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Abstract

With the increasing availability of low-cost high quality cameras, embedded
vision systems, advanced computer vision algorithms, and proliferating solutions
based on image/video data, the volume of visual content that is being captured,
stored and transmitted is on the rise. Moreover, the image capturing hardware on
mobile devices is also improving with a wide range of devices also housing a mul-
tiview camera setup. When combined with today’s user experience expectations,
this poses a challenge to the editing process from which users expect more efficient
results in the most automated possible way. Image editing is a multistage process
that spans from the choice of the object or target region in the image for editing
to the actual manipulation.

We introduce a novel saliency-driven image content ranking approach that allows
for automatic selection of objects without the need of training the model. Regions
in an image can be selected according to the desired rank. This approach was com-
pared with human behaviour when choosing the most salient object in an image
within experiments that involved 2254 participants. The results obtained by the
algorithm matched the behaviour of 91% of the human participants. The technique
also scored a Fβ measure of 0.84 on the MSRA10k dataset and compares to normal
saliency detection models that, unlike this technique, do not rank saliency. We
also demonstrate how our saliency ranking model can be combined with segmen-
tation techniques. The combined result of our saliency-driven ranking approach of
segmentation masks compared well with the current deep learning state of the art
methods that rank segmented objects.

Once an object is selected for editing, users expect an efficient way to accurately
manipulate images. This fundamental stage is explored in our work where we
demonstrate the importance of object inpainting. The main challenge of image
inpainting is its objective evaluation and this work presents a new structured ap-
proach to objectively evaluate inpainting algorithms.

User studies with 2254 participants demonstrated that, on average, users take 3.67s
to choose an object for editing in a screen. The combined saliency-driven image
manipulation framework takes advantage of this physical limitation and efficiently
pipelines processes to deliver an accurate and efficient result in image manipulation
tasks such as attention re-targetting. A multi-purpose dataset was designed and
built to serve all these functions and is also presented in this work.
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1. Introduction

If everything seems under control,

you are not going fast enough.

Mario Andretti, Formula 1 Driver

1.1 Introduction

The volume of digital images captured in different natural environments increased

over the past decade due to the availability of affordable digital cameras, particu-

larly those embedded in mobile devices. This huge increase in content brings along

with it an increase in demand on the way people interact and manipulate the same

content. Moreover, the number of mobile devices equipped with multiview cam-

era setups is also on the increase, and this will usher the era of consumer RGB-D

data collection. In April 2020, the first commercial devices with depth sensing

technology were also released. The content editing expectations will also evolve

accordingly. However, there is a need for more tools to fulfil these expectations.

With the increase in popularity of augmented reality and virtual reality, the

need for more efficient ways of handling 3D content is also on the rise. Just as

today it is perfectly normal for anyone to take a 2D photograph of a scene through

a mobile device, it will also be natural to take a 3D representation within the

next few years. This is also coupled with the challenges faced due to the limited
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Chapter 1. Introduction

computational power of portable devices when compared to cloud capabilities. This

limitation is particularly visible in the training and configuration of deep learning

techniques. While deep learning methods work well on trained models, the quality

of experience is not as high when the system is in an unknown domain or handling

objects of an unknown class.

Within the context of this thesis, image manipulation or editing refers to pro-

cesses that remove or add objects in an image. The crucial first step of the editing

process is the selection of the target object or region in an image where the ma-

nipulation is to take place. Current methods range from a simple bounding box

around the target object [2] to semi-automatic techniques that allow for a polygon

to be drawn around the same object, such as [3]. This selection process may require

substantial manual, human interaction. In today’s expectations of needing to carry

out computerised tasks in the shortest possible time, this process might appear to

be lengthy within the commercial context. In the field of interaction design, there

is also a push towards the idea that “The best interface is no interface” [4]. We

kept this as a guiding principle, which also led us to successfully develop an ap-

proach that does not require any training to select content from a scene in a way

that matches human behaviour.

Saliency detection is a popular way of approximating the way human fixation

takes place when presented with images [5]. The current approaches that employ

saliency detection to apply different forms of image manipulation [6] still depend

to a certain extent on human interaction.

Moreover, these techniques interpret a greyscale saliency map resulting from

a saliency detection algorithm in small patches. The main implication of this

approach is that the importance of saliency can only depend on the values of

the few pixels present in the processed patch. To date, saliency maps do not

include any ranking or priority of salient regions in an image concerning objects

found in a scene. This limitation is inherent from the fact that current saliency

detection benchmarking datasets and salient object detection only deal with scenes
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Chapter 1. Introduction

containing single objects [7]. This gap in research motivated us to pursue the

problem of devising a saliency detection approach that can rank objects based on

saliency within an image to allow for the coverage of multiple objects. We are also

ushering this saliency ranking technique during the time where the importance

of Explainable AI (XAI) is on the rise. XAI is the field of study that aims to

make conclusions of computer models understandable by humans by providing a

traceable set of reasons on how a conclusion is reached [8] [9]. For this reason, the

saliency-based object ranking model presented in this thesis is also designed and

built to either provide an explainable output itself or when used in conjunction

with other techniques.

The novel approach of ranking objects based on saliency in a scene that contains

multiple objects also highlighted the limitations of current datasets [5]. This meant

that these datasets were not adequate and could not be used. Therefore, the need

for a new dataset tailored to fill this gap arose. The COTS dataset [10], introduced

in this thesis, was designed, built and made available to the public for free to

address this gap.

The second stage of the editing process involves image manipulation. Tech-

niques such as object removal and inclusion fall in the category of image manip-

ulation. In this thesis, object removal is referred to as inpainting and inclusion is

referred to as object blending. Over the past decade, this has been a very active

research area in computer vision with deep learning techniques such as convolu-

tional neural networks, artistic neural style transfer [11] and generative adversarial

networks [12] introducing a paradigm shift in the way we think about image ma-

nipulation. Throughout, we identified the lack of an objective way to evaluate the

output of inpainting methods and proposed a novel technique to address this.

Having started in 2013, this research took place throughout this fast-paced

development of deep learning applications in computer vision. Supervised deep

learning approaches have been proved to return outstanding results in certain sit-

uations. However, this level of quality needs to be considered within the context

3



Chapter 1. Introduction

of the computational cost and volume of data required to train such techniques.

The progress of deep learning approaches introduced a new perspective on how

computer vision applications are designed and built. The AlexNet object detection

model [13] in 2012 brought in this motivation by successfully demonstrating how

deep learning can be used to identify and detect classes of objects in images. At

that stage, object segmentation was seen as a separate problem until the successful

results of Mask R-CNN [14] in 2017 where pixel level segmentation was made

available for every detected object. This thesis focused on the separate effort of

ranking objects according to their saliency in a scene. Post September 2019 work

[1] [15] shows how the next evolution of object detection and segmentation methods

is actually saliency ranking of objects. This recent work also argues how effective

measurement of such methods is still an open problem. Current object saliency

ranking models [1] [16] [15] rely on trained deep learning models and are also highly

dependent on the training data upon which they are trained.

All these gaps combined usher the main gaps that currently exist in the emerg-

ing area of attention re-targeting. The main gaps in this area are related to the

dependency on user control [6] and the lack of an objective framework to measure

its effects [17]. Another challenge is that attention is subjective to users in question

particularly because existing models [1] [16] [18] depend on gaze data [15]. This

also introduces user subjectivity and potential bias.

From a more general perspective, it was also noted that for the evaluation

of different computer vision task, one needs to use different datasets where every

dataset would be dedicated to a single task. This makes the evaluation of pipelined

computer vision application challenging and makes comparison difficult.

1.2 Problem Definition

Image editing software depends on two major stages. The first stage is the selection

of the object that needs to be edited while the second stage is the application of
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Chapter 1. Introduction

some form of manipulation upon the selected object. This thesis addresses two

problems related to this editing process.

The first problem is encountered in the object selection stage. When editing

images, users are required to make unassisted decisions when choosing the target

object. This can be a decision based on an artistic motive or a more definitive one

such as removing a specific object. Such decisions are currently unassisted and the

software does not provide contextual suggestions about what are the implications

of choosing a specific object. The general saliency or attention of an image depends

on its composition and objects. The choice of which object to edit has implication

on the final image and users need assistance in choosing the most or least salient

object in an image. The latest object saliency ranking models [1] [16] [15] rely on

trained deep learning models and are also highly dependent on the training data

upon which they are trained.

This ushers the main gaps that currently exist in the emerging area of attention

re-targeting. The main gaps in this area are related to the dependency on user con-

trol [6] and the lack of an objective framework to measure its effects [17]. Another

challenge is that attention is subjective to users in question particularly because

existing models [1] [16] [18] depend on gaze data [15]. This also introduces user

subjectivity and potential bias and introduce the need for an objective pixel-level

approach.

The second problem is related to the manipulation process itself. Within the

context of this thesis, image manipulation refers to the removal or inclusion of

objects in an image. The field of image inpainting includes techniques that can

effectively remove a region of an image, potentially containing an object, and re-

place it with a background consistent with the rest of the region within the image.

Such techniques are generally evaluated using subjective methods and the use of

full-reference metrics cannot be used for the inpainting of larger areas [19]. This is

due to the lack of inpainting ground truth in datasets that would take the form of

an identical image of the same scene without the inpainted object for comparison.
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The gap being addressed in this thesis is the exploration of an objective metric and

approach that assesses inpainting and blending given the current context where

existing datasets do not have any groundtruth of the scene with or without the

target object.

All these research gaps and challenges combined served as a clear basis and

direction for this thesis that can contribute to improving the image manipulation

experience.

1.3 Aim and Objectives

The aim of this research is to contribute to the field of computer vision by devel-

oping a saliency driven approach to rank objects or regions within a RGB-D scene

upon which image manipulation operations can take place.

In order to achieve this aim, the following objectives were set up:

1. Automate object selection within images by making use of a saliency-driven

method to facilitate manipulation of images.

2. Design and build a multipurpose RGB-D dataset that can be used to evaluate

different computer vision applications.

3. Devise an objective approach to evaluate image inpainting techniques that

allows for fair comparison of different algorithms.

1.4 Main Contributions

A Saliency Ranking Model We created a saliency-driven ranking model, (SARA),

that does not require any training and can efficiently rank the visual saliency

of an image, presented in Chapter 5 and published in [20]. This technique

can work with or without depth information. The experiments presented
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in Chapter 7 demonstrate how this technique returns predictions that com-

pare well to human behaviour. Moreover, this method ushers a new way of

achieving and evaluating attention re-targeting in an image.

Ranking the Output of Segmentation Methods This thesis also demonstrates

how the proposed saliency ranking model can be used to rank the masks in

the output of modern segmentation methods. Experiments demonstrate that

when our model is used to rank the output of Mask R-CNN, comparable

results to deep learning based segmentation methods are achieved.

Intra-Object Segmentation Exploited the nature of RGB-D images to efficiently

decompose the object of interest into layers. This makes it easier to manipu-

late 3D images in operations such as inpainting and blending. This work was

published in [21].

Objective Evaluation of Inpainting The contribution of inpainting larger ob-

jects or regions in scenes that was published in MELECON16 [22] might to-

day be overshadowed by Generative Adversarial Networks (GANs) inpainting

that featured after that publication. However, the objective evaluation ap-

proach achieved through the COTS dataset still stands and can be used for

any inpainting approach, whether it is Exemplar Based Inpainting (EBI) or

through GANs. The objective evaluation approach was published in [23].

Multipurpose RGB-D Dataset The modular nature of the process and frame-

work presented in this thesis highlighted the need for a multipurpose dataset

that can be used to evaluate the framework throughout all its stages. For

this reason, we designed and built a RGB-D dataset that serves this purpose

as presented in Chapter 6, was published in [10] and is made available online

to the public for free on www.cotsdataset.info.
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1.5 Publications

The main milestones of this study were compiled in papers and published in inter-

national IEEE peer-reviewed conferences and journals.

The first one, Monoscopic Inpainting Approach using Depth Information [22],

was accepted and published in the Proceedings of the 18th IEEE Mediterranean

Electrotechnical Conference (MELECON) in 2016.

The second one, Efficient Object Selection using Texture and Depth Information

[24], was accepted and published in the Proceedings of the 2016 IEEE Conference

on Visual Communications and Image Processing (VCIP).

The third one, Intra-Object Segmentation using Depth Information [21], was

accepted and published in the Proceedings of the 19th IEEE Mediterranean Elec-

trotechnical Conference (MELECON) in 2018.

The fourth one, Ranking Regions of Visual Saliency in RGB-D Content [20],

was accepted and published in the Proceedings of the 2018 IEEE International

Conference on 3D Immersion (IC3D).

The fifth one, An Approach for Objective Quality Assessment of Image Inpaint-

ing Results [23], was accepted and published in the Proceedings of the 20th IEEE

Mediterranean Electrotechnical Conference (MELECON) in 2020.

The sixth one, COTS: A Multipurpose RGB-D Dataset for Saliency and Image

Manipulation Applications [10], was accepted and published in the IEEE Access

Journal, Volume 9, pp. 21481-21497, 2021.

1.6 Thesis Overview

This thesis is organised into 3 main parts. The first part will present relevant

literature to the reader about the key topics tackled in this thesis. The second part

will demonstrate how the theory explored in the first part was brought together to

tackle the above mentioned gaps. This starts with preliminary experiments that

were carried out that eventually resulted in the Saliency Ranking method. The
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final part presents the COTS dataset together with the evaluation of the Saliency

Ranking technique followed by an investigation of possible future work in this area

and respective conclusions of this work.

Part 1 - Literature Review This part is organised in two main chapters cover-

ing literature and research about existing relevant topics for this thesis. These

chapters cover techniques related to Visual Saliency and Image Manipulation.

1: Visual Saliency The first chapter covers the key topics and theory be-

hind visual saliency. It starts by providing background about the human

memory and visual attention, the theory upon which saliency detection

techniques are based. Different types and techniques of saliency detec-

tion are then surveyed. This is followed by a survey of early attempts

at ranking saliency and past interpretation of the topic. This chapter is

concluded with a survey of novel saliency ranking approaches that rank

different objects in a scene using deep learning models.

2: Image Manipulation The second chapter deals with background re-

lated to Image Manipulation where in the context of this thesis, it refers

to the selection of an object and its removal or addition to an image.

This chapter starts with an overview of segmentation methods ranging

from traditional approaches to the latest state of the art deep learning

methods. The second major component of this chapter provides cover-

age of inpainting methods. Different approaches are surveyed together

with more recent generative deep learning methods.

Part 2: Methodology Following the coverage of relevant work in Part 1, the

second part of this thesis deals with the application of these topics into the

design and implementation of a saliency driven approach that enables image

manipulation.

3: Preliminary Experiments This chapter presents two major experiments
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that were carried out and motivated the development of the main con-

tributions of this thesis. The first one is a single click object selection

method that uses colour and depth information from RGB-D images.

The second one is an intra-object segmentation method that splits ob-

jects in different layers of colour that correspond to the depth informa-

tion.

4: Saliency Ranking Approach for Image Manipulation This chapter

outlines one of the main contributions of this thesis. It outlines an ap-

proach that ranks different parts of the image based on their saliency.

This approach returns a ordered list of segments of the image by their

saliency level, therefore indicating which parts of an image draw more

or less attention. This chapter also demonstrates how the proposed

saliency ranking model can be combined with any segemntation tech-

nique to rank its output masks.

Part 3: Consolidation The last part of this thesis deals with the evaluation of

the saliency ranking approach together with the presentation of a new dataset

for the evaluation of computer vision applications. This part also analyses the

findings of this thesis and explores the potential of different saliency ranking

approaches in computer vision.

5: COTS Dataset While working on different aspects of image manipula-

tion, it was evident that the lack of datasets was hindering objective

evaluation. It also meant that techniques needed to be either evaluated

using subjective approaches or rely on datasets that were not intended

for this purpose. In our case, this was evident when we worked on in-

painting methods [22] and for that reason we designed and built the

COTS dataset [10] that can be used to evaluate inpainting methods [23]

and other computer vision applications.

6: Evaluation This chapter presents a detailed evaluation of the saliency

10
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ranking approach. It starts investigating key aspects of the approach

such as the experiments behind the choice of the grid size and abla-

tion studies on its key components. The technique is then benchmarked

with other saliency detection techniques. Due to its novelty, user based

experiments were also carried out to compare the result of the system

with human behaviour. The proposed saliency ranking technique com-

bined with Mask R-CNN was also evaluated against the comparable

deep-learning based state of the art techniques.

7: Conclusion This chapter briefly reports the key topics covered in this

thesis while binding them to existing research in the field. This con-

cluding chapter then briefly goes through the details of implementation

together with its respective evaluation while it is concluded by summing

up all efforts in this thesis.

1.7 Conclusion

This chapter presented the motivation behind this report by giving an overview

of the work presented together with the problem definition. The aim and objec-

tives of the thesis were presented and they were followed by the main output and

contributions together with an overview of the chapters found in this thesis.

11



2. An Overview of Visual Saliency

The true mystery of the world is

the visible, not the invisible.

Oscar Wilde

2.1 Introduction

This chapter outlines the relevance of visual saliency in the field of computer vision.

It starts by providing background about human attention which provides the basis

of visual saliency. This section is then followed by an overview of different saliency

detection methods in computer vision. These different techniques model a colour

image into an 8-bit saliency map where every pixel represents the level of saliency

for the corresponding pixel in the colour image. Most of the work in this field of

study focused on the accurate generation of these saliency maps. This is followed

by a section that investigates earlier attempts at ranking saliency where this was

interpreted as ranking the individual pixels without any particular context. This

chapter is concluded with an overview of recent work that ranks objects based on

saliency, which is the field to which this thesis contributes directly.
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2.2 Background

As human beings, we rarely stop and take our time to appreciate the volume

of information that we experience from the world around us. This large volume

of information is received through our senses. Think about the smells around

us, the sounds we hear while choosing to which we will listen, the temperature

affecting our skin and implicitly changing our behaviour, the taste of a coffee we

had few moments ago and finally all the things we see around us. Through our

visual system, it is estimated that our retina is bombarded by 10 billion bits of

information per second [25] [26]. Despite this large volume of information, our

brain processes a smaller amount of information due to the limited capacity of the

optic nerve that is approximately 6Mbits/s. Moreover, the brain is not capable of

processing all this information at conscious level and ends up spreading it over the

different types of memory. This results with only 100bits/s of information being

processed at a conscious level [25].

The ability of making efficient use of this information is vital for survival. Fur-

thermore, it is important that the right information is stored for retrieval [27]. The

human memory model is divided into three parts: sensory, working and long term

memory [28]. The information being processed through our sensory system is pro-

cessed in sensory memory for a short period of time and for this reason, it is also

referred to as very short term memory store. This information received from our

sensory receptors can be haptic (touch) information, echoic (sound) information

and, most commonly, iconic (visual) information [28]. A selection of the informa-

tion at sensory level is then transferred to working memory for further processing

by the brain [29]. Information is stored in working memory for a period of time

that this relatively longer than that at sensory memory but it is still considerably

limited. For this reason, working memory is also known as short term memory.

Due to the relevance of Working Memory to this research, Section 2.2.1 is ded-

icated to exploring this aspect in deeper detail. Working memory is responsible

for chunking information for the brain to process it accordingly. This selection is
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known as attention and the visual aspect of attention is explored in Section 2.2.2.

Selected information that we repeatedly experience or rehearse is then stored in

the last memory store known as long term memory [28].

2.2.1 Working Memory

The part of the process responsible for the preliminary processing of information

after it is received from the human sensory receptors is known as working mem-

ory. The capacity of this store is important since it is used to temporarily hold

information for further processing [30].

Working memory is itself a theoretical representation and due to its abstract

nature, it has always been difficult to measure its limited capacity. The first theories

venturing into this understanding suggested the idea of information being stored in

chunks [29]. The concept of chunking states that information processing for young

adults can handle seven chunks or elements, plus or minus two [31]. A chunk is a

unit of information or content that a person can memorise for further processing.

All information received at sensory level can be chunked. For example, phonetic

segments in a sentence can be considered as chunks and the same chunks are

still processed by the brain even if spoken in a language that is unknown to the

listener. Later research [32] suggested that chunks can also contain different types

of information such as visual and text. This notion of chunking inspired the idea of

segmenting an image in regions of interest for more efficient processing, as explained

in Section 5.3.1.

The human brain processes a limited amount of information in an environment

generating far more information than the same brain can handle at one point in

time. The capacity of the working memory is one of these bottlenecks and the same

limit on its capacity results in humans being easily distracted by other information

and while needing to focus on tasks of a narrower nature [33]. Cognitively, our brain

filters visual information around us by having our attention diverted to specific

objects that are more salient than others as explored in more detail in Section
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2.2.2.

2.2.2 Visual Attention

The selection of visual information is carried out through a set of cognitive mech-

anisms processing signals throughout the visual system. This is known as visual

attention [34]. Cognitively, the purpose of visual attention is to reduce the volume

of information that needs to be processed. The processing of visual data includes

the binding and enhancement of features that are used in the recognition process

[34]. The brain processes visual information in two stages. In the first stage, an

entire scene is processed, and in the second stage, the system focuses on a single

area for further detailed processing.

Figure 2.1: The spotlight model of visual attention [35] (Source: [36])

The first stage is also referred to as the spotlight model where the scene is

organised as an area of focus at the centre and peripheral information [35] as rep-

resented in Figure 2.1. The focus at the centre is processed at the best resolution

and it is the area from which the brain extracts the most information from the

scene. This high-resolution area is where visual attention is focused. For a quick

appreciation of how this works, one can extend his/her arm with the thumb up.

Upon focusing on the thumb, one can experience a clear visual representation of

that small area and the rest appears to be blurred. The blurred area is known as

the margin. This is the cut-off region of visual processing. The area between the
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focus and the margin is known as the fringe which is a gradual change in focus.

Information in the fringe is processed at a lower resolution [35]. The results pre-

sented by Judd et al. [37] resulting from their eye-fixation based saliency detection

model reaffirms this theory. The spotlight model inspired the way the output of

the saliency ranking technique presented in this chapter is composed as presented

in Section 5.4.

Attention is also differently oriented over a scene through ‘overt’ or ‘covert’

orienting [38]. Overt orienting is the act of willingly and selectively focusing the

visual attention onto an area of interest. Eye-tracking techniques would be visualis-

ing and representing overt attention orienting. On the other hand, covert orienting

is the shifting of attention without any eye movement. In such an orienting ap-

proach, attention is attended towards a single stimulus among a selection of stimuli

present in the same region. Studies [38] suggest that overt and covert orienting do

not operate independently and both contribute to the focus of visual attention.

The overt and covert notion of orienting visual attention leads to the key ideas

behind the way we interpret salient regions within a scene. General theories of

visual attention assume bottom-up and top-down processes to converge within the

same part of the brain [38]. Bottom-up processes are based on reflexive information

induced by stimuli in the scene. On the other hand, top-down processes are based

on voluntary focusing on a high-level specific object in a scene. For example,

noticing a red area over a light background and then covering a broader area to

understand that it was a person wearing a red shirt in front of the blue sky would

be the result of the bottom-up process. On the other hand, the voluntary focus on

a person and then deducting he/she is wearing a red shirt is the top-down process

in action. This notion is the fundamental theory behind the main approaches in

saliency detection techniques that are reviewed in detail in Section 2.3.
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2.3 Saliency Detection Techniques

Saliency detection in computer vision can be approached through either top-down

methods or bottom-up ones. This follows the same process that takes place in

the biological saliency detection explored in Section 2.2. The bottom-up method

is based on features belonging to a neighbourhood or small region and does not

consider any object-level target. These techniques are stimulus-driven that explore

low level vision features [39]. The low-level attributes and features of a scene are

those that influence this approach the most [40] [41] and are normally evaluated

in relation to eye-fixation models [42]. On the other hand, it is the high-level or

object-level properties that drive top-down saliency detection techniques. These are

based on a target interpretation of the image that is deduced following a training

of a model [43] and such techniques are generally slow to train [40].

This thesis uses saliency for ranking of objects in the context of images. There

are different techniques that are starting to use saliency on video content [44] [45]

[46] [47] in different applications. These include the use of saliency detection in

video to detect changes in the scene [46]. Another application area is 360-video

content [48] [49] where saliency is used detect sections of the scene that attracts

attention.

This Section reviews three saliency approaches based on eye-fixation methods,

information theory approaches and deep learning approaches. Subsection 2.3.1,

presents eye-fixation approaches that were motivated by the first of these methods

proposed by Itti et al. [50] followed by other techniques [51] [52] [53]. Another set of

approaches in saliency detection use information theory and statistical information

such as the work presented in [37] [54] [41] surveyed in Section 2.3.2. The most

recent approaches in saliency detection make use of deep learning [55] [56] [57] [58]

[59] [60] [61] [62], where models are trained to generate saliency maps in colour

images.
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2.3.1 Eye-Fixation Saliency Detection Methods

Observation of biologically driven saliency detection inspired the first techniques.

In the early work in saliency detection, the knowledge of visual attention system of

primates was used to generate a saliency map [50]. It followed that by design such

techniques would need to quickly detect saliency in a given scene. This results in

the rapid interpretation of features within a scenes and their decomposition into a

topographic map. Due to the focus on specific features within the image, saliency

maps allow for a clearer distinction between the image foreground and background

regions.

The original saliency detection technique was proposed by Itti et al. [50]. This

method starts by filtering linear features in the image considering colour, pixel in-

tensity, and orientation [50]. These are low-level features that make this technique

a bottom-up approach. The second phase of this technique normalises the previ-

ously detected low-level features. These features are mapped for an across-scale

normalisation process. The map normalisation operator promotes maps in which a

small number of intense peaks of activity are present, resulting in the suppression

of maps that contain many comparable peak responses. The feature maps are com-

bined into three conspicuity maps. This is obtained through across-scale addition

by reducing the scale of each map and point-by-point addition [50]. This results in

a preliminary saliency map. The final stage of this technique uses a “winner-take-

all” neural network for the processing of the saliency map built through the earlier

stages.

This method gives priority to the most active regions in the image while the

other less important elements in the image are suppressed and therefore end up

not being prominently featured in the saliency map. A selection of examples to

demonstrate the output of Itti’s method is presented in Figure 2.2. Besides being

the first work in this area that generated significant interest, the work in [50] is also

commended for its efficiency due to its parallel implementation and its performance

in complex natural scenes. This property was one of the main motivations for using
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Itti et al. saliency map generation technique as a default in the technique presented

in this thesis, as discussed in Section 5.3.1.

Figure 2.2: A selection of saliency maps of colour images used in this thesis. These
saliency maps were generated using Itti’s Method [50].

In his definition of a salient object, Borji [7] distinguishes saliency detection

from eye fixation prediction. He differentiates between “where people look” (free-

viewing of a scene) and “which objects stand out” (detect salient objects) [7]. The

work of this thesis is placed in the latter category where the work presented models

which objects people would choose. The various online tests also follow this line of

thought and are aimed at testing which objects users choose.

Margolin et al. [53] discuss what makes a patch distinct from other patches in

the same images. This approach analyses the colour and pattern attributes in an

image. When processing an image, this technique first captures unique features that

relate to the object structure. The second phase processes the colour information

and identifies the distinct features. The concluding phase takes the two sets of
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features and finds what is common in both and concludes that it is the most

distinct region in the image [53]. This approach enhances the saliency result by

prioritising objects that are distinct in terms of colour and pattern. It does not

return any form of ranking of saliency. In the few examples presented where there

are multiple objects in a single image, this technique appears to makes them stand

out in the saliency map depending on their colour and pattern scores.

Centre-Bias

When presented with a scene, viewers tend to fixate on the central region of the

image and therefore the elements found in that area of the scene [40]. This effect

is known as centre-bias. This idea is further supported by experiments where the

average annotation map of a collection of saliency maps was computed and found

to point towards the centre [37] and others with the mean position of object lo-

cations [42] that gave the same result. This effect is manifested in most of the

datasets in this field [5], and an example can also be seen in the result presented

in Figure 7.1. A possible cause behind this phenomenon can also be an ergonomic

attribute and experimental constraint where the subjects would have their heads

at chin-rest during the fixation experiment [51]. Another potential cause of bias in

datasets could also be the result of proportions used in photography such as the

rule of threes when generating or choosing images that are included in datasets [51].

Different saliency detection techniques [37] [52] also make use of centre-bias in their

generation of a saliency map. Results show that a 2D Gaussian distribution models

this effect in a given image and a probability of fixation can be approximated in

this way. The technique presented in this thesis allows for the consideration of

centre-bias in the generation of the model leading to the saliency ranking. How-

ever, given that this can bias the results, a set of experiments without this mode

were also carried out and show that the technique does not rely on centre-bias as

demonstrated in Table 7.1.
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Viewing Proximity

Fixation is also affected by whether an object belongs to the background or fore-

ground of an image. The detection of salient objects in scenes that contain a

complex background or similar features to the target object renders the problem of

saliency detection even more difficult [63]. The human visual system is sensitive to

the depth of field in a scene [63] and different work shows that objects in the back-

ground are less salient than those in the foreground [40]. Thus, saliency detection

algorithms should handle background and foreground information differently [43].

The results presented in this thesis show that the consideration of depth is impor-

tant when ranking objects by saliency. On the other hand, this does not mean that

the background needs to be ignored when detecting saliency since it might also

contain objects that have a significant level of saliency. Existing saliency detection

datasets reviewed in several benchmarking papers [5] [51] [39] do not include depth

information and till now it is challenging to concretely correlate depth with the

level of the saliency of objects.

2.3.2 Information Theory and Statistical Saliency Detec-

tion Methods

Human visual attention is influenced by regions that contain most information or

rate of change [64]. This served as an inspiration for the use of information theory

in the detection of saliency. This regional maximal information was found to be

adequately modelled using Shannon’s self-information [65].

One of the major works employing this approach [37] featured a machine learn-

ing technique that used self-information to identify features with eye-tracking data

over 1003 images generated by 13 users. A model was subsequently built through

this data and it managed to successfully predict human fixation in an image. A

similar approach was used for identification of super-pixels in images [54]. The

super-pixels were represented as nodes in a graph and the weights of the edges

21



Chapter 2. An Overview of Visual Saliency

represented the similarity between the super-pixels. However, such approaches are

affected by the cost of the generation of the super-pixels [54]. These techniques

are used as an alternative method to generate a saliency map, and the output is a

complete saliency map [20] rather than a specified region of interest as presented

in this chapter. Probabilistic approaches were also used to generate saliency maps.

One example of these methods was the Fast, Accurate, and Size-Aware Salient Ob-

ject Detection (FASA) [41]. This technique quantised the colours in the image and

estimated their position such that a statistical model was built to predict saliency

in the image. This technique achieved significant performance when processing

video content [41].

2.3.3 Deep-Learning Saliency Detection Methods

The successful results of deep learning in different computer vision techniques over

the past decade inspired a number of work to use this approach in the generation

of saliency maps [55] [56] [57] [58] [42] [41] [59] [60] [61] [62].

These approaches are using hand-crafted annotated datasets to train their mod-

els that make use of a convolutional neural network (CNN) architecture. In some

cases, the network architecture also employs different saliency detection techniques

and therefore, approximates to a more general solution [42]. Such techniques use

a single network that learns crafted colour and depth features, producing a set of

joint predictions [66] as shown in Figure 2.3- approach A. Another approach uses

two separate CNN architectures where each architecture handles colour and depth

individually and their results are combined in a final layer that returns the joint

predictions [67] as shown in Figure 2.3- approach B.

The deep learning approaches vary. The extraction of salient feature vectors

from scenes [57] can be used for the network to learn the interaction between

saliency features and RGB-D information. The raw saliency feature vectors contain

information such as the local contrast of objects, global contrast, background prior,

and spatial prior. This information was then embedded in the layers of a CNN
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Figure 2.3: A high level illustration of the two deep learning approaches normally
used in saliency map generation (Adapted from: [68])

that generated a saliency map as output [57]. RGB-D feature handling was also

explored using a cross-modal approach where the color and depth stream were

handled separately [68]. The work of Chen and Li [68] discusses an architecture

that exploits the cross-modal nature of approximations in a progressive nature.

These deep learning saliency detection techniques can be classified as top-down

approaches where, in some cases, it also includes low-level features. The main

challenge in the use of deep-learning approaches is the necessity for an extensive

labeled dataset that is uniformly sampled for training together with the computa-

tional resources required for such training [43].
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More recent state of the art methods in this category combine salient object

detection with object segmentation. BASNet [60] uses deep learning to generate

boundary aware salient object detection and SCRN [62] similarly refines the salient

object detection based on the edges of the salient object. These recent methods also

give significant consideration to the performance of salient object detection with

CPD-R [61] and BASNet also dedicating significant attention to the effect of the

technique on the frame-rate when processing video or streamed content. S4Net [59]

combines instance segmentation with saliency maps, stopping short from suggesting

a rank for the results of the instance segmentation.

2.4 Early Attempts at Ranking Saliency

The review of saliency detection techniques presented in Section 2.3 reflects the

significant effort carried out in this research area. These approaches provide several

different saliency maps where the value of every pixel in the saliency map reflects

the level of saliency of the same pixel in the original image. Within the context of

the assumption that the original image contains a single object, such an approach

may suffice. However, this is not always the case, and such models generally assume

a single object in the scene [7].

The focus on scenes with single objects has proved to be useful in the devel-

opment of these models and their respective benchmarking. The current challenge

in the field of saliency detection is its use in more complex tasks such as scene

description [5]. In order to be able to carry out such tasks, techniques that can

rank objects within a scene according to saliency are essential.

In this Section, the current techniques that explore the idea of ranking saliency

in an image are explored. While the technique presented in this thesis provides an

approach that effectively ranks regions in the image from a global perspective, the

techniques being reviewed tackle saliency ranking from pixel level.
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2.4.1 Ranking Saliency

In their paper “Ranking Saliency”, Zhang et al. [69] propose a bottom-up approach

that detects salient objects in images. This work models saliency detection as a

manifold ranking problem along with a cascade scheme of refined saliency genera-

tion represented as graph labeling. The final output is still a saliency map in the

same format of the other techniques reviewed in Section 2.3. This work assumes

that the image content is split in two where it can either be the salient object or

the background [69]. It also follows the trend of using images with single objects.

Only 4 out of 37 scenes presented in [69] contain more than a single object. In this

10% of the scenes, both objects are ultimately considered as a single object in the

resultant output of the technique.

The graph-based manifold ranking is spread over several layers in the process

of image analysis. Every node is considered as a query, and the links to the other

nodes are ordered according to their rank with respect to the original node. A node

is, therefore, a region from the background or salient foreground [69].

The first stage of this technique involves the use of boundary priors to obtain

specific queries from the input image. The saliency of the nodes is computed as

relevance/ranking to the background nodes. The saliency ranking score f∗ for each

node is computed as presented in Equation 2.1 where D is the degree matrix, α

is a function used to control the balance of smoothness and W an affinity matrix.

Matrix A is the learned optimal affinity matrix while y is a binary indicator vector

[69].

f∗ = Ay where A = (D− αW)−1 (2.1)

This process results in the generation of four preliminary saliency maps. These

maps are then integrated into a single saliency map Sbq using Equation 2.2. At this

stage, every node in the combined map has a probabilistic measure to the other

nodes. These measures are obtained and ranked over different iterations until a
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final refined map is generated [69].

Sbq(i) = St(i) ◦ Sb(i) ◦ Sl(i) ◦ Sr(i), (2.2)

where ◦ is an integration operator such as ×, +, min or max. St(i), Sb(i), Sl(i)

and Sr(i) are the saliency maps with top, bottom, left and right boundaries as

queries respectively. The super pixel being ranked is denoted by i.

This technique, therefore, uses background and foreground queries to generate a

set of saliency maps. The components of these maps are iteratively ranked in a

bottom-up approach in order to generate a final saliency map. The output map

is a greyscale map with pixel level indication of saliency. The ranking is therefore

used to generate the final saliency map that does not indicate any form of ranking

within the scene by itself. The result of this technique can also serve as input to

the ranking solution presented in this thesis such that the different segments of the

saliency map can be ranked according to importance.

2.4.2 Other Approaches

The emerging importance of ranking saliency is also evident in other work and

applications. Saliency provides an opportunity in data compression, and it can be

used to guide progressive coding techniques. Rahul and Tiwari propose a JPEG

framework based on saliency enabled compression [70]. This work makes a similar

assumption to the other reviewed work by making use of images containing only

a single object and categorizing the image into salient and non-salient regions.

However, [70] introduces the idea of working with multiple ROIs.

The work of Rahul and Tiwari [70] generates a multi-level saliency map and

segments the image into several salient classes. Their class variances are then

processed, and every class contains pixels that are randomly distributed along with

the image [70]. Each class is then ranked by a weighted variance of the pixels in
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the class. This work uses the JPEG 8×8 blocks where the blocks are then ranked

using a probability mass function.

In separate work, Zhu et al. propose a saliency detection framework for complex

scenes [63]. This work makes use of RGB-D information and identifies the most

salient object in a scene with a complex background. This process is organized into

three stages. The first stage pre-processes the scene and extracts the centre-bias,

the second stage makes use of colour and depth features to generate a detection map

and finally, the third stage fuses the detection map with center-bias to generate a

final saliency map [63]. The result of this work still returns a saliency map that

highlights the most salient object in the scene, and whenever there are multiple

salient objects, they are still presented as a single object.

The model developed by Judd et al. [37] performs well when compared to where

people look in an image. This approach is a supervised model that is trained on

eye-fixation data. In certain instances, this work applies a heuristic of choosing the

brightest top 10% pixels of the designated saliency map for comparative purposes

on their resultant map generated through a support vector machine. This heuristic

is used to compare the results of their technique with other techniques such as Itti’s

[50]. It therefore implies that the most salient regions are the brightest 10% of the

pixels in the saliency map.

2.5 Object Level Saliency Ranking

The aim of salient object detection techniques focused on accurately measuring or

detecting objects or regions in images that detect visual attention. The previous

section surveyed the major work that tried to tackle the ranking of saliency in im-

ages from a point-processing perspective. Most work in saliency detection focused

on datasets containing single objects as discussed above while a few ventured in

datasets that contained more than one object. However, studies on how saliency

changes or shifts between different objects in the same scene is still in its early
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stages [15].

This section surveys two very recent methods in Object Level Saliency Ranking.

The first one was published in June 2020 and focuses on inferring attention shift

rank [1] while the second one introduces the idea of Relative Saliency between

objects [15], published in January 2021.

2.5.1 Inferring Attention Shift Ranks

This work of Siris et al. [1] focuses on replicating the human ability to shift atten-

tion from one part of an image to another as discussed in Section 2.2.2. The initial

application of the work of Itti et al. [50] applied saliency maps to scene analy-

sis. However, their main contribution was the actual generation of the pixel-level

saliency map rather than the scene analysis aspect.

Siris et al. [1] proposed a deep learning network that is trained on human gaze

data to model attention shift. Their contribution also includes a new dataset for

salient object ranking based on the COCO [71] and SALICON [18] datasets. This

augmented dataset was built by studying eye-fixation patterns of 11 subjects to

determine shift rank order and is presented in more detail in Section 7.6.1. Based

on this study, the ground truth of their dataset was based on distinct objects that

were fixated one after the other while ignoring any objects that appeared more

than once. The rank of saliency of an object was calculated in relation to such

score across all observers [1].

The attention shift rank deep learning model, shown in Figure 2.4, was based

on bottom-up features and inspired by Itti’s work [50]. This model’s backbone

network is based on the Mask R-CNN [14] segmentation network and therefore

only considers objects that are detected by this network. This network also uses

a sliding-window to decide whether objects are in the foreground or background

of an image. The Spatial Mask Module at the centre of the architecture considers

the masks of different object proposals in order to make sure that even important

smaller objects are considered. This module is reported to make use of the Centre-
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Figure 2.4: The network architecture for Attention Shift proposed by Siris et al.
using Mask R-CNN [14] as the Backbone Network (Source: [1])

Bias principle [1] reported in Section 2.3.1.

The attention shift rank order at the latter parts of this architecture takes place

in the Saliency Rank Network and returns a rank on the object proposal generated

by the Mask R-CNN. The result of this architecture is limited to the first 5 objects

and the authors consider higher ranks as future work [1]. It was reported that this

model took 6 hours to train on a Tensorflow implementation and using an NVIDIA

GTX 1080 Ti GPU.

This work was evaluated using the Salient Object Ranking (SOR) metric that

was originally proposed by [16] and developed further in [15]. This metric is inves-

tigated in detail in Section 7.5.1. Siris et al. used the SOR metric to evaluate their

model against a number of saliency detection methods although they also report

that these other methods were not built to predict object level segmentation and

respective detection. These methods, as reported in Section 2.3, produce a single

saliency map where in some cases it is also a binary map [1].

Later in this thesis we demonstrate how our approach returns comparable re-

sults to this technique when combined with Mask R-CNN without the need of any

training to rank the salient objects.
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2.5.2 Relative Saliency

The work by Islam et al. [16] introduced the idea of ranking saliency by revisiting

the concept of salient object detection and recently publishing a more detailed

version of the same study [15]. Their work introduced a deep learning model

that proposes a relative rank. This work was published at the same time that we

published our initial work in saliency ranking [20] that is expanded further in this

thesis.

One of the main contribution of [16] is the introduction of a stacked representa-

tion of the ground truth in saliency maps that paves the way for saliency ranking.

The ground truth saliency map is defined as Gm where N maps of different partic-

ipants are stacked as (Gi, Gi+1, . . . ,GN). This is visually presented in Figure 2.5.

The nested nature of the ground truth is defined by Gi+1 ⊆ Gi and this results in

new objects being presented in every new instance of the stack.

Figure 2.5: The stacked representation of ground truth of saliency maps as proposed
by Islam et al. (Source: [16] [15])

This work [16] [15] presents a feed-forward deep learning network named RS-

DNet that is based on ResNet-101 [72] trained on a version of the Pascal-S [51]

dataset. The output of this network trained on the stacked ground truth returns

multiple salient objects. Another significant contribution of this work was that

it started including multiple objects in the salient object detection output, some-

thing that was not being done by other algorithms. This work, nonetheless, does

not provide an indication of the training time for their proposed network.

The evaluation of RSDNet was carried out as a comparison with state of the

art salient object detection methods that were not returning any rank for the

detected objects. In order to evaluate the matter of rank, the authors carried out a

30



Chapter 2. An Overview of Visual Saliency

qualitative study by presenting visual results. In the absence of a metric to evaluate

saliency ranking, they proposed the Salient Object Ranking (SOR) metric that is

discussed in Section 7.5.1. In their recent update [15] to their original work [16],

the authors still claim that the main challenge for saliency ranking is the lack of

universally agreed metrics for evaluation.

2.6 Conclusion

This chapter demonstrated how throughout the past couple of decades, visual

saliency witnessed an evolution from pixel level classification of saliency to ranking

objects by their salient value.
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3. Image Manipulation

Do not try and bend the spoon,

that’s impossible. Instead, only try

to realize the truth...there is no

spoon. Then you’ll see that it is

not the spoon that bends, it is

only yourself.

Spoon Boy, The Matrix movie

3.1 Introduction

This chapter aims to provide background on the fundamental topics that are used

within this thesis to demonstrate a selection of methods for image manipulation.

In order to focus the scope of this thesis, Image Manipulation is understood to

refer to the removal of objects from an image or the inclusion of a new object in

the image.

This chapter starts by providing background on segmentation techniques. Seg-

mentation results in the identification of objects within the image upon which the

above mentioned manipulation can be applied. This chapter subsequently covers

background related to inpainting which is the process of removing specific regions

of an image in the least noticeable manner.
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3.2 Segmentation Techniques

Image segmentation is the process of separating objects in an image into multi-

ple regions or partitions [73]. Segmentation can be achieved through a variety of

techniques and regions are partitioned depending on different attributes such as

colour, intensity or other features [74]. The main motivation behind this process

is to be able to perform smoother and more efficient analysis of the image [75].

Segmentation is employed within different techniques presented in this thesis, such

as for example the distinction between foreground and background in an image.

This section surveys a selection of segmentation techniques such that a context for

the chosen techniques is given accordingly.

Traditional segmentation techniques can be grouped in four main categories,

namely: edge-based, fuzzy, thresholding, and region-based segmentation [75]. There

is also a selection of deep learning techniques that segment an image by objects

belonging to specific classes upon which the deep learning model is trained.

Edge detection techniques such as Canny or Sobel detection can be used to iden-

tify the edges in an image and act as basis for segmentation [75]. This approach

requires significant pre-processing for the properties of edges to be fully revealed.

Moreover, the discovery of edges needs to be then complemented by contour de-

tection. The main advantage of this approach is its fast performance, although it

performs weakly when processing images with higher noise [75].

This section presents the other techniques that are more relevant to this thesis.

3.2.1 Levels of Segmentation

When dissecting a scene into partitions, segmentation can also be seen through

different perspectives. This subsection explores these perspectives, particularly in

the context of the intra-object segmentation approach presented in Section 4.4

within this thesis.
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Foreground Segmentation

Objects in the foreground are generally of highest interest and are therefore targeted

for segmentation. When depth information is available, foreground extraction is

carried out first by processing the depth information, followed by image threshold-

ing to reduce the grayscale image into a binary image for faster processing [73] as

presented in Section 3.2.2. Another approach is by applying a graph-cut algorithm

such as GrabCut [3] as explored in more detail in Section 3.2.3. Level Sets are also

used in segmentation to exploit the identified contours in an image. Early meth-

ods [76] used a variational framework on active contours to enable segmentation of

foreground objects. Level set segmentation was later improved with consideration

of probabilistic formulation for 3D segmentation [77].

Depth information can also be used for foreground object segmentation to ex-

tract regions [78]. This approach distinguishes objects in foreground with respect

to the texture and depth and also their trajectory in subsequent video frames [78].

The scenario presented in this thesis uses a single image/frame which makes the

approach more challenging since there is no information from neighbouring frames.

Object Level Segmentation

Object-level segmentation identifies regions within the image that correspond to an

object belonging to a class or label. These objects are then labelled semantically

[79]. Deep neural networks, particularly CNNs, are the most popular approaches

used to generate this type of segmentation [80] [81]. These models are trained using

a labeled dataset that defines different objects in an image. The model will then

be able to segment a given image into objects. The accuracy depends heavily on

the type of model used together with the hyperparameters of the network.

Part Segmentation

Part Segmentation goes a level deeper than object level segmentation. Such mod-

els identify parts of an object and the relationship between the parts belonging
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to the object [79]. CNNs are also the most common approach for this type of

segmentation [82]. On the other hand, [82] demonstrates unsupervised learning

can also be used to tackle this problem. Markov random fields (MRF) [83] are

also a method used to generate part-segmentation. The example presented in [84]

uses the clique/neighbour approach in graph theory to part label the pixels in the

image. Pixel proximity is used to guide this approach and if a pixel label is only

related to the label value in its adjacent location, the set of the labels in this set

of grid points is considered as a Markov random field.

Co-Segmentation

While the previous methods handle segmentation in one image at a time, co-

segmentation results in the segmentation of an object that is found in two or more

images [85]. Originally proposed by [86], co-segmentation generates simultaneous

segmentation proposal in a set of images. This uses a generative model based on

a MRF and computes the similarity between segmented objects in the respective

images.

Semantic and Instance Segmentation

Semantic segmentation involves pixel-level extraction of objects belonging to the

same class or type. Due to its effectiveness, semantic segmentation has been applied

to a variety of fields of study [87] [88]. Instance segmentation address the challenge

left behind by semantic segmentation. This is organised into two parts. The first

part is similar to semantic segmentation where objects belonging to specific classes

are detected. The second part differentiates between different objects that belong

to the same class. Unlike semantic segmentation, in instance segmentation each

object is extracted separately. Instance segmentation has also been applied to

different research areas [89] [90] [91] and these typically include tasks that need to

distinguish between objects belonging to the same class.
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3.2.2 Segmentation by Thresholding

The main motivation in the use of this approach is to analyse pixel values with

respect to a pre-defined threshold. In the processing procedure of the depth infor-

mation, image thresholding was carried out to reduce the grayscale image into a

binary image for faster processing. The white pixels on the binary image represent

the foreground. Otsu’s method assumes that the image contains two classes of pix-

els following a bi-modal histogram [92]. This results in the separation of foreground

pixels and background pixels without the need of carrying out more complex op-

erations for segmentation. The main challenge with this approach is the process of

finding the most optimal threshold that can vary from image to image [75].

3.2.3 Graph-Cut Segmentation

Graph-cuts, proposed by Boykov and Jolly [93], are based on graph theory with

a variety of applications in computer vision. In the context of this thesis, they

are used for image segmentation and the separation between foreground and back-

ground in an image. In this approach, every pixel in the image is represented by a

node in a graph, assuming a 2D image [93].

Two separate nodes are added; the Source Node that in this context will rep-

resent the foreground and the Sink Node that in this context will represent the

background [93]. The source and sink nodes are connected to all other nodes in

the graph and the weight of the edges will represent the probability of whether the

node is either foreground or background. The pixels in the graph are also connected

to their immediate neighbours, either 4-neighbourhood or 8-neighbourhood. The

different choice of neighbourhood resolution reflects the level of detail in the inter-

connecting weights. This inter-neighbourhood connectivity assists in evaluating the

similarity between pixels in a neighbourhood with their classification being also as-

sisted by this difference in weight. Once the weights within the neighbourhoods are

computed based on a measure of similarity of choice, a minimal-cut is computed.
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The minimum cut will traverse the edges and reject the edges with a low weight as

background, thus separating them from the foreground. This minimal-cut returns

the global minimal energy in the graph and can be achieved in polynomial time

when using algorithms such as the Stoer-Wagner algorithm [94].

The GrabCut foreground extraction technique [3] was designed to be an inter-

active approach where the user marks selected regions of the image as foreground,

assuming that the rest is background. The GrabCut algorithm combines graph-cut

techniques with statistical models to estimate the weight between background and

foreground.

The initial step of the GrabCut algorithm is when the user selects the object of

interest through a rectangular bounding box. The pixels inside the bounding box

are more likely to be foreground while the rest of the image is more likely to be

background. Grabcut introduces an improved modelling of the background as an

extension of the original graph-cut segmentation discussed above. The bounding

box data is used to create K components of a multivariate Gaussian Mixture Mod-

els (GMM). A total of two GMMs are generated, K variables for the foreground and

another K variables for the background. Techniques such as K-means clustering

can be then employed to compute the variance between each pixel. This is used to

enhance the inter-neighbourhood similarity between the nodes in the graph. Pixels

are then either assigned to the background GMM or foreground GMM respectively.

This process of assigning pixels to GMMs is carried out iteratively as the GMMs

learn what is background and foreground through a graph-cut approach. This pro-

cess is terminated when the classification of background and foreground converges

[3].

The GrabCut technique was subsequently modified to make use of depth infor-

mation when available [95]. In this improvement, depth values were used as the

fourth channel that would infer the opacity α of pixels on the case whether they

are labelled as foreground or background.
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3.2.4 Deep Learning Approaches

The general interest in Deep Learning came after the results of the AlexNet model

[13] in the ImageNet image classification competition of 2012. This successful

implementation of a CNN brought stronger interest in deep learning and its appli-

cation in object detection and classification. The first generation of such networks

focused on correctly localising an object in an image and this was denoted by a

bounding box around the object. These techniques made use of a one-stage detector

where proposals were made on a number of predictions on a grid.

The Region-based CNN (R-CNN) [96] introduced the notion of a two-stage de-

tector. This model was built by first extracting potential regions from the image

using a selective search technique [96]. The selective search is a heuristic based

search that assumes that similar pixels belong to the same image. These regions of

similar pixels are then merged and bounded by padding. The convolution features

are then extracted and eventually fed into fully-convolutional layers that result in

the classification. The main limitation of this model was that, due to selective

search, most CNN proposals were not really objects and the network could not

detect negative classes [96]. The major drawback of the R-CNN was its speed.

Its successor was adequately named Fast R-CNN [97] that reduced multiple con-

volutions on region proposals. The Fast R-CNN model processes the entire image

through the CNN instead of selected parts. However, it introduced the idea of

generating a feature map upon which selective search is applied. This rendered the

Fast R-CNN faster since it did not need to feed around 2000 proposals to the net-

work. The newly added feature proposal eventually resulted in being a bottleneck

for the Fast R-CNN and motivated the introduction of its successor named Faster

R-CNN [98]. The Faster R-CNN eliminated the selective search and the network

learnt from the region proposals through a Region Proposal Network (RPN).

As deep learning models that were dealing with object detection improved, their

application to pixel-level Image Segmentation was the next natural step. The Mask

R-CNN [14] segmentation model published in 2017 is one of the most popular and
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successful approaches for instance segmentation. The Mask R-CNN is an extension

of the Faster R-CNN[98], Fast R-CNN[97] and R-CNN[96]. The main useful and

novel aspect of Mask R-CNN was the introduction of a new branch that predicts

pixel-level segmentation masks on each region of interest. While Faster R-CNN

has two outputs (bounding box and its class label), the Mask R-CNN has three

(bounding box, class label and an object mask).

Figure 3.1: High-level framework of the Mask R-CNN model (Source: [14])

The Mask R-CNN is a two stage object detection and segmentation framework.

The first stage analysis the input image and generates a set of area proposals where

each area would have its own likelyhood of containing an object. The second stage

is composed of a classification process of the proposal that ends in generating

bounding boxes and masks.

The first component of the Mask R-CNN is the head-architecture that passes the

image through a CNN that extracts its feature maps. This makes use of a Feature

Pyramid Network (FPN), originally proposed by Lin et al. [99], that propagates

high level features to lower layers and every layer would have access to the lateral

higher and lower level features. Within Mask R-CNN this is achieved through a

ResNet [72] and ResNeXt [100] networks with a depth of 50 or 101 layers together

with an FPN as backbone. Using the Region Proposal Network (RPN) introduced

in the Faster R-CNN, multiple ROIs are proposed based on the object proposals

resulting from the FPN. This is accompanied by a lightweight binary classifier that

predicts whether the ROI includes an object or not.
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The Mask R-CNN also proposes the ROIalign layer that aligns the extracted

features with the input image [14]. These proposals are then refined after being

passed through a number of fully-connected layers that return the bounding box

and class prediction through a regression model.

The last part of the Mask R-CNN deals with the generation of pixel-level seg-

mentation masks. This are generated through an additional network branch that

generates a mask for each of the objects detected by the RoI classifier. This branch

includes a stack of consecutive convolutional layers that output the mask.

Mask R-CNN is given focused attention in this thesis particularly because of its

use in the current state of the art in saliency ranking. To date, it is also generally

considered as the best instance segmentation method. There are other noteworthy

methods such as the Fully-Connected Network (FCN) [101] which is an exten-

sion of the CNN and DeepLab [102] semantic segmentation network that encodes

multi-scale contextual information. Segmentation is also widely used in medical

applications with specialised networks such as U-Net [103] and U-Net++ [104]

demonstrating significant efficacy in medical tasks such as tumour segmentation

[105] [106].

3.3 Inpainting Techniques

Inpainting is the process of removing a region in an image and replacing the re-

moved region with texture that renders the end result as undetectable as possible

[107]. This is sometimes referred to as image completion. The area covering the

removed object is filled with texture that surrounded the original region. Another

approach is the use of generative methods where the image is filled through tech-

niques such as GANs that are explored in Section 3.3.2. The ever-improving results

of inpainting methods renders this technique very popular in most packages. Dif-

ferent applications range from image restoration, visual editing to object removal

[108] [109].
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3.3.1 Traditional Approaches

One of the first successful inpainting methods was proposed by Bertalmio et al.

[110]. This approach diffuses texture from around the target region into the missing

area. This is achieved by making use of a variational method and partial differential

equation (PDE). This was inspired by the fluid-dynamics principles in physics.

Bertalmio et al. [110] designed their approach on the similarity of the problem

of image intensity’s relevance in inpainting to the the stream function in a 2D

incompressible fluid. The stream Ψ is parallel to the Image Intensity I. The fluid

velocity v = ∇⊥Ψ is the foundation for the isophote direction ∇⊥I where ∇⊥ is

the perpendicular gradient [110].

In fluid dynamics, the principle of Vorticity is a pseudo-vector that models the

tendency of something to rotate in a continuum around a point [111]. The stretch-

ing of vorticity due to flow compressability is modelled using the Navier-Stokes

equation for continuity. The vorticity ω = ∆Ψ is used to model the inpainting

smoothness w = ∆I where ∆ is the Laplace operator [110]. This analogy allows

for a gentle continuity in the image intensity and its isophote directions across the

boundary of the target region [110] resulting in an effective and fast method to

approximate inpainting.

Chan et al. [112] applied a similar method that uses a PDE and the Euler-

Lagrange equation to propagate the diffusion inwards towards the target. The

change of information happens perpendicular to the edge of the mask towards the

centre of the region to be inpainted [22]. The information used for this diffusion is

based on lines of equal grey values, known as isophotes [109]. The information from

extracted isophotes enable such techniques to efficiently preserve any structural

information in the missing region.

Telea [113] eventually proposed an improved method that uses fast marching.

This method is an improvment on the PDE approaches [109] since it addresses

the computational overheads related to the propagation are removed. The Fast-

Marching Method (FMM) proposed in Telea’s method removed the need for the
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Figure 3.2: The PDE-based inpainting principle as illustrated by Telea [113]. The
figure on the left presents the general inpainting problem and the figure on the
right presents the propagation process.

numerically unstable and complex methods like diffusion in Bertalmio et al. fluid-

dynamics based method [113]. The FMM produces a number of points between

the known image and the region to be inpainted as illustrated in Figure 3.2. A

set of distance maps are computed and inpainting is calculated based on these

distances. Such methods inpaint the target region with content from the known

image depending on the distance between q and p [113]. An advantage of the FMM

is that the narrow band is maintained and this allows for a clear separation of the

pixels in the known image and those in the target image along the boundary δΩ

[113].

The FMM algorithm proposed by Telea maintains the narrow band along the

δΩ where a set of values is stored for every pixel along this line. These include the

pixel value T , its grey value I and a flag f . Flag f can have three values:

1. BAND: denoting pixels falling on δΩ, requiring T to update;

2. KNOWN: denoting pixels falling in the known image where both T and I

would be known;

3. INSIDE: denoting pixels within the target region where T and I would be

unknown.
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The FMM is initalised by setting T to zero on δΩ and on the known image. On

the other hand, T is set to a large value inside the target region [113]. The flag f is

initialised for the entire image with the values described above. The propagation

is set over four steps. The first step extracts the smallest number of T . The second

step starts the marching process by moving inwards by adding new points to the

boundary. The third step carries out the inpainting and propagates the values of

T to its neighbours [113].

This method gives a result faster. However, its limitation is based on the

blurry effect that it leaves after the inpainting [109] [113]. The same effect was also

obeserved in the results of inpainting experiments presented in this thesis.

The idea of using patches to tackle inpainting emerges from the contribution of

Efros and Leung [114]. Their method is based on an approach that recursively fills

an empty region inwards from the boundary [115]. The neighbourhood of a pixel p

is considered and similar pixels are selected using the sum of squared differences.

The main limitation of this method is the lower quality of the output when larger

areas are inpainted [115].

Criminisi et al. [116] later built on the previous and introduce two main im-

provements. The first one is based on the filling order. The was changed from

the original onion-peel to a priority scheme. Secondly, the entire patch was being

copied instead of taking single pixels [22] .

This approach, illustrated in Figure 3.3, is based on filling a target region Ω with

information from a source region Φ [116] such that the target region Ω does not

stand out among its surroundings once filled [115]. In the context of monoscopic

inpainting, Ω is treated as a hard constant. On the other hand, in stereoscopic

inpainting other information is available from the other view, therefore reducing the

strict boundary δΩ. The idea of the importance of structure was further enhanced

by Sun et al. [117] when they proposed an improved approach by considering the

entire context of the image rather than the neighbourhood of the target region.

The main subsequent developments are based on these approaches and address the
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Figure 3.3: An illustration showing the notation and approach used by Criminisi
et al. [116]

issues of performance and quality of the inpainted regions [108] [109]. The main

weakness of these approaches remains the lack of semantic knowledge or context

of the target region. For example, if the target region is in the middle of a human

face covering entirely the nose, the inpainting approaches surveyed in this section

would not be able to reconstruct the nose. This problem is solved with deep learning

approaches surveyed in Section 3.3.2.

3.3.2 Deep Learning Approaches

The restriction on semantic knowledge of the domain inherent in traditional ap-

proaches is also their limitation. This was witnessed first hand in our earlier work

published in [22]. The results of this work demonstrate the same limitations since

it was published before the deep learning techniques analysed in this section. This

limitation is directly addressed by deep learning approaches that use models trained

over a number of datasets. Deep learning models related to inpainting can be or-

ganised into two. These are namely CNNs or GANs. These models are surveyed

below.

CNN approaches start by first filling the target region with placeholder values

or noise. These regions are then fed as input to pre-trained layers of the model
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that contain low level or medium level features [118]. This approach would first

use content encoders [119] that feed the target region and then decode the feature

space [23]. This fills the target region with upsampled regions and the result is

of a relatively low quality. Yang et al. [120] proposed an approach that uses the

output of the content encoder as input propagates texture information onto it from

its trained model. The main limitations of these techniques are generally related

a lower quality output with diffusion of colour or blurriness as witnessed in the

traditional techniques [23].

NVIDIA’s Liu et al. [118] proposed a method that addresses the limitations of

CNN based techniques. This novel method uses cost functions that are commonly

found in artistic style transfer in neural models as originally proposed by Gatys et

al. Since this method balances between content and style, it uses a cost function

for each. The pre-trained model iteratively assess the quality of the output, hence

inpainting. It starts from a low quality image proposal being given as input and

assessed by the cost functions. These functions compare the quality of the inpainted

result until a desired level is met allowing the network to converge. The results of

this paper state that a result is achieved in 0.029s. It is important to note that

this result is achieved when running the model on a NVIDIA V100 GPU [118].

The original paper also explains the considerable effort in training required for the

model training. It is reported [118] that the model was trained on 55,116 masks

and tested on 24,866. The image size used was 512 × 512 and this was also a

limitation in itself. A NVIDIA V100 GPU (16GB) with a batch size of 6 was used

for training and this process took 3 days to train on CelebA-HQ while the training

on Places2 and ImageNet took 10 days [118].

Generative Adversarial Networks Approach

Generative Adversarial Networks (GANs) are a framework of two neural networks.

One of the networks generates new content while the other one discriminates the

result of the former for the improvement of results [12]. GANs involve the training
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of two separate models, the Generator G and the Discriminator D. Initialised by

random noise z, G evolves the meaningfulness of the content, where in this case

it is an image. For every single output x from G, the discriminator D gives an

output score in the form of probability of whether x is a real artefact or a fake one

from the output of G. The GAN framework aims to optimise VGAN(D, G) as a

two-player minimax zero-sum game between the two networks [12] as denoted in

Equation 3.1.

min
G

max
D

VGAN(D, G) = Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1−D(G(z)))].

(3.1)

In practice, GANs are composed of a generative network approximating content

in a way that the adversarial discriminative network is not able to distinguish be-

tween the content generated by the generative network and real content. Various

studies [121] [122] investigated the different applications and evolution of GANs

since the original proposal [12]. In computer vision, GANs have been used for a va-

riety of applications such as super-resolution [123] [124], face image synthesis [125]

[126], text-to-images [127] [128] together with other image editing applications.

GANs were initially introduced in 2016 and in 2017 they were applied to the

inpainting problem [122] [129] [130]. I has been demonstrated that GANs can be

used to solve the inpainting problem by making use of a semantic context [130]. Our

inpainting approach [22], was published in 2016 before the adaptation of GANs for

inpainting. In this work, the feedback received during the user interviews where

subjects remarked about the importance of the preservation of visual structure

when inpainting images. Further progress in the application of GANs [131] [132]

[133] extends the importance of context to result in a sharper inpainted region that

blends with the surroundings of the inpainting region.

The quality of inpainting results when using GANs is considerably high however,

this approach still faces certain difficulties. Its natural dependency on training data
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is also its main limitation. This is particularly felt on the training of the generator

model [133]. The adversarial loss convergence can also be a challenge with specific

training datasets [130]. The dependency on datasets where they include contexts

that are not clearly featured in the training set result in the GAN inpainting method

to be restricted to a selection of domains or situations. The training time of both

networks in a GAN also provides potential challenges [132]. The choice between

GANs or traditional approaches for inpainting depend on the balance that needs

to be struck between quality and acquisition of results [23].

3.3.3 Saliency Driven Approaches

Due to their relevance to this thesis, a selection of inpainting approaches that

make use of saliency maps and salient information of images are reviewed in this

section. The approach proposed by Li et al. [134] takes advantage of the saliency

map information when carrying out an inpainting operation on an image. This

approach therefore considers the values of the saliency map together with colour

and structure information and computes a priority score that guides the patch

size of the patch-matching based inpainting algorithm. Mechrez et al. [6] recently

proposed an improved method based on the same idea, this time within the context

of an image manipulation framework. This method introduced a level of control to

the user and also covered substantial evaluation over different datasets. The main

limitations of these techniques is the lack of semantic information when carrying

out such image manipulation.

Saliency maps can also used for the evaluation of inpainting algorithms [19].

The idea behind such an approach is to ensure that the visually important regions

of an image are given due importance when evaluating inpainting. The main limita-

tion of this approach is its computational cost due to patch similarity computation.

Moreover, this technique still deserves further investigation on larger datasets. The

saliency ranking approach presented in this thesis does not require such an eval-

uation approach since the regions being inpainted will be the same regions that
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scored a high saliency score.

3.4 Conclusion

This chapter surveyed a selection of traditional techniques that enable image ma-

nipulation. This focused on segmentation as the stage for the generation of the

mask of the target object and image inpainting as a manipulation tool for remov-

ing the target object from an image.

The first part of this chapter explored different segmentation techniques. These

methods were based on pixel-level information that varied from thresholding pixel

values to graph-cut approaches. As deep learning approaches improved object

detection in images, segmentation was also benefiting from this progress. With

the development of current state of the art techniques, such as the Mask R-CNN

[14], pixel-level segmentation of objects belonging to classes known to the model

became possible and efficient. These models allow for pixel-level segmentation to

be used as demonstrated in this thesis.

Inpainting also went through a similar path of progress. With the advent of

GANs in late 2016, computer vision was introduced to the new era of generative

content approaches. One of these approaches was inpainting. In this case, both

traditional and deep-learning approaches still have their own relevance and distinct

limitations. The challenges in the evaluation of such methods also motivated us to

design and build the COTS dataset [10] presented in Chapter 6 that facilitates the

evaluation of inpainting techniques as we also demonstrated in [23].
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4. Preliminary Experiments

There are only two mistakes one

can make along the road to truth;

not going all the way, and not

starting.

Buddha

4.1 Introduction

In the early stages of this thesis, we were exploring efficient ways of selecting objects

or part of an image. This earlier work served as a motivation for research from

which saliency ranking emerged. These preliminary experiments resulted in two

effective methods for selecting an object or part of it. The first one was a single

click object detection [24] and the second one used depth information to break

down an object in smaller components resulting in intra-object segmentation [21].

This chapter gives an account of these two experiments. The data chosen

for these experiments was RGB-D video sequences from which single frames were

chosen for processing. This enables future work to extend these techniques to video

content.
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4.2 Single-Click Object Selection

This technique was a user driven approach that enabled users to select parts of the

image through a single click. This method exploited colour and depth information

in RGB-D datasets to extract the object selected by the user. It involved the user

clicking on an object in the input image. The single click selection technique is

initialised by receiving the colour and depth information at the source click coor-

dinate (xs, ys) as input. The region around the source click is stored for reference

and denoted as the reference patch Ψref . In this technique, a patch Ψ is defined as

the region of pixels k × k having the click coordinate as its centre. The width and

height of Ψ are manually configurable depending on the set value of k.

When the user clicks a target object, the pixel values in the reference patches

ΨrefC and ΨrefD for colour and depth respectively are stored. A median filter is

used to reduce variations in pixel differences while still maintaining the key features

of the image. The median filter was preferred over the mean filter since outlying

pixels do not effect the median value and therefore preserves a level of detail that

can be used in this technique. This technique proceeds by traversing the image by

striding a query patch Ψi looking for other similar patches to Ψref . The sum of

squared differences is computed using threshold θC and θD to identify patches that

are similar to the reference patch. Experiments were carried out to fine-tune the

threshold parameters θC and θD for the algorithm such that they return the best

results over different scenes. The limit N relates to the coverage of the reference

patch as it acts as a sliding window on the image, depending on the stride.

SSD =
N∑
i=1

(Ψref −Ψi)
2 (4.1)

ΨrefC and Ψi are then compared by computing the sum of squared differences

as shown in Equation 4.1. This computation allows for the traversal of Ψi with

intervals equal to the width and height of the patch along colour and depth images

[24].
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The result of SSD(ΨrefC ,ΨiC) and SSD(ΨrefD,ΨiD) and then compared to

threshold values θC and θD respectively. The result of SSD indicates the difference

between the two patches being compared. Therefore, the pixel coordinates that

generated patches with ssdC and ssdD results which are less than θC and θD are

stored in a list of colour patches LC and and list of depth patches LD respectively.

The only parameter that affects the performance of this technique is the size

Ψ together with the size of the input image. On the other hand, the threshold

parameters affect the quality of the resultant matching coordinate sets. The smaller

the size of Ψ the more computationally expensive the process is. Moreover, smaller

values may also result in less distinguishable features that would result in a higher

number of true positives. On the other hand, a larger size of Ψ results in bigger

patches being processed with significantly varied features. This results in a smaller

number of matches that render the technique ineffective.

4.3 Results of Single-Click Object Selection

The single click selection technique was evaluated using Microsoft’s Ballet sequence

[135], Nayoga’s Balloons sequence [136] and Berkeley’s 3-D Objects dataset [137].

These datasets were used to visually demonstrate the results obtained from this

technique.

Figure 4.1 shows an example of use of this technique. The red dots represent the

coordinates in LD while the small blue dots represent the coordinates in LT . The

blue dots with a red border represent the coordinates in the matched coordinates

list, hence coordinates present in both LD and LT . The green dot indicates the

coordinate pair (xs, ys).

The Ballet is a nicely balanced scene with multiple objects and characteristics

that became an interesting case for the evaluation of this technique. Figure 4.2

presents the result of the technique when the user clicks on three distinguishable

objects. These objects had similar colour but different depth values.

51



Chapter 4. Preliminary Experiments

Figure 4.1: Demonstration of the single click object selection output. The red dots
represent coordinates in LD, the blue dots represent the coordinates in LT and the
blue/red points indicate a match in both. In this example, the balloons on the left
hand side were selected and point xs, ys is marked with a green dot.

The 3D-Object scene was used to demonstrate further results of this technique.

These results are shown in Figure 4.3 and demonstrate situations where the user

clicks on objects that are represented by similar colour and depth information.

The main limitations of the single click object selection technique are exposed

when the user clicks on larger objects in the scene. Such objects would contain

variations in colour values and also variations in depth. Failure cases are presented

in Figure 4.4. The top two illustrations in this figure show how two runs of this

technique have to be carried out in order to cover the entire background wall of

the Balloons scene. The same behaviour is also demonstrated in the bottom left

illustration.

On the other hand, the background wall in the bottom right illustration was

entirely covered since there was a match in texture and depth. Nevertheless, part

of the adjacent wall also resulted in a match. In such a case, this technique can be

used to reduce the search space for other techniques mentioned in [138] and [139],

such as for example Random Hough Transforms for finding dominant lines in the

scene that may provide homographic information for better building of the plane.

[139] also dedicates an entire category of a classifier for perspective training and

this proposed technique can act as a discriminatory tool on the entire image so

that such classifiers can be more efficiently trained [24].
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Figure 4.2: Result of the proposed technique. Top left: Original image. Top Right:
Man’s jacket selected. Bottom Left: Ballerina skirt selected. Bottom Right: Floor
skirting selected.

4.3.1 Algorithmic Performance

The computational complexity of the single click object selection technique depends

on the dimensions of the image and the size of the patch Ψ. The complexity can

therefore be represented asO(n) where n denotes the number of pixels in the image.

This is due to the reason that although I is traversed in intervals of dimensions of

Ψ, the SSD computation would still require all the image pixels to be visited [24].

A set of performance experiments were carried out on a machine with a 2.6 GHz

Intel Core i5 processor and 8 GB 1600 MHz DDR3 memory running a MacOSX El

Capitan v10.11.2 operating system. On average, the program returned a result in

0.048 seconds. The worst time was recorded when a large object (over 85K pixels)

is selected and this was 0.074 seconds. On the other hand, when the sub-object

was smaller (less than 10K pixels) the program returned a result in 0.012 seconds

[24].
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Figure 4.3: Result of the proposed technique. Top left: Original image. Top Right:
Red chair selected. Bottom Left: Black armchair selected with incorrect matches
in the dashed box. Bottom Right: The other black armchair selected with incorrect
matches in the dashed box.

4.4 Intra-Object Segmentation

In the process of exploring inpainting and blending manipulation techniques on

RGB-D images we realised that plenty of opportunities were being missed since

most image manipulation techniques assume a single colour image with no depth

information. Moreover, emerging technology, such as augmented reality, also pro-

vide a demand for accurate selection of objects in 3D. Most techniques handle a

scene in 2D and it often results in poorer user experience.

This section presents a technique that takes advantage of the colour and depth

information in order to select and dissect an object within a scene. This results in

further segmentation of the selected object, referred to as ‘intra-object segmenta-

tion’, based on the depth information [21]. The output of intra-object segmentation

is an object that is split in layers which facilitates the handling of the object in

different manipulation approaches. The intra-object segmented output can be used

as input to blending methods, such as inpainting, where these can be applied on

each layer or just a selection of layers separately, allowing more control on the
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Figure 4.4: Partial limitations of the proposed technique. Top left: Partial back-
ground wall matched in the Balloons scene. Top Right: Another region of the wall
matched in the Balloons scene. Bottom Left: Partial wall in the 3D Objects scene.
Bottom Right: Entire wall match but with over-spilling on second wall in the Ballet
scene.

process.

This technique was also designed to perform efficiently within a context that

would need to assign resources to other demanding processes. Other related work,

such as [82] [79], contributing to object level segmentation or part segmentation

depend on deep feed-forward networks that require substantial training [21]. On the

other hand, intra-object segmentation is an efficient approach to achieve object level

segmentation without the need of training data and only using RGB-D information.

4.4.1 Intra-Object Segmentation Methodology

For simplification and focus on this technique, this section assumes a bounding-

box selection of the target object. The output of the Target Mask Generator

can also be used to identify the region in which this technique is carried out.

The approach presented in this section and published in [21] uses Grabcut [3]

together with enhanced depth information. The depth information is optimised
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by processing its histogram and the optimised result is then used to partition the

colour pixels with respect to the depth values.

Following the initialisation of this technique based on the selection of the region

of interest, high level object segmentation is carried out. The output of the first

phase is a single-channel binary image that will act as a guiding mask in the second

phase. The first phase of this technique is visually illustrated in Figure 4.5.

Figure 4.5: Selection and initialisation. This technique is initialised by identifying
a specific region of interest. The initial segmentation that extracts the object from
the rest of the scene is based on this selection. The resultant mask is then processed
for intra-object segmentation. This example is based on a frame from the Ballet
sequence.

The process is initialised by receiving the RoI together with the original texture

and depth images, T0 and D0 respectively, as parameters. This phase then builds

the output mask µ by running the Grabcut [3] algorithm on D0 and then carrying

out a bitwise AND operation on µ and D0.

The subsequent part of this technique processes the histogram H of the image

it receives as a parameter. All the bins of the histogram are traversed, filtering out

the non-zero bins that are then stored in the list shadesNZ. The ordered list spans
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Figure 4.6: Intra-object segmentation process. The second part of the solution
makes use of the segmented texture and depth images presented in Figure 4.5.
The histogram of the segmented depth map is processed and subsequently used to
generate the masks that are used to extract the segmented layers. In this example,
we are demonstrating the procedure on the Ballet sequence.

from the minimum shade at its start to the maximum shade as the last element.

Every shade in the list corresponds to a depth value. The minimum value minD

represents the layer that is farthest away in the scene while maxD the closest layer

[21].

Meanwhile, the minD value is then used as a threshold value while µ is tra-

versed. During this traversal, the pixels that are greater than minD are set to

white (255) or set to black (0) if less. Two other bitwise AND operations are used

on the colour and depth map such that their corresponding segmented images are

generated.

The second component, histMinMax, processes the output depth mapDsegmented

and returns a normalised histogram. This facilitates the process of mapping the

depth values to the z-values of the scene, where z represents the corresponding

depth value. In this context, minD and maxD provide the range of z-values of the
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selected object.

The first phase dealt with the depth-assisted segmentation of the objected in

the user selection. This is then followed by the last stage that deals with the

extraction of layers. The segmented colour and depth images are used as a source

to generate the laters and the process is guided byt the contents of the list of

shades corresponding to the depth map in the range between minD and maxD.

This process traverses every shade and extracts every non-zero shade is stored in

a separate list. A new mask is generated for every shade in the list. Each mask

is built by traversing every pixel of Dsegmented and the pixels corresponding to the

current depth value i are set to white (255) while the others are set to black (0)

[21].

Figure 4.7: An illustration of the actual image, result of intra-object segmentation
and intra-object segmentation with respect to depth for the the Balloons sequence
(a), Breakdance sequence (b) and Ballet sequence (c).

The following step in the process takes every mask in the list relating to a level

of depth and applies it on Tsegmented. When the mask originating from a depth level

is applied to the colour image, it extracts the colour pixels that correspond to its

respective depth value. This results in list Llayers that contains different segments

of texture for each level of depth. The output of the third part results in the data
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structure Llayers. This stores all object data in the form [z, (x, y, (R,G,B))]. Its

design allows for a neat way of organising the image colour pixels by depth. This

paves the way for the potential of more immersive content. The output is presented

in Figure 4.7 and a further analysis is given in Section 4.5.

4.5 Results of Intra-Object Segmentation

4.5.1 Intra-Object Segmentation Output

The Breakdance and Ballet sequence [135] together with Nagoya University’s Bal-

loons sequence [136] were used to study the performance of this technique. Further-

more, they also have varying quality in their depth map and therefore providing

an opportunity to explore the limitations of this solution.

This section starts by exploring the limitation of the developed intra-object

segmentation technique based on the quality of the depth map. This is done by a

visual comparison of the output of the technique on different datasets.

The Balloons sequence was chosen to evaluate how the technique performs on

a low quality depth map. Frame 291 of this sequence was selected and the process

of choosing the RoI and the resultant segmented layers is presented in Figure 4.8.

There are 6 layers of depth between the layer containing the strings and the one

having the balloons as segmented by the system. This number is based on the

histogram values of the depth map. Such a result can also be interpreted from

a physical perspective since the balloons would take more physical space in the

z-dimension. However, the result also shows that the majority of the balloons area

was captured in a single layer. One can easily argue that a depth map with finer

lever of detail would have returned many more different layers for the same RoI.

This also demonstrates how the technique is sensitive to the quality of the depth

map. A comparison is presented in Figure 4.9 where the depth map of the Ballet

sequence is compared to that of the Balloons sequence.

Another experiment was then carried out on the Ballet sequence based on the
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Figure 4.8: Output of the selection of the floating balloons in the Balloons sequence.
The left image presents the selection of the balloons while the centre image shows
how the strings holding the balloons were detected as a separate layer from the bal-
loons that were then presented in the image on the right. The technique generated
a total 38 layers for this object.

RoI demonstrated in Figure 4.9-a. Intra-object segmentation was computed on this

RoI and it returned 30 layers of information. These layers are presented in Figures

4.10, 4.11 and 4.12 respectively.

Figure 4.9: Comparison of the results of the Ballet and Balloons sequences. The
difference in the quality of the depth maps in (b) and (d) strongly affects the results.

4.5.2 Algorithmic Performance

This technique was implemented in Python 3.6 and OpenCV 3.0 as a proof of

concept. Performance testing was carried out on a machine with a 2.6 GHz Intel

Core i5 processor and 8 GB 1600 MHz DDR3 memory running a MacOSX El

Capitan v10.11.5 operating system [21]. Performance evaluation assumes a single
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Figure 4.10: The first set of 12 layers extracted from the Ballet sequence. These
include the layers that are most distant from the viewer.

Figure 4.11: The second set of 12 layers extracted from the Ballet sequence

Figure 4.12: The third and last set of 6 layers extracted from the Ballet sequence.
These are the layers that are closest to the viewer.

view such that focus is placed on the novel contribution of this thesis. On average,

the program returned a result in 2.04s. The worst time was recorded when a large

object (85K pixels) is selected and this was 3.34s. On the other hand, when the

sub-object was smaller (9K pixels) the program returned a result in 1.29s.
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Computationally, this technique is directly dependant on the size of the RoI.

The number of bins in the histogram also contributes the performance. However,

this parameter does not effect the computational complexity since it is a constant

at worst case. In practice this is either 256 for the commonly available 8-bit depth

maps or 65,536 for the less popular 16-bit depth maps. The complexity of the

algorithm for the layer generation of a single image is therefore O(RoIw ∗ RoIh)

where w and h represent the width and height of the region of interest, respectively.

This can also be represented as O(n) where n denotes the number of pixels in the

RoI.

4.6 Conclusion

This chapter presented the two early experiments that took place in this research

process that motivated the main contributions of this thesis.

The single-click object selection indicated the need for techniques to be able to

efficiently select objects with limitations depending on where the user clicks. This

ushered the way towards a saliency driven approach presented in the next chapter

where selection would take place on the salient objects. Chapter 7 later confirms

that the Saliency Ranking technique presented in Chapter 5 matches human click-

ing behaviour. Moreover, the same data used to evaluate these experiments is also

used in other parts of the thesis in order to facilitate further integration in future

work.

The need for segmentation was also clear in early stages of this research. For

this reason, the notion of intra-object segmentation was explored. This was pub-

lished [21] only a few months after the publication of the Mask R-CNN [14], the

current instance segmentation state of the art. While Mask R-CNN performs signif-

icantly better in the localisation and pixel-wise segmentation of objects in a scene,

our technique returns detail within every layer of depth and therefore providing

numerous opportunities for image manipulation.
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4.6.1 Contributions Summary

The main contributions of this chapter are the following:

1. Design and implementation of a single-click technique that exploits depth

information developed before the current state of the art segmentation meth-

ods;

2. Implementation of a segmentation technique that uses depth information to

extract different parts of an object developed in parallel to the current state

of the art deep learning based part-segmentation techniques.
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5. A Saliency Ranking Approach

for Image Manipulation

5.1 Introduction

While over the past couple of decades, there were a number of saliency detection

models being developed, the recently structured problem of ranking objects by

saliency [20] [16] [1] remains open [15]. This chapter presents a novel saliency-based

object ranking model that does not require any training. It starts by demonstrating

how this technique is modelled and is followed by its implementation. The chapter

is concluded by showing how our novel saliency ranking technique can be used in

conjunction with the Mask R-CNN object segmentation state of the art model.

5.2 Modelling Saliency Ranking

The proposed method generates a ranking order of the areas of a colour image C

that is w pixels wide and has a height of h pixels based on saliency. If available, a

corresponding depth map of the colour image denoted as D with the same dimen-

sions as C can also be used to enhance the ranking result since it would correspond

to how human attention reacts when objects are closer to the viewer.

A saliency map for C is generated using any of the techniques that were dis-
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cussed in Section 2.3 and is denoted by SMT (C), where SM is the saliency map

of C generated using technique T . In the implementation presented in this thesis,

T is set to Itti’s method [50] that was discussed in Section 2.3.

The input image C is divided into a grid of segments G where k is the number

of segments in the grid. Every segment in the grid has the address G(i, j) where

i is the row and j is the column. The relative pixel-level address of G(i, j) with

respect to coordinates (x, y) is given by:

G(i, j) =

(x, y)

∣∣∣∣ iw
k
≤ x < (i+ 1)w

k
,

j h
k
≤ y < (j + 1)h

k

 (5.1)

such that

i =

⌊
xk

w

⌋
, j =

⌊
yk

h

⌋
(5.2)

It follows that x falls in the range x = [0, w) and y in the range y = [0, h) [20]

and the segment address G(i, j) can be calculated using Equation 7.2.

The saliency map SMT (C) generates a pixel level value for saliency of the whole

image where the intensity value of the pixel corresponds to how salient that pixel is

according to technique T . The method developed in this thesis generates a relative

ranking of saliency for every grid segment in G. The ranking is achieved after a

score S is calculated for every segment in the grid. The score S(i,j) for the grid

segment (i, j) is given by:

S(i,j) = wHH(i,j) + wCBCB(i,j) + wDSDS(i,j) (5.3)

where H(i,j) is the entropy of the grid segment, CB(i,j) is the centre-bias and

DS(i,j) is the depth score. Each of these scores are weighted by a weight w. These

weights introduce the possibility of giving different importance to each component,

however, in the context of this thesis, the three weights are set to 1.

The range of values for each score component depends on the grid size and the

resolution of the image. The values of each component were studied using a 9× 9
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grid size across the RGB-D images used in the evaluation presented in Chapter 7.

The values of the H component range between 2.134 and 7.191. The values of the

CB component are based on the 2D Gaussian Distribution. The maximum value

is at the central cell and the smallest value is at the corners of the distribution,

and for this grid size, the maximum value is 1 and the minimum value is 0.412.

The range of the depth score depends on the representation of depth through the

depth maps. In a scenario where 8-bit depth maps are used, the minimum value is

0 and the maximum is 4.628.

5.2.1 Entropy

This technique was inspired by the way the biological visual attention system tends

to be affected by regions containing visual differences. From a computer vision per-

spective, this means a level of difference or chaos in regions of pixels [20]. This

observation lead us towards the application of information theory to saliency de-

tection in a novel approach. Information theory has been used as an alternative

to generate saliency maps as described in Section 2.3.2 however, in this case it is

being used differently to analyse and rank regions in a saliency map.

The higher the differences among the pixel values in any grid segment in

SMT (C), the more salient the given segment is. Shannon’s Entropy H presented

in (5.4) is used to generate an entropy score for every segment.

Let pm be the pixel at (xi,j, yi,j) corresponding to the value of pixel (x, y) in the

segment (i, j). It follows that entropy score H is therefore computed accordingly:

H(i,j) = −
|t|∑
m=1

P (pm)log2(P (pm)) (5.4)

where P (pm) is the probability of finding the pixel value of pixel pm in the

designated segment (i, j) [20]. The upper limit of the summation denoted by t

corresponds to the total number of pixels in a segment that is equal to | w
k
× h

k
|.

The effect of this approach is the calculation of entropy in every grid-segment.
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In this case, H is representing the rate-of-change or chaos in a given grid-segment

[20]. This computation provides a good ground for a saliency ranking score since

higher values of H indicate grid-segments that have significant chaos with respect

to pixel values in the saliency map. It also follows that the same grid-segments on

the original colour image contain features that draw attention [20].

5.2.2 Centre-Bias

The proposed saliency ranking model also allows for the consideration of centre-

bias in the generation of the saliency-driven ranking score. The Centre-Bias score

CB of a segment is modelled using of a 2D Gaussian distribution to simulate the

effect of centre-bias. Equation (5.5) is used to generate a distribution of weights,

where every segment in the grid is assigned a value depending on its position,

with x and y being the dimensions of the 2d-array and σ is the effective radius of

the distribution. In this implementation, the full-width-half-maximum is used as

a value for σ. The segment at the centre carries the maximum weight while the

segments that are furthest away are assigned a minimum value [20].

CB(i,j) =
1√

2πσ2
e−

i2+j2

2σ2 (5.5)

5.2.3 Depth Score

In the processes of ranking saliency in a scene, one should also consider the prox-

imity of objects to the user as explored in Section 2.3.1. Generally, objects that

are closer to the user are more salient than those in the background [20]. Since

saliency maps are usually generated without any knowledge of depth, the concept

of calculating a depth score from the depth map D of the same image is proposed.

The Depth Score DS for each segment in G rewards segments that have pixels

that are closer to the viewer. The histogram of D, denoted by HistD, is used to

generate this score. The mid-point mid of the histogram’s range of values is given
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by:

mid =
max(histD) +min(histD)

2
(5.6)

where in an 8-bit depth map D, max(histD) ≤ 255 is the highest bin value and

min(histD) ≥ 0 is the lowest bin value. The depth score DS of segment (i, j) is

therefore the sum of all bins in histD whose value is greater than mid and denoted

by:

DS(i,j) =

max(histD)∑
m=mid

bm (5.7)

where bm is the bin with value m.

5.2.4 Saliency Ranking Score

The number of grid segments in G is n = k2 and every segment has a resultant

score S(i,j) as given by Equation 5.3. The set of all saliency scores is denoted by

S = {S1, S2, ..Sn} where Sn is presented in Equation 5.8.

Sn = Hn + CBn +DSn (5.8)

The elements of S are then sorted by their absolute value for the score of each

segment. The segment with the greatest value of S is the most salient segment

in image C and the order of the elements in the sorted set represents the saliency

ranking for the same image.

5.3 Implementation

The aim of this technique is to efficiently rank the salient regions of a given colour

image without the need of training. It is also designed to exploit the usage of

depth information, if available, to enhance the quality of ranking. The DFD of this

68



Chapter 5. A Saliency Ranking Approach for Image Manipulation

technique is illustrated in Figure 5.1. The process is also pictorially presented in

Figure 5.2.

The main idea is to divide the input image into a grid of segments. The saliency

of every segment is then processed separately. A model is built for every image

based on the entropy of the saliency of every segment, depth information and

position. The score generated by the model is then used to rank the segments.

Figure 5.1: Dataflow representation of the saliency ranking technique.

The properties of the input images are processed and checked in the first stage

of the process. The proposed technique can work with or without a depth map. If

the depth map is not available, Modules 1.3 and 1.7 of the DFD are not be used

while the rest of the modules remain unaffected in processing the saliency ranking.

Following the input process, the saliency map of the colour image is generated. This

technique works independently of any specific saliency map generation technique

or approach as long as the saliency map is a greyscale image where the pixel values

represent the respective level of saliency. The generation of results presented in this

work make use of the implementation of Itti et al. saliency detection technique [50]

implemented and freely distributed by [140]. The resultant saliency map is then
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split into 81 segments, and the reason behind using this number of segments follows

the experiments in [20].

Figure 5.2: The architecture of our saliency ranking model. This shows how the
input colour and depth images are processed to generate the model that enables
the ranking of saliency. This figure also shows a visualisation of the output with
red segments ranking high followed by orange, yellow and green.

The model upon which the saliency ranking is based is built by processing each

segment. The entropy of pixels in every segment is calculated, and this is then

combined with a centre-bias score, as explained in Section 5.2.2. The resultant

model maps the score of each segment with its index. This allows for a simplified

and efficient manner of deciding upon the main areas of interest in the image, as

discussed in Section 5.4.

5.3.1 Configuration

This section briefly outlines the main parameters required by the saliency-driven

ranking algorithm, namely the grid-size and the saliency map. Furthermore, the

main design decisions related to these parameters are explained.
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Saliency Map

The saliency map of the input image is the enabler of the model. For the implemen-

tation and analysis of this saliency ranking technique, the Itti et al. [50] method,

presented in Section 2.3.1, was used to generate the saliency map [20].

This method was chosen since it was the first technique of the kind and is

currently one of the most popular saliency detection techniques that is used for

comparative purposes. Today, different saliency techniques perform better [5], yet

Itti et al. method was used to show that this technique performs well, even with

the earliest saliency map algorithms.

The model of our technique is strongly affected by the entropy in every segment

of the saliency map as explored in Section 5.2.1. The choice of the saliency map

generation approach is seen as a configuration parameter since the system works

independently of this choice. On the other hand, there is potential for future

research that explores the enhancement or choice of saliency map that returns an

improved saliency ranking [20].

Grid-Size

One of the key parameters needed is the grid size G that translates to the number

of segments being extracted from the saliency map for further processing. This

size, k× k also affects the size of the output since the number of scores at the end

is equal to the number of segments. The grid-size can also be seen as the resolution

of the model.

Our previous work in [20] presents a series of experiments that were devised to

identify the ideal grid size for our technique. These experiments showed that there

is no effective difference, other than the resolution of output, taking place when the

grid segment dimension exceeds a factor of 8.45 [20]. This value indicates that the

grid dimension can be either set to 8 or 9. The value of 9 is recommended when

priority needs to be given to the resolution such as in experiments where the result

of the algorithm needs to be compared to human clicks as presented in [20]. On
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the other hand, in cases where the number of cells affects the time performance of

an algorithm, the value of 8 can also be used.

The grid size can also be used in the calculation of the optional score that

models centre-bias. In this case, the 2D Gaussian Distribution discussed in Section

5.2.2 is modelled upon the 9× 9 grid discussed in this section.

In their work, Kalash et al. [15] used a grid size or factor k of 8 for their

feature map. This was because they used a ResNet-101 in DeepLab [102] for their

implementation and this parameter value for k provided a balance between the

semantic context and fine details in the network [102] [141].

Depth Score

One of the optional scores for saliency ranking is the depth score. Algorithm 1

is used to generate a score for depth for each of the grid segments G(i, j) based

on the model presented in Section 5.2.3. The depth score returns a value for each

segment and grid segments with objects closer to the user are given a higher score.

Depth maps from different datasets vary for different shades used to represent

depth. For this reason, the histogram of the entire depth map is processed before

the processing of each grid segment for calibration. The histogram HD of the entire

depth map is processed with the first and last non-zero bin indexes being recorded.

The midpoint is then stored in mid, as shown in Algorithm 1.

The depth map is also split to match the same number of segments T.size

used in the saliency map and in the generation the 2D Gaussian Distribution. The

histogram HS is computed for each segment, and its bins’ values traversed. The

target of this algorithm is to supply a list of scores and to reward the segments

that have objects that are closer to the camera. Hence, the bins that present an

index larger than mid are considered. The summation of the bin values is then

considered as the depth score for the given segment. This depth score is then

appended to a list of scores whose index relates to the same index of the segment

t in T as explained in Section 5.2. This list of depth scores is returned as output
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Algorithm 1 CalculateDepthScores

Input: DepthMap, T.size
Output: DepthScores
HD ← DepthMap.histogram
mid← (HD.maxBin+HD.minBin)/2
Segments← splitIntoSegments(DepthMap, T.size)
for all segment : s ∈ Segments do
HS ← s.histogram
tempScore← 0
for all bin : b ∈ HS do

if b.index > mid then
tempScore← tempScore+ b

end if
end for
DepthScores.append(tempScore)

end for

by Algorithm 1.

5.4 Output

The output of the proposed saliency-driven ranking algorithm is represented by a

list of segments, sorted by a the saliency ranking score Sn. The output is stored in

a data structure that contains the index of the segment, the segment itself in RGB

together with the top-left and bottom-right coordinates and the respective score

[20]. This simplified data structure makes it easier to integrate this algorithm with

other techniques. It also offers the additional capability of sorting the model in

ascending or descending order, therefore indicating the less or most salient regions

respectively with the most salient region being found in the segment with the

index 0. A high-level illustration of the output is given in Figure 5.3. Moreover, a

sample output of the proposed technique on the Ballet sequence [135] is presented

in Figure 5.4 and three further samples are given in Figure 5.5. Based on the

results of Section 7.3.2, this thesis assumes that the object that is covered by this

first segment is the most salient object. The flexible data-structure also provides

various further research opportunities in the traversal of the ranking with respect
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to the objects in a scene for alternative ways of interpreting the saliency ranking

data structure output. An example of how this output can be merged with that of

Mask R-CNN is given in Section 5.5.

Figure 5.3: A simplified illustration of the visualised output of our Saliency Ranking
model. The visualised output consists of a grid of segments that make up the
entire image. Different objects are represented in different grid segment. Every
grid segment has a number that indicates the segment’s rank by saliency. The
lower the number, the more salient the segment is.

Since this saliency-driven ranking algorithm can also be combined with deep

learning techniques, its output also follows the principles of explainable AI (XAI).

This is the field of study that aims to make conclusions of computer models under-

standable by humans by providing a traceable set of reasons on how a conclusion is

reached [8]. One of the approaches, known as Local Interpretable Model-Agnostic

Explanations (LIME) explains how a classifier reached its conclusion [9]. While

the output of the segments in an image based on saliency ranking technique is not

a classifier, it can also be used in conjunction with other techniques to classify

the most salient objects. While the ranking of saliency in itself can be seen as an

explainable interpretation of saliency in an image, the model behind the ranking

is also further explainable in itself. The model is built by three separate scores

resulting from different components as presented in Section 5.2. In practice, in un-

derstanding of why a segment was ranked in a particular way, analysis of the model
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Figure 5.4: An example of the grid saliency ranking output when a frame from the
Breakdance sequence [135] is processed using our saliency-driven ranking algorithm.

can provide the required explanation behind the decision. In this case, the expla-

nation will include the visual artefacts and the model scores. The visual artefact

includes the segment colour instance, its saliency map and the depth map segment,

if made available in the first instance. The model score would then shed light on

how the conclusion was reached in terms of the entropy in the segment’s saliency

map, its position in the image or the depth score. This approach in the output

was taken since while the priority is to minimise the time in editing by shifting

the manual task of object selection from the user to the model, the framework still

needs to ensure that explanation about how such decisions were reached is made

available to the user.

Moreover, the ranking of segments in an image using these reproducible methods

provides an efficient way of evaluating attention re-targeting in an image. The out-

put from the saliency-driven ranking algorithm clearly shows where the attention
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Figure 5.5: A selection of three images from different datasets together with the
grid saliency ranking on each image that indicates the most salient regions in an
image.

is in that current state of the image. It follows that the same saliency ranking tech-

nique can be used again on another manipulated version of the image. The saliency

ranking of the manipulated image can be compared with the saliency ranking of

the original image and therefore objectively measure the attention re-targeting.

5.4.1 Measuring Attention Retargeting

This section presents the saliency ranking technique in a retargeting application

since it exploits its full functionality. A selection of scenes from the COTS dataset

were used to generate these examples and the results are presented in Figure 5.6.

Consider an image manipulation framework where the saliency ranking of ob-

jects in a scene is measured before and after the manipulation. Images containing

more than one object, denoted as S2, are fed as input to the framework, configured

for inpainting. The saliency-driven ranking algorithm (SaRa) is computed on the

input image S2 and the most salient segment with rank 0 is noted. Inpainting is

carried out on the most salient object in S2. The saliency-driven ranking algo-

rithm is now computed on the inpainted result and the most salient segment is

now representing another object. This means that the attention of the image is

retargeted to another object. The COTS dataset includes different instances of the
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Figure 5.6: An example of using our framework for retargeting. In the first column,
Saliency Ranking (SaRa) is carried out on an image with more than one object.
The mask represents the object that corresponds to the most salient segment. The
saliency ranking is then computed after the most salient object is inpainted and the
most salient segment is retargeted to another object. The retargeting is confirmed
on the saliency ranking of the same image without the inpainted image, serving as
ground truth.

same scene with incremental objects as will be demonstrated in Section 6.5.2. This

time, this feature of the dataset is used to track retargeting. The instance less the

target object, denoted as S1, is used as ground truth. This allows us to compare

the retargeting on the inpainted result against S1. In all instances, the most salient

segment for both the inpainted result and S1 is found exactly in the same position,

showing that the framework successfully carried out this task.
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5.5 Saliency Ranking and Segmentation

Recent object detection and segmentation methods such as Mask R-CNN [14] pro-

vide pixel-level segmentation of different objects and their instances within an

image. This section demonstrates how the saliency ranking method presented in

this chapter can be used to rank segmented objects in a scene by their saliency.

The output of our saliency ranking technique presented in Section 5.4 can be

used to rank different object masks by the level of saliency of their corresponding

objects. The approach presented in this section can be used in conjunction with

the inference results of any segmentation technique that returns a set of masks for

the objects it detects in the input image. This is illustrated in Figure 5.7.

Figure 5.7: A block diagram demonstrating how our saliency ranking approach can
be combined with a segmentation technique that outputs a set of unranked masks.
The ranks of the grid segments are then used to calculate the rank of the generated
masks.

Mask R-CNN was chosen as the model to return the segmented masks to demon-

strate how our technique can be pipelined with a segmentation model. This model

was chosen due to major claims that it is the state of the art in segmentation,

its popularity, wide use and particularly since it was used as a backbone for the

Inferring Shift Ranks method [1]. The work of Siris et al. [1] is a deep learning

saliency ranking approach that is also accompanied by a dataset that enabled a
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comparative evaluation in Chapter 7.

5.5.1 Implementation

The Matterport implementation [142] of Mask R-CNN was used as the basis for

this setup as the segmentation method of choice. This instance is a pre-trained

ResNet-101 [72] on the COCO dataset [71]. This implementation is based on

Tensorflow and uses a resized version of the images to 1024 × 1024 pixels. While it

is not explicitly indicated, it appears that the work of Siris et al. [1] uses the same

implementation of Mask R-CNN for the backbone of their saliency ranking model.

The proposed saliency-driven ranking method was applied to the inferred out-

put of this implementation of Mask R-CNN. For this part of the experiment, the

grid-size factor k was set to 8 in order to match the same properties of the imple-

mentation in [1].

5.5.2 Applying Ranks to Masks

Given that the output of our method returns a grid and Mask R-CNN returns a

pixel-level mask for each object, we needed to devise an approach that passes the

rank value of the grid cell to the corresponding mask resulting from the segmenta-

tion technique.

The output of the segmentation model consists of a set of masks M where

m ∈M. The entire area of the image is covered by an 8× 8 ranked grid based on

the output of our saliency ranking technique, where the ith grid segment is denoted

by Gi. A mask Mn of an object can overlap one or more grid segments. It follows

that pixel p ∈ Gi would also be p ∈Mn. The saliency rank of Mn therefore depends

on the rank values of the grid segments in which the mask falls. The pixels that

are both in Gi and Mn make up the area of coverage of a grid segment by a mask

and is denoted by Gi ∩Mn. When the area of coverage is greater than a threshold

T%, the rank of grid segment Gi is attributed to mask Mn and stored in MRn.
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The allocation of grid segment ranks to a corresponding mask is represented in

Equation 5.9. Experiments were carried out to determine the value of T% and

these are presented in Section 7.5.2 where we demonstrate that the best value for

T is 90%.

MRn = rank(Gi); (Gi ∩Mn) > T% (5.9)

Mn = argmin(MRn) (5.10)

The list of corresponding ranks MRn related to mask Mn then need to result

in a relative saliency rank for every mask in M. The experiment illustrated in

Section 7.5.2 demonstrates that the minimum rank in MRn gives the best saliency

rank for Mn as presented in Equation 5.10. This methodology ultimately results

in a translation of rank from the grid of our saliency-driven ranking algorithm to

the mask in the output of the segmentation technique.

5.6 Conclusion

This chapter presented one of the main contributions of this thesis. This is the

saliency-driven ranking technique that splits the image into a number of cells or

segments and applies a saliency ranking score to every segment. In this chapter we

demonstrated how this technique was mathematically modelled and subsequently

implemented. The method and implementation use a limited grid size to facilitate

benchmarking evaluation of the technique. Future work should investigate the

effect of different grid sizes with respect to the detection and ranking of objects that

have different sizes. The chapter is concluded by showing how our novel saliency

ranking model can be seamlessly pipelined with the Mask R-CNN segmentation

model.
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5.6.1 Contributions Summary

The main contributions of this chapter are the following:

1. Mathematical modelling of the saliency-driven ranking model;

2. Implementation of the saliency-driven ranking model;

3. Application of the saliency-driven ranking algorithm output to a combined

use with Mask R-CNN.
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6. The COTS Evaluation Dataset

If the structure does not permit

dialogue the structure must be

changed.

Paulo Freire

6.1 Introduction

This chapter presents the COTS dataset that was specifically designed to provide

an objective way to evaluate different computer vision applications. This chapter

outlines how this RGB-D dataset was designed and constructed. A series of exper-

iments to demonstrate the use of the COTS dataset on different computer vision

applications such as salient object detection, segmentation and inpainting are also

included in this chapter. This dataset was also published in [23] and [10].

6.2 Existing RGB-D Datasets

Over the years, an extensive list of RGB-D datasets were developed. These were

surveyed by Firman [143] and were organised into different applications. The need

for RGB-D images extends throughout different fields of research and applica-

tions. This ranges from object detection, segmentation and classification and visual
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saliency. The area or scale of the environment being captured in the dataset also

varies. There are datasets, such as COTS, that feature small objects and others

are designed to capture larger scenes such as a room or even outdoor environments

[143]. This section surveys the RGB-D datasets that focus on small objects since

these are the only ones comparable to the dataset being introduced in this thesis

and published in [10]. Furthermore, datasets that have been traditionally used

to benchmark saliency detection techniques will also be surveyed due to the spe-

cialised application of this dataset. Below follows a list of the datasets considered

in this thesis and a set of visual samples from these datasets is given in Figure 6.1:

OBJS : RGB-D Object Dataset [144]

BBIR : Bigbird Dataset [145]

SCAN : A large dataset for object scans [146]

OSEG : Object Segmentation Dataset [147]

GLHY : Global Hypothesis for Verification for 3D Object Recognition [148]

SSEG : RGB-D Semantic Segmentation Dataset [149]

Existing datasets focus on a more holistic 3D reconstruction of the objects being

captured where a DSLR camera was used together with a PrimeSense Carmine

to construct a point-cloud representing the objects [144] [146]. RGB-D datasets

can also be captured using different technology. Microsoft Kinect used to be a

popular device to generate such datasets [143]. However, since its discontinuation

in October 2017, it left a gap in the future of capturing RGB-D datasets. In this

context, we use the Intel RealSense D435 Depth Camera 1 to construct this dataset.

The RGBD Object Dataset (OBJS) [144] was constructed indoors, within a what

is claimed to be a controlled environment. The single objects were constructed after

1The full documentation of the Intel RealSense Camera can be found on:
https://realsense.intel.com
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Dataset Categories Images
OBJS 51 250000
BBIR 1 100
SCAN 1 10000
OSEG 1 111
GLHY 35 50
SSEG 16 NA
COTS 29 120

Table 6.1: Every dataset has a different number of images organised in a number
of categories.

Dataset OBJS BBIR SCAN OSEG GLHY SSEG COTS
Masks Yes Yes No Yes No No Yes
Setup Info
Available

No Yes Yes No No No Yes

subject
Interaction
Data

No No No No No No Yes

Semantic
Segmentation

Yes No No Yes Yes Yes Yes

Controlled
Lighting

No Yes No No Yes Yes Yes

Pointcloud or
3D Mesh

No Yes Yes Yes Yes Yes No

Table 6.2: An overview of the different types of data available in datasets.This
includes the availability of object masks, setup information, semantic segmentation
data and point-clouds. This information is also supplemented with an indication
whether controlled lighting was used or not.

the RGB-D image of a room was captured. This was followed by an approach that

used a mask, the colour image and depth to extract objects of interest. Due to this

reason, one cannot guarantee a constant preservation of attributes such as shadows

and lighting across the dataset. This was one of the priorities in the construction of

our COTS dataset and the detailed process is outlined in Section 6.3. On the other

hand, the Bigbird Dataset (BB) [145] was constructed in a very structured manner.

Objects were placed onto a turn table that also included a calibration check-board.

Two pairs of DSLR cameras and a corresponding Carmine 1.09 sensor for each

camera were placed in front of the turn table. In this case, 600 RGB-D frames
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Figure 6.1: A selection of similar RGB-D datasets also reviewed in [143]

were captured through this approach [145]. The Large Dataset of Object Scans

[146] was also captured using the Carmine sensor. In this case, the priority of the

dataset was the acquisition of a large number of images and the process was crowd-

sourced to non-professionals. Every object was captured using a video footage and

its motion was used to construct a point cloud. This however hindered image

attributes across the dataset from being constantly preserved.

The remaining datasets [149] [148] [147], as mentioned, included small objects

thata were captured using the Kinect v1. These small objects were placed on a table

during the acquisition process. This setup is very similar to the COTS dataset.

However, these papers do not document the setup used to capture the data and

the lighting conditions while in other situations it was subject to variations. Such

an approach makes the dataset suitable for segmentation applications, however it

makes it difficult to use the dataset for objective evaluation of image manipulation

methods.
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All the datasets surveyed include individual static scenes and their categories

and number of images is given in Table 6.1. A summary of the key features of the

surveyed datasets is presented in Table 6.2. On the other hand, the COTS dataset

was designed and built to progressively include objects in a scene while leaving

the previous objects in the scene. The objects already in the scene would remain

unmoved and the lighting conditions also remaining the same. This incremental

approach is presented in Figure 6.11.

6.2.1 Datasets for Visual Saliency

Saliency detection is the problem of detecting the parts of an image that attract

more attention than others [7] [5]. There are different approaches to detect saliency.

These include the ones similar to the first method proposed by Itti et al. [50] that

was highly influenced by the human way to visually perceive an environment. There

are also more modern deep learning approaches [55] [57] [58]. Itti’s approach is a

bottom-up approach that exploits features and visual attributes of a single image.

On the other hand, deep learning approaches detect patterns that are attributed to

visual saliency after training on extensive datasets. For this reason, some datasets

used in saliency detection benchmarking include a large number of images. Among

the different datasets used for this purpose, one finds the MSRA10K [150] con-

taining 10,000 images that are accompanied by a binary masks and the CAT2000

[151] dataset containing 4,000 images. These datasets can be split in training and

testing sets respectively, where the former set is used to train machine learning

models. The dataset proposed in this thesis is not designed for the training of such

learning-based techniques.

On the other hand, the COTS dataset is intended to usher the way towards tack-

ling the upcoming challenges in saliency detection. The current saliency datasets

contain single objects and this is evident in various benchmarking exercises [7] [5]

[39]. Moreover, the next challenge in saliency detection is the ranking of saliency

in images that contain more than one object [7]. Siris et al. recently proposed
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their own dataset that is specifically labelled for saliency ranking. This dataset is

different from COTS since it is an adaptation of the COCO [71] and SALICON [18]

datasets and is intended to be used for the training of machine learning models.

The challenge of ranking saliency in images has been tackled at pixel level in

some work [69] [70]. These techniques attempt to rank saliency in an image based

on the weight of saliency at pixel level. The limitation of such an approach is that

values pertaining to a single pixel would be out of context if considering the image

at object level, where every object would be made up of hundreds or thousands

of pixels. The alternative approach that tackles this problem dissects the image

into segments or regions and processes the weights of the segments as a hole before

sorting the regions by their level of saliency [20].

The currently commonly used datasets for saliency detection do not offer any

depth information. The need to study saliency detection algorithms in relation to

RGB-D content is seen as a current challenge in the area [39] and the proposed

dataset aims to provide a way to explore this further.

6.3 Constructing the Dataset

The process of constructing the COTS dataset is presented in this section. The

dataset was made available for free on http://cotsdataset.info. The motivation for

the construction of the COTS dataset was to have a single dataset that can be

used for the evaluation of different stages of a computer vision application.

The first part consists of images of single objects located on a green surface

while also having a green background. The second part uses the same setting but

consists of scenes containing objects belonging to a theme.

This second part of the COTS dataset contains 27 scenes, with every scene

containing a set of objects that were incrementally included. An example is pre-

sented in Figure 6.11. On average, every scene has three incremental instances.

This excludes the blank scene, denoted as instance 0, since it is the same for every
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case. There are 88 instances in total, organised into two parts as explained below.

The dataset has a travelling theme it contains objects organised by categories

related to travel and technology. The theme provided easier semantic categorisation

of content while also providing the opportunity of future expansion of the dataset.

The scenes were also carefully crafted to include occluded objects for every aspect

for the evaluation of techniques that are affected by occlusion.

The choice of objects was also based on their material and reflective properties.

The materials include polished glass (tagine, mug and statues of Genisha and

Buddha), transparent glass (shooter glass), matt paper (Google Cardboard and

most of the books), textile (Daydream VR headset, shoes and headgear), metal

(Macbook and travel-mug) and plastic (headphones, washing containers). Objects

also vary significantly in size and range from a small shooter glass to a tagine and

a laptop [10].

6.3.1 Data Collection

A dedicated controlled environment was used to construct this dataset. The setup

is visually presented as a plan elevation in Figure 6.2. The image acquisition process

was carried out indoors, in a room without external lighting. The only light on the

objects was from two auxiliary LED lighting with diffusers. The auxiliary scene

lighting was carefully chosen to ensure that it was not generating infra-red noise

that negatively affects the quality of the captured depth map. A designated region

on the surface was clearly marked and the objects were placed within this region

that fell precisely within the camera’s field of view. The configuration of the scene

was measured and recorded. The setup was kept constant throughout the scene

capturing process [10].

The Intel RealSense depth camera D435 which uses active IR stereo technology

was used to capture the images presented in this dataset. The realsense-viewer tool

in the official SDK was used to initially calibrate the camera settings and then for

recording. The recordings were taken indoors, in a room without external natural
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Figure 6.2: A plan elevation of the studio layout used for the data collection. This
diagram is not to scale.

lighting as shown in Figure 6.3. Static scenes were recorded as a 6s video sequence

and saved as a Robot OS (ROS) .bag file that contained all the raw data streams.

This method was used so that all raw data is preserved and could then be exploited

for colour/depth alignment, depth measurements and hole filling algorithms. This

also provides subjects of the COTS dataset with the opportunity to perform a more

refined selection of the frame if need be.

Various reasons led to the decision of using the Intel D435 for this particular

task. Apart from being an affordable model, the camera offers one of the highest

resolutions with high-accuracy depth reading within the recommended range of

0.2-7m and has a depth field of view of 87◦ × 58◦. Its properties, presented in

Table 6.3.1, also provide the required flexibility for such a task. Stereo cameras

were impractical and usually disregarded due to the weak operation in low-texture
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Figure 6.3: The environment where the COTS datset was captured.

Image resolution 1280×720 pixels
Video frequency 30 Hz

Extracted scene files

Colour image (jpeg),
16-bit depth map (png),
8-bit depth map (png),
Raw ROS .bag file

Intrinsic Parameters

ppx: 623.328,
ppy: 361.712,
fx: 924.744,
fy: 925.107

Depth scale
(only used for 16-bit images)

0.001

Table 6.3: Intel RealSense Camera Properties

scenes. However, the D435 is equipped with an active stereoscopic IR projector

which transmits its own pattern, at up to 90fps depth refresh rate, allowing for

information to be gathered even on low-textured surfaces. The dedicated ASIC

chip within the camera is conducting the necessary edge computing for the dense

image registration problem required with all stereo technology. The latter is done in
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real-time and thus the whole camera system outputs directly the depth information,

allowing for minimal computation on the host platform. Finally, the Intel open-

source community is one of the most resourceful on various platforms and hence it

is easier to get started and progress during development. The algorithm introduced

below is built-in the D435 SDK which is updated on a regular basis.

Hole-Filling

During the extraction process of the aligned depth frames from the recording it

was noticed that the depth map contained “holes” - which represent missing in-

formation. In a stereo system, there are a number of reasons for this artefact as

portrayed in [152]:

1. Occlusions – This occurs when the right and left images do not include the

same scene or object due to coverage or shadowing. The left view is usually

used as reference and hence the occlusions effect is noticed on the left side of

objects and along the left edge of the image;

2. Low-texture - The basis of stereo matching algorithms depends on the tex-

ture matching in the right and left images. In texture-less surfaces like a flat

white surface, the depth estimation provides challenges and for this reason,

texture is generated using an active projector;

3. Multiple matches - It may be the case that during the matching process,

more than one block is found to match equally with the reference one. This

is common when the scene comprises a uniform periodic structure;

4. Signal - Whenever the images are under or over exposed there is a lack of

signal, hence no information;

5. Out of range - The search range of the algorithm is exceeded when the

object is too close to the camera. Objects need to be more distant than the

minimum distance Z from the capturing device, to be detected and recorded.
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For certain applications, especially those that require real-time processing, some-

times it is better to not deal with holes since the processing might be too intensive.

However, in cases where depth-enhanced output is desired, a “best guess” is better

than no guess [152].

Figure 6.4: Different hole filling methods

The algorithm used for this task falls under spatial filtering. This simple algo-

rithm uses the neighbouring pixels (left or right) within a specified radius to fill the

blank pixel with the results being presented in Figure 6.5. This technique is used in

various literature as a baseline for comparing new hole filling methodologies [153].

For the D435 camera, the left neighbouring pixel is taken since the left camera is

the reference. Within the Intel SDK, three methods are available:

1. Left valid pixel value;

2. The biggest (farthest away) among the valid five upper left and down pixel

values (used for depth map) as shown in Figure 6.4;

3. The smallest among the valid five upper left and down pixel values (used for

disparity map).

6.4 COTS Web Test

One of the main aims of this dataset is its use in the evaluation of visual saliency

techniques and frameworks. This needed the colour images and the related depth
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Figure 6.5: A sample of depth maps (raw) as captured by the camera (middle
images) and their output of the hole-filling method (right images). The colour
images (left images) are also shown for reference.
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information and object masks to be included with the data that illustrates how

humans relate to the content of this dataset. In order to achieve this objective, an

online test was designed and built.

The choice of deploying this test through a website was based on its poten-

tial for applications and scalability. This experiment successfully attracted 1267

respondents through the sharing of the experiment URL. A website with its re-

spective backend was specifically built for this experiment. This online test was

designed to allow subjects to be presented with colour images on a web-page from

the dataset while Javascript was used to collect usage data in the background in

order to minimise the impact on the user experience. No sensitive subject data

was collected in this experiment. The usage data was stored in a hosted database.

Google Analytics were also deployed to monitor usage activity of the experiment

website.

Figure 6.6: A set of separator images were chosen to avoid visual bias from previous
images.

Subjects were presented with batches of 10 images, displayed one at a time.

The main challenge was that the dataset contains 84 images that each needed to

be presented to a subject or another. A sequential approach was not deemed to

be feasible since it would skew the data towards the first occurring images in the

dataset. A specifically designed load-balancing algorithm was implemented in the

backend in order to evenly distribute the images in the dataset [10]. This algorithm

is based on two requirements. The first requirement is that images from all across

the dataset needed to be featured evenly. The second requirement was that subse-
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quent images from the same scene were not to be displayed in sequence. The latter

requirement emerged from preliminary laboratory testing of the experiment where

it was noticed that when subjects were presented with incrementing objects of the

same scene, such as the instances in Figure 6.11, they were more prone to click

on the new object rather than considering what is actually more salient [10]. As

a further precaution, three separating images were displayed before every dataset

image presented to the subject in an effort to minimise the visual bias from the

preceding image. A random separating image from those presented in Figure 6.6

was loaded. The visual inconsistency of these images made them ideal for this

purpose. This algorithm was successfully deployed and every single image in the

dataset was clicked by 213 unique subjects.

The focus of the exercise was to present a colour image from the dataset to

the participating subjects and see where they think is the most salient region. A

single image was loaded on every screen and for each colour image, the subjects

were asked the following question:

Task:

Click/Tap on the point that attracts your attention when you first see the

image. The point can be anywhere and includes persons or other objects.

The subject click or tap coordinates were preserved for every image. These

were then used to create a heatmap of the clicks/taps. This dataset includes a

CSV file with the click coordinates for every image. When the experiment was

carried out through a mouse-enabled device, such as laptop or a desktop computer,

the movement coordinates were also collected. The time between the loading of

the image and the subject click/tap was also measured. This allowed for a better

understanding of subject behaviour, since subjects clicking in shorter periods of

time were more likely to be impulsive and click on what they deemed to be more

salient.
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6.4.1 Web Test Implementation

The implementation of the online data collection method is outlined in this section.

The Data-Flow Diagram presented in Figure 6.7 shows the main modules. The two

main data collection components are related to the image selection (Module 1.0)

and user handling (Module 1.1).

The Image Selection module (1.0) spawns the images made available to the

subjects as explained in Section 6.4. Module 1.0.1 selects the images from the

COTS dataset (1.0.3) and prepares a subset of images (1.0.2). These selected

images is then presented to the subjects on the HTML web page [10].

The User Handler module (1.1) handles the presentation of the chosen subset

of images to the subjects (1.1.0) and the resultant activity information collection

(1.1.1). The user handling module stores the information related to the image,

such as the click coordinates and cursor movement when available. On the other

hand, it also stores other information such as the time of interaction and the type

of device that was used for the test [10].

This architecture enabled a scalable dissemination of the online test and the

successful completion of the test by the subjects.

This section provides an analysis of the subject interaction on the dataset during

the online test. Out of the total 1267 respondents, 77% used a hand held mobile

device to do the test and 6% used a tablet. The remaining 16% used a desktop

or laptop computer. This means that 83% of the respondents were tapping the

images and therefore no cursor movements could be collected in these cases.

A total of 1690 persons visited the site and 1267 of them completed the test.

This meant a bounce rate of only 25%.

Figure 6.8 presents the average annotation map the clicks and taps gathered

during the online test. This shows a balanced overall distribution along the entire

area where objects were placed. Furthermore, it also shows a reduced center-bias.

Evaluating whether the amount of subjects participating in the study is enough

to warrant further evaluation is not a straightforward task. In the area of com-
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Figure 6.7: A dataflow diagram of the online test architecture
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Figure 6.8: The average annotation map resulting from the taps or clicks gathered
from the web test.

Figure 6.9: A selection of heatmaps created from the subject interaction data
gathered during the online test. The distribution testing of the x and y coordinates
is also presented on the right.
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puter vision, especially, traditional statistical techniques that calculate a minimum

threshold for a population are inconsistent in such a case, since through this ex-

periment, we do not measure opinion. Our approach tests statistical validity by

dividing the total number of mouse clicks into two groups divided into a ratio of

3:7. The distribution of the x and y coordinate values between the two groups

was compared. Figure 6.9-left images describe some of the results gathered from

the study. Visually, the heatmap already gives a strong indication of the expected

result given the tendency of the clusters to focus on specific points in the image.

Furthermore, the similarity of the x and y distribution curves across both groups

emphasis our methodology as seen in Figure 6.9-right images. To consolidate the

process, a t-test was performed and it compared the x and y distribution of clicks

across the two groups. The null-hypothesis was defined accordingly:

HypothesisH0:

The distribution of the clicks (x and y dimension) on the smaller sample size

is similar to the distribution of the clicks on the larger sample size.

A t-test was carried out for each image. In the cases where results showed the

p-value to be higher than 0.05; therefore, we cannot reject the null hypothesis.

This means that there was no significant difference between the two distribution

and the click or tap coordinates settled to specific regions.

6.4.2 Annotation Process

Single channel binary masks corresponding to an object in a coloured image are a

common way of annotating datasets in computer vision. These masks are black and

white images representing the target object, represented by white pixels. These

masks are also important for the evaluation of other techniques that generate a

mask from the depth information [22].

These masks were created using the LabelMe tool2. The masks used in the

2http://labelme.csail.mit.edu
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COTS dataset were generated by three third party annotators. A mask was gener-

ated for every object in all of the 28 scenes. The third party annotators were not

part of the project. Every annotator created a mask for each object.

The next step was the inter-annotation agreement between the three masks.

There are different approaches of choosing the final mask. These vary from choosing

either the smallest or the larger masks or even an average. We felt that such an

approach might introduce certain bias and from experiments it was noticed that

they were also introducing scattered white pixels in the output masks. Such an

effect is undesired. Therefore, a more conservative approach was followed. The

approach used outputs a white pixel on the final mask only if there is a white pixel

in all the three masks in the corresponding position [10].

6.5 Usage of Dataset

When designing the COTS dataset, different applications of computer vision were

considered. These were explored in detail in the journal paper outlining the dataset

itself [10]. This section demonstrates how the COTS datsaset can be used in

applications that are directly related to this thesis. These include saliency detection

together with inpainting and blending applications. The last part of this section

discusses how pipelined computer vision modules can also be evaluated using this

dataset.

6.5.1 Visual Saliency

Visual saliency is an intriguing topic in computer vision that motivated a number

of researchers to explore and develop techniques to generate more accurate saliency

maps. A range of techniques that include eye-fixation models and deep learning

models are used to generate a map that approximates human visual attention [5]

[7]. Saliency techniques can be organised into two categories namely those based

on the prediction of fixation and Salient Object Detection. The process of salient
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Figure 6.10: The MSRA10K [150] annotation map indicates the centre bias in this
dataset. It shows that most salient objects are found towards the centre of the
image.

object detection is a detection or segmentation process that is initiated by the

detection of the salient objects in an image [5].

The COTS dataset is designed to facilitate the evaluation of saliency-based

methods while also studying saliency detection results. The first part of the dataset

consists of images that contain a single object together with the respective binary-

image covering the object and serving as ground truth. This is similar to what

one finds in the ECSSD [154] and MSRA10K [150] datasets. The first instance

of every set in the second part of the dataset can also be used for this purpose.

This instance contains the single object and its ground truth and can be therefore

considered as an extension of the first part of the dataset. Saliency datasets are

also prone to centre-bias. In order to demonstrate this, the average annotation

map of the MSRA10K dataset is presented in Figure 6.10.

A selection of 8-bit and 16-bit depth maps of each incremental scene are also

an integral part of the COTS dataset [10]. This introduces an opportunity for

the investigate and potential link between saliency and depth information allowing

for the validation of earlier work [155]. Important saliency datasets include the

JuddDB [37], DUT-OMRON [156], Pascal-S [51], ECSSD [154] and MSRA10K

[150]. These datasets are more commonly used to benchmark and evaluate saliency

techniques. However, they do not include any depth maps to accompany the colour

images. The COTS dataset addressed this gap and provides depth maps for further
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exploration of this research topic.

Benchmarking Saliency

In order to validate the COTS dataset, a benchmarking exercise was carried out

based on the methodology and source code provided by Borji et al. [5]. This study

investigated 41 saliency models and these were benchmarked extensively. This

experiment was extended to demonstrate how the COTS dataset can also be used

to benchmark saliency models. This extension of the original study [5] includes

seven models that were selected based on the availability of the source-code within

the work of Borji et al. [5]. This techniques included a selection of Fixation

Prediction methods (SeR [157]) SIM [158] SR [159] COV [160]) and Salient Object

Detection models (SEG [161] SWD [162] FES [163] CA [164]). Besides the above

mentioned methods, the state of the art saliency detection technique Pyramid

Feature Attention Network (PFAN) [165] was also included. In this experiment,

the PFAN model gave an Fβ of 0.957 on the COTS dataset as listed in Table 6.4

and a reported 0.931 on the ECSSD dataset [165].

The source-code provided with each technique was used for the comparative

analysis of the selected techniques on COTS together with the ECSSD [154] and

MSRA10K [150] datasets. In order to test the source-code, the results obtained

by these seven techniques on the ECSSD [154] and MSRA10K [150] datasets were

reproduced and confirmed that they match with those in the work of Borji et al.

[5] and listed in Table 6.4. The reported comparison presents on the Fβ metric on

both Fixed Thresolds and Adaptive Threshold (IDAT). The β value was set to 0.3

so that more importance is given to precision rather than recall [10].

Fβ =
(1 + β2) · Precision · Recall

β2 · Precision + Recall
(6.1)

The implementation of these techniques was verified in the first part of the

experiment. Once that the performance of the models was confirmed by compar-

ing them to the other models, the second part of the experiment introduced the
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Table 6.4: The results of the selected saliency models on the COTS, MSRA10K
and ECSSD datasets. This table presents the extension of the work by Borji et al.
[5] by also including the current state of the art technique, the Pyramid Feature
Attention Network (PFAN) [165]. This was evaluated on the COTS dataset with
results illustrated in the last row.

COTS ECSSD PASCAL-S DUT-OMRON MSRA10K
Fixed IDAT Fixed IDAT Fixed IDAT Fixed IDAT Fixed IDAT

Results from [5]
FES [163] 0.812 0.692 0.655 0.645 0.619 0.605 0.520 0.555 0.717 0.753
SR [159] 0.676 0.507 0.385 0.381 0.447 0.442 0.298 0.363 0.473 0.569
SIM [158] 0.699 0.625 0.391 0.433 0.434 0.407 0.358 0.402 0.689 0.705
SWD [162] 0.785 0.702 0.624 0.549 0.577 0.523 0.478 0.506 0.498 0.585
CA [164] 0.766 0.587 0.515 0.494 0.489 0.472 0.435 0.458 0.621 0.679
COV [160] 0.628 0.541 0.641 0.677 0.589 0.604 0.486 0.579 0.667 0.755
SEG [161] 0.951 0.941 0.568 0.408 0.534 0.344 0.516 0.450 0.697 0.585
SeR [157] 0.722 0.488 0.419 0.391 0.433 0.406 0.385 0.411 0.542 0.607

Results from [165]
PFAN [165] 0.957 0.842 0.931 N/A 0.892 N/A 0.856 N/A N/A N/A

COTS dataset. The Fβ statistic was calculated for the FES [163], SR [159], SIM

[158], SWD [162], CA [164], COV [160], SEG [161] and SeR [157] models. Table

6.4 presents the results that show how the COTS dataset can also be used for

the benchmarking of saliency models just as other datasets allow. This extended

benchmarking enables further prospects for research by also considering the depth

information available in the COTS dataset.

Saliency and Multiple Objects

The COTS dataset was also enriched with data related to the subject interaction

in relation to every image as collected through the online test described in Section

6.4. The saliency-driven ranking technique presented in this thesis was evaluated

using the COTS dataset. A detailed account of this evaluation process is presented

in Chapter 7.

6.5.2 Inpainting

The removal of an object from a scene is referred to as inpainting. Different tech-

niques were surveyed in Chapter 3. Techniques range from traditional methods
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Figure 6.11: Incremental scenes are one of the distinctive features of the COTS
dataset. These are ideal for the evaluation of inpainting techniques. Every row
corresponds to an instance in the scene with a new object being introduced in
every scene. Every instance includes an RGB image, an 8-bit depth map and a
binary mask.

[113] [110] [166] to generative deep learning models such as GANs [167].

Inpainting situations where objects of larger sizes need to be removed, are gen-

erally evaluated using a Mean Opinion Score (MOS). Opinion scores are indicative

in the evaluation of subject’s perception, however, they do not provide objective

insight into the efficacy of the inpainting approach being used [23].

The COTS dataset is designed to address this limitation. Figure 6.11 presents

an example of how each of the 23 instance in the second part of the dataset is

organised in instances. Every instance is an increment to the previous instance

that has an object that was not present in the one before it. The new instance

has a single new object included with no other modification in the image. This
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Table 6.5: The results for each scene where the inpainting result was compared to
S1 using the MSE metric. The maximum error related to the MSE reading when
S2 was measured against S1, hence comparing the scene without the object with
the scene including the target object.

Mean Squared Error (MSE)

Occlusion
Ours +
Telea

Ours +
NS

Deep
Learning

Max
Error

Statues Yes 369.10 452.39 455.79 1139.27
Shooters Yes 57.20 68.17 72.11 83.09
Academic Yes 384.76 488.48 484.78 1990.00
Footwear No 58.64 69.12 124.73 1617.40
Mugs No 79.31 101.61 108.91 407.76
Tech No 112.46 153.91 142.79 570.52

set of consistent increments provide the desired setup for the objective evaluation

of inpainting techniques. Inpainting techniques remove an object from a specific

instance (n) and the instance before it (n − 1) can be therefore used as ground

truth as it will be missing the removed object and has the ideal background [10].

The ground truth for every new addition is provided with every instance and

this allowed us to facilitate the evaluation of inpainting algorithms. The binary

mask can be used during implementation to guide the inpainting method being

evaluated. This reduces the need of creating a mask through segmentation method

that can render any comparison challenging. A potential experimental setup that

uses the COTS dataset is that uses our published framework [22] is presented in

this section. A sample setup for the evaluation of inpainting is illustrated in Figure

6.13. This shows the target object to be inpainted as the red deodorant in Scene 2

denoted as S2. Inpainting using Telea’s method [113] was carried out using the [22]

framework. Scene 2 (S2) is the same as S1 but has the additional red deodorant.

This allows S1 to be used as ground truth for the inpainting of the target object

found in S2. The inpainting result is hence compared to S1 using a full-reference

metric. In this experiment, the MSE metric was used.
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Inpainting Experiment

The COTS dataset was designed to compare different inpainting methods. This

section outlines an experiment to demonstrate how this can be achieved. Six scenes

from the COTS dataset were chosen for this experiment and were split into two

sets. The first set includes scenes in which some objects occlude others. The other

set includes objects that do not cause any occlusion to the others. The results are

presented in Table 6.5.

The evaluation process discussed above was applied to all six scenes. The S2

scenes are the ones containing an object for inpaiting being also represented by

a binary mask. S1 is the instance of S2 without the object. This instance was

a specific feature of the COTS dataset since it enables objective evalation. This

framework was used to demonstrate how the COTS dataset can be used to evaluate

three inpainting approaches. The first two inpainting methods evaluated are the

ones presented in [22]. These are namely Teala’s [113] method and the Bertalmio

et al. [110] method. This experiment also included a GANs based method, namely

NVIDIA’s approach by Liu et al. [118].

The setup of this experiment included objects being placed in front of a plain

green background. This resulted in particularly interesting cases. The background

of the COTS dataset exposes different strengths and weaknesses of the inpainting

methods being evaluated. Traditional dispersion based methods returned results

that were blurry and this matched what was already reported in previous work

[22]. The output of the GAN inpainting was more crisp when objects were oc-

cluded. Moreover, the result of the GAN inpainting when the target object was

not occluded, hence only having a plain background, was comparable the tradi-

tional techniques. The experiment is presented visually in Figure 6.13.

MSE =
1

N

N∑
i=1

(S1i − IRi)
2 (6.2)

Equation 6.2 gives the MSE metric that was used to evaluate the output of the
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Figure 6.12: A presentation of the components in the inpainting experiment. This
includes a comparative results of the objective evaluation. S2 is the original scene
upon which the inpainting is carried out using the mask presented in the second
column. S1 acts as the ground truth since it is the instance before S2, hence without
the object that was inpainted. The results of the different inpainting techniques
under evaluation are presented in the last three columns. These are namely our
technique with Teala’s [113] and Bertalmio et al. [110] and the NVIDIA deep
learning method of [118] in the last column.

inpainted result IR for each of the three techniques when compared to the ground

truth, S1. The comparison of the two original scenes, S1 and S2, with the target

object as the only difference returns the maximum error. This is computed to put

the comparative results for each of the other approaches into context. The instance

without the target object, S1, is used to compare the and therefore the comparison
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Figure 6.13: A high-level experimental pipeline for the evaluation of inpainting
techniques presented in this section.

to S1 should be as far as possible from the maximum error. The results show that

the Telea inpainting technique gives the best result when compared to the other

inpainting methods [23].

Performance Evaluation

These techniques were also compared with respect to their time performance. The

results of this experiment are in Table 6.6. The approach that we published in [22]

using Telea and NS inpainting was implemented again in Python 3.6 and OpenCV
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Figure 6.14: A bar graph of the comparative results. The y-axis relates to the
MSE. The scenes are presented on the x-axis. The occluded scenes are presented
first and followed by the other three. The Maximum error represents the error of
the scene when S1 is compared with S2.

3.0. These exeperiments were run on a machine with a 2.6 GHz Intel Core i7

processor and 16 GB 2400 MHz DDR4 memory running a MacOSX Mojave 10.14.6

operating system. The deep learning technique by Liu et al. was accessed using the

online instance provided by NVIDIA3 and the performance evaluation and training

information is directly based on the results of the same paper.

The results emerging from this experiment demonstrate that there is a relation-

ship between the performance of this approach and the size of the target object

being inpainted. The average time for every technique to compute the inpainting

result was measured. Telea’s method returned a result in 4.45s while NS took

3.52s. On the other hand, the deep learning approach returns the results signifi-

cantly faster. However, this depends completely on the trained model. The paper

specifies that a NVIDIA GPU V100 16 GB was used and training took between

3 to 10 days depending on the dataset. This means that if our technique is re-

3https://www.nvidia.com/research/inpainting/
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Time
(Telea) [s]

Time
(NS)[s]

Time
(DL) [s]

Target Object
Size [%]

Statues 3.63 2.83 0.03 6.4%
Shooters 1.51 1.06 0.03 2.0%
Academic Books 8.67 6.94 0.03 20.5%
Footwear 7.00 5.65 0.03 14.7%
Mugs 3.20 2.49 0.03 5.4%
Tech 2.70 2.20 0.03 3.9%
Average 4.86 3.53 0.03 8.8%

Processor CPU CPU GPU V100 -
Training NA NA 3 - 10 Days -

Table 6.6: Time analysis of the inpainting techniques in relation to the percentage
area of the object to the entire scene. The information related to the deep learning
technique is as specified by Liu et al. in [118]. While Telea’s [113] and NS [110] did
not require any pre-processing, the deep learning method [118] needed between 3
to 10 days of training on an NVIDIA GPU V100.

designed to exploit parallelism and run on a GPU architecture, it can potentially

improve in terms in performance while still not requiring any effort in training and

therefore can be used in different situations. This collection of comparative results

indicates that the choice of technique should depend on the priority between time,

pre-processing or training and the quality of results as demonstrated in this section.

Region Growing

The binary masks are a very important component of the techniques presented

in this thesis. Masks can be either generated using segmentation techniques [92]

[3] [95] as presented in Section 3.2 or using hand-crafted annotations as discussed

above. The challenge with such techniques is that there is no guarantee that the

mask of an object corresponds precisely to every pixel that represents the object

in the colour image.

In order to mitigate this discrepancy, region growing or dilation is applied to

to the mask. In each region growing or dilation pass, all eight neighbours of a

foreground pixel are set to a value of 255 and they are therefore also assigned as
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foreground pixels. This operation increases the size of the mask and compensates

for any discrepancy between the outline of the mask and the object.

Figure 6.15: A visual representation of with Teala’s [113] and Bertalmio et al. [110]
inpainting techniques with or without using Region Growing.

Figure 6.15 presents results that demonstrate the effect of applying region grow-

ing to a mask that is used in inpainting. The experiment presented above was

executed again for comparative purposes and region growing was not applied on

the mask. Figure 6.15 demonstrates the visual results of this experiment. When

region growing was not applied on the mask, inpainting performed poorly since it

also used pixels belonging to the object to fill the space of its removal. This left

traces of the object spread along its entire area. This was also objectively measured
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Table 6.7: The results from the computation of the MSE of the inpainting tech-
niques with or without region growing (RG).

Mean Squared Error (MSE)

Occulusion
Telea
with
RG

Telea
without
RG

NS
with
RG

NS
without
RG

Max Error

Statues Yes 369.10 427.50 452.39 460.67 1139.27
Shooters Yes 57.20 64.31 68.17 60.43 83.09
Academic Yes 384.76 592.35 488.48 644.65 1990.00
Footwear No 58.64 239.06 69.12 351.48 1617.40
Mugs No 79.31 153.28 101.61 190.01 407.76
Tech No 112.46 203.81 153.91 229.80 570.52

by calculating the MSE of the inpainting procedure without region growing. Table

6.7 shows how the error in the images in which region growing was not applied

was greater than the ones which used it. The maximum error is returned when the

S2 is compared to S1. The maximum error is also presented here for comparison

purposes.

6.5.3 Content Blending

Blending, or addition of an object, is the inverse process of inpainting. For this

reason, the COTS dataset can also be used to evaluate such approaches. An ex-

periment was designed to demonstrate how the COTS dataset can be used for this

purpose and its process is illustrated in Figure 6.16. The experiment starts by us-

ing a binary image mask on S2 to identify the target object. This time, the target

object will be included into S1. The object can be segmented using any segmenta-

tion technique or using depth information [22]. The blending result combines the

newly extracted object onto S1. For the COTS dataset to be use together with

a full-reference metric, the blended object needs to be placed in the same coor-

dinates from which it was extracted. The MSE metric presented in Equation 6.2

can also be used to evaluate this method. The comparison experiment for blending

includes S2 that will act as ground truth for the Blending Result BR. With its
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inclusion of shadows, the COTS dataset allows for their observations during this

process. These shadows nonetheless make scenes more realistic and allow for fair

evaluation of blending algorithms. Moreover, more advanced blending techniques

that attempt to create the shadows can also be evaluated using the COTS dataset

[10]. One can consider modern deep learning models [168] that detect shadows of

objects and that can also facilitate this process.

Figure 6.16: A sample experimental setup that uses the COTS dataset for the
evaluation of blending techniques. An object is extracted from S2 and is blended
into S1. The experiment is concluded when the blended result (BR) is compared
to S2.

This experiment was implemented using the same set of scenes from COTS as
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the inpainting experiment found in Section 6.5.2. The visual results are presented

in Figure 6.17. The column on the left shows instances of S1 from different scenes

that also serve as the target image on which the object will be blended. The second

column presents the mask of the object guiding the extraction of the target object

from S2. S2 serves as ground truth following the object blending. The last column

shows the results of the blending process. The objective results using the MSE

metric to compare the blending result with S2 can be found in Table 6.8.

Figure 6.17: A set of visual results from the evaluation of blending techniques using
the COTS dataset. The target object is extracted from S2 and blended onto S1
resulting in the blending output. In this case, S2 serves as ground truth.
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Table 6.8: The comparative results following the calculation of the MSE metric
when comparing the blending result (BR) is compared to S2. The maximum error
returned when the S2 is compared to S1.

Mean Squared Error (MSE)

Occlusion
Error
(BR vs S2)

Max Error
(S1 vs S2)

Statues Yes 135.25 2664.17
Shooters Yes 26.19 272.51
Academic Yes 141.87 2177.99
Footwear No 63.96 3444.17
Mugs No 72.72 461.99
Tech No 94.54 163.98

6.5.4 Combined Usage

This section demonstrated how the COTS dataset can be used to evaluate different

applications of computer vision. Each experiment was presented in a modular fash-

ion and therefore can be used to evaluate pipelined applications in more complex

frameworks.

6.6 Conclusion

This chapter introduced the novel COTS dataset, containing 120 images accom-

panied by depth maps and binary ground truth images. The sets are organised in

instances where each is also has a corresponding CSV file that contains the click

coordinates collected from the online test in 1267 participants took part. This

dataset can be used in the evaluation of different computer vision applications that

span from segmentation, inpainting and blending to saliency. Such a dataset also

faciltates the evaluation of pipelined computer vision applications by making use

of a single dataset.

The COTS dataset was made available for free and published in an open access

publication [10] for easier dissamination and use. The first version of the COTS

dataset is focused on a plain green background. This was originally intended to

allow for chroma-key background replacement and therefore increase the variety
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and complexity of the data.

6.6.1 Contributions Summary

The main contributions of this chapter are the following:

1. Design and build a multipurpose RGB-D dataset for different computer vision

applications;

2. Collection of interaction data from 1267 participants on the COTS dataset

showing what participants perceived as more salient objects;

3. Demonstration of the efficacy of the dataset through different benchmarking

experiments;

4. Demonstration of a novel objective approach for evaluating inpainting tech-

niques;

5. Demonstration of how the novel objective approach for evaluating inpainting

can also be applied to object blending.

116



7. Evaluation

Measure what is measurable, and

make measurable what is not so.

Galileo Galilei

7.1 Introduction

This chapter evaluates different aspects of the saliency-driven ranking approach

presented in Chapter 5. The main decisions behind the developed algorithm are

evaluated in this chapter and are organised as follows:

Ablation Study of Centre Bias The saliency-driven ranking score of our tech-

nique can consider the centre bias. An ablation study of this score was carried

out to evaluate the effect of centre bias on the overall result.

Benchmarking with other saliency detection techniques The proposed tech-

nique is benchmarked against other techniques using the MSRA10K [150]

dataset. This verifies whether the proposed technique performs as good as

others on this extensive dataset that contains single objects.

Comparison with Human Behaviour The ultimate validation of the saliency-

driven ranking technique is its match with human behaviour. This section
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compares in detail the results of the proposed technique with the results

gathered by participants on an online test.

Performance of Saliency Ranking This section presents the performance re-

sults of the saliency-driven ranking algorithm.

Configuring Saliency Ranking with Segmentation This section presents the

experiment that was carried out to fine-tune the configuration of our saliency

ranking model to rank the output of segmentation techniques.

Comparative Study with Attention Shift Ranks This section compares the

output of our technique with the current state of the art. This includes a

quantitative comparative study between methods together with a qualitative

visual evaluation of the results.

7.2 Benchmarking

A variety of saliency benchmarking experiments [5] [42] [169] [150] provide a compa-

rable presentation of this variety of techniques that provide a saliency map. These

studies investigate different aspects and biases of saliency detection techniques that

would influence the resultant saliency map. Furthermore, they shed light upon in-

fluences such as centre-bias and scene complexity that would influence the training

of supervised models that allow for the generation of saliency maps. The use of

these datasets containing mainly single objects are the main limitation of the cur-

rent research of saliency detection [7] [39] but are nonetheless the datasets used to

benchmark saliency related techniques.

The saliency-driven object ranking technique developed in this thesis aims to

guarantee the same quality of results when benchmarked with traditional methods,

without the need of any training, while being independent of any of the above

mentioned saliency generation methods or approaches. All the techniques discussed

above do not provide a ranking of which region in an image is more (or less) salient
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than others.

The hypothesis evaluated in this section investigates how the top 50% grid

segments ranked by the proposed technique compared to the ground truth of the

MSRA10K [150] dataset. This dataset was chosen due to its popularity and the

large number of images it contains when compared to other datasets of its sort.

7.2.1 Performance Measurements

The precision and recall are critical quantitative metrics that indicate the perfor-

mance of the system when compared to the ground truth of the MSRA10K. The

recall indicates how much of the ground truth was detected by the model. On the

other hand, precision indicates how many of the top 50% segments successfully

matched the ground truth. For this reason, the Fβ-Measure, denoted in Equation

6.1 was used as a supporting metric so that a combined level of importance is given

to both precision and recall.

The non-negative weight β2 is used to prioritise either precision or recall. When

β is between 0 and 1, more weight is given to precision, and any value above 1

would give more weight to recall. In this work, it was important to increase the

importance of precision since a high score of recall can, for example, be achieved by

setting the majority of the image as salient or foreground. This weight was set to

0.3 as used by a variety of benchmarking studies [5] [169] [170] [39] that are based

on the original findings of Achanta [171].

7.2.2 Ablation Study of Centre-Bias

This section presents an ablation study on the Centre-Bias. As presented in Figure

7.1, the MSRA10K tends to be influenced by centre-bias. In order to investigate the

effect of this property on the proposed model, the same experiment was repeated

without including the centre-bias in the generation of the model. The results are

presented in Table 7.1, and they show that the average F-Measure along all the
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Figure 7.1: The average annotation map of the MSRA10K dataset produced by [5]
showing its centre-bias.

With Centre-Bias Without Centre-Bias
Precision Recall Fβ Precision Recall Fβ

Mean 0.84 0.83 0.83 0.81 0.81 0.80
Std Dev 0.15 0.15 0.14 0.16 0.16 0.15

Table 7.1: A comparative performance of the system when the system has Centre-
Bias enabled or disabled.

images of the MSRA10K is only changed by 0.03 when the centre-bias is disabled.

These results also follow the experimental presentation used by [1].

7.2.3 Comparative Results

The Fβ statistic was used to compare the performance of this algorithm with other

techniques as benchmarked in [5]. The proposed technique was compared against

the worst (IT [50], SR [172] and SIM [173]) and best (ST [174] , QCt [175] and

DRFI [176]) performing techniques as presented in Table 7.2. This shows that the

proposed algorithm compares well with the best techniques.

IT SR SIM ST QCt DRFI Ours
Fβ 0.471 0.473 0.498 0.868 0.874 0.881 .828

Table 7.2: A comparison on the Fβ statistic.

The results were also analysed visually against a sample from the MSRA10K

dataset. The performance measurements presented in Section 7.2.1, assume a com-

plete bi-level representation of the ground truth, reasonably matching its corre-
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Figure 7.2: A selection of five images from the MSRA10K dataset showing how
the ground truth does not accurately cover the salient region. The bottom row
presents the result of the proposed technique that shows how the regions of interest
are adequately detected and labeled.

sponding colour image. Figure 7.2 shows that there are cases within the MSRA10K

dataset where the ground truth does not fully match the corresponding colour im-

age such as case (a), (c) and (e) presented in the figure. In these cases, there are

significant parts of the object in the image that are not marked as ground truth.

For instance, in case (a), one can see that while the handle and the guard of the

sword are marked as ground truth, more than half of the blade is left uncovered.

Figure 7.2 also presents the results of our solution that successfully captures the

entire objects. Although this is desirable, it negatively impacts the Fβ score since

the correctly detected segments of for example the blade of the sword in case (a),

are considered by the metric as a false positive since the same parts of the blade

are not covered by the ground truth.
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7.3 Comparison with Human Behaviour

7.3.1 Online Test

While the other experiments showed that the proposed technique performs well

on ranking saliency, it was also important to evaluate how it compares to human

behaviour. Thus, a website was set up to facilitate dissemination and availability

[20]. This tool allowed for a very detailed data collection that provided the required

information for the comparison presented in this chapter. A website was specif-

ically designed and built for this experiment. This presented the images to the

participants through HTML and collected usage information through JavaScript.

The collected data was stored in a hosted database. The usage data was collected

in the background to minimise the participant interaction and keep the experience

as focused as possible. This data included information about the session together

with the operating system and browser being used by the participant.

Two separate online tests were carried out.

1. (987 Participants) In the first test we provided the participants with a selec-

tion of RGB-D datasets containing actual real-life scenes where no explicit

object is prominent. This test aimed to evaluate the system using natural

scenes. The datasets used in this test are Microsoft’s Ballet and Breakdance

sequence [135], Nagoya University’s Balloons sequence [136], Fu et al ’s Bear

sequence [177] and Tsukuba’s University stereo dataset [178]. The main re-

sults of this section are based on this test.

2. (1267 Participants) The second test used the COTS dataset and it aimed to

investigate how attention on a scene changes when a new item is introduced.

This test took advantage of the incremental design of the COTS dataset and

the detailed metholodogy of this test to minimise visual bias is outlined in

Section 6.4.

A set of images from the selected datasets were presented to the participant
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and for each image, the participants were asked the following question:

Click/Tap on the point that attracts your attention when you first see the image.

The point can be anywhere and includes persons or other objects.

The tap or click coordinates on each presented image were recorded. These coor-

dinates were essential for the generation of the heatmap. The resultant heatmaps of

the regions of interest in the images are presented in Figure 7.3. The time between

the presentation of the image to the participant and the click or tap was recorded

for every image. This allowed for a better understanding of the time taken by

participants to choose an object from the scene while also making it easier to clean

the data.

This experiment needed widespread distribution to maximise the number of

participants. This was successfully achieved by engaging a social media campaign

to promote the experiment URL. This was positively received with a total of 987

participants. Subsequently, the data was extracted from the online database and

cleaned by the time to click variable. Following an inspection of the collected data,

the records with time values less than 0.1s and more than 50s were identified as

outliers and discarded in order to fairly represent adequate use of the test. This

left 854 records for evaluation. The average time for participants to click on an

object of their choice was 4.3s. The fastest participant clicked the image after 0.48s

and the slowest one took 41.3s. The average x-coordinate of the clicks took place

at 53% of the image width, and the average y-coordinate of the clicks took place

at 51.1% of the height. This demonstrates how the subject clicks or taps reflect

the effect and relevance of centre-bias [20].

7.3.2 Comparing the Algorithm against participant Clicks

The results of the saliency-driven object ranking technique presented in this thesis

were studied in relation to the data collected during the online test. This part of the

evaluation process compares the prioritisation of the salient regions of the images
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detected by the algorithm to where the participants clicked during the two distinct

online tests. Such a test was important since the use of such a technique would

be based on the notion of having an automatic technique that closely resembles

human behaviour.

The online test provided valuable data as discussed above. This data was

processed using a tailored algorithm that converted the clicks extracted from the

online test to a format that is comparable to the output produced by the proposed

saliency-driven ranking technique. This data processing algorithm went through

the click coordinates of every participant on every image. It then returned an

output image with grid-segments of a 9× 9 resolution identical to that used by the

algorithm.

Every click coordinate (x, y) had to be mapped with a grid segment with index

(i, j). However, each image has its own width w and height h pixels, so the area

covered by each grid varies according to the image size. This follows that x falls

in the range x = [0, w) and y in the range y = [0, h) [20]. The segment S(i, j)

follows Equation (7.1) where D is the Segment Dimension, that gives the index of

the respective cell as presented in Equation (7.2).

S(i, j) =

(x, y)

∣∣∣∣ iw
D
≤ x < (i+ 1)w

D
,

j h
D
≤ y < (j + 1) h

D

 (7.1)

i =

⌊
xD

w

⌋
, j =

⌊
yD

h

⌋
(7.2)

A systematic procedure was followed for each evaluated scene. This provided

a fair comparison between the the participant clicks and the result of the pro-

posed saliency ranking algorithm. The objects clicked during the online test were

identified and recorded. The output of the algorithm was compared with the se-

lection of objects done by participants. For every object in the list, the number

of labeled segments, colour-coded red, orange, yellow, and green, were individually

counted in the output generated by the proposed technique, and the segment-based
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Figure 7.3: A visual comparative illustration demonstrating how the saliency-
driven technique matches with clicks and taps of subjects and other techniques.

representation of the participant clicks.

The χ2-test was used to determine whether there is a relationship between

the grid-segments generated by the saliency-driven ranking algorithm and their

equivalent representation of the clicks collected from the online test. Below follows

the hypothesis that was selected for evaluation:

HypothesisH0:

There is no significant difference between the algorithm ranking result and

the participant clicks

When the null-hypothesis H0 is not rejected, the predictions of the algorithm

were most of the time similar to segment selected by the participants. The results
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of the χ2-test with the technique is using a depth map are presented in Table 7.3.2.

The null-hypothesis H0 was rejected name in two items: the first in the Balloons

dataset and the second case was the man in the Ballet dataset. While in the Bal-

loons sequence, the algorithm discarded the plant and the centre balloons, the case

of the man in the Ballet sequence deserves further investigation. The man covers

25% of the image, which is a considerable area of the image when considering and

comparing to the number of pixels in the image where a participant can potentially

tap or click. The saliency-driven technique successfully detected the man from top

to bottom while, conversely, participants only interacted on the man’s vest and

head. This affected the result since when all the algorithm results of segments rep-

resenting the man were counted and tested against the participant clicks, H0 was

rejected. However, considering such a scenario, one can safely consider that the

algorithm correctly predicted the selection of the man. When also considering that

this technique is pipelined with object-segmentation methods, such a case would

also match to a correct prediction since the same label would be selected. All this

results in the technique correctly detected 91.3% of the objects [20].

A closer look at the results, presented in Figure 7.3, also shows that participants

were sometimes clicking on regions that would typically be classified as background.

One of the most evident cases is the Sofa scene. The clicks heatmap and ‘clicks

converted’ images in Figure 7.3 show that a significant number of participants

were clicking on the wheel of the van outside the window of the same scene. It

is interesting to note that this was not captured by the proposed technique when

the depth score was used. However, when the depth score was not used, the same

regions were also detected by the system. A similar effect was also manifested in

the FuCup scene where participants were clicking on objects that were placed on

the cabinet in the background and even on the sword hung in the top left corner of

the scene. These would be generally disregarded as background and therefore ruled

out from being a salient object, yet this experiment shows that a significant number

of participants perceived these same objects as salient objects. This technique was
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also successful from this perspective since it accurately reflected what participants

were choosing in scenes that contained multiple objects.

Another possible approach of evaluating saliency ranking is using a heuristic

such as the brightest 10% pixels of a saliency map as proposed by Judd et al. and

reviewed in Section 2.4.2. The technique presented in this thesis avoids this heuris-

tic and instead of filtering individual pixels by brightness, it takes into consideration

the context of the neighbourhood. This avoids situations where, for example, there

would be a very small number of bright pixels in a region that does not contain

a salient object and it therefore gives more weight to other bright pixels that are

more probable to represent a salient object.

Dataset Object χ2 p-value H0 rejected?

Ballet Man 10.095 0.0178 Yes
Ballet Ballerina 2.9706 0.3962 No
Ballet Poster 1.5 0.6823 No
Balloons Man 3.8294 0.2805 No
Balloons Center Ballons 6.5714 0.0468 Yes
Balloons Plant 8.0563 0.0448 Yes
Tsukuba Lamp 3.3333 0.3430 No
Tsukuba Head 1.1778 0.7583 No
FuBear1 Bear 3.2667 0.3523 No
FuBear1 Box 1.1818 0.7574 No
FuBear1 Woman 1.3518 0.7169 No
FuBear2 Bear 0.4 0.9402 No
FuBear2 Box 6.2667 0.0993 No
FuBear2 Woman 0.6421 0.8867 No
Sofa Table 3.4961 0.3213 No
Breakdance Dancer 2.5 0.4753 No
Breakdance Radio 1.0667 0.7851 No
Breakdance Right Man 0.7222 0.8680 No
Breakdance Left Man 1.9762 0.5774 No
FuCup Kettle 4.6095 0.2027 No
FuCup Wall Socket 1.6667 0.6444 No
FuCup Right Objects 0.66667 0.881 No
FuCup Center Objects 1.1667 0.761 No

Table 7.3: Table showing the χ2-square statistic and the respective p-value for the
test of hypothesis H0 for each object in the respective scenes.
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While the first test extensively reported above covers real-life situations with

datasets containing natural scenes, the second test focused on the incremental

nature of the COTS dataset. The participant clicks on different images can also be

compared with the output of the saliency ranking algorithm. Figure 7.4 presents

an example of the results of our technique compared to participant clicks on the

COTS dataset. In all images it is clear that the results of the algorithm match

the participant clicks. From a ranking perspective, the top-ranked segment by the

algorithm is only a segment away from the participant interactions. The same

object is represented by both of these segments. When the objects where small,

such as the last row example, the ranking is targeting different objects but in

practice, the indicative segment is only a segment away. This is another motivation

for further future research on the analysis of the ranking output. The saliency

ranking algorithm also shows to be sensitive to other implicit features in the scene

that also affected human participants. For example in the scene featured in the last

row, there is a region on the left where participants were clicking, probably because

of a change in shade that caught their attention. In this case, the algorithm also

marked the corresponding segments as potentially salient with a ranking that is

considerably close to that of the participant clicks.

7.4 Performance Measurements

The computational complexity of the proposed solution is directly related to the

size of the input image. The traversal of each pixel in each image is required, and

this results in 2O(N) ⇒ O(N) where N is the number of pixels in the image.

This also means that the segment dimension does not affect the complexity of the

algorithm. Thus, the proposed technique provides more flexibility in applying it to

a variety of applications.

The architecture presented in Section 5.3 was implemented in Python 3.6 and

OpenCV 3.0 to generate the results presented in this section. Performance testing
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Figure 7.4: Visual representation of our saliency-driven ranking algorithm com-
pared to participant clicks and Itti’s [50] saliency detection using the COTS dataset
in Test 2. The column on the left presents a the heatmaps of clicks from the online
test. The second from the left column illustrates grid layout representation of the
clicks such that they can be compared to our saliency-driven ranking method. The
column on the right shows the same scene from the COTS dataset processed with
Itti’s technique [50].

Dataset t(Depth) t(¬Depth) t(Itti) t(FASA)

Ballet 0.1498 0.0530 2.4306 4.7573
Balloons 0.1264 0.0590 2.0461 4.1101
Breakdance 0.1537 0.0568 17.9918 4.8980
FuBear1 0.1086 0.0383 1.9396 1.6093
FuBear2 0.0911 0.0387 1.7726 1.6805
FuCup 0.0893 0.0327 2.1946 1.5265
Table 0.0940 0.0420 2.7215 2.8111
Sofa 0.1086 0.0390 3.1986 1.5280
Tsukuba 0.1141 0.0417 1.0810 1.5082

Table 7.4: The time results for the algorithms to execute the detection. The
scene being processed is presented in the first column. This is followed by the
results in seconds of the proposed algorithm with depth score enabled and disabled,
respectively. The last two columns present the time taken in seconds for Itti’s [50]
and FASA’s [41] algorithm to carry out similar result.

was carried out on a machine with a 2.6 GHz Intel Core i5 processor and 8 GB 1600

MHz DDR3 memory running a MacOSX High Sierra n v0.13.5 operating system.
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An instance was also run without the depth information to understand its impact.

The closest similar techniques found in literature use other saliency techniques and

generate segmentation of the most salient objects using a binarised map of each

technique [20]. Run-time performance of the proposed technique was carried out

and the results are presented in Table 7.4.

7.5 Configuring Saliency Ranking with Segmen-

tation

This section evaluates the results that our saliency-driven ranking technique gives

when combined with object segmentation techniques. The following subsections

cover the metrics that enable such evaluation together with the experiments that

led to the configuration of our method to rank segmented objects.

7.5.1 Metrics for Ranking Salient Objects

The research area of saliency ranking is still in its infancy and there is still no

agreement on a universal metric to measure performance within this problem [15].

For this reason, to evaluate the work presented in this thesis we use the metrics

that were also used in recent comparable work [16] [1] [15] and also introduce a

new metric.

Salient Object Ranking (SOR)

The Salient Object Ranking (SOR) is based on Spearman’s Rank-Order correla-

tion originally proposed in this context by [16]. Spearman’s rank-order correlation

ρ is a non-parametric measure of the dependence between the rank and the or-

der of two distinct variables. Spearman’s correlation is preferred over Pearson’s

correlation since the former can detect a correlation irrespective of whether the

relationship between variables is linear or not. This is known as a monotonic re-
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lationship. Spearman’s coefficient has the high value of 1 when a variable has a

perfect monotonic relationship to another. When on the other hand, variables have

contrasting ranks, Spearman’s coefficient is at its minimum value of -1. The SOR

returns a value for the rank between salient objects with a rank in the range [−1, 1]

[16]. In their recent publication [15], the researchers behind this metric presented

three variants for the SOR namely based on the average, power and maximum as

presented in Equation 7.3.

Rank =


SORavg(S(δ)) =

∑ρδ
i=1 δ(xi,yi)

ρδ

SORpow(S(δ);α) =
∑ρδ
i=1 δ(xi,yi)

ραδ

SORmax(S(δ)) = max(δ(xi, yi))

(7.3)

where δ represents a particular instance of the predicted saliency map S, the

power is denoted by α, ρδ denotes the total number of pixels δ contains, and δ(xi, yi)

refers to saliency score for the pixel (xi, yi).

The most popular variant of the SOR is the original one based on the average

[16] and was also used to evaluate the work in [1]. This metric is presented in

Equation 7.4.

Rank(STm(δ)) =

∑ρδ
i=1 δ(xi, yi)

ρδ
(7.4)

where δ represents an instance of the predicted saliency map STm(δ) generated

using technique T , ρδ denotes the number of pixels in δ, and δ(xi, yi) refers to

saliency score for the pixel (xi, yi).

Since the SOR is based on Spearman’s coefficient, it does not cater for situations

where there are no common objects between rank variables such as the case where

the method detects salient objects that are not present in the ground-truth [1].

This limitation of the metric motivated Siris et al. to also report the number of

images upon which it was calculated in order to improve the reliability of the SOR.
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Mean Absolute Error (MAE)

In there work, Siris et al. [1] expressed reservations about the SOR and also used

the Mean Absolute Error (MAE) as a metric in their evaluation. This metric,

presented in Equation 7.5, measures the average pixel per pixel difference between

the predicted saliency map and the ground truth. This metric was introduced since

it also returns a value when there is disagreement between the set of objects in the

ground truth and the predicted objects. The lower the value of the MAE, the more

similar the predicted saliency map is to the ground truth.

MAE = (
1

n
)

n∑
i=1

∣∣pδi − pGi ∣∣ (7.5)

where pδi is the pixel in the predicted saliency map being compared to the

corresponding pixel pGi in the ground truth and n is the number of pixels in either

the predicted saliency map or the ground truth where it is assumed that both

images are of the same size.

Rank Agreement Score (RAS)

The SOR and MAE metrics look at the problem of saliency ranking from a bottom-

up perspective by assessing and comparing the values of pixels in the predicted

saliency map and the ground truth. In itself, this highlights an opportunity of

looking at the problem from a top-down approach when assessing saliency ranking.

For this reason, we propose a new metric, the Rank Agreement Score (RAS),

that compares the predicted masks as a whole in both images. This metric also

compares the rank of the predicted mask with the rank of the corresponding mask

in the ground truth.

Effectively, the RAS counts how many predicted masks were matched to the

ground truth together with a matching rank. Consider a scene where there are five

objects in the ground truth, each with a particular rank. In this case the saliency

ranking technique would detect four out of the five masks and three of them would
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also have the same rank as their corresponding mask in the ground truth. In this

case, the Rank Agreement Score would return the value of 0.6, indicating that there

was an agreement of 60% between the prediction and the ground truth.

7.5.2 Configuration Experiments

This section presents the experiments that were used to determine the percentage

threshold T% that denotes the coverage of a mask in a grid segment in our saliency-

driven ranking technique presented in Section 5.5. A mask features in different

grid segments and every grid segment would have a rank. The rank of the mask

therefore needs to be representative of the grid segments’ ranks that cover it. This

experiment also investigates which rank from the grid is to be assigned to the mask.

The alternative modes are the minimum rank, the maximum rank or the average.

Out of the 2418 images in the validation set proposed by [1], three sets of

100 images each were randomly generated for this experiment. For each set of

100 images, our predicted saliency rank applied to the Mask R-CNN masks was

evaluated using the three metrics discussed above. The threshold was incremented

in units of 10 for the minimum, maximum and average rank respectively. For each

set, the experiment was carried out four times, once for every metric, namely: RAS,

SOR, MAE (saliency map) and MAE (binary map). Using this methodology, the

results of the first part of the experiment where results were generated for three

random sets are presented in Tables A.1, A.2, A.3 and A.4. These initial four

tables do not provide clearly identifiable trends. However, throughout all results,

it is clear that the Min Rank Value column gives the least standard deviation

across all results. This is a preliminary indication stating that the Min Rank Value

is returning the most stable set of results.

Once that the individual results were generated for each set, the averages of

these results were aggregated in a table for each metric. These aggregated average

results are presented in Tables A.5, A.6, A.7 and A.8 found in Appendix 1. These

results start to indicate how the best values are mostly occurring at the 60% and

133



Chapter 7. Evaluation

90% thresholds and this indicated that these needed further investigation prior to

concluding the configuration.

Based on the previous sets of results, the last phase of the experiment investi-

gated in more detail the behaviour of the 60% and 90% thresholds. This was done

by generating instances for these thresholds for every single image in the image set

and the results are presented in Table A.9. The results for maximum and average

rank values of the 60% threshold were not generated since previous results showed

that this threshold was not performing well on these modes. The final results pre-

sented in this table clearly indicate that the best performance is achieved at 90%

threshold on the minimum rank value. The worst performance was in both MAE

metrics. This was not given much weight since the pixel to pixel accuracy depends

on the similarity in the shape of the mask in the ground truth and predicted image

and does not have a direct effect on the ranking of saliency.

7.6 Comparative Study with Siris et al. [1]

This section presents a comparative study with the recently published “Inferring

Shift Ranks” method [1]. The first part introduces the dataset that was proposed in

this same publication were we also give an outline of how the authors constructed it.

This is followed by a section that evaluates how our saliency-driven ranking module

performs with other methods when used to rank the masks of Mask R-CNN. These

results include a quantitative and qualitative evaluation.

7.6.1 Saliency Ranking Dataset

One of the major contributions of [1] was the annotated dataset that provided

the first form of ground truth for saliency ranking. This dataset combines the

COCO dataset [71] with the SALICON dataset [18]. The COCO dataset is widely

used for object detection and segmentation applications. On the other hand, the

SALICON dataset was built on top of COCO to provide mouse trajectory based
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RAS
Threshold Min Rank Value Max Rank Value Average Rank Value
60 21.83% - -
90 31.96% 21.33% 21.09%

SOR
Threshold Min Rank Value Max Rank Value Average Rank Value
60 0.710 - -
90 0.716 0.715 0.714

MAE (Binary Saliency Map)
Threshold Min Rank Value Max Rank Value Average Rank Value
60 0.121 - -
90 0.119 0.117 0.118

MAE (Binary Mask)
Threshold Min Rank Value Max Rank Value Average Rank Value
60 0.121 - -
90 0.119 0.118 0.119

Table 7.5: This table presents the result of the metrics on the entire 2418 images in
the validation set for the 60 and 90 threshold since they were the best performing
thresholds in previous experiments. The results in these tables clearly indicate that
the 90% threshold returns the best result. Moreover, the RAS metric suggests that
the minimum rank value should be used.
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fixations. These fixations are categorised into two. The first one provides fixation

point sequences and the other provides fixation maps for each image.

The saliency ranking dataset by [1] built upon these datasets by generating three

approaches to generate rank proposals based on the mouse fixation trajectories in

the SALICON dataset. The first approach focused solely on the fixation points

and sequences where they used four methods to generate the score for each object

based on fixation data. These four methods were namely: average, maximum,

average+maximum and average×maximum. The second approach focused on

how distinct objects were fixated in sequence while ignoring repeated objects. In

the third and last approach the fixation maps were used and the four methods

used in approach one were also included. Each of these approaches generated

different results that were then evaluated in a participant study that involved 11

participants in an effort to investigate which approach delivers the most stable

ranking ground truth based on human judgement. This experiment concluded

that the best approach was the second one where ranks were generated from the

order in which observers fixated on objects. The ground truth of this dataset was

also based on this approach [1].

7.6.2 Results

This section presents the comparative result of our technique combined with the

output of Mask R-CNN with the state of the art [1] and other comparable tech-

niques, where applicable. The first part of this section presents the Quantitative

Results using the metrics used in similar work [1] [15]. The second part of this

section presents the Qualitative Results of this evaluation by discussing visual ex-

amples of our method in comparison to the ground truth and the state of the

art.
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Method MAE ↓ SOR ↑ #Images used ↑

RSDNet [16] 0.139 0.728 2418
S4Net [59] 0.150 0.891 1507
BASNet [60] 0.115 0.707 2402
CPD-R [61] 0.100 0.766 2417
SCRN [62] 0.116 0.756 2418
Siris et al. [1] 0.101 0.792 2365

Mean 0.124 0.770 2232
Ours + Mask R-CNN 0.119 0.716 2370

Table 7.6: Comparison of our technique combined with Mask R-CNN against the
current state of the art on the Attention Shift Rank dataset [1]. The results of the
other techniques are reproduced from [1]. In case of the MAE, the lower the result
the better and in the other cases, the higher the better. The maximum number of
images that can be used is 2418.

Quantitative Evaluation

In their work, Siris et al. [1] compared their deep learning saliency ranking model

with five other techniques using the dataset discussed in Section 7.6.1. For this

evaluation, the MAE and SOR metrics were used to compare the techniques. Since

the SOR rejects cases where the proposals do not match the ground truth, the

number of images used was also reported for a fair comparison. The techniques

included in this comparative study constituted of the RSDNet proposed by Islam

et al. [16] that initially suggested the idea of saliency ranking using deep learning

together with four state of the art saliency detection techniques. These salient

object detection techniques, [16] [59] [60] [61] and [62], return binary saliency maps.

For comparison purposes, we evaluated our saliency-driven ranking model com-

bined with Mask R-CNN that was presented in Section 5.5 on the same dataset and

using the same metrics and methodology used by [1]. Our experiment presented

in this section compares saliency ranking results with a technique that returns a

saliency ranking proposal together with the other state of the art salient object

detection. The results of this comparative study are presented in Table 7.6.

The results presented in Table 7.6 show how our saliency-driven ranking method
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combined with Mask R-CNN performed similar to most of the other techniques.

The MAE compares the pixel to pixel accuracy between masks. While our tech-

nique performs better than the average MAE, the same cannot be reported on

the SOR. However, the number of images used for the SOR is higher than average.

The number of images used needs to be also taken into consideration. For example,

while the S4Net obtained the highest SOR value of 0.891, thus raising the average,

it used 911 less images than the maximum number of available images. The main

reason why some of the other methods performed better is due to the fact that

they are deep learning models that were trained and tuned to detect such patterns

in the data while ours ranks the output of Mask R-CNN without training.

Qualitative Evaluation

The qualitative results showcased in Figure 7.5 show how our technique compares

on visual level with the ground truth and the results of [1]. Our saliency ranking

grid output is presented by (d) in each figure while (e) illustrates the result when

our saliency ranking model was used to rank the masks of Mask R-CNN. The

ground truth of the dataset discussed in Section 7.6.1 is presented in (b) and the

result of the state of the art is presented in (c). In all images where masks are

ranked, the grey value of the mask corresponds to the rank of the same mask. The

higher (or brighter) the grey value of the mask, the higher its rank is.

In general, an image may contain a number of objects in set O of which a

number of them found in set S are detected by a segmentation technique such that

S ⊆ O. One main limitation in all of these results was the limit of 5 detectable

objects set by [1] that was also reflected in the set of objects in the ground truth

G such that G ⊆ S. When our saliency-driven ranking method is combined with a

segmentation technique, its best performance is as good as the number of objects

in S. However, the saliency ranking grid itself, operating at pixel level, also ranks

regions that contain objects that do not belong to S. An example of this is the

sample presented in Figure 7.7 where the building itself is not classified as an object
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Figure 7.5: Comparison of the proposed technique (d) and (e) with the original
image (a), the ground truth (b) and state of the art [1] (c). The masks of the
detected objects are coloured by rank. The higher the grey value of the mask the
higher the rank of the same mask.
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Figure 7.6: An example where there is agreement between our result and that of
[1]. Moreover, this case shows how the ball was not featured in the ground truth
but was detected by the other techniques.

Figure 7.7: An example where there is a predominant salient object in a scene that
is not classified by segmentation methods. In this case, the photo features Riga’s
town hall and while all segmentation methods detected people, an important object
class in datasets, they did not detect the building that is the subject of the image.
On the other hand, our saliency ranking method clearly indicated that the building
is a very salient object of interest in the image.

but it is nonetheless featured by our grid method. This means that if the training

of the segmentation method is improved to also detect such objects, our method

would be capable of ranking it right away. This is also similar to another case

where an object contains smaller regions that are themselves more salient but are

not detected by the segmentation model. We present an example of such a case in

Figure 7.8 where the yellow button on the remote control attracts attention while

the remote control itself contains less salient regions.

7.7 Conclusion

This chapter presented all the experiments and the evaluation procedures that were

carried out to evaluate our proposed saliency-driven ranking method. The other

techniques that perform a comparable task to our method use a deep learning
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Figure 7.8: This example presents a case where there is a large object, the remote
control, in the image that is not the most salient object but contains a particular
salient region. All segmentation based techniques would detect the object correctly,
including ours together with Mask R-CNN. However, such techniques are not ca-
pable of identifying salient regions within it while the saliency grid indicated the
yellow button on the remote control.

Figure 7.9: The input image in this example features a plate with food. Our
technique detected the same objects as the ground truth and the state of the art,
although it ranked them differently. In this case, it is interesting to note that our
method also detected the plate underneath the food and gave it a higher rank. The
plate was not detected by the other technique and the ground truth.
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approach. On the other hand, our technique generates scores onto a grid based

on pixel-level information that does not require any training. For this reason, we

needed to first evaluate the configuration of the model in itself, starting with an

experiment to establish the optimal grid size across different datasets. Another

component of this model is the use of centre bias in an image. In order to ensure

that the results do not rely on centre bias, we carried out an ablation study on

this component that resulted in minimal improvement of the final result and there-

fore confirm that the model does not solely depend on it. Our saliency ranking

model was then compared with other benchmarked techniques that detect single

salient objects in an image. This experiment also demonstrated that our model

returns very close results to the best saliency detection models, even if it serves a

different purpose of detecting multiple objects in an image. Another experiment

that was carried out was the comparison of our saliency ranking model with hu-

man behaviour. An experiment that involved 1267 participants demonstrated that

our saliency-driven ranking model successfully matched human behaviour since the

click patterns matched the same ranking of our model.

The last part of this chapter investigated the effectiveness of our saliency rank-

ing when used to rank the masks of segmentation models. This included an experi-

ment to confirm the configuration of our method with segmentation techniques and

was then followed by a comparative study with the state of the art. These results

show that our technique performs very closely to the deep learning based state of

the art technique without the need of any training, reaches high performance and

is adaptable with any segmentation technique.

7.7.1 Contributions Summary

The main contributions of this chapter are the following:

1. Presentation of an experiment to establish the optimal grid size for saliency-

driven ranking;
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2. Ablation study on the center bias to investigate its effect on the saliency-

driven ranking algorithm score;

3. Benchmarking of saliency ranking with other saliency detection techniques;

4. Demonstration of how the saliency-driven ranking model compares to human

behaviour;

5. Identification of how our saliency-driven ranking model can be combined with

any segmentation technique;

6. Comparison with the current state of the art and demonstrating how, without

any training, our model performs well when compared with deep learning

based methods.
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Wisdom begins at the end.

Daniel Webster

8.1 Summary

The topic of saliency-based object detection is an evolving area. Since the first

saliency detection technique [50], a number of other techniques that detect saliency

in an image were also proposed. The emerging importance and relevance of deep

learning also resulted in a number of saliency detection techniques that use deep

learning, such as the current state of the art for saliency detection [165].

While saliency detection techniques were being refined to the current accuracy,

object detection and segmentation was also evolving. This resulted in state of the

art object segmentation [14] that returns a pixel-level representation of objects in

an image.

The work presented in this thesis demonstrates how salient object detection and

object segmentation have the potential to be merged as part of their evolution. The

saliency of objects that are also accurately segmented can be defined but the current

open question [179] [1] [15] is how the segmented objects can be ranked by their

saliency.

Very few publications [1] [16] [15] have touched upon the notion of ranking
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objects by saliency at the same time that the work in this thesis was being finalised

and initial findings published in [20]. The main difference between the technique

presented in this thesis and other work is that our approach does not require

any training and achieves very good results when compared to the deep learning

methods. The inherent limitation of the competing techniques is that they depend

on the set of classes upon which their network is trained while our method ranks

regions of the image based on information from the image.

Our saliency-driven ranking approach is designed to be combined with any seg-

mentation model. This also means that when a new segmentation model becomes

available, our method can be easily combined with it. One of the main limitations

of the current object segmentation techniques is that they are limited to the num-

ber of classes upon which they are trained. Results show that our model detected

salient regions that include objects not yet detected by such deep learning mod-

els. Once these models will be able to detect them, our model would be able to

rank them accordingly. Moreover, when our method is pipelined with segmentation

models, it also renders the ranking of objects by saliency explainable since the final

rank allows for tracing throughout our model to understand what caused it.

In this thesis, we demonstrated that this method matches human selection

behaviour in natural images that are normally perceived as more challenging, hence

meeting the first objective of this thesis. Image manipulation was used as a task

that can be combined with saliency ranking. For the purpose of this thesis, image

manipulation refered to the inpainting or blending of objects in a scene.

The results presented in this thesis show our saliency-driven ranking approach

together with the COTS dataset can be efficiently used to explore new ways of

achieving attention re-targeting and evaluate the results objectively. The exten-

sive user research that is also included in the COTS dataset also provides further

research opportunity in this field.

The lack of inpainting groundtruth in datasets rendered objective evaluation

of such techniques impossible. For this reason, we made sure that the newly de-
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signed and built COTS dataset [10] addresses this gap and we also demonstrated

a concrete method of how inpainting can be objectively evaluated [23] meeting

the third objective of this thesis. While designing this dataset that achieves the

second objective of this thesis, we also wanted to make sure that it addressed, as

much as possible, different needs in the evaluation of a range of computer vision

applications.

8.2 Applications of Saliency Ranking

Saliency-driven ranking provides a number of opportunities that fill the gap in the

emerging trends of computer vision. Since 2012, the computer vision community

witnessed how object detection evolved by making use of CNNs to detect and

classify objects in an image. This brought around a number of refined methods until

the next paradigm shift arrived. This paradigm shift was pixel-level segmentation

and instance segmentation. This meant that objects could now be located, classified

and also segmented at pixel-level for every particular instance of a class.

The current state of the art of instance segmentation therefore returns an output

that provides a detailed breakdown of an image. The use of saliency to rank objects

in a scene appears to be the natural way forward. In this thesis, we demonstrated

how objects in natural images can be ranked according to their level of saliency

and this ushers the way to a number of emerging applications. Below follows a

brief list of such examples:

Image Caption Generation Such techniques make use of information related to

the classes of the objects segmented and other spatial information extracted

from the scene to generate captions. If the extracted objects are ranked ac-

cording to their visual saliency, caption generation can be adapted to use

saliency-driven ranking algorithm. This can, for example, reconfigure cap-

tions depending on the rank of objects in a scene or structure a caption to

give priority to less salient objects depending on the application.
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Product Placement Most product placement research is carried through subjec-

tive information or evaluation. Scenes that contain products can be investi-

gated using the proposed saliency-driven ranking method and the rank can

be used to reconfigure the scene until the desired saliency ranking effect is

achieved. This means that objects can be placed in prominent places or less

prominent ones while having a rapid analysis.

Accessibility Software Read-aloud software that interprets the world for the

blind serves a very important role in society. The main downside of such

software is that it tends to vocally report every detected object that also

results in overwhelming the user. Saliency ranking can be applied to this

scenario to prioritise information related to the most salient objects in front

of the user and provide an ordered manner in which visual information can

be accessed.

8.3 Future Work

The different experiments and their respective results presented in this thesis high-

light the opportunity for a deeper exploration of the following research topics pre-

sented below:

Intra-Object Segmentation This thesis introduced the idea of extracting fur-

ther information from the texture or colour layers being guided by depth

information. This information can be used to enhance image manipulation,

particularly if pattern recognition algorithms are employed to study any vari-

ance between layers. Moreover, this can even enhance image manipulation

techniques such as re-colouring.

Inpainting Both subjective and objective results of this thesis show that there

appears to be a relationship between the size of the object being inpainted

and its quality. On the other hand, there is a RoI size up to which exemplar
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based inpainting performs well. Future research can focus on this problem

and explore this threshold and its direct implication on quality particular

with the novel generative deep learning methods.

Saliency Ranking This thesis demonstrated an efficient way of ranking the saliency

of an image in a similar way to humans. Results show that the proposed

saliency-driven ranking technique can be combined with output of segmenta-

tion models using fixed parameters. Future work can explore learning based

approaches for the tuning of these parameters for improved performance.

Applications of Saliency Ranking Saliency ranking in itself is a novel topic

and research area. It ushers a paradigm shift to the way we look at object

segmentation. Such a paradigm shift brings along a number of research op-

portunities into the application of saliency ranking to different domains or

applications together with a study on its impact.

Attention re-Targeting Evaluation The detailed saliency ranked output can

be used to evaluate the way different algorithms are re-targeting attention

in images. Current approaches [6] rely on subjective evaluation and do not

provide a detailed and reproducible way of comparing results. The technique

presented in this thesis can be precisely used for this purpose.

Enhanced Attention re-Targeting The approach presented in this thesis and

most of the existing techniques depend on the interpretation of pixel values

in saliency maps. Other attention re-targeting techniques use classifiers to

identify objects in an image yet they present a number of limitations. These

two approaches can be combined together by having the unsupervised ranking

of saliency being assisted by the results of an object detection classifier and

therefore improve the semantic quality of the image manipulation result.

COTS Dataset Future iterations of this dataset can potentially include a set

of scenes with a more complex natural background that would increase the
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evaluation possibilities upon it.
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Appendix A. Configuration Results

RAS Set 1 Set 2 Set 3

Threshold
Min
Rank
Value

Max
Rank
Value

Avg
Rank
Value

Min
Rank
Value

Max
Rank
Value

Avg
Rank
Value

Min
Rank
Value

Max
Rank
Value

Avg
Rank
Value

0 23.67% 11.17% 13.53% 17.28% 8.97% 9.30% 19.88% 8.90% 8.55%
10 28.00% 16.52% 18.30% 17.83% 10.15% 10.72% 21.67% 12.18% 11.52%
20 31.83% 24.15% 26.38% 18.17% 14.30% 13.78% 21.83% 13.68% 10.63%
30 33.90% 25.98% 30.92% 20.08% 16.13% 14.50% 22.23% 17.10% 13.73%
40 34.63% 27.20% 30.05% 21.15% 17.73% 16.62% 24.30% 18.00% 13.52%
50 34.75% 28.32% 32.92% 20.85% 18.15% 16.72% 26.05% 22.02% 17.15%
60 36.92% 32.07% 32.18% 21.05% 18.07% 18.03% 27.43% 21.82% 17.15%
70 35.75% 32.22% 32.53% 21.92% 20.68% 21.05% 25.65% 22.60% 22.03%
80 32.92% 31.62% 29.52% 21.78% 20.50% 20.92% 29.57% 26.25% 26.75%
90 39.18% 36.40% 35.65% 20.88% 21.38% 20.15% 28.63% 26.15% 26.35%
95 30.20% 25.82% 25.82% 22.62% 19.25% 20.38% 28.77% 26.73% 27.53%
100 33.40% 29.37% 30.37% 24.67% 22.33% 22.93% 30.03% 28.20% 28.80%

Average 32.93% 26.73% 28.18% 20.69% 17.30% 17.09% 25.50% 20.30% 18.64%
Std Dev 4.15% 7.01% 6.41% 2.11% 4.26% 4.32% 3.48% 6.32% 7.33%

Table A.1: Results of the RAS metric on the three randomly generated sets of
100 images. For each set, the minimum, maximum and average rank values were
computed for a range of threshold values.

SOR Set 1 Set 2 Set 3

Threshold
Min
Rank
Value

Max
Rank
Value

Avg
Rank
Value

Min
Rank
Value

Max
Rank
Value

Avg
Rank
Value

Min
Rank
Value

Max
Rank
Value

Avg
Rank
Value

0 0.677 0.599 0.619 0.653 0.541 0.539 0.729 0.583 0.692
10 0.653 0.584 0.588 0.647 0.540 0.561 0.684 0.669 0.690
20 0.652 0.590 0.594 0.657 0.550 0.547 0.723 0.583 0.702
30 0.663 0.606 0.604 0.672 0.553 0.594 0.699 0.614 0.690
40 0.651 0.609 0.618 0.667 0.577 0.621 0.705 0.606 0.678
50 0.705 0.633 0.676 0.706 0.635 0.658 0.698 0.658 0.689
60 0.727 0.675 0.692 0.732 0.686 0.701 0.704 0.667 0.709
70 0.725 0.693 0.695 0.702 0.700 0.704 0.692 0.707 0.730
80 0.738 0.715 0.721 0.697 0.734 0.708 0.723 0.745 0.750
90 0.740 0.734 0.735 0.679 0.711 0.692 0.733 0.751 0.755
95 0.737 0.745 0.734 0.675 0.716 0.690 0.721 0.719 0.711
100 0.729 0.736 0.728 0.689 0.719 0.693 0.700 0.712 0.733

Average 0.700 0.660 0.667 0.681 0.639 0.642 0.709 0.668 0.711
Std Dev 0.037 0.063 0.058 0.025 0.081 0.066 0.016 0.060 0.026

Table A.2: Results of the SOR metric on the three randomly generated sets of
100 images. For each set, the minimum, maximum and average rank values were
computed for a range of threshold values.
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Appendix A. Configuration Results

MAE
(Binary SM)

Set 1 Set 2 Set 3

Threshold
Min
Rank
Value

Max
Rank
Value

Avg
Rank
Value

Min
Rank
Value

Max
Rank
Value

Avg
Rank
Value

Min
Rank
Value

Max
Rank
Value

Avg
Rank
Value

0 0.145 0.168 0.149 0.142 0.176 0.172 0.159 0.187 0.182
10 0.140 0.159 0.145 0.138 0.165 0.165 0.147 0.169 0.164
20 0.134 0.149 0.131 0.134 0.157 0.156 0.145 0.151 0.152
30 0.131 0.134 0.125 0.125 0.141 0.137 0.145 0.139 0.139
40 0.133 0.139 0.132 0.124 0.133 0.129 0.139 0.139 0.137
50 0.134 0.134 0.127 0.124 0.127 0.126 0.136 0.133 0.137
60 0.130 0.132 0.127 0.120 0.116 0.120 0.138 0.126 0.138
70 0.127 0.131 0.128 0.121 0.114 0.118 0.135 0.126 0.136
80 0.126 0.127 0.127 0.120 0.113 0.119 0.132 0.128 0.133
90 0.125 0.125 0.125 0.118 0.109 0.115 0.133 0.128 0.132
95 0.124 0.122 0.123 0.118 0.108 0.114 0.135 0.132 0.133
100 0.123 0.121 0.121 0.115 0.108 0.111 0.134 0.131 0.132

Average 0.131 0.137 0.130 0.125 0.131 0.132 0.140 0.141 0.143
Std Dev 0.007 0.015 0.009 0.009 0.024 0.021 0.008 0.019 0.015

Table A.3: Results of the MAE (Binary Saliency Map) metric on the three ran-
domly generated sets of 100 images. For each set, the minimum, maximum and
average rank values were computed for a range of threshold values.
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Appendix A. Configuration Results

MAE
(Binary Mask)

Set 1 Set 2 Set 3

Threshold
Min
Rank
Value

Max
Rank
Value

Avg
Rank
Value

Min
Rank
Value

Max
Rank
Value

Avg
Rank
Value

Min
Rank
Value

Max
Rank
Value

Avg
Rank
Value

0 0.141 0.162 0.143 0.137 0.177 0.171 0.164 0.185 0.190
10 0.137 0.154 0.141 0.132 0.163 0.163 0.145 0.163 0.167
20 0.127 0.143 0.125 0.127 0.153 0.152 0.142 0.141 0.154
30 0.126 0.125 0.120 0.117 0.132 0.130 0.142 0.130 0.140
40 0.129 0.132 0.132 0.118 0.124 0.125 0.138 0.135 0.139
50 0.133 0.128 0.126 0.119 0.122 0.123 0.137 0.129 0.140
60 0.134 0.130 0.127 0.115 0.108 0.117 0.139 0.120 0.143
70 0.129 0.132 0.132 0.114 0.109 0.114 0.138 0.123 0.142
80 0.127 0.130 0.130 0.114 0.110 0.116 0.137 0.130 0.140
90 0.126 0.125 0.126 0.113 0.107 0.113 0.138 0.133 0.138
95 0.125 0.124 0.125 0.112 0.107 0.112 0.137 0.137 0.137
100 0.124 0.124 0.124 0.110 0.110 0.110 0.136 0.136 0.136

Average 0.130 0.134 0.129 0.119 0.127 0.129 0.141 0.139 0.147
Std Dev 0.005 0.013 0.007 0.008 0.025 0.021 0.008 0.018 0.016

Table A.4: Results of the MAE (Binary Mask) metric on the three randomly
generated sets of 100 images. For each set, the minimum, maximum and average
rank values were computed for a range of threshold values.

RAS
Threshold Min Rank Value Max Rank Value Average Rank Value
0 20.28% 9.68% 10.46%
10 22.50% 12.95% 13.51%
20 23.94% 17.38% 16.93%
30 25.41% 19.74% 19.72%
40 26.69% 20.98% 20.06%
50 27.22% 22.83% 22.26%
60 28.47% 23.98% 22.46%
70 27.77% 25.17% 25.21%
80 28.09% 26.12% 25.73%
90 29.57% 28.01% 27.38%
95 27.19% 23.74% 24.58%
100 29.37% 26.14% 27.37%

Average 25.99% 20.68% 20.37%
Std Dev 2.94% 5.88% 5.44%

Table A.5: The aggregated average values of Sets 1, 2 and 3 for the RAS metric.
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SOR
Threshold Min Rank Value Max Rank Value Average Rank Value
0 0.687 0.574 0.617
10 0.661 0.598 0.613
20 0.677 0.574 0.614
30 0.678 0.591 0.630
40 0.674 0.597 0.639
50 0.703 0.642 0.674
60 0.721 0.676 0.701
70 0.706 0.700 0.710
80 0.719 0.732 0.726
90 0.717 0.732 0.728
95 0.711 0.727 0.712
100 0.706 0.722 0.718

Average 0.694 0.642 0.665
Std Dev 0.022 0.064 0.048

Table A.6: The aggregated average values of Sets 1, 2 and 3 for the SOR metric.

MAE (Binary Saliency Map)
Threshold Min Rank Value Max Rank Value Average Rank Value
0 0.149 0.177 0.168
10 0.142 0.164 0.158
20 0.138 0.152 0.146
30 0.134 0.138 0.134
40 0.132 0.137 0.133
50 0.131 0.131 0.130
60 0.130 0.125 0.129
70 0.128 0.124 0.128
80 0.126 0.123 0.126
90 0.125 0.120 0.124
95 0.126 0.121 0.123
100 0.124 0.120 0.121

Average 0.133 0.139 0.138
Std Dev 0.007 0.019 0.015

Table A.7: The aggregated average values of Sets 1, 2 and 3 for the MAE (Binary
Saliency Map) metric.
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MAE (Binary Mask)
Threshold Min Rank Value Max Rank Value Average Rank Value
0 0.148 0.175 0.168
10 0.138 0.160 0.157
20 0.132 0.146 0.143
30 0.128 0.129 0.130
40 0.129 0.130 0.132
50 0.130 0.126 0.130
60 0.129 0.119 0.129
70 0.127 0.121 0.129
80 0.126 0.123 0.128
90 0.126 0.122 0.126
95 0.125 0.123 0.125
100 0.123 0.123 0.123

Average 0.131 0.135 0.137
Std Dev 0.007 0.019 0.015

Table A.8: The aggregated average values of Sets 1, 2 and 3 for the MAE (Binary
Mask) metric.
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RAS
Threshold Min Rank Value Max Rank Value Average Rank Value
60 21.83% - -
90 31.96% 21.33% 21.09%

SOR
Threshold Min Rank Value Max Rank Value Average Rank Value
60 0.710 - -
90 0.716 0.715 0.714

MAE (Binary Saliency Map)
Threshold Min Rank Value Max Rank Value Average Rank Value
60 0.121 - -
90 0.119 0.117 0.118

MAE (Binary Mask)
Threshold Min Rank Value Max Rank Value Average Rank Value
60 0.121 - -
90 0.119 0.118 0.119

Table A.9: This table presents the result of the metrics on the entire 2418 images in
the validation set for the 60 and 90 threshold since they were the best performing
thresholds in previous experiments. The results in these tables clearly indicate that
the 90% threshold returns the best result. Moreover, the RAS metric suggests that
the minimum rank value should be used.
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introducing statistical shape knowledge into the mumford-shah functional,”
Journal of Computer Vision, vol. 50, pp. 295–313, 2002.

[77] K. Kolev, T. Brox, and D. Cremers, “Robust variational segmentation of
3d objects from multiple views,” in Pattern Recognition (Proc. DAGM),
vol. 4174 of Lecture Notes in Computer Science, pp. 688–697, Springer, Sept.
2006.

[78] H. Fu, D. Xu, and S. Lin, “Object-based multiple foreground segmentation in
rgbd video,” IEEE Transactions on Image Processing, vol. 26, pp. 1418–1427,
March 2017.

163



References

[79] F. Meng, H. Li, Q. Wu, B. Luo, and K. N. Ngan, “Weakly supervised part
proposal segmentation from multiple images,” IEEE Transactions on Image
Processing, vol. 26, pp. 4019–4031, Aug 2017.

[80] M. Ramanathan, W. Y. Yau, and E. K. Teoh, “Improving human body part
detection using deep learning and motion consistency,” in Proc. of the 2016
14th International Conference on Control, Automation, Robotics and Vision
(ICARCV), pp. 1–5, Nov 2016.

[81] Y. Zhang, Z. Liu, W. Zhou, and Y. Zhang, “Object recognition base on
deep belief network,” in Proc. of the 2015 10th International Conference on
Intelligent Systems and Knowledge Engineering (ISKE), pp. 268–273, Nov
2015.

[82] J. Wang, Z. Zhang, V. Premachandran, and A. L. Yuille, “Discovering in-
ternal representations from object-cnns using population encoding,” ArXiv,
vol. abs/1511.06855, 2015.

[83] S. Z. Li, Markov Random Field Modeling in Image Analysis. Springer Pub-
lishing Company, Incorporated, 3rd ed., 2009.

[84] Q. Dai, J. Qiao, F. Liu, X. Shi, and H. Yang, “A human body part segmen-
tation method based on markov random field,” in Proc. of the 2012 Interna-
tional Conference on Control Engineering and Communication Technology,
pp. 149–152, Dec 2012.

[85] D. S. Hochbaum and V. Singh, “An efficient algorithm for co-segmentation,”
in Proc. of the 2009 IEEE 12th International Conference on Computer Vi-
sion, pp. 269–276, Sept 2009.

[86] C. Rother, T. Minka, A. Blake, and V. Kolmogorov, “Cosegmentation of
image pairs by histogram matching - incorporating a global constraint into
mrfs,” in Proc. of the 2006 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition - Volume 1, CVPR ’06, (Washington, DC,
USA), pp. 993–1000, IEEE Computer Society, 2006.

[87] J. Jiao, Y. Wei, Z. Jie, H. Shi, R. W. Lau, and T. S. Huang, “Geometry-
aware distillation for indoor semantic segmentation,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2019.

[88] T. He, C. Shen, Z. Tian, D. Gong, C. Sun, and Y. Yan, “Knowledge adapta-
tion for efficient semantic segmentation,” in Proc. of the 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June
2019.

164



References

[89] T. Yen, H. Hsu, P. Pati, M. Gabrani, A. Foncubierta-Rodŕıguez, and
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