
Application
of Boosting Algorithms
for Anti Money Laundering
in Cryptocurrencies
Towards Healthier Cryptocurrency Networks

Dylan Vassallo

Supervised by Dr Vincent Vella

Co-supervised by Dr Joshua Ellul

Department of Artificial Intelligence

Faculty of Information & Communication Technology

University of Malta

August, 2020

A dissertation submitted in partial fulfilment of the requirements for the
degree of M.Sc. Master of Science in Artificial Intelligence .

Copyright c©2021 University of Malta

WWW.UM.EDU.MT

First edition, February 5, 2021

Declaration by Postgraduate Students

(a) Authenticity of Dissertation

I hereby declare that I am the legitimate author of this Dissertation and that it is my
original work.
No portion of this work has been submitted in support of an application for another
degree or qualification of this or any other university or institution of higher education.
I hold the University of Malta harmless against any third party claims with regard to
copyright violation, breach of confidentiality, defamation and any other third party right
infringement.

(b) Research Code of Practice and Ethics Review Procedures

I declare that I have abided by the University’s Research Ethics Review Procedures.
As a Master’s student, as per Regulation 58 of the General Regulations for University
Postgraduate Awards, I accept that should my dissertation be awarded a Grade A, it
will be made publicly available on the University of Malta Institutional Repository.

Faculty/Institute/Centre/School Faculty of Information & Communication Tech-
nology

Degree M.Sc. Master of Science in Artificial Intelligence

Title Application of Boosting Algorithms for Anti
Money Laundering in Cryptocurrencies

Candidate (Id.) Dylan Vassallo (0043794M)

Signature of Student

Date February 5, 2021

08.02.2018

For my Martina, your patience is divine.
No more proofreading, I promise this time.

Thank you for your love and support.

ix

Acknowledgements

I would first like to thank my supervisors, Dr Vince Vella and Dr Joshua Ellul,
whose knowledge, encouragement and support, guided me to successfully com-
plete this research. A special thanks goes to my family and friends, who always sup-
ported me through these years of study. Last but not least, I am honoured to have
been awarded a Scholarship in Blockchain and DLT, initiated by the Parliamentary
Secretary for Financial Services, Digital Economy and Innovation in collaboration
with the University of Malta and the Malta Information Technology Agency.

xi

Abstract

Detecting money laundering is an essential function to protect the global econ-
omy, and it is vital to have systems and laws in place to counteract this nefari-
ous activity. The recent emergence of cryptocurrencies has added another layer of
complexity in the fight towards financial crime, while also creating an intriguing
paradoxical paradigm: blockchain, the core component that underpins cryptocur-
rencies, functions without a central authority and offers pseudo-anonymity to its
users, allowing criminals to disguise themselves amongst them, on the other hand,
the openness of data, fuels the investigator’s toolkit to conduct forensic examina-
tions. Meanwhile, the application of machine learning to combat and detect these
crimes by leveraging data to build more robust compliance and Anti Money Laun-
dering (AML) systems is advancing and exhibits great potential to safeguard the
economy. This study focuses on the initial stages of money laundering, primarily,
the detection of illicit activities (such as scams, financing terrorism, Ponzi-schemes)
on cryptocurrency infrastructures, on both an ’account’ and ’transaction’ level. The
common denominator between these crypto-related crimes is money laundering.
Once an unlawful user gains access to these illicitly-gained funds, the primary fo-
cus shifts into "washing" them without detection.

Utilising 4,681 Ethereum accounts and 46,564 Bitcoin transactions, we attempt
to detect illicit activities using three state-of-the-art variants of gradient boosting,
eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LGBM)
and CatBoost. However, given the widespread issue of class imbalance in this
domain and its dynamic environment that is created by the techniques employed
by criminals which are continuously evolving to avoid detection, we seek to ad-
dress these problems in order to mitigate the negative ramifications attributed to
them. Employing Neighbourhood Cleaning Rule (NCL), Synthetic Minority Over-
Sampling (SMOTE) and NCL-SMOTE as data-sampling techniques, and using our
proposed innovative adaptation of XGBoost, ’Adaptive Stacked eXtreme Gradient Boost-
ing (ASXGB)’, developed to handle non-stationary data, we successfully reduced
the impact of concept drift, an issue which is often overlooked in this domain as
well as, class imbalance. LGBM obtained the highest F1-Score of 0.820 on the ’trans-
action’ level data, whilst XGBoost obtained the highest F1-Score of 0.983 on the ’ac-
count’ level data, with further improvements made on the ’transaction’ level data
when we used data-sampling techniques. We also showed that our ASXGB was
one of the fastest model to adapt to concept drift when compared against other
state-of-the-art adaptive learners on the ’transaction’ level data. Based on the ob-
tained results, the proposed approaches are highly effective in the detection of illicit
activities over cryptocurrency networks, at both an ’account’ and ’transaction’ level,
obtaining fewer False Positives and False Negatives rates in comparison to previous
work in this domain and industry standard (up to 90% False Positives).

Contents

1 Introduction 1
1.1 Anti-Money Laundering in Cryptocurrencies 1
1.2 Motivation . 3
1.3 Aims & Objectives . 6
1.4 Contributions . 7
1.5 Document Structure . 7

2 Background 9
2.1 Money Laundering . 9
2.2 Blockchain and Cryptocurrency . 10

2.2.1 Blockchain Technology . 11
2.2.2 Cryptocurrency . 12
2.2.3 Illicit Activities on the Blockchain 13

2.3 Detection via Machine Learning . 13
2.3.1 Supervised Learning . 14
2.3.2 Unsupervised Learning . 16
2.3.3 Account vs Transactional Level Detection 16
2.3.4 Transactions as a Graph-Structure 18
2.3.5 Skewed Class Distribution . 19
2.3.6 Non-Stationary Environment . 21

2.4 Ensemble Learning Algorithms . 22
2.4.1 Bootstrap Aggregation . 24
2.4.2 Gradient Boosting . 25
2.4.3 Stacking . 27

2.5 Deep Learning . 29

xii

Contents xiii

3 Literature Review 31
3.1 Illicit Activity Detection in Financial Systems 31

3.1.1 Illicit Activity detection in Blockchain Networks 33
3.1.2 Stream Learning on Financial Data 39

3.2 Handling Machine Learning Problems . 42
3.2.1 Hyperparameter Optimisation . 43
3.2.2 Handling Class Imbalance . 45
3.2.3 Handling Non-Stationary Data Streams 54

3.3 Overview of Recent Literature . 62

4 Methodology 65
4.1 Account and Transaction Level Detection 65
4.2 Datasets . 67

4.2.1 Datasets Description . 69
4.2.2 Analysing the Benchmark Transaction-Level Dataset 71
4.2.3 Data Pre-Processing . 75

4.3 Proposed Solution . 76
4.3.1 Boosting Algorithms . 77
4.3.2 Handling a Skewed Class Distribution 77
4.3.3 Hyperparameter Optimisation . 78
4.3.4 Handling Non-Stationary Temporal Data 79
4.3.5 Implementation Details . 86

5 Evaluation and Results 89
5.1 Benchmark Models . 89

5.1.1 Random Forest . 89
5.1.2 Adaptive Random Forest . 90
5.1.3 Adaptive eXtreme Gradient Boosting 90

5.2 Evaluation . 91
5.2.1 Setup . 91
5.2.2 Performance Metrics . 91
5.2.3 Evaluation Framework . 93
5.2.4 Design of Experiments . 95

5.3 Results for Experiment 1 . 98
5.4 Results for Experiment 2 . 106
5.5 Results for Experiment 3 . 110

6 Discussion 117

xiv Contents

6.1 Improved Performance using XGBoost & LGBM 117
6.2 Transactional-Level Detection using Data-Sampling Techniques 118
6.3 Adapting to Evolving Transactional Data-Streams 119

7 Conclusion and Future Work 121
7.1 Revisiting Aims and Objectives . 121
7.2 Contributions . 123
7.3 Limitations . 124
7.4 Future Work . 125
7.5 Final Remarks . 126

Appendix A Ethereum Illicit Accounts Feature Set 127

Appendix B Optimal Hyperparameters from TPE 129
B.1 Experiment 1 . 129
B.2 Experiment 2 . 132

Appendix C Supplementary Results 139

References 155

List of Figures

2.1 The most notable services/practices which are involved in laundering cryp-
tocurrency funds. 11

2.2 A visual representation of a simple decision tree. 15
2.3 Examples of directed and undirected graphs. 18
2.4 A simple example of a transactional-graph within the Bitcoin network. 20
2.5 The differences between Real and Virtual concept drift. 22
2.6 Different patterns of concept drift. 22
2.7 Bias-Variance trade-off curve. 23
2.8 Example of majority vote ensemble. 24
2.9 The number of published papers per ensemble method over time. 26
2.10 A simple example of a stacked architecture. 28
2.11 Difference between a shallow MLP and deep MLP. 29

3.1 Common process flow employed to monitor money laundering. 33
3.2 Address to Transaction Bitcoin Graph . 35
3.3 Entity/Owner to Transaction Bitcoin Graph . 35
3.4 Representation of the information extracted from the motif graph. 36
3.5 A simple example of clustered Bitcoin addresses. 36
3.6 Architecture for the EvolveGCN algorithm. 41
3.7 F1-Score over different timesteps in Weber et al. (2019) study. 41
3.8 A visual comparison of Grid Search vs Random Search 44
3.9 Example of class imbalance. 46
3.10 An example of Borderline-SMOTE on the Circle dataset 49
3.11 An example of Tomek Links . 50
3.12 An example of a cost matrix for a binary classification problem 52

xv

xvi List of Figures

3.13 Long and Short Term Memory to handle Concept Drift 57

3.14 Updating the ensemble in AXGB . 61

4.1 Models performance degrade due to the sudden closure of a dark market-
place as reported by Weber et al. (2019). 72

4.2 Standard deviation of features mapped on a timeplot for licit transactions . . 72

4.3 The benchmark dataset’s class distribution over time 74

4.4 A high-level overview of our proposed solution. 76

5.1 Flowchart for Experiment 1. 96

5.2 Flowchart for Experiment 2. 97

5.3 Flowchart for Experiment 3. 98

5.4 Experiment 1: F1-Score time plot results for the Elliptic dataset using the AF
feature set. 99

5.5 Experiment 1: F1-Score time plot results for the Elliptic dataset using the
AF_NE feature set. 101

5.6 Experiment 1: F1-Score time plot results for the NOAA dataset. 104

5.7 Experiment 1: Nemenyi Post-Hoc test results. 105

5.8 Experiment 2: F1-Score time plots results for the Elliptic dataset (sampled via
NCL) using the AF and AF_NE feature set. 109

5.9 Experiment 2: F1-Score time plots results for the NOAA dataset (sampled
via NCL). 110

5.10 Experiment 3: F1-Score time plot results in a stream environment (t ≥ 35) for
the Elliptic dataset using the AF feature set. 112

5.11 Experiment 3: F1-Score time plot results in a stream environment (t ≥ 35) for
the Elliptic dataset using the AF_NE feature set. 113

5.12 Experiment 3: F1-Score time plot results in a stream environment (t ≥ 5) for
the Elliptic dataset using the AF feature set. 113

5.13 Experiment 3: F1-Score time plot results in a stream environment (t ≥ 5) for
the Elliptic dataset using the AF_NE feature set. 114

5.14 Experiment 3: F1-Score time plot results in a stream environment (t ≥ 25) for
the NOAA dataset. 115

C.1 Experiment 1: Box-plots results for the Elliptic dataset using the LF feature Set.140

C.2 Experiment 1: Box-plots results for the Elliptic dataset using the LF_NE fea-
ture Set. 141

C.3 Experiment 1: Box-plots results for Elliptic dataset using the AF feature Set. . 142

List of Figures xvii

C.4 Experiment 1: Box-plots results for the Elliptic dataset using the AF_NE fea-
ture Set. 143

C.5 Experiment 1: Box-plots results for the Ethereum Illicit Accounts dataset. . . . 144
C.6 Experiment 1: Box-plots results for the NOAA dataset. 145
C.7 Experiment 2: Box-plots results for the Elliptic dataset (sampled via NCL)

using the AF feature Set. 146
C.8 Experiment 2: Box-plots results for the Elliptic dataset (sampled via NCL)

using the AF_NE feature Set. 147
C.9 Experiment 2: Box-plots results for the Elliptic dataset (sampled via SMOTE)

using the AF feature Set. 148
C.10 Experiment 2: Box-plots results for the Elliptic dataset (sampled via SMOTE)

using the AF_NE feature Set. 149
C.11 Experiment 2: Box-plots results for the Elliptic dataset (sampled via NCL-

SMOTE) using the AF feature Set. 150
C.12 Experiment 2: Box-plots results for the Elliptic dataset (sampled via NCL-

SMOTE) using the AF_NE Feature Set. 151
C.13 Experiment 2: Box-plots results for the NOAA dataset (sampled via NCL). . . 152
C.14 Experiment 2: Box-plots results for the NOAA dataset (sampled via SMOTE). 153
C.15 Experiment 2: Box-plots results for the NOAA dataset (sampled via NCL-

SMOTE). 154

List of Tables

2.1 Different types of ensemble methods . 24

3.1 Results obtained by an XGBoost classifier in Farrugia et al. (2020) study. . . . 38
3.2 Results reported in Weber et al. (2019)’s study. 40
3.3 Sections focusing on the state-of-the-art machine learning techniques and

their corresponding objectives. 42

4.1 Objectives and their corresponding experiment and hypothesis. 68
4.2 Augmented Dicky-Fuller test results for Bitcoin licit transactions. 73
4.3 Augmented Dicky-Fuller test results for Bitcoin illicit Transactions. 74
4.4 Searching space used in hyperparameter optimisation. 80

5.1 Dataset(s) details and their corresponding evaluation framework. 94
5.2 Experiment 1: Performance results for the Elliptic dataset. 100
5.3 Experiment 1: Confusion Matrices for the Elliptic dataset. 101
5.4 Experiment 1: Performance results for the Ethereum Illicit Accounts dataset. . 102
5.5 Experiment 1: Confusion Matrices for Ethereum Illicit Accounts dataset. . . . 102
5.6 Experiment 1: Performance results for the NOAA dataset. 103
5.7 Experiment 1: Confusion Matrices for the NOAA dataset. 103
5.8 Experiment 1: Wilcoxon signed-rank test results for the Elliptic dataset. 105
5.9 Experiment 1: Wilcoxon signed-rank test results for the Ethereum Illicit Ac-

counts dataset. 105
5.10 Experiment 2: Performance results for the Elliptic dataset sampled using var-

ious data-sampling techniques. 107
5.11 Experiment 2: Confusion Matrices for the Elliptic dataset sampled using var-

ious data-sampling techniques. 108

xviii

List of Tables xix

5.12 Experiment 2: Performance results for the NOAA dataset sampled using var-
ious data-sampling techniques. 108

5.13 Experiment 2: Wilcoxon signed-rank test results for the Elliptic dataset. 110
5.14 Experiment 3: Performance results for the Elliptic dataset in a stream envi-

ronment. 112
5.15 Experiment 3: Performance results for the NOAA dataset in a stream envi-

ronment. 114

List of Algorithms

1 Pseudocode for the Random Forest Algorithm (Sagi and Rokach, 2018). . . 25
2 Pseudocode for Friedman’s Gradient Boost Algorithm (Natekin and Knoll,

2013) . 26
3 Pseudocode for SMOTE (Chawla et al., 2002) 48
4 Pseudocode for Online Bagging Algorithm (Oza, 2005). 55
5 Pseudocode for Online Leveraging Bagging Algorithm (Bifet et al., 2010). 55
6 Pseudocode for ARF . 58
7 Pseudocode for the Proposed ASXGB’s Partial Fit Function 82
8 Pseudocode for the Proposed ASXGB’s Train Batch Function 84
9 Pseudocode for the Proposed ASXGB’s Update Ensemble Function 85
10 Pseudocode for the Proposed ASXGB’s Get Weakest Base-Model Function 85
11 Pseudocode for the Proposed ASXGB’s Predict Function 86

xxi

List of Abbreviations

ADASYN Adaptive Synthetic Sampling . 48

ADF Augmented Dickey-Fuller test . 72

ADWIN ADaptive WINdowing . 57

AML Anti Money Laundering . xi

ANN Artificial Neural Network . 15

ARF Adaptive Random Forest . 56

ASXGB Adaptive Stacked eXtreme Gradient Boosting . xi

AUC Area Under the ROC curve . 32

AXGB Adaptive eXtreme Gradient Boosting . 60

CNN Condensed Nearest Neighbors . 49

DT Decision Tree . 4

ENN Edited Nearest Neighbors . 50

GAN Generative Adversarial Networks . 51

GBM Gradient Boosting Machine . 78

GCN Graph Convolutional Network . 4

KNN K-Nearest Neighbours . 34

NCL Neighbourhood Cleaning Rule . xi

NM Near Miss . 49

LGBM Light Gradient Boosting Machine . xi

LR Logistic Regression . 32

OSS One-Sided Selection. .50

RF Random Forest . 4

RIPPER Repeated Incremental Pruning to Produce Error Reduction 34

xxiii

xxiv List of Abbreviations

ROS Random Over-Sampling . 47

RUS Random Under-Sampling . 47

SMOTE Synthetic Minority Over-Sampling . xi

SVM Support Vector Machine . 15

TL Tomek Links . 49

TPE Tree-structured Parzen Estimator . 7

XGBoost eXtreme Gradient Boosting . xi

1

Introduction

1.1 | Anti-Money Laundering in Cryptocurrencies
The emergence of cryptocurrencies, introduced by Bitcoin back in 2009 (Nakamoto,
2009), enabled peer to peer digital money transfers across all borders, with the added
advantage of doing so at a low cost. These qualities have been made possible through
blockchain technology, which is the core component that underpins most cryptocurren-
cies. Bestowing trust among its users by virtue of being immutable, blockchain can be
regarded as a digital public ledger, enabling peers within a network to execute tamper-
proof transactions without the need of a third-party. This novel idea offers robustness
by eliminating any single points of failure, self-sufficiency through distributed consen-
sus, security via cryptography, and consistency due to its immutable nature. All of these
characteristics packed in a practical decentralised payment network, ignited scepticism
back in the early days of cryptocurrencies. Genuine concerns were being raised on the
legitimacy of these virtual currencies, as they acted as a form of payment in dark-web
marketplaces to buy and sell illicit goods (mail-order drugs and weapons). Criminals
managed to take advantage of this technology as transactions could not be blocked,
and it offered a certain level of anonymity. In addition to this exploitation, cryptocur-
rencies fell outside the regulatory provisions set out by governments and lawmakers
(Kaplanov, 2012; Trautman, 2014).

Fast-forward to today, and thousands of virtual currencies later (Yuan and Wang,
2018), Bitcoin is ranked as the number one cryptocurrency in terms of market capitalisa-
tion ($117.81bn), where it peaked at around $238bn in the fourth quarter of 2017 1. Other
cryptocurrencies, such as Ethereum expands on the functionality provided by Bitcoin

1 BTC Market Cap: https://www.statista.com/statistics/377382/bitcoin-market-capitalization

1

https://www.statista.com/statistics/377382/bitcoin-market-capitalization

Chapter 1. Introduction 1.1. Anti-Money Laundering in Cryptocurrencies

due to the introduction of smart contracts, permitting developers to write code using
a Turing-complete programming language to create decentralised applications on the
blockchain (Buterin et al., 2014). With this technology continually evolving and improv-
ing, the tone towards cryptocurrencies has shifted. The number of businesses building
products and services based on blockchain and cryptocurrencies is ever increasing, es-
pecially in financial services such as remittance and online payments (Frizzo-Barker
et al., 2020; Yuan and Wang, 2018).

Despite adoption, there is still a certain level of scepticism especially towards Bit-
coin, in fact, multiple high profile people described it to be; a speculative investment
bubble, being a scam and dominated by illegal endeavours 2 (Frizzo-Barker et al., 2020).
The statement of cryptocurrencies being dominated by illegal endeavours is not en-
tirely unfounded, although criminal activity does not dominate the crypto space, it still
accounts for about 1-2% of the overall activity 3 (Chainalysis, 2020; Elliptic, 2020; Weber
et al., 2019). These illicit activities include, but are not limited to; Ponzi-schemes, scams,
stolen funds, ransomware and financing terrorism. In all of these crypto crimes, money
laundering is the common denominator, as once a criminal gets hold of these illicitly-
gained funds, their focus shifts to turning them into legitimate assets or cash without
detection (Chainalysis, 2020). Given the rise in popularity and the exponential growth
in the value of cryptocurrencies, coupled with the fear of criminals hiding behind the
pseudonymous nature of this technology; governing bodies, regulators and lawmakers
started to establish regulations in order to combat money laundering and other crypto
crimes (European Parliament and Council, 2018; Financial Action Task Force, 2019; Fin-
Cen, 2019; Lessambo, 2020).

The ‘Fifth Anti-Money Laundering Directive (5AMLD)’ (European Parliament and
Council, 2018) was recently adopted by the European Union to counter financing of
terrorism and money laundering. The law applies to the following entities operating
in one of its 28 member states: exchanges allowing its users to trade crypto-to-crypto
or crypto-to-fiat (or vice-versa), and wallet service providers holding the users’ private
keys. These entities are obliged to apply proper customer due diligence such as KYC
procedures, monitor transactions, maintain customer history and report any transac-
tions which are deemed as suspicious, all of which needed to be inplace by the end of
2019. Similar guidelines 4 were set out by the Financial Action Task Force (FATF) (Finan-

2 Bitcoin Bulls and Bears: https://www.bloomberg.com/features/bitcoin-bulls-bears/
3 MIT-IBM AI Lab Analyzed 200,000 Bitcoin Transactions. Only 2% Were Labeled ‘Illicit’: https://www.

coindesk.com/mits-ai-lab-crunched-200000-bitcoin-transactions-only-2-were-illicit
4 New money-laundering rules change everything for cryptocurrency exchanges: https:

//www.technologyreview.com/2019/08/15/102778/new-money-laundering-rules-change-
everything-for-cryptocurrency-exchanges/

2

https://www.bloomberg.com/features/bitcoin-bulls-bears/
https://www.coindesk.com/mits-ai-lab-crunched-200000-bitcoin-transactions-only-2-were-illicit
https://www.coindesk.com/mits-ai-lab-crunched-200000-bitcoin-transactions-only-2-were-illicit
https://www.technologyreview.com/2019/08/15/102778/new-money-laundering-rules-change-everything-for-cryptocurrency-exchanges/
https://www.technologyreview.com/2019/08/15/102778/new-money-laundering-rules-change-everything-for-cryptocurrency-exchanges/
https://www.technologyreview.com/2019/08/15/102778/new-money-laundering-rules-change-everything-for-cryptocurrency-exchanges/

Chapter 1. Introduction 1.2. Motivation

cial Action Task Force, 2019) to its member jurisdictions (including; the United Kingdom
and the United States) to regulate cryptocurrency marketplaces. In addition, the United
States are also subject to other guidelines (FinCen, 2019) set out by the Financial Crimes
Enforcement Network (FinCEN) to regulate business models involving cryptocurren-
cies. Failure to comply with these regulations can result in hefty fines, revoking of li-
censes, or even worse shutting down of businesses. Abiding by these stringent rules is
crucial for businesses since having a lack of Anti Money Laundering (AML) controls can
come at a hefty price. These negative ramifications impose liable entities to implement
systems which can monitor and detect suspicious behaviour in cryptocurrencies. The
upside is that the environment is inherently transparent, as each transaction is persisted
in a public ledger. This allows investigators to analyse money laundering ecosystems
at a high level, so as to extract insights from these detected illicit networks/rings. All
of these can be demanding or near impossible to employ when monitoring traditional
fiat finance, as multiple third parties may be involved (Alsuwailem and Saudagar, 2020;
Samanta et al., 2019; Singh and Best, 2019).

In order to do so, the right tools must be in place as transactions are broadcasted to
the blockchain at a high volume and velocity, making this task infeasible to be handled
manually. The application of machine learning can circumvent these hurdles, however,
the detection of nefarious activities on blockchain networks is non-trivial since illicit
transactions or accounts are very few when compared to licit ones (Chainalysis, 2020;
Elliptic, 2020; Weber et al., 2019), and this could hinder the overall performance (Abd El-
rahman and Abraham, 2013; Bartoletti et al., 2018). Another additional layer of complex-
ity is compounded by the fact that the underlying techniques employed by criminals are
continually evolving, hence making the environment dynamic and continuously chang-
ing (van der Veer, 2019; Weber et al., 2019).

1.2 | Motivation
As of May 2020, the total number of transactions processed for the top two cryptocur-
rencies in terms of market capitalisation, Bitcoin 5 and Ethereum 6 was - approximately
535M, and approximately 721M transactions, respectively. Given the high volume and
velocity, resources are required to be able to monitor these transactions so as to de-
tect suspicious activity on the network. It is extremely improbable that this task can
be achieved only through manual work; hence, the need for automated detection sys-

5 Bitcoin Charts: https://www.blockchain.com/charts
6 Etherscan: https://etherscan.io/txs

3

https://www.blockchain.com/charts
https://etherscan.io/txs

Chapter 1. Introduction 1.2. Motivation

tems is required, as a tool to aid stakeholders. Autonomously detecting anomalous
behaviour or transactions, to combat money laundering and other white-collar financial
crimes, has been often employed in various financial industries dealing with transac-
tions (Alsuwailem and Saudagar, 2020). These systems could also be implemented to
work with cryptocurrencies, by utilising the publicly available data on the blockchain
and incorporating it to work with machine learning, thus reducing the manual work
required.

The application of deep learning has been investigated in the detection of cryptocur-
rency crimes (Nilsen, 2019; Weber et al., 2019). Weber et al. (2019) investigated whether a
Graph Convolutional Network (GCN) can be effective in identifying transactions linked
to nefarious activities. Many researchers (Baek et al., 2019; Bartoletti et al., 2018; Lee
et al., 2020; Lin et al., 2019; Toyoda et al., 2017; Weber et al., 2019; Zola et al., 2019) also
investigated the use of Random Forest (RF), which is an ensemble of decision trees and
an extension of bootstrap aggregation. RF has shown to be appealing in this domain
due to its effectiveness, ease of use and explainability. In a recent study (Weber et al.,
2019), it was shown that RF can outperform deep learning approaches when identifying
suspicious transactions executed on the Bitcoin network. Decision Tree (DT) based gra-
dient boosting, also an ensemble of decision trees, have been investigated (Chen et al.,
2018; Farrugia et al., 2020; Harlev et al., 2018; Lin et al., 2019; Sun Yin et al., 2019; Toy-
oda et al., 2017; Zola et al., 2019) to detect various crypto-related crimes. Farrugia et al.
(2020) highlighted that gradient boosting can effectively detect suspicious behaviour on
the Ethereum blockchain, when they set out to investigate the detection of illicit activi-
ties on an account-level.

Current literature highlights two challenges that make the problem of detecting il-
licit activity on the blockchain hard to solve, having a skewed class distribution and
concept drift (Bartoletti et al., 2018; Lee et al., 2020; Lin et al., 2019; Weber et al., 2019;
Zola et al., 2019). There is also the question of "Which model is the most suitable to detect
licit-or-illicit activities on blockchain networks adequately?". From current literature, it is ev-
ident that tree-based ensembles are one of the most widely used models in this domain.
Even though gradient boosting algorithms were examined head to head against RF in
detecting crypto crime (Lin et al., 2019; Sun Yin et al., 2019; Toyoda et al., 2017), it is still
unclear which tree-based ensemble is more effective in the context of this problem. Due
to the lack of rich datasets, hyperparameter optimisation, statistical hypothesis testing
and the lack of a systematic evaluation of various state-of-the-art gradient boosting al-
gorithms to detect illicit activities on the blockchain, we decided to confront this gap
in research. Furthermore, class imbalance needed to be addressed as this characteris-
tic is widespread in this type of problem. In previous studies, various data-sampling

4

Chapter 1. Introduction 1.2. Motivation

techniques were implemented to counteract this (Bartoletti et al., 2018; Sun Yin et al.,
2019; Toyoda et al., 2017), however, the techniques employed were either non-heuristic
approaches or fell short in comparing multiple heuristic approaches. Another short-
coming is that the effect of non-stationarity and shifting concepts is often overlooked in
this domain, and we intend to shed light on some techniques which may help to miti-
gate this problem. Literature shows that these two challenges still pose an active area of
research.

Our primary interest was to investigate these shortcomings in the context of de-
tecting illicit behaviour on the blockchain at an account and transactional level using
decision-tree based gradient boosting as models. Also, these proposed supervised gra-
dient boosting algorithms were trained and evaluated by utilising a rich dataset(s). For
instance, the use of a graph-structured transactional dataset was utilised when employ-
ing our models at a transactional-level. Graph-structures can be significant when com-
bating money laundering (Gaihre et al., 2019; Samanta et al., 2019; Weber et al., 2019;
Zola et al., 2019), as this criminal activity involves multiple parties; hence the relation-
ships (payment flows) between data points needs to be examined. If we are able to
detect suspicious activity at a transactional level effectively, one can later examine how
these illicitly-gained-funds move from one account to another through the use of this
graph structure. It would then be a matter of pinpointing criminal networks/rings, and
identifying how these illicit funds are "washed" in order to appear legitimate.

The following motivations fuel our interest to detect illicit activities on the blockchain
by employing machine learning.

� Given that recent regulations are being appended in various jurisdictions, we be-
lieve that the right tools should be available to aid stakeholders in carrying out the
tasks needed to abide by these policies.

� Preventing these illicit activities from being carried out, not only safeguards its
users, who are the primary victims of these criminal acts but also, promotes a
certain level of assurance between service providers and their customers. This
assurance is, therefore, mutually beneficial as it encourages more usage from the
users’ end and ultimately improves business profitability.

� We believe that having healthier blockchain networks will improve the reputabil-
ity for this novel technology which in turn, will encourage its adoption thus, hav-
ing the potential to positively alter the financial system as we know it.

5

Chapter 1. Introduction 1.3. Aims & Objectives

We advocate that the utilisation of boosting algorithms to create more efficient de-
tection systems may aid (i) Law enforcement agencies by reducing the manual work,
and provide insights as a basis for follow up investigations (ii) Services/Businesses op-
erating within jurisdictions that are obliged to follow money laundering regulations, by
providing an automated detection tool helping these stakeholders to report suspicious
behaviour (iii) Researchers and journalist which may be interested in examining the
flows within the network as a means of discovering suspicious patterns such as shady
criminal rings, and warn the public (iv) AML Compliance Departments, by providing
the automated tools necessary to reduce the manual labour required which in turn, de-
creases the cost of resources and time. Resources could be shifted elsewhere such as,
follow-up investigations from the suspected suspicious behaviour detected.

1.3 | Aims & Objectives
This study aims to investigate and improve on existing approaches to detect illicit be-
haviour on the blockchain, at an account and transaction level. We define our aim by
the following research question:

Can we detect licit and illicit activities on blockchain networks at an account and transaction
level through data-sampling techniques and handling concept drift?

The following objectives have been outlined, as a means of addressing this aim:

1. Compare the selected state-of-the-art algorithms against each other, as well as against a
chosen benchmark, to determine which model is most effective in the context of identifying
licit-or-illicit activities on blockchain networks, at an account and transaction level.

2. Improve the detection of licit-or-illicit activities for the selected state-of-the-art algorithms,
through the adaptation of data sampling techniques, while also identifying which approach
works best.

3. Improve the detection of licit-or-illicit activities at a transactional-level, on state-of-the-art
algorithms by handling concept drift more effectively in order to minimise performance
degradation over time, thus enabling real-time transaction monitoring of cryptocurrency.

6

Chapter 1. Introduction 1.4. Contributions

1.4 | Contributions
Since there are a large number of distinct cryptocurrencies (Yuan and Wang, 2018), we
primarily focused on evaluating our solution to detect illicit Bitcoin transactions and
illicit Ethereum Accounts. Given the time constraints, we were required to limit the
investigation to Bitcoin and Ethereum, which were chosen since they are the two most
used cryptocurrencies. Utilising two cryptocurrency datasets, the Elliptic dataset (Ellip-
tic, 2020; Weber et al., 2019) and Ethereum Illicit Accounts dataset (Farrugia et al., 2020),
we were able to showcase the results and potential for the proposed approach.

In our proposed solution, we improve on state-of-the-art models in the context of
identifying illicit cryptocurrency accounts and transactions, by effectively addressing
the primary challenges, namely, class imbalance and concept drift. In our work we repli-
cated and extended recent published literature in this domain, resulting in the proposal
of an innovative adaptation of XGBoost, that we named as Adaptive Stacked eXtreme
Gradient Boosting (ASXGB).

With respect to the state-of-the-art results, when compared on the ‘Elliptic’ (Weber
et al., 2019) and ‘Ethereum Illicit Accounts’ (Farrugia et al., 2020) datasets, we showed
an improvement in terms of F1-Score. More specifically, we obtained an improvement
of +2.4% in F1-Score when comparing the proposed LGBM model against the top per-
forming model in Weber et al. (2019) study (Random Forest). We also improved on the
best performing model in Farrugia et al. (2020) study (XGBoost using GridSearch) by
+2.3% in F1-Score when compared against the proposed XGBoost model tuned using
Tree-structured Parzen Estimator (TPE). We showed that by applying data-sampling
techniques (SMOTE, NCL, NCL-SMOTE), it further improved the overall performance
in terms of F1-Score, recall and precision. We also show that our proposed ASXGB out-
performed another state-of-the-art adaptation of XGBoost (Montiel et al., 2020) in terms
of F1-Score and ranked slightly lower when compared to an adaptation of Random For-
est used to handle non-stationary data (Gomes et al., 2017). Although F1-Score was
slightly lower in ASXGB, the recall (+9.3% from the results obtained by Weber et al.
(2019)) is still improved, meaning that when concept drift occurs, it does not suffer from
false negatives and is the fastest to adapt to change.

1.5 | Document Structure
The remainder of this document covers the following; Chapter 2 serves as a basis for
the background information required to understand the work presented in this study.

7

Chapter 1. Introduction 1.5. Document Structure

Chapter 3 provides a detailed review of previous research covering (but not limited to)
money laundering detection in financial systems, handling class imbalance, hyperpa-
rameter optimisation and handling drifting concepts. Chapter 4 defines the methodol-
ogy and the design for the proposed solution. Chapter 5 outlines the evaluation frame-
work employed and results, followed by a discussion on the corresponding outcomes in
Chapter 6. Lastly, the final chapter includes potential future work stemming from this
research and concluding remarks.

8

2

Background

2.1 | Money Laundering
Since money laundering affects the global economy and its security (Schneider and
Windischbauer, 2008; Schott, 2006), it is crucial to have tools and laws in place to prevent
this illegal activity from happening (Lessambo, 2020). The process of laundering money
is split into three phases, coined as; Placement, Layering and Integration. The placement
phase involves money obtained from illicit activities, which is injected into the finan-
cial system by imitating ordinary business transactions. Placement techniques include
but, are not limited to, moving money through shell companies or cash-intensive busi-
nesses. In the layering phase, these illicit funds go through multiple transactional hops
as a means of concealing their original source, and this is usually carried out through
multiple on-shore and off-shore bank accounts. In the final phase, these funds are trans-
ferred back to the source in the form of assets, whereby money is moved by imitating
ordinary business transactions, similar to the placement phase (Lessambo, 2020; Schnei-
der and Windischbauer, 2008).

Money laundering and other financial crime are a global threat to the world econ-
omy and so, laws and guidelines are reenacted to limit the damage caused by these
nefarious activities. Failure to comply can result in infringement penalties, for instance,
back in 2012, HSBC was held accountable by US authorities for failing to apply Anti
Money Laundering (AML) measures, paying $1.9bn due to allegations that their lax
controls enabled laundering of drug money (Yicheng, 2015). Similarly, Danske bank was
found to have enabled an estimated $230bn in suspicious transactions coming from var-
ious countries such as Russia, British Virgin Island and Britain. Failure to screen clients
caused the bank its reputation, the consequence of several billion-dollar fines, and crim-
inal charges against their employees. Moreover, this event, which is considered to be

9

Chapter 2. Background 2.2. Blockchain and Cryptocurrency

one of the biggest laundering scandals in Europe, uncovered potential loopholes in the
banking legislation set up by the European Union (Yeoh, 2019).

Since the creation of cryptocurrencies (Nakamoto, 2009) back in 2008/2009, crimi-
nals found ways to exploit the Blockchain, to conduct money laundering and other crim-
inal activities (Adam and Maitland, 2018; Bartoletti et al., 2018; Bryans, 2014; Chainaly-
sis, 2020; Frizzo-Barker et al., 2020; Weber et al., 2019). As this network utilises a strong
cryptography to provide peer-to-peer financial transactions in a secure and verifiable
manner; its pseudonymity properties made it appealing for criminals to carry out these
activities (Adam and Maitland, 2018; Bryans, 2014; Mabunda, 2018). The same concepts
(Placement, Layering and Integration) still apply when laundering illicitly gained crypto
funds, however, the processes used are relatively different (Bryans, 2014; Fanusie and
Robinson, 2018; Mabunda, 2018). In the placement phase, cryptocurrencies are bought
(using fiat or other cryptocurrencies) from online cryptocurrency trading markets/ex-
changes, which lack AML measure or are unregulated. In the layering stage, crypto
funds are hidden/obfuscated by engaging in fake Initial Coin Offerings or transferring
funds between accounts on unregulated exchanges, in order to break the link from the
original source. Another well-known method to hide these funds is the use of mixer/-
tumbler services. These services which come at a cost, obfuscate the source of cryptocur-
rency funds, by mixing and sending coins from one address to another (also randomis-
ing transaction amounts), which will later end up in a new address controlled by the
person owning the original funds. It is also common to process/mix funds on more than
one service to further reduce the chances of being traced (de Balthasar and Hernandez-
Castro, 2017). At the final integration phase, funds are withdrawn (using crypto ATMs,
or unregulated exchanges) and presented as currency appreciation or profitable invest-
ment, which is hard to discredit given that the market is highly volatile. Alternatively,
these funds could also be exchanged for goods on online marketplaces, which accept
cryptocurrencies as payment. Common services/practices related to laundering crypto
funds are shown in Figure 2.1.

2.2 | Blockchain and Cryptocurrency
In order to understand how money laundering and other financial crimes operate within
the cryptocurrency space, one must have a basic understanding of the underlying tech-
nology behind these currencies. Blockchain technology is the core component which
enables most cryptocurrencies to operate within a decentralised network. It was first en-
visioned by Nakamoto (2009) back in 2008/2009, and various alterations and improve-

10

Chapter 2. Background 2.2. Blockchain and Cryptocurrency

Figure 2.1: The most notable services/practices which are involved in laundering cryp-
tocurrency funds. Source: Bitcoin Money Laundering: How Criminals Use Crypto -
https://www.elliptic.co/our-thinking/bitcoin-money-laundering

ments were implemented along the years. These enhancements include but are not lim-
ited to; (i) additional sophistication with the introduction of smart contracts, enabling
the transfers of more complex assets beyond digital payments, such as loans/bonds and
equity (Blockchain 2.0) (ii) the ability to build applications outside the financial realm
such as distributed governance and health systems (Blockchain 3.0) (Frizzo-Barker et al.,
2020; Swan, 2015). A brief description of the various components and processes that
make up the blockchain is given below. For the sake of simplicity, the components
described refer to a permission-based blockchain network 1, in particular the Bitcoin
network.

2.2.1 | Blockchain Technology
The main components in the blockchain infrastructure are cryptography, transactions, a
secured distributed ledger and a consensus mechanism. Cryptography is used in many
different ways in this infrastructure, most notably to sign (private keys) and validate
(public keys) transactions broadcasted to the network. It is, in fact, cryptography that
allows for pseudo-anonymity within the network, as users hide behind a generated ad-
dress (can be viewed as an individual bank account). Transactions are used to send/re-

1 There are two main types of blockchains, permissionless-based (such as Bitcoin) which publicly val-
idates transactions, and permission-based (such as Hyperledger Fabric), where transactions are vali-
dated/executed by users approved by the owner (tend to be more centralised) (Frizzo-Barker et al.,
2020)

11

https://www.elliptic.co/our-thinking/bitcoin-money-laundering

Chapter 2. Background 2.2. Blockchain and Cryptocurrency

ceive value in this distributed system, and this component holds information such as
the value sent, the list of inputs and outputs, and a timestamp (’locktime’). Transactions
are then grouped to form blocks, and these represent the current state of the network.
These blocks are then verified by miner nodes using a concept coined as ’Proof of Work’,
where miners solve cryptographic puzzles and once solved a new block is constructed.
Block miners who manage to solve the problem earn cryptocurrency, and start working
on the next set of transactions (block). All confirmed blocks are persisted on a secured
distributed ledger (Frizzo-Barker et al., 2020; Lee et al., 2020; Swan, 2015).

2.2.2 | Cryptocurrency
Cryptocurrencies are virtual currencies were cryptography is utilised in order to dis-
tribute and create these units (Mukhopadhyay et al., 2016), or as Nakamoto (2009) put
it "an electronic coin as a chain of digital signatures". The idea of having an anonymous
electronic money system dates back to 1983, where Chaum (1983) developed the idea
of eCash. Similar to cryptocurrencies, eCash employed cryptography to give a level of
anonymity. However, one significant difference was that this virtual currency relied on a
central authority (banks) (Mukhopadhyay et al., 2016). Bitcoin was the first-ever virtual
currency successfully implemented as a decentralised monetary system (Mukhopad-
hyay et al., 2016; Nakamoto, 2009). Inline with the previous section, discussing the
blockchain network, the functionality of these currencies works as follows; (i) a wal-
let is tied to a user via an address which acts as a public key (ii) a private key is then
utilised to sign a transaction, providing a proof of ownership (iii) a user can send or
receive cryptocurrencies via a wallet (iv) these transactions are then verified by block
miners (in a ’Proof of Work’ scenario) (Mukhopadhyay et al., 2016).

Since its inception, various cryptocurrencies have been developed, where each cur-
rency has its requirements and usage. For instance, Ethereum (ETH) (Buterin et al., 2014),
can be seen as an alternative to Bitcoin, where it allows the development of decentralised
applications, Ripple (XRP) a pre-mined currency enables real-time settlements for banks
(Schwartz et al., 2014) and Monero (XMR) 2 offering near-total anonymity to its users.
Each currency may also adopt a specific consensus mechanism, for instance, some may
use Proof of Work while others opt for Proof of Stake (Mukhopadhyay et al., 2016). While
consensus mechanisms are a base layer of cryptocurrencies and therefore, are an essen-
tial function to detail, their intricacies will not be discussed further in this study, so that
the focus remains on the detection of illicit activities on the blockchain.

2 Monero Whitepaper: https://github.com/monero-project/research-lab/blob/master/
whitepaper/whitepaper.pdf

12

https://github.com/monero-project/research-lab/blob/master/whitepaper/whitepaper.pdf
https://github.com/monero-project/research-lab/blob/master/whitepaper/whitepaper.pdf

Chapter 2. Background 2.3. Detection via Machine Learning

2.2.3 | Illicit Activities on the Blockchain
The reason why criminals are attracted to conduct their crimes within blockchain infras-
tructures, is that there is no central authority, there are a lack of regulations (although
improving in recent years) and the pseudo-anonymity that the technology offers (Adam
and Maitland, 2018; Frizzo-Barker et al., 2020; Lee et al., 2020; Samanta et al., 2019). In
order to be able to discern between the "good" and "bad" actors, one needs to have a clear
indication of the services/organisations operating within the blockchain. These services
include but are not limited to; exchanges, hosted wallets, mining pools, Ponzi-scheme,
high-yield-investment-programs (HYIP), scams, terrorism-financing, ransomware, mix-
ers, phishing schemes, fake token sales, blackmail, gambling, and dark marketplaces
(Adam and Maitland, 2018; Chainalysis, 2020; Harlev et al., 2018; Weber et al., 2019).
These services can be grouped into illicit or licit services, for instance, an exchange and
hosted wallets can be considered as licit services, while scams and terrorism-financing
as illicit ones (Weber et al., 2019); however, it is not always "black and white" as ex-
changes which are commonly considered as legitimate services, have been shown to
be exploited by suspicious transactions (Baek et al., 2019). As stated in Section 1.1, the
common denominator in cryptocurrency-related crime is money laundering, as once
a criminal obtains illicitly-gained funds, the primary focus shifts to integrating these
funds within the financial system. So, in a way, having systems in place to detect il-
licit services or transactions will help the fight against money laundering, as the flow of
payments can then be analysed given the open nature of the blockchain.

2.3 | Detection via Machine Learning
In this subsection, a high-level overview of various paradigms applied in machine learn-
ing as a means of intercepting or detecting illicit financial activities is given, together
with common obstacles one must handle to ensure a robust system is in place.

Money service businesses are on the rise as more and more companies are involv-
ing themselves in the processing of payments which in turn, is making the process of
tracing money laundering and other financial crimes almost impossible (van der Veer,
2019). Adding cryptocurrency exchanges, new payment systems and third-party mer-
chant accounts such as PayPal3 and Skrill4 into the equation, the risk of potential finan-
cial crime going undetected is more prominent than ever (van der Veer, 2019). Luckily,
the use of machine learning to combat and detect these crimes, by leveraging data in or-

3 PayPal: https://www.paypal.com
4 Skrill: https://www.skrill.com

13

https://www.paypal.com
https://www.skrill.com

Chapter 2. Background 2.3. Detection via Machine Learning

der to build more robust compliance and AML systems, is also gaining traction in both
academia and the industry (Dorofeev et al., 2018; Jullum et al., 2020; Sun Yin et al., 2019;
van der Veer, 2019; Weber et al., 2019).

One of the most primitive methods employed to detect financial crime such as money
laundering, are rule-based systems, which can be viewed as a collection of IF-THEN
statements (Helmy et al., 2016). In essence, these notification-based techniques operate
on a set of rules with rigid thresholds, and whenever a threshold exceeds a specified
limit, it is considered as suspicious. Investigators are then notified to conduct further
manual inspections (Helmy et al., 2016; Jullum et al., 2020). Even though rule-based
systems are still being implemented and utilised in the industry (Chandradeva et al.,
2020; Helmy et al., 2016; Jullum et al., 2020), these techniques have their drawbacks,
some of which include; (i) requiring expert knowledge to create new rules (ii) requiring
extensive maintenance which in turn increases the cost of operation (iii) performance
declines as rules are compounded (iv) prone to high false positives (Chandradeva et al.,
2020; Jullum et al., 2020). Furthermore, in the case of money laundering prevention, the
Financial Action Task Force is recommending to migrate from rule-based systems to a
more risk-oriented approach (Financial Action Task Force, 2012; Savona and Riccardi,
2019). Due to this recommendation and other operational factors such as the need for
automation, the application of machine learning is being implemented across the finan-
cial industry, to assess client risk and enhance due diligence processes (Alsuwailem and
Saudagar, 2020; Savona and Riccardi, 2019). Machine learning algorithms developed to
prevent these nefarious activities can be categorised into two; Supervised Learning and
Unsupervised Learning (Chandradeva et al., 2020; Jullum et al., 2020).

2.3.1 | Supervised Learning
In supervised learning, the algorithm learns from a set of labelled instances, where in-
puts/features denoted as x are mapped to their corresponding target variable y. The
objective in this type of learning, is to train the algorithm until it is adequate to approx-
imate the mapping between the inputs to the target variables, expressed as Y = f (X)

(Friedman et al., 2001). As Friedman et al. (2001) stated, the objective of supervised
learning is "to predict the value of an outcome measure based on a number of input measures".
This type of learning has been thoroughly investigated (Alsuwailem and Saudagar,
2020; Harlev et al., 2018; Sun Yin et al., 2019; Weber et al., 2019) and proved to be ef-
fective in detecting financial crime such as fraud (Chandradeva et al., 2020; Fiore et al.,
2019; Lim et al., 2014) and Ponzi-schemes (Bartoletti et al., 2018; Chen et al., 2018); how-
ever, in money laundering, it is rarely the case where an organisation gets feedback

14

Chapter 2. Background 2.3. Detection via Machine Learning

whether a suspicious client was charged with an offence. Therefore, an algorithm is
commonly modelled on suspicious behaviour when supervised learning is employed
to detect this activity (Jullum et al., 2020).

Zhang and Trubey (2019) investigated five different supervised learning classifiers
to facilitate the process of decision-making when filing Suspicious Activity Reports
(SARs), by utilising data constructed from previously flagged alerts (containing both
aggregated transactional and account information). These algorithms included; (i) C5.0
Decision Tree (Quinlan, 1986, 1993) - a tree-based algorithm which starts from the root
node and partitions the dataset into smaller subsets (using information entropy), un-
til a leaf node representing the final decision is reached (this process is illustrated in
Figure 2.2) (ii) Random Forest (RF) (Breiman, 2001) - a collection/ensemble of decision
trees (built on random subsamples) which combine the outcomes of multiple trees to
reduce bias and overfitting, both of which are common when building a single deep de-
cision tree (iii) Support Vector Machine (SVM) (Cortes and Vapnik, 1995) - an algorithm
which finds an optimal boundary/hyperplane to separate data points in an N dimen-
sional space using kernel functions (iv) Artificial Neural Network (ANN) (McCulloch
and Pitts, 1990) - a model that reduces error by adjusting weights between the output(s)
and input(s) using backpropagation (v) Bayes Logistic Regression. In their study, they
showed that they could effectively capture rare events using supervised learning classi-
fiers, pointing out that the performance of these models prevail given that the data is of
a certain quality (accurate labels and features) (Zhang and Trubey, 2019).

Figure 2.2: A visual representation of a simple decision tree, the first node (’outlook’) is
referred to as the root node. The final outcome/classification (’N’ or ’P’) is taken once a
leaf node is reached (Quinlan, 1986).

Supervised learning techniques have also been investigated thoroughly in detecting

15

Chapter 2. Background 2.3. Detection via Machine Learning

illicit activity on blockchain networks (Baek et al., 2019; Bartoletti et al., 2018; Farrugia
et al., 2020; Lin et al., 2019; Sun Yin et al., 2019; Toyoda et al., 2017; Weber et al., 2019).
The downside for employing these types of learners in this particular domain (finan-
cial crime), is that most financial data is considered sensitive information; hence, it is
difficult to find open labelled datasets to build detection systems (Chandradeva et al.,
2020).

2.3.2 | Unsupervised Learning
Unsupervised learning is the procedure of detecting patterns without any existing la-
bels, and the main goal is to discern patterns and associations among a set of inputs
(Friedman et al., 2001). The application for this type of learning can be useful in the
cryptocurrency domain, as most labelling happens by scarping information from fo-
rums and dark web marketplaces, in order to point out bad actors within a network
(Bartoletti et al., 2018; Zola et al., 2019). Clustering, which is an unsupervised learn-
ing technique is another paradigm to group these instances (Harlev et al., 2018). Baek
et al. (2019) employed K-means clustering so as to cluster Ethereum wallets scraped
from etherscan.io (blockchain explorer). This technique splits data into k groups, by ad-
justing centroids until they are centred within the specified groups. The wallets were
then grouped into seven different clusters. They noted that one of the clusters contained
suspicious transactions. Another study conducted by Toyoda et al. (2018), also applied
clustering techniques; however, clustering was employed in order to group multiple
addresses to one entity (with a certain degree of probability). The techniques employed
to cluster these samples were firstly mentioned by Androulaki et al. (2013), where they
investigated K-means clustering and Hierarchical Agglomerative Clustering.

2.3.3 | Account vs Transactional Level Detection
A machine learning system built to detect criminal financial activity can be designed to
identify these operations on an account or transactional level (Duman and Buyukkaya,
2008; Lim et al., 2014; Sudjianto et al., 2010). In the search for suspicious accounts, the
system is typically modelled based on the behavioural patterns of the customer or user
(Lim et al., 2014). The model is typically fed the following information; previous account
history, days passed since account creation and statistical attributes such as the average
balance over a month (Lim et al., 2014; Sudjianto et al., 2010). An indication for potential
illicit activity arises, when there is a significant deviation from the usual patterns/be-
haviour for a given account (Lim et al., 2014). On the other hand, transactional-level

16

Chapter 2. Background 2.3. Detection via Machine Learning

detection utilises information such as; date of execution, the amount transferred, and
location of the sender, in order to classify individual transactions (Lim et al., 2014; Sud-
jianto et al., 2010). Each setting has its pros and cons, for instance, at an account-level,
the system must monitor account by account, which in turn may create an overhead,
thus becoming impractical to employ in real-time (Lim et al., 2014). Moreover, even
when real-time detection is not a requirement, both settings require aggregating and
summarising past information due to the high-dimensional data which may arrive at
high volumes and velocity (Sudjianto et al., 2010).

The same settings (account and transactional level detection) and processes (aggre-
gation of previous data) have also been adopted when employing machine learning
to detect illicit activity on blockchain networks (Bartoletti et al., 2018; Farrugia et al.,
2020; Samanta et al., 2019; Toyoda et al., 2017; Weber et al., 2019). For instance, Farru-
gia et al. (2020) made use of aggregated information based on the transaction history
for particular Ethereum accounts, in order to identify accounts which are deemed as
illicit (account-level detection). These attributes included information such as; the to-
tal number of transactions executed and minimum/maximum amount of values ever
sent/received (Farrugia et al., 2020). Conversely, Weber et al. (2019) utilised aggregated
transactional data to identify whether a transaction broadcasted to the Bitcoin network
was executed by a person deemed as illicit (holds private keys to the address broadcast-
ing the transaction). Although the target variable was related to the address executing
the transaction, the identification of suspicious activity occurred at a transactional-level.
The features attributed to a specific transaction, included both single point attributes
and aggregated information, for instance; the fee associated with a particular trans-
action (single-point) and the average amount spent by the list of inputs (aggregated)
(Weber et al., 2019).

It is worth noting that the term account-level detection is commonly used inter-
changeably with customer-level detection; however, sometimes, there is a clear distinc-
tion between the two. Customer-level detection may refer to when a detection system
is modelled based on the generalisation of both account and transactional level infor-
mation (Duman and Buyukkaya, 2008). This type of setting may include additional
information such as risk scores and the number of accounts associated with a particular
customer (Sudjianto et al., 2010). Customer-level detection is not common in cryptocur-
rencies as it is almost impossible to identify whether multiple addresses belong to the
same entity (Lin et al., 2019); however, clustering heuristics have been proposed (An-
droulaki et al., 2013; Meiklejohn et al., 2013) with the aim of associating multiple ad-
dresses to a specific entity/customer. Lin et al. (2019) and Toyoda et al. (2018) adopted
similar clustering techniques to classify Bitcoin entities (clustered addresses pointing to

17

Chapter 2. Background 2.3. Detection via Machine Learning

one entity/customer) to the respective service (for example mixer, high yielding invest-
ment programs and gambling) they operate in, within the network.

2.3.4 | Transactions as a Graph-Structure
Network analysis and graph learning, are important tools in combating financial crime
such as money laundering, as these activities are generally conducted between groups
of bad actors (such as multiple transactional hops between on-shore and off-shore shell
companies to conceal the identity of the source) as described in Section 2.1. A graph or
a network consists of nodes (also referred to as vertices) and edges, and it can be both
directed (one-way direction) and undirected (two-way direction), as shown in Figure 2.3
(Tarapata et al., 2018). The main techniques employed when fighting financial crime
with the use of graph analysis are; analysing links, association rules, pattern recognition,
mining frequent patterns, and clustering (Alsuwailem and Saudagar, 2020; Tarapata
et al., 2018).

Figure 2.3: Examples of directed and undirected graphs. Circles denote nodes, while
the red links denote edges.

A common method used in literature when combating financial crimes on both tra-
ditional and cryptocurrency financial systems by utilising network analysis, is the use
of transactional graphs (Gaihre et al., 2019; Phetsouvanh et al., 2018; Singh and Best,
2019; Tarapata et al., 2018; Weber et al., 2019). Transaction-graphs are a representation
of payment flows (edges) between different users/customers within a system, where
edges can contain attributes such as the value transferred when a particular transac-
tion has been executed (Gaihre et al., 2019; Phetsouvanh et al., 2018; Weber et al., 2019).

18

Chapter 2. Background 2.3. Detection via Machine Learning

Fortunately, since cryptocurrency transactions are persisted within a public distributed
ledger, transaction-graphs have been utilised to combat financial crime within the cryp-
tocurrency space (Gaihre et al., 2019; Phetsouvanh et al., 2018; Weber et al., 2019). For
instance, Gaihre et al. (2019) utilised this structure to deanonymise Bitcoin addresses as
a means of fighting crypto crime, while Weber et al. (2019) employed this structure to
identify illicit transactions within the same network. Both of these studies made use
of a Graph Convolutional Network (GCN) (Kipf and Welling, 2017) to extract graph
embeddings in order to transform nodes to a set of vectors. Weber et al. (2019) took
it a step further by feeding node embeddings as features to multiple supervised learn-
ing algorithms, which proved to be effective when detecting illicit Bitcoin transactions.
Additionally, they also investigated this graph learning technique on its own as a clas-
sifier, together with two other variants, Skip-GCN and EvolveGCN (handles temporal
data) (Pareja et al., 2020; Weber et al., 2019). Pareja et al. (2020) argued that in prac-
tice, cryptocurrency transaction graphs could be very large and highly skewed (more
skewed than social network graphs), if all transactions were considered, and this can
cause issues even for the state-of-the-art graph algorithms.

Representing transactions or accounts as a graph structure have been used to im-
prove interpretability when investigating money laundering or other financial crime
rings (Singh and Best, 2019; Weber et al., 2019), which is highly vital for investigators
and AML compliance teams. A simple example of a transaction graph within the Bitcoin
network is shown in Figure 2.4. In this visual representation, each coloured node de-
notes an address/account, where an edge represents the payment flows (transactions)
between two nodes. The value over the edges represent the total value flowed between
two accounts, while the values above the nodes indicate the total number of transactions
executed. All nodes in this graph are suspected addresses, with the ones highlighted in
a red square considered as sink accounts. Sink accounts are addresses used by criminals
to aggregate their illicitly-gained funds into one account (Phetsouvanh et al., 2018).

2.3.5 | Skewed Class Distribution
A skewed class distribution (also known as class imbalance) is an intrinsic characteristic
in real-world financial crime detection datasets (for example, fraud, scams, money laun-
dering), due to the naturally skewed class distribution in this given domain (Abd Elrah-
man and Abraham, 2013; Ferreira et al., 2018). This intrinsic imbalance can be recog-
nised by having an estimation of the total overall amount of money/value distributed
within the financial system, which can be linked to financial crimes. An analysis carried
out by UNODC (2011), estimated that a total of 2.7% of the world’s GDP could be linked

19

Chapter 2. Background 2.3. Detection via Machine Learning

Figure 2.4: A simple example of a transactional-graph within the Bitcoin network (Phet-
souvanh et al., 2018).

to money laundering activities. In the cryptocurrency space, it has been approximated
that 1% to 2% of the overall activity, can be attributed to criminal activity (Chainalysis,
2020; Elliptic, 2020; Weber et al., 2019).

Since legitimate instances come in more significant numbers than those which in-
dicate illegal activity, the underrepresented samples (minority) are often shrouded by
those samples which are overrepresented (majority) (Abd Elrahman and Abraham, 2013;
Bartoletti et al., 2018). This issue can cause difficulty to investigators, as detecting illicit
activity (minority samples) is usually more of a concern than those deemed as legit-
imate, and it is like "finding a needle in a haystack". Likewise, class imbalance can
cause problems in supervised machine learning as instances of the minority class can
be viewed as noise or the algorithm can become biased towards the overrepresented

20

Chapter 2. Background 2.3. Detection via Machine Learning

instances (Abd Elrahman and Abraham, 2013; Ali et al., 2015; Leevy et al., 2018). If a
skewed class distribution is left unhandled, it can have negative ramifications on the
overall performance when identifying the minority samples (Abd Elrahman and Abra-
ham, 2013; Ali et al., 2015; Rout et al., 2018) - which in this study is of utmost importance,
as identifying nefarious activity is one of the main interests.

2.3.6 | Non-Stationary Environment
Criminals that partake in money laundering and other financial crimes are continu-
ously exploring innovative techniques towards abusing financial systems, in order to
blend in with the norm and avoid being exposed by investigators (van der Veer, 2019).
These changes in behavioural patterns employed to stay under the radar, can cause the
underlying distribution of the data to change over time (non-stationary). In machine
learning, the notion of a shift in the distribution from which a particular model is fitted
on, is referred to as concept drift (Žliobaitė et al., 2016). In this study concept drift (dis-
tribution evolving over time) is defined as follows; (i) a set of instances at a period of
time [0, t], can be expressed as S0,t = {d0, ..., dt} (ii) each instance di, can be denoted as
di = (Xi, yi) where Xi is a feature vector, and yi its respective label (iii) the distribution
of S0,t can then be denoted as F0,t(X, y) (iv) a change in the underlying distribution, con-
cept drift, happens at t + 1 when F0,t(X, y) 6= Ft+1,∞(X, y), which can be expressed as
∃t : Pt(X, y) 6= Pt+1(X, y) (Gama et al., 2014; Lu et al., 2019).

The notion of concept drift can be grouped into two, Real concept drift and Viritual
concept drift. The latter refers to when there is a change in the distribution of the feature
vector, denoted as changes in p(X) but p(y|X) remain unchanged (Gama et al., 2014).
Real concept drift occurs when there is a change in the probability of the target variable
y, given a feature vector x, which can be expressed as changes in p(y|X) (Gama et al.,
2014). This type of drift can have more of a negative impact on the performance of
machine learning algorithms, as it can cause the decision boundaries to change (Gama
et al., 2014; Lu et al., 2019). The difference between these two types is illustrated in
Figure 2.5.

Additionally, a drift can come in different patterns; Reoccuring, Gradual, Incremen-
tal and Abrubt drifts, all of which are shown in Figure 2.6. A reoccurring drift is when
previous or new concepts continue to recur over time. A gradual drift occurs gradu-
ally, until it dissociates from the previous distribution entirely. An incremental drift, is
where the concept changes in a steady progression and an abrupt drift is when a con-
cept changes entirely in an instant (Gama et al., 2014). In an environment where there is
a requirement to investigate or analyse evolving data (non-stationary) in real-time, it is

21

Chapter 2. Background 2.4. Ensemble Learning Algorithms

Figure 2.5: The differences between Real and Virtual concept drift, circles indicate sam-
ples, while different colours indicate different labels.

essential to handle concept drift, as models built without being aware of these changes
can become obsolete over time (Žliobaitė et al., 2016).

Figure 2.6: Different patterns of concept drift, which include; Reoccuring, Gradual, In-
cremental and Abrubt drifts (Gama et al., 2014).

2.4 | Ensemble Learning Algorithms
Ensemble learning refers to the process of combining multiple models into one gener-
alised model via various strategic techniques (Dong et al., 2020; Sagi and Rokach, 2018),
in order to reduce the overall error by finding a balance between bias and variance
(Dong et al., 2020). Understanding the bias-variance trade off is vital, as it dictates the
model’s overall performance (Dong et al., 2020). Bias describes the difference between
the true and the predicted outcome. On the other hand, the variance indicates the devia-
tion from the true functional dependence, or in other words, how sensitive the model is
to the training set (Friedman et al., 2001). These two terms can also be viewed as under-
fitting (high-bias) and over-fitting (high-variance). The more complex the model is, the
more likely it will be prone to over-fitting, while having a simplistic model can result in
under-fitting, so a balance between the two is needed to ensure accuracy (Dong et al.,
2020; Friedman et al., 2001), as shown in Figure 2.7. In essence, ensemble learning tries

22

Chapter 2. Background 2.4. Ensemble Learning Algorithms

to find a balance by utilising and fusing multiple learners (Dong et al., 2020); however,
each algorithm has its strategic way of obtaining this balance.

Figure 2.7: Bias-Variance trade-off curve (Dong et al., 2020).

One of the most straightforward techniques to combine multiple classifications into
one, is majority voting. In majority voting, each classifier outputs their predicted class,
and the final predicted outcome is then taken based on the majority of all predicted
classes (Sagi and Rokach, 2018). An illustration of majority voting is shown in Figure 2.8,
where seven different classifiers outputted their predicted class. The final prediction for
this example is "1" as it got five out of seven votes. There are several other ensemble
techniques, and these methods can be categorised in one of the groups shown in Ta-
ble 2.1. In this table, the ’Fusion Method’ refers to how the prediction of multiple base
models are combined; for instance, the majority vote method can be viewed as an un-
weighted fusion method. The dependency refers to how the ensemble is built; (i) in an
independent framework, base models are created independently from other base induc-
ers (such as Random Forest (RF)) (ii) in a dependant framework, the next base model
is constructed based on the previous inducer (such as Gradient Boosting). Lastly, the
final column indicates how the ensemble handles the objective of creating diverse base
learners (Sagi and Rokach, 2018). Below a description of the commonly used ensembles
(Dong et al., 2020), bootstrap aggregation, gradient boosting and stacking can be found.

23

Chapter 2. Background 2.4. Ensemble Learning Algorithms

Figure 2.8: An example of majority vote ensemble, the final prediction in this example
if "1", as it got five out of seven votes (Sagi and Rokach, 2018).

Table 2.1: Different types of ensemble methods (Sagi and Rokach, 2018).

2.4.1 | Bootstrap Aggregation
Bagging, which is also known as Bootstrap Aggregation (Breiman, 1996), builds an en-
semble by randomly splitting the training set into random subsamples with replace-
ments (bootstrap samples) and trains homogenous weak base learners using these sub-
sets. The intuition behind bagging, is to reduce the variance of a single unstable learner
by aggregating the outputs into a single generalised/aggregated model (Dong et al.,
2020; Sagi and Rokach, 2018). The predictions from individual learners is then com-
bined using sign(∑N

i=1 hi(x)), where N is the number of base learners in the ensemble
and hi(x) is the predicted outcome of each individual learner. Given that the base learn-

24

Chapter 2. Background 2.4. Ensemble Learning Algorithms

ers are independently built, this ensemble can be executed using parallel computation
(Sagi and Rokach, 2018).

Although RF (Breiman, 2001) was mentioned as an ensemble method on its own
in Table 2.1, it can be considered as an extension of bootstrap aggregation (Sagi and
Rokach, 2018). This ensemble is a collection of unpruned decision trees (low bias with
high variance), where each tree is created independently. As the name suggests, RF uses
randomness to split the data set into bootstrap samples similarly to bagging; however,
the base decision tree learners are not only trained on these randomly selected subsets,
but a random subset of features are considered to split each node within the individ-
ual tree (Breiman, 2001; Sagi and Rokach, 2018). The intuition behind this ensemble is
to reduce error by minimising the variance (overfitting) of individual unstable decision
trees by combining their outcomes (Dong et al., 2020). Algorithm 1 shows the steps
required to create this ensemble in the form of pseudocode. Sagi and Rokach (2018)
stated that this model is one of the most popular ensembles in academia, and its popu-
larity can be attributed to; (i) simple but obtains effective performance (ii) can run in a
parallel fashion (iii) easy to tune when compared to other ensembles (such as gradient
boosting). They backed up their statement by analysing the number of published pa-
pers employing RF against other ensembles, for which the reported results are shown
in Figure 2.9. Random Forest (RF) also proved its usability in the context of combating
crypto-financial crime, by successfully detecting various illicit activities such as; illicit
transactions (Baek et al., 2019; Weber et al., 2019), Ponzi-schemes (Bartoletti et al., 2018),
and High-Yielding-Investment-Programs (Toyoda et al., 2017).

Algorithm 1 Pseudocode for the Random Forest Algorithm (Sagi and Rokach, 2018).

2.4.2 | Gradient Boosting
Contrary to the previous ensemble, gradient boosting is a technique that builds base
learners which are dependant on previously built learners (Sagi and Rokach, 2018).

25

Chapter 2. Background 2.4. Ensemble Learning Algorithms

Figure 2.9: The number of published papers per ensemble method, over time (Sagi and
Rokach, 2018).

Gradient boosting was introduced by Friedman (2001), and the main objective in this
method is to iteratively add homogeneous weak learners in order to reduce the overall
loss using a technique similar to gradient descent. Gradient descent reduces error by
finding parameters which minimise the cost of a differentiable loss function, whereas
in boosting, gradient descents add new learners in a sequential manner (Natekin and
Knoll, 2013), as defined in Algorithm 2.

Algorithm 2 Pseudocode for Friedman’s Gradient Boost Algorithm (Natekin and Knoll,
2013)

.

26

Chapter 2. Background 2.4. Ensemble Learning Algorithms

The choice of the loss function is arbitrary and should be chosen depending on the
problem at hand, as long as the selected function is differentiable (Natekin and Knoll,
2013). This ensemble is typically built by employing decision trees as base learners, and
it is worth noting that contrary to RF (builds deep trees), trees are created in a shallow
manner. The chosen number of trees is a crucial parameter in gradient boosting, as set-
ting a low number can lead to underfitting, while a high number can lead to overfitting
(Sagi and Rokach, 2018). Inspired by bootstrap aggregation (Breiman, 1996), Friedman
(2002) introduced the idea of training base learners on random subsamples of the origi-
nal training set, as a means of reducing the effects of overfitting (Sagi and Rokach, 2018).

More recently, multiple variants of gradient boosting have been developed as fur-
ther refined/optimised gradient boosting algorithms, in particular, eXtreme Gradient
Boosting (XGBoost) (Chen and Guestrin), Light Gradient Boosting Machine (LGBM) (Ke
et al., 2017) and CatBoost (Prokhorenkova et al., 2018). XGBoost (Chen and Guestrin)
offers a scalable tree-boosting implementation, and it offers a split finding mechanism
to handle sparsed data, addresses weighted data using prune/merge techniques and
efficiently iterates over possible splits to find the best split. Additionally, it supports
distributed frameworks such as Hadoop, and it creates more generalised ensembles by
employing regularisation. Light Gradient Boosting Machine (LGBM) (Ke et al., 2017),
which is an implementation developed by Microsoft, reduces the memory and compu-
tational cost by making use of histogram-based techniques, and it can also be executed
in a parallel fashion. CatBoost (Prokhorenkova et al., 2018) uses a weighted sampling
variant of stochastic gradient boosting (Friedman, 2002), called Minimal Variance Sam-
pling to find the best split, and this is considered as an improvement to GOSS which
was developed for LGBM. This variant of gradient boosting also works with categor-
ical variables without the need for preprocessing. XGBoost does not make use of any
weighted sampling; hence the splitting procedure is a bit slower in comparison to LGBM
and XGBoost. The application of these algorithms has been explored to detect illicit ac-
tivities on blockchain networks, for instance, Farrugia et al. (2020) employed XGBoost
to detect illicit Ethereum accounts, while Lin et al. (2019) made use of LGBM, to clas-
sify Bitcoin addresses to their respective category (for example, gambling and mixer
services).

2.4.3 | Stacking
Stacking (Wolpert, 1992), which is the most popular meta-learning technique, is the pro-
cess of fusing multiple base models by feeding their outputs as an input to another
model (referred to as meta-model). Unlike the previously mentioned ensembles, in

27

Chapter 2. Background 2.4. Ensemble Learning Algorithms

stacking it is common that the ensemble comprises of heterogeneous learners. This
type of learning is useful when base learners can learn different subspaces of the overall
problem (Wolpert, 1992).

The notion of stacking is that the meta-model can infer which base-learners (known
as level-0 models) are more effective and which are not, by feeding the predicted out-
comes (referred to as meta-dataset) outputted by the underlying base-learners as fea-
tures to the meta-model (known as level-1 models) (Sagi and Rokach, 2018; Wolfinger
and yi Tan, 2017). A training set is typically split into two; one used to fit the base
learners and the other to compose the meta-dataset. The meta-learner then makes the
final predicted outcome (Sagi and Rokach, 2018). It is worth noting that a stacked archi-
tecture can also be designed to work with an arbitrary number of levels, but the same
concepts still apply (Wolfinger and yi Tan, 2017). Given that the training set is divided, a
significant amount of data is needed in order to achieve effective results and employing
stacking can come at a computational cost, given the complexity of training multiple
models at different levels (Sagi and Rokach, 2018; Wolfinger and yi Tan, 2017). A visual
representation for the described process is shown in Figure 2.10, where a simple stacked
architecture is presented.

Figure 2.10: A simple example of a stacked architecture (Divina et al., 2018).

Stacking proved to be capable of handling different problems (Sagi and Rokach,
2018), for instance, forecasting the energy consumption to reduce both the economic
and environmental footprint (Divina et al., 2018), and in winning various competitions

28

Chapter 2. Background 2.5. Deep Learning

held on Kaggle (Wolfinger and yi Tan, 2017). It was also employed to classify entities on
the Bitcoin network to their respective service (for example exchanges, gambling, mixer,
and gambling) in order to aid with crypto-crime forensics (Zola et al., 2019).

2.5 | Deep Learning
The application of deep learning has been investigated in the context of this problem
and similar domains (Alsuwailem and Saudagar, 2020; Lei et al., 2020; Mubalaike and
Adali, 2018; Nilsen, 2019; Pareja et al., 2020; Weber et al., 2019). Deep Learning is a sub-
domain of machine learning, where neural networks are constructed in a deep manner,
meaning multiple layers of neurons are used to model the data (Johnson and Khosh-
goftaar, 2019). One of the simplest examples of a deep learning algorithm is a deep
Multi-Layer-Perceptron, where multiple hidden layers are employed to construct a con-
nected feedforward neural net (Johnson and Khoshgoftaar, 2019). A visual example
between a Multi-Layer-Perceptron built in a shallow manner versus one built deeply is
shown in Figure 2.11.

Figure 2.11: A visual representation of an MLP network built in a shallow manner (left)
versus one built deeply (right) (Johnson and Khoshgoftaar, 2019).

In traditional machine learning algorithms, the performance achieved is relative to
the representation of the data fed to the algorithms; hence the engineering of input-
s/features is a crucial step in this type of learning. In complex problems, this phase can
be time-consuming; however, in deep learning, this is not much of an issue as a deep
learning model can learn through Representation Learning (Johnson and Khoshgoftaar,
2019; LeCun et al., 2015). Given the deep/layered architecture of deep learning mod-
els, raw input can be transformed into new representations (that is, feature space), en-
abling the discovery of abstract knowledge at each layer. This process is accomplished
through multiple non-linear transformations at each layer, where the level of abstrac-

29

Chapter 2. Background 2.5. Deep Learning

tion increases with each transformation (LeCun et al., 2015). Even though this con-
cept reduces the need for engineering features, and improves the overall performance
in complex problems (for example, image recognition), sufficient data must be avail-
able in order to extract abstract representations effectively (Johnson and Khoshgoftaar,
2019). The notion of having further layers in a neural net to solve complex problems
through abstract representations, ignited the development of other architectures such
as Stacked Auto-Encoders and Recurrent Neural Networks (analysing time-series data)
(LeCun et al., 2015).

Deep Learning networks presented their effectiveness in various literature in this do-
main (or similar), some of which are; the use of Graph Convolutional Network (GCN)
to detect illicit activities on the Bitcoin network (Pareja et al., 2020; Weber et al., 2019),
Generative adversarial networks (GAN) to tackle class imbalance in credit scoring data
(Fiore et al., 2019), Stacked Auto-Encoders in conjunction with a Logistic Regression
layer (utilising semi-supervised learning) to detect financial fraud (Mubalaike and Adali,
2018), and Long-Short-Term-Memory network to detect Pump-and-Dump schemes on
crypto exchanges (Nilsen, 2019). Although these models are useful in complex domains,
they are not always a resolution for all machine learning problems, as multi-layered net-
works require a significant amount of data to be able to converge given the large num-
ber of parameters. An investigation/evaluation of whether these learners apply to the
target problem must be conducted before utilising the power of deep learning (LeCun
et al., 2015).

30

3

Literature Review

In this section, we will be discussing previous literature investigating various machine
learning approaches concerning money laundering detection and other related domains.
In the second half of this chapter, a discussion on previous literature carried out to tackle
common problems in machine learning independent of the domain, namely, hyperpa-
rameter optimisation, class imbalance and concept drift is given, as these issues can be con-
sidered as sub-problems in any machine learning solution. The motivation behind this
chapter is twofold; to provide a critical analysis of existing literature and to identify any
potential gaps.

3.1 | Illicit Activity Detection in Financial Systems
The utilisation of machine learning in financial systems covers a wide range of appli-
cations such as; money laundering detection (Alsuwailem and Saudagar, 2020; Jullum
et al., 2020; Liang et al., 2019), fraud detection (Bhattacharyya et al., 2011; Fiore et al.,
2019; Monamo et al., 2016) and credit assessment (Ferreira et al., 2018; Lei et al., 2020).

One of the most prominent type of models investigated in these applications are De-
cision Tree (DT) based models. In the context of money laundering, the application of
DT models date back to 1995, when Senator et al. (1995) briefly discussed the usefulness
of adding DT models to their detection system, however, they stated that the lack of
labelled data made it difficult to use these techniques, despite some test results show-
ing the potential of such models. Other research published (Harlev et al., 2018; Jullum
et al., 2020; Savage et al., 2017; Weber et al., 2019; Zhang and Trubey, 2019) in subse-
quent years, claim that tree-based classifiers have great potential in money laundering
detection.

31

Chapter 3. Literature Review 3.1. Illicit Activity Detection in Financial Systems

Savage et al. (2017) evaluated both SVM and RF in conjunction with network anal-
ysis and community detection, to classify whether transactional data provided by the
Australian Transaction Reports and Analysis Centre (AUSTRAC), could be classified as be-
ing part of money laundering rings. From their empirical analysis, they claimed that
RF outperformed SVM in terms of Area Under the ROC curve (AUC), Recall, Precision
and F1-Score, however, they remarked that their models could be impacted by other
factors which were left unhandled, such as concept drift. Zhang and Trubey (2019)
on the other hand, investigated a much broader range of models and also tackled the
data imbalance problem using various sampling techniques (over and under-sampling).
The dataset employed in their research was provided by a financial institution based in
the United States. In their investigation, they tested Bayes Logistic Regression (LR),
DT, RF, SVM, and ANN, in order to classify whether alerted money laundering cases
were filed as Suspicious Activity Reports (SARs). From their final results, they reported
that the best performing models were ANN, Bayes Logistic Regression and RF, ranked
from best to worst, when evaluated using the Receiver Operating Characteristic Curve
(ROC) and AUC. It was also noted that data-sampling techniques improved the overall
performance across all tested models. Jullum et al. (2020) took the approach to apply
eXtreme Gradient Boosting (XGBoost) as a means of detecting money laundering at a
transactional-level by utilising transactional data provided by a Norwegian Bank. This
model was specifically selected due to its efficiency, scalability (parallelisation), and its
ability to be trained using a GPU (reduces the time for training). They stated that un-
like financial fraud detection, where a given dataset typically comprises of instances
marked as fraud or legit, in money laundering, the labels are based on suspicious be-
haviour. This inconvenience is because when a money laundering case is reported to
authorities, the reporting institution is rarely ever given feedback as to whether the
person was actually charged with wrongdoing. From an empirical evaluation, they
proved that XGBoost can efficiently predict whether a transaction should be reported,
even outperforming the bank’s current system (rule-based with manual inspection). A
noteworthy statement from this study was that both non-reported alerts and legitimate
transactions which go through different stages of processing (as shown in Figure 3.1),
should be utilised in the training phase. If these are left out (which is quite common), it
can lead to sub-optimal performance (Jullum et al., 2020).

These ideas can also be employed to detect money laundering activities on Blockchain
networks, as the process of laundering money in cryptocurrency is archetypal to the
process used in traditional finance as discussed in Section 2.1, however, this environ-
ment has its dynamics such as the pseudonymous nature of the network (Adam and
Maitland, 2018; Bryans, 2014; Mabunda, 2018) and lack of ground truth (Monamo et al.,

32

Chapter 3. Literature Review 3.1. Illicit Activity Detection in Financial Systems

Figure 3.1: The common process flow employed in the industry used to report money
laundering (Jullum et al., 2020)

2016).

3.1.1 | Illicit Activity detection in Blockchain Networks
In order to circumvent the lack of unlabelled data which indicate fraudulent Bitcoin ac-
counts, Monamo et al. (2016) investigated the use of k-means and kd-trees to group atyp-
ical Bitcoin accounts based on graph information (i.e. in/out-degree, triangle count)
and basic transactional history (i.e. total value sent/received). The top 1% accounts
which deviated from local and global neighbourhoods based on the distance to the cen-
troids, were considered fraudulent. Additionally, the newly formed labelled dataset
was utilised for training by following classifiers; RF, Maximum-Likelihood LR and
Boosted LR, where RF performed the best in terms of Kappa, Recall and Precision. Toy-
oda et al. (2017) utilised data crawled from online sources (i.e. forums pointing out
addresses linked to scams) to detect addresses linked with "High Yielding Investment
Programs (HYIP)", a common scam operating on the Bitcoin network. Unlike the pre-
vious study (Monamo et al., 2016), their proposed approach focused on transactional
patterns (i.e. frequency of transactions) as attributes rather than graph information, to
train classifiers. The key idea behind their study was the way they extracted/processed
transactional data, where two techniques were proposed - (i) summarise transactional
information for each address (ii) summarise transactional information based on owner,
which can be deduced using a heuristic approach, where input addresses in a given
transaction can be attributed to the same entity/person. RF and XGBoost were then
evaluated on this dataset, and it was reported that RF outperformed the other classifier

33

Chapter 3. Literature Review 3.1. Illicit Activity Detection in Financial Systems

on both schemes (Toyoda et al., 2017).
Extending on these ideas (Toyoda et al., 2017) by employing multi-class classifica-

tion, Toyoda et al. (2018) showed how RF was able to classify Bitcoin accounts to the
respective service they operate in, e.g. gambling and mixer services, with an accuracy
score of up to 72%. The ability to adequately classify accounts to their respective ser-
vice, is essential to combat money laundering, as Fanusie and Robinson (2018) pointed
out that money laundering can come from different types of services, with the highest
exploited services being; mixer services, dark marketplaces and gambling sites. Barto-
letti et al. (2018) set out to detect Bitcoin accounts related to Ponzi Schemes using three
different classifiers, Bayes Network, Repeated Incremental Pruning to Produce Error
Reduction (RIPPER) and RF. Unlike the previous studies (Monamo et al., 2016; Toyoda
et al., 2017, 2018), data-sampling approaches and cost-sensitive learning was applied to
handle class imbalance. Similarly to Toyoda et al. (2017), the models were evaluated
on two different schemes (account and owner based), and from the empirical results,
RF proved to be superior. It was also noted that data-sampling approaches overall im-
proved performance across all classifiers, similar to the study conducted by Zhang and
Trubey (2019).

Harlev et al. (2018) took a similar approach as Toyoda et al. (2018), since they set
out to classify entities holding one or more Bitcoin accounts to their respective type
(multi-class), however, these types were more granular, featuring labels such as ran-
somware, merchant services and hosted wallet services. Additionally, a much broader
set of classifiers were evaluated, which included; K-Nearest Neighbours (KNN), RF,
Extra Trees, AdaBoost, DT, Bagging Classifier and Gradient Boosting. Synthetic Minor-
ity Over-Sampling (SMOTE) was also employed to handle class imbalance, and unlike
the previously discussed studies (Bartoletti et al., 2018; Monamo et al., 2016; Toyoda
et al., 2017, 2018), Random Search was utilised to tune the hyperparameters. From the
reported results, the best performing model was the Gradient Boosting classifier ob-
taining an F1-Score of 0.75 (Harlev et al., 2018). Contrary to the study conducted by
Monamo et al. (2016), Gradient Boosting outperformed RF in this research, however,
many factors come into play such as the quality of the data, and one being a binary
problem while the other being a multi-classification problem (Harlev et al., 2018). Liang
et al. (2019) also targeted a similar multi-classification problem, with four different cat-
egories being available, including, miner pool, gambling, general purpose and services
(i.e. financial services). The key idea in this research was that the evaluated classifiers
were trained on node embeddings extracted from a Bitcoin transaction-graph by utilis-
ing a DeepWalk (Perozzi et al., 2014) model. From their evaluation, they showed that
feeding node embeddings as features to supervised learning classifiers can be useful in

34

Chapter 3. Literature Review 3.1. Illicit Activity Detection in Financial Systems

Figure 3.2: Address to Transaction
Graph. Circles represent addresses
and blue squares represent transac-
tions. The direction of the arrow
indicate if an address was in the
input list (pointing to transaction)
or in the output list (pointing to an
address) (Zola et al., 2019).

Figure 3.3: Owner to Transaction
Graph. Circles represent addresses
and blue squares represent trans-
actions. Addresses within a box
represent that these accounts are
owned by the same entity/person.
The direction of the arrow indicate
if an address was in the input list
(pointing to transaction) or in the
output list (pointing to an address)
(Zola et al., 2019).

multi-class account type detection. Zola et al. (2019) also made use of graphs to identify
Bitcoin addresses to their respective type (i.e. mixer, exchange, gambling), however, two
variations of graphs were constructed, one based on addresses and the other based on
owners, which are better represented in Figures 3.2 and 3.3. This is a similar idea to the
previously mentioned studies (Bartoletti et al., 2018; Toyoda et al., 2017) but in the form
of graphs. The core idea behind this study is to extract features from motif graphs and
feed them to supervised classifiers, in particular, Gradient Boosting, AdaBoost and RF.
A visual representation of the extracted motif data for the owner-to-transaction graph is
shown in Figure 3.4. The best performing model in this study was the Gradient Boosting
classifier with motif data (Zola et al., 2019).

Gradient Boosting also showed to be useful in the study conducted by Sun Yin et al.
(2019), where they set out to de-anonymise Bitcoin accounts. The main objective was
to learn the various kinds of transactions in the Bitcoin ecosystem, as a means to aid
stakeholders in compliance and regulation (i.e. classify high-risk counterparties which
are at a risk of money laundering). "De-anonymising" is a term that refers to categoris-
ing Bitcoin accounts to their respective category. The available labels included, per-
sonal wallets, stolen bitcoins, ransomware, darknet marketplaces, exchanges, merchant

35

Chapter 3. Literature Review 3.1. Illicit Activity Detection in Financial Systems

Figure 3.4: Representation of the information/features extracted from the motif graph.
The ones marked in green represent features (Zola et al., 2019).

services, hosted wallet services, mining pools, scam, personal wallets, gambling and
other (i.e. donation accounts). The dataset was labelled through clustering, similar to
the previously mentioned studies (Bartoletti et al., 2018; Toyoda et al., 2017; Zhang and
Trubey, 2019), however, clustering was based on information gathered by intelligence
(i.e. court documents and data leaks), behavioural clustering and multi-input clustering
(input addresses are most likely linked to one entity). A visual representation of clus-
tered addresses is shown in Figure 3.5. An extensive selection of supervised classifiers
were evaluated including, KNN, Gradient Boosting, DT, Bagging, Extra Trees, RF and
AdaBoost. Hyperparameter optimisation (Random Search) and SMOTE were also em-
ployed. From the reported results, Gradient Boosting with default parameters proved
to be superior in this multi-classification problem, with an average score (over k-folds)
of 80.42% for accuracy and an F1-Score of 79.64%.

Figure 3.5: A simple example of clustered Bitcoin addresses (Sun Yin et al., 2019).

Tackling a similar problem, Lin et al. (2019) evaluated two other variants of Gradient

36

Chapter 3. Literature Review 3.1. Illicit Activity Detection in Financial Systems

Boosting, particularly, XGBoost and LGBM alongside with, LR, Perceptron, SVM, Ad-
aBoost, RF and a Neural Network. However, the labels were not as fine-grained as the
dataset utilised by Sun Yin et al. (2019), as it only contained seven different labels. Ex-
tending on the ideas set out in previously discussed studies (Toyoda et al., 2017, 2018),
they utilised transactional patterns as feature sets, however, they introduced the notion
of Transaction Moments as a means of capturing temporal information. In simple terms
these moments include, mean, variance, skewness and kurtosis of transaction history
related to specific accounts, i.e. four moments of distribution for the received and spent
transactions. The notion of classifying both individual and clustered addresses which
are extracted from the Bitcoin network, was also investigated. From the empirical evi-
dence, the LGBM was the most stable classifier in terms of Micro/Macro F1-Score (87/86
%). It is worth noting that from the feature importance values, they could deduce that
Transaction Moments contributed to the overall performance.

Contrary, to all the previously mentioned studies in Section 3.1.1 above, where the
primary focus was on the Bitcoin Network, Baek et al. (2019) investigated the idea of
capturing Ethereum accounts. The main goal underpinning this study is to provide in-
sight into how addresses could be labelled with the utilisation of k-means clustering,
which also proved to be useful in a study conducted by Monamo et al. (2016). Using
these techniques, they clustered data crawled from etherscan.io 1 corresponding to wal-
lets used by Binance exchange 2, into seven different clusters. From these clusters it was
pointed out that accounts from one of the clusters, contained suspicious transactions,
such as transacting anonymously to various accounts on other exchanges, in particular,
Bittrex 3. Additionally, they trained a RF model to classify accounts as suspicious or
not, using features based on statistical moments concerning transactions, similar to the
study conducted by Lin et al. (2019). The core ideas behind this study were (i) the use
of both unsupervised/supervised techniques (ii) engineering features using Expectation
Maximisation to be fed to a RF model, in order to label accounts (iii) provide insights on
how anomalous Ethereum accounts could be pointed out. Moreover, it was shown that
some wallets operating on exchanges could have been conducting suspicious activity,
in particular on the Binance exchange. Farrugia et al. (2020) also focused on the detec-
tion of Ethereum accounts, in particular, identifying whether an account is illicit or not,
based on transaction history. Gathering data from Etherscamdb 4 and a local Ethereum
client node 5, they formulated a dataset of 2179 illicit (flagged by the community) ac-

1 Etherscan: https://etherscan.io/
2 Binance Exchange: www.binance.com/
3 Bittrex Exchange: www.bittrex.com/
4 Cryptoscamdb (previously known as Etherscamdb): https://cryptoscamdb.org/
5 Geth Client: https://github.com/ethereum/go-ethereum

37

https://etherscan.io/
www.binance.com/
www.bittrex.com/
https://cryptoscamdb.org/
https://github.com/ethereum/go-ethereum

Chapter 3. Literature Review 3.1. Illicit Activity Detection in Financial Systems

counts and 2502 legitimate accounts. Unlike the study conducted by Baek et al. (2019),
an extensive investigation of various features (i.e. total value sent to smart contracts
and total ERC20 tokens sent/received) which can contribute to the overall performance
was conducted. With the use of hyperparameter optimisation (Grid Search) and an
XGBoost classifier, they successfully classified illicit activity on the Ethereum network
at an account-level, as shown in Table 3.1.

No.
of Folds

Optimal
Depth

Optimal No.
of Estimators

Accuracy F1-Score AUC
Execution
time (s)

3 4 300 0.960 0.957 0.993 62.03
4 4 200 0.960 0.957 0.993 91.13
5 3 250 0.962 0.959 0.994 105.40
10 4 150 0.963 0.960 0.994 230.60

Table 3.1: Results obtained by an XGBoost classifier in Farrugia et al. (2020) study. The
table shows the resultant Accuracy, F1-Score, AUC and execution time, corresponding
to the selected optimal hyperparameters.

Contrary to the studies discussed so far, in the context of detection on the Blockchain,
Lee et al. (2020) explored ways to detect whether individual transactions were legal or
illegal. Data was collected via online sources 6 7 and using the transaction’s hash, they
marked transactions associated with a well-known dark market place SilkRoad (as of
today this market has been shut down by law enforcement) 8 as illegal. In total they
utilised nine relatively simple features (i.e. the number of input/output addresses, the
value of input/output, size and amount) in order to train RF and ANN classifiers. In
order to alleviate the problem of class imbalance, various minority to majority ratios
were employed, similar to other research (Bhattacharyya et al., 2011; Khoshgoftaar et al.,
2007; Roy et al., 2015). Empirical evidence showed that RF was superior in this study,
with F1-scores ranging from 0.93 to 0.98, although, it was noted that in practice (live
monitoring of transactions) the scores obtained may be be lower, given that there were
indications of over-fitting (Lee et al., 2020).

Weber et al. (2019) on the other hand, made use of more sophisticated approaches
to detect illicit transactions on the Bitcoin network and made use of a more substantial
dataset. The feature set utilised in this study contained graph information in relation
to transactions such as (i) local features - number output/inputs, mean of in/out-going

6 WalletExplorer: https://www.walletexplorer.com/
7 Blockchain Explorer: https://www.blockchain.com/explorer
8 Anonymity is dead and other lessons from the Silk Road trial: https://www.engadget.com/2015-02-

08-silk-road-trial-lessons.html

38

https://www.walletexplorer.com/
https://www.blockchain.com/explorer
https://www.engadget.com/2015-02-08-silk-road-trial-lessons.html
https://www.engadget.com/2015-02-08-silk-road-trial-lessons.html

Chapter 3. Literature Review 3.1. Illicit Activity Detection in Financial Systems

transactions corresponding to inputs/outputs (ii) aggregated features - min/max and
standard deviation of correlation coefficients of neighbourhood transactions for trans-
action fees and input/outputs (Weber et al., 2019). The extraction of these attributes
was made possible, since transactions were represented as a graph, were vertices de-
noted transactions and edges denoted the flow of payment. Another level of complex-
ity in this study was that every instance had a temporal component, that is timesteps
associated with each transaction. The following models were evaluated, RF, GCN (and
multiple variants), LR and Multi-Layered Perceptron. The dataset used for evaluation
was split based on timestep, as a means of not breaking the sequence of time. A note-
worthy addition, is that they investigated the use of node embeddings extracted from a
GCN as input features, for all the tested models (except for GCN). From their findings,
they deduced that node embeddings did improve the performances for almost all the
evaluated models. Empirical evidence also showed that the RF classifier outperformed
the deep learning graph algorithm, GCN, which obtained an F1-Score of 0.796, as shown
in Table 3.2.

3.1.2 | Stream Learning on Financial Data
Somasundaram and Reddy (2019) investigated ways to detect fraudulent credit card
transactions while also tackling the negative ramifications of class imbalance and con-
cept drift. In order to do so, a new batch incremental adaptive learner coined ’Trans-
action Window Bagging’ was developed. In essence, this proposed ensemble employs
bootstrap aggregation and the utilisation of Cost-Sensitive learning on the underlying
base models, to handle class-imbalance (Somasundaram and Reddy, 2019). The incre-
mental learning process works by (i) sampling incoming transactions into bags (giv-
ing importance to the minority samples) (ii) training a new Cost-Sensitive Naive Bayes
learner and adding it to the ensemble (iii) older models are replaced with new ones
(iv) the prediction is made using a weighted vote (more recent having more weight).
One of the vital components in this model is that it can detect transactions in an online
environment, while also being able to run in parallel (scalable), however, it is only use-
ful in counteracting gradual drifts (Somasundaram and Reddy, 2019). Another recent
approach developed to detect fraudulent transactions is the ’FraudMemory’ detection
algorithm, proposed by Yang and Xu (2019). Unlike ’Transaction Window Bagging’ (So-
masundaram and Reddy, 2019), the key point of this model is to provide interpretability
while also improving performance. In order to do so, they fuse user-profiles informa-
tion and transaction logs into a transactional graph structure, while applying Gated Re-
current Unit and memory networks to handle concept drift. They argue that unlike other

39

Chapter 3. Literature Review 3.1. Illicit Activity Detection in Financial Systems

Table 3.2: Results reported in Weber et al. (2019)’s study, when investigating the notion
of detecting illicit Bitcoin transactions. The best performing model is highlighted in red.

solutions which are typically black-box models, their implementation provides the in-
terpretability which is commonly required among investigators of fraudulent activities
(Yang and Xu, 2019).

Weber et al. (2019) took a different approach when trying to handle shifting distribu-
tions when detecting illicit transactions on the Bitcoin network. They employed a Graph
Learning technique adapted to handle concept drift. Similar to the study conducted by
Yang and Xu (2019), they made use of graph information (transactions as nodes and pay-
ment flows as edges), however, their approach directly learns from a graph structure,
instead of converting graph information as embeddings. They employed EvolveGCN
(Pareja et al., 2020), which is a variant of Graph Convolutional Network (GCN) (Kipf and
Welling, 2017) modelled to handle temporal data. The EvolveGCN algorithm connects
multiple GCNs (created/fitted sequentially with every batch of data) by utilising a Re-
current Neural Network, in order to capture shifting dynamics, which is better illustrated

40

Chapter 3. Literature Review 3.1. Illicit Activity Detection in Financial Systems

in Figure 3.6. From their reported results, they showed that even though the model
performed relatively poorly when the environment was stable, once a drift occurred, it
was able to adapt more efficiently than other models (Weber et al., 2019). These results
are better displayed in Figure 3.7. The key idea in this study, was to learn the problem
directly from a graph structure using deep learning graph models, since Bitcoin trans-
actions are in a way modelled as graphs by nature (list of inputs/outputs), however,
RF proved to be superior from the overall results, and this could be attributed to the
fact that the model performed relatively well when the environment was stable (Weber
et al., 2019).

Figure 3.6: Architecture for the EvolveGCN algorithm. With each batch of data a new
Graph Convolutional Network (GCN) is trained, and connected via a Recurrent Neural
Network in order to capture changing dynamics (Pareja et al., 2020).

Figure 3.7: F1-Score over different timesteps in Weber et al. (2019) study. The pink line
refers to the EvolveGCN algorithm.

41

Chapter 3. Literature Review 3.2. Handling Machine Learning Problems

It is worth noting that previous literature investigating the notion of handling con-
cept drift using adaptive learners, in the context of detecting illicit activity on Blockchain
networks, is quite limited.

3.2 | Handling Machine Learning Problems
In this section, previous studies carried out to tackle common problems in machine
learning, is given. These problems can be viewed as sub-problems in most machine
learning systems, independent of the domain. The literature presented in the coming
subsections, focuses on the state-of-the-art machine learning techniques used to address
our objectives as defined in Chapter 1. A description linking each section with respect
to the objectives, is shown in Table 3.3.

Objective Relevant Section Purpose

Objective. 1 Section 3.2.1 Hyperparameter optimisation is a critical step in
finding the optimal parameters which minimise
the overall classification error for both the selected
state-of-the-art classifiers and the benchmark. This
will better aid us in highlighting the most effective
model in the context of detecting licit-or-illicit ac-
tivities on blockchain networks.

Objective 2 Section 3.2.2 Techniques used to handle class imbalance are im-
portant in order to improve the detection for the
selected classifiers by reducing the negative rami-
fications of a skewed class distribution.

Objective 3 Section 3.2.3 State-of-the-art techniques used to handle concept
drift more effectively are crucial in order to min-
imise any performance degradation over time, as
transaction data is known to be non-stationary.

Table 3.3: Sections focusing on the state-of-the-art machine learning techniques and
their corresponding objectives.

42

Chapter 3. Literature Review 3.2. Handling Machine Learning Problems

3.2.1 | Hyperparameter Optimisation
Hyperparameter Optimisation also referred to as Hyperparameter Tuning, is the process of
optimising hyperparameters for machine learning models during the training phase, by
searching for different hyperparameters which yield the best performance when evalu-
ated on a validation set. Model hyperparameters are specified before the training phase
and do not change during the learning phase, such as the number of trees in RF or the
learning rate for the Gradient Descent algorithm. These parameters can either be con-
tinuous, integers or categorical values and finding an optimal set of hyperparameters
can influence performance. The problem of finding the optimal hyperparameters x∗ in
the domain χ that obtain the highest evaluation score, when assessed on a validation
set x, can be formally defined as follows (Bergstra and Bengio, 2012; Hutter et al., 2015).

x∗ = argmin
x∈χ

f (x)

The definition of the highest evaluation score can be the minimum or the maximum
of the objective function f (x), which may correspond to an Error Rate or Accuracy,
respectively. The vast majority of hyperparameter optimisation methods can be sub-
grouped as Manual Search, Grid Search, Random Search, Evolutionary Optimisation
and Bayesian Model-Based optimisation (Bergstra and Bengio, 2012; Hutter et al., 2015).

Manual Search is the most naive hyperparameter optimisation method as it works
by selecting hyperparameters based on the user’s guess, knowledge or intuition, and the
larger the search space to search for optimal hyperparameters, the more time-consuming
this becomes. Unlike Manual Search, Grid Search works by setting up a grid of hy-
perparameter values and exhaustively evaluates each combination. The subset of the
hyperparameter search space must be manually specified, and due to this reason, this
approach requires setting boundaries or discretising continuous values. In some cases,
Manual Search is applied in conjunction with Grid Search, to fine-grain the search into
the hyperparameter space after honing into an optimal region (Hinton, 2012; Larochelle
et al., 2007). This method is relatively straightforward, easy to implement, efficient in
low dimensional spaces, and requires little effort to parallelise hyperparameter tuning
(Bergstra and Bengio, 2012). However, it is known to suffer from the curse of dimensional-
ity (Wilcox, 1961) as the number of combinations grows exponentially with the number
of hyperparameters specified (Bergstra and Bengio, 2012).

Bergstra and Bengio (2012) proposed an extension to Grid Search, which they coined
Random Search, and the primary intention of their study was to improve efficiency in
high-dimensional spaces while preserving the practical advantages of Grid Search. The
proposed approach works in the same manner as Grid Search. However, instead of ex-

43

Chapter 3. Literature Review 3.2. Handling Machine Learning Problems

haustively enumerating over each combination found in the defined space, it randomly
evaluates combinations from the hyperparameter space until reaching the maximum
number of iterations set by the user, visually represented in Figure 3.8. They empirically
showed that this approach obtained relatively the same performance as Grid Search
when evaluated on a 32-dimensional configuration for a deep belief network, with the
advantage of explicitly controlling the number of combinations attempted.

Figure 3.8: (Bergstra and Bengio, 2012).

Another type of optimisation techniques are evolutionary algorithms, and the basic
concept is to start with an initial population, which is usually selected at random and
then iteratively building more robust populations based on previous generations.This
procedure is inspired by the notion of evolution, (natural selection) hence the name
"Evolutionary" (Bergstra et al., 2011; Chen et al., 2015). One of the most common evo-
lutionary algorithms employed to find optimal hyperparameters is Genetic Algorithm
(Zames et al., 1981) (Bratton and Kennedy, 2007).

When searching for optimal hyperparameters using Genetic Algorithm, a potential
set of parameters is represented as a chromosome. Chromosomes can be specified as
binary vectors, string representations or numeric vectors. Once these chromosomes are
defined, an iterative process starts, where an initial population of chromosomes under-
goes the process of "evolution" to create new generations, with the aim being that each
new generation provides better sets of parameters (Schmitt, 2001). This algorithm can
be computationally heavy as the "fitness" (evaluating a set of specific parameters) for
each instance in the population must be computed. Another issue is that this algorithm

44

Chapter 3. Literature Review 3.2. Handling Machine Learning Problems

can converge to a local minimum; however, the use of a mutation factor which injects an
element of randomness when a new chromosome is created, can be employed to avoid
this. If this mutation factor is set to high, the algorithm will not converge (Schmitt, 2001).
Unlike the previously discussed optimisation techniques (Grid and Random Search),
Genetic Algorithm employs a heuristic mechanism to find optimal parameters, which
in turn can be more efficient in exploring the search space; however, it was pointed out
by Chen et al. (2015), that this method suffers from the curse of dimensionality (Chen et al.,
2015; Xia et al., 2017).

Another approach is Tree-structured Parzen Estimator (TPE), which falls under the
structure of Sequential Model-based Global Optimisation (SMBO), which are approaches
that sequentially build models in order to choose a new set of potential hyperparameters
based on subsequently drawn observations (Bergstra et al., 2011). Unlike the optimisa-
tion methods discussed (Random, Grid, Manual Search), this model and other Bayesian
approaches use past information to construct a probabilistic model which maps the hy-
perparameters to a probability on the objective function, P(score|hyperparameters) (Xia
et al., 2017). This probabilistic model is referred to as "surrogate", and in TPE a model
is constructed by employing the Bayes rule. More specifically this approach models
P(x|y) and p(y) instead of p(y|x) (Gaussian Process Approach), with the core idea be-
ing to transform the hyperparameters, replacing the distributions of the prior configu-
ration, with non-parametric densities. Xia et al. (2017) showed that this hyperparameter
optimisation technique outperformed Grid Search, Manual Search and Random Search
when used in conjunction with gradient boosting.

3.2.2 | Handling Class Imbalance
With the increasing demand for applying machine learning to real-world classification
problems, such as detecting financial fraud or anomalies, handling a skewed class distri-
bution is a very critical step to take, as it can result in biased predictions (Ali et al., 2015).
This classification problem happens when a labelled dataset does not have an equal rep-
resentation of classes. Underrepresented instances commonly appear in circumstances
where the target label is a rare event, or when it is hard to obtain specific samples. If this
issue is left unhandled, classifiers may be susceptible to interpret minority instances as
noise, or be biased towards the majority class (Datta and Arputharaj, 2018), as illustrated
below in Figure 3.9. However, applying techniques to handle skewed class distribution
can significantly improve the performance for both deep learning (Johnson and Khosh-
goftaar, 2019) and traditional machine learning models (Leevy et al., 2018; Rout et al.,
2018). The techniques for handling data imbalance are; Data-Level and Algorithm-Level

45

Chapter 3. Literature Review 3.2. Handling Machine Learning Problems

techniques (Ali et al., 2015).

Figure 3.9: Example of class imbalance, the dotted circle(s) represents the decision
boundary, the green ’X’ represents the majority class instances, while the blue ’O’ repre-
sents the minority class instances - (a) classes overlapping each other (b) minor disjoint
within the decision boundary (Ali et al., 2015)

.

3.2.2.1 | Data-Level Techniques

Data-Level techniques make use of data manipulation, as a means of reducing the reper-
cussions of an unequal class distribution. During the training phase, transformed data
is fed into machine learning models to build a solution that is less influenced by class
imbalance (Tyagi and Mittal, 2020).

Data Sampling and Feature Selection are subcategories of Data-Level techniques
(Leevy et al., 2018). The latter approach involves selecting the essential features, ac-
cording to the target variable, while also eliminating any irrelevant attributes which
could degrade performance. Given this method’s characteristic of optimising an evalu-
ation metric through Feature Selection, it has the versatility of enhancing performance
on both balanced (Chen et al., 2019; Mafarja et al., 2019) and imbalanced (Maldonado
and López, 2018; Pes, 2019; Zhang et al., 2017) datasets when assessed against a proper
metric. In a study conducted by Zhang et al. (2017), they employed this procedure to
maximise the F1-Score as a means of addressing the problem of imbalanced datasets.
Data Sampling methods, on the other hand, try to balance out the skewed class distri-
bution by oversampling the minority instances (Bunkhumpornpat et al., 2009; Chawla

46

Chapter 3. Literature Review 3.2. Handling Machine Learning Problems

et al., 2002; Han et al., 2005) or undersampling the majority instances (Laurikkala, 2001;
Tomek, 1976; Wilson, 1972).

Two of the most basic data sampling techniques are Random Over-Sampling (ROS)
and Random Under-Sampling (RUS), both of which are non-heuristic approaches which
randomly sample instances to balance out the data. ROS randomly creates copies of the
minority class to oversample the training set, but this can lead to over-fitting since it du-
plicates instances of the minority class. On the other hand, RUS randomly removes in-
stances of the majority class until it balances out the class distribution. However, this can
lead to losing information which could be invaluable to the trained models (Mohammed
et al., 2020). Previous research suggests (Bhattacharyya et al., 2011; Khoshgoftaar et al.,
2007; Roy et al., 2015) that instead of randomly removing or adding instances until the
target distribution is equal (1:1 ratio), different minority to majority ratios require fur-
ther investigation and although these techniques are relatively simple, their application
should not be disregarded, in place of more sophisticated methods (Rodriguez et al.,
2014).

Bartoletti et al. (2018) empirically showed that applying RUS was effective in han-
dling class imbalance, as it was able to improve Recall when classifying Ponzi schemes
on the Bitcoin network. In their study, different minority to majority ratios were inves-
tigated, including; 1:200, 1:40, 1:20, 1:10 and 1:5. These ratios, were then tested on the
following classifiers; RF, Bayes Network and RIPPER and experimental evaluation de-
termined that the 1:5 ratio obtained the highest True Positive Rate. Zhang and Trubey
(2019), applied a similar approach when tackling the problem of detecting money laun-
dering at a transactional level. However, they tested different sampling ratios on both
ROS and RUS, on a broader selection of classifiers than Bartoletti et al. (2018), with the
sampling ratios being from 1:100 up to 40:100 and incremented by 1%. The utilisation of
AUC together with Regression Analysis, suggests that both ROS and RUS had positive
effects on the models. A recent study conducted by Mohammed et al. (2020), tested both
of these Data Sampling methods, on the "Santander Customer Transaction Prediction"
9 imbalanced dataset. From their evaluation, they concluded that ROS was superior to
RUS for almost all the classifiers tested. Although ROS obtained higher results when
evaluated using various metrics such as Precision, Recall and F1-Score, unlike previ-
ous studies (Bartoletti et al., 2018; Roy et al., 2015; Zhang and Trubey, 2019), different
sampling ratios were not investigated.

Batista et al. (2005), states that utilising heuristics reduces the shortcomings asso-
ciated with the use of non-heuristic Data Sampling methods. A heuristic approach to

9 https://www.kaggle.com/c/santander-customer-transaction-prediction

47

https://www.kaggle.com/c/santander-customer-transaction-prediction

Chapter 3. Literature Review 3.2. Handling Machine Learning Problems

oversample the minority class is Synthetic Minority Over-Sampling (SMOTE), pseu-
docode for which is shown in Algorithm 3. This technique synthesises instances by first
randomly selecting a minority instance, and then randomly selecting one of its k nearest
neighbours. A new synthetic minority instance arises after computing the Euclidean
distance between the two and multiplying the resulting vector by a random value be-
tween 0 and 1 (Chawla et al., 2002). Despite this technique’s wide use in existing lit-
erature (Harlev et al., 2018; Sayed et al., 2019; Yong Sun and Feng Liu, 2016), a known
limitation is that it can create noise when the classes overlap, as it does not consider the
majority class (Bunkhumpornpat et al., 2009) when generating synthetic instances.

Algorithm 3 Pseudocode for SMOTE (Chawla et al., 2002)
Input:

Dminority, Minority Instances
Npercentage, Amount of SMOTE
k, k-nearest neighbours

Output:
Dsmoted, Synthetic Instances

1: function SMOTE(Dminority, Npercentage, k) . k set to 5 in our implementation
2: Dsmoted ← []
3: for i← 1 to nrow(Dminority) do
4: nn← kNN(Di, Dminority, k)
5: Ni ← bNpercent/100c
6: while Ni 6= 0 do
7: neighbour ← selectRandom(nn) . With Uniform Probability
8: gap← rangeRandom(0, 1)
9: di f f ← neighbour− Di

10: synth← Di + gap ∗ di f f
11: Dsmoted ← append(Dsmoted, synth)
12: Ni ← Ni − 1
13: end while
14: end for
15: return← Dsmoted
16: end function

Therefore, motivated by this drawback, multiple extensions of SMOTE have been
developed throughout the years, such as Borderline-SMOTE (Han et al., 2005), which
only considers minority samples near the borderline, when generating synthetic minor-
ity samples thus reducing overlapping classes (as shown in Figure 3.10). Alternatively,
Safe-Level-SMOTE (Bunkhumpornpat et al., 2009), assigns safe levels to each minority
instance by making use of its nearest minority neighbours. The intention is to synthesis
more minority instances around larger safe levels. Another extension is Adaptive Syn-
thetic Sampling (ADASYN), which makes use of a weighted distribution over instances
belonging to the minority samples, as a means of assessing and addressing the learning

48

Chapter 3. Literature Review 3.2. Handling Machine Learning Problems

difficulty. The intention is to shift the decision boundary towards the harder to learn
instances, by creating more of them when compared to easier to learn instances, which
in turn reduces the bias injected by the skewed class distribution (Haibo He et al., 2008).

Figure 3.10: (a) Shows the original dataset prior to oversampling (b) Shows minority
instances which are around the borderline, displayed as solid squares (c) Shows the
synthetic minority observations, displayed as hollow squares (Han et al., 2005)

An undersampling heuristic approach used to handle imbalanced datasets, is the
Condensed Nearest Neighbors (CNN) rule (Hart, 1968), which was developed to de-
crease space complexity for the KNN algorithm (Cover and Hart, 1967) but also showed
to be effective in handling data imbalance. The idea behind this rule is to incremen-
tally add majority instances which are close to the decision boundary, which works as
follows; construct a subset containing all of the minority instances, if 1-Nearest Neigh-
bour correctly classifies the majority instance, it becomes part of the initial subset, oth-
erwise it is discarded. A criticism of the CNN rule is that it selects samples at random,
which could result in retaining internal and ambiguous instances instead of boundary
instances (Tomek, 1976). Another heuristic-based undersampling approach is the Near
Miss (NM) undersampling. Mani and Zhang (2003), proposed different methods for
selecting majority instances in this approach, such as; selection based on the minimum
average distance to the three closest minority instances, and selecting instances with the
minimum distance to each minority instance. The objective of these methods is to keep
instances that are close to the decision boundary.

Both the NM and the CNN rule are known to be "select to keep" approaches, as they
try to find majority instances to be kept in the dataset. In contrast, a "select to delete"
approach, picks instances to delete from the majority class, such as Tomek Links (TL)
(Tomek, 1976) which is an extension of the CNN rule. Tomek (1976), defined a link as a
pair of instances that are Nearest Neighbours and belong to opposite classes, as can be

49

Chapter 3. Literature Review 3.2. Handling Machine Learning Problems

seen in Figure 3.11. These links are either boundary or noisy instances which often re-
sult in misclassification, and so, by removing the majority instances found within these
links, the dataset would be less ambiguous, and the downfalls of the CNN rule im-
proved. An alternative approach to removing ambiguous and noisy data is the Edited
Nearest Neighbors (ENN) rule (Wilson, 1972). This rule computes the three Nearest
Neighbours of each instance denoted as a. The rule removes a, if it forms part of the
majority class, and its three Nearest Neighbours misclassify this instance. However, the
rule will remove the majority instances among a’s neighbourhood, if its three Nearest
Neighbours misclassifies it and a forms part of the minority class. The final sampled
dataset will not be equally balanced (1:1 ratio), since the concept behind both ENN and
TL is to remove noisy and ambiguous instances.

Figure 3.11: The diagram on the left shows pairs of instances which are nearest neigh-
bours and belong to opposite classes. These are considered to be Tomek Links (high-
lighted in green). The one on the right shows the transformed dataset when these links
are removed, resulting into a less ambiguous dataset (Fawcett, 2016).

There are also techniques which combine both the "select to keep" and "select to
delete" approaches such as; One-Sided Selection (OSS) (Kubat and Matwin, 1997) and
NCL (Laurikkala, 2001). The former combines TL to remove noisy and borderline ma-
jority observations, followed by CNN to remove redundant majority instances that are
far from the decision border. On the other hand, NCL combines CNN to remove re-
dundant observations and ENN to remove ambiguous or noisy instances. Laurikkala
(2001), stated that the quality of the results is not always dependant on the size of the
classes but rather, on the quality (less ambiguous) of the observations. Due to this, NCL
primarily focuses on "cleaning" the majority samples as opposed to OSS.

50

Chapter 3. Literature Review 3.2. Handling Machine Learning Problems

Even though these undersampling approaches make use of heuristics to remove ma-
jority instances in a more informed way when compared to RUS, Gu et al. (2007) pointed
out that the main drawback for these undersampling techniques is that the effectiveness
of their performance lies on the distance function defined. Moreover, it is not always a
trivial task to find the most effective distance function for a particular domain (Aggar-
wal, 2003).

A study conducted by Tyagi and Mittal (2020), evaluated several oversampling and
undersampling techniques, on different classifiers using various imbalanced real-world
datasets. Through experimentation, they concluded that ADASYN and NCL were the
best performing oversampling and undersampling approaches, respectively. Further-
more, NCL obtained better overall results when evaluated using measures such as bal-
anced Accuracy, Recall and Precision. Contrary to the traditional Data Sampling ap-
proaches evaluated by Tyagi and Mittal (2020), in recent years the use of Deep Learning
models such as Generative Adversarial Networks (GAN) are also being explored to
oversample imbalanced financial data (Fiore et al., 2019; Lei et al., 2020).

Previous literature also investigated the notion of combining oversampling and un-
dersampling techniques. Yong Sun and Feng Liu (2016) combined SMOTE and NCL on
an imbalanced network intrusion detection dataset, to overcome the impact of bound-
ary/noisy data when oversampling with SMOTE. In their experiments, they made use
of different classifiers to test their proposed approach, and from their results, SMOTE-
NCL obtained higher performance, particularly improving AUC, when compared to
SMOTE.

Another approach which utilised both NCL and SMOTE was proposed by Junsom-
boon and Phienthrakul (2017), as a means of reducing the effects of imbalance in medi-
cal diagnosis data. In contrast to the study conducted by Yong Sun and Feng Liu (2016),
rather than removing the outliers in the majority observations after SMOTE was ap-
plied, they proposed the removal of these instances before oversampling. The primary
focus of this study was to improve the Recall measure, and from the results obtained,
they concluded that utilising NCL-SMOTE can obtain an overall higher recall score
when compared to SMOTE.

Ferreira et al. (2018), investigated a much broader range of Data Sampling tech-
niques when evaluating imbalanced financial datasets, such as; RUS, NM, TL and Clus-
ter Centroid as undersampling approaches, and SMOTE and ADASYN for oversam-
pling approaches. SMOTE, in conjunction with TL, was also evaluated, which is a com-
bination of the two. Overall, the performance of these sampling approaches were fairly
similar when evaluated on various classifiers, when measured using different metrics
such as AUC and Specificity. However, from the results, it is shown that different clas-

51

Chapter 3. Literature Review 3.2. Handling Machine Learning Problems

sifiers respond differently for each sampling technique and the combination of LR and
ADASYN, produced the best combination. They also argued that given the intrinsic
imbalance of financial data, oversampling could contribute too little or not at all to per-
formance. They stated that the minority samples usually tend to be represented in a
dense region in a large feature space, and so, synthetic data arises in this region, result-
ing in no new patterns for the classifier to discover. Moreover, even though the per-
formance in detecting the minority class increased, the results in detecting the majority
class degraded. Other researchers also noted this trade-off between the performance of
the minority and majority class, when applying Data-Level techniques to mitigate the
impact of class imbalance (Bartoletti et al., 2018; Pan et al., 2020).

3.2.2.2 | Algorithm-Level Techniques

In contrast to the previous techniques, the algorithm oriented approach handles the data
imbalance issue by directly learning the imbalanced distribution, rather than sampling
the dataset. Cost-sensitive learning and hybrid/ensemble methods are two sub-groups
of Algorithm-based approaches (Ali et al., 2015).

The concept behind Cost-Sensitive Learning techniques is defined as follows; define
a Cost Matrix C, where C(i, j) denotes the cost of misclassifying a predicted class i, from
its actual class j, as shown in Figure 3.12. By imposing a higher cost when misclassify-
ing minority instances, the emphasis shifts towards them, and the final objective is then
to minimise this cost which inherently increases the performance towards the minor-
ity (Ling and Sheng, 2010). Bartoletti et al. (2018) noted that employing Cost-Sensitive
Learning with a RF model was most effective in balancing out Recall and Specificity in
comparison to RUS and other models. However, other researchers argue that this tech-
nique has its own set of limitations; the cost of misclassification is hard to capture (Galar
et al., 2012; Weiss et al., 2007), there may be a need for domain experts to capture this
cost (Ling and Sheng, 2010) and potential overfitting (Weiss, 2004). The technique may
also obtain the same performance as oversampling, though it requires an overhead to
find an optimal cost value (López et al., 2012).

Figure 3.12: An example of a cost matrix for a binary classification problem (Ling and
Sheng, 2010).

52

Chapter 3. Literature Review 3.2. Handling Machine Learning Problems

Another option for Algorithm-Level techniques is hybrid/ensemble methods. En-
semble learning refers to training several classifiers during the training phase to produce
a final classification based on their aggregated evaluation. Hybrid/Ensemble refers to a
combination of the previously mentioned techniques and ensemble learning. Chen et al.
(2004) proposed two variants of RF; Weighted-RF which utilises Cost-Sensitive Learn-
ing by placing a more expensive cost when misclassifying the minority instances, and
Balanced-RF, which is a combination of RF and undersampling. A recent study con-
ducted by Lahmiri et al. (2020), empirically showed the effectiveness of hybrid/ensem-
ble methods to predict financial risk, in particular; RUSBoost (Seiffert et al., 2010) which
is a combination of RUS and AdaBoost (Freund and Schapire, 1997a). RUSBoost out-
performed previous literature, making use of the same datasets in terms of Accuracy.
However, it is worth noting that Accuracy is not an effective measure to capture the per-
formance on a skewed class distribution (Ali et al., 2015). The independency of the base
classifier in hybrid/ensemble techniques produces a more adaptable approach than
Cost-Sensitive Learning. However, to ensure performance when constructing ensem-
bles, one must innovate diverse classifiers, while also, conserving their stability within
the training data (Ali et al., 2015). Some researchers argue that the concept of diversity
in ensembles for classification problems, is still obscure (Wang and Yao, 2009). Galar
et al. (2012) pointed out that understanding error diversity is a challenging task, and the
complexity issue grows higher when adding more classifiers.

To alleviate the drawbacks of Data-Sampling, Feature Selection, Cost-Sensitive Learn-
ing and tuning traditional classifiers, researchers also suggested the hybridisation of
utilising one or more of these techniques (Ali et al., 2015; Leevy et al., 2018). From the
reviewed literature it is evident that handling data imbalance can improve the perfor-
mance of machine learning models for both financial (Ferreira et al., 2018; Fiore et al.,
2019; Mohammed et al., 2020; Tyagi and Mittal, 2020; Zhang and Trubey, 2019) and
cryptocurrency (Bartoletti et al., 2018; Harlev et al., 2018; Liang et al., 2019) imbalanced
datasets. However, as noted by Leevy et al. (2018), various techniques should be em-
ployed when dealing with class imbalance in a given domain, as there is no general best
approach.

Ultimately, when class imbalance is present in a given dataset, it is incredibly crucial
for the evaluation phase to make use of performance metrics which capture its skewed
class distribution. These measures may include the confusion matrix, and its derivations
such as; Recall, Precision and F1-Score (Ali et al., 2015).

53

Chapter 3. Literature Review 3.2. Handling Machine Learning Problems

3.2.3 | Handling Non-Stationary Data Streams
Class imbalance is not the only intrinsic property of financial data that deteriorates per-
formance, as most of the time, this data can also suffer from concept drift (Somasun-
daram and Reddy, 2019). As described in Section 2.3.6, concept drift refers to the notion
of a shift in the distribution from which a particular model is trained on. This statement
is more of an issue when a model is constructed statically, meaning that it was trained
in a traditional batch learning setting. Without any interference, a model trained in a
batch environment will have a hard time predicting the outcome when concept drift
occurs, since it was fitted on a different concept/problem (Montiel et al., 2020). As most
financial data is in some way or another a temporal component, that is transactions are
timestamped on the blockchain (Weber et al., 2019; Zola et al., 2019), it may be suscep-
tible to concept drift and one way to handle this issue is to build adaptive learners in a
stream environment (data is streamed over time) (Montiel et al., 2020).

3.2.3.1 | Adaptive Learners

One of the most common technique employed to counteract concept drift is the use of
ensemble learning (Sagi and Rokach, 2018). An early adaptation of ensemble learning
utilised to handle streamed non-stationary data, was proposed by Street and Kim (2001).
A variation of bootstrap aggregating (Breiman, 1996), the Streaming Ensemble Algorithm,
comprises of a fixed number of base models, and it can incrementally learn from batches
of data. This algorithm is known to be a passive-approach learner, as it assumes that drift
is always present, so it continually updates the model as fresh incoming data is pushed
through the stream (Elwell and Polikar, 2011). Another variant of bootstrap aggregation
adapted to handle evolving data-streams is Online Bagging (Oza, 2005). Akin to the
method proposed by Street and Kim (2001), it too is a passive learner that creates M base
models fitted on N batches of data, and predicts unseen samples using an unweighted
voting of the underlying M base learners, however, instances picked for training are
selected with replacement. Since the data is streamed and N → ∞, they proposed to
simulate the replacement strategy by fitting the underlying base learner using K copies
of the original batch drawn from a Poisson(1) distribution, as shown in Algorithm 4.

An extension of Online Bagging (Oza, 2005), was proposed by Bifet et al. (2010),
coined as Leveraging Bagging. The notion behind their proposed solution was to apply an
element of randomness to diversify and improve the overall performance (accuracy) of
the underlying ensemble. Inspired by the use of randomisation in Random Forest (RF)
(Breiman, 2001), they proposed to make use of randomisation to attribute weights to the
samples in the input stream. Additionally, randomisation at the output was also added

54

Chapter 3. Literature Review 3.2. Handling Machine Learning Problems

Algorithm 4 Pseudocode for Online Bagging Algorithm (Oza, 2005).

by utilising output codes (boosts multi-classification) (Schapire, 1997) and they state,
that this will reduce the correlation between base-learners in turn, promoting diversity.
This model uses Adaptive Windowing (ADWIN) algorithm (Bifet and Gavalda, 2007)
in order to detect drifts, and once a change is detected, a new model replaces the worst
base-model, as shown in Algorithm 5 (Lines 7-8). From their empirical evaluation, they
showed that these proposed improvements increase the overall accuracy when com-
pared against Online Bagging (Bifet et al., 2010), however, this increase in performance
comes at a cost, as this model is more expensive in terms of resources (Bifet et al., 2010;
Read et al., 2012).

Algorithm 5 Pseudocode for Online Leveraging Bagging Algorithm (Bifet et al., 2010).

Similarly to the subsequent algorithms (Bifet et al., 2010; Oza, 2005; Street and Kim,
2001), Accuracy Weighted Ensemble (Wang et al., 2003) produces new base learners for
each batch or time-step. One key difference in this algorithm is that it employs Mean
Squared Error to attribute weights to the underlying base models. This procedure is
better displayed in the following equations.

MSEi =
1
|Sn|

= ∑
(x,c)∈Sn

(1− f i
c(x))2

MSEr = ∑
c

p(c)(1− p(c))2

55

Chapter 3. Literature Review 3.2. Handling Machine Learning Problems

MSEi denotes the error for a specific base-learner, while the MSIr is the error of
a random model, where p(c) is the probability of selecting a class c at random. Any
classifiers with an error MSEi ≥ MSEr are disregarded. The weight wi for a specific
classifier ci is computed by subtracting the two, denoted as wi = MSEr −MSEi (Wang
et al., 2003). It is stated that this algorithm is efficient at handling reoccurring drifts, as
previously added base-learners could become important again, which can be indicated
by the weighted procedure discussed. The final predicted outcome in this approach is
taken based on k best base-learners, weighted on accuracy (Wang et al., 2003).

Another ensemble to handle shifting distributions is the Ensemble of Restricted Hoeffd-
ing Trees (Bifet et al., 2012). This adaptive learner comprises of Hoeffding Trees (Domin-
gos and Hulten, 2000) as base learners, that are trained on small random subsets of
features. The predicted outcomes (probabilities) of each base tree is fused by employing
stacking (Wolpert, 1992) and using a simple perceptron as a meta-learner. ADWIN is
used to monitor the performance of each tree, and when there is a significant degrada-
tion in performance in one of the trees, that particular tree would be reset. Additionally,
the coefficients in the meta-learner (perceptron) associated with that particular tree are
reset to zero. Unlike the previously mentioned studies (Bifet et al., 2010; Oza, 2005; Street
and Kim, 2001), this model combines the output of the underlying ensemble through
another model (meta-learner) rather than using some form of voting. They noted that
their proposed adaptive stacked ensemble improved performance of adaptive bagged
ensembles (Bifet et al., 2012).

A more advanced concept was proposed by Losing et al. (2016), coined the Self Ad-
justing Memory algorithm, which employs the idea of short and long term memory.
Their study aimed to develop an adaptive learner that could handle different patterns
of concept drift (described in Section 2.3.6) using memory-models and building an en-
semble of learners based on previous and current concepts. They argue that models
built only for specific patterns of concept drift can fail or perform sub-optimally as they
disregard previous information. This is further amplified in the case of recurring drift.
The method utilises two types of memory; the long term which contains information
on previous concepts, while the short-term contains knowledge on the current one, as
illustrated in Figure 3.13. Both learners, one modelled on short-term memory and the
other on long term memory, are considered when predicting the final outcome based on
previous performances (Losing et al., 2016).

Adaptive Random Forest (ARF), is an extension of Random Forest (RF) (Breiman, 2001)
developed for non-stationary data streams (Gomes et al., 2017). Similar to the Ensem-
ble of Restricted Hoeffding Trees (Bifet et al., 2012), the base-models in this ensemble are
Hoeffding Tree instances (Domingos and Hulten, 2000). The main inspiration behind the

56

Chapter 3. Literature Review 3.2. Handling Machine Learning Problems

Figure 3.13: STM indicate short-term memory (current concept) and LTM indicate long-
term memory (previous concepts) (Losing et al., 2016).

development of an adaptive variant of RF, was that this model requires very little in-
tervention in terms of preparing input data and optimising the hyperparameters while
also obtaining high performances (Gomes et al., 2017). Similar to the study conducted
by Bifet et al. (2012), the features are randomly sampled during the training phase and
ADaptive WINdowing (ADWIN) was proposed, to train background trees when a drift
warning occurs. Once a drift is detected, background trees are replaced with the re-
spective tree that triggered the warning, as shown in Algorithm 6 on lines 11 to 16. A
key finding in this research was that there was no degradation of performance when
comparing a parallelised version of ARF against a serial implementation, allowing for
scalability in an evolving data-stream environment (Gomes et al., 2017).

Researchers also investigated the notion of adapting boosting ensembles to handle
data-streams. One of the earliest algorithms employing boosting in this environment,
was the Pasting Votes approach (Breiman, 1999). They proposed that for every boosting
round, different subsets of data should be utilised and so, there is no need to persist all
the data as in turn, this promotes adaptive learning. It was shown that this approach
could handle datasets with up to a terabyte in size (Breiman, 1999). Racing Committees
(Frank et al., 2002), a similar approach to Pasting Votes, includes a strategy called adap-
tive pruning in order to reduce time/memory cost, which is crucial in large datasets. A
key point made in their study is that adaptive pruning not only influences time/mem-
ory cost but also, improves performance in terms of accuracy (Frank et al., 2002).

Inspired by AdaBoost (Freund and Schapire, 1997b), the Learn++.NSE ensemble han-

57

Chapter 3. Literature Review 3.2. Handling Machine Learning Problems

Algorithm 6 Pseudocode for ARF: Symbols: m: maximum features evaluated per split;
n: total number of trees (n = |T|); δw: warning threshold; δd: drift threshold; c(·): change
detection method; S: Data stream; B: Set of background trees; W(t): Tree t weight; P(·):
Learning performance estimation function (Gomes et al., 2017).

1: function ADAPTIVERANDOMFORESTS(m, n, δw, δd)
2: T ← CreateTrees(n)
3: W ← InitWeights(n)
4: B← ∅
5: while HasNext(S) do
6: (x, y)← next(S)
7: for all t ∈ T do
8: ŷ← predict(t, x)
9: W(t)← P(W(t), ŷ, y)

10: RFTreeTrain(m, t, x, y) . Train t on the current instance (x, y)
11: if C(δw, t, x, y) then . Warning detected ?
12: b← CreateTree() . Initialise background tree
13: B(t)← b
14: end if
15: if C(δd, t, x, y) then . Drift detected ?
16: t← B(t) . Replace t by its background tree
17: end if
18: end for
19: for all b ∈ B do
20: RFTreeTrain(m, b, x, y)
21: end for
22: end while
23: end function
24:
25: function RFTREETRAIN(m, t, x, y)
26: k← Poisson(λ = 6) . Fixed param to Poisson Dist.
27: if k > 0 then
28: l ← FindLea f (t, x)
29: UpdateLea f Counts(l, x, k)
30: if InstancesSeen(l) ≥ GP then . Grace period pre recalculating heuristics (split test)
31: AttemptSplit(l)
32: if DidSplit(1) then
33: CreateChildren(l, m)
34: end if
35: end if
36: end if
37: end function

58

Chapter 3. Literature Review 3.2. Handling Machine Learning Problems

dles non-stationary data streams by fitting weak-learners on batches of different distri-
butions and fuses each hypotheses in the underlying ensemble using a majority vote
(weighted) (Polikar et al., 2001). This ensemble proved to work with different patterns
of drifts (described in Section 2.3.6), and by using weighted samples incoming from a
stream, base-learners are penalised (misclassification) or rewarded (correct classifica-
tion) by being attributed a higher weight based on their outcome. One drawback in this
model is that complexity increases linearly over time, as the maximum number of base-
learners is unbounded so as to handle reoccurring drifts (Polikar et al., 2001). Variations
of this algorithm were proposed by Ditzler and Polikar (2013), in order to handle both
data-imbalance and concept drift. Learn++.CDS, incorporates SMOTE (Chawla et al.,
2002) with the previously mentioned algorithm to tackle imbalance, while Learn++.NIE
utilises bagging based sub-ensembles to do so (without generating synthetic instances).
Although this model handles both concept drift and class imbalance, it was shown to
have a significant impact on complexity, when compared against other adaptive learn-
ers, including Streaming Ensemble Algorithm (Ditzler and Polikar, 2013).

A more recent adaptive algorithm was proposed by Montiel et al. (2020), were they
formulated an adaptation of eXtreme Gradient Boosting (XGBoost) to work with non-
stationary data streams. The key idea behind this method is the proposed approach
employed to update or create base-learners (weak) in the underlying ensemble. Their
approach works as follows (Montiel et al., 2020);

1. Gradient boosting or more specifically XGBoost with decision trees is used as an
ensemble.

2. In a traditional batch environment, the ensemble E (gradient boosting), is built
iteratively, wherein each iteration k, a base hypothesis function fk is added to the
ensemble with the objective of minimising the overall loss denoted as l, as shown
below.

l(E) =
K

∑
k=1

l(Y, Ŷk−1 + fk(X)) + Ω(fk)

3. K is the number of base-learners (typically regression trees) in E, whereas fk ∈ F,
where F denotes all possible space for the base hypothesis function. The predicted
outcome Ŷ, is the summation of all the base hypothesis functions, which is consid-
ered as a step-wise constant. The Ω parameter is employed to penalise complex
functions (regularisation).

59

Chapter 3. Literature Review 3.2. Handling Machine Learning Problems

4. In E trees are created in an additive manner, where at each k, a tree is appended to
the ensemble, based on the score Yk of previously added trees (descending gradi-
ent in a functional space).

5. The final predicted outcome/vote of E, is the sum of each base hypothesis function
fk, denoted as ŷi = ∑K

k=1 ft(xi)

6. Instead of using the whole training set to select each hypothesis function fi, they
proposed to append incoming instances into a buffer and once the buffer is full
a single fk is fitted. The succession of filling up the buffer and resetting it once
a batch is formulated, can be considered as tumbling windows, denoted as w =

(#»xi, yi) : i ∈ {1, 2, ..., W} where W is the maximum size for a specific window,
#»xi is a feature vector and yi the respective label. The main idea is to pass w to
the underlying base-learners fk−1 to direct the creation of fk using their residuals.
Therefore, the predicted outcome of the appended trees used to direct the creation
of fk, can be written as;

Ŷk = Ŷk−1 + fk(wk)

In order to deal with concept drift, they proposed the following methods; since the
ensemble is of a fixed size M, the underlying ensemble is updated when it is full, us-
ing; (i) push strategy: the oldest models are removed to make place for more recent ones
(similar to a queue structure) (ii) replace strategy: oldest members are replaced by newer
ones. (Montiel et al., 2020). These strategies are better illustrated in Figure 3.14. Dy-
namic windowing was also proposed due the performance of the ensemble being sub-
optimal at the beginning of the stream, since it needs to wait for the buffer to fill up,
in order to create a complete ensemble. This concept works by setting an initial win-
dow size based on a minimum size, denoted as Wmin, and double the current window
size until it reaches an upper limit, denoted as Wmax. This is therefore expressed as;
Wi = min(Wmin · 2i, Wmax). The use of a drift detector, in particular ADWIN, was also
investigated in order to combat fast drifts (updates are triggered by the detector rather
than with each new batch) (Montiel et al., 2020).

These proposed approaches were then evaluated against each other, and other adap-
tive learners including but not limited to; Accuracy Weighted Ensemble, Adaptive Random
Forest, Leverage Bagging, Self Adjusting Memory, Online Bagging, Ensemble of Restricted Ho-
effding Trees and Hoeffding Adaptive Tree. From their empirical evaluation, it was noted
that the Adaptive eXtreme Gradient Boosting (AXGB) without a drift detector (pas-
sive approach) in conjunction with replacement strategy, outperformed other versions of

60

Chapter 3. Literature Review 3.2. Handling Machine Learning Problems

Figure 3.14: Two updating mechanism in AXGB used to update ensemble when it is full
(Montiel et al., 2020).

AXGB. An overhead can be caused when using a drift detector, as it is typically traded-
off for performance, however, in this scenario the detector-less model, performed better
than the one with a detector. When compared to the other models, it performed rel-
atively the same as Adaptive Random Forest, Ensemble of Restricted Hoeffding Trees, and
Leverage Bagging, all of which placed in the top tier (Montiel et al., 2020).

The use of hyperparameter tuning (Grid Search) was also investigated to find opti-
mal parameters using the first 30% of the stream. To their surprise, another proposed
adaptation of XGBoost coined BXGB outperformed all other proposed variants when
tuning was applied (Montiel et al., 2020). This variant is simply an ensemble of ensembles
where each sub-ensemble (instances of XGBoost) are amended with each new incoming
batch of data, and the final predicted outcome is fused using a majority vote. Although
this model showed potential when tuning was applied, they noted that in practice, this
model is not feasible when resource consumption is a primary concern. It was stated
that their adaptation of XGBoost is a promising model to handle evolving data-streams
given its adaptability and efficiency (Montiel et al., 2020).

61

Chapter 3. Literature Review 3.3. Overview of Recent Literature

3.2.3.2 | Instance Incremental versus Batch Incremental Learning

These aforementioned adaptive algorithms designed to handle evolving data-streams,
can be grouped into two categories; Instance Incremental and Batch Incremental algorithms
(Read et al., 2012). In batch incremental, incoming instances from a data stream are
batched in order to train the underlying adaptive learner, and this schema includes al-
gorithms such as; Pasting Votes, Learn++.NSE, Learn++.CDS, Learn++.NIE, Racing Com-
mittees, Accuracy Weighted Ensembles and Adaptive eXtreme Gradient Boosting (AXGB). On
the other hand, instance incremental, refers to when adaptive models learn from each
instance as it appears in a stream and this schema includes models such as; Online Bag-
ging, Leveraging Bagging, Ensemble of Restricted Hoeffding Trees, Adaptive Random Forest
and Self Adjusting Memory (Montiel et al., 2020; Read et al., 2012).

In incremental batch learning, adaptive learners are not able to learn sample by sam-
ple, therefore, batches are instead used for training. In this schema it is required to free
up batches from memory, as these can accumulate over time and result in the consump-
tion of resources. The same issue can occur if base-learners are appended with new
models without deleting/replacing older models (Read et al., 2012). Also, as batches
are formulated with every w incoming samples, this schema does not allow learning
from recent instances until a batch is formulated. Choosing the right w (batch size) is
crucial in this setting, as there needs to be stability between model performance which is
achieved from larger w and response/adaptation which is obtained by setting a smaller
value for w (Read et al., 2012). The optimal value of w is also reliant on the domain and
the type of stream at hand.

Instance Incremental Learning has its own set of drawbacks. Only after exposure to
a relatively substantial amount of samples, can these models learn a concept accurately.
Otherwise, they can have a hard time learning new concepts given the fact that learn-
ing occurs with each sample (Read et al., 2012). Even though both schemas have their
pros and cons, this schema is usually chosen over batch-incremental due to it being less
resourceful and the ability of "indefinite" learning, which stems from the nature of in-
cremental learning itself (Read et al., 2012). Empirical evidence reported by Read et al.
(2012), show that both schemas perform relatively the same. These findings were also
backed up by a recent study conducted by Montiel et al. (2020).

3.3 | Overview of Recent Literature
In this chapter, an overview of various machine learning techniques employed to handle
the detection of illicit activities in traditional finance and the blockchain was given. Re-

62

Chapter 3. Literature Review 3.3. Overview of Recent Literature

cent literature suggests that use of decision-tree based ensembles can obtain remarkable
performance in detecting illegal activities on both transactional and account level (Baek
et al., 2019; Bartoletti et al., 2018; Farrugia et al., 2020; Harlev et al., 2018; Lee et al., 2020;
Liang et al., 2019; Lin et al., 2019; Monamo et al., 2016; Sun Yin et al., 2019; Toyoda et al.,
2017; Weber et al., 2019; Zola et al., 2019). More specifically, the use of RF, where, in
some cases, it even obtained a higher score than deep learning algorithms such as GCN
(Weber et al., 2019). Another type of decision-tree based ensemble widely used in re-
cent literature is gradient boosting (with decision-tree as base learners). A recent study
showed that XGBoost can effectively identify illicit activities on the Ethereum Network
(Farrugia et al., 2020), while others indicated that LGBM can obtain similar results on
the Bitcoin Network (Lin et al., 2019). The use of graph structures is widely supported in
this domain, whether to employ graph learning algorithms or extract valuable informa-
tion to be used as features to supervised classifiers (Dorofeev et al., 2018; Gaihre et al.,
2019; Phetsouvanh et al., 2018; Toyoda et al., 2017; Weber et al., 2019; Zola et al., 2019;
Zola et al., 2019).

Various studies also made sure to tune the models accordingly to improve perfor-
mance further while giving details of the mechanism used (i.e. Random Search, Grid
Search and Manual Search) together with the parameter space used while employing
such techniques (Farrugia et al., 2020; Harlev et al., 2018; Sun Yin et al., 2019; Weber
et al., 2019), while others did not provide any information or default settings were used
(Baek et al., 2019; Bartoletti et al., 2018; Lee et al., 2020; Liang et al., 2019; Lin et al.,
2019; Monamo et al., 2016; Toyoda et al., 2017; Zola et al., 2019). Some of the studies
also investigated the idea of applying conventional data-sampling techniques to coun-
teract this, in particular, RUS, ROS or SMOTE (Bartoletti et al., 2018; Harlev et al., 2018;
Sun Yin et al., 2019). However, these techniques are known to have their disadvantages
(for example, creating noisy synthetic data), as discussed in detail in Section 4.2.2.2. The
idea of handling concept drift is often left unhandled in the context of the identification
of nefarious activities on the blockchain, even though studies focusing on traditional
finance state that it is prevalent in this domain. Weber et al. (2019) suggested to use a
variant of GCN (EvolveGCN) to handle the degradation performance over time when
identifying illicit bitcoin transactions, however, even though the model shows potential
in recovering from a shift in distribution, a much more simplistic model RF obtained an
overall better result in terms of F1-Score, Recall and Precision.

This chapter intended to give an overview on the state-of-the-art approaches em-
ployed in our target domain. The next chapter will describe the techniques employed
in our proposed solution, while justifying each decision for the design process based on
this reviewed literature.

63

4

Methodology

This chapter describes the methodological design employed in our study, and the jus-
tifications for the design decisions taken, in providing a solution to our problem. In
Chapter 3, we summarised and gave a critical analysis of existing literature conducted in
terms of detecting money laundering and other financial crime, in both cryptocurrencies
and financial systems. This knowledge served as a foundation to plan our investigation
and aid in delivering our objectives described in Section 1.3. To better understand our
proposed approach, we start this chapter by giving a detailed definition of the problem
tackled in our study, followed by a full description of our multi-phased methodology.

4.1 | Account and Transaction Level Detection
This study involved investigating whether we could identify (i) if transactions broadcasted
on the blockchain, can be deemed as illicit or licit (ii) if an account on the blockchain, can be
considered as illicit or licit.

A specific transaction is considered as illicit (or licit), if the address(es) listed as an
input for this transaction, relates to an entity (holds the private keys) considered as il-
licit (or licit). Our motive was to identify money laundering movements by catching
suspicious transaction flows between these entities. With the ever-growing transaction
volume (Chainalysis, 2020), all the possible types of transaction flows (illicit-illicit, illicit-
licit, licit-illicit and licit-licit) and the pseudonymous nature of cryptocurrency, the iden-
tification of money laundering can be a complicated task to accomplish, becoming more
complex when solely performed through manual investigation. Monitoring transaction
flows in order to capture suspicious movements can lead to the identification of money
laundering. The process of doing so is conducted by firstly distinguishing if an indi-
vidual transaction is illicit or not and then, given that all information on the blockchain

65

Chapter 4. Methodology 4.1. Account and Transaction Level Detection

network is public, one can examine the movement of funds. Employing machine learn-
ing models can drastically reduce the time it takes to identify illicit payment flows, and
this presents the opportunity of having a real-time system, which screens and captures
these flows at a transactional level, by assessing the risk associated with them.

One other way to identify money laundering is to monitor activity on an account-
level, however this method may require the overhead of monitoring account by account,
which in turn could be impractical to apply in real-time (Lim et al., 2014). An account
can be deemed as illicit if it operates or has ties to nefarious activities such as High Yield
Investment Programs, scams, Ponzi-Schemes or financing terrorism. Unlike detecting
transactions which are processed once (monitored) as the system screens them, accounts
may need to be monitored individually, however, this paradigm may be more accurate
with respect to detection rate. There are also indications that an illicit account is created
for the intention of conducting an illegal activity, and remain dormant shortly after its
served its purpose (Farrugia et al., 2020).

Despite the appeal of employing an account or transaction level detection system,
it is a non-trivial task since most financial data suffers from class imbalance (Bartoletti
et al., 2018; Ferreira et al., 2018; Fiore et al., 2019; Lahmiri et al., 2020; Lei et al., 2020)
and concept drift (Somasundaram and Reddy, 2019; Yang and Xu, 2019). As discussed
in Section 3.2.2, class imbalance is an intrinsic problem in financial data. A skewed class
distribution may damage the effectiveness of machine learning models, thus making
the hypothesis function harder to distinguish between the underrepresented samples
(illicit transactions) and the over-represented ones. In addition to this, the system’s ef-
fectiveness could be reduced over time. Since criminals often change their behavioural
patterns to avoid detection, the data is subject to change. As explained in Section 3.2.3, a
change in the statistical dynamics of the data, may affect the target function modelled on
historical information, by producing inaccurate approximations, thus increasing errors
as more recent samples are evaluated. These two problems have further negative rami-
fications, as they can also affect the performance of the system by increasing the False-
Positive or False-Negative rates. The industry-standard has a high False-Positive rate
of up to 90% (Weber et al., 2019), so we conducted our research with the motivation of
decreasing the False-Positive rate, while keeping the False-Negative rate relatively low.
In turn, this would reduce the manual work required to verify transactions or accounts
(False-Positives), without allowing criminals to avoid detection (False-Negatives).

As discussed in Section 3.3, decision-tree based ensembles showed to effectively
detect illicit activities in traditional finance and blockchain networks. A recent study
reported that RF in conjunction with graph information, outperformed deep learning
algorithms such as GCN in classifying illicit Bitcoin transactions (Weber et al., 2019).

66

Chapter 4. Methodology 4.2. Datasets

Other studies (Bartoletti et al., 2018; Monamo et al., 2016) also reported that this model
was the best performing in fraud and money laundering detection in cryptocurrencies.
Hence, RF was specifically selected as a benchmark for our first objective.

Decision tree based gradient boosting showed to be effective in detecting money
laundering in traditional finance (Dorofeev et al., 2018; Jullum et al., 2020), as well as
detecting illicit activities on the blockchain (Lin et al., 2019). A recent publication (Far-
rugia et al., 2020) showed that gradient boosting effectively identified illicit activities
on the Ethereum Network. However, to the best of our knowledge, research on gra-
dient boosting in conjunction with graph information, to detect illicit activities on the
blockchain was scarce. In addition, we found no previous comparative analysis of var-
ious state-of-the-art decision-tree based gradient boosting models in the context of de-
tecting illicit activities on both an account and transaction level. Therefore, we chose
to compare state-of-the-art gradient boosting algorithms against each other, as well as,
against our chosen RF benchmark. The selected models were also used in conjunction
with data-sampling techniques, to try and improve the detection of licit-or-illicit activi-
ties by reducing the impact of class imbalance.

Furthermore, from the reviewed literature, in particular Section 3.2.3.1, a recent
study showed that gradient boosting can be adapted to handle concept drift (Montiel
et al., 2020). Given these findings we have proposed another adaptation of gradient
boosting, Adaptive Stacked eXtreme Gradient Boosting (ASXGB), as a means of han-
dling concept drift more effectively, with the intention of improving detection rate. This
will be discussed in further detail in Section 4.3.4.

Based on the more refined problem definitions outlined above, in conjunction with
the reviewed literature, we update the objectives with their corresponding Hypothe-
ses/Experiments shown in Table 4.1.

4.2 | Datasets
A vital aspect of testing our hypotheses was the datasets utilised. The pseudonymous
environment of cryptocurrencies (Buterin et al., 2014; Nakamoto, 2009; Schwartz et al.,
2014), makes it hard to identify the ground truth (capturing illicit to licit accounts/-
transactions). Furthermore, finding data in a similar domain such as standard financial
transactions, also proved to be challenging given the nature of its sensitive information.
Research was carried out in order to find potential datasets fitting our problem, and
after exploring various options and avenues, we adopted these three datasets - ’Elliptic’

67

Chapter 4. Methodology 4.2. Datasets

Objective(s) Experiment Hypothesis

Objective. 1 Experiment 1 (Section 5.2.4.1) 1. We test the hypothesis of whether
decision-tree based gradient boosting can
improve on the classification of licit-
or-illicit activities on both account and
transaction level detection, when com-
pared to Random Forest (RF) (extension
of bootstrap aggregation).

Objective 2 Experiment 2 (Section 5.2.4.2) 2. We test the hypothesis of whether
decision-tree based gradient boosting, in
conjunction with data-sampling tech-
niques, can further improve on the clas-
sification of licit-or-illicit activities detec-
tion at a transactional-level.

Objective 3 Experiment 3 (Section 5.2.4.3) 3. We test the hypothesis of whether
our proposed Adaptive Stacked eXtreme
Gradient Boosting (ASXGB), developed
to handle concept drift, can further im-
prove on the classification of licit-or-illicit
transactions, in a stream environment.

Table 4.1: Objectives and their corresponding experiment and hypothesis.

(Elliptic, 2020; Weber et al., 2019), ’Ethereum Illicit Accounts’1 (Farrugia et al., 2020), and
’NOAA’2 (Elwell and Polikar, 2011) datasets.

The researchers (Elliptic, 2020; Weber et al., 2019) who provided the ’Elliptic dataset’
argue that it constitutes the largest labelled (illicit vs licit) transactional data in any cryp-
tocurrency; thus, this was selected as our primary benchmark dataset for transaction
level detection, employed in all three experiments, for the following reasons:

� It includes a substantial amount of labelled (illicit vs licit) transactions, needed to
train/evaluate our models.

1 Ethereum Fraud Dataset: https://github.com/sfarrugia15/Ethereum_Fraud_Detection
2 NOAA Dataset: http://users.rowan.edu/~polikar/nse.html

68

https://github.com/sfarrugia15/Ethereum_Fraud_Detection
http://users.rowan.edu/~polikar/nse.html

Chapter 4. Methodology 4.2. Datasets

� It includes the flow of payments as the data was modelled as a transactional graph,
which is invaluable in money laundering.

� It includes temporal information, which allowed us to explore the dynamics over
time.

The ’Ethereum Illicit Accounts dataset’ (Farrugia et al., 2020) which comprised of illicit
ethereum accounts was employed as the primary dataset for account level detection.
The reasons behind this are:

� Evaluating our models on detecting illicit activities on an account level.

� Evaluating additional models which were not validated in the original paper (Far-
rugia et al., 2020).

� Evaluating models on a different cryptocurrency network as the dataset was made
up of ethereum accounts.

Lastly, due to a shortage of publicly available data, we opted to evaluate our models
on another dataset the ’National Oceanic and Atmospheric Administration (NOAA) Weather
dataset’ (Elwell and Polikar, 2011). This dataset is commonly used to test models in
concept drift environments (Cristiani et al., 2020; Liao et al., 2016; Montiel et al., 2020).
This helped us validate how well the applied models can generalise to handle concept
drift, on other real-world datasets.

4.2.1 | Datasets Description
The Elliptic dataset was downloaded from Kaggle3, and it was provided in three different
files, all of which were in CSV file format. These files consisted of transaction classes,
features and an edge list, and when combined, they formed a transaction graph obtained
from the Bitcoin blockchain.

Each transaction was considered as a node4, with directed edges representing the
flow of payments. Every node had 166 attributes which fell under two categories; local
and aggregated features. A total of 94 local features included information such as output
volume, transaction fee, number of outputs/inputs and timestep. These local features
also included statistical measures such as the mean of outgoing/incoming transactions
linked with the outputs/inputs.

3 Elliptic Dataset: https://www.kaggle.com/ellipticco/elliptic-data-set
4 This refers to a node/vertex within a graph structure

69

https://www.kaggle.com/ellipticco/elliptic-data-set

Chapter 4. Methodology 4.2. Datasets

For the aggregated features, a total of 72 attributes were utilised, which included
aggregated information from one-hop backward/forward from the centre node, such
as standard deviation, minimum, maximum and correlation coefficients of neighbour-
ing transactions, for the same information extracted for the local features (for example,
transaction fee and inputs/outputs). Although the researchers (Weber et al., 2019) pro-
vided a brief description of the features, the exact description for each attribute was not
provided due to intellectual property concerns.

A timestep was associated with each node. This attribute represented an estimated
time for when the transactions were confirmed on the network. In total, there were 49
timesteps equally distributed within approximately two weeks, which can be extrapo-
lated to cover roughly 98 weeks. However, it is worth noting that the researchers did
not mention the exact period (from and to date) covered in this dataset. Each step com-
prised of a single connected component of transactions, which settled on the network
within three hours or less from each other. No connecting edges existed which con-
nected nodes with different timesteps.

Overall there were 203,796 transaction nodes with a total of 234,355 edges connecting
these nodes. From all these transactions, 46,564 were labelled, with the remaining being
undefined. The labels represented whether the entity executing the transaction (owning
the private keys linked to the input address for a transaction), belonged to an illicit or
licit entity. Examples of illicit entities included in this dataset were; Ponzi schemes, ter-
rorists, ransomware, scams and malware, and examples for licit entities included, were;
miners, wallet providers and exchanges. In total there were 4,545 transactions marked
as illicit and 42,019 marked as licit. In this study, any unlabelled data was disregarded
as we opted to investigate supervised machine learning algorithms, similar to the orig-
inal study. The exact method used for the labelling process was not mentioned in the
paper; however, they stated that a heuristics-based reasoning approach was employed
to label such transactions.

The other two datasets also came in CSV file format. The Ethereum Illicit Accounts
dataset consisted of a total of 4,681 instances, with 2,179 deemed as illicit and 2,502 as
licit accounts. The dataset had a total of 42 features which were based on the transaction
history for specific Ethereum accounts. These included aggregated information captur-
ing the lifetime activity for a specific account, such as the total number of sent/received
transactions and the minimum/maximum value ever received/sent. It also included
information related to duration periods such as the average time in minutes between
sent/received transactions and the time difference in minutes between the first and last
transaction. A full detailed description of these features is shown in Appendix A. The
NOAA dataset was compiled based on weather measurement from over 7k weather sta-

70

Chapter 4. Methodology 4.2. Datasets

tions. The dataset comprises of a total of 18,159 readings, with 12,461 indicating no
rain and the other 5,698 indicating rain. A total of 8 features were present in each sam-
ple; these included: Temperature, Dew Point, Sea Level Pressure, Visibility, Avg. Wind
Speed, Max Sustained Wind Speed, Max Temperature and Min. Temperature. This
dataset was indexed by time, where each tumbling window of 30 readings represented
approximately one month of readings. It is worth noting that this dataset is known to
be affected by concept drift (Elwell and Polikar, 2011).

4.2.2 | Analysing the Benchmark Transaction-Level Dataset
At this stage, we analysed the benchmark transaction-level dataset and performed var-
ious experiments. These experiments allowed us to make strong assumptions about the
stationarity of this time series dataset, to better understand how the state of the data
changed through time.

4.2.2.1 | Non-Stationary Temporal Data

In the original paper (Weber et al., 2019) that publicly provided the selected benchmark
dataset, the researchers have noted that the models performance suddenly degraded at
one point, due to the closure of a popular dark marketplace. This unexpected event oc-
curred during the test time span, more specifically at timestep 43 as shown in Figure 4.1
The degradation in performance was an indicator that the dataset was non-stationary
due to changing events. Hence we decided to conduct further analysis to determine
the data stationarity for the selected dataset. Multiple tests were applied to detect time-
series stationarity including; time plot tests and a unit root test.

The time plot tests helped us to visually capture how the mean and standard de-
viation for each feature changed over time. This procedure was performed as follows;
we partitioned the dataset by class, denoted as Xillicit and Xlicit, as each group can have
its own dynamics. For each feature xi, in each partition xilliciti and xliciti , we computed
the mean x and the standard deviation s at each timestep t, thus extracting individual
time-series representing the x and s of the partitioned features. The time-series was
then plotted to capture the change in x and s visually. When we examined the result-
ing plots, it was shown that the mean x and the standard deviation s was drastically
changing (that is, sudden spikes and irregular fluctuations) at each timestep t. In Fig-
ure 4.2 we show these changes for four specific features of the the partition containing
illicit instances. These four features represent the attributes that exhibited the highest
variance across the standard deviation. We visually show that the standard deviation
was changing over each timestep t. Similar results were obtained when we analysed

71

Chapter 4. Methodology 4.2. Datasets

Figure 4.1: Models performances degraded due to the sudden closure of a dark market-
place (timestep 43 marked in a red square) as reported by Weber et al. (2019).

the other partition for the licit instances. The resulting visual representation of each
time-series, seemed to indicate that a stationary process did not generate these series.
To summarise, these plots indicated notable trends, and fluctuating levels in s and x,
however, some plots indicate that these values revert around a constant.

Figure 4.2: Time plots for the partition containing licit features, displaying the standard
deviation across each timestep (t1...t49). In this plot, we only display the top four features
with the highest variance across the standard deviation indexed by t.

These plots helped us to visualise changing levels and trends in our time-series.
In addition, further testing was carried out by applying a statistical hypothesis test,
which in turn aided us in making stronger assumptions about the stationarity of the
data. For this experiment, the unit root test called the Augmented Dickey-Fuller test
(ADF) (MacKinnon, 1994, 2010) served as a hypothesis test to check for non-stationarity.
This involved testing whether an autoregressive model of the time-series has a unit root

72

Chapter 4. Methodology 4.2. Datasets

(stochastic trend), formulated as follows;

H0 (Null Hypothesis): A unit root is present in the time-series (non-stationary)

H1 (Alternate Hypothesis): A unit root is not present in the time-series (stationary)

The interpretation of the outcome uses the resulting p-value (95% confidence interval)
to determine;

p-value > 0.05: Time-series is non-stationary as it has a unit root (Failed to reject H0)

p-value <= 0.05: Time-series is stationary as it does not have a unit root (Reject H0)

Similar to the previous experiment, we partitioned the dataset by class and then
computed the mean for each feature at each timestep. Then we applied the ADF test for
each resulting time-series. Table 4.2 and Table 4.3 show the highest p-values obtained for
both licit and illicit partitions during this test. From a total of 165 individual time-series
of features, we failed to reject H0 for 61 features when tested on the licit partition, and 49
for the illicit partition. From the previous visualisations and the results gathered from
this hypothesis test, it was concluded that the statistical properties of the benchmark
dataset change over time.

Feature p-value
AGG_26 0.985
AGG_42 0.973
AGG_9 0.959
AGG_6 0.947
AGG_7 0.939
AGG_61 0.854

LF_65 0.827
LF_59 0.827
LF_66 0.818
LF_60 0.818

Table 4.2: Top 10 highest p-values (failed to reject H0) obtained when applying the ADF
test on every feature, on the licit partition. The exact definition for the following features
was not given due to intellectual property concerns (Elliptic, 2020; Weber et al., 2019).

4.2.2.2 | Class Distribution

At this stage, we analysed the class distribution of the benchmark dataset by plotting
the ratio between illicit to licit (minority to majority) transactions across each timestep.
The one month moving average for this ratio was also added to this plot, to smooth
out weekly fluctuations and highlight a more distant change. Figure 4.3 displays the
results captured during this test. From this visual representation, it was evident that

73

Chapter 4. Methodology 4.2. Datasets

Feature p-value
LF_1 1.000

AGG_38 1.000
AGG_33 1.000
AGG_31 1.000
AGG_14 1.000
AGG_37 0.999

LF_3 0.999
LF_5 0.999

AGG_2 0.996
AGG_55 0.995

Table 4.3: Top 10 highest p-values (failed to reject H0) obtained when applying the ADF
test on every feature, on the illicit partition. The exact definition for the following fea-
tures was not given due to intellectual property concerns (Elliptic, 2020; Weber et al.,
2019).

the skewed class distribution was not constant. These results, indicated that the rate of
illicit transactions executed over the Bitcoin network varied over time.

Figure 4.3: Illicit to licit ratio at each timestep in the benchmark dataset.

At this point, we analysed the dynamics of the benchmark dataset over time. Time
plot tests visually showed that the mean and standard deviation for some features
changed as time goes on. In the second hypothesis test, the ADF test (MacKinnon,
1994, 2010), statistically confirmed that there are non-stationary features present in the
dataset. The final plot showed that the dynamics of the class distribution also changed
over time, having an overall illicit to licit ratio of ≈ 1 : 9. From these experiments, we
concluded that concept drift was present in the selected benchmark dataset.

74

Chapter 4. Methodology 4.2. Datasets

4.2.3 | Data Pre-Processing
The benchmark transaction-level dataset did not require any significant modifications,
as it was reasonably fit for use to train machine learning models. As discussed in Sec-
tion 4.2.1, the downloaded data came in three separate files; (i) node features (’ellip-
tic_txs_features.csv’) (ii) node classes (’elliptic_txs_classes.csv’) (iii) edges between nodes
(’elliptic_txs_edgelist.csv’).

Firstly, the node classes were loaded. These consisted of two columns; the transac-
tion ID and its corresponding class. The encoding was altered as follows; ’1’ indicating
illicit nodes, remained unchanged, ’2’ indicating licit nodes were changed to ’0’, and un-
labelled nodes were disregarded. This resulted in a total of 46,564 labelled nodes. The
next step involved loading up the features for each node. The CSV file did not include
headers and so, the features needed to be manually labelled. Following the information
found on Kaggle, the first column, ’transaction ID’ was named - ’txId’, and the follow-
ing column ’timestep’, was named - ’ts’. The following 93 columns represented the local
features (for example, output volume and transaction fee) which were explained in de-
tail in Section 4.2.1, and these were renamed as ‘LF_n’, with n being the column index
increased by 1. This resulted in columns ‘LF_1’ to ‘LF_93’. The remaining 72 columns
represented the aggregated features (aggregated information from one-hop backward/-
forward from the centre node) which were also explained in detail in Section 4.2.1, and
these were renamed as ‘AF_n’, with n being the column index increased by 1. This
resulted in columns ‘AF_1’ to ‘AF_72’.

In the benchmark paper (Weber et al., 2019), node embeddings were extracted from
a Graph Convolutional Network (GCN) (Kipf and Welling, 2017), which were later ex-
ploited as feature sets. These embeddings were not available on Kaggle; therefore, we
trained a GCN with the same documented hyperparameters (using altered public code
found on GitHub5) to extract these embeddings ourselves.

This procedure consisted of; (i) loading up the dataset as a graph, which included
combining features, classes and edges (ii) training a 2-Layer GCN using an Adam op-
timiser with a learning of 0.001 for 1000 epochs (iii) employing cross-entropy as a loss
function with a weighted ratio of 0.3/0.7 (licit to illicit) (iv) extracting embeddings with
a size of 100 from the last linear projection just before softmax logits6. These embed-
dings were then saved as ’elliptic_embs.csv’ and were made public on Google Drive7.
The resulting file consisted of a transaction ID, followed by the embeddings named as

5 GCN Implementation: https://github.com/tkipf/pygcn
6 Embeddings Extraction: https://github.com/tkipf/pygcn/issues/26#issuecomment-435801483
7 Node Embeddings: https://drive.google.com/file/d/1RTuznxBk9_PdOETrKbsGAQH5jXj25qrB/

view?usp=sharing

75

https://github.com/tkipf/pygcn
https://github.com/tkipf/pygcn/issues/26#issuecomment-435801483
https://drive.google.com/file/d/1RTuznxBk9_PdOETrKbsGAQH5jXj25qrB/view?usp=sharing
https://drive.google.com/file/d/1RTuznxBk9_PdOETrKbsGAQH5jXj25qrB/view?usp=sharing

Chapter 4. Methodology 4.3. Proposed Solution

’NE_n’, where n was the column index increased by 1.

Ultimately, all the mentioned files were loaded up and merged with the transaction
ID, resulting in one whole dataset. Keeping inline with the benchmark paper (Weber
et al., 2019), this dataset could be loaded/evaluated on different feature sets, including;
(i) using local features only, denoted as ’LF’ (ii) using all the features, which include
’LF’ and the aggregated features, denoted as ’AF’ (iii) using ’LF’ and node embeddings,
denoted as ’LF’_NE’ (iv) using ’AF’ and node embeddings, denoted as ’AF_NE’. These
feature sets and their relevance to our study will be discussed in the upcoming Sec-
tion 5.2.

The other datasets required minimal changes in order to be able to process and train
our models. For the Ethereum Illicit accounts dataset (account-level benchmark dataset),
only six additional features needed to be removed, as they were not present in the orig-
inal study (Farrugia et al., 2020). Apart from that, empty values were substituted by 0,
and categorical variables were numerically encoded. For the NOAA dataset, each in-
stance was stamped with the corresponding timestep, and this was done by applying a
tumbling window on every 30 samples as specified in the original publication (Elwell
and Polikar, 2011).

4.3 | Proposed Solution
In this section, we give a detailed description of the models employed in our approach,
along with an explanation of the methods used, to tackle the problems described in
Section 4.1. A high-level depiction for the proposed system architecture, is shown in
Figure 4.4. An overview of the code and structure for the final solution is also being
made available.

Figure 4.4: A high-level overview of our proposed solution in the form of a flow chart.

76

Chapter 4. Methodology 4.3. Proposed Solution

4.3.1 | Boosting Algorithms
Decision tree-based gradient boosting ensembles were chosen based on the following
findings: (i) from the reviewed literature, the use of gradient boosting in conjunction
with graph information to detect money laundering in cryptocurrency transactions, was
limited (ii) previous studies investigating money laundering detection in traditional fi-
nance (Dorofeev et al., 2018; Jullum et al., 2020), showed the effectiveness of this ensem-
ble, which in turn enticed further interest for investigation (iii) other types of decision
tree ensembles, in particular Random Forest, proved to be the best performing model,
in some cases also outperforming Deep Learning in money laundering and similar do-
mains (Bartoletti et al., 2018; Monamo et al., 2016; Rokach, 2016; Weber et al., 2019) thus,
introducing an opportunity to compare these decision-tree ensembles in the context of
this problem.

In our study, we proposed to investigate the effectiveness of boosting algorithms in
detecting money laundering in cryptocurrency transactions and so, three state of the art
boosting algorithms were explored; eXtreme Gradient Boosting (XGBoost) (Chen and
Guestrin), LGBM (Ke et al., 2017), and CatBoost (Prokhorenkova et al., 2018). All of these
algorithms sequentially build decision trees as weak learners (high bias low variance)
by fitting gradients, of residuals of previously created trees, and in turn, minimising the
overall prediction error. The final predictions, are then made based on the consolidated
estimates of the underlying weak learners. However, these different algorithms have
their own set of characteristics outlined in Section 2.4.2. This further motivated us to
investigate all three approaches and identify which gradient-boosting framework better
suited our problem. We used the XGBoost, LGBM, and CatBoost algorithms found in
the following libraries: xgboost8 version 1.0.1, lightgbm9 version 2.3.1, and catboost10

version 0.20.2, respectively. Unless specified the default parameters for these algorithms
are used.

4.3.2 | Handling a Skewed Class Distribution
The benchmark dataset suffers from class imbalance, as stated in Section 4.2.2.2; there-
fore, we applied various Data-Level techniques to counteract this. We selected these
techniques instead of Algorithm-Level approaches due to the constraints described in
Section 3.2.2.2.

8 xgboost: https://xgboost.readthedocs.io/en/latest/python/index.html
9 lightgbm: https://lightgbm.readthedocs.io/en/latest/
10 catboost: https://catboost.ai/docs/concepts/python-quickstart.html

77

https://xgboost.readthedocs.io/en/latest/python/index.html
https://lightgbm.readthedocs.io/en/latest/
https://catboost.ai/docs/concepts/python-quickstart.html

Chapter 4. Methodology 4.3. Proposed Solution

As stated in Section 3.2.2, when dealing with a skewed class distribution, there is
no "one size fits all" approach. Keeping this in mind, as well as considering our time
constraints, we investigated sampling techniques that seemed to be worth pursuing
given the reviewed literature. The following sampling approaches were applied: Syn-
thetic Minority Over-Sampling (SMOTE) (Chawla et al., 2002), Neighbourhood Clean-
ing Rule (NCL) (Laurikkala, 2001) and NCL-SMOTE (Junsomboon and Phienthrakul,
2017). These techniques were compared against each other and ultimately, the non sam-
pled dataset, in order to determine any potential improvement.

SMOTE was used as an oversampling technique as it proved to be effective in dif-
ferent domains (Harlev et al., 2018; Sayed et al., 2019; Yong Sun and Feng Liu, 2016);
pseudocode for which was shown in Algorithm 3, in Section 3.2.2. However, as ex-
plained in Section 3.2.2.1, this approach could further increase noise, if noisy outliers
were present in the dataset. Therefore, as a means of neutralising this issue, we in-
vestigated the use of NCL-SMOTE (Junsomboon and Phienthrakul, 2017), where NCL
was applied to remove noisy outliers before oversampling the dataset using SMOTE.
In a study conducted by Junsomboon and Phienthrakul (2017), this approach showed
to increase the overall recall, thus reducing false-negatives. Given that the results pub-
lished in the benchmark paper (Weber et al., 2019) suffered from high false-negatives
in comparison to the false-positives, this approach seemed appropriate to investigate.
NCL (Laurikkala, 2001), which is an approach that under-samples the dataset by clean-
ing up noise from the majority samples, was tested on its own. The decision to do so,
was inspired by a recent publication (Tyagi and Mittal, 2020) whereby, NCL showed to
outperform various over and under-sampling techniques, particularly on financial data.

All of these approaches were implemented in Python using the imbalanced-learn 11

library version 0.6.2 (Lemaître et al., 2017). The default parameters for each technique
were applied to sample the training sets. We also published the sampled datasets on
Google Drive12.

4.3.3 | Hyperparameter Optimisation
The proposed models all underwent hyperparameter optimisation. This decision was
taken since the Gradient Boosting Machine (GBM) algorithms posses a significant num-
ber of hyperparameters and so, tweaking these parameters could improve results (Far-
rugia et al., 2020; Jullum et al., 2020; Prokhorenkova et al., 2018; Xia et al., 2017). As
for the selected approach, we opted to make use of Bayesian hyperparameter optimisa-

11 imbalanced-learn: https://imbalanced-learn.org/stable/
12 Sampled Datasets: https://drive.google.com/drive/folders/1xxJgmMPKVGLymI90fX1JxHFU9GCEJvK-

78

https://imbalanced-learn.org/stable/
https://drive.google.com/drive/folders/1xxJgmMPKVGLymI90fX1JxHFU9GCEJvK-

Chapter 4. Methodology 4.3. Proposed Solution

tion, more specifically, the Tree-structured Parzen Estimator (TPE) (Bergstra et al., 2011),
since it showed its efficiency in high dimensional search spaces (Prokhorenkova et al.,
2018; Xia et al., 2017), when compared to other approaches (Xia et al., 2017). This was
implemented using Optuna13 library version 1.3.0 (Akiba et al., 2019).

The study carried out by Prokhorenkova et al. (2018), heavily influenced our proce-
dure to search for the optimal hyperparameters. Our decision was mainly due to their
use of TPE and their comparison against the same selected GBM algorithms. In order to
apply this technique the following steps were implemented;

1. The dataset was split into in-sample (70%) and out-of-sample (30%) sets

2. The sequential optimisation algorithm, TPE, was applied for 50 steps

3. In each step, denoted as i, the in-sample set was further split into k-folds (k = 5)
using a stratified split by label

4. Cross-validation was applied by; setting the fixed hyperparameters outputted by
the TPE at i, and applying an exhaustive search on the number of trees in the
ensemble (1 to 5000), denoted as n, on each k

5. The F1-Score was collected for each n on each k. The scores were then averaged
over k, and the n with the maxF1−Score was selected for i

6. Steps 3 to 5 were applied until i = 50. The hyperparameters with the highest
F1-Score from all the steps, were considered to be the most optimal

Taking into consideration our aim to reduce both the false-positive and false-negative
rates, the objective function described in Prokhorenkova et al. (2018) approach 14, needed
to be altered. We swapped the objective function from minlogloss to maxF1−score. The
ranges and specific hyperparameters explored during this procedure were also selected
based on previous literature (Prokhorenkova et al., 2018; Xia et al., 2017). Table 4.4 shows
the list of the hyperparameters tried for each GBM model.

4.3.4 | Handling Non-Stationary Temporal Data
Through our visual and statistical analysis in Section 4.2.2.1, we assumed with a high de-
gree of confidence, that the benchmark transaction-level dataset exhibited concept drift.

13 Optuna: A hyperparameter optimization framework: https://optuna.readthedocs.io/en/stable/
14 CatBoost Quality Benchmarks: https://github.com/catboost/benchmarks/tree/master/

quality_benchmarks

79

https://optuna.readthedocs.io/en/stable/
https://github.com/catboost/benchmarks/tree/master/quality_benchmarks
https://github.com/catboost/benchmarks/tree/master/quality_benchmarks

Chapter 4. Methodology 4.3. Proposed Solution

Parameter Range/Distribution Description

XGBoost - includes exhaustive search for number of gradient boosting trees [1,5000]

learning_rate Log-uniform [e−7, 1] Boosting learning rate
max_depth Discrete-uniform [2, 10] Max tree depth for base classifiers
subsample Uniform [0.5, 1] Subsample ratio of training instance
colsample_bytree Uniform [0.5, 1] Subsample ratio of columns when con-

structing each tree
colsample_bylevel Uniform [0.5, 1] Subsample ratio of columns for each level
min_child_weight Log-uniform [e−16, e5] Min sum for instance weight (hessian) in a

child
reg_alpha Log-uniform [e−16, e2] L1 regularization
reg_lambda Log-uniform [e−16, e2] L2 regularization
gamma Log-uniform [e−16, e2] Min loss reduction for further partition on

a leaf node

LightGBM - includes exhaustive search for number of gradient boosting trees [1,5000]

learning_rate Log-uniform [e−7, 1] Boosting learning rate
num_leaves Discrete-uniform [2, 1000] Max no. of leaves in a tree
subsample Uniform [0.5, 1] Subsample ratio of training instance
colsample_bytree Uniform [0.5, 1] Subsample ratio of columns when con-

structing each tree
min_child_samples Discrete-uniform [1, 400] Min number of data in one leaf
min_child_weight Log-uniform [e−16, e5] Min sum for instance weight (hessian) in a

child
reg_alpha Log-uniform [e−16, e2] L1 regularization
reg_lambda Log-uniform [e−16, e2] L2 regularization

CatBoost - includes exhaustive search for number of gradient boosting trees [1,5000]

learning_rate Log-uniform [e−7, 1] Boosting learning rate
depth Discrete-uniform [4, 10] Depth of the tree
random_strength Discrete-uniform [1, 20] Amount of randomness used for scoring

splits
subsample Uniform [0.5, 1] Subsample ratio of training instance
l2_leaf_reg Log-uniform [e−16, e2] L2 regularization
leaf_estimation_iterations Discrete-uniform [1, 10] Regulates how many steps are done when

calculating leaf values
rsm Discrete-uniform [0, 1) Percentage of features to use at each split

selection

Random Forest

n_estimators Discrete-uniform [100, 1000] No. of trees in forest
max_samples Uniform [0.0, 1] % samples to train each base
max_features Choice [sqrt, log2] No. of features for the best split

Table 4.4: Searching space used in hyperparameter optimisation.

80

Chapter 4. Methodology 4.3. Proposed Solution

Therefore at this stage, we introduced an adaptation of the eXtreme Gradient Boost-
ing (XGBoost) algorithm (Chen and Guestrin) to handle evolving data-streams, coined
as ’Adaptive Stacked eXtreme Gradient Boosting (ASXGB)’; pseudocode for which is
shown in Algorithms 7, 8, 9, 10 and 11. A recent study published by Montiel et al.
(2020) heavily influenced our algorithm, as they showed that decision-tree based gradi-
ent boosting could effectively be adapted to create concept-drift-aware models. In the
following explanation, we describe our procedure in the context of binary classification,
that is y ∈ {c1, c2}.

Our proposed model is an ensemble of ensembles, which incrementally learns from
batched data (batch-incremental) through a continuous data-stream. The underlying en-
semble employs stacking (Wolpert, 1992), which is a meta-learning technique that was
previously discussed in Section 2.4.3. In the context of our algorithm, stacking is used
to combine multiple XGBoost classifiers (base models) denoted as h1, h2, ..., hN , where
N is the specified number of base-models in the ensemble, into one. This is done by
feeding the base models outputs as an input to another model, commonly referred to as
the meta-model. In this algorithm the meta-model is another XGBoost classifier and we
denote this as hmeta.

In our experiments we trained our ASXGB on a data-stream, that we denote as
A = (#»x t, yt) : t ∈ {1, 2, ..., T}, where A is the incoming stream, t is time, T → ∞
(an unbounded stream), #»x t is a feature vector at t, and yt its respective label. Our pro-
posed algorithm takes the continuous stream A, and further divides it into equally sized
batches of contiguous non-overlapping time-windows. This is done by consuming in-
coming instances from the stream A and storing them into a buffer until the specified
window size is reached, at which point a new training batch, w, is ready for our algo-
rithm (shown in Algorithm 7, lines 8 to 12). Once our algorithm is injected with this new
batch, w, this batch is further split into two datasets (in our experiments we made use of
a 60/40 ratio), which can be denoted as wbase and wremainder. A new base model is then
trained on wbase and then added to the stacked ensemble. If the number of base models
found in the underlying ensemble is greater than 1, any previously added base-models
will continue training on wbase. The continuation of training is carried out by applying
the following process for each base model; build a new model as a continuation of the
previously generated model, by appending new trees.

A new dataset (meta-dataset), Dmeta, is then generated based on the predictions
(probability distribution over the set of classes) for each base-model, when evaluated
against wremainder. Therefore, the features of Dmeta comprises of the outputs of the base-
models with the respective true label found in wremainder. The meta-model, hmeta, is then
trained, or if the number of base models is greater than 1, it proceeds with the contin-

81

Chapter 4. Methodology 4.3. Proposed Solution

Algorithm 7 Pseudocode for the Proposed ASXGB’s Partial Fit Function

1: global variables
2: winsize, Window Size
3: Xwin_bu f ← [][], Window Buffer for X (training)
4: ywin_bu f ← [], Window Buffer for y (training)
5: end global variables
6:
7: function PARTIALFIT(X, y) . Partially (incrementally) fit the model
8: Xwin_bu f ← storeBu f f er(Xwin_bu f , X)
9: ywin_bu f ← storeBu f f er(ywin_bu f , y)

10: while nrow(Xwin_bu f) ≥ winsize do
11: Xbatch ← Xwin_bu f [0 : winsize]
12: ybatch ← ywin_bu f [0 : winsize]
13: trainBatch(Xbatch, ybatch)
14: Xwin_bu f ← removeBu f f er(Xwin_bu f , 0, winsize)
15: ywin_bu f ← removeBu f f er(ywin_bu f , 0, winsize)
16: end while
17: end function

uation of training on Dmeta, to form a final generalised classifier. Once hmeta is trained,
each base model proceeds with the continuation of training on wremainder, in order to
fully expose the base-models to the current data batch, without violating the principle
of training the meta-model on unseen data. Given that the data stream can potentially
be ∞ and evolving, an update mechanism is put in place to constantly update the en-
semble once it’s full (the total number of base-models is equal to N). This procedure is
as follows;

1. For every round denoted as k, that hmeta is trained on Dmeta, take note of feature
importance (each feature’s contribution for each tree in the meta-model, known as
normalised gain).

2. Since the features passed are composed of the probability for the set of classes by
each base-model, the feature importance corresponds to how important a specific
h is, in the generalised classifier. Every h generates two features in a binary classi-
fication setting, therefore, the corresponding importance is added to indicate the
overall performance of h, denoted as hgain, noted at each k.

3. Since h is added incrementally with every new w, the total number of rounds
(continuation of training), where hgain is extracted from h, denoted as hrounds, differ.

4. When the ensemble is full, any h with hrounds ≥ nrounds is selected for potential
replacement. For any h that meets this criteria, the summation of the previous hgain

82

Chapter 4. Methodology 4.3. Proposed Solution

for nrounds is computed and the one with the minimum importance is replaced by
a new base-model.

The training and updating mechanism for the described technique can be shown
in pseudocode format in Algorithms 8, 9 and 10. It is worth noting that the number
of features passed on to hmeta is fixed at N ∗ 2, as XGBoost requires the same number
of features when the continuation of training occurs. Since a new model is added in-
crementally to the ensemble when a batch is formulated, some attributes are passed as
0’s until the ensemble is full; hence the performance of the stacked ensemble can be
sub-optimal during the first rounds of the data stream. To counteract this, any predic-
tions made before the ensemble is full, is carried out based on a majority vote of the
already present base-models, in the ensemble. Alternatively, when the ensemble is full,
the predictions of hmeta are used instead. Both of which are shown in Algorithm 11.

Montiel et al. (2020) inspired the idea of buffering a data-stream and splitting it into
tumbling windows to train new XGBoost learners in the underlying ensemble. How-
ever, the update mechanism used to swap newer models within the ensemble and the
prediction function, differ from our solution since we opted to combine the ensemble
via stacking. However, ASXGB deviates from the standard-setting employed in stack-
ing, where the overall problem is tackled by using multiple heterogeneous models on
a single dataset. The idea is that each model is capable of learning a subspace of the
overall problem. An intermediate prediction is then built from such models to train a
meta-model. The final generalised model is then able to learn the whole space of the
problem (Džeroski and Ženko, 2004). However, in our solution, we make use of homo-
geneous learners, where each model learns from a data stream via tumbling windows
(rather than a single dataset). The intuition is that each incoming batch of data is rep-
resentative of the current state of the evolving problem. Therefore, each model which
is added/updated in the ensemble, would be capable of learning a subspace of the cur-
rent state of the problem. The meta-model is then able to assess which of the underlying
base-models is deviating away from the current state (degrading feature-importance
through time); hence they will be swapped with newer models. Moreover, since it was
shown that instance-incremental learning can on average be more efficient in terms of
performance than batch-incremental learning, both can obtain similar performance in
some cases (Read et al., 2012). Given the nature of XGBoost, batch-incremental learning
was adopted. Data-Sampling and Hyperparameter tuning methods were not applied
on this particular model, due to time constraints. We only employed an adaptation of
XGBoost out of all the decision-tree based gradient boosting algorithms described in
Section 4.3.1, particularly for the same reason.

83

Chapter 4. Methodology 4.3. Proposed Solution

Algorithm 8 Pseudocode for the Proposed ASXGB’s Train Batch Function

1: global variables* . Includes all the global variables from Algorithm 7
2: metaratio, Training Ratio for Meta Model . 1 < metaratio < 0
3: nbase, No. of Level-0 Models . 1 < nbase
4: xgbbase_models ← [], Array of Level-0 Instances
5: xgbmeta, Meta Model Instance
6: xgbbase_models_per f ormance ← [][], Previous performances for base-models
7: xgbbase_models_rounds ← [], Current rounds for base-models
8: end global variables
9:

10: function TRAINBATCH(Xbatch, ybatch)
11: J ← int((1−metaratio) ∗ nrow(Xbatch))
12: wbase_X ← Xbatch[0, J]
13: wbase_y ← ybatch[0, J]
14: wremainder_X ← Xbatch[J, nrow(Xbatch)]
15: wremainder_y ← ybatch[J, nrow(Xbatch)]
16: meta_ f eatures← updateEnsemble(wbase_X , wbase_y, wremainder_X , wremainder_y)
17: newbase ← newBaseModel() . Returns a new XGB instance
18: newbase ← newbase. f it(wbase_X , wbase_y)
19: meta_ f eaturesnew ← newbase.predictProba(wremainder_X)
20: meta_ f eatures← append(meta_ f eatures, meta_ f eaturesnew)
21: booster ← newbase.getBooster()
22: newbase ← newbase. f it(wremainder_X , wremainder_y, booster) . Continuation of training
23: i← length(xgbbase_models)
24: if i = nbase then
25: i← getWeakestBaseModelIndex()
26: else
27: meta_ f eatures← f illMissingMetaFeatures(meta_ f eatures) . With 0’s
28: end if
29: xgbbase_modelsi

← newbase . Add new base-model to ensemble
30: xgbbase_models_per f ormancei

← []
31: xgbbase_models_roundsi

← 0
32: if length(xgbbase_models) = 1 then . First time training meta-model
33: xgbmeta ← xgbmeta. f it(meta_ f eatures, wremainder_y)
34: else . Continuation of training for meta-model
35: boostermeta ← xgbmeta.getBooster()
36: xgbmeta ← xgbmeta. f it(meta_ f eatures, wremainder_y, boostermeta)
37: end if
38: end function

84

Chapter 4. Methodology 4.3. Proposed Solution

Algorithm 9 Pseudocode for the Proposed ASXGB’s Update Ensemble Function

1: global variables* . Includes all the global variables from Algorithm 7, 8
2: nrounds, Rounds to evaluate Level-0 Models . 1 < nrounds ≤ nbase
3: end global variables
4:
5: function UPDATEENSEMBLE(wbase_X , wbase_y, wremainder_X , wremainder_y)
6: meta_ f eatures← []
7: f eature_importance← xgbmeta.getFeatureImportance()
8: for i← 1 to length(xgbbase_models) do
9: prev_per f ormance← f eature_importance[i ∗ 2] + f eature_importance[(i ∗ 2) + 1]

10: j← xgbbase_models_roundsi
%n_rounds

11: xgbbase_models_per f ormancei,j
← prev_per f ormance

12: xgbbase_models_roundsi
← xgbbase_models_roundsi

+ 1
13: boosteri ← xgbbasei

.getBooster()
14: xgbbasei

← xgbbasei
. f it(wbase_X , wbase_y, boosteri)

15: meta_ f eaturesbasei
← xgbbasei

.predictProba(wremainder_X)
16: meta_ f eatures← append(meta_ f eatures, meta_ f eaturesbasei

)
17: boosteri ← xgbbasei

.getBooster()
18: xgbbasei

← xgbbasei
. f it(wremainder_X , wremainder_y, boosteri)

19: end for
20: return← meta_ f eatures
21: end function

Algorithm 10 Pseudocode for the Proposed ASXGB’s Get Weakest Base-Model Function

1: global variables* . Includes all the global variables from Algorithm 7, 8, 9
2: end global variables
3:
4: function GETWEAKESTBASEMODELINDEX
5: worst_idx ← 0
6: worst_per f ormance← 1
7: for i← 1 to length(xgbbase_models) do
8: if xgbbase_models_roundsi

< n_rounds then
9: continue

10: end if
11: per f ormance← xgbbase_models_per f ormancei

.sum()
12: if per f ormance < worst_per f ormance then
13: worst_per f ormance← per f ormance
14: worst_idx ← i
15: end if
16: end for
17: return← worst_idx
18: end function

85

Chapter 4. Methodology 4.3. Proposed Solution

Algorithm 11 Pseudocode for the Proposed ASXGB’s Predict Function

1: global variables* . Includes all the global variables from Algorithm 7, 8, 9, 10
2: end global variables
3:
4: function PREDICT(X)
5: if length(xgbbase_models) < nbase then . Ensemble is not full, take majority vote
6: predictions← takeMajorityVote(X, xgbbase_models)
7: return← predictions
8: end if
9: meta_ f eatures← []

10: for i← 1 to length(xgbbase_models) do
11: meta_ f eaturesbasei

← xgbbasei
.predictProba(X)

12: meta_ f eatures← append(meta_ f eatures, meta_ f eaturesbasei
)

13: end for
14: predictions← xgbmeta.predict(meta_ f eatures)
15: return← predictions
16: end function

4.3.5 | Implementation Details
The code employed in the development of the proposed solution was written in Python
version 3.7.6, with the scripts also being made public on GitHub15. We opted to structure
our code as a package named ’cryptoaml’, with multiple modules and objects to break
down each process into manageable code. These modules are as follow;

� ’datareader’: This module handled the reading, pre-processing, and splitting of
data into train and test sets. For each data source described in Section 4.2.1, an ob-
ject derived from the base implementation ’_BaseDatareader.py’, was written. Each
object had its unique functionality to execute the aforementioned tasks. The only
functionality exposed by this module was a function called ’get_data()’. This took
the following arguments; data source name, a path to a .yaml configuration file
(containing file paths for the dataset), and a dictionary of keyworded arguments
consumed by the concrete implementation (**kwargs). An instance of the speci-
fied data reader based on the data source name passed, was then returned. Pan-
das16 version 1.0.1 (pandas development team, 2020; Wes McKinney, 2010) and
Scikit-Learn17 version 0.22.1 (Buitinck et al., 2013; Pedregosa et al., 2011) were the
two leading third-party libraries imported in this module, as the datasets were
converted in the form of DataFrames, and split using sklearn.model_selection
’train_test_split()’ function.

15 CryptoAml Repository: https://github.com/achmand/aml-crypto-graph
16 pandas: https://pandas.pydata.org/
17 sklearn: https://scikit-learn.org/stable/

86

https://github.com/achmand/aml-crypto-graph
https://pandas.pydata.org/
https://scikit-learn.org/stable/

Chapter 4. Methodology 4.3. Proposed Solution

� ’data_sampler.py’: This was not a module in itself, but a python script which han-
dled any data sampling techniques that were applied, to counteract class imbal-
ance. The techniques employed and described in Section 4.3.2, were implemented
using this script.

� ’tune’: Any procedures related to tuning the hyperparameters, explained in detail
in Section 4.3.3, were carried out by this module. The primary function exposed
was ’tune_model()’, which took a classifier, a training set and the properties (i.e. pa-
rameter search space) needed to tune the model, as arguments. Once this function
found the optimal hyperparameters, a trained classifier with these parameters was
returned.

� ’metrics’: Holds various scripts which exposed functionality to evaluate the classi-
fiers, such as; computing F1-Score, Precision, Recall and Confusion Matrix. It was
also utilised to output results in the form of tables and plots, which are shown in
upcoming sections. The main third-party libraries imported in this module were;
Scikit-Learn, to compute evaluation metrics, Seaborn18 version 0.10.0, and mat-
plotlib19 (Hunter, 2007) version 3.1.3 to plot graphs.

Finally, two main scripts, ’model_tuner.py’ and ’result_extractor.py’ imported this pack-
age. The ’model_tuner.py’ script was used to tune the specified classifiers and then persist
the trained models on disk. On the other hand, the ’result_extractor.py’ was executed to
load the persisted classifiers, evaluate and extract the results, and to persist the out-
comes. Both scripts, read from a .yaml configuration file, in order to run the scripts
with the specified properties (i.e. what evaluation metrics should be extracted). Jupyter
Notebooks20 were used to display all the results extracted at each experiment.

18 seaborn: https://seaborn.pydata.org
19 matplotlib: https://matplotlib.org/
20 Jupyter: https://jupyter.org/

87

https://seaborn.pydata.org
https://matplotlib.org/
https://jupyter.org/

5

Evaluation and Results

5.1 | Benchmark Models
In order to compare and contrast our proposed solution’s effectiveness when undertak-
ing the problems outlined in Section 4.2.2, multiple benchmark models needed to be
identified, to evaluate alongside our proposed models. The process leading up to the
selection of the benchmarks described below, was as follows; (i) reviewed recent litera-
ture in the same or similar domain (ii) apply critical analysis on this literature (iii) select
models which were deemed as best performing to be used as benchmarks.

5.1.1 | Random Forest
When evaluating our proposed boosting algorithms in a traditional batch learning en-
vironment (not involving data-streams), the results obtained were assessed against a
Random Forest (RF) classifier (Breiman, 2001). Similar to the models described in Sec-
tion 4.3.1, this method is also a decision tree ensemble; however, it combines base-
learners using bootstrap-aggregation and can grow in parallel. This model builds mul-
tiple decision trees on random variants of the same data, by training individual trees
on random subsets of features. The aim is to create uncorrelated grown decision trees
(high variance with low bias) to minimise the variance, which in turn reduces error. An
aggregation of the predictions made by the underlying individual sensitive/unstable
trees (unpruned/grown deep), will be averaged out through voting. The quality of the
split for individual trees is measured using Gini impurity in the implementation of this
benchmark model. The pseudocode for RF was shown in Section 2.4.1, in Algorithm 1.

The intentions for selecting this method as the leading benchmark model were; (i) its
computational efficiency due to parallelisation (ii) when compared to other approaches

89

Chapter 5. Evaluation and Results 5.1. Benchmark Models

in several domains (Rokach, 2016), it proved to be the best performing, particularly
in fraud and money laundering detection in cryptocurrencies (Bartoletti et al., 2018;
Monamo et al., 2016; Weber et al., 2019) (iii) it outperforms more complex Deep Learning
algorithms, such as Graph Convolutional Network (GCN) (Kipf and Welling, 2017), in
detecting illicit activities over the Bitcoin network (Weber et al., 2019). This classifier
was implemented using a third-party library, Scikit-Learn version 0.22.1 (Buitinck et al.,
2013; Pedregosa et al., 2011).

5.1.2 | Adaptive Random Forest
The Adaptive Random Forest (ARF) model (Gomes et al., 2017) proved to be effective
in evolving data stream environments (Boiko Ferreira et al., 2019; Montiel et al., 2020),
therefore, considering we had to evaluate a modification of gradient boosting adapted
for this environment (ASXGB), we assessed it against this model.

This incremental-learner is an adaptation of Random Forest (RF) (Breiman, 2001)
modified to work with evolving data streams. The most important aspects of this learner
are; (i) utilises resampling to produce diversity (ii) selects subsets of the features at ran-
dom for node splits, thus inducing diversity (iii) each base-learner is equipped with a
drift detector, in order to track drifting concepts on each member of the ensemble (selec-
tive resets in the event of drifts) (iv) the final prediction is based on a weighted majority
vote. Hoeffding Trees (Domingos and Hulten, 2000) are used as base-learners, together
with ADaptive WINdowing (ADWIN) (Bifet and Gavalda, 2007) as drift detectors. If a
drift warning is detected, this technique allows for training trees in the background,
to replace the active tree if a warning escalates to a drift. Pseudocode for the ARF
was shown in Section 3.2.3, Algorithm 6. The implementation for ARF classifier was
produced using Sklearn-multiflow1 (Montiel et al., 2018) version 0.4.1, and the default
parameters for this algorithm were used.

5.1.3 | Adaptive eXtreme Gradient Boosting
The Adaptive eXtreme Gradient Boosting (AXGB) algorithm (Montiel et al., 2020) is
an adaptation of XGBoost developed to handle evolving data streams, which was the
basis for our proposed solution described in Section 4.3.4; hence, it was fundamental to
compare this algorithm to the proposed Adaptive Stacked eXtreme Gradient Boosting
(ASXGB).

1 Sklearn-multiflow https://scikit-multiflow.github.io/

90

https://scikit-multiflow.github.io/

Chapter 5. Evaluation and Results 5.2. Evaluation

This algorithm is very similar to ASXGB, as both are batch-incremental learners,
consume the data-stream with the use of buffers and tumbling windows, and make use
of an ensemble of ensembles with XGBoost being the base learner. However, the final
predictions made by this algorithm is based on a majority vote taken by the underlying
ensemble. Moreover, this algorithm takes a different approach when updating the en-
semble (shown visually in Section 3.2.3, Figure 3.14), once it is full, the following occurs;
(a) push strategy: older models are removed before appending newer models, similar to
First In First Out (b) replacement strategy: older models are replaced with newer ones.

Both modifications of this algorithm (push strategy and replace strategy), together
with Adaptive Random Forest (ARF) were used as benchmark models, when assessing
ASXGB in an evolving data stream environment (handling non-stationarity). The code
required for these implementations, as well as the hyperparameters needed for each
modification, were taken from GitHub2, which was provided by the original authors of
the paper (Montiel et al., 2020).

5.2 | Evaluation
It is important to set out a plan to evaluate the previously mentioned models empir-
ically. In this section, we describe; the setup deployed in our study, the performance
metrics, the evaluation frameworks, the design of experiments and any statistical tests
employed.

5.2.1 | Setup
We carried out all development for this research on Microsoft Azure Cloud Computing
3. More specifically, on an H16m (high performance compute) instance with the follow-
ing specifications; 16 core Intel Xeon E5-2667 v3 Haswell 3.2 GHz (3.6 GHz with turbo)
with 224GB DDR4 RAM using Python version 3.7.6 and Linux Ubuntu 18.04 LTS as an
operating system. The development of our proposed solution also required the use of
various Python libraries.

5.2.2 | Performance Metrics
In order to determine the relative effectiveness of the tested models, we adopted the
use of several performance metrics. In this section, we give the rationale for selecting

2 AXGB Implementation: https://github.com/jacobmontiel/AdaptiveXGBoostClassifier
3 Microsoft Azure: https://azure.microsoft.com

91

https://github.com/jacobmontiel/AdaptiveXGBoostClassifier
https://azure.microsoft.com

Chapter 5. Evaluation and Results 5.2. Evaluation

these metrics, together with their corresponding definition. These metrics were specif-
ically selected based on the reviewed literature (Ali et al., 2015; Bartoletti et al., 2018;
Ferreira et al., 2018; Junsomboon and Phienthrakul, 2017; Tyagi and Mittal, 2020; Weber
et al., 2019), as they are measures which better capture the effectiveness of the evaluated
models on datasets with a skewed class distribution.

5.2.2.1 | Confusion Matrix

The Confusion Matrix is a table (shown below) with four different measures (binary
classification) indicating all the combinations for the actual and predicted values. The
information extracted from this table includes; (i) True Positives (TP) indicating pre-
dicted illicit transactions which are actually illicit (ii) True Negatives (TN) indicating
the predicted licit transactions which are actually licit (iii) False Positives (FP) indicat-
ing predicted illicit transactions which were not actually illicit (iv) False Negatives (FN)
indicating predicted illicit transactions which were not actually illicit.

Actual

Predicted
licit (0) illicit (1)

licit (0)
True
Negative

False
Positive

illicit (1)
False
Negative

True
Positive

5.2.2.2 | Precision

A derivative measure of the confusion matrix which can be computed as follows; Precision =
TP

TP+FP , where TP is the True Positive Rate and FP is the False Positive Rate. In the con-
text of our problem, this measure captures; the ratio between the transactions predicted
as illicit, to the actual number of illicit transactions.

5.2.2.3 | Recall

This metric is also another derivative measure of the confusion matrix. Recall quantifies
the number of correct illicit transaction predictions out of all the illicit predictions made.
Unlike Precision, this measure indicates the missed illicit predictions. Such metric can
be defined as follows; Recall = TP

TP+FN , where TP is the True Positive Rate and FN is the
False Negative Rate.

92

Chapter 5. Evaluation and Results 5.2. Evaluation

5.2.2.4 | F1-Score

The F1-Score is the harmonic mean of Precision and Recall, denoted as; F1 = 2 ∗
Precision∗Recall
Precision+Recall . This measure takes both the False Negatives and False Positives into ac-
count, however the F1-Score is unable to differentiate between good Precision or Recall.
This is due to the symmetrical nature of the formula.

5.2.2.5 | F1-Score over Time

This metric is the F1-Score over time (indexed by timestep) and has been only employed
on datasets with temporal information (Elliptic and NOAA datasets), in order to capture
any deterioration over time (Weber et al., 2019). The outcome from this measure have
been outputted in the form of a plot.

5.2.2.6 | Accuracy

Accuracy, defined as; Accuracy = TP+TN
TP+TN+FP+FN , where TP is the True Positive Rate,

TN is the True Negative Rate, FP is the False Positive Rate and FN is the False Negative
Rate. In our context, this measure captures the ratio of correct illicit or licit predictions
out of all the evaluated transactions. We did acknowledge the reviewed literature out-
lined in Section 3.2.2, stating that this score is not appropriate in datasets with class
imbalance, however, to keep inline with the primary benchmark paper (Weber et al.,
2019) this measure was reported.

5.2.3 | Evaluation Framework

Different frameworks have been employed to evaluate both the proposed and bench-
mark models, namely, the Standard Evaluation (Train/Test Split) and the Prequential
Evaluation. The latter approach evaluates adaptive learners on a data-stream which
could potentially be infinite. Conversely, the Standard approach evaluates static mod-
els on a finite dataset which is split into train and test sets. Table 5.1 shows the datasets
employed in the evaluation phase, together with the corresponding properties, experi-
ment(s) and framework(s) applied.

93

Chapter 5. Evaluation and Results 5.2. Evaluation

Datasets

Property Elliptic Eth. Illicit Acc. NOAA

N Instances 46, 564 4, 681 18, 159
N Features 94 - LF

194 - LF_NE
166 - AF
266 - AF_NE

42 8

Class Imbalance ≈ 1 : 9 Balanced ≈ 1 : 2
Temporal 49 timesteps No timesteps 606 timesteps
Experiment 1
(Standard Eval.)

3 3 3

Experiment 2
(Standard Eval.)

3 7 3

Experiment 3
(Prequential Eval.)

3 7 3

Table 5.1: Dataset(s) details and their corresponding evaluation framework. The ’N In-
stances’ shows the number of instances and ’N Features’ correspond to the number of
features. For the Elliptic dataset, four feature sets were used, ’LF’, ’LF_NE’, ’AF’ and
’AF_NE’ (explained in detail in Sections 4.2.1 and 4.2.3). The ’Class Imbalance’ indicates
the ratio between the minority to majority classes, whilst the ’Temporal’ shows the num-
ber of timesteps found in each dataset. The last three rows indicate whether a dataset
was used in the corresponding experiment, where ’3’ indicates yes and ’7’ indicates no.

5.2.3.1 | Standard Approach (Train/Test Split)

In this approach, we split the dataset into a 70/30 ratio, resulting in two different sets
- training and test sets. This approach is known to be the "Standard" when evaluating
machine learning models in a traditional environment. It has been employed in nu-
merous studies (Ferreira et al., 2018; Jullum et al., 2020; Weber et al., 2019; Zhang and
Trubey, 2019) discussed in Chapter 3. This framework has been explicitly selected to
test our models in a static environment, keeping inline with the evaluation framework
employed in the benchmark paper (Weber et al., 2019).

In our evaluation, any hyperparameter optimisation or data-sampling techniques
applied were conducted on the test set. The data with temporal information was split
based on timestep, so as not to break the sequence of time (Jullum et al., 2020; Weber
et al., 2019). In the Elliptic dataset, instances with a timestep of <= 34 were used for
training, while the following 15 timesteps were used for testing. The NOAA dataset
was split in a similar fashion, where instances with a timestep <= 424 were used as

94

Chapter 5. Evaluation and Results 5.2. Evaluation

training, and the following 182 timesteps used for evaluation. Conversely, the Ethereum
Illicit Accounts dataset was split on the number of instances, rather than, the number of
timesteps, since it did not have any temporal information. This dataset was split as
follows; (i) stratifying the dataset by class (ii) taking the first 3276 instances for training
(iii) taking the remaining 1405 instances for testing. Moreover, due to the nature of RF
and the proposed gradient boosting classifiers being non-deterministic, anytime these
models were evaluated, the evaluation underwent 100 iterations. The resulting outcome
would then be averaged as a means of getting closer to the actual effectiveness of this
model. The distribution(s) of results have been plotted via box-plots.

5.2.3.2 | Prequential Evaluation

This evaluation paradigm is usually employed when testing adaptive learners (Montiel
et al., 2020). The Prequential evaluation (predictive sequential) (Dawid, 1984) allows us
to evaluate our models in a streaming environment, and it works using the following
steps; (i) split the available dataset into batches (in our case based on timesteps) (ii)
train model on timestep t (iii) evaluate model on timestep t + 1 (iv) apply the steps
two and three to all subsequent timesteps (Dawid, 1984; Hidalgo et al., 2019). This
framework enabled us to simulate an "infinite" datastream from a finite dataset, utilise
the full dataset for evaluation (no holdout needed) and allowed for smooth plotting of a
performance metric over time (Hidalgo et al., 2019). In order to compare with previous
experiments using the standard approach, whenever we employ this framework, the
overall measure after t corresponding to the timestep which splits the test set (standard
approach) is also outputted. Ultimately, this evaluation will serve as a simulation to
real-time transaction monitoring.

5.2.4 | Design of Experiments
In this section, the design of the experiments is presented, together with flowcharts vi-
sually showing the processes required for each experiment (Figures 5.1, 5.2 and 5.3). In
each experiment, we applied non parametric statistical tests described in the studies of
Demšar (2006a) and Demšar (2006b), to confirm if any significant statistical difference
was obtained between the proposed and benchmark models over multiple datasets. In
particular, the Friedman Chi-Squared test was employed to determine if any statistical
difference was present between the evaluated models (α ≤ 0.05). This test was followed
by the post-hoc Nemenyi test, implemented to pinpoint the models which were statis-
tically different. It is worth noting that Experiment 1 and 2 were conducted in a tradi-
tional batch learning environment (Section 5.2.3.1), while Experiment 3 was conducted

95

Chapter 5. Evaluation and Results 5.2. Evaluation

in a data-stream environment (Section 5.2.3.2). The following third-party libraries were
imported to execute such tests; SciPy (Virtanen et al., 2020) version 1.4.1 and Orange4

(Demšar et al., 2013) version 3.23.1.

5.2.4.1 | Experiment 1

In this experiment, we test hypothesis 1 as defined in Table 4.1. We hypothesise that
decision-tree based gradient boosting can improve on the classification of licit-or-illicit
activities on both account and transaction level detection, when compared to Random
Forest (RF) (extension of bootstrap aggregation). This experiment showed whether gra-
dient boosting outperformed RF when evaluated against several datasets. More im-
portantly, we were able to verify whether our proposed models obtained better results
when compared to the best-performing model (RF), provided by the principal bench-
mark paper (Weber et al., 2019). In order to do so, we replicated the implementation
of RF on the Elliptic dataset using the suggested hyperparameters (50 estimators and
50 max features), to obtain similar results reported in the paper, as shown in Chapter 3,
Table 3.2. Gradient Boosting algorithms (XGBoost, LGBM and CatBoost) underwent hy-
perparameter optimisation before being evaluated. As for the datasets, all three datasets
mentioned above were employed in this experiment. In order to keep inline with the
primary benchmark paper, all the feature sets mentioned in Section 4.2.3 were tested.

Figure 5.1: Flowchart for Experiment 1.

4 Orange Python: https://orange-data-mining-library.readthedocs.io/en/latest/#reference

96

https://orange-data-mining-library.readthedocs.io/en/latest/##reference

Chapter 5. Evaluation and Results 5.2. Evaluation

5.2.4.2 | Experiment 2

In this experiment, we address hypothesis 2 as defined in Table 4.1. We hypothe-
sise that decision-tree based gradient boosting, in conjunction with data-sampling tech-
niques, can further improve on the classification of licit-or-illicit activities detection at
a transactional-level. From this stage onwards, the primary focus shifted towards on
transaction-level detection as it permits online detection. In this experiment, we were
able to identify whether the implemented data-sampling techniques reduced the False-
Negative rate (via Recall measure). A thorough evaluation was also conducted, which
helped us to identify the effects of the selected techniques on different models, while
also taking note of other performance metrics over Recall (identifying any trade-offs).
In this experiment, only the Elliptic and NOAA datasets were utilised. The RF model un-
derwent parameter optimisation in this experiment, since the primary transaction-level
benchmark dataset was sampled, and the suggested optimal parameters may have not
applied on such a sampled dataset.

Figure 5.2: Flowchart for Experiment 2.

97

Chapter 5. Evaluation and Results 5.3. Results for Experiment 1

5.2.4.3 | Experiment 3

In this experiment, we test hypothesis 3 as defined in Table 4.1. We hypothesise that
Adaptive Stacked eXtreme Gradient Boosting (ASXGB), developed to handle concept
drift, can further improve on the classification of licit-or-illicit transactions, in a stream
environment. Our last experiment helped us to evaluate our adaptation of XGBoost
to handle non-stationary data streams. More importantly, we were able to compare
and contrast against other various techniques, in particular, ARF. As stated, hyperpa-
rameter optimisation and data-sampling techniques were not investigated during this
experiment due to time constraints.

Figure 5.3: Flowchart for Experiment 3.

5.3 | Results for Experiment 1
Inline with Objective 1, this experiment tested whether decision-tree based gradient
boosting can improve on the classification of licit-or-illicit activities on both account
and transaction level detection, when compared to Random Forest (RF), as referred to
in Table 4.1. To highlight the performance efficiency for each evaluated model, Table 5.2
displays the results on the Elliptic dataset (Elliptic, 2020; Weber et al., 2019), when evalu-
ating the notion of detecting illicit activities at a transactional-level. The benchmark RF
was fitted using the suggested hyperparameters in the study conducted by Weber et al.
(2019), to reproduce equivalent results. The gradient boosting algorithms produced rel-

98

Chapter 5. Evaluation and Results 5.3. Results for Experiment 1

atively better results when hyperparameter tuning was applied, except for the CatBoost
algorithm and XGBoost on the ’LF_NE’ feature set, which suffered from a slight degra-
dation of −0.006 in terms of Precision. The optimal hyperparameters found for each
tuned model are shown in Listings from B.1 to B.12, in Appendix B. From Table 5.2, it is
evident that the ’AF’ and ’AF_NE’ achieved better results across all classifiers, leading
to the decision to disregard the other two feature sets, in the upcoming experiments.
It can be deduced that the best performing classifier was the tuned LGBMAF, as it ob-
tained the highest scores in 3 out of 4 metrics. In order to adequately capture how the
results for the best performing models and the benchmark were derived, the confusion
matrices for RF, XGBoost, and LGBM on both the ’AF’ and ’AF_NE’, are shown in Ta-
ble 5.3. Figures 5.4 and 5.5 display the F1-Score when evaluating on the test set over
incrementing timesteps, for the ’AF’ and ’AF_NE’ feature sets, respectively. These fig-
ures are displayed in this section so as to be able to compare the outcomes over time
with the results obtained in the following experiments.

Figure 5.4: F1-Score results indexed by time for the tuned gradient boosting algorithms
and the benchmark, over the test set (timestep ≥ 35), when evaluating on the Elliptic
dataset using the ’AF’ feature set. The results are shown for the following models; RF
(Red), XGBoost (Green), LGBM (Violet) and CatBoost (Yellow).

The Ethereum Illicit Accounts dataset (Farrugia et al., 2020) was employed to extract
the following results, so as to evaluate the concept of detecting illicit activities at an
account-level. Table 5.4 shows the performances for each tested model. Since the opti-
mal hyperparameters were still unknown for the benchmark RF model, this underwent
hyperparmaeter optimisation. The optimal hyperparameters found during this test are
shown in Listings B.13 to B.16, in Appendix B. From the results in Table 5.4, it is appar-
ent that tuning the hyperparameters (shown under ’Tuned Hyperparameters’ in the table),

99

Chapter 5. Evaluation and Results 5.3. Results for Experiment 1

Exp.1 (Elliptic dataset) - Gradient Boosting against Random Forest

Default Hyperparameters Tuned Hyperparameters

Model Accuracy Precision Recall F1 Accuracy Precision Recall F1

XGBLF 0.974 0.877 0.702 0.779 0.976 0.908 0.700 0.790
XGBLF_NE 0.978 0.988* 0.665 0.795 0.977 0.982 0.665 0.793
XGBAF 0.977 0.902 0.723 0.803 0.978 0.921 0.732* 0.815
XGBAF_NE 0.979* 0.979 0.693 0.812 0.979* 0.986 0.692 0.813
LGBMLF 0.974 0.861 0.711 0.779 0.975 0.888 0.702 0.784
LGBMLF_NE 0.978 0.977 0.681 0.803 0.978 0.984 0.664 0.793
LGBMAF 0.979* 0.931 0.723 0.814 0.979* 0.932 0.732* 0.820*
LGBMAF_NE 0.979* 0.983 0.689 0.810 0.979* 0.985 0.695 0.815
CATLF 0.976 0.907 0.701 0.791 0.976 0.892 0.715 0.793
CATLF_NE 0.978 0.981 0.680 0.803 0.978 0.975 0.672 0.796
CATAF 0.979* 0.949 0.721 0.820* 0.979* 0.936 0.728 0.819
CATAF_NE 0.979* 0.983 0.696 0.815 0.979* 0.975 0.691 0.809

Suggested Hyperparameters

RFLF 0.973 0.868 0.688 0.768 / / / /
RFLF_NE 0.978 0.956 0.697 0.806 / / / /
RFAF 0.977 0.897 0.721 0.800 / / / /
RFAF_NE 0.979* 0.958 0.715 0.819 / / / /

Table 5.2: Results in this table show the mean performance over 100 runs for the pro-
posed gradient boosting algorithms (XGBoost, LGBM, and CatBoost) and the bench-
mark RF classifier, extracted in Experiment 1, when evaluated on the Elliptic test set
(16670 instances, where timestep timestep ≥ 35), on all feature sets (’LF’, ’LF_NE’, ’AF’,
and ’AF_NE’). Outcomes highlighted in bold indicate the best score for a specific section
(defaults or tuned hyperparameters), while the ones appended with an ’*’ indicate the
best score from the overall results.

produced better results across all classifiers and almost all metrics, in comparison to
the default hyperparameters (shown under ’Default Hyperparameters’ in the table). The
tuned XGBoost classifier reigned superior in this test, as it obtained the highest scores in
3 out of all the reported metrics, with the default version obtaining the highest in terms
of Precision. Overall, the gradient boosting algorithms outperformed the benchmark
RF model, as these algorithms achieved the highest scores for each reported metric.
The Confusion matrices shown in Table 5.5, better explain how these reported results
(shown in Table 5.4) were derived.

The same procedures employed to evaluate the Elliptic and Ethereum Illicit Accounts
datasets, were implemented on the supplementary NOAA dataset. Table 5.6 displays the
reported results for this test. Similar to the previous two tests, the models with tuned

100

Chapter 5. Evaluation and Results 5.3. Results for Experiment 1

0 1

0′ 15497 TN 90 FP
1′ 302 FN 781 TP

(1) RFAF

0 1

0′ 15553 TN 34 FP
1′ 308 FN 775 TP

(2) RFAF_NE

0 1

0′ 15519 TN 68 FP
1′ 291 FN 792 TP

(3) T_XGBAF

0 1

0′ 15576 TN 11 FP
1′ 333 FN 750 TP

(4) T_XGBAF_NE

0 1

0′ 15529 TN 58 FP
1′ 290 FN 793 TP

(5) T_LGBMAF

0 1

0′ 15575 TN 12 FP
1′ 331 FN 752 TP

(6) T_LGBMAF_NE

Table 5.3: These results show the Confusion Matrices for the best performing tuned
gradient boosting algorithms and the benchmark RF classifiers in Experiment 1. The re-
sults for the ’AF’ and ’AF_NE’ are shown, and each model was trained (29894 instances,
where timestep ≤ 34) and tested (16670 instances, where timestep ≥ 35) on the Elliptic
dataset. In the tables above, columns represent the predicted outcome and rows repre-
sent the actual outcome. Models named with a ’T_’ prefix refer to the tuned version.

Figure 5.5: F1-Score results indexed by time for the tuned gradient boosting algorithms
and the benchmark, over the test set (timestep ≥ 35), when evaluating on the Elliptic
dataset using the ’AF_NE’ feature set. The results are shown for the following models;
RF (Red), XGBoost (Green), LGBM (Violet) and CatBoost (Yellow).

hyperparameters produced relatively better results, except for the CatBoost classifier, as
shown in Table 5.6. The optimal hyperparameters found during this test are shown in
Listings B.17 to B.20, in Appendix B. The best performing model was the tuned LGBM,
as it was able to obtain the highest scores in all metrics. Inline with the previous tests, the
gradient boosting models outperformed the benchmark RF model overall, as these mod-
els performed the best for all reported metrics. Table 5.7 shows the Confusion matrices,
followed by Figure 5.6, which shows the F1-Score for each timestep when evaluating on

101

Chapter 5. Evaluation and Results 5.3. Results for Experiment 1

Exp.1 (Ethereum Illicit Accounts dataset) - Gradient Boosting against Random Forest

Default Hyperparameters Tuned Hyperparameters

Model Accuracy Precision Recall F1 Accuracy Precision Recall F1

XGB 0.981 0.989* 0.969 0.979 0.984* 0.985 0.981* 0.983*
LGBM 0.978 0.984 0.968 0.976 0.981 0.983 0.977 0.980
CAT 0.980 0.980 0.977 0.979 0.980 0.981 0.977 0.979

RF 0.973 0.982 0.959 0.970 0.974 0.983 0.961 0.972

Table 5.4: Results in this table show the mean performance over 100 runs for the pro-
posed gradient boosting algorithms (XGBoost, LGBM, and CatBoost) and the bench-
mark RF classifier, extracted in Experiment 1, when evaluated on the Ethereum Illicit
Accounts test set (1405 instances). Outcomes highlighted in bold indicate the best score
for a specific section (defaults or tuned hyperparameters), while the ones appended
with an ’*’ indicate the best score from the overall results.

0 1

0′ 739 TN 12 FP
1′ 27 FN 627 TP

(1) RF

0 1

0′ 740 TN 11 FP
1′ 26 FN 628 TP

(2) T_RF

0 1

0′ 744 TN 7 FP
1′ 20 FN 634 TP

(3) XGB

0 1

0′ 741 TN 10 FP
1′ 12 FN 642 TP

(4) T_XGB

0 1

0′ 741 TN 10 FP
1′ 21 FN 633 TP

(5) LGBM

0 1

0′ 740 TN 11 FP
1′ 15 FN 639 TP

(6) T_LGBM

0 1

0′ 738 TN 13 FP
1′ 15 FN 639 TP

(7) CAT

0 1

0′ 739 TN 12 FP
1′ 15 FN 639 TP

(8) T_CAT

Table 5.5: These results show the Confusion Matrices for the gradient boosting algo-
rithms and the benchmark RF classifiers in Experiment 1. Each model was trained (3276
instances) and tested (1405 instances) on the Ethereum Illicit Accounts dataset. In the ta-
bles above, columns represent the predicted outcome and rows represent the actual
outcome. Models named with a ’T_’ prefix refer to the tuned version.

the test-set.

Lastly, for this experiment, several statistical tests were applied to identify any sta-
tistical differences between the reported results. Box-plots were plotted for the Preci-
sion, Recall, and F1-Score results obtained when evaluating on multiple datasets. These
box plots helped us to visually identify the most stable models (less variation in the re-
ported results) when taking into consideration that each model was ran for 100 times.

102

Chapter 5. Evaluation and Results 5.3. Results for Experiment 1

Exp.1 (NOAA weather dataset) - Gradient Boosting against Random Forest

Default Hyperparameters Tuned Hyperparameters

Model Accuracy Precision Recall F1 Accuracy Precision Recall F1

XGB 0.776 0.729 0.594 0.655 0.785 0.749 0.596 0.664
LGBM 0.784 0.735 0.617 0.671 0.795* 0.750* 0.639* 0.690*
CAT 0.792 0.748 0.630 0.684 0.790 0.744 0.629 0.682

RF 0.78 0.742 0.589 0.657 0.784 0.748 0.595 0.662

Table 5.6: Results in this table show the mean performance over 100 runs for the pro-
posed gradient boosting algorithms (XGBoost, LGBM, and CatBoost) and the bench-
mark RF classifier, extracted in Experiment 1, when evaluated on the NOAA test set
(5439 instances, where timestep ≥ 425). Outcomes highlighted in bold indicate the
best score for a specific section (defaults or tuned hyperparameters), while the ones
appended with an ’*’ indicate the best score from the overall results.

0 1

0′ 3100 TN 397 FP
1′ 799 FN 1143 TP

(1) RF

0 1

0′ 3107 TN 390 FP
1′ 787 FN 1155 TP

(2) T_RF

0 1

0′ 3069 TN 428 FP
1′ 789 FN 1153 TP

(3) XGBoost

0 1

0′ 3109 TN 388 FP
1′ 784 FN 1158 TP

(4) T_XGBoost

0 1

0′ 3065 TN 432 FP
1′ 744 FN 1198 TP

(5) LGBM

0 1

0′ 3083 TN 414 FP
1′ 700 FN 1242 TP

(6) T_LGBM

0 1

0′ 3084 TN 413 FP
1′ 719 FN 1223 TP

(7) CatBoost

0 1

0′ 3077 TN 420 FP
1′ 721 FN 1221 TP

(8) T_CatBoost

Table 5.7: These results show the Confusion Matrices for the gradient boosting algo-
rithms and the benchmark RF classifiers in Experiment 1. Each model was trained
(12720 instances, where timestep ≤ 424) and tested (5439 instances, where timestep ≥
425) on the NOAA dataset. In the tables above, columns represent the predicted out-
come and rows represent the actual outcome. Models named with a ’T_’ prefix refer to
the tuned version.

Figures C.1 to C.4 in Appendix C, show the box-plots for the Elliptic dataset where LGBM
is the most stable model for almost all the reported metrics across all tested feature sets.
Figure C.5 in Appendix C, show the box-plot for the Ethereum Illicit Accounts dataset,
where XGBoost is the most stable for almost all the reported metrics. Figures C.6 in
Appendix C, show the box-plot for the supplementary NOAA dataset, where LGBM is

103

Chapter 5. Evaluation and Results 5.3. Results for Experiment 1

Figure 5.6: F1-Score indexed by time, when evaluating the proposed and benchmark
models on the NOAA test set (5439 instances, where timestep ≥ 425). Each column in
this bar chart represent 7 timesteps, so the first column represents 425 to 431, the second
bar represents 432 to 438, and so on. The results are shown for the following models; RF
(Red), XGBoost (Green), LGBM (Violet) and CatBoost (Yellow).

the most stable for almost all the reported metrics. To test if there were any statisti-
cal differences between the models, when evaluated on the Elliptic (transactional-level
detection) and the Ethereum Illicit Accounts (account-level detection) datasets, a non-
parametric version of the t-test was employed. The decision to apply a non-parametric
hypothesis test over a parametric one, was taken due to the results (over a 100 runs) not
being normally distributed. The scipy.stats.normaltest was applied to test for normality,
based on the method described by Pearson et al. (1977). The Wilcoxon signed-rank test
was employed to compare whether two classifiers have the same performance power
statistically, or if one is better than the other. The null hypothesis states that the median
difference is equal to 0 (same performance). For the Elliptic dataset, we compared the dis-
tribution which produces the highest mean score obtained by the benchmark, against
the distribution that produced the highest mean score, obtained by the proposed tuned
gradient boosting algorithms. Table 5.8 shows the results obtained during this test.

The same procedure was applied to the reported results obtained when evaluating
on the Ethereum Illicit Accounts dataset, and the outcomes are shown in Table 5.9.

Furthermore, statistical significance for Recall, Precision, and F1-Score between clas-
sifiers over multiple datasets - Elliptic with LF, LF_NE, AF, and AF_NE feature sets,
along with Ethereum Illicit Accounts dataset was also tested. The Friedman Chi-Squared
test was conducted on the following metrics; Precision, Recall, and F1-Score, which out-
putted the following p-values; 0.037, 0.706, and 0.642, respectively. It was established,

104

Chapter 5. Evaluation and Results 5.3. Results for Experiment 1

Boosting (Mean Score) Benchmark (Mean Score) Metric Outcome (p-value < 0.05)

T_XGBAF_NE (0.986) RFAF_NE (0.958) Precision reject H0
T_XGBAF (0.732) RFAF (0.721) Recall reject H0
T_LGBMAF (0.732) RFAF (0.721) Recall reject H0
T_LGBMAF (0.820) RFAF_NE (0.819) F1-Score reject H0

Table 5.8: These results were obtained when applying the Wilcoxon signed-rank test
(significance level of 0.05), in order to check for statistical differences between the re-
ported results during the Elliptic dataset (transactional-level detection) evaluation. Mod-
els named with a ’T_’ prefix refer to the tuned version.

Boosting (Mean Score) Benchmark (Mean Score) Metric Outcome (p-value < 0.05)

T_XGB (0.985) T_RF (0.983) Precision reject H0
T_XGB (0.981) T_RF (0.961) Recall reject H0
T_XGB (0.983) T_RF (0.972) F1-Score reject H0

Table 5.9: These results were obtained when applying the Wilcoxon signed-rank test
(significance level of 0.05), in order to check for statistical differences between the re-
ported results during the Ethereum Illicit Accounts dataset (account-level detection) eval-
uation. Models named with a ’T_’ prefix refer to the tuned version.

that at least two of the tested classifiers obtained Precision scores which were statisti-
cally different (0.037 ≤ 0.05). The Nemenyi post-hoc test was then carried out, so as to
identify which classifiers across all datasets, are significant from each other in terms of
Precision . The resulting outcome is shown in the Nemenyi Critical Difference diagram,
in Figure 5.7. Since the average ranks for both the tuned XGBoost and LGBM differ from
the critical difference (1.91), as shown in this figure, these two models are statistically
different from the RF benchmark.

CD = 1.91

1 2 3 4

xgb
lgbm

rf
cat

Figure 5.7: Nemenyi Post-Hoc test when evaluating statistical difference for Precision in
Experiment 1. Models which are not connected to each other, are statistically different
(α = 0.05)

The CatBoost classifier was dropped for the upcoming experiments, as it was out-
performed by the other two gradient boosting algorithms on all the tested datasets, as
shown in Tables 5.2, 5.4, and 5.6.

105

Chapter 5. Evaluation and Results 5.4. Results for Experiment 2

5.4 | Results for Experiment 2
Inline with Objective 2, this experiment tested whether decision-tree based gradient
boosting, in conjunction with data-sampling techniques, can further improve on the
classification of licit-or-illicit activities detection at a transactional-level, as referred to
in Table 4.1. In this analysis the following data-sampling techniques; Neighbourhood
Cleaning Rule (NCL), Synthetic Minority Over-Sampling (SMOTE), and NCL-SMOTE
were applied on both the Elliptic and NOAA datasets.

Since NCL, SMOTE, and NCL-SMOTE were used to sample the Elliptic dataset, the
number of instances utilised during the training phase changed by; −1203, +22970,
and +20564, respectively. Table 5.10, shows the results obtained by the tested models
on the sampled Elliptic dataset. Contrary to the first experiment, hyperparameter opti-
misation was applied to the benchmark RF classifier, as the optimal hyperparameters
were still unknown for the sampled Elliptic dataset. Overall, hyperparameter optimi-
sation produced better results, as shown in Table 5.10; however, it is evident that the
Recall score seems to degrade at the expense of improving the Precision in some clas-
sifiers, most notably, when applied to the NCL_SMOTE_XGBAF model, where Recall
degraded by −0.8%. The optimal hyperparameters found during this test are shown in
Listings B.21 to B.38, in Appendix B. The highest scores for Accuracy, Precision, Recall,
and F1-Score, all of which are shown in Table 5.10, were obtained by; RFAF_NE in con-
junction with NCL, tuned XGBAF_NE in conjunction with NCL, XGBAF in conjunction
with NCL-SMOTE, and RFAF_NE in conjunction with NCL, respectively. Comparing
these results with those in Table 5.2 (Experiment 1), it is evident that overall the RF clas-
sifier seemed to benefit the most from the use of Data-Sampling techniques. Nonethe-
less, there were slight improvements when these techniques were employed with the
proposed gradient boosting algorithms, especially the 1% improvement in Recall. This
increase is significant since the Confusion matrices displayed in Table 5.3 in Experiment
1, seem to indicate that there is a high level of False Negatives, with the lowest being
290. To compare and contrast against the previous experiment, the Confusion matri-
ces for the models which obtained the top six Recall scores, were plotted and shown in
Table 5.11. Five out of six models in this table obtained a lower False Negatives count
than the lowest score obtained in Experiment 1, with the NCL− SMOTE_XGBAF model
having the highest difference, with 11 less False Negatives. Lastly, Figure 5.8 shows the
F1-Score over the test time span when NCL was applied (selected due to it being the
Data-Sampling technique which obtained the highest F1-Score). When comparing this
figure with Figures 5.4 and 5.5 in Experiment 1, it can be noted that there were very min-
imal improvements, and the problem of non-stationarity is still impeding performance.

106

Chapter 5. Evaluation and Results 5.4. Results for Experiment 2

Exp.2 (Sampled Elliptic dataset) - Gradient Boosting against Random Forest

Default Hyperparameters Tuned Hyperparameters

Model Accuracy Precision Recall F1 Accuracy Precision Recall F1

NCL_XGBAF 0.977 0.911 0.724 0.807 0.978 0.913 0.734 0.814
NCL_XGBAF_NE 0.979 0.966 0.699 0.811 0.979 0.985* 0.687 0.809
SMOTE_XGBAF 0.978 0.904 0.731 0.809 0.980 0.939 0.735 0.824
SMOTE_XGBAF_NE 0.980 0.976 0.704 0.818 0.980 0.975 0.716 0.826
NCL_SMOTE_XGBAF 0.976 0.875 0.742* 0.803 0.979 0.924 0.734 0.818
NCL_SMOTE_XGBAF_NE 0.979 0.945 0.711 0.811 0.980 0.965 0.721 0.825
NCL_LGBMAF 0.977 0.905 0.724 0.805 0.978 0.918 0.732 0.814
NCL_LGBMAF_NE 0.979 0.974 0.700 0.815 0.979 0.980 0.688 0.809
SMOTE_LGBMAF 0.976 0.883 0.735 0.802 0.980 0.939 0.733 0.823
SMOTE_LGBMAF_NE 0.979 0.955 0.711 0.815 0.980 0.980 0.705 0.820
NCL_SMOTE_LGBMAF 0.976 0.863 0.741 0.797 0.980 0.942 0.732 0.824
NCL_SMOTE_LGBMAF_NE 0.979 0.938 0.721 0.815 0.980 0.972 0.708 0.819

NCL_RFAF 0.979 0.940 0.725 0.819 0.979 0.945 0.726 0.821
NCL_RFAF_NE 0.981* 0.973 0.721 0.828 0.981* 0.977 0.723 0.831*
SMOTE_RFAF 0.978 0.922 0.720 0.808 0.978 0.929 0.721 0.812
SMOTE_RFAF_NE 0.979 0.955 0.717 0.819 0.980 0.965 0.722 0.826
NCL_SMOTE_RFAF 0.975 0.875 0.723 0.792 0.976 0.878 0.725 0.794
NCL_SMOTE_RFAF_NE 0.979 0.933 0.723 0.815 0.979 0.945 0.726 0.821

Table 5.10: Results in this table show the mean performance over 100 runs for the pro-
posed gradient boosting algorithms (XGB and LGBM) and the benchmark RF classifier,
extracted in Experiment 2 when evaluated on the Elliptic test set (timestep ≥ 35), on
two different feature sets - ’AF’, ’AF_NE’. All the evaluated models were fitted on three
different sampled training sets (timestep≤ 34) using the following Data-Sampling tech-
niques; NCL, SMOTE, and NCL-SMOTE. Outcomes highlighted in bold indicate the
best score for a specific section (defaults or tuned hyperparameters), while the ones
highlighted with ’*’ indicate the best score from the overall results.

The same procedures were also applied on the supplementary NOAA dataset. Ta-
ble 5.12 shows the performances reported during this test. The optimal hyperparame-
ters found during this analysis are shown in Listings B.39 to B.47 in Appendix B. Simi-
larly to the previous test, the Recall score is the primary improvement when employing
these Data-Sampling techniques, with a difference of 0.215 (obtained by NCL_LGBM)
when compared with the highest score in Experiment 1. Although the Recall score im-
proved, the highest Precision score obtained degraded by 0.039, when compared to Ex-
periment 1. An improvement in the F1-Score was also seen in comparison to first ex-
periment (+0.013). Comparing the F1-Score over time, as shown in Figure 5.9 (showing
only NCL, due to it being the technique which obtained the highest F1-Score) with Fig-
ure 5.6 in Experiment 1, it can be seen that F1-Score is oscillating slightly higher than
the previous results.

107

Chapter 5. Evaluation and Results 5.4. Results for Experiment 2

0 1

0′ 15472 TN 115 FP
1′ 279 FN 804 TP

(1) NCL-SMOTE_XGBAF

0 1

0′ 15460 TN 127 FP
1′ 281 FN 802 TP

(2) NCL-SMOTE_LGBMAF

0 1

0′ 15482 TN 105 FP
1′ 287 FN 796 TP

(3) SMOTE_LGBMAF

0 1

0′ 15535 TN 52 FP
1′ 287 FN 796 TP

(4) T_SMOTE_XGBAF

0 1

0′ 15511 TN 76 FP
1′ 288 FN 795 TP

(5) T_NCL_XGBAF

0 1

0′ 15516 TN 71 FP
1′ 291 FN 792 TP

(6) T_NCL_LGBMAF

Table 5.11: Confusion matrices results for the models with lowest False Negatives when
evaluated on the sampled Elliptic dataset. Models named with a ’T_’ prefix refer to the
tuned version.

Exp.2 (Sampled NOAA dataset) - Gradient Boosting against Random Forest

Default Hyperparameters Tuned Hyperparameters

Model Accuracy Precision Recall F1 Accuracy Precision Recall F1

NCL_XGB 0.743 0.602 0.827 0.697 0.746 0.606 0.829 0.700
SMOTE_XGB 0.779 0.706 0.654 0.679 0.781* 0.711* 0.652 0.680
NCL_SMOTE_XGB 0.753 0.620 0.795 0.696 0.731 0.585 0.843 0.691
NCL_LGBM 0.733 0.587 0.854* 0.696 0.752 0.613 0.824 0.703*
SMOTE_LGBM 0.776 0.684 0.690 0.687 0.778 0.708 0.646 0.675
NCL_SMOTE_LGBM 0.736 0.593 0.832 0.692 0.736 0.593 0.834 0.693

NCL_RF 0.746 0.610 0.799 0.692 0.746 0.609 0.803 0.693
SMOTE_RF 0.771 0.679 0.679 0.679 0.771 0.677 0.686 0.682
NCL_SMOTE_RF 0.734 0.593 0.816 0.687 0.733 0.591 0.820 0.687

Table 5.12: Results in this table show the mean performance over 100 runs for the pro-
posed gradient boosting algorithms (XGB and LGBM) and the benchmark RF classifier,
extracted in Experiment 2 when evaluated on the NOAA test set (timestep ≥ 425). All
the evaluated models were fitted on three different sampled training sets (timestep ≤
424) using the following Data-Sampling techniques; NCL, SMOTE, and NCL-SMOTE.
Outcomes highlighted in bold indicate the best score for a specific section (defaults or
tuned hyperparameters), while the ones highlighted with ’*’ indicate the best score from
the overall results.

The distribution of results for both the Elliptic and NOAA datasets, are shown in
the form of box-plots in Figures C.7 to C.12 and Figures C.13 to C.15 in Appendix C,
respectively. From these box-plots LGBM showed to be the most stable relative to the

108

Chapter 5. Evaluation and Results 5.4. Results for Experiment 2

Figure 5.8: F1-Score results indexed by time for the tuned gradient boosting algorithms
and the tuned benchmark, over the test set (timestep ≥ 35), when trained on a sampled
Elliptic training set (28691 instances where timestep ≤ 34) using NCL and evaluated on
the Elliptic dataset using the ’AF’ (Top) and ’AF_NE’ (Bottom) feature sets. The results
are shown for the following models; RF (Red), XGBoost (Green) and LGBM (Violet).

other tested models, across all data-sampling methods, metrics and feature sets when
evaluating on the Elliptic dataset. The Wilcoxon signed-rank test, was utilised to test
for statistical significance, so as to prove whether Data-Sampling techniques improve
performance when applied to the Elliptic dataset. In order to do so, the tuned XGBoost
model that obtained the highest Recall in Experiment 1, was compared with the tuned
XGBoost with the highest Recall from this experiment. This procedure was also con-
ducted for the LGBM and RF classifiers. Table 5.13 shows the outcomes produced dur-
ing this hypothesis test.

109

Chapter 5. Evaluation and Results 5.5. Results for Experiment 3

Figure 5.9: F1-Score results indexed by time for the tuned gradient boosting algorithms
and the tuned benchmark, over the test set (timestep≥ 425), when trained on a sampled
NOAA training set (9229 instances where timestep ≤ 424) using NCL. The results are
shown for the following models; RF (Red), XGBoost (Green) and LGBM (Violet).

XGB

With Sampling (Mean Score) No Sampling (Mean Score) Metric Outcome (p-value < 0.05)

T_SMOTE_XGBAF (0.939) T_XGBAF (0.921) Precision reject H0

T_SMOTE_XGBAF (0.735) T_XGBAF (0.732) Recall reject H0

T_SMOTE_XGBAF (0.824) T_XGBAF (0.815) F1-Score reject H0

LGBM

T_SMOTE_LGBMAF (0.939) T_LGBMAF (0.932) Precision reject H0

T_SMOTE_LGBMAF (0.733) T_LGBMAF (0.732) Recall reject H0

T_SMOTE_LGBMAF (0.823) T_LGBMAF (0.820) F1-Score reject H0

RF

T_NCL_RFAF (0.945) RFAF (0.897) Precision reject H0

T_NCL_RFAF (0.726) RFAF (0.721) Recall reject H0

T_NCL_RFAF (0.821) RFAF (0.800) F1-Score reject H0

Table 5.13: These results were obtained when applying the Wilcoxon signed-rank test
(significance level of 0.05), in order to check for statistical differences between the
reported results during Experiment 1 (without Data-Sampling) against Experiment 2
(with Data-Sampling) when evaluating on the Elliptic dataset (transactional-level detec-
tion). Models named with a ’T_’ prefix refer to the tuned version.

5.5 | Results for Experiment 3
Inline with Objective 3, this experiment tested whether Adaptive Stacked eXtreme Gra-
dient Boosting (ASXGB), developed to handle concept drift, can further improve on

110

Chapter 5. Evaluation and Results 5.5. Results for Experiment 3

the classification of licit-or-illicit transactions, in a stream environment, as referred to
in Table 4.1. The use of various adaptive learners on both the Elliptic (transactional-
level detection) and the supplementary NOAA datasets were tested. In particular, the
following models were evaluated; Adaptive Random Forest (ARF), Adaptive eXtreme
Gradient Boosting (AXGB) with ’replacement’ updates, AXGB with ’push’ updates, and
our own proposed adaptation of XGBoost, called Adaptive Stacked eXtreme Gradient
Boosting (ASXGB). The prequential evaluation was employed during this test, meaning
that the models would be trained on timestep ti and evaluated on ti+1, until i = T (total
number of timesteps). Table 5.14 shows the results reported when evaluating on the
Elliptic dataset, on both the ’AF’ and ’AF_NE’ feature sets. The suggested hyperparam-
eters in the study conducted by Montiel et al. (2020), were used for AXGB, while the
default hyperparameters for ARF were used. For the ASXGB implementation, manual
hyperparameter tuning was employed, which resulted in the following configuration;
maximum window size was set to 2000, number of base learners was set to 5, train ra-
tio for the meta learner was set to 0.4, and the number of rounds used for evaluating
the base models was set to 5. In order to compare the results against the previous two
experiments, the models were evaluated on timesteps ≥ 5 and timesteps ≥ 35 (inline
with the previous experiments). It is clear from these results, that ARF outperformed
all the other adaptive learners, since it achieved the highest score in 3 of all the reported
metrics on both the t ≥ 35 and t ≥ 5 evaluations. Nonetheless, the proposed ASXGB
obtained the highest Recall scores in both evaluations, which was very crucial when
evaluating on the Elliptic dataset, as the main bottleneck from the previous experiments
was the high count of False Negatives. In fact, the ASXGBAF obtained a total of 251
False Negatives when evaluated on t ≥ 35. This was 28 less from Experiment 2, and
39 less from Experiment 1, when compared with the previously reported lowest False
Negatives count. It is worth noting, that even though our ASXGB ranked second in
terms of F1-Score (both t ≥ 35 and t ≥ 5 evaluations), this model shows to be the fastest
to adapt to changes (in distribution), as shown in Figures 5.10, 5.11, 5.12 and 5.13, after
timestep 43. Comparing Figures 5.10 and 5.11, with the previous F1-Score time plots
from the other experiments, it is evident that these adaptive learners are more effective
in adjusting to distributional changes over time.

These procedures were also applied on the supplementary NOAA dataset, and be-
low are the results reported during the prequential evaluation. The evaluation was only
executed on t ≥ 25 (due to time constraints t ≥ 425 was not included) and the AXGB
(with replacement update) was not tested, as it was the worst-performing in terms of
F1-Score in the evaluation conducted on the Elliptic dataset (Experiment 3 where t ≥ 5).
Table 5.15 shows the results reported during this test. Similar to the previous evaluation

111

Chapter 5. Evaluation and Results 5.5. Results for Experiment 3

Exp.3 (Elliptic dataset) - Prequential Evaluation: Adaptive Learners

timestep ≥ 35 timestep ≥ 5

Model Accuracy Precision Recall F1 Accuracy Precision Recall F1

ARFAF 0.977 0.988 0.657 0.789 0.969 0.986 0.732 0.840
ARFAF_NE 0.977 0.987 0.648 0.783 0.968 0.979 0.724 0.832
AXGB[R]AF 0.949 0.59 0.719 0.648 0.947 0.813 0.68 0.74
AXGB[R]AF_NE 0.962 0.713 0.694 0.704 0.954 0.871 0.688 0.769
AXGB[P]AF 0.947 0.572 0.722 0.639 0.948 0.778 0.738 0.757
AXGB[P]AF_NE 0.953 0.628 0.684 0.655 0.952 0.792 0.765 0.778

ASXGBAF 0.961 0.674 0.768 0.718 0.961 0.828 0.817 0.822
ASXGBAF_NE 0.958 0.663 0.728 0.694 0.96 0.813 0.831 0.822

Table 5.14: Results in this table show the performance obtained by the evaluated adap-
tive learners - ARF, AXGB with ’replacement’ updates (AXGB[R]), AXGB with ’push’
updates (AXGB[P]), and the proposed ASXGB on the Elliptic dataset using both ’AF’ and
’AF_NE’ feature sets. The results on the left show the reported scores when the models
were evaluated after t ≥ 35, and on the right after t ≥ 5. Outcomes highlighted in bold
indicate the best score for a specific section.

Figure 5.10: F1-Score results indexed by time for the evaluated adaptive learners, when
evaluating on the Elliptic dataset on ’AF’ feature set, with t ≥ 35. The results are shown
for the following models; ARF (Red), AXGB with replacement (Green), AXGB with push
(Violet), and the proposed ASXGB (Yellow).

(Elliptic - Experiment 3), our proposed ASXGB obtained the highest score in terms of Re-
call, however, in this test it ranked last in terms of F1-Score as shown in Table 5.15 and
Figure 5.14, which can be attributed with the low Precision result. Even though the eval-
uation in this test started at t ≥ 25 (in order to simulate streaming data and utilise the

112

Chapter 5. Evaluation and Results 5.5. Results for Experiment 3

Figure 5.11: F1-Score results indexed by time for the evaluated adaptive learners, when
evaluating on the Elliptic dataset on ’AF_NE’ feature set, with t ≥ 35. The results are
shown for the following models; ARF (Red), AXGB with replacement (Green), AXGB
with push (Violet), and the proposed ASXGB (Yellow).

Figure 5.12: F1-Score results indexed by time for the evaluated adaptive learners, when
evaluating on the Elliptic dataset on ’AF’ feature set, with t ≥ 5. The results are shown
for the following models; ARF (Red), AXGB with replacement (Green), AXGB with push
(Violet), and the proposed ASXGB (Yellow).

full dataset), it is evident that overall the adaptive learners produced relatively lower
results, when comparing previous experiments where the evaluation started at t ≥ 425.

113

Chapter 5. Evaluation and Results 5.5. Results for Experiment 3

Figure 5.13: F1-Score results indexed by time for the evaluated adaptive learners, when
evaluating on the Elliptic dataset on ’AF_NE’ feature set, with t ≥ 5. The results are
shown for the following models; ARF (Red), AXGB with replacement (Green), AXGB
with push (Violet), and the proposed ASXGB (Yellow).

Exp.3 (NOAA dataset) - Prequential Evaluation: Adaptive Learners

timestep ≥ 25

Model Accuracy Precision Recall F1

ARF 0.780 0.713 0.501 0.589
AXGB[P] 0.777 0.690 0.528 0.598

ASXGB 0.696 0.516 0.570 0.542

Table 5.15: Results in this table show the performance obtained by the evaluated adap-
tive learners - ARF, AXGB with ’push’ updates (AXGB[P]), and the proposed ASXGB
on the NOAA dataset. The results show the reported scores when the models were eval-
uated after t ≥ 25. Outcomes highlighted in bold indicate the best score for a specific
section.

114

Chapter 5. Evaluation and Results 5.5. Results for Experiment 3

Figure 5.14: F1-Score results indexed by time for the evaluated adaptive learners, when
evaluating on the NOAA dataset, with t ≥ 25. The results are shown for the follow-
ing models; ARF (Red), AXGB with push (Green), AXGB with push (Violet), and the
proposed ASXGB (Yellow).

115

6

Discussion

6.1 | Improved performance using XGBoost & LGBM
at an Account and Transactional-Level

The results in Experiment 1 showed that the proposed gradient boosting algorithms
(XGBoost and LGBM) outperformed the benchmark RF classifier in identifying illicit ac-
tivities on the blockchain, both at a transactional-level (Elliptic) and at an account level
(Ethereum Illicit Accounts). With further testing, it was shown that these results (Table 5.2
and Table 5.4) had statistical significance (Tables 5.8 and 5.9). To our disappointment, the
CatBoost classifier did not produce results on par with those produced by the XGBoost
and LGBM classifiers, as the expectation was that this algorithm would at least obtain
similar results to these two models, as it was shown to outperform them in a study con-
ducted by Prokhorenkova et al. (2018). It was also shown that when evaluating on the
Elliptic dataset, the ’AF’ and ’AF_NE’ feature sets produced better results than the ’LF’
and ’LF_NE’, which is inline with the study conducted by Weber et al. (2019), hence the
use of all feature (local and aggregated features) is more beneficial in terms of perfor-
mance (all reported metrics) than making use of only local features. The scores obtained
when reproducing the results for the RF classifier, using the suggested hyperparameters,
were slightly higher than the ones reported in the original study (Weber et al., 2019)
(shown in Table 3.2). The differences between the highest performance scores for the
tested gradient boosting algorithms, against the best scores achieved by the benchmark,
across all features sets were; 0% (Accuracy), +3% (Precision), +1.1% (Recall), and +0.1%
(F1-Score). When directly comparing with the reported results from Weber et al. (2019)
study, these values are slightly higher. From the evaluation conducted on account-level
detection, each proposed gradient boosting algorithm outperformed our benchmark,

117

Chapter 6. Discussion 6.2. Transactional-Level Detection using Data-Sampling Techniques

with XGBoost being the most significant, having a difference of; +1% (Accuracy), +0.6%
(Precision), +2% (Recall), and +1.1% (F1-Score). Additionally, comparing these results
with those published in the original publication (Farrugia et al., 2020) that provided
this dataset (shown in Table 3.1 in Section 3.1), we obtained better results in terms of
F1-Score. Our proposed XGBoost, LGBM, and CatBoost obtained a difference of +2.3%,
+2%, +1.9%, respectively, in terms of F1-Score, when compared to their best performing
model (XGBoost with a different approach to tune hyperparameter than our proposed
optimisation), which obtained a score of 0.960. The positive difference in performance
between our implementation of XGBoost and the one implemented by Farrugia et al.
(2020), could be attributed to the number of hyperparameters tuned. According to Xia
et al. (2017), having a vast search space to tune an XGBoost classifier with an efficient
optimisation algorithm, can substantially improve performance and so, this study op-
timised ten hyperparameters in comparison to the three optimised by Farrugia et al.
(2020). Results obtained from the supplementary dataset reinforced the notion that the
proposed gradient boosting algorithms outperforms the benchmark RF, as the results
obtained were similar to the account-level and transactional-level evaluations.

6.2 | Further improvements at Transactional-Level
Detection using Data-Sampling Techniques

In Experiment 2 it was shown that data-sampling techniques did improve performance
for the evaluated models, when applied on the Elliptic dataset (transactional-level de-
tection). Notably, these techniques improved the overall Recall score, which inherently
reduces the False Negative count. In particular, the XGBoost with default hyperpa-
rameters, in conjunction with NCL-SMOTE on the ’AF’ feature set, enhanced this score
by 1%, from the previous highest score obtained (0.732) in Experiment 1. Similar im-
provement was achieved by the LGBM when this technique was applied, which further
reinforces the assumption that making use of this technique achieves higher Recall (Jun-
somboon and Phienthrakul, 2017). In practice, this is vital as it determines how many
illicit transactions go undetected, however, obtaining higher Recall sometimes can come
at the expense of trading off a higher Precision score, as shown in our results (Table 5.10)
and discussed by Bartoletti et al. (2018). Overall, an improvement in the other three met-
rics (Accuracy, Precision, F1-Score) could also be noted, with their statistical significance
shown in Table 5.13. Similar results were obtained on the supplementary NOAA dataset,
with the improvements being slightly better when compared to the findings obtained
on the Elliptic dataset. It is worth noting that during these two evaluations (sampled

118

Chapter 6. Discussion 6.3. Adapting to Evolving Transactional Data-Streams

Elliptic and NOAA), the Recall score was higher when default hyperparameters were
used. After tuning was applied, this score slightly degrades while the Precision score
increases. This could be attributed to this method maximising the F1-Score while being
oblivious to whether the score was attributed by good Precision or Recall, as outlined in
the objective function set in the hyperparameter optimisation technique (Section 4.3.3).

6.3 | Adapting to Evolving Transactional Data-Streams
Shifting the focus to handle the problem of non-stationary data in the Elliptic dataset,
in Experiment 3 it was shown that our adaptation of XGBoost to handle data-streams
further improved the Recall score by 2.6%. Even though the overall F1-Score is slightly
lower than the scores obtained in preceding experiments, Figures 5.10 and 5.11 show
that all the evaluated adaptive learners seem to start recovering from the drop in per-
formance (F1-Score) after timestep 43. It is worth noting that from all the F1-time plots
(Figures 5.10 , 5.11, 5.12 and 5.13) in Experiment 3, our proposed adaptation seem to re-
cover the fastest after the drop in performance (timestep 43). Moreover, the ARF learner
obtained the highest scores in Accuracy, Precision and F1-Score during this experiment.
Similarly to the reported results by Montiel et al. (2020), ARF outperformed the other
evaluated models; however, our ASXGB achieved the highest scores in terms of Recall,
and ranked second in all the other metrics. This shows that our adaptation of XGBoost is
more efficient in terms of the reported metrics, when compared to the adaptation devel-
oped by Montiel et al. (2020), which was also evaluated during this test (transactional-
level detection). Even though the adaptive learners obtained some slight improvements
and adapted through the drop in performance when evaluated on transactional-level
detection (after timestep 43), these learners performed relatively poorly when evalu-
ated on the supplementary NOAA dataset, in a stream environment. When comparing
the results with those obtained by Montiel et al. (2020), similar outcomes were obtained
when they investigated both ARF and AXGB, in terms of Accuracy. They noted that this
dataset had drifts with an unknown nature which is different, in comparison with the
Elliptic dataset which contains sudden drifts.

119

7

Conclusion and Future Work

In this work, a solution to detect illicit activity on both an account and transactional level
was presented. The study identified and tackled, inherent gaps in previous literature,
including; (i) identifying which tree-based ensemble - Random Forest (RF) (Breiman,
2001) versus Gradient Boosting (Friedman, 2001), is more suitable in the identification
of nefarious activity on the Blockchain, through a systematic evaluation including hy-
pothesis testing (ii) comparing a wide range of heuristic-based data-sampling technique
to counteract the effects of class imbalance (iii) shedding light on various techniques
which aid to mitigate the effects of concept drift, which is often overlooked in this do-
main. Through an empirical evaluation, the potential application of decision tree-based
gradient boosting algorithms, in conjunction with efficient hyperparameter optimisa-
tion and data-sampling techniques was presented. An adaptation of eXtreme Gradi-
ent Boosting (XGBoost) (Chen and Guestrin) to handle evolving data-streams (concept
drift), with the utilisation of generalised stacking (Wolpert, 1992) to update the underly-
ing ensemble (previously built learners which are no longer contributing to the overall
prediction) was also proposed and investigated.

7.1 | Revisiting Aims and Objectives
In Chapter 1, we have defined several objectives. As a first objective the following was
set; Compare the selected state-of-the-art algorithms against each other, as well as against a cho-
sen benchmark, to determine which model is most effective in the context of identifying licit-or-
illicit activities on blockchain networks, at an account and transaction level. To determine the
most effective model in the context of identifying illicit activity at a transaction and ac-
count level, two datasets were selected; Elliptic dataset (Elliptic, 2020; Weber et al., 2019),
which comprises of licit/illicit Bitcoin transactions (transactional-level detection) and

121

Chapter 7. Conclusion and Future Work 7.1. Revisiting Aims and Objectives

the Ethereum Illicit Accounts dataset (Farrugia et al., 2020) which is made up of licit/il-
licit Ethereum accounts (account-level detection). This laid the foundation to conduct a
systematic evaluation (including two statistical hypothesis tests, refer to Section 5.3) to
compare and contrast various state-of-the-art gradient boosting algorithms, in particu-
lar; XGBoost (Chen and Guestrin), LGBM (Ke et al., 2017), and CatBoost (Prokhorenkova
et al., 2018). Additionally, these were also compared against a selected benchmark, a RF
classifier. From the results obtained in the first experiment, XGBoost and LGBM showed
to be the most effective with respect to Precision, Recall and F1-Score. These best per-
forming models obtained relatively similar results, with XGBoost performing better at
an account-level, while LGBM performing better at a transactional-level, both of which
were supported with hyperparameter optimisation. Moreover, when comparing these
results against previous studies (Farrugia et al., 2020; Weber et al., 2019), performance
was improved on both account and transactional level detection, with the most notable
metric being F1-Score, where it was improved by 2.3% and 2.4%, respectively. It can
be deduced that from the results outlined in Sections 5.3 and 6.1, this study has been
able to fulfil hypothesis one (refer to Table 4.1) set out; therefore, it can be said that, yes,
decision-tree based gradient boosting is more effective in terms of performance, when
compared to RF in the context of this problem.

Moving forward to the second objective; Improve the detection of licit-or-illicit activities
for the selected state-of-the-art algorithms, through the adaptation of data sampling techniques,
while also identifying which approach works best. The utilisation of three approaches, NCL
(Laurikkala, 2001), SMOTE (Chawla et al., 2002) and NCL-SMOTE (Junsomboon and
Phienthrakul, 2017), were investigated to determine if Data-Sampling can further im-
prove performance for the evaluated models. As discussed in Chapter 4, due to time
limitations these approaches were only employed at a transactional-level. Overall, these
techniques performed relatively the same and when compared (using statistical test)
against the results obtained on the original dataset, the overall performance improved
in terms of Precision, Recall and F1-Score. The most notable score was the Recall metric,
which improved by 1% (using XGBoost in conjunction with NCL-SMOTE which is the
best approach in this context). As noted in the first experiment, the False Negative count
was quite significant when compared to the False Positive count. In practice, this is vital
as it determines how many illicit transactions go undetected and so, reducing the False
Negatives will capture more illicit transactions. It can be concluded that from the results
outlined in Sections 5.4 and 6.2, this study has been able to accomplish hypothesis two
(refer to Table 4.1) set out; therefore, it can be said that, yes, Data-Sampling techniques
in conjunction with decision-tree based gradient boosting, can further improve perfor-
mance.

122

Chapter 7. Conclusion and Future Work 7.2. Contributions

Lastly, the third objective; Improve the detection of licit-or-illicit activities at a transac-
tion level, on state-of-the-art algorithms by handling concept drift more effectively in order to
minimise performance degradation over time, thus enabling real-time transaction monitoring of
cryptocurrency. Several state-of-the-art adaptive learners were investigated to counteract
concept drift, in the context of identifying illicit transactions on the Bitcoin network, in
particular; Adaptive Random Forest (ARF) (Gomes et al., 2017), AXGB (Montiel et al.,
2020) and our proposed approach ASXGB. From the conducted prequential-evaluation,
it was evident that these adaptive learners are better than the models evaluated in the
subsequent experiments, when handling shifting distributions over time. The F1-Score
time plots have shown that our proposed adaptation, ASXGB, seems to recover rela-
tively faster (after timestep 43, as shown in Figures 5.10, 5.11, 5.12 and 5.13) than the
other tested adaptive learners. In addition, the proposed approach ranked second dur-
ing this test, just behind ARF in terms of Precision and F1-Score; however, it was con-
sidered superior in terms of Recall, further increasing the score by 2.6% when compared
against the results obtained from the second experiment. It can be deduced that from the
results outlined in Sections 5.5 and 6.3, this study has been able to accomplish hypothe-
sis three (refer to Table 4.1) set out; therefore, it can be said that, yes, Adaptive Stacked
eXtreme Gradient Boosting (ASXGB) can be utilised to handle evolving data-streams,
to reduce the effects of concept drift, thus showing potential for real-time transaction
monitoring for cryptocurrency.

7.2 | Contributions
With the achievement of the objectives highlighted above, the main contributions of this
work include;

� Demonstrating the effectiveness of Tree-structured Parzen Estimator (TPE) when
applied in conjunction with XGBoost, LGBM and CatBoost. In our experiments
we showed the increase performance of this approach when compared against the
work proposed by Farrugia et al. (2020), using the Ethereum Illicit Accounts dataset,
in terms of F1-Score.

� Further showing that decision tree-based gradient boosting algorithms, in partic-
ular Light Gradient Boosting Machine (LGBM), outperform Random Forest (RF)
in the context of detecting illicit cryptocurrency transactions (improvement on the
proposed solution by Weber et al. (2019)).

123

Chapter 7. Conclusion and Future Work 7.3. Limitations

� Demonstrating that the data-sampling technique NCL-SMOTE, improves Recall
across all the tested models when sampling the cryptocurrency transaction data,
further reducing the False Negative Rate.

� Proposed an innovative adaptation of XGBoost, Adaptive Stacked eXtreme Gradi-
ent Boosting (ASXGB), that improves the handling of concept drift which is an im-
portant data distribution feature when dealing with transaction monitoring. From
our experiments, our proposed ASXGB outperformed two state-of-the-art adap-
tive learners, namely ARF and AXGB in terms of Recall, when evaluated on the
Elliptic transactional-level dataset and another concept drift benchmark dataset.

All the software developed leading to these contributions have been open-sourced
and made publicly available on GitHub 1.

7.3 | Limitations
This proposed tool is far from perfect, and it has its limitations. It will only be able
to sift through transactions or accounts as a means of detecting illicit activity, and so,
follow-up manual work is also required to identify money laundering rings in this graph
structure. The belief is that having an effective automated tool to detect this behaviour,
coupled up with additional tools to visualise the graph structure (Singh and Best, 2019;
Weber et al., 2019), may provide AML compliance with the explainability and support
needed in the current climate of the cryptocurrency space. Another shortcoming is that
the ground-truth in this domain is hard to validate, given that most of the labelling is
done through clustering (Monamo et al., 2016), scraping online sources (i.e. forums)
(Toyoda et al., 2017, 2018) or using heuristic based reasoning approaches (Weber et al.,
2019); thus the results reported in this work and previous studies are based on subjective
information. Moreover, the evaluation conducted on various adaptive learners, includ-
ing our own proposed approach (ASXGB), did not utilise the power of Data-Sampling
techniques nor did they undergo hyperparameter optimisation, even though prior ex-
periments showed the effectiveness of these methods. This decision had to be taken as
these procedures can add another layer of complexity when incorporated with adaptive
learners training on an evolving data-stream, and given the time constraints we had to
withdraw from investigating these techniques, leaving unanswered questions such as;
"Would hyperparameter tuning and Data-Sampling techniques further improve the performance
for the evaluated adaptive learners ?". Computational power was also not considered when

1 AML-Crypto: https://github.com/achmand/aml-crypto-graph

124

https://github.com/achmand/aml-crypto-graph

Chapter 7. Conclusion and Future Work 7.4. Future Work

evaluating our ASXGB approach, and given that the meta-learner keeps learning incre-
mentally by appending new trees (as described in Section 4.3.4), this can become costly
in terms of memory consumption. Lastly, it is worth noting that the evaluated models
were tested on three datasets (one of them as supplementary data outside the domain)
due to data being sensitive and difficult to find in this area. For this study the exper-
iments were limited to the Elliptic dataset (transaction-level), Ethereum Illicit Accounts
dataset (account-level) and the NOAA weather dataset (supplementary dataset).

7.4 | Future Work
There are multiple studies which can stem from this work; however, we propose the
following prospects, which are based on the tasks we would have wanted to investigate
if time was not a consideration;

� Investigate the use of how hyperparameter optimisation and data-sampling tech-
niques, could have been integrated in our proposed adaptive learners ASXGB.
One way to achieve this could have been to sample each training batch before it is
fed to the underlying base learners and keep a reference of the previous N batches
so as to tune newly created base learners before adding to the ensemble. This
would add another layer of complexity/cost and should be investigated to find a
balance between complexity and performance.

� As pointed out in Section 7.3, the proposed ASXGB does not handle the possibil-
ity of the meta learners’ potential growth, which could result in memory issues.
Techniques to handle such a problem could be investigated; for instance, once
the meta-learner ensemble has grown to a specific threshold, one can prune older
trees. Another approach could be to swap the XGBoost meta-learner with a sim-
ple perceptron. Monitor each individual base model using ADWIN (drift detector)
(Bifet and Gavalda, 2007) and once a drift is detected, replace the base model with
a new one, and reset the coefficients of the perceptron associated with that partic-
ular model, similarly to how Ensemble of Restricted Hoeffding Trees (Bifet et al., 2012)
operate.

� Another prospect is to apply the same principles of ASXGB, to develop an adap-
tation of LGBM in order to handle evolving data-streams. It is known that LGBM
can be trained in a much faster manner than XGBoost, given that it employs a tech-
nique called ’Gradient-Based One Side Sampling’ to downsample examples based on

125

Chapter 7. Conclusion and Future Work 7.5. Final Remarks

gradients (Ke et al., 2017; Sagi and Rokach, 2018). This proposal is worth pursuing
since computation time is vital when employing models in a stream environment.

7.5 | Final Remarks
The tools proposed in this research were shown to work in a traditional-batch and
stream environments, both of which can be valuable to stakeholders such as AML com-
pliance departments and Law enforcement agencies. These tools can aid stakeholders
by reducing the workload of manual inspections, which in turn can allow resources
to be shifted elsewhere, such as, follow-up investigations from the suspected suspi-
cious behaviour detected. Given the openness of Blockchain technology, the trail of
payments can be traced, in order to pinpoint how these illicitly-gained funds are laun-
dered into the financial system. Eventually, combating money laundering and other
cryptocurrency-related crimes by the utilisation of detection systems, can reduce the
risk for users and stakeholders of becoming victims of these crimes, which in turn en-
courages the adoption of Blockchain technology.

126

A

Ethereum Illicit Accounts Feature Set

The Ethereum Illicit Accounts dataset (Farrugia et al., 2020) contains a total of 42 features
(extracted from the blockchain), with a total of 4,681 instances. All instances were la-
belled as illicit or licit accounts. The illicit accounts were acquired from Etherscamdb1,
whereby all illicit accounts listed as from the 17 of April 2019 were included in this
dataset. The table below shows a complete list of the features extracted and included in
this dataset.

1 Etherscamdb: http://etherscamdb.info/

127

http://etherscamdb.info/

Appendix A. Ethereum Illicit Accounts Feature Set

128

B

Optimal Hyperparameters from TPE

B.1 | Experiment 1
{’n_estimators’: 1585, ’learning_rate’: 0.050654853295849546, ’max_depth’: 5, ’

↪→ subsample’: 0.9317812643350265, ’colsample_bytree’: 0.6367700203690464, ’
↪→ colsample_bylevel’: 0.9168972013604229, ’min_child_weight’:
↪→ 1.1914420820435448e-06, ’reg_alpha’: 1.1044975415552232e-06, ’reg_lambda
↪→ ’: 2.3419129189402086e-05, ’gamma’: 0.000878097449991818}

Listing B.1: Optimal Hyperparameters for XGBoost - Elliptic Dataset ’LF’ Feature set

{’n_estimators’: 4885, ’learning_rate’: 0.04339929288335128, ’max_depth’: 3, ’
↪→ subsample’: 0.743276507002905, ’colsample_bytree’: 0.7960358287306276, ’
↪→ colsample_bylevel’: 0.9179800965039797, ’min_child_weight’:
↪→ 0.0010558271063347655, ’reg_alpha’: 0.00020086090356417362, ’reg_lambda’:
↪→ 7.11326230069552e-07, ’gamma’: 1.2366784965997972e-06}

Listing B.2: Optimal Hyperparameters for XGBoost - Elliptic Dataset ’LF_NE’ Feature
set

{’n_estimators’: 475, ’learning_rate’: 0.17180405341332797, ’max_depth’: 5, ’
↪→ subsample’: 0.7107204492692905, ’colsample_bytree’: 0.7610132807939545, ’
↪→ colsample_bylevel’: 0.6399663301477401, ’min_child_weight’:
↪→ 0.021463723370857116, ’reg_alpha’: 0.00013176587726054908, ’reg_lambda’:
↪→ 5.3824033197120364e-06, ’gamma’: 1.4897607985369035e-05}

Listing B.3: Optimal Hyperparameters for XGBoost - Elliptic Dataset ’AF’ Feature set

{n_estimators’: 2561, ’learning_rate’: 0.07425551644920138, ’max_depth’: 3, ’
↪→ subsample’: 0.8456188891447396, ’colsample_bytree’: 0.8625494671828154, ’

129

Appendix B. Optimal Hyperparameters from TPE B.1. Experiment 1

↪→ colsample_bylevel’: 0.662579769175881, ’min_child_weight’:
↪→ 5.725233439812487e-05, ’reg_alpha’: 3.440356098019968e-06, ’reg_lambda’:
↪→ 0.009046739391051883, ’gamma’: 0.0002974922404499394}

Listing B.4: Optimal Hyperparameters for XGBoost - Elliptic Dataset ’AF_NE’ Feature
set

{’n_estimators’: 3888, ’subsample_freq’: 1, ’learning_rate’:
↪→ 0.005284256053565403, ’num_leaves’: 56, ’colsample_bytree’:
↪→ 0.5867440901122031, ’subsample’: 0.9375299749093455, ’min_child_samples’:
↪→ 66, ’min_child_weight’: 0.014264760992663937, ’reg_alpha’:
↪→ 0.00021668874539322757, ’reg_lambda’: 2.997329007143576e-05}

Listing B.5: Optimal Hyperparameters for LGBM - Elliptic Dataset ’LF’ Feature set

{’n_estimators’: 2233, ’subsample_freq’: 1, ’learning_rate’:
↪→ 0.02599555713447133, ’num_leaves’: 802, ’colsample_bytree’:
↪→ 0.7538417724596406, ’subsample’: 0.8973858606222604, ’min_child_samples’:
↪→ 394, ’min_child_weight’: 0.0006913272092669252, ’reg_alpha’:
↪→ 4.5653205753082604e-07, ’reg_lambda’: 1.7133163555853147e-05}

Listing B.6: Optimal Hyperparameters for LGBM - Elliptic Dataset ’LF_NE’ Feature set

{’n_estimators’: 1036, ’subsample_freq’: 1, ’learning_rate’:
↪→ 0.04512826974883081, ’num_leaves’: 359, ’colsample_bytree’:
↪→ 0.8806545920095481, ’subsample’: 0.9630402764474666, ’min_child_samples’:
↪→ 327, ’min_child_weight’: 4.3230516180285375e-05, ’reg_alpha’:
↪→ 1.1165994854235954e-05, ’reg_lambda’: 2.4195307322425423e-05}

Listing B.7: Optimal Hyperparameters for LGBM - Elliptic Dataset ’AF’ Feature set

{’n_estimators’: 4261, ’subsample_freq’: 1, ’learning_rate’:
↪→ 0.09722424033543176, ’num_leaves’: 770, ’colsample_bytree’:
↪→ 0.6478101618090795, ’subsample’: 0.6139853128533745, ’min_child_samples’:
↪→ 255, ’min_child_weight’: 8.479757535852648e-06, ’reg_alpha’:
↪→ 1.3090333096292452e-07, ’reg_lambda’: 0.005951314850246193}

Listing B.8: Optimal Hyperparameters for LGBM - Elliptic Dataset ’AF_NE’ Feature set

{’iterations’: 3407, ’bootstrap_type’: ’MVS’, ’learning_rate’:
↪→ 0.09729275852441788, ’depth’: 8, ’random_strength’: 18, ’l2_leaf_reg’:
↪→ 3.609123468399048, ’subsample’: 0.9836283326148988, ’
↪→ leaf_estimation_iterations’: 7, ’rsm’: 0.3774999976158142}

Listing B.9: Optimal Hyperparameters for CatBoost - Elliptic Dataset ’LF’ Feature set

130

Appendix B. Optimal Hyperparameters from TPE B.1. Experiment 1

{’iterations’: 3766, ’bootstrap_type’: ’MVS’, ’learning_rate’:
↪→ 0.027700575068593025, ’depth’: 4, ’random_strength’: 20, ’l2_leaf_reg’:
↪→ 1.000316858291626, ’subsample’: 0.5841074585914612, ’
↪→ leaf_estimation_iterations’: 8, ’rsm’: 0.4650000035762787}

Listing B.10: Optimal Hyperparameters for CatBoost - Elliptic Dataset ’LF_NE’ Feature
set

{’iterations’: 3915, ’bootstrap_type’: ’MVS’, ’learning_rate’:
↪→ 0.03919879347085953, ’depth’: 5, ’random_strength’: 12, ’l2_leaf_reg’:
↪→ 1.466575026512146, ’subsample’: 0.6056259274482727, ’
↪→ leaf_estimation_iterations’: 7, ’rsm’: 0.8224999904632568}

Listing B.11: Optimal Hyperparameters for CatBoost - Elliptic Dataset ’AF’ Feature set

{’iterations’: 2203, ’bootstrap_type’: ’MVS’, ’learning_rate’:
↪→ 0.12073484808206558, ’depth’: 4, ’random_strength’: 8, ’l2_leaf_reg’:
↪→ 1.1098747253417969, ’subsample’: 0.6365466117858887, ’
↪→ leaf_estimation_iterations’: 6, ’rsm’: 0.8700000047683716}

Listing B.12: Optimal Hyperparameters for CatBoost - Elliptic Dataset ’AF_NE’ Feature
set

{’n_estimators’: 431, ’learning_rate’: 0.07853386099915022, ’max_depth’: 3, ’
↪→ subsample’: 0.6788149328377757, ’colsample_bytree’: 0.9055926731831192, ’
↪→ colsample_bylevel’: 0.8150557185716437, ’min_child_weight’:
↪→ 6.543265212724884e-05, ’reg_alpha’: 1.3075090623870832e-07, ’reg_lambda’:
↪→ 0.0012272847930438772, ’gamma’: 0.035718743636794725}

Listing B.13: Optimal Hyperparameters for XGBoost - Ethereum Illicit Accounts Dataset

{’n_estimators’: 122, ’subsample_freq’: 1, ’learning_rate’: 0.19232892325747805,
↪→ ’num_leaves’: 693, ’colsample_bytree’: 0.7779646637843973, ’subsample’:
↪→ 0.7061136386427012, ’min_child_weight’: 0.0001519376996130637, ’reg_alpha
↪→ ’: 0.0007499216305329894, ’reg_lambda’: 2.3537581461084842e-05}

Listing B.14: Optimal Hyperparameters for LGBM - Ethereum Illicit Accounts Dataset

{’iterations’: 130, ’bootstrap_type’: ’MVS’, ’learning_rate’: 0.1196994632, ’
↪→ depth’: 5, ’random_strength’: 2, ’l2_leaf_reg’: 2.028006554, ’subsample’:
↪→ 0.788125813, ’leaf_estimation_iterations’: 6, ’rsm’: 0.2849999964}

Listing B.15: Optimal Hyperparameters for CatBoost - Ethereum Illicit Accounts Dataset

131

Appendix B. Optimal Hyperparameters from TPE B.2. Experiment 2

{’n_estimators’: 750, ’max_samples’: 0.9989555808064626, ’max_features’: ’sqrt’}

Listing B.16: Optimal Hyperparameters for RF - Ethereum Illicit Accounts Dataset

{’n_estimators’: 686, ’learning_rate’: 0.10278359593536876, ’max_depth’: 3, ’
↪→ subsample’: 0.9669853429860304, ’colsample_bytree’: 0.9390481435192746, ’
↪→ colsample_bylevel’: 0.8259357777868539, ’min_child_weight’:
↪→ 0.23006847451636644, ’reg_alpha’: 0.9698309151946589, ’reg_lambda’:
↪→ 3.6482620406500425e-05, ’gamma’: 9.856689719822213e-05}

Listing B.17: Optimal Hyperparameters for XGBoost - NOAA Dataset

{’n_estimators’: 970, ’subsample_freq’: 1, ’learning_rate’: 0.00942139530205555,
↪→ ’num_leaves’: 247, ’colsample_bytree’: 0.9042782299701083, ’subsample’:
↪→ 0.6496983898551796, ’min_child_weight’: 0.2509419055407807, ’reg_alpha’:
↪→ 0.07504697557719497, ’reg_lambda’: 0.007102258113567796}

Listing B.18: Optimal Hyperparameters for LGBM - NOAA Dataset

{’iterations’: 2201, ’bootstrap_type’: ’MVS’, ’learning_rate’: 0.0295537468, ’
↪→ depth’: 9, ’random_strength’: 18, ’l2_leaf_reg’: 5.976006031, ’subsample
↪→ ’: 0.5883533955, ’leaf_estimation_iterations’: 4, ’rsm’: 0.2849999964}

Listing B.19: Optimal Hyperparameters for CatBoost - NOAA Dataset

{’n_estimators’: 950, ’max_samples’: 0.7803639907513293, ’max_features’: ’sqrt’}

Listing B.20: Optimal Hyperparameters for RF - NOAA Dataset

B.2 | Experiment 2

{’n_estimators’: 4488, ’learning_rate’: 0.043129412229658555, ’max_depth’: 4, ’
↪→ subsample’: 0.8752930405492565, ’colsample_bytree’: 0.5022213841856625, ’
↪→ colsample_bylevel’: 0.7294422822973423, ’min_child_weight’:
↪→ 0.0002551276759986131, ’reg_alpha’: 0.00019202859809111611, ’reg_lambda’:
↪→ 0.024104669001685553, ’gamma’: 3.42181202265282e-05}

Listing B.21: Optimal Hyperparameters for XGBoost - Elliptic Dataset ’AF’ Feature set
when sampled with Neighbourhood Cleaning Rule (NCL).

{’n_estimators’: 1260, ’learning_rate’: 0.08603443933689565, ’max_depth’: 3, ’
↪→ subsample’: 0.8832485951402574, ’colsample_bytree’: 0.5592158861348477, ’
↪→ colsample_bylevel’: 0.7251182439618324, ’min_child_weight’:

132

Appendix B. Optimal Hyperparameters from TPE B.2. Experiment 2

↪→ 0.05385358473992219, ’reg_alpha’: 5.5392592787449286e-06, ’reg_lambda’:
↪→ 1.973024595870968e-05, ’gamma’: 0.0006031140152965155}

Listing B.22: Optimal Hyperparameters for XGBoost - Elliptic Dataset ’AF_NE’ Feature
set when sampled with Neighbourhood Cleaning Rule (NCL).

{’n_estimators’: 2935, ’subsample_freq’: 1, ’learning_rate’: 0.0423035443405413,
↪→ ’num_leaves’: 821, ’colsample_bytree’: 0.729082769944796, ’subsample’:
↪→ 0.9558766592739659, ’min_child_samples’: 303, ’min_child_weight’:
↪→ 0.07736806864321738, ’reg_alpha’: 0.0006461317856670983, ’reg_lambda’:
↪→ 3.2252712450565137e-06}

Listing B.23: Optimal Hyperparameters for LGBM - Elliptic Dataset ’AF’ Feature set
when sampled with Neighbourhood Cleaning Rule (NCL).

{’n_estimators’: 473, ’subsample_freq’: 1, ’learning_rate’: 0.14489639312813868,
↪→ ’num_leaves’: 15, ’colsample_bytree’: 0.9501052853091929, ’subsample’:
↪→ 0.9999922162097159, ’min_child_samples’: 398, ’min_child_weight’:
↪→ 0.000572827524130768, ’reg_alpha’: 0.00015695279114051537, ’reg_lambda’:
↪→ 1.1835883344548447e-07}

Listing B.24: Optimal Hyperparameters for LGBM - Elliptic Dataset ’AF_NE’ Feature
set when sampled with Neighbourhood Cleaning Rule (NCL).

{’n_estimators’: 300, ’max_samples’: 0.98203901258471, ’max_features’: ’sqrt’}

Listing B.25: Optimal Hyperparameters for RF - Elliptic Dataset ’AF’ Feature set when
sampled with Neighbourhood Cleaning Rule (NCL).

{’n_estimators’: 550, ’max_samples’: 0.9152422886808692, ’max_features’: ’sqrt’}

Listing B.26: Optimal Hyperparameters for RF - Elliptic Dataset ’AF_NE’ Feature set
when sampled with Neighbourhood Cleaning Rule (NCL).

{’n_estimators’: 2468, ’learning_rate’: 0.016555234134056844, ’max_depth’: 7, ’
↪→ subsample’:0.6772966101967116, ’colsample_bytree’: 0.8750922554061572, ’
↪→ colsample_bylevel’: 0.541908774849356, ’min_child_weight’:
↪→ 5.2634493135976105e-06, ’reg_alpha’: 0.00013782852828065698, ’reg_lambda
↪→ ’: 1.9144408763587467e-05, ’gamma’: 1.2179673308658027e-06}

Listing B.27: Optimal Hyperparameters for XGBoost - Elliptic Dataset ’AF’ Feature set
when sampled with Synthetic Minority Over-Sampling (SMOTE).

133

Appendix B. Optimal Hyperparameters from TPE B.2. Experiment 2

{’n_estimators’: 4345, ’learning_rate’: 0.015002789614188404, ’max_depth’: 5, ’
↪→ subsample’: 0.6864374504940947, ’colsample_bytree’: 0.8227730263394168, ’
↪→ colsample_bylevel’: 0.564203782287485, ’min_child_weight’:
↪→ 2.7821335143885406e-06, ’reg_alpha’: 0.0003838867027467089, ’reg_lambda’:
↪→ 1.4126445257677391e-05, ’gamma’: 2.825657372266011e-07}

Listing B.28: Optimal Hyperparameters for XGBoost - Elliptic Dataset ’AF_NE’ Feature
set when sampled with Synthetic Minority Over-Sampling (SMOTE).

{’n_estimators’: 1518, ’subsample_freq’: 1, ’learning_rate’:
↪→ 0.02686341441883127, ’num_leaves’: 693, ’colsample_bytree’:
↪→ 0.5575750904771983, ’subsample’: 0.9312752561546436, ’min_child_samples’:
↪→ 392, ’min_child_weight’: 0.0002417019088245615, ’reg_alpha’:
↪→ 3.0210017424703597e-05, ’reg_lambda’: 1.9336471177832827e-05}

Listing B.29: Optimal Hyperparameters for LGBM - Elliptic Dataset ’AF’ Feature set
when sampled with Synthetic Minority Over-Sampling (SMOTE).

{’n_estimators’: 4039, ’subsample_freq’: 1, ’learning_rate’:
↪→ 0.016592784481232123, ’num_leaves’: 533, ’colsample_bytree’:
↪→ 0.6148311617055384, ’subsample’: 0.5486704069744622, ’min_child_samples’:
↪→ 354, ’min_child_weight’: 2.536410266625732e-06, ’reg_alpha’:
↪→ 2.6886397300480966e-05, ’reg_lambda’: 1.1511536602335924e-07}

Listing B.30: Optimal Hyperparameters for LGBM - Elliptic Dataset ’AF_NE’ Feature
set when sampled with Synthetic Minority Over-Sampling (SMOTE).

{’n_estimators’: 900, ’max_samples’: 0.9924762782693718, ’max_features’: ’sqrt’}

Listing B.31: Optimal Hyperparameters for RF - Elliptic Dataset ’AF’ Feature set when
sampled with Synthetic Minority Over-Sampling (SMOTE).

{’n_estimators’: 600, ’max_samples’: 0.9718394105468453, ’max_features’: ’log2’}

Listing B.32: Optimal Hyperparameters for RF - Elliptic Dataset ’AF_NE’ Feature set
when sampled with Synthetic Minority Over-Sampling (SMOTE).

{’n_estimators’: 1149, ’learning_rate’: 0.03451669333808158, ’max_depth’: 7, ’
↪→ subsample’:0.5635583977428819, ’colsample_bytree’: 0.6366853270101964, ’
↪→ colsample_bylevel’: 0.7893054408663991, ’min_child_weight’:
↪→ 4.739987190030236e-06, ’reg_alpha’: 4.6693396003499663e-07, ’reg_lambda’:
↪→ 0.0003865526336625385, ’gamma’: 2.6081434499725793e-05}

Listing B.33: Optimal Hyperparameters for XGBoost - Elliptic Dataset ’AF’ Feature set
when sampled with NCL-SMOTE.

134

Appendix B. Optimal Hyperparameters from TPE B.2. Experiment 2

{’n_estimators’: 948, ’learning_rate’: 0.1026141189677146, ’max_depth’: 7, ’
↪→ subsample’: 0.5468285060264697, ’colsample_bytree’: 0.675624306763575, ’
↪→ colsample_bylevel’: 0.7943840681950523, ’min_child_weight’:
↪→ 0.00026581370473607944, ’reg_alpha’: 1.4494911525904446e-06, ’reg_lambda
↪→ ’: 4.770670121334852e-07, ’gamma’: 3.3282488912901886e-06}

Listing B.34: Optimal Hyperparameters for XGBoost - Elliptic Dataset ’AF_NE’ Feature
set when sampled with NCL-SMOTE.

{’n_estimators’: 4178, ’subsample_freq’: 1, ’learning_rate’:
↪→ 0.008514035475086324, ’num_leaves’: 71, ’colsample_bytree’:
↪→ 0.9886521546582805, ’subsample’: 0.5832400330945102, ’min_child_samples’:
↪→ 330, ’min_child_weight’: 0.000256385409520096, ’reg_alpha’:
↪→ 2.7367542903521125e-07, ’reg_lambda’: 0.0001199777277505261}

Listing B.35: Optimal Hyperparameters for LGBM - Elliptic Dataset ’AF’ Feature set
when sampled with NCL-SMOTE.

{’n_estimators’: 834, ’subsample_freq’: 1, ’learning_rate’:
↪→ 0.043944880208222466, ’num_leaves’: 326, ’colsample_bytree’:
↪→ 0.5726058643516077, ’subsample’: 0.810451897504235, ’min_child_samples’:
↪→ 284, ’min_child_weight’: 5.832137501040796e-06, ’reg_alpha’:
↪→ 5.762231119059793e-05, ’reg_lambda’: 7.152316529235852e-05}

Listing B.36: Optimal Hyperparameters for LGBM - Elliptic Dataset ’AF_NE’ Feature
set when sampled with NCL-SMOTE.

{’n_estimators’: 950, ’max_samples’: 0.9971050029293645, ’max_features’: ’sqrt’}

Listing B.37: Optimal Hyperparameters for RF - Elliptic Dataset ’AF’ Feature set when
sampled with NCL-SMOTE.

{’n_estimators’: 850, ’max_samples’: 0.9999638105412046, ’max_features’: ’log2’}

Listing B.38: Optimal Hyperparameters for RF - Elliptic Dataset ’AF_NE’ Feature set
when sampled with NCL-SMOTE.

{’n_estimators’: 2638, ’learning_rate’: 0.050927485269579784, ’max_depth’: 9, ’
↪→ subsample’: 0.8850022065964945, ’colsample_bytree’: 0.8850022065964945, ’
↪→ colsample_bylevel’: 0.8599759362813014, ’min_child_weight’:
↪→ 0.009673382756603283, ’reg_alpha’: 9.539856882337921e-05, ’reg_lambda’:
↪→ 1.1330084820491268e-05, ’gamma’: 4.2937561466681195e-06}

Listing B.39: Optimal Hyperparameters for XGBoost - NOAA Dataset when sampled
with NCL.

135

Appendix B. Optimal Hyperparameters from TPE B.2. Experiment 2

{’n_estimators’: 2078, ’subsample_freq’: 1, ’learning_rate’:
↪→ 0.013352049256900976, ’num_leaves’: 549, ’colsample_bytree’:
↪→ 0.7105710021662228, ’subsample’: 0.8109380992594621, ’min_child_samples’:
↪→ 54, ’min_child_weight’: 0.008626487671101805, ’reg_alpha’:
↪→ 5.632256703697636e-06, ’reg_lambda’: 0.01828152288737052}

Listing B.40: Optimal Hyperparameters for LGBM - NOAA Dataset when sampled with
NCL.

{’n_estimators’: 800, ’max_samples’: 0.9915293070816315, ’max_features’: ’log2’}

Listing B.41: Optimal Hyperparameters for RF - NOAA Dataset when sampled with
NCL.

{’n_estimators’: 4664, ’learning_rate’: 0.03896337896870269, ’max_depth’: 10, ’
↪→ subsample’: 0.671870137970136, ’colsample_bytree’: 0.9023492619794203, ’
↪→ colsample_bylevel’:0.7821187110195753, ’min_child_weight’:
↪→ 0.0009120440224687303, ’reg_alpha’: 0.0004965315185823202, ’reg_lambda’:
↪→ 0.006362939210948986, ’gamma’: 0.002531642946263811}

Listing B.42: Optimal Hyperparameters for XGBoost - NOAA Dataset when sampled
with SMOTE.

{’n_estimators’: 3838, ’subsample_freq’: 1, ’learning_rate’:
↪→ 0.018885526001721917, ’num_leaves’: 531, ’colsample_bytree’:
↪→ 0.9798987810659789, ’subsample’: 0.6330725162984325, ’min_child_samples’:
↪→ 1, ’min_child_weight’: 0.000244933461981523, ’reg_alpha’:
↪→ 0.012506700853197978, ’reg_lambda’: 1.750875985194234e-06}

Listing B.43: Optimal Hyperparameters for LGBM - NOAA Dataset when sampled with
SMOTE.

{’n_estimators’: 750, ’max_samples’: 0.9564372131684578, ’max_features’: ’log2’}

Listing B.44: Optimal Hyperparameters for RF - NOAA Dataset when sampled with
SMOTE.

{’n_estimators’: 4596, ’learning_rate’: 0.04038196423627139, ’max_depth’: 6, ’
↪→ subsample’: 0.7154191406875013, ’colsample_bytree’: 0.7267352433483205, ’
↪→ colsample_bylevel’: 0.8826277282486175, ’min_child_weight’:
↪→ 0.0005482950190124504, ’reg_alpha’: 5.676983451968034e-06, ’reg_lambda’:
↪→ 7.23325209637167e-05, ’gamma’: 0.0007014525132025484}

Listing B.45: Optimal Hyperparameters for XGBoost - NOAA Dataset when sampled
with NCL-SMOTE.

136

Appendix B. Optimal Hyperparameters from TPE B.2. Experiment 2

{’n_estimators’: 1095, ’subsample_freq’: 1, ’learning_rate’: 0.0493344260557109,
↪→ ’num_leaves’: 175, ’colsample_bytree’: 0.8494418719270661, ’subsample’:
↪→ 0.9398266126294899, ’min_child_samples’: 25, ’min_child_weight’:
↪→ 1.3492254178729675e-05, ’reg_alpha’: 0.002434526892861787, ’reg_lambda’:
↪→ 1.3404496793037812e-07}

Listing B.46: Optimal Hyperparameters for LGBM - NOAA Dataset when sampled with
NCL-SMOTE.

{’n_estimators’: 150, ’max_samples’: 0.8132814756379779, ’max_features’: ’sqrt’}

Listing B.47: Optimal Hyperparameters for RF - NOAA Dataset when sampled with
NCL-SMOTE.

137

C

Supplementary Results

139

(a) Precision (b) Recall (c) F1-Score

Figure C.1: Box-plots for Precision, Recall and F1-Score, when evaluating tuned models and the benchmark with suggested
hyperparameters, on the Elliptic dataset using the ’LF’ feature set (Experiment 1: Transactional-Level Detection).

(a) Precision (b) Recall (c) F1-Score

Figure C.2: Box-plots for Precision, Recall and F1-Score, when evaluating tuned models and the benchmark with suggested
hyperparameters, on the Elliptic dataset using the ’LF_NE’ feature set (Experiment 1: Transactional-Level Detection).

(a) Precision (b) Recall (c) F1-Score

Figure C.3: Box-plots for Precision, Recall and F1-Score, when evaluating tuned models and the benchmark with suggested
hyperparameters, on the Elliptic dataset using the ’AF’ feature set (Experiment 1: Transactional-Level Detection).

(a) Precision (b) Recall (c) F1-Score

Figure C.4: Box-plots for Precision, Recall and F1-Score, when evaluating tuned models and the benchmark with suggested
hyperparameters, on the Elliptic dataset using the ’AF_NE’ feature set (Experiment 1: Transactional-Level Detection).

(a) Precision (b) Recall (c) F1-Score

Figure C.5: Box-plots for Precision, Recall and F1-Score, when evaluating tuned models on the Ethereum Illicit Accounts dataset
(Experiment 1: Account-Level Detection).

(a) Precision (b) Recall (c) F1-Score

Figure C.6: Box-plots for Precision, Recall and F1-Score, when evaluating tuned models on the NOAA dataset (Experiment 1:
Supplementary Dataset).

(a) Precision (b) Recall (c) F1-Score

Figure C.7: Box-plots for Precision, Recall and F1-Score, when evaluating tuned models and the tuned benchmark, on the
sampled Elliptic dataset using NCL, on the ’AF’ feature set (Experiment 2: Transactional-Level Detection).

(a) Precision (b) Recall (c) F1-Score

Figure C.8: Box-plots for Precision, Recall and F1-Score, when evaluating tuned models and the tuned benchmark, on the
sampled Elliptic dataset using NCL, on the ’AF_NE’ feature set (Experiment 2: Transactional-Level Detection).

(a) Precision (b) Recall (c) F1-Score

Figure C.9: Box-plots for Precision, Recall and F1-Score, when evaluating tuned models and the tuned benchmark, on the
sampled Elliptic dataset using SMOTE, on the ’AF’ feature set (Experiment 2: Transactional-Level Detection).

(a) Precision (b) Recall (c) F1-Score

Figure C.10: Box-plots for Precision, Recall and F1-Score, when evaluating tuned models and the tuned benchmark, on the
sampled Elliptic dataset using SMOTE, on the ’AF_NE’ feature set (Experiment 2: Transactional-Level Detection).

(a) Precision (b) Recall (c) F1-Score

Figure C.11: Box-plots for Precision, Recall and F1-Score, when evaluating tuned models and the tuned benchmark, on the
sampled Elliptic dataset using NCL-SMOTE, on the ’AF’ feature set (Experiment 2: Transactional-Level Detection).

(a) Precision (b) Recall (c) F1-Score

Figure C.12: Box-plots for Precision, Recall and F1-Score, when evaluating tuned models and the tuned benchmark, on the
sampled Elliptic dataset using NCL-SMOTE, on the ’AF_NE’ feature set (Experiment 2: Transactional-Level Detection).

(a) Precision (b) Recall (c) F1-Score

Figure C.13: Box-plots for Precision, Recall and F1-Score, when evaluating tuned models on the sampled NOAA dataset using
NCL (Experiment 2: Supplementary Dataset).

(a) Precision (b) Recall (c) F1-Score

Figure C.14: Box-plots for Precision, Recall and F1-Score, when evaluating tuned models on the sampled NOAA dataset using
SMOTE (Experiment 2: Supplementary Dataset).

(a) Precision (b) Recall (c) F1-Score

Figure C.15: Box-plots for Precision, Recall and F1-Score, when evaluating tuned models on the sampled NOAA dataset using
NCL-SMOTE (Experiment 2: Supplementary Dataset).

References

Shaza M Abd Elrahman and Ajith Abraham. A review of class imbalance problem. Journal of Network and
Innovative Computing, 1(2013):332–340, 2013.

Turner Adam and Irwin Angela Samantha Maitland. Bitcoin transactions: a digital discovery of illicit
activity on the blockchain. Journal of Financial Crime, 25(1):109–130, 2018.

Charu C. Aggarwal. Towards systematic design of distance functions for data mining applications. In
Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 9–18. ACM, 2003.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A next-
generation hyperparameter optimization framework. In Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery Data Mining, KDD ’19, page 2623–2631, 2019.

Aida Ali, Siti Mariyam Shamsuddin, Anca L Ralescu, et al. Classification with class imbalance problem: a
review. International Journal of Advances in Soft Computing and its Applications, 7(3):176–204, 2015.

Alhanouf Abdulrahman Saleh Alsuwailem and Abdul Khader Jilani Saudagar. Anti-money laundering
systems: a systematic literature review. Journal of Money Laundering Control, 2020.

Elli Androulaki, Ghassan O. Karame, Marc Roeschlin, Tobias Scherer, and Srdjan Capkun. Evaluating user
privacy in bitcoin. In Financial Cryptography and Data Security, pages 34–51. Springer, 2013.

H. Baek, J. Oh, C. Y. Kim, and K. Lee. A model for detecting cryptocurrency transactions with discernible
purpose. In 2019 Eleventh International Conference on Ubiquitous and Future Networks (ICUFN), pages 713–
717. IEEE, 2019.

M. Bartoletti, B. Pes, and S. Serusi. Data mining for detecting bitcoin ponzi schemes. In 2018 Crypto Valley
Conference on Blockchain Technology (CVCBT), pages 75–84. IEEE, 2018.

Gustavo E. A. P. A. Batista, Ronaldo C. Prati, and Maria C. Monard. Balancing strategies and class over-
lapping. In A. Fazel Famili, Joost N. Kok, José M. Peña, Arno Siebes, and Ad Feelders, editors, Advances
in Intelligent Data Analysis VI, pages 24–35. Springer, 2005.

155

References References

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of machine
learning research, 13:281–305, 2012.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter op-
timization. In Proceedings of the 24th International Conference on Neural Information Processing Systems,
NIPS’11, page 2546–2554, 2011.

Siddhartha Bhattacharyya, Sanjeev Jha, Kurian Tharakunnel, and J. Christopher Westland. Data mining
for credit card fraud: A comparative study. Decision Support Systems, 50(3):602–613, 2011.

Albert Bifet and Ricard Gavalda. Learning from time-changing data with adaptive windowing. In Proceed-
ings of the 2007 SIAM international conference on data mining, pages 443–448. SIAM, 2007.

Albert Bifet, Geoff Holmes, and Bernhard Pfahringer. Leveraging bagging for evolving data streams. In
Machine Learning and Knowledge Discovery in Databases, pages 135–150. Springer, 2010.

Albert Bifet, Eibe Frank, Geoff Holmes, and Bernhard Pfahringer. Ensembles of restricted hoeffding trees.
ACM Transactions on Intelligent Systems and Technology (TIST), 3(2):1–20, 2012.

L. E. Boiko Ferreira, H. Murilo Gomes, A. Bifet, and L. S. Oliveira. Adaptive random forests with resam-
pling for imbalanced data streams. In 2019 International Joint Conference on Neural Networks (IJCNN),
pages 1–6. IEEE, 2019.

D. Bratton and J. Kennedy. Defining a standard for particle swarm optimization. In 2007 IEEE Swarm
Intelligence Symposium, pages 120–127. IEEE, 2007.

Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

Leo Breiman. Pasting small votes for classification in large databases and on-line. Machine Learning, 36(1):
85–103, 1999.

Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

Danton Bryans. Bitcoin and money laundering: mining for an effective solution. Indiana Law Journal, 89(1):
441–472, 2014.

Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller, Olivier Grisel, Vlad
Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques Grobler, Robert Layton, Jake VanderPlas, Ar-
naud Joly, Brian Holt, and Gaël Varoquaux. API design for machine learning software: experiences from
the scikit-learn project. In ECML PKDD Workshop: Languages for Data Mining and Machine Learning, pages
108–122, 2013.

Chumphol Bunkhumpornpat, Krung Sinapiromsaran, and Chidchanok Lursinsap. Safe-level-smote: Safe-
level-synthetic minority over-sampling technique for handling the class imbalanced problem. In Tha-
naruk Theeramunkong, Boonserm Kijsirikul, Nick Cercone, and Tu-Bao Ho, editors, Advances in Knowl-
edge Discovery and Data Mining, pages 475–482. Springer, 2009.

Vitalik Buterin et al. A next-generation smart contract and decentralized application platform. white paper,
3(37), 2014.

156

References References

Chainalysis. The 2020 state of crypto crime. https://go.chainalysis.com/rs/503-FAP-074/images/
2020-Crypto-Crime-Report.pdf, 2020. [Online; accessed 26-May-2020].

Lakshika Sammani Chandradeva, Thushara Madushanka Amarasinghe, Minoli De Silva, Achala Chathu-
ranga Aponso, and Naomi Krishnarajah. Monetary transaction fraud detection system based on ma-
chine learning strategies. In Fourth International Congress on Information and Communication Technology,
pages 385–396, 2020.

David Chaum. Blind signatures for untraceable payments. In Advances in Cryptology, pages 199–203.
Springer, 1983.

Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. Smote: Synthetic
minority over-sampling technique. Journal of Artificial Intelligence Research, 16(1):321–357, 2002.

C Chen, A Liaw, and L Breiman. Using random forest to learn imbalanced data. techreport 666, University
of California, Berkeley, 2004.

Ke Chen, Feng-Yu Zhou, and Xian-Feng Yuan. Hybrid particle swarm optimization with spiral-shaped
mechanism for feature selection. Expert Systems with Applications, 128:140–156, 2019.

Stephen Chen, James Montgomery, and Antonio Bolufé-Röhler. Measuring the curse of dimensionality and
its effects on particle swarm optimization and differential evolution. Applied Intelligence, 42(3):514–526,
2015.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, page 785–794.

Weili Chen, Zibin Zheng, Jiahui Cui, Edith Ngai, Peilin Zheng, and Yuren Zhou. Detecting ponzi schemes
on ethereum: Towards healthier blockchain technology. In Proceedings of the 2018 World Wide Web Con-
ference, WWW ’18, page 1409–1418, 2018.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20(3):273–297, 1995.

T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13(1):
21–27, 1967.

André Luis Cristiani, Tiago Pinho da Silva, and Heloisa de Arruda Camargo. A fuzzy approach for clas-
sification and novelty detection in data streams under intermediate latency. In Brazilian Conference on
Intelligent Systems, pages 171–186. Springer, 2020.

S. Datta and A. Arputharaj. An analysis of several machine learning algorithms for imbalanced classes. In
2018 5th International Conference on Soft Computing Machine Intelligence (ISCMI), pages 22–27. IEEE, 2018.

A. P. Dawid. Present position and potential developments: Some personal views statistical theory the
prequential approach. Journal of the Royal Statistical Society: Series A (General), 147(2):278–290, 1984.

Thibault de Balthasar and Julio Hernandez-Castro. An analysis of bitcoin laundry services. In Secure IT
Systems, pages 297–312. Springer, 2017.

Janez Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine learning
research, 7:1–30, 2006a. ISSN 1532-4435.

157

https://go.chainalysis.com/rs/503-FAP-074/images/2020-Crypto-Crime-Report.pdf
https://go.chainalysis.com/rs/503-FAP-074/images/2020-Crypto-Crime-Report.pdf

References References

Janez Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of machine learning
research, 7:1–30, 2006b.

Janez Demšar, Tomaž Curk, Aleš Erjavec, Črt Gorup, Tomaž Hočevar, Mitar Milutinovič, Martin Možina,
Matija Polajnar, Marko Toplak, Anže Starič, Miha Štajdohar, Lan Umek, Lan Žagar, Jure Žbontar,
Marinka Žitnik, and Blaž Zupan. Orange: Data mining toolbox in python. Journal of machine learning
research, 14(1):2349–2353, 2013. ISSN 1532-4435.

G. Ditzler and R. Polikar. Incremental learning of concept drift from streaming imbalanced data. IEEE
Transactions on Knowledge and Data Engineering, 25(10):2283–2301, 2013.

Federico Divina, Aude Gilson, Francisco Goméz-Vela, Miguel García Torres, and José F Torres. Stacking
ensemble learning for short-term electricity consumption forecasting. Data Science and Big Data in Energy
Forecasting, 11(4):1–31, 2018.

Pedro Domingos and Geoff Hulten. Mining high-speed data streams. In Proceedings of the Sixth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’00, page 71–80, 2000.

Xibin Dong, Zhiwen Yu, Wenming Cao, Yifan Shi, and Qianli Ma. A survey on ensemble learning. Frontiers
of Computer Science, 14(2):241–258, 2020.

Dmitry Dorofeev, Marina Khrestina, Timur Usubaliev, Aleksey Dobrotvorskiy, and Saveliy Filatov. Ap-
plication of machine analysis algorithms to automate implementation of tasks of combating criminal
money laundering. In Digital Transformation and Global Society, pages 375–385. Springer, Springer Inter-
national Publishing, 2018.

Ekrem Duman and Ayse Buyukkaya. Money laundering detection using data mining. Mining Massive Data
Sets for Security: Advances in Data Mining, Search, Social Networks and Text Mining, and Their Applications
to Security, 19:287–294, 2008.

Saso Džeroski and Bernard Ženko. Is combining classifiers with stacking better than selecting the best one?
Machine learning, 54(3):255–273, 2004.

Elliptic. Elliptic preventing and detecting criminal activity in cryptocurrencies. https://www.elliptic.
co/, 2020. [Online; accessed 26-May-2020].

R. Elwell and R. Polikar. Incremental learning of concept drift in nonstationary environments. IEEE Trans-
actions on Neural Networks, 22(10):1517–1531, 2011.

European Parliament and Council. Fifth anti-money laundering di-rective (5amld), 2018. URL https:
//eur-lex.europa.eu/eli/dir/2018/843/oj. [Online; accessed 4-January-2020].

Yaya Fanusie and Tom Robinson. Bitcoin laundering: an analysis of illicit flows into digital currency
services. Center on Sanctions and Illicit Finance memorandum, 2018.

Steven Farrugia, Joshua Ellul, and George Azzopardi. Detection of illicit accounts over the ethereum
blockchain. Expert Systems with Applications, 150:113318, 2020.

Tom Fawcett. Learning from imbalanced classes. https://www.kdnuggets.com/2016/08/learning-from-
imbalanced-classes.html/, 2016. [Online; accessed March 20, 2020].

158

https://www.elliptic.co/
https://www.elliptic.co/
https://eur-lex.europa.eu/eli/dir/2018/843/oj
https://eur-lex.europa.eu/eli/dir/2018/843/oj

References References

L. E. B. Ferreira, J. P. Barddal, F. Enembreck, and H. M. Gomes. An experimental perspective on sampling
methods for imbalanced learning from financial databases. In 2018 International Joint Conference on Neural
Networks (IJCNN), pages 1–6. IEEE, 2018.

Financial Action Task Force. International standards on combating money laundering and the financ-
ing of terrorism proliferation. the fatf recommendations, 2012. URL "http://www.fatf-gafi.org/
media/fatf/documents/recommendations/pdfs/FATF_Recommendations.pdf". [Online; accessed 4-
May-2020].

Financial Action Task Force. Guidance for a risk-based approach to virtual assets and virtual asset service
providers, 2019. URL "http://www.fatf-gafi.org/media/fatf/documents/recommendations/RBA-
VA-VASPs.pdf". [Online; accessed 4-May-2020].

FinCen. Application of fincen’s regulations to certain business models involving convertible virtual cur-
rencies, 2019. URL https://www.fincen.gov/sites/default/files/2019-05/FinCEN%20Guidance%
20CVC%20FINAL%20508.pdf". [Online; accessed 4-May-2020].

Ugo Fiore, Alfredo De Santis, Francesca Perla, Paolo Zanetti, and Francesco Palmieri. Using generative
adversarial networks for improving classification effectiveness in credit card fraud detection. Information
Sciences, 479:448–455, 2019.

Eibe Frank, Geoffrey Holmes, Richard Kirkby, and Mark Hall. Racing committees for large datasets. In
Discovery Science, pages 153–164. Springer, 2002.

Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an appli-
cation to boosting. Journal of Computer and System Sciences, 55(1):119 – 139, 1997a.

Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an appli-
cation to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997b.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical learning, volume 1.
Springer, 2001.

Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of statistics,
pages 1189–1232, 2001.

Jerome H. Friedman. Stochastic gradient boosting. Computational Statistics Data Analysis, 38(4):367–378,
2002.

Julie Frizzo-Barker, Peter A. Chow-White, Philippa R. Adams, Jennifer Mentanko, Dung Ha, and Sandy
Green. Blockchain as a disruptive technology for business: A systematic review. International Journal of
Information Management, 51:102029, 2020.

A. Gaihre, S. Pandey, and H. Liu. Deanonymizing cryptocurrency with graph learning: The promises and
challenges. In 2019 IEEE Conference on Communications and Network Security (CNS), pages 1–3. IEEE, 2019.

M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera. A review on ensembles for the class
imbalance problem: Bagging-, boosting-, and hybrid-based approaches. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), 42(4):463–484, 2012.

159

" http://www.fatf-gafi.org/media/fatf/documents/recommendations/pdfs/FATF_Recommendations.pdf"
" http://www.fatf-gafi.org/media/fatf/documents/recommendations/pdfs/FATF_Recommendations.pdf"
"http://www.fatf-gafi.org/media/fatf/documents/recommendations/RBA-VA-VASPs.pdf"
"http://www.fatf-gafi.org/media/fatf/documents/recommendations/RBA-VA-VASPs.pdf"
https://www.fincen.gov/sites/default/files/2019-05/FinCEN%20Guidance%20CVC%20FINAL%20508.pdf"
https://www.fincen.gov/sites/default/files/2019-05/FinCEN%20Guidance%20CVC%20FINAL%20508.pdf"

References References

João Gama, Indrundefined Žliobaitundefined, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid
Bouchachia. A survey on concept drift adaptation. ACM computing surveys (CSUR), 46(4), 2014.

Heitor M. Gomes, Albert Bifet, Jesse Read, Jean Paul Barddal, Fabrício Enembreck, Bernhard Pfharinger,
Geoff Holmes, and Talel Abdessalem. Adaptive random forests for evolving data stream classification.
Machine Learning, 106(9):1469–1495, 2017.

Jie Gu, Yuanbing Zhou, and Xianqiang Zuo. Making class bias useful: A strategy of learning from imbal-
anced data. In Hujun Yin, Peter Tino, Emilio Corchado, Will Byrne, and Xin Yao, editors, Intelligent Data
Engineering and Automated Learning - IDEAL 2007, pages 287–295. Springer, 2007.

Haibo He, Yang Bai, E. A. Garcia, and Shutao Li. Adasyn: Adaptive synthetic sampling approach for
imbalanced learning. In 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress
on Computational Intelligence), pages 1322–1328. IEEE, 2008.

Hui Han, Wen-Yuan Wang, and Bing-Huan Mao. Borderline-smote: A new over-sampling method in
imbalanced data sets learning. In Advances in Intelligent Computing, pages 878–887. Springer, 2005.

Mikkel Alexander Harlev, Haohua Sun Yin, Klaus Christian Langenheldt, Raghava Mukkamala, and Ravi
Vatrapu. Breaking bad: De-anonymising entity types on the bitcoin blockchain using supervised ma-
chine learning. In Proceedings of the 51st Hawaii International Conference on System Sciences, pages 1–10.
HICSS, 2018.

P. Hart. The condensed nearest neighbor rule (corresp.). IEEE Transactions on Information Theory, 14(3):
515–516, 1968.

Tamer Hossam Helmy, Mohamed Zaki, Tarek Salah, and Khaled Badran. Design of a monitor for detecting
money laundering and terrorist financing. Journal of Theoretical and Applied Information Technology, 85(3):
425–436, 2016.

Juan I González Hidalgo, Bruno IF Maciel, and Roberto SM Barros. Experimenting with prequential varia-
tions for data stream learning evaluation. Computational Intelligence, 35(4):670–692, 2019.

Geoffrey E. Hinton. A practical guide to training restricted boltzmann machines. In Grégoire Montavon,
Geneviève B. Orr, and Klaus-Robert Müller, editors, Neural Networks: Tricks of the Trade: Second Edition,
pages 599–619. Springer, 2012.

J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering, 9(3):90–95, 2007.
doi: 10.1109/MCSE.2007.55.

Frank Hutter, Jörg Lücke, and Lars Schmidt-Thieme. Beyond manual tuning of hyperparameters. KI -
Künstliche Intelligenz, 29(4):329–337, 2015.

Justin M. Johnson and Taghi M. Khoshgoftaar. Survey on deep learning with class imbalance. Journal of Big
Data, 6(1):27, 2019.

Martin Jullum, Anders Løland, Ragnar Bang Huseby, Geir Ånonsen, and Johannes Lorentzen. Detecting
money laundering transactions with machine learning. Journal of Money Laundering Control, 23(1):173–
186, 2020.

160

References References

Nutthaporn Junsomboon and Tanasanee Phienthrakul. Combining over-sampling and under-sampling
techniques for imbalance dataset. In Proceedings of the 9th International Conference on Machine Learning
and Computing, page 243–247. ACM, 2017.

Nikolei Kaplanov. Nerdy money: Bitcoin, the private digital currency, and the case against its regulation.
Loyola Consumer Law Review, 25(1):111–174, 2012.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu.
Lightgbm: A highly efficient gradient boosting decision tree. In Proceedings of the 31st International Con-
ference on Neural Information Processing Systems, NIPS’17, page 3149–3157, 2017.

T. M. Khoshgoftaar, C. Seiffert, J. V. Hulse, A. Napolitano, and A. Folleco. Learning with limited minority
class data. In Sixth International Conference on Machine Learning and Applications (ICMLA 2007), pages
348–353. IEEE, 2007.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations (ICLR), 2017.

Miroslav Kubat and Stan Matwin. Addressing the curse of imbalanced training sets: one-sided selection.
In International Conference on Machine Learning, pages 179–186, 1997.

Salim Lahmiri, Stelios Bekiros, Anastasia Giakoumelou, and Frank Bezzina. Performance assessment of
ensemble learning systems in financial data classification. Intelligent Systems in Accounting, Finance and
Management, 27(1):3–9, 2020.

Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua Bengio. An empirical
evaluation of deep architectures on problems with many factors of variation. In Proceedings of the 24th
International Conference on Machine Learning, page 473–480, 2007.

Jorma Laurikkala. Improving identification of difficult small classes by balancing class distribution. In
Proceedings of the 8th Conference on AI in Medicine in Europe: Artificial Intelligence Medicine, page 63–66,
2001.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444, 2015.

Chaehyeon Lee, Sajan Maharjan, Kyungchan Ko, and James Won-Ki Hong. Toward detecting illegal trans-
actions on bitcoin using machine-learning methods. In Blockchain and Trustworthy Systems, pages 520–
533, 2020.

Joffrey L. Leevy, Taghi M. Khoshgoftaar, Richard A. Bauder, and Naeem Seliya. A survey on addressing
high-class imbalance in big data. Journal of Big Data, 5(1):42, 2018.

Kai Lei, Yuexiang Xie, Shangru Zhong, Jingchao Dai, Min Yang, and Ying Shen. Generative adversarial
fusion network for class imbalance credit scoring. Neural Computing and Applications, 32(12):8451–8462,
2020.

Guillaume Lemaître, Fernando Nogueira, and Christos K. Aridas. Imbalanced-learn: A python toolbox to
tackle the curse of imbalanced datasets in machine learning. Journal of Machine Learning Research, 18(1):
559–563, 2017.

161

References References

Felix I Lessambo. Anti-money laundering laws. In The US Banking System, pages 37–66. Springer, 2020.

J. Liang, L. Li, W. Chen, and D. Zeng. Targeted addresses identification for bitcoin with network represen-
tation learning. In 2019 IEEE International Conference on Intelligence and Security Informatics (ISI), pages
158–160. IEEE, 2019.

Jing Liao, Jianjun Zhang, and Wing WY Ng. Effects of different base classifiers to learn++ family algorithms
for concept drifting and imbalanced pattern classification problems. In 2016 International conference on
machine learning and cybernetics (ICMLC), volume 1, pages 99–104. IEEE, 2016.

Wee-Yong Lim, Amit Sachan, and Vrizlynn Thing. Conditional weighted transaction aggregation for credit
card fraud detection. In Advances in Digital Forensics X, pages 3–16. Springer, 2014.

Y. Lin, P. Wu, C. Hsu, I. Tu, and S. Liao. An evaluation of bitcoin address classification based on transaction
history summarization. In 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC),
pages 302–310. IEEE, 2019.

Charles X. Ling and Victor S. Sheng. Cost-sensitive learning. In Encyclopedia of Machine Learning, pages
231–235. Springer, 2010.

V. Losing, B. Hammer, and H. Wersing. Knn classifier with self adjusting memory for heterogeneous
concept drift. In 2016 IEEE 16th International Conference on Data Mining (ICDM), pages 291–300. IEEE,
2016.

J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang. Learning under concept drift: A review. IEEE
Transactions on Knowledge and Data Engineering, 31(12):2346–2363, 2019.

Victoria López, Alberto Fernández, Jose G. Moreno-Torres, and Francisco Herrera. Analysis of preprocess-
ing vs. cost-sensitive learning for imbalanced classification. open problems on intrinsic data characteris-
tics. Expert Systems with Applications, 39(7):6585–6608, 2012.

S. Mabunda. Cryptocurrency: The new face of cyber money laundering. In 2018 International Conference on
Advances in Big Data, Computing and Data Communication Systems (icABCD), pages 1–6. IEEE, 2018.

James G. MacKinnon. Approximate asymptotic distribution functions for unit-root and cointegration tests.
Journal of Business & Economic Statistics, 12(2):167–176, 1994.

James G. MacKinnon. Critical Values For Cointegration Tests. Working Paper 1227, Economics Department,
Queen’s University, 2010. URL https://ideas.repec.org/p/qed/wpaper/1227.html.

Majdi Mafarja, Ibrahim Aljarah, Hossam Faris, Abdelaziz I. Hammouri, Ala’ M. Al-Zoubi, and Seyedali
Mirjalili. Binary grasshopper optimisation algorithm approaches for feature selection problems. Expert
Systems with Applications, 117:267–286, 2019.

Sebastián Maldonado and Julio López. Dealing with high-dimensional class-imbalanced datasets: Embed-
ded feature selection for svm classification. Applied Soft Computing, 67:94–105, 2018.

Inderjeet Mani and I Zhang. knn approach to unbalanced data distributions: a case study involving infor-
mation extraction. In Proceedings of the ICML’03 Workshop on Learning from Imbalanced Data Sets, 2003.

162

https://ideas.repec.org/p/qed/wpaper/1227.html

References References

Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous activity. Bulletin
of Mathematical Biology, 52(1):99–115, 1990.

Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko, Damon McCoy, Geoffrey M. Voelker,
and Stefan Savage. A fistful of bitcoins: Characterizing payments among men with no names. In
Proceedings of the 2013 Conference on Internet Measurement Conference, IMC ’13, page 127–140, 2013.

R. Mohammed, J. Rawashdeh, and M. Abdullah. Machine learning with oversampling and undersampling
techniques: Overview study and experimental results. In 2020 11th International Conference on Information
and Communication Systems (ICICS), pages 243–248. IEEE, 2020.

P. M. Monamo, V. Marivate, and B. Twala. A multifaceted approach to bitcoin fraud detection: Global and
local outliers. In 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA),
pages 188–194. IEEE, 2016.

Jacob Montiel, Jesse Read, Albert Bifet, and Talel Abdessalem. Scikit-multiflow: A multi-output streaming
framework. The Journal of Machine Learning Research, 19(1):2915–2914, 2018.

Jacob Montiel, Rory Mitchell, Eibe Frank, Bernhard Pfahringer, Talel Abdessalem, and Albert Bifet. Adap-
tive xgboost for evolving data streams. In Proceedings of the International Joint Conference on Neural Net-
works (IJCNN), 2020.

A. M. Mubalaike and E. Adali. Deep learning approach for intelligent financial fraud detection system. In
2018 3rd International Conference on Computer Science and Engineering (UBMK), pages 598–603. IEEE, 2018.

U. Mukhopadhyay, A. Skjellum, O. Hambolu, J. Oakley, L. Yu, and R. Brooks. A brief survey of cryptocur-
rency systems. In 2016 14th Annual Conference on Privacy, Security and Trust (PST), pages 745–752. IEEE,
2016.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Cryptography Mailing list, 2009.

Alexey Natekin and Alois Knoll. Gradient boosting machines, a tutorial. Frontiers in neurorobotics, 7(21):
1–21, 2013.

Andreas Isnes Nilsen. Limelight: real-time detection of pump-and-dump events on cryptocurrency ex-
changes using deep learning. Master’s thesis, UiT Norges arktiske universitet, 2019.

N. C. Oza. Online bagging and boosting. In 2005 IEEE International Conference on Systems, Man and Cyber-
netics, volume 3, pages 2340–2345. IEEE, 2005.

Tingting Pan, Junhong Zhao, Wei Wu, and Jie Yang. Learning imbalanced datasets based on smote and
gaussian distribution. Information Sciences, 512:1214–1233, 2020.

The pandas development team. pandas-dev/pandas: Pandas, February 2020. URL https://doi.org/10.
5281/zenodo.3509134.

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kanezashi, Tim
Kaler, Tao B Schardl, and Charles E Leiserson. Evolvegcn: Evolving graph convolutional networks
for dynamic graphs. In AAAI, pages 5363–5370, 2020.

163

https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134

References References

E. S. Pearson, R. B. D’Agostino, and K. O. Bowman. Tests for departure from normality: Comparison of
powers. Biometrika, 64(2):231–246, 1977.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos,
David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. Scikit-learn: Machine
learning in python. Journal of Machine Learning Research, 12:2825–2830, 2011.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representations.
In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
page 701–710, 2014.

B. Pes. Handling class imbalance in high-dimensional biomedical datasets. In 2019 IEEE 28th International
Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), pages 150–155.
IEEE, 2019.

S. Phetsouvanh, F. Oggier, and A. Datta. Egret: Extortion graph exploration techniques in the bitcoin
network. In 2018 IEEE International Conference on Data Mining Workshops (ICDMW), pages 244–251. IEEE,
2018.

R. Polikar, L. Upda, S. S. Upda, and V. Honavar. Learn++: an incremental learning algorithm for supervised
neural networks. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 31
(4):497–508, 2001.

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey Gulin.
Catboost: Unbiased boosting with categorical features. In Proceedings of the 32nd International Conference
on Neural Information Processing Systems, NIPS’18, page 6639–6649, 2018.

J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.

J. Ross Quinlan. C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc., 1993. URL http:
//portal.acm.org/citation.cfm?id=152181.

Jesse Read, Albert Bifet, Bernhard Pfahringer, and Geoff Holmes. Batch-incremental versus instance-
incremental learning in dynamic and evolving data. In International symposium on intelligent data analysis,
pages 313–323. Springer, 2012.

Daniel Rodriguez, Israel Herraiz, Rachel Harrison, Javier Dolado, and José C. Riquelme. Preliminary com-
parison of techniques for dealing with imbalance in software defect prediction. In Proceedings of the 18th
International Conference on Evaluation and Assessment in Software Engineering, EASE ’14. ACM, 2014.

Lior Rokach. Decision forest: Twenty years of research. Information Fusion, 27:111–125, 2016.

Neelam Rout, Debahuti Mishra, and Manas Kumar Mallick. Handling imbalanced data: A survey. In
M. Sreenivasa Reddy, K. Viswanath, and Shiva Prasad K.M., editors, International Proceedings on Advances
in Soft Computing, Intelligent Systems and Applications, pages 431–443. Springer, 2018.

Sankardas Roy, Jordan DeLoach, Yuping Li, Nic Herndon, Doina Caragea, Xinming Ou, Venkatesh Prasad
Ranganath, Hongmin Li, and Nicolais Guevara. Experimental study with real-world data for android
app security analysis using machine learning. In Proceedings of the 31st Annual Computer Security Appli-
cations Conference, ACSAC 2015, page 81–90, 2015.

164

http://portal.acm.org/citation.cfm?id=152181
http://portal.acm.org/citation.cfm?id=152181

References References

Omer Sagi and Lior Rokach. Ensemble learning: A survey. WIREs Data Mining and Knowledge Discovery, 8
(4):e1249, 2018.

S. Samanta, B. K. Mohanta, S. P. Pati, and D. Jena. A framework to build user profile on cryptocurrency data
for detection of money laundering activities. In 2019 International Conference on Information Technology
(ICIT), pages 425–429. IEEE, 2019.

David Savage, Qingmai Wang, Xiuzhen Zhang, Pauline Chou, and Xinghuo Yu. Detection of money laun-
dering groups: Supervised learning on small networks. In Workshops at the Thirty-First AAAI Conference
on Artificial Intelligence, 2017.

Ernesto Ugo Savona and Michele Riccardi. Assessing the risk of money laundering: research challenges
and implications for practitioners. European Journal on Criminal Policy and Research, 25(1):1–4, 2019.

Gehad Ismail Sayed, Alaa Tharwat, and Aboul Ella Hassanien. Chaotic dragonfly algorithm: an improved
metaheuristic algorithm for feature selection. Applied Intelligence, 49(1):188–205, 2019.

Robert E. Schapire. Using output codes to boost multiclass learning problems. In Proceedings of the Four-
teenth International Conference on Machine Learning, ICML ’97, page 313–321, 1997.

Lothar M. Schmitt. Theory of genetic algorithms. Theoretical Computer Science, 259(1):1–61, 2001.

Friedrich Schneider and Ursula Windischbauer. Money laundering: some facts. European Journal of Law and
Economics, 26(3):387–404, 2008.

Paul Allan Schott. Reference guide to anti-money laundering and combating the financing of terrorism. The World
Bank, 2006.

David Schwartz, Noah Youngs, Arthur Britto, et al. The ripple protocol consensus algorithm. Ripple Labs
Inc White Paper, 5(8), 2014.

C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse, and A. Napolitano. Rusboost: A hybrid approach to alleviating
class imbalance. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 40(1):
185–197, 2010.

Ted E Senator, Henry G Goldberg, Jerry Wooton, Matthew A Cottini, AF Umar Khan, Christina D Klinger,
Winston M Llamas, Michael P Marrone, Raphael WH Wong, et al. The fincen artificial intelligence
system: Identifying potential money laundering from reports of large cash transactions. In IAAI, pages
156–170, 1995.

Kishore Singh and Peter Best. Anti-money laundering: Using data visualization to identify suspicious
activity. International Journal of Accounting Information Systems, 34:100418, 2019.

Akila Somasundaram and Srinivasulu Reddy. Parallel and incremental credit card fraud detection model
to handle concept drift and data imbalance. Neural Computing and Applications, 31(1):3–14, 2019.

W. Nick Street and YongSeog Kim. A streaming ensemble algorithm (sea) for large-scale classification. In
Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’01, page 377–382, 2001.

165

References References

Agus Sudjianto, Sheela Nair, Ming Yuan, Aijun Zhang, Daniel Kern, and Fernando Cela-Díaz. Statistical
methods for fighting financial crimes. Technometrics, 52(1):5–19, 2010.

Hao Hua Sun Yin, Klaus Langenheldt, Mikkel Harlev, Raghava Rao Mukkamala, and Ravi Vatrapu.
Regulating cryptocurrencies: a supervised machine learning approach to de-anonymizing the bitcoin
blockchain. Journal of Management Information Systems, 36(1):37–73, 2019.

Melanie Swan. Blockchain: Blueprint for a new economy. " O’Reilly Media, Inc.", 2015.

Zbigniew Tarapata, Rafal Kasprzyk, and Kamil Banach. Graph-network models and methods used to
detect financial crimes with iafec graphs it tool. In 22nd International Conference on Circuits, Systems,
Communications and Computers (CSCC 2018), volume 210, pages 1–6. EDP Sciences, 2018.

I. Tomek. Two modifications of cnn. IEEE Transactions on Systems, Man, and Cybernetics, SMC-6(11):769–772,
1976.

K. Toyoda, T. Ohtsuki, and P. T. Mathiopoulos. Identification of high yielding investment programs in bit-
coin via transactions pattern analysis. In GLOBECOM 2017 - 2017 IEEE Global Communications Conference,
pages 1–6. IEEE, 2017.

K. Toyoda, T. Ohtsuki, and P. T. Mathiopoulos. Multi-class bitcoin-enabled service identification based on
transaction history summarization. In 2018 IEEE International Conference on Internet of Things (iThings)
and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing
(CPSCom) and IEEE Smart Data (SmartData), pages 1153–1160. IEEE, 2018.

Lawrence J Trautman. Virtual currencies; bitcoin & what now after liberty reserve, silk road, and mt. gox?
Richmond Journal of Law and Technology, 20(4):1–108, 2014.

Shivani Tyagi and Sangeeta Mittal. Sampling approaches for imbalanced data classification problem in
machine learning. In Proceedings of ICRIC 2019, pages 209–221. Springer, 2020.

UNODC. Estimating illicit financial flows resulting from drug trafficking and other transnational organized
crimes. National Criminal Justice Reference Service, 2011.

Nadja van der Veer. Money Laundering Laws, Technology and Keeping Up With Criminals, chapter 28, pages
94–96. Wiley, 2019.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Ev-
geni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew
Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern,
Eric Larson, C. J. Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perk-
told, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H.
Ribeiro, Fabian Pedregosa, Paul van Mulbregt, Aditya Vijaykumar, Alessandro Pietro Bardelli, Alex
Rothberg, Andreas Hilboll, Andreas Kloeckner, Anthony Scopatz, Antony Lee, Ariel Rokem, C. Nathan
Woods, Chad Fulton, Charles Masson, Christian Häggström, Clark Fitzgerald, David A. Nicholson,
David R. Hagen, Dmitrii V. Pasechnik, Emanuele Olivetti, Eric Martin, Eric Wieser, Fabrice Silva, Felix
Lenders, Florian Wilhelm, G. Young, Gavin A. Price, Gert-Ludwig Ingold, Gregory E. Allen, Gregory R.
Lee, Hervé Audren, Irvin Probst, Jörg P. Dietrich, Jacob Silterra, James T. Webber, Janko Slavič, Joel Noth-
man, Johannes Buchner, Johannes Kulick, Johannes L. Schönberger, José Vinícius de Miranda Cardoso,

166

References References

Joscha Reimer, Joseph Harrington, Juan Luis Cano Rodríguez, Juan Nunez-Iglesias, Justin Kuczynski,
Kevin Tritz, Martin Thoma, Matthew Newville, Matthias Kümmerer, Maximilian Bolingbroke, Michael
Tartre, Mikhail Pak, Nathaniel J. Smith, Nikolai Nowaczyk, Nikolay Shebanov, Oleksandr Pavlyk, Per A.
Brodtkorb, Perry Lee, Robert T. McGibbon, Roman Feldbauer, Sam Lewis, Sam Tygier, Scott Sievert,
Sebastiano Vigna, Stefan Peterson, Surhud More, Tadeusz Pudlik, Takuya Oshima, Thomas J. Pingel,
Thomas P. Robitaille, Thomas Spura, Thouis R. Jones, Tim Cera, Tim Leslie, Tiziano Zito, Tom Krauss,
Utkarsh Upadhyay, Yaroslav O. Halchenko, Yoshiki Vázquez-Baeza, and SciPy 1.0 Contributors. Scipy
1.0: fundamental algorithms for scientific computing in python. Nature Methods, 17(3):261–272, 2020.

Haixun Wang, Wei Fan, Philip S. Yu, and Jiawei Han. Mining concept-drifting data streams using ensemble
classifiers. In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’03, page 226–235, 2003.

S. Wang and X. Yao. Diversity analysis on imbalanced data sets by using ensemble models. In 2009 IEEE
Symposium on Computational Intelligence and Data Mining, pages 324–331. IEEE, 2009.

Mark Weber, Giacomo Domeniconi, Jie Chen, Daniel Karl I Weidele, Claudio Bellei, Tom Robinson, and
Charles E Leiserson. Anti-money laundering in bitcoin: Experimenting with graph convolutional net-
works for financial forensics. 2019.

Gary M. Weiss. Mining with rarity: A unifying framework. ACM Sigkdd Explorations Newsletter, 6(1):7–19,
2004.

Gary M Weiss, Kate McCarthy, and Bibi Zabar. Cost-sensitive learning vs. sampling: Which is best for
handling unbalanced classes with unequal error costs? Dmin, 7(35-41), 2007.

Wes McKinney. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in
Science Conference, pages 56 – 61, 2010.

R. H. Wilcox. Adaptive control processes—a guided tour. Naval Research Logistics Quarterly, 8(3):315–316,
1961.

D. L. Wilson. Asymptotic properties of nearest neighbor rules using edited data. IEEE Transactions on
Systems, Man, and Cybernetics, SMC-2(3):408–421, 1972.

Russ Wolfinger and Pei yi Tan. Stacked ensemble models for improved prediction accuracy. In Proc. Static
Anal. Symp., pages 1–19, 2017.

David H. Wolpert. Stacked generalization. Neural Networks, 5(2):241–259, 1992.

Yufei Xia, Chuanzhe Liu, YuYing Li, and Nana Liu. A boosted decision tree approach using bayesian
hyper-parameter optimization for credit scoring. Expert Systems with Applications, 78:225–241, 2017.

Kunlin Yang and Wei Xu. Fraudmemory: Explainable memory-enhanced sequential neural networks for
financial fraud detection. In Proceedings of the 52nd Hawaii International Conference on System Sciences,
pages 1023–1032, 2019.

Peter Yeoh. Banks’ vulnerabilities to money laundering activities. Journal of Money Laundering Control, 23
(1):122–135, 2019.

167

References References

Huang Jimmy Yicheng. Effectiveness of us anti-money laundering regulations and hsbc case study. Journal
of Money Laundering Control, 18(4):525–532, 2015.

Yong Sun and Feng Liu. Smote-ncl: A re-sampling method with filter for network intrusion detection. In
2016 2nd IEEE International Conference on Computer and Communications (ICCC), pages 1157–1161. IEEE,
2016.

Yong Yuan and Fei-Yue Wang. Blockchain and cryptocurrencies: Model, techniques, and applications. IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 48(9):1421–1428, 2018.

G Zames, NM Ajlouni, NM Ajlouni, NM Ajlouni, JH Holland, WD Hills, and DE Goldberg. Genetic
algorithms in search, optimization and machine learning. Information Technology Journal, 3(1):301–302,
1981.

C. Zhang, G. Wang, Y. Zhou, L. Yao, Z. L. Jiang, Q. Liao, and X. Wang. Feature selection for high di-
mensional imbalanced class data based on f-measure optimization. In 2017 International Conference on
Security, Pattern Analysis, and Cybernetics (SPAC), pages 278–283, 2017.

Yan Zhang and Peter Trubey. Machine learning and sampling scheme: An empirical study of money
laundering detection. Computational Economics, 54(3):1043–1063, 2019.

Indrė Žliobaitė, Mykola Pechenizkiy, and João Gama. An overview of concept drift applications. In Big
Data Analysis: New Algorithms for a New Society, pages 91–114. Springer, 2016.

F. Zola, M. Eguimendia, J. L. Bruse, and R. Orduna Urrutia. Cascading machine learning to attack bitcoin
anonymity. In 2019 IEEE International Conference on Blockchain (Blockchain), pages 10–17. IEEE, 2019.

Francesco Zola, Jan Lukas Bruse, Maria Eguimendia, Mikel Galar, and Raul Orduna Urrutia. Bitcoin and
cybersecurity: temporal dissection of blockchain data to unveil changes in entity behavioral patterns.
Applied Sciences, 9(23):5003, 2019.

168

	Introduction
	Anti-Money Laundering in Cryptocurrencies
	Motivation
	Aims & Objectives
	Contributions
	Document Structure

	Background
	Money Laundering
	Blockchain and Cryptocurrency
	Blockchain Technology
	Cryptocurrency
	Illicit Activities on the Blockchain

	Detection via Machine Learning
	Supervised Learning
	Unsupervised Learning
	Account vs Transactional Level Detection
	Transactions as a Graph-Structure
	Skewed Class Distribution
	Non-Stationary Environment

	Ensemble Learning Algorithms
	Bootstrap Aggregation
	Gradient Boosting
	Stacking

	Deep Learning

	Literature Review
	Illicit Activity Detection in Financial Systems
	Illicit Activity detection in Blockchain Networks
	Stream Learning on Financial Data

	Handling Machine Learning Problems
	Hyperparameter Optimisation
	Handling Class Imbalance
	Handling Non-Stationary Data Streams

	Overview of Recent Literature

	Methodology
	Account and Transaction Level Detection
	Datasets
	Datasets Description
	Analysing the Benchmark Transaction-Level Dataset
	Data Pre-Processing

	Proposed Solution
	Boosting Algorithms
	Handling a Skewed Class Distribution
	Hyperparameter Optimisation
	Handling Non-Stationary Temporal Data
	Implementation Details

	Evaluation and Results
	Benchmark Models
	Random Forest
	Adaptive Random Forest
	Adaptive eXtreme Gradient Boosting

	Evaluation
	Setup
	Performance Metrics
	Evaluation Framework
	Design of Experiments

	Results for Experiment 1
	Results for Experiment 2
	Results for Experiment 3

	Discussion
	Improved Performance using XGBoost & LGBM
	Transactional-Level Detection using Data-Sampling Techniques
	Adapting to Evolving Transactional Data-Streams

	Conclusion and Future Work
	Revisiting Aims and Objectives
	Contributions
	Limitations
	Future Work
	Final Remarks

	Ethereum Illicit Accounts Feature Set
	Optimal Hyperparameters from TPE
	Experiment 1
	Experiment 2

	Supplementary Results
	References

