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Genetic signature related to heme-hemoglobin metabolism
pathway 1n sepsis secondary to pneumonia
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Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated inflammatory response to pathogens.
Bioinformatics and transcriptomics studies contribute to get a better understanding of the pathogenesis of sepsis. These studies
revealed differentially expressed genes (DEGs) in sepsis involved in several pathways. Here we investigated the gene expression
profiles of blood leukocytes using three microarray datasets of sepsis secondary to pneumonia, focusing on the heme/hemoglobin
metabolism pathway. We demonstrate that the heme/hemoglobin metabolism pathway was found to be enriched in these three
cohorts with four common genes (ALAS2, AHSP, HBD, and CAT). Several studies show that these four genes are involved in the
cytoprotection of non-erythrocyte cells in response to different stress conditions. The upregulation of heme/hemoglobin
metabolism in sepsis might be a protective response of white cells to the hostile environment present in septic patients (follow-up

samples).
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INTRODUCTION

Sepsis is one of the most common causes of death in hospitalized
patients and has an increasing burden as a result of population
ageing and associated comorbidities.'” Sepsis has been defined
as a life-threatening organ dysfunction caused by a dysregulated
and uncontained host inflammatory response to pathogenic
agents.® Epidemiological studies have shown an increase in the
global sepsis incidence, representing a severe health burden due
to morbidity, mortality, and the high cost of septic and post-septic
patients care.*®

Sepsis results from complex interactions between the human
host response and infecting microorganisms in which host
mechanisms are involved in the pathophysiology of the syndrome
and play a crucial role in their clinical manifestations.®” In recent
years, transcriptomics profile and bioinformatics techniques have
been used to provide a comprehensive understanding of the
pathophysiology of sepsis.®™'° These studies revealed differentially
expressed genes (DEGs) involved in cytokine signaling pathways,
antigen presentation, the mitochondrial respiratory chain pathway
and heme/hemoglobin metabolism pathway.

The role of heme as part of extracellular hemoglobin was
described in sepsis, infections and in critically ill patients, mainly as
a pro-inflammatory signaling molecule with binding specificity to
Toll-like receptor 4 (TLR4).'"'? Besides the role of hemoglobin as
the major oxygen carrier, several other functions have been
characterized, including modulation of redox functions and
interactions with gaseous transmitters such as nitric oxide and
hydrogen sulfide.” Thus, its presence has been shown in several
other non-erythroid cells in stress conditions.'>'* Nevertheless,
gene expression related to the heme/hemoglobin metabolism
pathway and its relation with white cells is poorly characterized in

sepsis. In fact, in patients with respiratory symptoms suspected of
having community-acquired pneumonia (CAP), heme biosynthesis
was among the main pathways corresponding to upregulated
genes that were present in CAP-patients and not in non-CAP
(without any other infection) patients.'”

In the present study, to avoid heterogeneity of multiple primary
sources of sepsis, we investigated the gene expression profiles of
sepsis patients caused by CAP and/or hospital-acquired pneumo-
nia (HAP), focusing in heme/hemoglobin metabolism in white cells.

RESULTS
Initial screening using gene co-expression network (GCN)
As an initial screening of the data, a GCN was built using the S1
dataset, which is composed of 20 samples of peripheral blood
mononuclear cells (PBMCs) from CAP patients. For analysis of
DEGs, the S1 dataset has been divided into four groups, according
to patients’ outcome (10 survivors and 10 non-survivors samples)
and each sample collection day (DO and D7) (Table 1 and
Supplementary Material 1 pp. 1). Based on the DEGs list of the S1
dataset (Table 2), four GCN were constructed. In each network,
modules were generated and analyzed. Modules analysis in GCN is
used to group genes with similar expression patterns, generating
clusters of genes in which they often share the same biological
processes (BP).'®

In admission samples of surviving patients (DOS), the co-
expression network is composed of 240 nodes and 1592 edges
(Fig. 1a). After analysis with MCODE'” we found two modules, the
first one being enriched for the BP related to “cellular iron
homeostasis” and the other to “inflammatory response” (Fig. 1b).
The GCN of admission samples of non-surviving patients (DONS) is
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Table 1. Information about the datasets®

Access Patients/controls Samples Platforms References
GSE48080 (S1) 10 patients and 3 controls PBMCs” Agilent-014850 Severino, et al.*®
E-MTAB-5273 (52) 38 patients and 10 controls Leukocytes Illumina HumanHT-12 v4 Burnham, et al.’®
GSE65682 (S3) 181 patients and 42 controls Whole blood Affymetrix U219 Array Scicluna, et al.’

“More information on datasets can be seen in Supplementary Information 1
PPBMCs Peripheral blood mononuclear cells

Table 2. DEGs and molecular signature related to heme metabolism
in S1 dataset
Group D0S DONS D7S D7NS
N° DEGs 255 193 187 114
A 1121 and 1137 and 199 and |88 171 and |43
1134 156
FDR 2.11E-07 NE® 9.96E—14 1.84E—03
Enrichment 3rd of 25 NE? 1st of 12 3rd of 13
position
N° Genes 1 1 15 5
t AHSP tH1FO tAHSP t ALAS2
t ALAS2 TALAS2 t EPB42
t CA1 tCAT t HBD
t EPB42 +EPB42 t SELENBP1
T GYPA t FAM46C T SLC4A1
t+ HBD T GYPA
t RBM5 t HBD
t RHCE t RAP1GAP
t SELENBP1 t RHCE
t SLC25A37 t SELENBP1
T SLC4AT1 t SLC25A37
t SLC4A1
t SLC6A8
t SPTA1
t TNST
DO0S = Day 0 surviving group, DONS = Day 0 Non-surviving group, D7S =
Day 7 surviving group and D7NS=Day 7 Non-surviving group; 1
Upregulated genes, and | downregulated genes
°NE not enriched (the pathway was not found within the established
parameters due to the small amount of genes related to it in this group)

represented by 186 nodes and 1940 interactions between them
(Fig. 1¢). In this network two modules were found, one related to
the “inflammatory response” and the other to “response to
wounding” (Fig. 1d).

In order to analyze sepsis progression, samples were collected
seven days after diagnosis (D7S and D7NS). The D7S network
consists of 174 nodes and 866 interactions (Fig. 2a). For this
network, only one enriched module was found, related to
“hemoglobin metabolic process” (Fig. 2b), which included genes
common with those found in the DOS module, such as ALAS2,
AHSP e HBD. Finally, the D7NS network presents 101 nodes and
415 interactions (Fig. 2c), the resulting module was enriched for
the BP “immune response” (Fig. 2d).

Molecular signature related to heme metabolism
The initial screening strengthened that heme/hemoglobin bio-
synthesis is modulated in sepsis and gave us insight in its possible
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effect on cytoprotection, since the modules related to “cellular
iron homeostasis” and “hemoglobin metabolic process” are
directly related to this biosynthesis pathway and were only found
in surviving networks in S1 dataset. Therefore, subsequent
analyses were performed using three datasets of sepsis secondary
to pneumonia (S1, S2, and S3) (Supplementary Material 1, pp. 1-3).
Full list of DEGs and molecular signatures for S1, S2, and S3 are
shown in Supplementary Materials 2, 3, and 4, respectively.

In S1 dataset, 25 signatures were found in the DOS group, with
the molecular signature related to heme metabolism being the
3rd most enriched, encompassing 11 genes. For the DONS group,
the heme-related signature was not found. For D7S, 12 signatures
were found, the one related to heme being the most enriched
with a total of 15 genes. For D7NS, 13 different signatures were
found, the one related to heme metabolism was the 3rd more
enriched with 5 genes (Table 2).

Thus, signatures of patient groups in the surviving groups (D0S
and D7S) showed more genes related to the heme metabolism
pathway than the groups of patients who did not survive (DONS
and D7NS).

The S2 dataset was divided into six groups according to day of
sample collection (1, 3 and 5) and outcome (S and NS)
(Supplementary Material 1, pp. 2). For the D1S and D1NS groups,
19 and 22 signatures were found, respectively, but the heme
related signature was not found in any of them (Table 3). D3S
group did present the signature related to heme metabolism,
which was the 7th most enriched among 18 signatures found. For
the D3NS group, the signature related to heme metabolism was
not found among the 21 enriched signatures. An increase in the
number of genes and in the signature position was observed in
D5S group, in which the heme metabolism signature consisted of
10 genes and was the 2nd among 18 different signatures. For the
D5NS group, 16 enriched signatures were found, but the one
related to heme was not present.

The S2 dataset follows a similar pattern to that observed in S1,
with a higher number of genes and enrichment for the heme-
related signature in the groups of patients who survived.

The S3 dataset was divided into two groups for analysis, one
surviving group (SV) and one non-surviving group (NSV)
(Supplementary Material 1 pp. 3). For the SV group, 40 enriched
molecular signatures were found, the one related to heme
metabolism being the 8th most enriched signature with 16 genes.
For NSV group, 48 molecular signatures were found and the
signature related to heme metabolism was the 10th most
enriched with 19 genes (Table 4).

Identification of DEGs common among signatures
The DEGs that were found involved in the molecular signature
related to heme metabolism in the different groups and in
different datasets were overlapped using Venny 2.1 (Fig. 3a).
Through this analysis it was possible to find four common DEGs
in the three datasets: ALAS2 (5'-aminolevulinate synthase 2), AHSP
(alpha hemoglobin stabilizing protein), HBD (hemoglobin subunit
delta) and CAT (carbonic anhydrase 1) (Fig. 3b).
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Fig. 1 Representative co-expression networks of groups of patients on day 0 in S1 dataset. a GCN with DEGs of the DOS group. b Modules of

the DOS group. ¢ GCN with DEGs of the DONS group. d Modules of the DONS group. Red nodes represent the upregulated DEGs while green
nodes represent the downregulated DEGs. The edge between them represents the probability of co-expression. BP biological process

Differential expression of the four common genes

The expression of the four DEGs was analyzed in each dataset. In
S1 dataset, the ALAS2 and HBD showed a similar pattern of
expression with an increase in expression in the DOS, D7S and
D7NS groups. The AHSP and CAT genes exhibited increased
expression only in surviving groups (Fig. 4). Overall, in ST dataset
the genes expression was more pronounced in surviving than in
non-surviving groups.

The gene expression results for the four common DEGs in S2
were similar to those found in the S1 dataset. ALAS2 expression
value was increased in all surviving groups; and only in day one in
the non-surviving group. The AHSP and HBD genes showed an
increase in gene expression in D3S and D5S. The CAT gene was

Published in partnership with the Systems Biology Institute

upregulated in all surviving groups. In S2, surviving septic patients
showed a notable increase in the expression of these genes,
substantially on days 3 and 5 (Fig. 4).

When analyzing the S3 dataset, we gained an increase in the
number of patient samples, but we lost information regarding
follow-up, since this dataset only contains samples collected in the
first 24 h of admission to Intensive Care Units (ICUs). The S3
dataset exhibited a similar increase of expression for the four
selected genes, all with a statistically significant FDR, regardless of
the patientes’ outcome (Fig. 4).

When we directly analyzed surviving groups versus the non-
surviving groups, in each dataset, this trend was not maintained.
In the S1 dataset, the four common genes showed a statistically
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significant difference expression between surviving group versus
the non-surviving group, except for ALAS2 in D7, more
pronounced in DOS versus DONS. No changes were observed
between survivors versus non-survivors in S2 and S3 (Supplemen-
tary Material 1 pp. 6). Lack of differences in direct comparison
might reflect the fact that these genes were in general
upregulated in both groups, with increased magnitude in
survivors relative to non-survivors, as has been previously
reported by Xiao and coworkers in the transcriptome of
complicated versus uncomplicated trauma patients.'®

Gene co-expression profile analysis of the four common genes
(GCEPA)

In order to support the gene expression modulation of the four
common genes in white blood cells we performed a GCEPA using
the Immuno-Navigator database which consists of a large
collection of cell type-specific gene expression and co-
expression data for cells of the immune system.'” The results
obtained using human samples from this database showed a
direct and statistically significant relationship (p-value < 0.001)
between the expression of ALAS2, AHSP, CA1, and HBD in PBMC
and neutrophil samples (Fig. 5). In general, PBMC had higher
correlation values than the neutrophil samples, what can be
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explained, at least in part, by the number of samples (PBMC =
1120 and neutrophil =228). The highest correlation value was
observed between the ALAS2 and HBD genes, both for PBMC (r =
0.75) and neutrophil samples (r = 0.66).

DISCUSSION

In our screening using GCN in the S1 dataset, we found the
module enriched for the biological process of “cellular iron
homeostasis” in DOS network, with the presence of genes directly
related to the heme/hemoglobin metabolism, such as ALAS2,
AHSP, HBD, and CA1. Similar biological process—"hemoglobin
metabolic process”"—was found in follow-up samples (D7S),
containing three genes in common with those of the DOS module
in addition to genes encoding for different globin chains of
hemoglobin such as HBAT, HBA2 e HBG1. No module related to the
heme/hemoglobin was found in the network of the non-surviving
groups.

Notably, a module similar to this was found in a network
constructed from upregulated genes in human neonatal con-
genital cytomegalovirus infection, supporting modulation of these
genes in infections.?°

Published in partnership with the Systems Biology Institute
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Table 3. DEGs and molecular signature related to heme metabolism in S2 dataset
Group D1S D1NS D3S D3NS D5S D5NS
N° DEGs 224 274 159 268 173 184
/1 1132 and |92 1144 and | 130 1101 and |58 1158 and 110 1109 and |64 1111 and |73
FDR NE® NE? 5.10E—04 NE® 1.07E—07 NE*
Enrichment position NE? NE® 7th of 18 NE® 2nd de 18 NE®
N° Genes 3 3 6 4 10 3
TALAS2 TALAS2 TAHSP 1FAM46C TAHSP TFAM46C
1CAT TFAM46C TALAS2 tHBQ1 TALAS2 THBQ1
1E2F2 THBQ1 1CAT tTNFE2 1CAT 1SLC22A4
TFAM46C TRAP1GAP TFAM46C
THBD 1GYPE
TRAP1GAP tHBD
THBQ1
1OSBP2
TRAP1GAP
XK
D1S = Day 1 surviving group, D1NS = Day 1 Non-surviving group, D3S = Day 3 surviving group, D3NS = Day 3 Non-surviving group, D5S = Day 5 surviving
group and D5NS = Day 5 Non-surviving group; 1 Upregulated genes and | downregulated genes
?NE not enriched (the pathway was not found within the established parameters due to the small amount of genes related to it in this group)

Table 4. DEGs and molecular signature related to heme metabolism
in S3 dataset

Group SV NSV
N° DEGs 584 775
/1 1231 and |353 1298 and 477
FDR 2.66E—08 5.33E-09
Enrichment position 8th of 40 10th of 48
N° Genes 16 19
t AHSP t AHSP
t ALAS2 t ALAS2
| AQP3 | AQP3
t BPGM t BPGM
t CA1 t CA1
t GYPA t GCLM
t+ GYPB t GYPA
t HBD t GYPB
T ISCAT * HBD
1 LRP10 T ISCA1
1 MBOAT2 t LMO2
1 NUDT4 t LRP10
1 RHCE t MBOAT2
1 SLC22A4 t NUDT4
1 SNCA t RHCE
1T XK t SLC22A4
t SNCA
t TMCC2
t XK

SVsurviving group, NSVnon-surviving group; 1 Upregulated genes and |
downregulated genes

Published in partnership with the Systems Biology Institute

In attempt to provide evidence for modulation of heme/
hemoglobin-related biosynthesis pathway in sepsis, and test the
hypothesis that it might be related to outcomes, we analyzed
three datasets of sepsis secondary to pneumonia (51, S2, and S3)
in the “hallmark gene sets” of MSigDB. Heme/hemoglobin-related
biosynthesis signature was modulated in all datasets and contain
the four genes (ALAS2, AHSP, HBD, and CA1) found in the modules
in our screening with GCN.

ALAS2 encodes a mitochondrial enzyme that regulates the initial
step of heme biosynthesis.?’ The AHSP is critical for the formation
and stabilization of normal amount of hemoglobin.?*** The HBD
gene encodes the &-globin, which together with the a-globin
forms the tetramer HbA,>* and the CAT gene that encodes a
protein that acts on the regulation of the affinity of hemoglobin
for oxygen.®®

Heme or hemoglobin-related genes are believed to be
expressed in erythroid progenitors, but several studies have
shown the expression of these genes in non-erythrocyte cells in
response to different stress conditions, including murine macro-
phages and cervicovaginal epithelial cells from rabbits stimulated
in vitro with LPS, IFN-y, or hydrogen peroxide;'*?° granulation
tissue induced by cellulose sponges?’; PBMCs from patients with
varying degrees of systemic inflammation, such as active systemic
juvenile idiopathic arthritis®® and patients with cryopyrin-
associated periodic syndromes.?® In addition, some studies have
demonstrated the expression of genes related to the heme/
hemoglobin in patients with a high degree of hypoxia°, as well as
in murine alveolar cells submitted to hypoxia.*'

Accordingly, inflammatory response, TNF-q, IFN-y response, and
hypoxia can be observed as altered molecular signatures—at
different levels—in the three datasets studied (Supplementary
material 1 pp. 9). The analyses of the ALAS2, AHSP, HBD, and CAT in
a broad dataset of PBMCs and neutrophils, showing moderate to
high correlations (Fig. 5), further support their gene expression
modulation in white blood cells. In addition, it was demonstrated
that the synthesis of proteins associated with hemoglobin is
present in the process of monocyte-macrophage differentiation
and decreases with the progress of differentiation.*?

Our results with ST and S2 datasets show that the heme/
hemoglobin signature was related to outcomes, with increased

npj Systems Biology and Applications (2019) 26
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S1 Dataset S2 Dataset S3 Dataset
AHSP AHSP AHSP
ALAS2 ALAS2 ALAS?2 B
CA1 CA1 AQP3 S1 Dataset S2 Dataset
EPB42 E2F2 BPGM
FAM46C FAM46C CA1
GYPA GYPE GCLM
H1FO HBD GYPA
HBD HBQ1 GYPB ALAS2
RAP1GAP NFE2 HBD V‘ AHSP
RBM5 0SBP2 ISCA1 Av HBD
RHCE RAP1GAP LMO2 CA1
SELENBP1 SLC22A4 LRP10
SLC25A37 XK MBOAT2
SLC4A1 NUDT4
SLC6A8 RHCE
SPTA1 SLC22A4 S3 Dataset
TNS1 SNCA
TMCC2
XK

Fig. 3 DEGs found in at least one of the groups for each datasets a; Venn diagram showing the common DEGs among the three datasets b

expression in surviving groups. This association was not present
for the S3 dataset, where no major differences were observed in
relation to the patients’ outcomes. However, this dataset contains
only admission samples and differences regarding patients’
outcomes in S1 and S2 datasets were more prominent in follow-
up samples. Furthermore, datasets ST and S2 were generated in
PBMC and leukocytes, respectively, and dataset 3 was generated
in whole blood. In fact, heme/hemoglobin signature was reported
in this cohort of patients as part of the endotype with worst
outcome.’

Heme is an essential molecule, involved in cellular physiology
and metabolism. Nevertheless, in excess, free heme show
cytotoxic effects and is characterized as a damage-associated
molecular pattern (DAMP) activating TLR4 and inducing inflam-
mation.'” In contrast, the upregulation of heme/hemoglobin
pathway in white cells submitted to stress conditions might be
related to its protective effects, and recent evidence support a role
for heme-hemoglobin in this hostile environment.

Mitochondrial dysfunction has long been recognized to play an
important role in organ dysfunction in septic patients.** A study
from our research group showed that genes encoding mitochon-
drial respiratory chain subunits, involved in oxidative phosphor-
ylation, were more affected in non-surviving septic patients;**
interestingly, studies show that the expression of hemoglobin-
related genes in non-erythrocyte cells play a role in mitochondrial
function,® and intracellular hemoglobin is preferentially located in
the mitochondria, protecting it from hydrogen peroxide-induced
cytotoxicity and mitochondrial DNA damage."®

We and others have shown that the production of reactive
oxygen species and nitric oxide by monocytes and neutrophils is
increased in septic patients and the persistence of this excessive
production is related to poor outcomes.>®*’ In the same sense,
studies show that the hemoglobin expression in non-erythrocyte
cells is related to an intrinsic mechanism of protection associated
with the elimination of free radicals and detoxification to nitric
oxide.*®

This cytoprotective effect also occurs in response to hydrogen
peroxide, which induces the increase in the expression of
hemoglobin-related genes in hepatocytes®® and in rat mesangial
cells*® as an antioxidative defense mechanism.

The inference of a protective effect for heme/hemoglobin
signature is challenged by our previous report showing upregula-
tion of this pathway in an endotype of worst outcome in septic
patients.” This discrepancy might be explained by the diverse
approach to perform data analysis. In the present study we
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segregated patients in survivors and non-survivors for gene
expression analyses, while in the endotype study patients were
grouped throughout unsupervised cluster analysis, including in
each group patients who survived and patients who did not
survive. Anyway, these results add caution to interpret the
presence of this signature in an individual patient.

We conclude that the heme and hemoglobin metabolism is
modulated during sepsis, with emphasis in the four genes ALAS2,
AHSP, HBD, and CAl1, common to the three datasets. Their
increased expression may be directly related to the white cells
in response to adverse conditions present in septic patients such
as infection, inflammation, hypoxia, and production of reactive
oxygen species and oxidative stress. It might be a protective
response to this hostile environment, an effect more evident in
samples obtained in the course of the disease (follow-up samples).

METHODS
Microarray datasets selection and data analysis

Sepsis datasets were selected according to the following criteria: age = 18
years, sepsis secondary to pneumonia, presence of control group (healthy
or individuals scheduled for elective procedures), and outcome informa-
tion (patients who survived or did not survive after sepsis). Two datasets
were deposited in GEO (Expression Gene Expression Omnibus) and one on
ArrayExpress (Table 1).

These gene expression data were previously generated across from
different platforms, thus, they were analyzed individually (Supplementary
material 1, pp. 1-3). For the analysis of gene expression we used the R
package LIMMA*" In general, each dataset were processed as follows: the
raw expression values had the background corrected, normalized and log2
transformed. Gene expression differences with p-value < 0.05 and with a |
Log, Fold-Change (FC)| > 1.5 between sepsis and controls were considered
statistically significant in S1; FDR corrected with Benjamini-Hochberg
procedure < 0.05 were used as additional cut-off for S2 and S3.

Ethics approval and consent to participate

This study was not conduct on human biological specimens, all data were
downloaded from public databases and therefore no authorization from
the participants was required for this study. The study was approved by
the ethics and research committee of the Universidade Federal de Sao
Paulo (CEP: 0410.0087.04/2018; CAAE: 88055118.5.0000.5505) ensuring
biological safety to conduct the study.

Co-expression networks construction using GeneMANIA database

Biological networks in general are governed by graph theory. These graphs
illustrate, in a systemic level, the complex data generated by technologies
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Fig. 4 Gene expression variation for the four common DEGs. a S1 dataset, *p-value <0.05 and Log,FC > 1.5; C control group, DOS day
0 surviving group, DONS day 0 non-surviving group, D7S day 7 surviving group, and D7NS day 7 non-surviving group. b S2 dataset, *p-value,
FDR < 0.05 and Log,FC > 1.5; C control group, D1S day 1 surviving group, DINS day 1 non-surviving group, D3S day 3 surviving group, D3NS
day 3 non-surviving group, D5S day 5 surviving group, and D5NS day 5 non-surviving group. ¢ S3 dataset, * = p-value, FDR < 0.05 and Log,FC
> 1.5; C control group, SV surviving group, and NSV non-surviving group (Supplementary Material 1 pp. 4-5)

as transcriptomics.*> One of these graphs are the gene co-expression
network (GCN), in this network, genes are represented as nodes, while the
edges represent co-expression relation scored by Pearson correlation
coefficient between two nodes.'®*?

We build a GCN with the data of S1 as an initial screening of the data.
Thus, networks were built with DEGs for the different days and outcomes
present in this dataset (DOS, DONS, D7S, and D7NS). For this purpose, only
information derived from the co-expression category in the GeneMANIA
database was used, the values of the interactions were maintained as
default.”® These data have been downloaded, imported and viewed in
Cytoscape 3.6.1.

Published in partnership with the Systems Biology Institute

Network module detection

To identify molecular complexes, the Cytoscape MCODE'’ plug-in was
used with the following cut-off parameters: degree cutoff > 15 and k-core
>4.0. Thereafter, the identified complexes were used for functional
enrichment analysis using BinGO.** The hypergeometric test was utilized
for GO enrichment analyses with significance defined by Benjamini and
Hochberg adjusted p-value < 0.05.%®

Molecular signature analysis related to heme metabolism
The analysis of the molecular signature relating to the heme metabolism to
DEGS was performed using “Gene sets hallmark” from Molecular
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Fig. 5 Heatmaps showing the gene co-expression ratio of the four common genes of the heme metabolism pathway in PBMC and Neutrophil

samples (Supplementary material 1 pp. 7-8)

Signatures Database v 6.2 (MSigDB). This dataset represents well defined
biological states or processes derived from the aggregation of many gene
sets.*® The signatures were considered enriched when FDR <0.05.

The signature-related genes that were found for the different analyzes
were overlaid using the Venny 2.1 software (http://bioinfogp.cnb.csic.es/
tools/venny/), in order to find the common genes.

Gene co-expression profile analysis of the common genes

The Gene co-expression Profile Analysis (GCEPA) was performed using the
Immuno-Navigator database.'® The analysis was conducted as previously
described.*” The Jetset database®® was employed to select more reliable
probes from the Affymetrix HG-U133 Plus 2.0 chip for the common genes
found. Only expression data from PBMC samples (n=1120) and
neutrophils (n = 228) were selected. Pearson’s two-tailed pairwise correla-
tion was used to compare the co-expression relationship between the
genes; a P-value <0.01 was used as cut-off.

Data presentation

The graphics were generated using GraphPad Prism 6.0, as well as ggplot2
package present in software R.
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