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Abstract: A Machine Learning approach to scientific problems has been in use in Science and
Engineering for decades. High-energy physics provided a natural domain of application of Machine
Learning, profiting from these powerful tools for the advanced analysis of data from particle colliders.
However, Machine Learning has been applied to Accelerator Physics only recently, with several
laboratories worldwide deploying intense efforts in this domain. At CERN, Machine Learning
techniques have been applied to beam dynamics studies related to the Large Hadron Collider
and its luminosity upgrade, in domains including beam measurements and machine performance
optimization. In this paper, the recent applications of Machine Learning to the analyses of numerical
simulations of nonlinear beam dynamics are presented and discussed in detail. The key concept of
dynamic aperture provides a number of topics that have been selected to probe Machine Learning.
Indeed, the research presented here aims to devise efficient algorithms to identify outliers and to
improve the quality of the fitted models expressing the time evolution of the dynamic aperture.

Keywords: machine learning; CERN Large Hadron Collider; CERN High-Luminosity Large Hadron
Collider; nonlinear beam dynamics; dynamic aperture

1. Introduction

Machine Learning (ML) represents the process of building a mathematical model
based on sample data, with the goal of making predictions or decisions without being
explicitly programmed [1]. ML encompasses learning paradigms including Supervised
Learning (SL), Unsupervised Learning (UL), and Reinforcement Learning (RL).

In the SL paradigm, ML algorithms are trained on data sets for which a ground-truth
output exists (either continuous or discrete) for each input. This is no longer true in UL [2],
and the goal of the algorithms is rather finding patterns in the data.

The success of ML in several domains (see, e.g., [3–8]) is impressive and can be
explained by the explosion in Big Data, advances in computational power (in particular
the use of graphics processing units), and also the development of more sophisticated ML
techniques such as Deep Learning (DL) [9].

After the successful use in high-energy physics (see, e.g., [10] and references therein),
ML techniques have been introduced also in accelerator physics. Beam diagnostics and
beam control systems were among the first domains in which ML applications were ap-
plied. This occurred already a few decades ago [11,12], although only recently, substantial
progress has been made (see, e.g., [13–18] and references therein, for a sample of recent
applications of ML to accelerator physics topics). The growing number of conferences
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and workshops that focus on ML applications in accelerator physics is a clear sign of the
warm interest of that community. The need for and usefulness of ML techniques is also
testified to by the publication of a white paper that reviews in detail the state-of-the-art
of ML applications and lists several recommendations to encourage the uptake of such
techniques in accelerator physics laboratories [19].

At the CERN Large Hadron Collider (LHC) [20], several ML applications were actively
pursued in view of assessing their potential benefits before making them an integral part
of the accelerator operations and controls. The inherent complexity of the LHC in terms
of number of hardware systems, amount of data collected and available for on-line or
off-line analyses, variety of beam dynamics configurations, such as optical configurations,
and beam dynamics phenomena, such as single-particle and collective effects (coherent and
incoherent), makes this circular collider an ideal source of case studies for ML applications
(see [21] for an overview of recent results).

While a large fraction of the accelerator physics applications of ML techniques involves
experimental topics, it is possible to profit from the power of ML for the analyses of
data generated by numerical simulations of nonlinear beam dynamics. The focus of the
studies presented in this paper is on the application of ML to Dynamic Aperture (DA).
DA is the extent of the simply-connected region of phase space in which the particle’s
motion remains bounded over a finite number of turns. Such a volume is shaped by,
amongst others, the nonlinear magnetic errors in the LHC superconducting magnets.
Detailed knowledge of the magnetic field errors might be difficult to gather, e.g., because
of practical difficulties in measuring the whole ensemble of superconducting magnets,
or the limited precision of the magnetic measurements. Therefore, DA evaluation entails a
Monte Carlo approach, in which the DA for various realizations of the error distributions
should be computed. Then, the distribution of DA values needs to be carefully considered,
in particular paying attention to the presence of outliers. Another hurdle to overcome in
the numerical evaluation of the DA is the huge amount of CPU time required to obtain
accurate estimates of the DA. Two main approaches can be considered to reduce the CPU
time needed. The first exploits the fact that in the absence of mutual interactions between
the charged particle one can perform a trivial parallelization on the initial conditions [22]
or use a distributed computing system to boost the available CPU time [23]. The second
approach attempts to reduce the number of turns simulated thanks to the possibility of
devising scaling laws of DA as a function of the number of turns. Indeed, in the presence
of such scaling laws, one could use the results of numerical simulations to evaluate the
parameters in the scaling laws and use them to extrapolate the DA values for a much larger
number of turns. This goal is actively pursued, and scaling laws have been found based
on general theorems of dynamical systems theory (see, e.g., [24] and references therein).
The functional forms of the scaling laws depend on a limited number of parameters (two
or three). The attempt presented in this paper is to make use of ML techniques to make the
parameters’ estimate robust and reliable in view of using such models for extrapolation
purposes. It is worth noting that all of these techniques will be essential for the studies that
are currently on-going for the realization of a luminosity upgrade of the LHC, the so-called
HL-LHC Project [25].

The plan of the paper is the following: in Section 2 the LHC machine is presented and
described. In Section 3 the key features of the DA are recalled and discussed in detail in
order to prepare the discussion of the ML applications devised to analyze the DA, which is
carried out in Section 4. Finally, conclusions and outlooks to the future are presented in
Section 5.

2. The LHC in a Nutshell

A sketch of the LHC ring layout is shown in Figure 1 (top) and more detail can be
found in [20] and references therein.
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Figure 1. Upper: Layout of the Large Hadron Collider (LHC) ring (from Reference [20]). The eight-
fold symmetry is visible, together with the arcs and the long straight sections. Bottom: Layout
of the LHC regular cell (from Reference [20]). Six dipoles and two quadrupoles with the dipole,
quadrupole, sextupole, and octupole magnets (for closed orbit, tune, chromaticity correction, and
beam stabilization, respectively) are shown.

The eight-fold symmetry is well visible together with the main function of each long
straight section. Note that the LHC sectors are defined as the machine parts in between the
mid-points of consecutive octants. It is worth mentioning that some key beam diagnostic
devices, such as transverse and longitudinal profile monitors, and beam current monitors
are located in the same long straight section as the RF system. In the bottom part of Figure 1
the periodic cell, i.e., the building block of the LHC arcs, is shown. The six superconducting
dipoles and the two superconducting quadrupoles are clearly visible together with all
auxiliary magnets used to control the machine optics and the beam dynamics.

Superconducting magnets are mandatory to reach the 7 TeV nominal beam energy
in combination with the bending radius imposed by the already existing LEP tunnel [20].
A side effect of the use of superconducting magnets is that unavoidable field errors are
introduced, which might affect the beam dynamics in the sense of introducing nonlinear
effects. It is customary to describe the magnetic field errors using a series expansion in
terms of multipoles, which reads as:

By + i Bx = 10−4 × Bref

M

∑
n=1

(bn + i an)

(
x + i y

Rr

)n−1
(1)

where Rr is the so-called reference radius, Bref is the reference field the magnetic errors refer
to, and the coefficients bn, an are the normal and skew multiple coefficients, respectively.
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A detailed campaign of magnetic measurements was carried out during the production
of the LHC magnets and this information was used, among other properties, to allocate
the built magnets to the possible slots in the tunnel (see [26] and references therein for a
detailed account on these activities). The information gathered is then used in the numerical
simulations performed to describe the beam dynamics in the most accurate way. In fact, it
is customary to simulate sixty realizations of the LHC ring that differ by the distribution
of the magnetic field errors. This Monte Carlo approach is justified by the fact that the
magnetic multipoles are known to be affected by measurement uncertainties (quantified at
the level of 10%), which are then used to generate the various realizations for the numerical
simulations.

3. Generalities on the Dynamic Aperture

The DA is one of the key concepts used in the study of nonlinear beam dynamics.
The DA represents the radius of the smallest sphere inscribed in the connected volume
in phase space in which motion is bounded over a given time interval [27]. The interest,
from a physical point of view, in this otherwise rather mathematical quantity, is that its time
evolution can be linked with that of the beam intensity in a circular particle accelerator [28]
or that of the luminosity in a circular collider [29,30], which are both essential figures of
merit for accelerator performance.

Let us consider the phase space volume of the initial conditions, which are bounded
after N iterations:

A(N) =
∫ ∫ ∫ ∫

χ(x1, px1 , x2, px2) dx1 dpx1 dx2 dpx2 , (2)

where χ(x1, px1 , x2, px2) is the generalization of the characteristic function to the 4D case,
i.e., it is equal to one if the orbit starting at (x1, px1 , x2, px2) is bounded or zero if it is not.

In order to exclude the disconnected part of the stability domain in the integral (2),
a suitable co-ordinate transformation has to be chosen. Since the linear motion is the
direct product of constant rotations, the natural choice is to use polar variables (ri, ϑi):
r1 and r2 are the linear invariants. The nonlinear part of the equations of motion adds a
coupling between the two planes, the perturbative parameter being the distance to the
origin. Therefore it is natural to replace r1 and r2 with the polar variables r cos α and r sin α,
respectively:





x1 = r cos α cos ϑ1
px1 = r cos α sin ϑ1 r ∈ [0,+∞[

α ∈ [0, π/2]
x2 = r sin α cos ϑ2 θi ∈ [0, 2π[ i = 1, 2
px2 = r sin α sin ϑ2 .

(3)

Substituting in Equation (2) one obtains:

A(N) =
∫ 2π

0

∫ 2π

0

∫ π/2

0

∫ ∞

0
χ(r, α, ϑ1, ϑ2) r3 sin α cos α dr dα dϑ1 dϑ2 . (4)

Having fixed α and ϑ = (θ1, θ2), let r(α, ϑ, N) be the largest (in order to discard the
disconnected parts of the stable volume, the largest stable amplitude is determined by
starting from the origin and stopping at the first unstable amplitude) value of r whose orbit
is bounded after N iterations. Then, the volume of a connected stability domain is:

Aα,ϑ(N) =
1
8

∫ 2π

0

∫ 2π

0

∫ π/2

0
r4(α, ϑ, N) sin 2α dα dϑ1 dϑ2 . (5)

In this way one excludes stable islands that are not connected to the main stable do-
main. In principle, this method might lead to also excluding connected parts. The dynamic



Information 2021, 12, 53 5 of 22

aperture is defined as the radius of the hyper-sphere that has the same volume as the
stability domain:

DAα,ϑ(N) =

(
2Aα,ϑ(N)

π2

)1/4

. (6)

Equation (5) can be implemented in computer code by means of any algorithm suitable
to numerically evaluate the integral. In order to reduce the CPU time involved in the
exploration of the 4D phase space, alternative techniques have been developed [27] in
which the scan is performed only on two dimensions, e.g., by setting the angles θ to a
constant value, e.g., zero, thus performing only a 2D scan over r and α, and the original
integral is transformed to:

A(N) =
∫ π/2

0

∫ ∞

0
r dr dα . (7)

Having fixed α, let r(α, N) be the largest value of r whose orbit is bounded after N
iterations; then, the volume of a connected stability domain is:

Aα(N) =
1
2

∫ π/2

0
r2(α, N) dα , (8)

and the dynamic aperture, defined as the radius of the sphere that has the same volume as
the stability domain (note that the region providing the stability domain is confined to a
surface that is 1/4 of a circle and this has been considered in Equation (9)) is given by:

DAα(N) =

(
4Aα(N)

π

)1/2

. (9)

Given an accelerator model, the DA simulations are repeated for a number of different
realizations of the set of magnetic field errors, which are also called seeds, and an average
DA is computed according to the following formula:

DAav =
1

Nseed

Nseed

∑
i=1

D̂Aα,N . (10)

The use of the seeds in the numerical simulations is meant to represent the variation
of the magnetic field errors, which are the results of magnetic measurements that are intrin-
sically affected by a finite precision. In this way, it is possible to evaluate the robustness of
the DA computation against variation of the magnetic errors assumed in the simulations.

While this definition is customarily used for a detailed understanding of the features
ruling the DA (see, e.g., [24]), design studies, which need a conservative and robust estimate
of DA, are rather based on the following estimate of the DA:

DAmin = min
i,j

ri(αj, N) 1 ≤ i ≤ Nseed , 1 ≤ j ≤ Nangle , (11)

where ri(αj, N) represents the largest stable amplitude for the ith seed and jth angle.
Outliers would have a strong impact on the DA defined in this way, which is the reason for
our attempts to deal with an automatic outlier recognition. An example of DA plots is given
in Figure 2, where results of DA computations for two LHC configurations are given for
sixty seeds, eleven angles, and 105 simulated turns. The left plot refers to the optics version
1.3 for the HL-LHC [25] at top energy, with β∗ = 15 cm, Q′ = 15, and strong powering of
the Landau octupoles, but without beam–beam effects. The right plot refers to the optics
configuration of the LHC during the 2016 proton run at injection, with Q′ = 8 and strong
powering of the Landau octupoles, which are essential to fight electron-cloud effects.
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Figure 2. (Top row): DA simulations for two LHC configurations. The initial 4D coordinates are of the type (x, 0, y, 0) and
a polar scan was performed on (x, y). The markers represent the results of the sixty seeds used. Left: Example of a DA
computation where two outliers are correctly flagged (in green). Right: Examples of a false positive (in red). Note that
the FP cases concerning outliers from above are less worrisome as they refer to the determination of the maximum stable
amplitude, which does not affect DAmin. (Bottom row): same, but after applying the post-processing, which shows the
improvement on the outlier identification.

In all definitions given above, the DA is a function of the maximum number of turns
Nmax simulated. It is hard to exceed Nmax ≈ 105–106 due to CPU time limits reached for
large and complicated circular accelerators such as the LHC. Unfortunately, these feasible
Nmax values are a few orders of magnitude smaller than the typical time scale of a particle
beam orbiting in a collider. To fill this gap, models to describe the time evolution of DA
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have been recently proposed, which are based on rigorous mathematical theorems (see,
e.g., [24] and references therein). The proposed models have the following forms:

D(N) = ρ∗
( κ

2e

)κ 1
lnκ N

N0

(12a)

D(N) = ρ∗

[
−2eλ W−1

(
− 1

2eλ

(
N
N0

)− 1
λκ

)]−κ

, λ =
1
2

, (12b)

where ρ∗, κ, N0 are the model parameters andW−1 is the−1 branch of the Lambert function.
From the original Nekhoroshev theorem [31], there exists an estimate for N0, namely:

Nest.
0 =

7
8

(ρ∗
6

)λ
. (13)

These models can be recast in a slightly more compact form by redefining the fit
parameters as:

D(N) = b
1

lnκ N
N0

(14a)

D(N) = ρ
[
−W−1

(
−(µN)−

2
κ

)]−κ
, (14b)

with:

b = ρ∗
( κ

2e

)κ
ρ = ρ∗ e−κ µ =

(κ

2

) κ
2 1

N0
. (15)

The estimate for N0 in Equation (13) then translates into an estimate for µ:

µest. =
8
7

(
6
ρ

)λ

. (16)

The interest of these models is that they can be used for extrapolating the numerical
results beyond what is feasible with an acceptable amount of CPU time. Therefore, it is
essential to have a robust and efficient way to fit the models to the numerical data in view
of providing reliable DA extrapolations. This domain can be explored to probe whether
ML techniques can help providing a solution to the DA model determination.

4. Machine Learning Approaches to Dynamic Aperture
4.1. Outlier Identification in DA Simulations

For a given angle, at times the stable amplitude may differ considerably from seed
to seed, resulting in a spread of stable amplitudes over seeds. Outliers may be present
in this distribution, which may have an impact on DAmin (and, to a lesser extent, DAav).
The cause of such outliers may be due to the excitation of particular resonances as a result
of the distribution of nonlinear magnetic errors, which is highly seed-dependent. It is also
clear that outliers possibly represent realizations of the magnetic field errors that generate
an unlikely (because it is non-typical) value of the DA, which might be removed from the
analysis of the numerical data in view of the computation of DAmin. For these reasons, ML
techniques have been applied to the results of large-scale DA simulations in order to flag
the presence of outliers, which can then be dealt with appropriately.

There are, however, a number of points that should be considered carefully in order
to devise the most appropriate approach to this problem. Indeed, the key point is to
ensure that the flagged outliers are genuine, and not members of a particular cluster of DA
amplitudes. Therefore, the outlier detection is performed through the following procedure.
First, for each angle j the ri,j values for that angle and for the different seeds are re-scaled
between the minimum and maximum values. Therefore, there is only one feature, namely
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the re-scaled ri,j values for a given angle. Then two types of ML approaches have been
investigated, in order to detect outliers automatically. In the SL approach, the goal of
outlier detection is treated as a classification problem, and a Support Vector Machine (SVM)
algorithm [32] is used to discriminate between normal and abnormal points. The Radial
Basis Function (RBF) kernel [33] with a penalty factor C of unity has been identified as the
best hyperparameter for the SVM model following a hyperparameter optimization using
grid search.

To further examine the performance of the model, a learning curve was obtained. This
allows to determine the model performance as a function of the number of training points
used, and is shown in Figure 3. The ground truth corresponding to the training points
has been generated by manually selecting the points that according to human judgement
corresponded to outliers. Each point in the curves represents the number of True Negatives
(TN), True Positives (TP), False Negatives (FN), and False Positives (FP) obtained on a test
data set whose size corresponds to 25% of the overall data set available, which is made up
of some thousands of numerical simulations of DA for both the LHC and HL-LHC rings,
when the model is trained on all anomalous points plus a certain increasing number of
normal points. A TP is a ground-truth anomalous point, which was correctly predicted
as being anomalous. The results show that when the training data set is approximately
balanced between abnormal and normal points, the number of TP is quite high, while the
FP and FN are low. However, as the data set skews towards an increasing majority of
normal points, the model achieves a lower performance. This is understandable given the
assumption of balance in the SVM algorithm.
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Number of training points
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50

100

150
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m
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am
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TP
FP
FN
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Figure 3. Learning curves for the SVM training, showing the TP, FP and FN (left) and the TN (right).

Two UL approaches for detecting anomalies on an angle-by-angle basis have been
considered, too. The first algorithm is the Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) [34]. DBSCAN is a density-based, non-parametric algorithm, which
groups points based on local density of samples. The points that are not assigned to any
cluster after applying the algorithm are automatically considered to be outliers. The second
algorithm is the Local Outlier Factor (LOF) [35] method. LOF also uses the concept of local
density, but directly computes an outlier score per point. Locality is provided by the K
nearest neighbors, whose distance is used to estimate the density. By comparing the local
density of an object to the local densities of its neighbors, it is possible to identify regions
of similar density. Therefore, it is clear that points that have a substantially lower density
than their neighbors are to be considered as outliers.

For the UL approach, 75% of the data set was used for training and 25% was used for
validation. As a result of hyperparameter optimization through a grid search, the following
is a list of the hyperparameters determined for each method:

• DBSCAN: eps = 1 (the maximum distance between two samples for one to be consid-
ered as in the neighborhood of the other); min_samples = 3 (the number of samples,
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or total weight, in a neighborhood for a point to be considered as a core point, includ-
ing the point itself);

• LOF: n_neighbors = 58 (the number of neighbors used to measure the local deviation of
density of a given sample with respect to the same neighbors); contamination = 0.001
(the expected fraction of outliers in the data set).

A comparison between the performance of the SVM, DBSCAN, and LOF algorithms
is shown in Figure 4. The Python-based scikit-learn [36] implementation of these three
algorithms was used. The labels determined by the DBSCAN and LOF algorithms were
also combined through a binary OR operation to produce a fourth set of labels. A further
fifth set of labels was created following an initial labelling by DBSCAN by removing false
positives through a statistical method to determine whether this approach would add to
the robustness of the original prediction. For a point, being originally flagged by DBSCAN
as an outlier, to be considered as a true outlier, three additional criteria should be fulfilled:
the distance from the mean should be at least 3 σ (where mean and standard deviation are
only calculated over the normal points); the distance to the nearest normal point should be
greater than 0.15, in absolute units, and the distance to the nearest regular point should be
greater than 34% of the total spread of the regular points. This post-processing is performed
iteratively, starting at the minimum (maximum) point and moving outwards (inwards),
recalculating the statistical variables of the regular points at every step. The values of
these thresholds are chosen empirically to ensure that false positives that are due to dense
clusters are correctly filtered out.

TP TN FP FN
100

101

102

103

104

105

Nu
m
be

r o
f s
am

pl
es

SVM
DBSCAN
LOF
Binary OR
Post-processing after DBSCAN

Figure 4. Results from anomaly detection using SVM, DBSCAN, LOF, a binary OR between DB-
SCAN and LOF, and post-processing following DBSCAN methods. TP = True Positives (anomaly
correctly detected), TN = True Negatives (normal point correctly detected), FP = False Positives,
FN = False Negatives.

The results show that the unsupervised learning methods perform better than SVM
by an order of magnitude in terms of false positives; however they are worse in terms of
false negatives, especially in the case of LOF. The method of post-processing following
DBSCAN clearly contributes to reducing the number of false positives, while maintaining
the TP and FN rates.

Additional detail on the impact of the post-processing is visible in Figure 5, in which
the number of events for the various methods applied, and the size of the intersection
of the events between pairs of methods, is shown for the four classes of TP, TN, FP, and
FN cases.
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Figure 5. Detail of the TP, TN, FP, and FN cases in the form of heat maps. The number of events for the various methods are
shown (along the diagonal), together with the size of the intersection (in the upper triangular cells). The normalization of
the color map is provided by the minimum of the number of events for each cell.

Each heat map reports along the diagonal the number of events for each method of a
given class, i.e., TP, TF, FP, and FN. In the upper triangular part of the matrix, the number
of events in the intersection between the methods taken in pairs is shown; the color used is
selected by normalizing the number of events in the intersection by the minimum of the
events for the considered pair of methods. The level of TP cases is very similar for most
of the methods, whereas differences are observed concerning the TN cases, and there the
post-processing ensures that the higher score of TN cases is reached. As far as the FP and
FN cases are concerned, it is clear that the post-processing provides the least number of
events for FP cases, which is a very important feature. Similarly, FN cases are minimized
by the post-processing, although the same number is obtained by the binary OR or plain
DBSCAN. SVN scored excellently in FN, but was rather poor in the other three classes.
All in all, the proposed post-processing of the DBSCAN clearly outperformed the other
methods and provided a level of FP and FN cases that is perfectly adequate for our needs.

4.2. Digression: Accelerator Physics Considerations from Outlier Identification in DA Simulations

It is very useful to investigate the dependence of the number of outliers on the value
of the angular variable and on the seed number. A comparison between the ground-truth
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and predicted anomalies (using post-processing following DBSCAN) is shown in Figure 6,
where it can be seen that the anomaly profiles for both seeds and angles are similar between
the ground-truth and the predictions. The peculiar profile of outliers as a function of seed
is worth noting, featuring three clusters with a very large number of outliers. As far as the
anomalies distribution as a function of angle is concerned, there is a tendency towards a
larger number of outliers for angles close to 90◦. It is worth stressing that there are outliers
affecting the lower-amplitude part of the distribution or ri(αj, N) (outliers from below) or
the higher-amplitude part (outliers from above). The analyses performed indicate that the
number of outliers from below and those from above are essentially equal, totaling 2882
and 2847 cases, respectively.
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Figure 6. Visualizations of the anomalies by seed (left) and by angle (right), showing the similarity between the ground-truth
and the result of the post-processing following DBSCAN.

Two examples of the classification of outliers from normal points obtained by means
of the post-processing following the DBSCAN method are shown in Figure 2.

It should be noted that the dynamics governing the DA can be very different as a
function of the angle θ; hence, even when the neighboring points are similar in ampli-
tude, the spotted outlier might be a genuine one. Obviously, particular care needs to be
taken in these cases before drawing any conclusions, and additional investigations might
be advisable.

It is clear that the previous analysis provides useful insight into the underlying physics.
Indeed, it is interesting to consider how the outliers are distributed over seeds and angles
for the various configurations that make up the huge data set to which the analysis has been
applied. The main cases covered by the numerical simulations can be categorized according
to: accelerator (LHC or HL-LHC); beam energy (injection, 450 GeV, or top energy, 7 TeV);
circulating beam (Beam 1, rotating clockwise, or Beam 2, rotating counter-clockwise);
optical configuration of the accelerator (nominal [20] or ATS [37] for the LHC, and V1.0,
V1.3, V1.4 for the HL-LHC); and the strength of the octupole magnets that are used to
stabilize the beams against collective effects. In Figure 7, a collection of results of the
obtained distributions of outliers vs. seed and angle are shown for several configurations
probed with the numerical simulations.

The LHC and HL-LHC feature a different distribution of outliers, the first being
affected by a number of outliers that are mildly dependent on the angles and special
seed 10, whereas the latter features a mild increase of outliers towards a large angle and
special seeds 33 and 39. While the two counter-rotating beams do not feature a meaningful
differences in the distribution of outliers as a function of angle, with a sort of peak around
70 degrees, we can pinpoint the high number of anomalies for seed 33 to Beam 1 and those
for seed 39 to Beam 2. On the other hand, the situation in terms of outliers when considering
the injection or the collision energies is a bit different, inasmuch that at collision energy
the distribution of anomalies is skewed towards larger angles. Note also that different
seeds present anomalies depending on the value of the beam energy. Here it is worth
mentioning that the overall data set is skewed towards HL-LHC cases, which, in turn,
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feature mainly collision-energy cases. On the other hand, the LHC cases refer mainly to the
injection energy case. This explains some of the similarities in the behavior of anomalies as
a function of the ring considered and on the beam energy.

In terms of optical configuration used for the LHC, the nominal one features a special
seed 10, and outliers towards low angle values. On the other hand, ATS shows essentially
no anomalous seeds and a very small number of anomalies as a function of angle.

The situation concerning different ring layouts and optics versions that are being
studied for the HL-LHC shows an interesting evolution in terms of the appearance of
anomalous seeds as of version V1.3. This is also combined with a change in terms of
distribution of outliers as a function of angle. Indeed, while version V1.0 features outliers
mainly in the middle range of angles, version V1.3 is characterized by outliers towards the
high range of angles. The situation then changes with version V1.4, where an increase of
outliers is observed towards the low range of angles. Interestingly enough, the presence of
strong octupoles used to stabilize the beams has an adverse effect in terms of anomalous
seeds and outliers vs. angle. In fact, a clear increase of anomalies can be observed with
increasing, in absolute value, current in the Landau octupoles. This feature appears in
conjunction with an increased number of anomalies for large values of angles.

It is worth stressing that the observed features of the distribution of outliers for LHC
and HL-LHC will be carefully considered to shed some light on the underlying beam
dynamics phenomena that are responsible for their generation.

LHC (786 studies)
HL-LHC (3145 studies)

� �� �� �� �� �� �� �� �� �� �� ��
����

����

����

����

����

����

����

����

�
�
�
�
�
��
�
�
�
�
�
�
��
�
�

LHC (786 studies)
HL-LHC (3145 studies)

��� ��� ���� ��� ���� ��� ���� ��� ���� ��� ����
����

����

����

����

����

�����

�
�
�
�
�
��
�
�
�
�
�
�
��
�
�

Beam 1 (2048 studies)
Beam 2 (1883 studies)

� �� �� �� �� �� �� �� �� �� �� ��
����

����

����

����

����

����

����

����

�
�
�
�
�
��
�
�
�
�
�
�
��
�
�

Beam 1 (2048 studies)
Beam 2 (1883 studies)

��� ��� ���� ��� ���� ��� ���� ��� ���� ��� ����
����

����

����

����

�����

�
�
�
�
�
��
�
�
�
�
�
�
��
�
�

450. GeV (1389 studies)
7000. GeV (2522 studies)

� �� �� �� �� �� �� �� �� �� �� ��
����

����

����

����

����

����

����

�
�
�
�
�
��
�
�
�
�
�
�
��
�
�

450. GeV (1389 studies)
7000. GeV (2522 studies)

��� ��� ���� ��� ���� ��� ���� ��� ���� ��� ����
����

����

����

����

����

�����

�
�
�
�
�
��
�
�
�
�
�
�
��
�
�

Figure 7. Cont.



Information 2021, 12, 53 13 of 22

nominal optics (250 studies)
ATS optics (536 studies)

� �� �� �� �� �� �� �� �� �� �� ��
���

���

���

���

���

����

�
�
�
�
�
��
�
�
�
�
�
�
��
�
�

nominal optics (250 studies)
ATS optics (536 studies)

��� ��� ���� ��� ���� ��� ���� ��� ���� ��� ����
���

���

���

���

���

�����

�
�
�
�
�
��
�
�
�
�
�
�
��
�
�

HL-LHC v1.0 (717 studies)
HL-LHC v1.3 (1457 studies)
HL-LHC v1.4 (971 studies)

� �� �� �� �� �� �� �� �� �� �� ��
���

���

���

���

���

���

����

�
�
�
�
�
��
�
�
�
�
�
�
��
�
�

HL-LHC v1.0 (717 studies)
HL-LHC v1.3 (1457 studies)
HL-LHC v1.4 (971 studies)

��� ��� ���� ��� ���� ��� ���� ��� ���� ��� ����
����

����

����

����

����

����

����

����

�����

�
�
�
�
�
��
�
�
�
�
�
�
��
�
�

HL-LHC, 7000. GeV, IMO = -420. A

(161 studies)

HL-LHC, 7000. GeV, IMO = -300. A

(315 studies)

HL-LHC, 7000. GeV, IMO = 0. A

(1869 studies)

� �� �� �� �� �� �� �� �� �� �� ��
���

���

���

���

���

���

����

�
�
�
�
�
��
�
�
�
�
�
�
��
�
�

HL-LHC, 7000. GeV, IMO = -420. A

(161 studies)

HL-LHC, 7000. GeV, IMO = -300. A

(315 studies)

HL-LHC, 7000. GeV, IMO = 0. A

(1869 studies)

��� ��� ���� ��� ���� ��� ���� ��� ���� ��� ����
���

���

���

���

���

���

�����

�
�
�
�
�
��
�
�
�
�
�
�
��
�
�

Figure 7. Distribution of outliers as a function of seed (left) and angle (right) for various configurations used in the
numerical simulations performed to compute the DA.

4.3. Fitting the DA as a Function of Number of Turns

Another domain where ML techniques have been applied, with the hope that they
can bring improvements, is the modeling of the DA as a function of the number of turns.
In Section 3, the concept of DA has been introduced and briefly discussed; it can be
estimated by means of numerical simulations that are performed for a given number of
turns Nmax. The main observation is that the DA tends to shrink with time, which is logical
as by increasing the number of turns even initial conditions with a low-amplitude might
turn increase it, either slowly or more abruptly, due to the presence of nonlinear effects.
The second fundamental observation is that the variation of the DA with the turn number
can be described with rather simple functional forms (see, e.g., Equation (12)) that feature
a very limited number of free parameters.

The approach pursued by our research consists of fitting one of the scaling laws to
the numerical data and performing extrapolation over the number of turns N so as to
make predictions of the DA value for N � Nmax that would be inaccessible to numerical
simulations, because of the excessive computing time needed. We stress once more that the
concept of DA at turn number N can be linked with that of beam intensity at the same time
N [28]. This means that the knowledge of the evolution of the DA, i.e., a rather abstract
quantity, can be directly linked to the evolution of the beam intensity in a circular particle
accelerator, which is a fundamental physical observable. This approach has been already
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successfully applied in experimental studies [38] and intense efforts are devoted to refine
and promote the proposed strategy.

A detailed analysis has been presented in Reference [24], where the extrapolation
error has been considered as a key figure of merit to qualify the models describing the
DA evolution. The key improvement that can be brought to the DA modeling by ML is
to improve the extrapolation error. However, it is generally believed that ML has serious
limitations in providing efficient answers to extrapolation problems. Therefore, the devised
approach is based on a different strategy. It consists in training a Gaussian Process (GP)
(see, e.g., [39]) on the available DA evolution data to generate synthetic, though realistic,
points that are used to increase the overall density of points, which are then used to create
the model. In this way, ML is used to provide interpolated points, which is a task that can
be dealt with very efficiently. This considerably improves the extrapolation capabilities of
the fitted model as the results of our studies indicate clearly. In Figure 8 an example of the
proposed fit based on the DA model (14b) with three parameters and with the addition of
synthetic points determined by means of a GP is shown for reference. In this specific case,
the original fit approach and that based on the GP provide very similar results.

0.0 0.2 0.8 1.0

×107

8

9

10

11

12

D
A

[σ
]

Original data

Synthetic data

Fit numerica data

Fit numerical and synthetic data

0.4 0.6

 Nturns

Figure 8. Example of fits of the DA model (14b) with three free parameters, based on a set of data
from numerical simulations. The approach based on the use of synthetic points generated by GP is
also shown. Note that the original fit and that based on GP overlap almost entirely.

Out of the large pool of several thousands of DA simulations performed for LHC
and HL-LHC, a single study with Nmax ≥ 5× 105 has been selected at random and 50
values of turns Ni have been distributed uniformly between N = 1× 104 and N = 1× 105.
The corresponding values DAi = DA(Ni) have been generated by means of the GP and
then a fit of the DA data (numerical plus synthetic points) was performed using model (14b),
and this procedure was repeated 5× 105 times, each time computing the Mean Square
Error (MSE) ε. Note that, indeed, two variants have been tested, namely using three fit
parameters (ρ, µ, κ), or two (ρ, κ), in which µ was expressed as a function of ρ, κ according
to Equation (15). It is worth mentioning that whenever the GP is used, the MSE of the fitted
model is computed disregarding the synthetic points, i.e., using only the points obtained
from the DA simulations. In this way, we can perform a fair comparison between the MSE
for the original fit and that performed with the help of GP.

The resulting distribution of the MSE is shown in Figure 9 (left) for the case of the
three-(top) and two-parameter (bottom) fit.
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Figure 9. (Top row): Distribution of the MSE for the fit of the DA model (14b) with three parameters, after applying a GP to
the DA numerical data 5× 105 times (left) and evolution of εmin as a function of the number of iterations of the GP (right).
(Bottom row): Same, but for the model with two parameters.

The shape of the MSE distribution for the three-parameter fit is located closer to zero
and its width is smaller than the corresponding distribution for the two-parameter fit.
The former is logical as a model with more parameters that has more possibility to tune and
typically will have a better MSE, while the latter implies that the iterative application of the
GP can provide a larger improvement in the MSE in the case of the two-parameter fit. It is
worth noting that while the MSE distribution for the three-parameter fit is right-skewed,
that for the two-parameter fit is left-skewed.

In the right-hand plots of Figure 9, the behavior of the following quantity is shown:

εmin,i = min
0<j<i

{
εGP

j − 〈ε
GP〉

σεGP

}
0 ≤ i ≤ 5× 105 , (17)

which is the minimum, over the iterations of the GP process, expressed as its normalized
distance to the average MSE. The average MSE, 〈εGP〉, and its variance, σεGP , used to
express εmin,i, are calculated over the full set of 5 × 105 iterations and are reported in
Table 1. The initial value εmin,0 is not particularly meaningful, whereas the variation can be
used as an estimate of the rate of improvement of the MSE with the number of iterations of
the GP. Another interesting variable to investigate is the relative gain, w.r.t the original fit,
of the minimum MSE after i iterations:

δ εmin,i =
εoriginal − 〈εGP〉 − εmin,i σεGP

εoriginal 0 ≤ i ≤ 5× 105 , (18)
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which is also reported in Table 1. For both fit types, i.e., with two or three parameters,
a number of iterations of about 103 would seem to induce a sizeable reduction of the MSE.
However, looking at δ εmin, it becomes clear that going from 102 to 103 iterations only
induces an extra gain of around 1% (even considering that εmin,i doubles in case of the
two-parameter fit). This can be explained by observing that 〈εGP〉 is already multiple σεGP

units away from the MSE of the original fit. Knowing this, and taking into consideration
that in the case of analyses of a large set of DA simulations a trade-off between CPU time
and final value of MSE needs to be found, we consider a value of around 102 GP iterations
to be sufficient.

Table 1. Parameters of the MSE distribution for the GP and the original fits, together with εmin,i and
δ εmin,i for i = 102, 103 to show the evolution of the MSE for iterative application of GP.

Fit Type εoriginal 〈εGP〉 σεGP εmin,102 δεmin,102 εmin,103 δεmin,103

[10−3] [10−3] [10−3] [σεGP ] [%] [σεGP ] [%]

Three parameters 3.8 3.2 0.12 −1.02 18 −1.36 19
Two parameters 14.8 6.1 0.15 −1.26 61 −2.34 62

The distribution of the parameters describing the DA evolution with time is shown in
Figure 10 for the three- (top) and two-parameter (bottom) cases.
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Figure 10. (Top row): Distribution of the parameters for the fit of the DA model (14b) with three parameters, after applying
a GP 5× 105 times to the DA numerical data. (Bottom row): Same, but for the model with two parameters. Fits of a
Gaussian functions are also shown for reference.

Gaussian fits to the model parameters are provided for reference, and while these
fits are in excellent agreement with the numerical data for the three-parameter case, slight
asymmetries of the parameter distributions are visible for the two-parameter case. Al-
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though the mean values of the common fit parameters, i.e., ρ and κ, are different for the
two types of fits, the absolute values of their RMS values are very similar.

As mentioned earlier, the main use of the DA models is to provide an accurate tool to
extrapolate DA beyond a number of turns N that is currently feasible with the CPU power
available to our numerical simulations. Therefore, it is essential to probe the accuracy of
the prediction of the fitted model. To this aim, a set of six DA simulations performed using
a LHC lattice at injection energy and with a maximum number of turns of 107 (note that
the standard value of turns is 105, when beam–beam effects are neglected but magnetic
fields errors are included, or 106 when beam–beam effect are included and the magnetic
field errors are neglected). The large number of turns simulated, which accounts for only
889 s of beam revolutions in the ring with respect to several hours of a typical fill, allow the
accuracy of the prediction power of the DA model to be probed accurately. This is done
by setting the value of the maximum number of turns Nmax of the numerical data that
are used to fit the DA model. Such a model is then used to extrapolate the DA up to 107

turns, and the MSE is evaluated over the full set of numerical data up to 107 turns. All of
this is repeated by varying Nmax. The same procedure is applied when the GP is used to
improve the quality of the fitted model. In this case, 75 additional points are uniformly
distributed between 104 ≤ N ≤ Nmax when Nmax = 5× 105, and the number of synthetic
points is linearly increased to reach 750 when Nmax = 5× 106. Once more, we recall that
the synthetic points are not considered when computing the MSE for the GP-based fit,
which ensures a fair comparison between the MSE of the original and GP-based fits. Also
in this application of the GP-based fit, the GP part is repeated 200 times and the minimum
MSE error over the 200 iterations is used. Lastly, all of these protocols are repeated for the
three- and two-parameter fit of the DA model.

The results are shown in Figure 11, where the case of three- and two-parameters fit
are shown in the left and right plots, respectively.
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Figure 11. Evolution of the MSE as a function of Nmax used in the fit of the DA model (14b). The curves refer to the original
fit, with only numerical data, or to the fit including GP-generated synthetic points. The fit with three and two parameters
are shown in the left and right plots, respectively (note the difference in vertical scale for the two plots).

The metrics used to quantify the performance in terms of extrapolation could have
been the determination of the difference between the DA value at 107 turns computed
from numerical simulations and that obtained from the fitted DA models. However, it has
been chosen to apply the MSE computed over the entire set of points from the tracking
simulations. Indeed, this approach is much more robust, as it estimates the fit performance
by using the information carried by the full set of points, rather than a single point.

The key point is that the MSE for the GP-based fit is always better than that of the
corresponding original fit, which clearly indicates the success of the proposed approach.
Some sort of saturation in the decrease of the MSE is visible for Nmax ≈ 2− 5× 106 for the
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three-parameter fit, which indicates that the numerical simulations carried out up until
any of the turn numbers in that interval allow a reliable extrapolation up to 107 turns.
No qualitative difference was observed for the two types of fits: as expected, the initial
MSE value was larger for the case of two- with respect to the case of three-parameter fit.
However, the MSE decreased steadily as a function of Nmax, and the MSE for the GP-based
fit reached a final comparable value no matter the value of the number of free fit parameters.
In fact, as previously mentioned, the GP was more efficient in improving the two- than
the three-parameter fit, as the MSE for Nmax = 5 × 106 was reduced from 1.7 × 10−2

(original fit) to 4.5× 10−3 (GP fit) for the two-parameter case (a reduction of 74%), whereas
a reduction from 8.5× 10−3 (original fit) to 5.8× 10−3 (GP fit) for the three-parameter case
(a reduction of 32%) was observed.

As a last investigation, the behavior of the proposed method based on ML was probed
on a large set of DA simulations, corresponding to 3090 cases of the LHC lattice at injection
energy for various configurations of the strength of the octupoles and values of the linear
chromaticity. The fits were performed using Nmax = 1 × 105 and then extrapolating
the fitted function up until 106 turns and evaluating the MSE. Whenever the GP was
used, 50 iterations were applied (this number is slightly sub-optimal, but it was chosen
as a trade-off between the improvement achieved by the iterations of the GP and the
CPU time required by this study (the generation of the plots shown in Figure 12 took
several hours) and in addition to the MSE for each fit type, the difference of MSE values,
i.e., ∆MSE = MSEoriginalfit −MSEGPfit was considered to provide an easy comparison
between the two approaches. As in the previous studies, both three- and two-parameter
DA models were used and the summary plots are shown in Figure 12.
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Figure 12. Left column: Distribution of the MSE for the fit of the DA model (14b) with three parameters (top), after applying
a GP 50 times to the DA numerical data (middle), and difference of the MSE for the two approaches (bottom). Right column:
Same, but for the model with two parameters. Note the difference in horizontal scale between the left and right plots.

The results for the three-parameter fit are reported in the left column, whereas those
for the two-parameter fit are reported in the right one. In the first and second rows the
distribution of the MSE for the original fit and for that with GP are shown, respectively;
whereas in the third row the distribution of ∆MSE is reported. Globally, the MSE for the
three-parameter fit is smaller than that of the two-parameter fit, and the fit with GP has
a better performance in terms of MSE than the original one. This is clearly visible for
the two-parameter fit, but is also the case for the three-parameter variant. This can be
appreciated in Table 2, where some statistical parameters of the distributions are reported:
the improvement in terms of MSE distribution brought by the GP is clear, and very much
visible, in particular for the two-parameter fit.

Table 2. List of the statistical parameters of the MSE distributions shown in Figure 12.

Three Parameters Two Parameters
Original Fit GP Fit Original Fit GP Fit

Mean [10−3] 9.93 7.78 24.43 11.17
Median [10−3] 6.91 5.09 9.87 7.00
Standard deviation [10−2] 1.03 0.88 5.02 1.33

As far as the distribution of ∆MSE is concerned, its positive part shows how many DA
simulations have been improved by means of the GP fit, wheres the negative part shows
the case in which the GP fit has worsened the DA model. Although there are some DA
simulations for which the GP fit produced a slight worsening, it is worth mentioning that
this set corresponds to 13% and 8% for the three- and two-parameter fits, respectively. It
is exactly for this reason that one should not use a single iteration of the GP process as
a means to improve the fit. As mentioned before, a value of around 102 iterations seems
appropriate to improve the fitting quality overall.

5. Conclusions

In this paper, results of some recent applications of ML techniques to the analysis of
nonlinear beam dynamics in the LHC and its luminosity upgrade have been presented and
discussed in detail. Two topics have been addressed, namely the identification of outliers
in dynamic aperture simulations and the improvement of the fit of DA models to numerical
simulation data.

In both cases, the ML techniques proved to be an efficient approach to improve
the current status of our tools. Outliers can be effectively identified and rejected using
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techniques to analyze the distribution in phase space of points obtained via numerical
simulations. Analysis of dynamic aperture evolution with number of turns also showed
considerable improvement by using a Gaussian process to add synthetic data to numerical
simulations, improving the reliability of fits of recently developed models for DA evolution
and aiding in the extrapolation of such numerical simulations to timescales relevant to
collider operation.

All in all, the very encouraging results presented in this paper confirm the possibility
of creating a fruitful exchange between the domain of ML and nonlinear beam dynamics.
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ATS Achromatic Telescopic Squeezing
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DBSCAN Density-Based Spatial Clustering of Applications with Noise
DL Deep Learning
GP Gaussian Process
HL-LHC High-Luminosity LHC
LEP Large Electron Positron collider
LHC Large Hadron Collider
LOF Local Outlier Factor
ML Machine Learning
MSE Mean Square Error
NA Not applicable
RBF Radial Basis Function
RL Reinforcement Learning
RMS Root Mean Square
SL Supervised Learning
SVM Support Vector Machines
UL Unsupervised Learning
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