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Abstract
The host immune response is characterized by a complex interplay of signal-specific cellular tran-

scriptional responses. The magnitude of the immune response is dependent on the strength of

the external stimulus. Knowledge on leukocyte transcriptional responses altered in response to

different stimulus dosages in man is lacking. Here, we sought to identify leukocyte transcrip-

tional signatures dependent on LPS dose in humans. Healthy human volunteers were adminis-

tered 1 ng/kg (n = 7), 2 ng/kg (n = 6), or 4 ng/kg (n = 7) LPS intravenously. Blood was collected

before (pre-LPS) and 4 h after LPS administration. Total RNA was analyzed by microarrays and

generalized linear models. Pathway analysis was performed by using Ingenuity pathway anal-

ysis. Leukocyte transcriptomes altered per LPS dosage were predominantly shared, with 47%

common signatures relative to pre-LPS. A univariate linear model identified a set of 3736 genes

that exhibited a dependency on differing LPS dosages. Neutrophil, monocyte, and lymphocyte

counts explained 38.9% of the variance in the LPS dose-dependent gene set. A multivariate lin-

ear model including leukocyte composition delineated a set of 295 genes with a dependency on

LPS dose. Evaluation of the 295 gene signature in patients with sepsis due to abdominal infec-

tions showed significant correlations. Promoter regions of the LPS dose gene set were enriched

for YY1, EGR1, ELK1, GABPA, KLF4, and REL transcription factor binding sites. Intravenous injec-

tion of 1, 2, or 4 ng/kg LPSwas accompanied by both shared and distinct leukocyte transcriptional

alterations. These datamay assist in assessing the severity of the insult in patientswith abdominal

sepsis.

K EYWORDS

immune response, blood, genomics

1 INTRODUCTION

The host immune response is characterized by dynamic signal-specific

transcriptional responses that convey specific biologic functions. The

magnitude of the immune response is dependent on the strength of

Abbreviations: MDS, multidimensional scaling; PCA, principal component analysis; RIN, RNA integrity number.
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the external stimulus. LPS (endotoxin) is part of the outer membrane

of Gram-negative bacteria and a potent activator of immune cells.1,2

LPS induces a robust inflammatory response after its recognition by

the myeloid differentiation protein (MD)2, TLR4, and cluster of differ-

entiation (CD)14 macromolecular complex.3 High doses of LPS have

J Leukoc Biol. 2019;106:1153–1160. www.jleukbio.org 1153

https://orcid.org/0000-0002-0520-0816
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2FJLB.4A0219-050R&domain=pdf&date_stamp=2019-07-07


1154 KHAN ET AL.

been shown to cause septic shock,4,5 whereas low doses of circulat-

ing LPS may contribute to the development of chronic diseases with

nonresolving inflammation.6–8 Systems-based analyses of the cellular

mechanisms that control the dose–response to LPS in vivo are lacking.

The leukocyte genomic responses that ensue in the human

endotoxemia model typically recapitulate a proportion of the leuko-

cyte genomic response in sepsis and septic shock.5 This in vivo

model of acute systemic inflammation in a controlled clinical set-

ting is initiated by intravenous administration of a specific dose of

Escherichia coli-derived LPS in healthy subjects.6–9 LPS doses at or

below 4 ng/kg represent standard low doses known to elicit acute

systemic inflammation.7,10 In the context of severe infection leading

to organ failure (sepsis and septic shock), median levels of systemic

LPS levels in patients were estimated at 20 ng/kg.11 LPS induces

substantial alterations to leukocyte cell composition as well as gene

transcription.8,9,12,13 In the early phase of human endotoxemia,

monocytes and lymphocytes typically diminish in numbers, whereas

neutrophil counts increase dramatically. Moreover, LPS induces exten-

sive shifts in leukocyte gene transcription, with genes involved in pro-,

anti-inflammatory, pattern recognition, T cell activation signaling, and

metabolic pathways typically altered.8,9,13 The effect of different LPS

dosages on the cellular and transcriptional alterations that ensue in

the setting of human endotoxemia is underexplored.

In this study, we evaluated the leukocyte transcriptomes of healthy

subjects in human endotoxemia to identify transcriptional signatures

and pertaining biologic pathways that showadependency on LPSdose.

Both univariate and multivariate models for incorporating leukocyte

cell composition were tested. Furthermore, we predict the existence

of key transcription factors that may orchestrate the dose-dependent

leukocyte response that could, in turn, impart differential program-

ming of innate leukocytes.

2 METHODS

2.1 Human endotoxemiamodel andmicroarrays

Caucasian male volunteers were given a single bolus of 1 ng/kg (n= 7),

2 ng/kg (n = 6), or 4 ng/kg (n = 7) E. coli LPS (US standard reference

endotoxin, kindly provided by Anthony Suffredini, National Institute

of Health, Bethesda, MD) and monitored for the duration of 24 h

(Supplemental Table 1). Blood was collected before (n = 20) and 4 h

after LPS administration in PAXgene blood tubes (Qiagen, Venlo, the

Netherlands). Total RNA was isolated by means of the PAXgene blood

RNA isolation kit (Qiagen) according to the manufacturer’s instruc-

tions. Total RNA (RNA integrity number (RIN) > 6.0) was processed

and hybridized tomicroarray chips according to Affymetrix or Illumina

specifications. The1ng/kg (accession:GSE36177)9 and4ng/kg (acces-

sion:GSE48119)14 sampleswerehybridized to the IlluminaHumanHT-

12 V3.0 expression beadchip. The 2 ng/kg LPS samples (accession:

GSE108685)13 were hybridized to Affymetrix human genome U219

96-array chips. Written informed consent was obtained from all sub-

jects. All studies, data, and ethical statements were collected and han-

dled in accordancewith institutional guidelines and ethics committees.

2.2 Sepsis patients andmicroarrays

Publicly available microarray data from the Molecular diAgnosis

and Risk stratification in Sepsis (MARS) project were included

(GSE65682).15–19 Specifically, critically ill patients diagnosed with

abdominal sepsis having blood culture-proven E.coli infection (n = 33)

were selected.16 Bloodwas collected in PAXgene blood tubes (Becton-

Dickinson, Breda, The Netherlands) on ICU admission. After providing

written informed consent, PAXgene blood was also obtained from 42

healthy controls (age range, 30–63 years; 24males, 18 females).

2.3 Microarray data analysis

and pathway enrichment

Microarray datasets from the 3 different platforms were combined

for analysis by firstly remapping the oligonucleotide probe sequences

using Bowtie220 to the current Genome Reference Consortium

Human genome Build 38 patch release 7 (GRCh38.p7) available via

GenCode.21 A total of 597,320 probe sequences were processed

with 498,476 sequences (83.45%) aligning exactly one time to the

reference genome (perfect match). Perfect match sequences were

annotated by means of Biomart22 specifying GRCh38.p7 as genome

build. Sequences were subsequently annotated by “biotype.” We

selected “protein coding” biotypes for further analysis, which equated

to 57,160 sequences, and further annotated by Ensembl transcript

names. The 3 microarray datasets were subsequently merged by tran-

script name. Data were background corrected, quantile normalized,

summarized by median polish, and log2-transformed by means of

the robust multiaverage Affy method.23 Normalized data were then

adjusted for nonexperimental chip effects using the empirical Bayesian

method combat.24 Transcripts were collapsed to unique genes by cal-

culating the mean expression of transcripts from the same gene locus,

which resulted in 12,976 gene expression values. Data were inspected

before and after normalization by means of principal component

analysis (PCA) and multidimensional scaling (MDS).25,26 To determine

overrepresented transcription factor (TF) binding sites, single site

analysis was performed using oPOSSUM.27 The promoter regions

were analyzed searching 2000 base pairs up- and down-stream of the

transcription start sites of genes grouped as high or low expression

relative to pre-LPS. TF binding site enrichment was demarcated

using a Fisher score threshold (mean + 1*standard deviation). The

significantly enriched TF was explored in publicly available ENCODE

TF ChIP-Seq data.28,29 Pathway analysis was performed by means

of Ingenuity Pathway Analysis (Qiagen) specifying Ingenuity knowl-

edgebase as reference set and human species. All other parameters

were default.

2.4 Statistics

Microarray data were analyzed by moderated t statistics and f statis-

tics implemented in the limma package.30 Probabilities were adjusted

for multiple comparisons by Benjamini–Hochberg’s method.31 Effect

size was estimated by means of Cohen’s D method.32 Correlations
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F IGURE 1 Genome-wide analysis of shared and distinct leukocyte responses across LPS doses relative to baseline. (A) Multidimensional
scaling (MDS) plot of all genes across LPS doses (post-LPS samples (T = 4 h)) relative to pre-LPS (T = 0 h). (B) Volcano plot (integrating log2 fold
changes and multiple comparison adjusted P values) representing the transcriptional changes that occur at 1, 2, and 4 ng LPS (T = 4) compared
with pre-LPS (T = 0). Numbers in top left and right corners indicate number of genes with significantly differential expression, up-regulated (red)
or down-regulated (blue). Horizontal line represents themultiple-test adjusted significance threshold (P< 0.01) and vertical line represents the log
fold change (FC = ±0.58). Gray dots show the genes that were not significantly overexpressed or under expressed according to this threshold. (C)
Venn–Euler representation of differentially expressed genes in 1, 2, and 4 ng post-LPS versus pre-LPS. Red arrows denote overexpressed genes;
blue arrows denote under expressed genes and the numbers show the common genes among different dosages. (D) Dot plot depicting the corre-
lation (rho, Spearman correlation coefficient) between the common responses between 1 ng versus 2 ng, 1 ng versus 4 ng, and 2ngversus 4 ng.
(E) Ingenuity pathway analysis of the common response gene expression signatures in all the doses relative to baseline. Red bars, overexpressed
pathways; blue bars, under expressed pathways

were calculated using the Spearman’s rho. Differences inWBC counts

between pre- and post-LPS samples were analyzed using Kruskal-

Wallis test and Wilcoxon’s rank sum test. The proportion of variance

in gene expression explained by WBC counts and differentials was

calculated using linear models implemented in the variancePartition

method.33 We present data in the form of volcano plots, heatmap

plots, violin plots, hierarchical clustering trees, bar plots, and box plots.

Statistical analysis was performed in the R statistical environment

(version 3.5.1RFoundation for Statistical Computing, Vienna, Austria).

3 RESULTS AND DISCUSSION

3.1 Shared and distinct leukocyte transcriptional

responses to varying LPS doses

MDS of all genes (n = 12,976) across LPS doses revealed clear par-

titioning between pre-LPS (T = 0 h) and post-LPS samples (T = 4 h)

(Fig. 1A). Of note, pre-LPS samples clustered as 1 group, indicating

optimal adjustment for nonexperimental chip effects. Furthermore,

clustering between LPS doses was observed (Fig. 1A). Analysis of gene
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F IGURE 2 LPS dose-dependent leukocyte response. (A) Heatmap plot of the top significant genes (ranked by Cohen’s D effect size estimate)
representing the transcriptional profile of the responses to LPS doses. Columns depict samples; rows depict gene expression indices. Red denotes
overexpression; blue denotes under expression. (B) Ingenuity pathway analysis of genes that showed increased expression (red) and decreased
expression (blue) in response to higher doses of LPS. –log (BH)P= negative log10-transformed BH-adjusted Fisher exact P value

expression in 1, 2, or 4 ng/kg LPS administered samples (T = 4 h) rel-

ative to baseline (pre-LPS, T = 0 h) uncovered 3007, 2382, and 3452

significantly altered genes (BH adjusted P value< 0.01 and fold change

cutoffs > 1.5 or ← 1.5), respectively (Fig. 1B). A proportion of gene

expression indices were similarly altered across the 3 doses of LPS,

with 2422 (47.2%) common genes and strong correlations observed

between fold changes of the 3 LPS doses (Fig. 1C and D). This analysis

also identified 970, 777, and 967 genes distinct to the 1, 2, or 4 ng/kg

LPS dose–response, respectively (Fig. 1C). Pathway analysis of the

genes encompassing the common transcriptional response revealed

high expression genes associated with typical proinflammatory signal-

ing pathways, which included IL-6 and IL-10 signaling, as well as NF-𝜅B

signaling, death receptor signaling, and TLR signaling (Fig. 1E). Genes

with reduced expression associated with a variety of lymphocyte sig-

naling pathways, such as CD28 signaling in T-helper cells, T cell recep-

tor signaling, as well as protein translation and metabolic pathways

that included eukaryotic translation initiation factor 2 (EIF2) signaling,

mitochondrial dysfunction, andmechanistic target of rapamycin kinase

(mTOR) signaling (Fig. 1E).

3.2 Leukocyte transcriptional signatures dependent

on LPS dose

In order to identify a gene expression signature that is dependent

on LPS dose, we compared the leukocyte transcriptomes of the 1,

2, and 4 LPS doses using f statistics (ANOVA). We identified a set of

3114 genes significantly altered (BH adjusted P value< 0.01) between

LPS doses. Figure 2A depicts the top significant genes ranked by

means of Cohen’s D effect size estimate. Genes showing increased

expression in response to different LPS doses included antimicrobial

molecules, for example, S100 calcium binding protein A8 (S100A8)

and A9 (S100A9), members of the major histocompatibility complex,

for example, HLA-E, and initial triggers of complement activation, for

example, ficolin 1 (FCN1). The majority of genes with reduced expres-

sion across LPS doses encoded for ribosomal proteins and/or their

subunits, for example, ribosomal protein L30 (RPL30), L18 (RPL18),

and L12 (RPL12), as well as glycolysis and mitochondrial enzymes, for

example, enolase 1 (ENO1) and ATP synthase F1 subunit beta (ATP5B)

(Fig. 2A). Pathway analysis of 1845 genes showing increased expres-

sion indices in response to higher doses of LPS associated with various

canonical signaling pathways that included death receptor signaling,

triggering receptor expressed on myeloid cells 1 (TREM1) signaling,

protein ubiquitination, NF-KB signaling, and IL-6 signaling (Fig. 2B

and Supplementary Fig. 1A). Genes that showed decreased expression

patterns in response to higher LPS doses (n = 1269) associated with

metabolic pathways, for example, oxidative phosphorylation, mTOR

signaling, and mitochondrial dysfunction, and lymphocyte signaling

pathways including calcium-induced T lymphocyte apoptosis, T cell

receptor signaling, and CD28 signaling in T helper cells (Fig. 2B and

Supplementary Fig. 1B). In concordance with previous studies,8,9 upon



KHAN ET AL. 1157

LPS injection, a substantial alteration in protein translation, modi-

fication, and mitochondrial related processes, including cell death,

protein ubiquitination, EIF2 signaling, oxidative phosphorylation, and

mitochondrial dysfunction pathways was observed. Moreover, the

data of this project suggest that these pathways may be quantitatively

dependent on the dose of LPS. Dysfunction inmitochondrial processes

has been implicated in the severity and outcome of sepsis, represent-

ing an important underlying factor in the pathobiology of immune

paralysis in sepsis patients.17

3.3 Leukocyte transcriptomes, cell composition,

and LPS dose

Human endotoxemia is typically accompanied by substantial alter-

ations to leukocyte cell composition.9,13 Here, we sought to under-

stand the contribution of leukocyte cell composition on the LPS

dose-dependent transcriptional response. LPS induced a substantial

increase in total WBC counts, which was mainly due to high counts of

neutrophils concomitant with diminished monocyte and lymphocyte

counts (Fig. 3A and Supplementary Table 2). Lymphocyte and mono-

cyte counts also showed significant reductions dependent on LPS dose

(Fig. 3A). Next, we fit a linear model for each individual gene incor-

porating neutrophil, monocyte, and lymphocyte counts to estimate

the proportion of explainable variance at gene-level resolution. Vari-

ation in neutrophil, monocyte, and lymphocyte counts cumulatively

explained 38.9% of variance in gene expression (Fig. 3B). Lympho-

cyte counts explained the highest proportion of gene expression vari-

ation with a median of 18.59% (95% CI: 6.42%–39.45%), followed by

monocyte countswith12.83% (95%CI: 2.16%–34.29%) andneutrophil

counts having 7.45% (95% CI: 2.03%–19.31%) (Fig. 3B). Residual vari-

ance equated to 36.03% (95% CI: 21.8%–60.43%). Fitting a multivari-

ate linear model including leukocyte gene expression (1, 2, and 4 ng/kg

LPS doses), neutrophil, monocyte, lymphocyte counts, as well as non-

experimental batch uncovered a gene set of 295 significantly altered

genes (BH adjusted P value < 0.01; Fig. 3C). Catering for gene anno-

tations alone does not in itself solve the inevitable problem of batch

effects in high dimensional data. For this reason, we chose to not only

adjust for batch effects due to microarray platform (Affymetrix or Illu-

mina) but also including batch in a multivariate linear model. In so

doing, we properly addressed nonexperimental batch effects in the

microarray data. The batch adjustment in our data preprocessing steps

was accomplished by using the empirical Bayesian method for factor

correction, combat.24

Pathway analysis of the 149 genes with elevated expression in

response to higher LPS doses uncovered a significant association to

pro-, anti-inflammatory pathways, including NF-kB signaling, IL-6,

IL-10 signaling, as well as TLR signaling, death receptor, and apoptosis

signaling (Fig. 3D). The 146 genes with reduced expression associated

with predominantly lymphocyte signaling pathways that included

T cell receptor signaling, CD28 signaling in T helper (Th) cells, Th1

and Th2 activation pathways (Fig. 3D). Our findings suggest that a

proportion of these processes, notably translation initiation via the

EIF2 signaling genes and cell death (death receptor signaling), may

be under quantitative control of TLR4 signaling. The EIF2 signaling

pathway is understood to represent a type of cellular stress response

pathway that reduces general protein synthesis in times of stress.34

Furthermore, this pathway has been shown to influence the release of

proinflammatory cytokines.34 The death receptor family, which is part

of the TNF receptor superfamily can be triggered by death ligands to

result in apoptotic or survival signals.35

Next, we evaluated enrichment of TFs in promoter regions of the

295 significantly altered genes, split as either high expression (n= 146

genes) or low expression (n= 149 genes) relative to pre-LPS. This anal-

ysis revealed SOX9, SOX17, NF-𝜅B, EGR1, and CEBPA were enriched

in high expression genes (Fig. 3E), whereas ELF5, YY1, Gata1, and SPI1

were highly enriched TFs in the low expression genes (Fig. 3F). Fig-

ure 3G illustrates CHIP peaks for EGR1 and YY1 TFs in top ranked

(Cohen’s D > = 0.5) genes RALB (high expression) and ERP29 (low

expression). A comprehensive list of CHIP-seq data showing enrich-

ment of TFs is provided in Supplementary Table 3.

3.4 LPS dose dependent gene signature and sepsis

In order to provide relevance of our data to critical illness due to

sepsis, we evaluated leukocyte transcriptomes of patients with

abdominal sepsis having blood culture positive E. coli infections. First,

we compared sepsis patients to healthy controls and, second, we used

the resultant gene expression fold changes to test the correlation to

LPS dose-dependent signature. Considering multiple test corrected

probabilities (adjusted P< 0.01), we found 4228 significantly different

gene expression profiles between sepsis patients and healthy subjects

(Fig. 4A). Comparing the fold expression of the 295 gene set across the

3 LPS dose–responses (as compared to pre-LPS) to fold expression in

sepsis patients (relative to healthy subjects) revealed significant cor-

relations (Fig. 4B). PCA of the 295 gene set revealed distinct clusters

of sepsis patients and healthy subjects with explainable variance of

54% and 11.8% (Fig. 4C). Unsupervised hierarchical clustering also

showed heterogeneity across sepsis patients (Fig. 4D). This raises

the intriguing possibility that the LPS dose–response gene set may

be useful in classifying sepsis patients according to bacterial burden

and/or differences in systemic LPS concentrations. Further tests to

identify robust clusters of sepsis patients on the basis of the LPS

dose–response gene set and their relation to microbiologic data

are warranted.

3.5 Study limitations

Our study has strengths and limitations. We provide a benchmark to

identify quantitative transcriptional signatures in response to higher

doses of LPS in human endotoxemia. Our analysis was restricted to

only male volunteers. This is primarily adopted so as to minimize the

variability due to menstrual cycles in the model. We only studied one

time point after LPS injection; we and others previously showed that

while LPS-induced gene expression is time dependent in this human

model, the 4-h time point encompasses most of the differentially

expressed genes.8,13 The complexity of whole blood, encompassing
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F IGURE 3 Leukocyte transcriptomics, cell composition, and LPS dose-dependent response. (A) Total WBCs, neutrophils, lymphocytes, and
monocytes significant differences between the baseline and post-LPS groups: *P < 0.05, **P < 0.01, ***P < 0.001, and ns (not significant). (B) The
proportion of explainable variance at gene level. (C) Heatmap plot of the highly and lowly expressed genes from the 295 genes signature (ranked by
Cohen’s D effect size estimate) identified in a multivariate linear model that accounted for neutrophil, monocyte, lymphocyte counts, and nonex-
perimental batch. (D) Bar graphs showing significantly enriched ingenuity canonical signaling pathways considering overexpressed genes (red bars)
or underexpressed genes (blue bars) (E). Single-site analysis with oPOSSUM, using high expressed genes, revealing the overrepresented transcrip-
tion factor bindingmotifs. The dotted line is the Fisher score threshold (mean+1*standard deviation). (F) Single-site analysiswith oPOSSUM, using
low expressed genes, revealing the overrepresented transcription factor binding motifs. (G) A genome browser snapshot showing CHIP-peaks for
EGR1 and YY1 transcription factors in RALB and ERP29 genes
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F IGURE 4 Comparison of LPS dose-dependent signature genes to sepsis due to abdominal Escherichia coli infections. (A) Volcano plot
depicting the differences in gene expression of sepsis patients relative to healthy subjects. Horizontal line represents the multiple-test adjusted
significance threshold (P < 0.01) and vertical line represents the log fold change (FC = ±0.58). (B) Dot plot depicting the correlation (rho, Spear-
man correlation coefficient) comparing the 295 gene set in 1, 2, and 4 ng/kg LPS dosages to sepsis patients relative to health. (C) Principal com-
ponent analysis (PCA) of the 295 gene LPS dose–response signature in sepsis patients and healthy subjects. (D) Unsupervised heatmap plot
of the 295 gene signature in sepsis patients. Columns depict samples; rows depict gene expression indices. Red denotes overexpression; blue
denotes underexpression

various cell types, precludes the identification of cell-specific factors

in response to incremental doses of LPS.

4 CONCLUSIONS

We identified shared and distinct transcriptional signatures and per-

taining cellular biologic pathways that responded quantitatively to dif-

ferent LPS doses. Genes involved in NF-kB signaling, IL-6, IL-10 signal-

ing, TLR signaling, death receptor signaling, as well as T cell receptor

signaling, Th1 and Th2 activation pathways represented major canon-

ical signaling pathways influenced by LPS dose. Evaluation of the LPS

dose–response signature in sepsis patients and the relation to bacte-

rial burden is warranted.
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