smoothening on the performance of
the ML models and to determine which rolling time window length produced the best
results. We prepared two datasets using a simple moving average with a rolling time
window of 15 and 30 minutes respectively. The results measured through a 5-fold cross-
validation and eventually through the testing of the models on unseen data are shown
in Table 4.9.

Model Time Window Accuracy Precision Recall F1-score

V
al

id
at

io
n

KNN
15 minutes 0.565 0.560 0.667 0.609
30 minutes 0.533 0.528 0.740 0.616

RF
15 minutes 0.560 0.552 0.694 0.615
30 minutes 0.555 0.548 0.692 0.612

NBC
15 minutes 0.491 0.498 0.599 0.544
30 minutes 0.604 0.621 0.558 0.588

GBC
15 minutes 0.618 0.623 0.622 0.623
30 minutes 0.604 0.601 0.649 0.624

Te
st

in
g

KNN
15 minutes 0.598 0.617 0.593 0.605
30 minutes 0.593 0.607 0.611 0.609

RF
15 minutes 0.641 0.623 0.782 0.693
30 minutes 0.483 0.501 0.622 0.555

NBC
15 minutes 0.533 0.546 0.582 0.563
30 minutes 0.649 0.703 0.558 0.622

GBC
15 minutes 0.634 0.760 0.431 0.550
30 minutes 0.672 0.658 0.765 0.707

Table 4.9: The results for Experiment 6.

The results showed that while kNN and NBC did not benefit from data smoothening, RF
and GBC displayed an improved performance. In the case of RF, the F1-score increased
from 0.553 to 0.693 on data treated with a simple moving average using a rolling time
window of 15 minutes. On the other hand, GBC displayed an increase in F1-score from
0.456 to 0.55 using 15-minute time window, and to 0.707 using a 30-minute time window.
A comparison between the F1-score obtained without the data smoothening and those

78



Chapter 4. Evaluation 4.2. The Predictive Models

obtained after transforming the data using the simple moving average are projected in
Figure 4.4, where the improvements for RF and GBC can be observed.

Figure 4.4: The F1-score measured on unseen data for the 90-minute prediction window
in Experiment 6.

4.2.7 | Experiment 7 - Testing Different Prediction Windows
We also studied how the models performed across different prediction windows. In
this experiment we prepared five datasets labelled using different prediction windows.
All the datasets were scaled using L2 normalisation, class-balanced using SMOTE and
smoothened using a simple moving average with a rolling time window of 30 minutes.
Feature selection was also applied.

The F1-scores measured for each ML model in the experiment are shown in Table 4.10,
while Figure 4.5 shows a plot of the F1-score obtained by the models on unseen data over
the different prediction windows. We observed that longer prediction windows resulted
in a better model performance. The results of kNN increased gradually and stabilised
at 0.72 for the 120 and 150 prediction windows. RF performed better for prediction
windows of 120 minutes and above while NBC produced an F1-score of 0.782 for the
150-minute prediction window, which was remarkably higher than the scores for the
other prediction windows. The F1-score measurements for the GBC were stable in the
region of 0.7 for prediction windows of 90 minutes and above.

79



Chapter 4. Evaluation 4.2. The Predictive Models

Model
Prediction Window (minutes)

60 90 120 150 180

V
al

id
at

io
n KNN 0.637 0.616 0.637 0.685 0.637

RF 0.710 0.612 0.716 0.748 0.709
NBC 0.598 0.588 0.598 0.734 0.598
GBC 0.698 0.624 0.698 0.676 0.698

Te
st

in
g KNN 0.503 0.609 0.650 0.721 0.719

RF 0.594 0.555 0.750 0.743 0.804
NBC 0.508 0.622 0.606 0.782 0.632
GBC 0.574 0.707 0.682 0.755 0.695

Table 4.10: The F1-score measured for the various prediction windows in Experiment 7.

Figure 4.5: The F1-score measured on unseen data using different prediction windows
as recorded in Experiment 7.

4.2.8 | Experiment 8 - Forecasting Selected Faults
Not all machine faults are equal in terms of losses for the manufacturing firm. In this
experiment we tested the ML models’ ability to predict three faults that are more expen-
sive than others. We labelled a dataset using a 90-minute prediction window for these
three faults. The dataset was scaled using L2 normalisation, smoothened using a simple
moving average with a rolling time window of 30 minutes and class balanced through
SMOTE. Feature selection was also applied to reduce the data.
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Model Accuracy Precision Recall F1-score

V
al

id
at

io
n KNN 0.608 0.015 0.536 0.029

RF 0.796 0.016 0.300 0.031
NBC 0.368 0.008 0.479 0.016
GBC 0.688 0.017 0.479 0.032

Te
st

in
g KNN 0.608 0.135 0.426 0.205

RF 0.657 0.152 0.413 0.222
NBC 0.430 0.118 0.585 0.196
GBC 0.493 0.134 0.599 0.219

Table 4.11: The results measured in Experiment 8 when training ML models to forecast
selected faults.

Figure 4.6: A comparison of the F1-score measured when predicting all machine faults
with that measured when predicting selected faults.

The results obtained when validating and testing the learning algorithms are displayed
in Table 4.11 while Figure 4.6 shows a comparison of the models’ performance as mea-
sured in this experiment against their equivalent when classifying all machine faults.
We observed a drop in performance for all models, with lower precision and F1-score
when compared to previous experiments. The results potentially indicate that the wire
bonders’ behaviour in terms of machine health indicators (vibrations, temperature, etc.)
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does not vary between expensive and non-expensive faults, therefore the models were
unable to distinguish the expensive faults from the rest.

4.3 | The Predictive Maintenance Framework
We integrated the various components produced in this research project into a PdM
framework. An architectural view of our PdM framework is presented in Figure 3.6.
This consisted of:

1. The ETL scripts that extracted the data generated by the wire bonders, mapped it
onto the ontology and loaded it into the knowledge store;

2. The EKG that acted as a persistent repository of the IIoT data, but also completed
the knowledge through inferencing;

3. The predictive models that forecasted machine faults within specific time win-
dows based on vectors of machine health indicators; and

4. A dashboard that retrieved the latest IIoT observations from the EKG, passed on
this data to the predictive models to received back the predictions and projected
selected indicators as well as the predictions to its users.

We found no formal evaluation method for PdM frameworks in literature, so we eval-
uated its core components - the ontology (see Section 4.1.1), the EKG (see Section 4.1.2)
and the predictive models (see Section 4.2). Both the ontology and the EKG resulted
in an accuracy score of 1.0. The predictive models used in our PdM framework were
chosen based on the results of the experiments described in Section 4.2. Two predictive
windows are considered, the 90-minute and 120-minute time windows, and the best
performing ML models for these time windows were integrated into the PdM frame-
work. The evaluation results of the models used within the system are featured in Ta-
ble 4.12.

Predictive window Model Accuracy Precision Recall F1-score

90-minute GBC 0.672 0.658 0.765 0.707
120-minute RF 0.664 0.685 0.829 0.750

Table 4.12: The evaluation results of the ML models used within the PdM framework.
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We tested the PdM framework functionality through a simulation, where we employed
a dummy process that updated the EKG with new IIoT data every three minutes. At
the same time, every three minutes the dashboard requested the latest data available
from the EKG through a SPARQL query, obtaining an RDF message in return. The IIoT
observations were extracted from the RDF message and passed on to the predictive
models for their predictions. Selected machine health indicators and the predictions
were projected on the dashboard in the form of charts. During this testing we noted
that the system met its intended functionality. We also noted that the results projected
on the dashboard were correct.

4.4 | Discussion
As stated in Section 4.1.1, the ontology evaluation using the task-based approach (Obrst
et al., 2007; Raad and Cruz, 2015) resulted in an accuracy of 1.0. This shows that the
ontology, and therefore the EKG schema, was fit for its intended purpose. In fact, the
knowledge store was capable of inferring new knowledge based upon the ontology.
A similar behaviour was observed by Umiliacchi et al. (2011), where the ontology de-
veloped was able to infer knowledge that was not specifically coded. The retrospec-
tive evaluation (Paulheim, 2017) on the EKG also resulted in an accuracy score of 1.0.
This gave the assurance of the correctness of the IIoT measurements that were being
used for PdM. It also signified that the EKG was a suitable paradigm for storing IIoT
data, hence answering research question RQ1. This is also backed up by other research
studies that used the EKG to store IIoT data, which were discussed in Section 2.2.3. It
should be noted that the EKG was evaluated by a single judge, which was a shortcom-
ing since Paulheim (2017) recommends to have multiple judges. According to Petersen
et al. (2017), the ideal profile for such judges are the domain experts, who have in-depth
knowledge of the field and can provide insight about the validity of the EKG in addition
to its accuracy. However, due to the unavailability of the domain experts in the evalu-
ation period, we evaluated the correctness of the results obtained through the SPARQL
queries by manually comparing them against the original datasets.

The experiments we conducted aimed at finding the ML models that provided the best
performance. These resulted to be the GBC and RF that produced an F1-score of 0.707
and 0.75 respectively. We also measured the precision and recall since these are impor-
tant metrics in PdM. As discussed in Section 2.3.2.3, the precision measures the fraction
of positive predictions that were correctly classified by the models, while the recall mea-
sures the fraction of positively classified instances that were correct. In terms of PdM,
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a low precision is an indication of a high rate of false positives, which results in unnec-
essary maintenance activities and therefore unnecessary costs. A low recall is an indi-
cation of a high fraction of false negatives, which results in faults going undetected and
leading to unplanned machine stoppages due to breakdowns. As shown in Table 4.12,
the models we used for our PdM framework have a precision of 0.658 and 0.685. This
means that 34.2% of the fault alerts given by the framework 90 minutes in advance of
the possible fault and 31.5% of those given 120 minutes in advance, were false alarms.
On the other hand, our models register a recall of 0.765 and 0.829. This means that the
GBC did not detect 23.5% of the faults while the RF did not detect 17.1% of the faults.

In Calabrese et al. (2020), the authors trained their models using the log files for five
months of operations of 14 woodworking industrial machines. The authors report a
precision of 0.991 and a recall of 0.996. This results in an F1-score of 0.993 when predict-
ing faults 30 days in advance. In Paolanti et al. (2018), the authors obtained a precision
of 0.94 and a recall of 0.95, resulting in an F1-score of 0.945. In this case the data con-
sisted of more than 530,000 samples of rotation speed, power, current and vibrations
taken from a single wood cutting machine. The model was then evaluated on fault pre-
dictions for the same machine from which the training samples were collected. On the
other hand, Susto et al. (2015) report a precision of 0.693 and a recall of 0.63, which result
in an F1-score of 0.66. The authors trained their models on a dataset consisting of elec-
trical and pressure records for 3,671 runs (from part installation to failure) of several ion
implantation tools. In Kanawaday and Sane (2017), the authors use a dataset consist-
ing of one month of pressure and tension records for a single slitting machine to train
their model. They report an accuracy of 0.987 when evaluating the model on the same
machine. In contrast with the results obtained by previous research studies, our results
were inferior and only comparable to those obtained by Susto et al. (2015). However, it
must be noted that different machines exhibit different behaviour and the results were
not comparing like with like as the problems being tackled varied, as did the data that
was used. They do however give an indication of the level of accuracy that is expected
in industry.

Better results could have potentially been achieved by improving the quality of the
training data. When compiling the training data, we had no knowledge of maintenance
activities that were carried out on the wire bonders during the 23 days covered by the
datasets. Calabrese et al. (2020) and Paolanti et al. (2018) took into account the main-
tenance records in preparing their training data since maintenance activities alter the
condition of the machines. If we had maintenance records at our disposal, these would
have been factored in when preparing the datasets, which would have potentially im-
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proved the results. Moreover, Sipos et al. (2014) emphasise on the importance of the
involvement of the domain experts in each step of the model development process. In
our work the lack of domain expertise was substantially felt in the data labelling step.
The technical nature of the messages produced by the wire bonders made them hard to
interpret and therefore to distinguish between faults and non-faults. When in doubt we
assumed the messages to signify faults, but in doing so we potentially included label
noise in the training data. The involvement of the domain experts in the data labelling
exercise would have resulted in better quality datasets that would possibly have pro-
vided better results. Moreover, other research studies used more training data samples
than that made available for our dissertation. The availability of more data could po-
tentially improve the results. Notwithstanding the room for improvement, the results
obtained show that the ML models were able to predict faults of the wire bonders based
on IIoT data with an accuracy of 0.66 to 0.67 and an F1-score of 0.7 to 0.75 thus an-
swering RQ2. This is in line with previous research found in literature as discussed in
Section 2.3.2.3.

The prototype of the PdM framework that was developed as part of this dissertation
integrated the ETL scripts, the EKG and the predictive models. Moreover, a dashboard
was added to convey the predictions to the user as described in Section 3.4.4. The PdM
framework aimed to predict wire bonder faults up to 120 minutes in advance. As dis-
cussed in Section 2.3, a PdM strategy should predict faults as early as possible. Fur-
thermore, the time period a fault is predicted in advance depends on the problem being
investigated (Susto et al., 2015). In the case of the wire bonders used in this study it was
observed that these generate between four to eight errors a day. Therefore, we had to
consider shorter prediction windows than those we found in literature that normally
range from days (Amihai et al., 2018; Sipos et al., 2014) to weeks (Calabrese et al., 2020).

As discussed in Section 3.4, our PdM framework was supported by an EKG. This cou-
pling did not improve the predictive performance of the framework, however, it re-
sulted in a number of benefits.

1. The EKG was able to integrate disparate data sources. Not only did such data
vary in format, structure and vocabulary but even the sampling frequency dif-
fered across the sources. In our implementation, this problem was handled by
mapping the data sources onto the ontology, that provided a homogeneous data
structure that was flexible enough to accommodate all the data sources. In this
way, the consumer side of the PdM framework did not need to cater for the com-
plexity caused by the heterogeneous data sources. This approach also features in
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the works of Medina-Oliva et al. (2014) and Schmidt et al. (2017), who use an EKG
as a data integration paradigm to support their PdM framework.

2. The complexity of the data retrieval of the PdM framework was also reduced by
the common vocabulary brought about by the EKG. The three datasets used in
this dissertation had different vocabularies. Furthermore, the wire bonders used
two different vocabularies when generating machine logs even though the format
was the same. By introducing the EKG, the different vocabularies were trans-
formed into more generic terms such as sensor and observation, but preserving the
information about which sensor was generating which observation. Therefore, the
consumer part of the PdM framework could request the sensor observations with-
out the need to know which sensor is generating such observations and which
vocabulary is being used. This property of a KG was also exploited by Schmidt
et al. (2017) where the PdM framework uses the semantics brought by the ontology
to retrieve data from disparate data sources using different vocabularies.

3. As discussed in Section 4.1.1, the EKG was able to infer new knowledge by us-
ing the ontological logic. This reduced the complexity of the ETL scripts and im-
proved their efficiency since the number of triples that needed to be transferred
to the EKG was reduced. At the same time, the completeness of the knowledge
stored within the EKG was maintained since the missing triples were inferred.
This occurrence was also observed in Umiliacchi et al. (2011), where the PdM soft-
ware could make use of knowledge that was not explicitly written into the RDF
store. This was also an advantage of the use of the EKG over other data storage
paradigms that do not inference new knowledge.

The outcome obtained from the PdM framework shows that the EKG was a suitable data
structure to support PdM. Moreover, the PdM framework benefitted from the charac-
teristics of the EKG, thus providing an answer to RQ3.

4.5 | Summary
We introduced this chapter by revisiting the objectives of this research project. We then
explained how the ontology and the EKG were evaluated and presented the results
obtained from such evaluations. We also saw the results obtained in the various ex-
periments we conducted on the predictive models. Moreover, we described how the
PdM framework was implemented through the integration of the components devel-
oped throughout this research project and how it was tested for correctness. Finally, we
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discussed and interpreted the results obtained. We also saw how the findings provide
answers to our research questions.
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5

Conclusions

This chapter summarises our dissertation and explains how we achieved our objectives
and what answers we can provide to our research questions. We also discuss the limi-
tations of this dissertation and then proceed with a discussion on how this research can
mature further by proposing other areas of research related to the use of the EKG in
supporting PdM. These may be taken up as future research projects.

In Chapter 1 of this dissertation, we explained the motivation behind this research. We
stated that a major characteristic of the EKG is its data integration capabilities, including
its ability to integrate heterogeneous data. We also explain that the semantic enrichment
of the data within the EKG detaches the various data sources from their original vocabu-
lary and transforms them into a structure that is described by a harmonised vocabulary.
We hypothesised that these characteristic can be exploited to store IIoT data, that was
heterogeneous in its form and vocabulary, into a homogeneous data structure. The EKG
can then be leveraged for PdM. This is not a novel concept, in fact Kharlamov et al.
(2017), Medina-Oliva et al. (2014), Schmidt et al. (2017) and Voisin et al. (2013) take on
this approach. However, considering the advantages of PdM and the flexibility the EKG
can provide, the number of research projects using this approach is relatively small,
possibly because the EKG is regarded as an Enterprise Information System rather than
a data model specialised for a specific task. This motivated us to provide another case
study demonstrating how the characteristics of the EKG can be exploited for PdM of
wire bonding machines. Pursuing this motivation, we defined our research questions,
and the aims and objectives of this dissertation.

Chapter 2 started by describing the semiconductor manufacturing process, with partic-
ular attention to the wire bonding process and the various maintenance strategies that
manufacturing firms adopt. It proceeds by explaining EKGs and ontologies, how they
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are created, used and evaluated. Lastly, the chapter discusses PdM, focusing on the ML
based approach to PdM.

Our methodological approach is described in Chapter 3. First, we introduced the datasets
that were used in this dissertation. Second, we described how we created the ontology
to then proceed with creating and populating the EKG. Third, we explained how we
preprocessed the data to then train and validate a number of ML models through a se-
ries of experiments. Lastly, we discussed how we implemented a PdM framework using
the EKG as its source of knowledge.

In Chapter 4 we evaluated the ontology and the EKG. We also presented the results of
the experiments on the ML models, and described how we chose the predictive mod-
els to be used within the PdM framework. An interpretation of the obtained results
concludes the chapter.

5.1 | Achieved Aims and Objectives
This dissertation investigated whether the EKG can be leveraged for PdM. This was
split into three research questions as follows:

(RQ1) Can an EKG effectively store IIoT data?
(RQ2) Can wire bonder failures be predicted from IIoT data and machine logs?
(RQ3) Can an EKG structure support a PdM framework?

In line with these research questions, a number of objectives were established. The first
objective was to design an ontology for wire bonders, their sensor network and their
measured observations. This objective was achieved through the procedure described
in Section 3.2.1. The evaluation of the ontology is described in Section 4.1.1 and resulted
in an accuracy of 1.0. The designed ontology models wire bonding machines, their
states, their sensors and sensor observations as shown in Figure 3.4.

The second objective involved the transformation of IIoT data into an EKG using auto-
mated or semi-automated approaches. This objective was also achieved. We followed
the method explained in Section 3.2 to build the EKG in the form of an RDF store using
the developed ontology as its schema. The IIoT data was extracted, mapped onto the
ontology and pushed into the RDF store using ETL scripts that were specifically writ-
ten for this task. The EKG was evaluated as explained in Section 4.1.2, resulting in an
accuracy score of 1.0.
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Through the achievement of the first two objectives, we answered RQ1. The EKG was
able to effectively store the IIoT data generated by wire bonders in addition to knowl-
edge about the wire bonders themselves, their states and their sensors. Moreover, the
EKG was able to infer missing links in the knowledge through the logic defined in the
ontology.

The third objective consisted of training an ML model to predict faults of wire bond-
ing machines. Section 3.3 describes how we trained different ML models on a dataset
composed of IIoT data and machine logs, and experimented with various preprocess-
ing techniques to predict such faults within specific time windows. We then retained
the best two performers to incorporate them within the PdM framework. These were
the RF and GBC, both trained on a dataset that was scaled using L2 normalisation, class-
balanced using SMOTE, smoothened using a simple moving average with a 30-minute
rolling time window and reduced using a filter method. The RF predicted machine
faults up to 120 minutes in advance with an accuracy of 0.664 and an F1-score of 0.75.
The GBC, on the other hand, predicted faults up to 90 minutes ahead with an accuracy
of 0.672 and an F1-score of 0.707. We can therefore state that the third objective was
also achieved and that this answers RQ2 - that the ML models were able to predict wire
bonder failures from IIoT data and machine logs.

The last objective of this dissertation was to build a PdM framework that is supported by
an EKG. To achieve this objective we built a PdM framework as described in Section 3.4.
The framework consisted of a dashboard that retrieved the latest IIoT data from the EKG
and passed on this data to the predictive models to obtain a set of predictions in return.
The IIoT data and the predictions were then projected to the user through the graphical
user interface. A pictorial representation of the final product is featured in Figure 3.6.

The achievement of this objective allowed us to answer RQ3, whereby we investigated
whether the EKG can support a PdM framework. Moreover, we concluded that the EKG
was leveraged by the PdM framework in three ways:

1. The EKG served as a data integration paradigm, merging IIoT data coming from
different sources and having a different format, structure, vocabulary and sam-
pling frequency into a homogeneous data structure that the PdM framework could
then query for the latest sensor observations. Without the EKG, the data extraction
procedures of the PdM framework would have been very complex to cater for this
diversity. Moreover, multiple such procedures would be needed as these must be
specific for each data source.
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2. The EKG also served to standardise the vocabulary across all data sources. Each
data source used in this dissertation had its own vocabulary. Additionally, dif-
ferent models of wire bonders used different vocabulary to record the machine
logs. With the introduction of the EKG, the PdM framework could consider every
wire bonder as having the same characteristics and using a common vocabulary
to describe these characteristics. Once again, without the EKG, the data extrac-
tion methods of the PdM framework would need to be specific to the vocabulary
of the respective data source, thus multiple such methods are required and these
methods may not have been reusable for other wire bonders.

3. The EKG was able to infer new knowledge through ontological reasoning. This
completed any gaps in the knowledge that was obtained through the ETL scripts.
This feature of the EKG reduced the complexity and increased the efficiency of
the ETL scripts as these did not need to be complete, but the completeness of the
knowledge was still maintained by the EKG. Without the EKG the data extraction
methods would need to ensure that the data being extracted is complete.

5.2 | Limitations
Although the results of the PdM framework prototype we presented in Chapter 4 were
promising, one must also consider its limitations. The prototype was designed and
tested for a limited number of wire bonders and its behaviour when dealing with a
large number of wire bonders was not tested. In such scenario, the velocity of the data
increases and the prototype was not equipped to handle data velocity.

Another limitation of the system is that it assumed that all wire bonders had the same
sensors, when this may not be the case. This could be done because we used one partic-
ular model of wire bonder, but different models may have a different sensory network
and the system was not designed to cater for such an occurrence. Moreover, the EKG did
not discover new machines and sensors automatically from the data being generated,
as the ETL scripts extracted only the sensor observations for known devices. There-
fore, wire bonders and sensors had to be manually defined in the EKG. Additionally,
the system did not validate the IIoT data, so it had no inbuilt mechanism to stop noise.
These limitations can be addressed by enhancing the ETL processes to be more flexible
and cater for these issues. For the auto-discovery of wire bonders and their sensors to
be implemented, the ontology needs to be further specialised for wire bonders. It must
also define each sensor characteristics so that when data from unregistered equipment
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is detected, the EKG can infer the properties of the equipment from the characteristics
of the data.

The predictive models generated many false positives, which if taken into account would
result in unnecessary stoppages. This is very expensive for the manufacturing firm as
it constitutes a waste of time and resources. Therefore, the ML models’ performance
must improve for the PdM framework to be feasible. The predictions may improve by
taking maintenance records into account during the preparation of the training data in
a similar approach to those used in Calabrese et al. (2020) and Paolanti et al. (2018).
Moreover, as explained in Section 4.4, the data labelling process can be improved by in-
volving the domain experts to ensure that the training data is correctly labelled. Another
limitation, as determined through Experiment 8 (Section 4.2.8), was that the predictive
models were unable to predict selected faults that are more critical than others. The
reason behind this could potentially be that the “symptoms” of these faults on the wire
bonders in terms of machine health indicators were not different than those for other
faults, therefore the models could not distinguish expensive from non-expensive faults.

The PdM framework as designed for this research incorporated two binary classifiers
that predicted a fault within a specific time window. When a possible fault was pre-
dicted, the system could not distinguish the type of the fault being detected, hence it
could not recommend the action to be taken. Some faults require the wire bonder to
be stopped for maintenance, whilst for other faults a realignment of certain machine
parts would solve the problem. Without knowledge of the type of upcoming fault it is
difficult for the machine operator to decide upon the best remedial action to take.

5.3 | Future Work
The objectives set for this dissertation were met, nonetheless, this research can be ex-
tended to further explore the potential of the EKG within the sphere of PdM. We pro-
pose four related works that can be considered in the future.

a) Predict the upcoming fault: As discussed in Section 5.2, one of the limitations of
our PdM framework was that, although it predicted a possible upcoming fault, there
was no indication of what this fault might have been. Further research may explore
the identification of the fault to aid the machine operator to determine the best action to
take. This would improve the effectiveness of the PdM framework. A possible approach
to do this is that used by Farokhzad et al. (2012), where the features are passed through
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an artificial neural network that was trained to output different codes that signify the
predicted fault.

b) Include maintenance data into the EKG: As explained in Section 4.4, the mainte-
nance records of the wire bonders were not taken into account in this dissertation. Main-
tenance, however, plays an important role in the health level of the machines. Works
such as Calabrese et al. (2020) and Paolanti et al. (2018) take maintenance records into
account when training their predictive models. It would be interesting to investigate
whether maintenance records of wire bonders can ameliorate the performance of the
predictive models. Moreover, a future study should investigate how the ontology must
be adapted to fit the maintenance records and how such information can be collected
into the EKG.

c) Estimate the RUL of a machine: As discussed in Section 2.3, another use of ML in
PdM is to estimate the remaining time to the next failure, or the RUL. In Amihai et al.
(2018), the authors use vibrations FFT data to estimate the RUL of industrial pumps
by using an RF model. They used a proprietary software that acts as middleware by
reading the sensor observations and sending them to the ML model. Future research
can investigate whether an EKG can support a PdM framework that estimates RUL and
whether its properties offer any value added over other data models.

d) Extend the PdM framework to other types of machines: This dissertation dealt
with wire bonding machines, creating a PdM framework that monitors their machine
health indicators and alerting of any predicted upcoming faults. An extension of this
research can focus on widening the scope of the PdM framework to other types of ma-
chines. As we saw in Section 2.3.1, the machine health indicators that are indicative
of the condition of a machine vary according to the type of machine. Hence the fu-
ture work should investigate how to use the EKG for context awareness as discussed
in Section 2.2.2.2, to allow the PdM framework to determine the type of the machine
that is generating the IIoT data. This may then lead the PdM framework to extract the
required machine health indicators to be passed on to the corresponding ML models for
this machine type. A similar concept is discussed in Medina-Oliva et al. (2014), where
the authors use a context aware system that identifies the equipment generating the data
and searches the knowledge base for diagnostic tasks related to similar units.
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5.4 | Final Remarks
This dissertation studied whether the EKG is a suitable data structure to store IIoT data
generated by wire bonding machines and whether it can be leveraged for PdM. We
used actual data generated in a semiconductor manufacturing plant to design an ontol-
ogy and construct an EKG. ETL scripts were written to transfer the IIoT data into the
EKG. The IIoT data was also used to train and validate various ML models to predict
machine faults within a specific time window. All the developed components were then
integrated into a PdM framework that extracted the machine health indicators from the
EKG, and were then projected on a dashboard. Additionally, the dashboard alerted of
any predicted upcoming wire bonder faults.

The results generated through this research are promising and provided an answer to
our main research question, showing that the EKG can be leveraged for PdM as a data
integration paradigm for heterogeneous IIoT data, by standardising the vocabulary of
disparate data sources and by inferring new knowledge through ontological reasoning.
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Dataset structures

1a) ETS data structure (main variables)

Variable Datatype Description

MANUFACTURINGMODULE String The physical location of the machine
(known as tunnels).

EQUIPMENTNAME String The name of the machine, also used as its
unique identifier.

STEP String The current step within the production
process.

PRODUCT String The name of the product being produced.
QTY Integer The quantity of products being produced.
TXNTIMESTAMP Datetime The timestamp of the record. This is taken

to be the end time of the event.
DURATION Float The duration of the event.
EQPSTATE String The state of the machine.
LOGINTIME Datetime The time when the user logged into the

machine.
LOGINUSER Integer The ID of the user operating the machine.
LOGINNAME String The name of the user operating the ma-

chine.
REASONCODEID String A description of the event.
EQPTYPE String The equipment type.
EQPBRAND String The brand of the machine.
EQPMODEL String The model of the machine.
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1b) Sample data from the ETS logs

20190320 060000 ,QFP -WB-TUNNEL_5 ,MAINT -AREA -QFP_WB_KS_ICONN_PLUS ,WB-KS -ICONN_PLUS -045,WB KS687 ,22912 XDMRF ,

A20 -WIRE -BONDING -COPPER -B,C9X6*UM14BGS ,0,8.232,T,T,PE-PROD ,TD ,TUD ,TFUD ,TFUD ,="ProcessStop",

20190319 183931 ,255752 , OPERATOR1152 ,20190320 020812619 ,1 ,WB-KS-ICONN_PLUS ,WB,KS,ICONN_PLUS

20190320 060000 ,QFP -WB-TUNNEL_5 ,MAINT -AREA -QFP_WB_KS_ICONN_PLUS ,WB-KS -ICONN_PLUS -045,WB KS687 ,22912 XDMRF ,

A20 -WIRE -BONDING -COPPER -B,C9X6*UM14BGS ,0,.494,T,T,PE-PROD ,TU ,TUP ,TPT ,TPR ,="ProcessStart",

20190319 183931 ,255752 , OPERATOR1152 ,20190320 020804387 ,1 ,WB-KS-ICONN_PLUS ,WB,KS,ICONN_PLUS

20190320 060000 ,QFP -WB-TUNNEL_5 ,MAINT -AREA -QFP_WB_KS_ICONN_PLUS ,WB-KS -ICONN_PLUS -045,WB KS687 ,22912 XDMRF ,

A20 -WIRE -BONDING -COPPER -B,C9X6*UM14BGS ,0 ,28.517 ,T,T,PE-PROD ,TD ,TUD ,TFUD ,TFUD ,="ProcessStop",

20190319 183931 ,255752 , OPERATOR1152 ,20190320 020803893 ,1 ,WB-KS-ICONN_PLUS ,WB,KS,ICONN_PLUS

20190320 060000 ,QFP -WB-TUNNEL_5 ,MAINT -AREA -QFP_WB_KS_ICONN_PLUS ,WB-KS -ICONN_PLUS -045,WB KS687 ,22912 XDMRF ,

A20 -WIRE -BONDING -COPPER -B,C9X6*UM14BGS ,0,.4,T,T,PE-PROD ,TU ,TUP ,TSBP ,TSBPM ,

="RC Entered=ALIGN STATUS - INADEQUATE EYE POINTS FOUND VISION" ,20190319 183931 ,255752 , OPERATOR1152 ,

20190320 020735059 ,1 ,WB-KS -ICONN_PLUS ,WB,KS,ICONN_PLUS

20190320 060000 ,QFP -WB-TUNNEL_5 ,MAINT -AREA -QFP_WB_KS_ICONN_PLUS ,WB-KS -ICONN_PLUS -045,WB KS687 ,22912 XDMRF ,

A20 -WIRE -BONDING -COPPER -B,C9X6*UM14BGS ,0 ,270.807 ,T,T,PE-PROD ,TD ,TUD ,TFUD ,TFUD ,="ProcessStop",

20190319 183931 ,255752 , OPERATOR1152 ,20190320 020734659 ,1 ,WB-KS-ICONN_PLUS ,WB,KS,ICONN_PLUS

20190320 060000 ,QFP -WB-TUNNEL_5 ,MAINT -AREA -QFP_WB_KS_ICONN_PLUS ,WB-KS -ICONN_PLUS -045,WB KS687 ,22912 XDMRF ,

A20 -WIRE -BONDING -COPPER -B,C9X6*UM14BGS ,2 ,86.705 ,T,T,PE-PROD ,TU ,TUP ,TPT ,TPR ,="UnitProcessed",

20190319 183931 ,255752 , OPERATOR1152 ,20190320 020303852 ,1 ,WB-KS-ICONN_PLUS ,WB,KS,ICONN_PLUS



Appendix A. Dataset structures

2a) Machine Logs structure (main variables)

Variable
(Format A)

Variable (Format B) Description

Equipment Equipment The name of the machine, also used
as its unique identifier.

DateTimeUtc DateTimeUtc The timestamp of the record.
SVID_3007 SV_ProcState The current state of the wire bonder.
SVID_3008 SV_PrevProcState The previous state of the wire bon-

der.
SVID_3030 SV_EquipmentMode The current mode of operation.
SVID_3031 SV_LightTower_State The state of the light tower.
SVID_3045 SV_OpeModeCode The current open mode.
SVID_3051 SV_USGImpedance USG low impedance tuning of the

machine.
SVID_3052 SV_USGFrequency Machine free air tuned low USG fre-

quency.
SVID_3062 SV_HFUSGFrequency Machine free air tuned high USG fre-

quency.
SVID_3064 SV_HFUSGImpedance USG high impedance tuning of the

machine.
SVID_3096 SV_InhibitAuto Inhibit auto mode indicator.
SVID_3116 SV_CompletedPPEdit Last edit performed.
SVID_3200 SV_Zone1_Temperature Temperature at pre-bond state (Cel-

sius).
SVID_3202 SV_Zone3_Temperature Temperature at post-bond state (Cel-

sius).
SVID_3204 SV_Zone2_Temperature_offset Bond temperature offset.
SVID_3205 SV_Zone3_Temperature_offset Post-bond temperature offset.
SVID_3300 SV_Input_LF_Count Number of lead frames removed.
SVID_3301 SV_Output_LF_Count Number of lead frames inserted.
SVID_3302 SV_SECS_Devices_Processed Number of successfully processed

devices.
SVID_3401 SV_Osc_Current_Factor USG current factor.
SVID_3406 SV_HF_Person_Current_Factor High frequency USC current factor.
SVID_3543 SV_PbiUnitNumber Post bond inspection number
SVID_3549 SV_PbiUnitAvgXBallPlcErr Average ball placement error (X)
SVID_3550 SV_PbiUnitXBallPlcErrMin Minimum ball placement error (X)
SVID_3551 SV_PbiUnitXBallPlcErrMax Maximum ball placement error (X)
SVID_3553 SV_PbiUnitAvgYBallPlcErr Average ball placement error (Y)
SVID_3614 SV_LatestErrorContext Latest error context.
SVID_3616 SV_LatestErrorWire Latest error wire.
SVID_3617 SV_LatestErrorBond Latest error bond.
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2b) A single sample from the Machine Logs dataset

{"Equipment":"WB-KS-ICONN -207",

"DateTimeUtc":"\/Date (1547337618606)\/",

"SensorData":{"SVID_3105":"SeqStopXhairCorrection","SVID_3803":[18,18],"SVID_3801":[12,12],"SVID_3805":[1,1],

"SVID_4016":[0,0],"SVID_4019":[0,0],"SVID_3804":[9,9],"SVID_3802":[115 ,115] ,"SVID_4017":[0,0],

"SVID_4018":[0,0],"SVID_3808":[18,18],"SVID_3806":[5,5],"SVID_3810":[0.4 ,0.3] ,"SVID_4022":[1,1],

"SVID_4020":[1,1],"SVID_4021":[0,0],"SVID_3809":[4,6],"SVID_3807":[100 ,100] ,"SVID_4029":[1,1],

"SVID_3800":[1,2],"SVID_4024":[15,15],"SVID_4027":[0,0],"SVID_4023":[400 ,400] ,"SVID_4025":[0,0],

"SVID_4026":[0,0],"SVID_3011":"2019011300584000","SVID_3116":2,"SVID_3812":[30,30],"SVID_3030":1 ,

"SVID_3811":[1.35 ,1.35] ,"SVID_3405":"7.475204","SVID_3406":"1.068798","SVID_3062":121121 ,

"SVID_3064":47 .9537468 ,"SVID_3096":0,"SVID_3300":13 ,"SVID_3813":[15,5],

"SVID_3830":"Bond Force Calibration","SVID_3617":2 ,"SVID_3614":16386 ,"SVID_3421":"U2[6,7]",

"SVID_3420":"49-6","SVID_3616":10 ,"SVID_3031":16384 ,"SVID_4028":[1.45 ,1.3] ,"SVID_3815":[-4,-2],

"SVID_3045":4000 ,"SVID_3401":7.699526 ,"SVID_3301":12 ,"SVID_3576":0.01693913 ,"SVID_3581":0.05508021 ,

"SVID_3568":211720 ,"SVID_3567":106014 ,"SVID_3566":"12/27/18 06 :52:03","SVID_3569":635171 ,

"SVID_3579":0.01693913 ,"SVID_3578":0.01693913 ,"SVID_3584":0.05508021 ,"SVID_3583":0.05508021 ,

"SVID_3549":0.01693913 ,"SVID_3553":0.05508021 ,"SVID_3543":211720 ,"SVID_3542":"01/13/19 00 :54:36",

"SVID_3551":0.01693913 ,"SVID_3550":0.01693913 ,"SVID_3555":0.05508021 ,"SVID_3554":0.05508021 ,

"SVID_3520":569113 ,"SVID_3004":"DM00159639H_MV1E_0 .6 G_15L","SVID_3008":2 ,"SVID_3007":3,

"SVID_3814":[20,0],"SVID_3302":211724 ,"SVID_3052":50519 ,"SVID_3051":149 .008972 ,"SVID_3200":130 ,

"SVID_3203":-12,"SVID_3201":175 ,"SVID_3204":-22,"SVID_3202":100 ,"SVID_3205":-10},

"SetPointData":{"ECID_1119":true ,"ECID_1036":4000 ,"ECID_1040":1000 ,"ECID_1118":true ,"ECID_1508":"Unknown",

"ECID_1093":1}}



Appendix A. Dataset structures

3a) IIoT data structure

Variable Datatype Description

Timestamp Datetime Timestamp in Posix time
AccX_0 Float

64 FFT bins from 0 Hz to 3.3 kHz for acceleration along the
X axis

.. Float
AccX_3278 Float
AccY_0 Float

64 FFT bins from 0 Hz to 3.3 kHz for acceleration along the
Y axis

.. Float
AccY_3278 Float
AccZ_0 Float

64 FFT bins from 0 Hz to 3.3 kHz for acceleration along the
Z axis

.. Float
AccZ_3278 Float
GyroX_0 Float

64 FFT bins from 0 Hz to 3.3 kHz for motion along the X
axis

.. Float
GyroX_3278 Float
GyroY_0 Float

64 FFT bins from 0 Hz to 3.3 kHz for motion along the Y
axis

.. Float
GyroY_3278 Float
GyroZ_0 Float

64 FFT bins from 0 Hz to 3.3 kHz for motion along the Z
axis

.. Float
GyroZ_3278 Float
Sound_0 Float

512 FFT bins from 0 Hz to 24 kHz for sound.. Float
Sound_23956 Float
MagX_0 Float

64 FFT bins from 0 Hz to 49 Hz for magnetism along the X
axis

.. Float
MagX_4914 Float
MagY_0 Float

64 FFT bins from 0 Hz to 49 Hz for magnetism along the Y
axis

.. Float
MagY_4914 Float
MagZ_0 Float

64 FFT bins from 0 Hz to 49 Hz for magnetism along the Z
axis

.. Float
MagZ_4914 Float
Press_0 Float Pressure (hPa)
Temp_1 Float Tempure 1 (Celsius)
Temp_2 Float Tempure 2 (Celsius)
Hum_0 Float Humidity (rH)
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3b) A single sample from the IIoT dataset

1544329551845 , 0.140351 , 0.162535 , 0.377842 , 0.655402 , 0.607056 , 0.23281 , 0.175543 , 0.117039 , 0.0586403 , 0.038782 ,

0.0250604 , 0.0174227 , 0.0153434 , 0.016584 , 0.0213786 , 0.0395947 , 0.0648703 , 0.146411 , 0.221832 , 0.100012 , 0.0548418 ,

0.0342347 , 0.0235935 , 0.0178965 , 0.0145263 , 0.0127666 , 0.0110924 , 0.0100339 , 0.00938973 , 0.00899834 , 0.00851992 ,

0.00841965 , 0.00843489 , 0.00838367 , 0.00850296 , 0.00864012 , 0.00874337 , 0.0089123 , 0.00916262 , 0.0093141 , 0.00953514 ,

0.00963165 , 0.00995479 , 0.010211 , 0.0104953 , 0.0106819 , 0.0109784 , 0.0112502 , 0.0114399 , 0.0116384 , 0.0118419 ,

0.0121426 , 0.0121632 , 0.0124657 , 0.0125258 , 0.0126979 , 0.0127139 , 0.0130013 , 0.0131214 , 0.013178 , 0.0132269 , 0.0132178 ,

0.0132495 , 0.013218 , 0.0435372 , 0.0844868 , 0.192331 , 0.282712 , 0.353034 , 0.153065 , 0.088893 , 0.0465027 , 0.0322059 ,

0.0205334 , 0.0133051 , 0.0111388 , 0.0143933 , 0.0247839 , 0.0670873 , 0.197605 , 0.268838 , 0.0568928 , 0.0397312 , 0.0219821 ,

0.0104986 , 0.00723207 , 0.00594376 , 0.00532793 , 0.00477208 , 0.00458974 , 0.00449373 , 0.00454664 , 0.00490105 , 0.00515922 ,

0.00526163 , 0.00546561 , 0.00563263 , 0.00580485 , 0.00601879 , 0.00621609 , 0.00642487 , 0.00670677 , 0.00697593 , 0.00717774 ,

0.00744699 , 0.00765592 , 0.00793135 , 0.0081125 , 0.0083921 , 0.00865858 , 0.00884595 , 0.00901227 , 0.009229 , 0.00940926 ,

0.00965742 , 0.0097528 , 0.00990359 , 0.0101897 , 0.0102687 , 0.0104404 , 0.0104889 , 0.0106294 , 0.0106736 , 0.0107834 ,

0.0108647 , 0.010966 , 0.0109588 , 0.0109602 , 3.88229 , 5.90697 , 8.16279 , 9.43413 , 8.84884 , 2.68597 , 1.65497 , 1.04773 ,

0.565569 , 0.403172 , 0.296933 , 0.230693 , 0.167799 , 0.121622 , 0.121645 , 0.138163 , 0.203214 , 0.259114 , 0.295282 , 0.379804 ,

0.406257 , 0.455711 , 0.430239 , 0.371668 , 0.288993 , 0.273787 , 0.279841 , 0.26986 , 0.377047 , 0.520736 , 0.626613 , 0.668789 ,

0.681416 , 0.607859 , 0.609606 , 0.586527 , 0.449187 , 0.401362 , 0.394167 , 0.38097 , 0.342912 , 0.233715 , 0.150407 , 0.0991088 ,

0.0825948 , 0.0793234 , 0.0842202 , 0.0772517 , 0.0609333 , 0.0511382 , 0.0470647 , 0.0490257 , 0.0586629 , 0.0696812 , 0.0738302 ,

0.0631287 , 0.0564606 , 0.0510075 , 0.0482013 , 0.0432533 , 0.0347232 , 0.0272622 , 0.0212513 , 0.0147019 , 7.68974 , 9.2023 ,

8.72909 , 7.88263 , 7.13883 , 6.23779 , 5.49876 , 4.7659 , 4.16901 , 3.81796 , 3.5646 , 3.33727 , 3.09394 , 2.96472 , 2.85873 ,

2.7249 , 2.6085 , 2.56278 , 2.45152 , 2.95011 , 2.48608 , 2.18515 , 2.12112 , 2.03272 , 2.03705 , 2.06053 , 2.0129 , 1.96645 ,

1.95072 , 1.9329 , 1.96249 , 1.97906 , 1.98996 , 1.9986 , 1.90319 , 1.88937 , 1.92425 , 1.9699 , 2.23731 , 2.00816 , 1.94094 ,

1.93065 , 1.96357 , 2.01877 , 2.1018 , 2.0659 , 1.9813 , 1.89227 , 1.84033 , 1.83001 , 1.78959 , 1.82651 , 1.83086 , 1.70179 ,

1.67274 , 1.66285 , 1.72563 , 1.92792 , 1.73359 , 1.67883 , 1.70246 , 1.69035 , 1.72327 , 1.76323 , 11.4177 , 9.70081 , 7.82455 ,

7.7889 , 7.51939 , 6.72093 , 5.76974 , 4.85663 , 4.23674 , 3.90842 , 3.54094 , 3.20539 , 2.79466 , 2.79684 , 2.66076 , 2.47822 ,

2.35683 , 2.48527 , 2.44444 , 3.16771 , 2.37654 , 2.19014 , 2.01182 , 1.85467 , 1.88379 , 1.95936 , 1.97319 , 1.77999 , 1.74412 ,

1.72384 , 1.90302 , 1.95364 , 2.01391 , 2.01329 , 1.76021 , 1.68635 , 1.73726 , 1.65028 , 2.25777 , 1.86664 , 1.69801 , 1.64513 ,

1.6278 , 1.72938 , 1.88895 , 1.96787 , 1.71279 , 1.63734 , 1.56269 , 1.55708 , 1.60511 , 1.70158 , 1.74543 , 1.55449 , 1.5213 ,

1.54819 , 1.56011 , 2.11063 , 1.80333 , 1.5716 , 1.43611 , 1.39915 , 1.51095 , 1.64856 , 8.77489 , 8.65304 , 8.14047 , 7.52437 ,

7.10499 , 6.32862 , 5.51723 , 4.75273 , 4.40132 , 3.96368 , 3.61158 , 3.33524 , 2.93234 , 2.77585 , 2.65346 , 2.51072 , 2.47489 ,



2.46898 , 2.47964 , 2.49662 , 2.51694 , 2.51761 , 2.38724 , 2.24136 , 2.10326 , 2.0039 , 1.95427 , 1.9826 , 1.93122 , 1.9085 ,

1.9606 , 2.0432 , 2.15359 , 2.10561 , 2.04729 , 1.94498 , 1.85208 , 1.85789 , 1.85582 , 1.87982 , 2.02414 , 2.18929 , 2.33886 ,

2.41477 , 2.47148 , 2.42262 , 2.33015 , 2.20747 , 2.14288 , 2.04043 , 1.87982 , 1.7971 , 1.76775 , 1.74094 , 1.75342 , 1.79944 ,

1.81745 , 1.8655 , 1.84908 , 1.81891 , 1.8145 , 1.80378 , 1.82057 , 1.79603 , 3.85364 , 10.953 , 17.7583 , 23.386 , 26.4017 ,

16.2258 , 10.1737 , 8.43046 , 6.86907 , 6.82674 , 4.56397 , 4.09136 , 3.52916 , 2.77097 , 2.64204 , 3.24958 , 2.50966 , 2.45599 ,

3.02728 , 2.72548 , 3.10592 , 2.95672 , 3.17426 , 2.16025 , 1.80885 , 2.10076 , 2.70484 , 2.02878 , 1.63792 , 1.46044 , 1.54909 ,

1.90741 , 1.70944 , 1.93498 , 2.91317 , 2.88698 , 2.48124 , 2.26319 , 1.68097 , 1.69012 , 1.79377 , 1.80086 , 1.63739 , 2.1628 ,

2.51308 , 2.22975 , 1.8419 , 2.15334 , 2.83709 , 4.54923 , 4.86189 , 3.37529 , 2.91856 , 2.95073 , 2.20569 , 1.96927 , 1.77765 ,

1.88203 , 2.02691 , 2.31696 , 2.52479 , 2.57035 , 2.22103 , 1.93484 , 1.78117 , 1.62204 , 1.52972 , 1.54814 , 1.60725 , 1.59395 ,

1.49786 , 1.31066 , 1.18494 , 1.2214 , 1.24022 , 1.24492 , 1.42192 , 1.54414 , 1.38226 , 1.46491 , 1.67479 , 1.68353 , 1.48276 ,

1.14063 , 1.02227 , 1.15117 , 1.31375 , 1.35362 , 1.32485 , 1.22891 , 1.31824 , 1.41163 , 1.33572 , 1.33922 , 1.39128 , 1.23255 ,

1.33833 , 1.42232 , 1.49477 , 1.54975 , 1.49749 , 1.49869 , 1.45106 , 1.25769 , 1.18971 , 1.1749 , 1.22953 , 1.31238 , 1.31108 ,

1.26586 , 1.27362 , 1.34704 , 1.48846 , 1.69402 , 1.68808 , 1.64695 , 1.56171 , 1.51647 , 1.41609 , 1.26974 , 1.13901 , 1.10447 ,

1.21659 , 1.41155 , 1.52095 , 1.51514 , 1.50332 , 1.58335 , 1.6666 , 1.80538 , 2.06082 , 2.02874 , 1.94834 , 1.90967 , 1.87162 ,

1.67258 , 1.5423 , 1.54685 , 1.49569 , 1.51923 , 1.4421 , 1.338, 1.36576 , 1.42416 , 1.52168 , 1.64114 , 1.73544 , 2.00433 ,

2.13352 , 1.91701 , 1.64447 , 1.56694 , 1.48608 , 1.48118 , 1.60337 , 1.55064 , 1.45427 , 1.46644 , 1.41753 , 1.37876 , 1.55493 ,

1.65946 , 1.63933 , 1.53409 , 1.39132 , 1.35368 , 1.39603 , 1.39497 , 1.32417 , 1.30837 , 1.31173 , 1.27345 , 1.25992 , 1.27322 ,

1.2733 , 1.33313 , 1.3247 , 1.35917 , 1.33136 , 1.30024 , 1.29421 , 1.29838 , 1.25952 , 1.17509 , 1.17539 , 1.24694 , 1.37636 ,

1.39729 , 1.32282 , 1.28364 , 1.24639 , 1.31549 , 1.41126 , 1.50832 , 1.6354 , 1.65465 , 1.74471 , 1.86028 , 1.80162 , 1.68831 ,

1.48904 , 1.3352 , 1.25494 , 1.22924 , 1.31387 , 1.40884 , 1.3995 , 1.28812 , 1.28053 , 1.26024 , 1.30362 , 1.40784 , 1.46287 ,

1.50658 , 1.53946 , 1.53208 , 1.58467 , 1.49811 , 1.38026 , 1.33408 , 1.3605 , 1.42994 , 1.54522 , 1.55935 , 1.63117 , 1.58549 ,

1.54428 , 1.52166 , 1.52181 , 1.51622 , 1.4819 , 1.53082 , 1.61284 , 1.64132 , 1.78349 , 1.77703 , 1.68456 , 1.68798 , 1.82623 ,

2.0626 , 2.26931 , 2.24531 , 2.27727 , 2.37767 , 2.36873 , 2.18574 , 2.08046 , 1.79521 , 1.65484 , 1.58674 , 1.62524 , 1.69284 ,

1.63869 , 1.60569 , 1.49603 , 1.36931 , 1.34845 , 1.25784 , 1.16605 , 1.23325 , 1.3113 , 1.32004 , 1.24599 , 1.22083 , 1.24542 ,

1.25899 , 1.25126 , 1.22456 , 1.20152 , 1.27396 , 1.36379 , 1.29344 , 1.1928 , 1.17528 , 1.14174 , 1.05306 , 1.05263 , 1.05111 ,

1.01186 , 1.00071 , 1.01262 , 1.06222 , 1.04614 , 1.02737 , 1.03292 , 1.02645 , 1.05576 , 1.02089 , 0.966899 , 1.00551 , 1.06144 ,

1.44017 , 1.02698 , 0.945458 , 0.90754 , 0.914496 , 0.942274 , 0.953636 , 0.956054 , 0.962801 , 0.963022 , 0.973426 , 1.02309 ,

1.10553 , 1.06722 , 1.00322 , 1.00684 , 1.02749 , 1.04906 , 1.09356 , 1.12591 , 1.11466 , 1.00689 , 0.973923 , 0.966092 , 0.940978 ,

0.8995 , 0.901481 , 0.924687 , 0.925126 , 0.932677 , 0.948044 , 0.970194 , 0.949396 , 0.889974 , 0.880771 , 0.887597 , 0.87533 ,

0.888609 , 0.917996 , 0.956911 , 0.962137 , 0.91165 , 0.898914 , 0.905613 , 0.882678 , 0.864319 , 0.867324 , 0.849205 , 0.859825 ,

0.8778 , 0.90602 , 0.985129 , 1.02299 , 1.18648 , 4.56092 , 4.57906 , 1.23718 , 1.15926 , 1.14874 , 1.09774 , 1.08662 , 1.10963 ,



1.12916 , 1.13967 , 1.12368 , 1.10736 , 1.12274 , 1.10978 , 1.06451 , 1.01509 , 0.985817 , 0.95682 , 0.943779 , 0.888244 , 0.850105 ,

0.860354 , 0.845326 , 0.832066 , 0.869336 , 0.880069 , 0.858414 , 0.833744 , 0.823772 , 0.812454 , 0.825661 , 0.848911 , 0.861886 ,

0.862353 , 0.850249 , 0.856772 , 0.862311 , 0.881014 , 0.900877 , 0.922228 , 0.90467 , 0.886851 , 0.868363 , 0.870205 , 0.901312 ,

0.843471 , 0.849848 , 0.995506 , 1.06638 , 0.850935 , 0.866643 , 0.915399 , 0.961889 , 0.968181 , 0.97314 , 0.974264 , 0.957718 ,

0.915557 , 0.859411 , 0.852366 , 0.849763 , 0.824769 , 0.771205 , 0.734416 , 0.723701 , 0.713714 , 0.680252 , 0.672208 , 0.693906 ,

0.687905 , 0.678037 , 0.680182 , 0.682276 , 0.673091 , 0.657992 , 0.627294 , 0.625639 , 0.63989 , 0.644429 , 0.643007 , 0.648277 ,

0.639816 , 0.618529 , 0.592196 , 0.592046 , 0.611992 , 0.620911 , 0.617387 , 0.605452 , 0.599818 , 0.590026 , 0.58225 , 0.585784 ,

0.593931 , 0.596038 , 0.597463 , 0.588902 , 0.598713 , 0.601191 , 0.600151 , 0.599974 , 0.575551 , 0.562048 , 0.551509 , 0.554265 ,

0.559461 , 0.567157 , 0.570807 , 0.564079 , 0.556273 , 0.555393 , 0.563983 , 0.551024 , 0.543964 , 0.534544 , 0.522196 , 0.517061 ,

0.513052 , 0.506628 , 0.511502 , 0.518674 , 0.512916 , 0.508515 , 0.507791 , 0.506718 , 0.505545 , 0.498124 , 0.498037 , 0.510568 ,

0.518801 , 0.525085 , 0.513109 , 0.498523 , 0.481196 , 0.460838 , 0.45257 , 0.44842 , 0.442762 , 0.443711 , 0.446817 , 0.450713 ,

0.465906 , 0.473673 , 0.474267 , 0.480519 , 0.483923 , 0.478726 , 0.477335 , 0.463236 , 0.450535 , 0.445008 , 0.436271 , 0.445918 ,

0.448159 , 0.446182 , 0.446763 , 0.449198 , 0.44759 , 0.440894 , 0.436385 , 0.435428 , 0.435819 , 0.447877 , 0.449096 , 0.445102 ,

0.436253 , 0.439804 , 1.07801 , 0.355309 , 0.206391 , 0.096041 , 0.0619158 , 0.0505433 , 0.196857 , 0.128697 , 0.044281 , 0.0349287 ,

0.0370717 , 0.0446592 , 0.0522259 , 0.0582757 , 0.0367384 , 0.0365492 , 0.0302027 , 0.0427508 , 0.0645847 , 0.134875 , 0.0427978 ,

0.0386466 , 0.0252631 , 0.0244547 , 0.028602 , 0.0674254 , 0.0572727 , 0.0602625 , 0.0470131 , 0.0287518 , 0.0205014 , 0.0570889 ,

0.0578055 , 0.0487118 , 0.0483724 , 0.0307764 , 0.0194737 , 0.0358238 , 0.061233 , 0.0484821 , 0.0488377 , 0.0308281 , 0.0202133 ,

0.0284175 , 0.0563274 , 0.0396292 , 0.0565308 , 0.0428997 , 0.0245944 , 0.0255443 , 0.0442504 , 0.0417156 , 0.0282677 , 0.0207047 ,

0.0175982 , 0.0203497 , 0.0386213 , 0.0444794 , 0.035359 , 0.0424578 , 0.0246229 , 0.0187892 , 0.0280509 , 0.0420679 , 1.3713 ,

0.404562 , 0.236252 , 0.0874457 , 0.0292688 , 0.0299227 , 0.0554707 , 0.0405647 , 0.0204821 , 0.0237705 , 0.0273106 , 0.0269662 ,

0.032343 , 0.0338886 , 0.0218375 , 0.0235182 , 0.0210697 , 0.0222064 , 0.031335 , 0.0531387 , 0.0190261 , 0.0208995 , 0.0175207 ,

0.0148224 , 0.0193158 , 0.0497636 , 0.036543 , 0.0390687 , 0.0333116 , 0.0191607 , 0.014331 , 0.0346526 , 0.0334894 , 0.0303835 ,

0.0337696 , 0.0226289 , 0.0143451 , 0.0286519 , 0.0442745 , 0.0329842 , 0.0336011 , 0.0226673 , 0.0142058 , 0.0204054 , 0.0421557 ,

0.0318783 , 0.0395467 , 0.0307844 , 0.0172333 , 0.0182462 , 0.0347106 , 0.0332734 , 0.0249783 , 0.0198114 , 0.0156317 , 0.0154504 ,

0.0326826 , 0.0365872 , 0.0302313 , 0.0337355 , 0.0228829 , 0.0156178 , 0.0245702 , 0.0349375 , 1.44294 , 0.487582 , 0.281217 ,

0.129106 , 0.0767487 , 0.0655245 , 0.237284 , 0.158743 , 0.050869 , 0.0355709 , 0.043961 , 0.0492114 , 0.0691462 , 0.0738526 ,

0.0428588 , 0.0384216 , 0.0340364 , 0.0475443 , 0.0780251 , 0.163954 , 0.0546059 , 0.0456951 , 0.0303563 , 0.0273428 , 0.0329038 ,

0.0820468 , 0.065237 , 0.0680897 , 0.0499921 , 0.027629 , 0.026662 , 0.0671015 , 0.0736497 , 0.056863 , 0.053277 , 0.0294858 ,

0.0239902 , 0.0405918 , 0.0755732 , 0.056632 , 0.0567864 , 0.0303834 , 0.0232254 , 0.029786 , 0.0651051 , 0.0463318 , 0.068968 ,

0.0457036 , 0.0259729 , 0.0272711 , 0.0529793 , 0.0524145 , 0.0311142 , 0.0260773 , 0.0225761 , 0.0234896 , 0.0441 , 0.0550994 ,

0.0434422 , 0.0506772 , 0.0266426 , 0.0201678 , 0.0283458 , 0.0513797 , 1012, 27.3891 , 26.1591 , 33.9021;



B

The Ontology

In this dissertation, an ontology was developed to structure and govern the knowledge
contained in the EKG. The approach taken to develop this ontology is described in
Section 3.2.1, while the method used to evaluate it is described in Section 4.1.1. The
end product is an OWL 2 ontology modelling wire bonders, their states, their sensors
and the various observations made by these sensors. Figure B.1 depicts the ontology
produced.

As we mention in Section 3.2.1, in developing our ontology we reuse several classes
from existing ontologies. Only the classes colour coded in yellow in Figure B.1 were
created specifically for this work. The classes colour coded in blue origin from the SOSA
ontology while those in green from the DUL ontology. The System class is taken from
the SSN ontology. The white boxes represent literal values.

It should be noted that some classes, such as the SOSA:Procedure, were not required but
had to be included to preserve the rules of the ontologies we reused.
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Appendix B. The Ontology

Figure B.1: A representation of the ontology produced in this dissertation.
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C

Media Content

The enclosed pen drive contains the following folders:

1. Data - This folder contains the raw data as generated by the wire bonders. Inside
are three sub-folders ETS, Machine Logs and IIoT that contain the three datasets
described in Section 3.1.

2. Data Preparation - This folder contains various Jupyter Notebooks that were used
to explore the data and to prepare the datasets to be used for the experiments.

3. EKG - This folder contains the RDF store built in this dissertation as well as the
ontology that was developed (see Section 3.2).

4. ETL - The ETL scripts described in Section 3.2 can be found in this folder.

5. Experiments - This folder contains the source code and datasets used to conduct
the experiments described in Section 3.3.3.

6. PdM Dashboard - This folder contains the source code of the dashboard devel-
oped as the GUI of the PdM framework, as described in Section 3.4.4.
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