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ABSTRACT

As we enter the era of large-scale imaging surveys with the upcoming telescopes such as the Large Synoptic Survey Telescope
(LSST) and the Square Kilometre Array (SKA), it is envisaged that the number of known strong gravitational lensing systems
will increase dramatically. However, these events are still very rare and require the efficient processing of millions of images.
In order to tackle this image processing problem, we present machine learning techniques and apply them to the gravitational
lens finding challenge. The convolutional neural networks (CNNs) presented here have been reimplemented within a new,
modular, and extendable framework, Lens EXtrActor CaTania University of Malta (LEXACTUM). We report an area under the
curve (AUC) of 0.9343 and 0.9870, and an execution time of 0.0061 and 0.0594 s per image, for the Space and Ground data
sets, respectively, showing that the results obtained by CNNs are very competitive with conventional methods (such as visual
inspection and arc finders) for detecting gravitational lenses.

Key words: gravitational lensing: strong—methods: data analysis—techniques: image processing —surveys —cosmology: ob-
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1 INTRODUCTION

Strong gravitational lensed systems are unique systems in which a
background galaxy and a foreground galaxy or cluster of galaxies
are sufficiently well aligned so that the gravitational field of the
foreground system lenses the background galaxies. Whilst these
lensing systems hold a rich source of information of the gravitational
field distribution of the foreground system and can be used to map
dark matter distribution within the cluster, they are rare to come by. As
amatter of fact, Kochanek et al. (1999) state that the number of known
gravitational lenses was 47. The ‘CfA—Arizona Space Telescope
Lens Survey (CASTLeS)’ website,! at the time of writing, lists 100
multiply imaged systems, 92 of which Kochanek et al. (1999) claim
they are confident are lenses. Furthermore, the Cosmic Lens All-
Sky Survey (CLASS; Myers et al. 2003), Sloan Lens ACS (SLACS;
Bolton et al. 2006), Herschel Astrophysical Terahertz Large Area
Survey (H-ATLAS; Negrello et al. 2016), and Strong Lensing Legacy
Survey (SL2S; More et al. 2012) surveys have also contributed to the
discovery of gravitational lenses.

Traditional methods for detecting these strongly lensed systems
were based on visual inspection and this paper aims to address the
automation of this detection. With experiments such as the Square
Kilometre Array (SKA)? (Blake et al. 2004), Large Synoptic Survey
Telescope (LSST; LSST Science Collaboration et al. 2009), Dark
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Energy Survey (DES)* (The Dark Energy Survey Collaboration
2005), Kilo-Degree Survey (KiDS)* (de Jong et al. 2013), Euclid’®
(Laureijs et al. 2011), and the Nancy Grace Roman Space Telescope
(Dressler et al. 2012) coming online soon, thousands of these lensed
systems are expected to be found and an efficient image processing
technique is required in order to process the large amount of scientific
images that will be produced by either of these facilities.

In order to study the detection efficiency of strongly lensed sys-
tems, the ‘Gravitational Lens Finding Challenge 1.0’® was launched
in 2019 (Metcalf et al. 2019). The challenge consists of 100000
objects, the aim being to detect whether each one is a gravitational
lensed system or not. Many machine learning techniques are pre-
sented by Metcalf et al. (2019), and this work aims to compare
the techniques described in that paper with newer machine learning
techniques, primarily convolutional neural networks (CNNs).

In the next section, we describe the framework developed and its
features, followed by a description of the various methods imple-
mented within it to tackle this problem. After this, we describe the
data set provided for the challenge, and what additional techniques
were utilized to ‘expand’ on this data set. We then go on to describe
what metrics are presented by our framework, and how methods
are evaluated, and compare the performances achieved with those
achieved in other works. We conclude the work by describing further

3https://www.darkenergysurvey.org/
“http://www.astro-wise.org/projects/KIDS/
Shttp://sci.esa.int/euclid/
Ohttp://metcalf1.difa.unibo.it/blf-portal/gg_challenge.html

2202 Yosel\ 20 uo Josn ejeln Jo AusieAlun Ad 61£G629/5S 1 9/7/G0G/0I0Ie/SeIUuW/W0d"dNO OIS PEO.//:SARY WOI) PAPEOUMOQ


http://orcid.org/0000-0002-5624-0658
http://orcid.org/0000-0002-2524-0612
http://orcid.org/0000-0001-5921-2372
http://orcid.org/0000-0001-6368-8330
http://orcid.org/0000-0002-5574-2787
mailto:daniel.magro.15@um.edu.mt
https://www.cfa.harvard.edu/castles/
https://www.skatelescope.org/
https://www.darkenergysurvey.org/
http://www.astro-wise.org/projects/KIDS/
http://sci.esa.int/euclid/
http://metcalf1.difa.unibo.it/blf-portal/gg_challenge.html

6156  D. Magro et al.

improvements that can be implemented in order to make gravitational
lensing detection methods more efficient and more accurate.

1.1 LEXACTUM

The framework developed in this work has been named Lens
EXtrActor CaTania University of Malta (LEXACTUM). The first of
its main features are the image augmentation techniques described
in Section 2.2 which can be toggled on or off to train for a
greater number of epochs without overfitting. Another feature is
the modularity of the code, allowing for the rather easy development
of new models, with very easy integration of new models into the
pipeline. Other features include the ability to set parameters from
the command line. Examples of such parameters are the data set
path, whether to train a model or load one from disk, the name
of the model (to train or load), the number of epochs to train
for, the batch size, and whether to use image augmentation during
training or not. LEXACTUM also uses a custom ‘Data Generator’,
which loads and pre-processes images in batches with the CPU,
while the GPU can train on the last batch of images. Apart from
image augmentation during training, all images are normalized using
ZScale (NOAO 1997). Like other components, the normalization
method can be easily swapped out for other techniques. Furthermore,
LEXACTUM comes with a ‘results’ package, which scores the
trained models and calculates several metrics, described in detail
in Section 3. Moreover, LEXACTUM saves trained models to disk,
and also provides functionality for loading trained models. Finally,
the ‘visualize features’ component was created, which allows for
the viewing of the feature maps at every convolutional layer that a
trained model is ‘looking at” during execution.

All of the architectures described in Section 1.2.5 were imple-
mented in LEXACTUM. All of these models were then trained
from scratch, on both the Space and Ground data sets, using ZScale
normalization and image augmentation, for a varying number of
epochs. As a starting point, all models were trained for 5 or 10,
25 or 50, 100, and 250 epochs. After that, if, say, a particular
model obtained promising results, and did not seem to be overfitting
(judging by the loss and accuracy of the validation set) after 250
epochs, it would then be further trained for 500, or even 1000 epochs.

1.2 Literature review

1.2.1 Conventional methods

The methods described in this subsection are not implemented in
LEXACTUM, and are only presented to give a broad view of what
other methods exist for tackling this problem.

1.2.2 Visual inspection

Hartley et al. (2017) go about this problem by visually inspecting
and labelling each of the 100 000 images in each of the two data sets.
Using their tool, BIGEYE, Hartley et al. (2017) claim that they can la-
bel around 2500 or 5000 images an hour. The final score achieved by
this solution was 0.804 for the Space set and 0.889 for the Ground set
(Metcalfetal. 2019). The score metric used is discussed in Section 3.

1.2.3 Arc finders

Arc finders, such as ARCFINDER (Alard 2006) and YATTALENSLITE
(Sonnenfeld et al. 2018), attempt to detect lensing by looking for
elongated structures, which are indicative of lensing. ARCFINDER
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achieves a score of 0.66 on the Space set, whereas YATTALENSLITE
achieves a score of 0.76 on the Space set and 0.82 on the Ground set
(Metcalf et al. 2019).

1.2.4 Machine learning (pre-selected features)

Such methods normally involve the creation of a feature space of
features deemed to be relevant by an expert. The classification is
then determined by a boundary, specified either by intuition or trial-
and-error. Hartley et al. (2017) attempted to solve this challenge with
MANCHESTER-SVM, a Support-Vector Machine (SVM; Vapnik 1979)
based solution that achieved a score of 0.81 on the Space set and 0.93
on the Ground set. Avestruz et al. (2019), on the other hand, use a
Histogram of Oriented Gradients (HOG; Dalal & Triggs 2005) based
approach in their solution, ALL, which scored 0.73 on the Space set
and 0.84 on the Ground set (Metcalf et al. 2019).

1.2.5 Convolutional neural networks

Convolutional neural networks (CNNs) have shown to achieve very
good results for both detection and recognition tasks in images and
videos, among other applications. A CNN is a neural network that
contains a convolutional layer. A convolutional layer ‘slides’ a kernel
(also referred to as a filter) over the input image, or the output from
the previous convolutional layer, and computes the output as the
convolution of the pixels the ‘sliding window’ is currently over and
the kernel. Each convolutional layer has a number of filters, each of
which can be described as a pattern detector. The earlier layers extract
geometric features, such as edges and corners, whereas deeper layers
start to extract more sophisticated features, and are more capable of
detecting objects such as eyes or noses (LeCun et al. 1989).

The need for convolutional layers in CNNs arises from the
limitations of traditional fully connected layers when dealing with
images. One such limitation is that, for a 101 x 101 pixel image,
one layer would have more than 10 000 neurons, meaning one fully
connected layer will thus have more than 100 million weights
to be learnt. To put this value into perspective, from the CNNs
implemented in this work, the total number of weights ranges from
around 100 000 to around 6 million, for the entirety of each network.
One further limitation of fully connected layers when dealing with
2D images, or 3D images when using images with more than one
channel, is that when the images are flattened, most of the spatial
correlation between pixels is lost. These ‘local correlations’ are very
important for the recognition of low-level features, such as edges
(LeCun et al. 1998).

All the techniques mentioned in this subsection are CNN based,
and have been implemented in LEXACTUM. They have been
implemented in PYTHON’ using KERAS,® a high-level Application
Programming Interface (API) for TENSORFLOW.® All the source code
and trained models mentioned in the results section are available
on the GitHub repository https://github.com/DanielMagro97/LEX
ACTUM.

"https://www.python.org/
Shttps://keras.io/
“https://www.tensorflow.org/
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1.2.6 Centre for Astrophysics and Supercomputing (CAS)
Swinburne

This model was based on AlexNet (Krizhevsky, Sutskever & Hinton
2017). The input image is first passed through three convolutional
layers, each followed by a Rectified Linear Unit (ReLU) activation
function and a max pooling layer. The output from the last max pool
was put into two successive fully connected layers, each followed by
a dropout layer (Jacobs et al. 2017; Metcalf et al. 2019). This model
is discussed in further detail in Appendix Al.

1.2.7 LASTRO EPFL

This model follows a somewhat similar architecture to that described
in Section 1.2.6, however has significantly more layers. This model
starts off with three blocks, each block consisting of two consecutive
convolutional layers, followed by a max pooling layer and a batch
normalization layer. The third block is followed by a dropout layer
to reduce the possibility of overfitting. Another pair of convolutional
layers are added, each followed by a dropout layer. The last layer’s
output is passed to a triple of fully connected layers, which finally
connect to a fully connected layer with a single neuron and a sigmoid
activation (Schaefer et al. 2018; Metcalf et al. 2019). This model is
discussed in further detail in Appendix A2.

1.2.8 CMU DeepLens

Like the previously described models, this model is CNN based,
however it is made up of ‘ResNet blocks’. A ResNet is a network
where the input is passed through a series of convolutional layers,
and the output is the addition of the original input and the output of
the last convolution layer. This ‘shortcut connection’ from the input
of the block to the end of it tackles the ‘vanishing gradient problem’,
as it provides a ‘faster’ route for the gradients from back propagation
to reach the earlier layers.

In the CMU DeepLens model, two different types of ‘ResNet
blocks’ are used, one which keeps the original resolution of the
image, and another which downsamples the image. In each case, the
input of the ‘ResNet block’ goes through three convolutional layers,
and is summed with the original input to the block to create the
aforementioned ‘shortcut connection’.

The CMU DeepLens model starts by passing the input image to
a convolutional layer, followed by five groups of three successive
ResNet blocks. The output from the last block is passed through an
average pooling layer, and the model’s prediction is computed by
a fully connected layer with one neuron and a sigmoid activation
(Lanusse et al. 2018; Metcalf et al. 2019). This model is discussed
in further detail in Appendix A3.

1.2.9 WSI-Net

The WSI-Net model described in this paper was originally used to
first detect tumours in breast scans, and then classify them. The same
model was used up to the point of detection, to detect the presence of a
lens in an image. The original paper does not specify hyperparameter
values, those presented in this paper are those found to produce the
best results, empirically.

The model starts with a convolutional layer, followed by two
ResNet blocks. These ResNet blocks used are the same as those
described in Section 1.2.8. This is followed by two blocks, each block
consisting of a convolutional layer, a batch normalization layer, and a
ReLU activation. A max pooling layer is added on next, followed by
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two fully connected layers, the latter with one neuron and a sigmoid
activation that determines the final classification (Ni et al. 2019).
This model is discussed in further detail in Appendix A4.

1.2.10 LensFlow

In this model, the first operation carried out on the input image
is an average pool. This is followed by a triple of ‘convolutional
layer+max pool’ pairs. The last max pool layer is fed into a fully
connected layer. During training, this layer is followed by a dropout
layer to reduce overfitting. The final output is obtained from a fully
connected layer with one neuron and a sigmoid activation (Pour-
rahmani, Nayyeri & Cooray 2018). This architecture is discussed in
further detail in Appendix AS.

1.2.11 LensFinder

The LensFinder model has a relatively simplistic architecture, when
compared to some of the solutions presented in this paper, however
holds its weight with the score it obtains. The paper does not state
specific values for the hyperparameters of each layer in the model, the
values presented here are what were found to work best, empirically.
The model starts with two blocks of ‘convolutional layer, max
pooling layer, and ReLU activation’. This is connected to a fully
connected layer, which in turn connects to the final fully connected
layer. In the original paper, a softmax activation is used, however
since this is a binary classification problem, only one neuron is
used in this layer, and a sigmoid activation is used instead (Pearson,
Pennock & Robinson 2018). This model is discussed in further detail
in Appendix A6.

2 METHODOLOGY

2.1 The data sets

Two separate labelled data sets of optical images were provided for
this challenge, each with 100 000 simulated images. The first, called
the ‘Space’ data set, is made up of single band (single channel) images
that mimic data from a satellite survey such as Euclid’ (Metcalf et al.
2019). The ‘Ground’ data set, on the other hand, was simulated
such that it mimics a ground-based survey, such as KiDS (de Jong
et al. 2013), where each image has four channels of data in the
‘bands (I, G, R, U)’ (Metcalf et al. 2019): infrared (806 nm), green
(464 nm), red (658 nm), ultraviolet (365 nm) (Binney & Merrifield
1998). For each data set, 20 000 of the 100 000 images were provided
for training, whereas the other 80 000 were intended for evaluating
and scoring the model. The data sets can be downloaded from http:
/Imetcalf1.difa.unibo.it/blf-portal/gg_challenge.html, for this work,
‘Space set 1’ and ‘Ground set 1” were used. Fig. 1 shows an example
of an image containing gravitational lensing, and another which does
not, from the Space set. Similarly, Fig. 2 shows the two cases from
the Ground set.

2.2 Image augmentation

20000 training examples are provided for this challenge. In order to
add diversity to the training set, and allow the model to train for a
greater number of epochs without overfitting, image augmentation is
employed. Image augmentation defines a set of transformations that
can be applied to an image before it is passed to the neural network
for training. It is important to note that this technique is only utilized
for the training set, and not for validation or evaluation.

MNRAS 505, 6155-6165 (2021)
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Figure 1. The image on the left is a random lensed image from the Space set,
whereas the image on the right does not contain lensing. Reproduced from
Metcalf et al. (2019).

Figure 2. The image on the left is a random lensed image from the Ground
set, whereas the image on the right does not contain lensing. Reproduced
from Metcalf et al. (2019).

The image augmentation component utilizes the ‘IMGAUG’
library'” to define nine different transformations, of which a random
amount are picked to be applied to the image. The transformations
defined are the following:

(i) a vertical or horizontal flipping of the image;

(i1) a 90°, 180°, or 270° rotation of the image;

(iii) a translation of [—10 per cent, 10 per cent] of the image along
the X and/or Y axes;

(iv) a scaling of [0.75, 1] of the image along the X and/or Y axes;

(v) a shearing of [—20 per cent, 20 per cent] of the image along
the X and/or Y axes.

CAS Swinburne, LASTRO EPFL, CMU DeepLens, and WSI-Net
(Jacobs et al. 2017; Lanusse et al. 2018; Schaefer et al. 2018; Ni
et al. 2019) all utilize image augmentation during training, however
the techniques used are generally limited to flips and rotations. One
feature of this framework is that it offers those transformations,
along with the other three mentioned previously, as a standard to any
architecture added to it.

3 RESULTS

The metrics used in the paper by Metcalf et al. (2019) were the area
under the curve (AUC), TPR(, and TPRj.

The true positive rate (TPR) is the rate of instances correctly
labelled as positive. The false positive rate (FPR) is the rate of
instances incorrectly labelled as positive, and thus are actually
negative. The receiver operating characteristic (ROC) is a plot of

10https://pypi.org/project/imgaug/
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the TPR against the FPR at various thresholds. Such a plot illustrates
the performance of the model, where a curve which is close to the
TPR=FPR diagonal would represent a model that is as effective as
a coin flip, and a curve that very steeply approaches the value of
TPR=1 represents a model that can achieve a high TPR without
labelling many false positives. The area under the ROC (AUROC),
or more simply the AUC, is a convenient method of quantitatively
comparing ROCs.

The TPR, is the highest TPR achievable by the model, while
keeping the FPR equal to 0. Given the difficulty in achieving a TPR,
that is not 0, the TPR is defined, which is similarly the highest
TPR achievable, while not classifying more than 10 false positives
(Metcalf et al. 2019).

The final metric that was recorded for this paper was the average
execution time of each model. This was obtained by recording the
length of time it took for the already trained model to evaluate the
test set. This was then divided by the number of images in the test set
to obtain the average execution time for one image. The execution
times for the same model trained for different numbers of epochs
were averaged out, as they are still the same model. Furthermore,
any times where the time was significantly different than the rest
(outliers) were ignored, and not included in the average.

3.1 Space set results

Results obtained on the Space data set are shown in Table 1. The best
TPR achieved was 0.8738 by CMU DeepLens when trained for just
25 epochs. The best FPR achieved was 0.0042, by LASTRO EPFL
when trained for 5 epochs. The best AUC was 0.9343, by CMU
DeepLens when trained for 500 epochs. In Metcalf et al. (2019)’s
paper, the best AUC for the Space set was 0.93 by LASTRO EPFL,
whereas the implementation of CMU DeepLens scored 0.92. The
best TPR, was 0.2411, by CAS Swinburne when trained for 50
epochs. In Metcalf et al. (2019)’s paper, the best TPR, for the Space
set was 0.22, by CMU DeepLens. The best TPR;y was 0.4211, by
WSI Net when trained for 250 epochs. In Metcalf et al. (2019)’s
paper, the best TPR(, for the Space set was 0.36, by GAMOCLASS,
another CNN-based solution. This is a very interesting finding, as
a ResNet-based network that was not included in the Metcalf et al.
(2019) paper achieved a significantly higher score than that in the

paper.

3.2 Ground set results

Results obtained on the Ground data set are shown in Table 2. The
best TPR achieved was 0.9333, by CMU DeepLens when trained for
100 epochs. The best FPR achieved was 0.0232, by CMU DeepLens
when trained for 25 epochs. The best AUC was 0.9870, by CMU
DeepLens when trained for 150 epochs. In Metcalf et al. (2019)’s
paper, the best AUC for the Ground set was 0.98, also by CMU
DeepLens. The best TPRy was 0.6046, by CMU DeepLens when
trained for 50 epochs. In Metcalf et al. (2019)’s paper, the best TPR,
for the Ground set was 0.22, by MANCHESTER-SVM. The best TPR
was 0.7042, again by CMU DeepLens when trained for 150 epochs.
In Metcalf et al. (2019)’s paper, the best TPR;( for the Ground set
was 0.45, also by CMU DeepLens. This is another very significant
improvement, using essentially the same network as specified in the
original paper. The only differences are the usage of slightly different
image augmentation techniques, which possibly allowed our model
to train for more epochs without overfitting. As we trained for up
to 250 epochs, we were able to find more optimal weights at 150
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Table 1. This table shows the TPR, FPR, AUC, TPR(, TPRj(, and average execution time for six different models, as described in Section 1.2.5, trained for
a various number of epochs on the Space data set. Columns marked with an asterisk (x) indicate the score achieved by the model in Metcalf et al. (2019).
Values in these columns marked in green indicate better performance compared to our implementations in LEXACTUM, whereas values in red indicate worse

performance.
Model name No. of training epochs TPR FPR AUC TPRy TPRjp AUCx TPRox TPRjpx Avg. execution time per image (s)
CAS Swinburne 5 0.5250 0.0603 0.8489 0.1531 0.1861
10 0.5517 0.1077 0.8171 0.1054 0.1509
25 0.7221 0.1178 0.8870 0.0000 0.2705
50 0.6252 0.0461 0.8894 0.2411 0.3000
75 0.6503 0.0474 0.8963 0.0000 0.3221
100 0.6604 0.0591 0.8915 0.0000 0.3016
500 0.6551 0.0295 0.9086 0.0000 0.3602 N/A 0.0124
LASTRO EPFL 5 0.3507 0.0042 0.8641 0.1539 0.2112
10 0.7302 0.3543 0.7825 0.1894 0.2455
50 0.6650 0.0287 0.9132 0.2107 0.3823
250 0.7937 0.0687 0.9322 0.0000 0.2268 0.93 0.00 0.08 0.0061
CMU DeepLens 5 0.6056 0.1539 0.7984 0.0000 0.1206
10 0.8268 0.2880 0.8710 0.0000 0.2309
25 0.8738 0.2726 0.9113 0.0000 0.0000
50 0.7570  0.0628 0.9243 0.0000 0.4073
100 0.8170 0.1321 0.9226 0.0000 0.0000
250 0.7592 0.0436  0.9291 0.0000 0.0000
500 0.7952 0.0626 0.9343 0.0000 0.0000
1000 0.8611 0.1634 0.9303 0.0000 0.0000 0.92 0.22 0.29 0.0061
WSI Net 5 0.7132  0.2955 0.7935 0.0000 0.0000
10 0.5437 0.0187 0.8867 0.1799 0.2934
50 0.7888 0.1194 0.9115 0.0000 0.0000
100 0.7348 0.0624 0.9069 0.0000 0.3976
250 0.7255 0.0531 0.9083 0.0000 0.4211 N/A 0.0055
LensFlow 5 0.6508 0.1520 0.8389 0.0728 0.1260
25 0.6431 0.0726 0.8799 0.1903 0.2704
100 0.6780 0.0636 0.8963 0.0000 0.3379
250 0.7384 0.0889 0.9046 0.0000 0.3632 N/A 0.0054
LensFinder 5 0.4915 0.1001 0.8038 0.0835 0.1056
25 0.6203 0.0663 0.8739 0.2103 0.2395
100 0.6912 0.0855 0.8857 0.0000 0.2721
250 0.7651 0.1062 0.9056 0.0000 0.3739 N/A 0.0197

epochs, whereas in the original work, the model was trained up to
120 epochs (Lanusse et al. 2018).

All the models described were trained and evaluated from scratch
again, for both the Space and Ground data set, using a different
split of the training, validation, and test sets (same ratio, different
selection). This was done to evaluate the consistency of the results. It
resulted that, for the Space set, between the two runs, the mean change
between two runs of the same model with the same parameters was
0.96 per cent, with the greatest change between any two runs being
2.97 per cent. For the Ground set, the mean change was 0.39 per cent,
with the greatest change being 2.99 per cent.

3.3 The importance of image augmentation

From Table 1, the results for CMU DeepLens when trained for
250 epochs with the Space data set using image augmentation
are an AUC of 0.9291, TPR of 0.7592, and a FPR of 0.0436.
To demonstrate the effectiveness of image augmentation, the same
model was trained with the same data set, and parameters, only
without image augmentation. The AUC obtained was 0.8800, the
TPR obtained was 0.7103, and the FPR obtained was 0.1003. The
accuracy of the model (without image augmentation) on the training

data during training can be seen rising epoch after epoch, and reaches
0.9996. On the other hand, the accuracy of the model on the validation
set after 250 epochs was only 0.8156. The model obtains such a
score as early as the 15th epoch, showing that the accuracy fails to
improve and, thus, that the model is overfitting. When using image
augmentation during training, after the same number of epochs, the
model ‘only’ reaches an accuracy of 0.8989 on the training set,
however manages a, relatively, impressive 0.8813 accuracy on the
validation set. By the 15th epoch, this model has already achieved a
validation accuracy of 0.8333, however manages to further improve
on this, and as mentioned climbs to 0.88813.

3.4 Visualizing and interpreting features extracted by
convolutional layers

The ‘visualize features’ component makes it possible to vi-
sualize the outputs of each convolutional layer, for any cho-
sen model given any image. Since it scored the highest, the
‘space_cmu_deeplens_500epochs.h5’ model was executed with a
random image from the data set as an input, shown in Fig. 3. The
features extracted by each convolutional layer were visualized and
will be interpreted in this section.
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Table 2. This table showing the TPR, FPR, AUC, TPR(, TPRo, and average execution time for six different models, as described in Section 1.2.5, trained
for a various number of epochs on the Ground data set. Columns marked with an asterisk (x) indicate the score achieved by the model in Metcalf et al. (2019).
Values in these columns marked in green indicate better performance compared to our implementations in LEXACTUM, whereas values in red indicate worse

performance.
Model name No. of training epochs TPR FPR AUC TPRo TPRjy AUCx TPRox TPRjpx Avg.execution time per image (s)
CAS Swinburne 10 0.8779 0.1077 0.9608 0.0000 0.0000

50 0.8995 0.0944 0.9720 0.0000 0.0000

100 0.8565 0.0406 0.9742 0.0000 0.0000

250 0.8726 0.0429 0.9758 0.0000 0.0000 0.96 0.02 0.08 0.0469
LASTRO EPFL 50 0.9073 0.0536 0.9824 0.0000 0.5133

100 0.9110 0.0482 0.9844 0.0000 0.5504

250 0.9197 0.0489 0.9862 0.0000 0.0000 0.97 0.07 0.11 0.0429
CMU DeepLens 25 0.7733 0.0232 0.9588 0.0000 0.3840

50 0.9138 0.0568 0.9825 0.6046 0.6827

75 0.9026 0.0550 0.9804 0.0000 0.6536

100 0.9333 0.0660 0.9851 0.0000 0.6673

150 0.9205 0.0445 0.9870 0.0000 0.7042

250 0.8593 0.0858 0.9570 0.0000 0.0000  0.98 0.09 0.45 0.0594
WSI Net 50 0.8560 0.0589 0.9620 0.0000 0.0000

100 0.8218 0.0301 0.9710 0.0000 0.5347

250 0.9127 0.0864 0.9742 0.0000 0.0000 N/A 0.0231
LensFlow 50 0.8784 0.0744 0.9708 0.0000 0.5101

100 0.8831 0.0738 0.9726 0.0000 0.5648

250 0.9006 0.0733 0.9758 0.0000 0.0000 N/A 0.0349
LensFinder 50 0.8556 0.0648 0.9665 0.0000 0.4442

100 0.8938 0.0805 0.9718 0.0000 0.5664

250 0.8997 0.0880 0.9671 0.0000 0.0000 N/A 0.0293

input image: imageEUC_VIS-100003.fits conv2d

Figure 3. This is the input image, ‘imageEUC_VIS-100003.fits’, used to
visualize the features extracted by the CMU DeepLens model that was trained
for 500 epochs.

A sample of the features extracted by the first convolutional layer
is shown in Fig. 4. At this stage the original image is still very clear
in the extracted features, which is to be expected as at this stage
the model is still in the process of extracting fine details from the
image. For instance, the different features show the model’s efforts to
emphasize certain details (that it has learnt are important and relevant)
by changing the brightness, the separation from the foreground object
to the background, and the emphasis on the boundary between them,
to name a few.

Another sample of features extracted by the last convolutional
layer of the first ‘three ResNet block’ is shown in Fig. 5. Similarly to
the first convolutional stage, the original image is still quite visible

MNRAS 505, 6155-6165 (2021)

Figure 4. This is a visualization of the features extracted by the first
convolutional layer of a CMU DeepLens model that was trained for 500
epochs.

in the features extracted by this layer. At this stage the model is still
looking at fine details in the image.

In Fig. 6, a sample of features extracted from the last convolutional
layer of the remaining ‘three ResNet blocks’ is shown. With each
successive convolutional layer, the features extracted show less and
less detail, with the features becoming increasingly difficult to
interpret. Brownlee (2019) explains that this is due to the model
extracting more abstract features in the deeper layers that show
‘more general concepts’ that make it easier for the model to make a
classification.
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Figure 5. This is a visualization of the features extracted by the last
convolutional layer of the first ‘three ResNet block’ of a CMU DeepLens
model that was trained for 500 epochs.

4 CONCLUSIONS

It is fair to say that the developed framework, LEXACTUM, makes
it significantly easier to develop new network architectures, or apply
existing ones, to the gravitational lensing problem, with its readily
available image normalization and image augmentation features.
Furthermore, LEXACTUM provides standard metrics to evaluate
the performance of the models, along with ready-made functionality
for saving, and loading, trained models.

In this paper, some solutions that were already tried in the
original paper by Metcalf et al. (2019) were reimplemented with
image augmentation, and in some cases achieved significantly better
results than what was reported. Furthermore, new techniques were
implemented and used, in particular WSI-Net, which registered
17 per cent improvement in TPR( over the winning solution in the
original paper for the Space data set. A 56 per cent improvement
in TPR;y was also registered over the winning solution for the
Ground set by CMU DeepLens. CMU DeepLens also registered
a very impressive 175 per cent improvement over the TPR, for the
Ground set.

The work done here applies data pre-processing, in particular aug-
mentation techniques, for extended training of models all the while
avoiding overfitting the model to the training data. Furthermore, new
techniques that were previously applied to other fields were applied
to this problem, with the results obtained confirming the adaptability
of CNNs. Ultimately, this work further proves the effectiveness of
CNNs-based techniques for astronomical data problems.

4.1 Future work

It would be interesting to experiment with applying an elliptical
Hough transform to the images as a pre-processing step, as this may
make it easier for the models to locate the features that determine
whether an image is classified as being lenses or not. Storkey et al.
(2004) attempt to do something similar, however for their use case,
they noted that it was only able to detect larger features. With this
in mind, perhaps the output of the transform could be fed to the
networks as an additional channel, rather than replacing the original
image.

One other task that could be carried out to possibly maximize
the performance of the existing models is to run hyperparameter
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Figure 6. This is a visualization of the features extracted by the last

convolutional layer of the remaining ‘three ResNet blocks’ of a CMU
DeepLens model that was trained for 500 epochs.

optimization. A module could possibly be added to LEXACTUM
that does this automatically with minimal configuration.

Further image augmentation techniques could also be tested,
which would possibly allow the networks to train for an even greater
number of epochs without overfitting.

Lastly, new network architectures can also be assessed. ResNet-
based networks showed very promising results for this particular
problem.
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DATA AVAILABILITY

The data sets used for training and evaluating the CNNs are
publicly available on the ‘Gravitational Lens Finding Challenge 1.0
webpage, http://metcalfl.difa.unibo.it/blf-portal/gg_challenge.html.
All the code written for LEXACTUM is also publicly avail-
able on the GitHub repository https://github.com/DanielMagro97
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/LEXACTUM, under the GNU General Public License v3.0.!
The weights files for the trained models have also been made
available on Zenodo https://doi.org/10.5281/zenodo.4299924 and
Google Drive https://drive.google.com/drive/folders/1qn03htSDz-
0aB6jRWbKmDk4QBz0epSmS?usp=sharing (Magro et al. 2020).
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APPENDIX A: OVERVIEW OF METHODS

A1 CAS Swinburne

This model was based on AlexNet (Krizhevsky, Sutskever & Hinton
2017). The input image is first passed through three convolutional
layers, with kernel sizes of 11, 5, and 3, respectively, and 96, 128,
and 256 feature maps, respectively. Each convolutional layer was
followed by a ReLU activation function and a 3 x 3 max pooling
layer. The output from the last max pool was put into two successive
fully connected layers, with 1024 neurons each. A dropout layer with
0.5 probability was added after each fully connected layer (Jacobs
et al. 2017). This architecture is shown graphically in Fig. Al.

A2 LASTRO EPFL

This model follows a somewhat similar architecture to that described
in Section 1.2.6, however has significantly more layers. All layers
in this model use a ReLU activation, unless specified otherwise.
This model starts off with three blocks, where each block consists
of two consecutive convolutional layers, followed by a max pooling
layer and a batch normalization layer. The first block’s convolutional
layers use a kernel size of 4 and 3, respectively, with 16 features
each. The convolutional layers in the second and third blocks all use
a kernel size of 3, with the second block having 32 features, and
the third having 64. As specified, all three blocks are followed by a
max pooling and a batch normalization layer. After the third block,
a dropout layer is added to reduce the possibility of overfitting.
A convolutional layer with a kernel size of 3 and 128 features is
added, followed by another dropout layer. This is followed by another
convolutional layer of the same specifications, this time followed
by a batch normalization layer and another dropout layer. The last
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Figure Al. This is a graphical representation of the ‘CAS Swinburne’ model described in Section 1.2.6 and Appendix Al. Reproduced from Jacobs et al.

(2017).
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Figure A2. This is a graphical representation of the ‘lastro_epfl’ model described in Section 1.2.7 and Appendix A2. Reproduced from Schaefer et al. (2018).

layer’s output is flattened and passed to a triple of fully connected
layers, with a dropout layer between each fully connected layer.
Batch normalization is added after the last fully connected layer. The
model’s output is obtained by passing the output of the last batch
normalization to a fully connected layer, with a single neuron, with a
sigmoid activation function (Schaefer et al. 2018). This architecture
is shown graphically in Fig. A2.

A3 CMU DeepLens

As shown in Fig. A3, two different types of ‘ResNet blocks’ are used
by this model, one which keeps the original resolution of the image,
and another which downsamples the image by a factor of 2. In the
case where the image is not downsampled, a copy of the input to the
ResNet block is stored. The input is also passed through the triple of
batch normalization, non-linearity (Exponential Linear Unit — ELU),
and a convolutional layer three times. The result of these nine layers
is summed with the original input to the ResNet block, and returned
as the output. In the case where downsampling is employed, the input
to the ResNet block first goes through batch normalization and non-
linearity (ELU), after which a copy of the current tensor is stored
for later use. This is followed by a convolutional layer with a stride
of 2, and another two ‘batch normalization, ELU, and convolutional
layer’ triples. The output of the last convolutional layer is summed
with the aforementioned copy of the tensor at an earlier stage, after
it has gone through a convolutional layer with stride 2, and returned
as the block’s output.

The CMU DeepLens model is structured as follows. The image
is first passed through a convolutional layer with a kernel size of 7,
with 32 features, using an ELU activation function, and is followed
by a batch normalization layer. This is then followed by three
ResNet blocks, each with 32 features. This is followed by another
four sets of ‘three ResNet blocks’. Each of these sets starts with
a downsampling ResNet block, followed by two ‘regular’ ResNet
blocks. The features of each ResNet block in each set are 64, 128,
256, and 512, respectively. The output from the last ResNet block is
passed through an average pooling layer, and the model’s prediction

is finally computed by a fully connected layer with one neuron and a
sigmoid activation (Lanusse et al. 2018). This architecture is shown
in Fig. A4.

A4 WSI-Net

The first layer is a convolutional layer with a kernel size of 7, 32
features, and an ELU activation. This is then followed by two ResNet
blocks of 32 and 64 features, respectively. These ResNet blocks used
are the same as those described in Section 1.2.8. Following the two
ResNet blocks is another convolutional layer with a kernel size of
1, 32 features, and an ELU activation. This is followed by a batch
normalization layer, and a ReLU activation. A convolutional layer
with kernel size 5, 32 features, and an ELU activation is used next,
again followed by a batch normalization layer as well as a ReLU
activation. A max pooling layer is added on next, followed by a fully
connected layer with 256 neurons. The final classification is obtained
by another fully connected layer with one neuron and a sigmoid
activation (Ni et al. 2019). This architecture is shown in Fig. AS.

AS LensFlow

In this model, the first operation carried out on the input image is
an average pool with a pool size of 3 x 3 and a stride of 3. This
is followed by a convolutional layer with a kernel size of 5 and 16
features, and a max pooling layer with a pool size of 2 and a stride of
2. This is again followed with another two ‘convolutional layer+max
pool’ pairs, where the convolutional layers have a kernel size of 5 and
25 features, and a kernel size of 4 and 36 features, respectively, and
both max pools have a pool size of 2 and a stride of 2. The last max
pool layer is fed into a fully connected layer with 128 neurons and a
ReLU activation. During training, this layer is followed by a dropout
layer with 0.5 probability. The final output is obtained from a fully
connected layer with one neuron and a sigmoid activation (Pour-
rahmani, Nayyeri & Cooray 2018). This architecture is shown in
Fig. A6.
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Figure A3. This is a graphical representation of the two types of ‘ResNet blocks’ used by the ‘CMU DeepLens’ model described in Section 1.2.8 and
Appendix A3. Reproduced from Lanusse et al. (2018).
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Figure A4. This is a graphical representation of the ‘CMU DeepLens’ model described in Section 1.2.8 and Appendix A3. Reproduced from Lanusse et al.
(2018).
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Figure A7. This is a graphical representation of the ‘LensFinder’ model described in Section 1.2.11 and Appendix A6. Reproduced from Pearson et al. (2018).

A6 LensFinder

The LensFinder model has a relatively simplistic architecture, when
compared to some of the solutions presented in this paper, however
holds its weight with the score it obtains. The paper does not state
specific values for the hyperparameters of each layer in the model, the
values presented here are what were found to work best, empirically.
The model starts with a convolutional layer, with a kernel size of 5
and 64 features. A ReLU activation function is used. The result is
fed into a max pooling layer. The output is then passed into another
convolutional layer with a kernel size of 3, and 128 features. Here

again, a ReLU activation is used and the output goes into a max
pooling layer. This is connected to a fully connected layer with 128
neurons, and a ReLU activation. This output is connected to the final
fully connected layer. In the original paper, a softmax activation is
used, however since this is a binary classification problem, only one
neuron is used in this layer, and a sigmoid activation is used instead
(Pearson, Pennock & Robinson 2018). This architecture is displayed
in Fig. A7.
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