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Abstract
Cancer remains one of the highest leading causes of morbidity and mortality worldwide. 
Anthracyclines, specifically Doxorubicin (DOX), have been used for the past three decades as a 
treatment against a number of cancers. However, its use has been limited due to its severe side 
effects and toxicity arising during or after treatment. Ample research has already taken place and 
is still being undertaken in order to understand the mode of action of anthracyclines, including 
DOX. However, despite the work carried out; the mechanisms proposed remain controversial. 
Other research has also taken place to get a better understanding of the cell death and growth arrest 
pathways triggered by DOX. Even though DOX remains one of the most effective chemotherapeutic 
drugs, resistance development in cancer cells remains a major barrier to effective treatment when 
using this drug. Apart from the already known mechanisms of DOX chemoresistance, research 
has shown that post-translational modifications on certain proteins can also contribute to DOX 
chemoresistance. However, the mechanisms by which DOX resistance arises remain poorly 
defined. This review tackles some of the currently understood and proposed models for the mode 
of action of DOX, including the cell death mechanisms triggered by DOX and the DOX resistance 
mechanisms arising during treatment. By further understanding how DOX functions, its influence 
on cell biological events and the mechanisms contributing to DOX resistance; it can further help in 
improving the efficiency and efficacy of the drug, together with decreasing its toxicity.
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Introduction
Doxorubicin (DOX) is an anthracycline antibiotic, which was first extracted from Streptomyces 

peucetius var. caesius and has been used as an effective treatment against a number of cancers [1,2]. 
When used as primary treatment, it has shown positive results in adult and childhood cancers, 
including both solid tumors and hematological malignancies [1,3,4]. It is used mostly for breast 
cancers [5,6], multiple myelomas [7], soft tissue sarcomas [7,8], non-Hodgkin lymphomas [9], 
childhood solid tumors [10], lung cancers [11] and acute leukemia's [12]. Even though DOX has 
shown great efficacy in killing rapidly dividing cells and delaying the progression for solid and liquid 
tumors, drug resistance and several side effects end up developing throughout the DOX treatment, 
making it a major limitation as an effective cancer treatment [11,13,14].

Despite being used as a chemotherapeutic drug for the past three decades, the molecular 
mechanisms by which DOX functions, resulting in cell death, still remain unclear. Furthermore, the 
mechanisms by which chemoresistance arise during DOX treatment are still not properly defined. 
In addition to already known mechanisms of DOX chemoresistance, research has shown that post-
translational modifications on certain proteins contribute to DOX chemoresistance. Understanding 
the actions of DOX and other related drugs classified as anthracyclines, can help in enhancing 
cancer cell cytotoxicity reducing the side effects/toxicity, and preventing DOX chemoresistance 
from arising during treatment.

Chemical structure
DOX is a non-selective class I anthracycline drug, consisting of two different moieties. The 

aglyconic moiety consists of tetracyclic (anthraquinone) rings having a quinine-hydroquinone 
adjacent group and a methoxy substituted short chain followed by a hydroxy group. The second 
moiety is a daunosamine and consisting of a 3-amino-2,3,4-trideoxy-L-fucosyl moiety, which 
is attached via a glycosidic bond to one of the tetracyclic rings [14-16]. A number of active sites 
including three functional groups: Ketone, amine and hydroxyl are present in the structure (Figure 
1). Besides hydrophobic interactions possible through the rings, the functional groups allow 
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electrostatic interactions such as hydrogen bonds to occur between 
DOX and other molecules [4,17,18].

Mechanisms related to cell death
The mechanisms by which DOX acts are common to both the 

cancer cells that the clinical treatment aims to attack, as well as healthy 
cells that are affected as a side effect of this treatment [14]. DOX has 
been found to function through several mechanisms. However, the 
biological process which is affected depends on a number of factors 
such as the cancer type, patient genotype, treatment length and 
DOX dosage used [4]. The following section includes the known 
mechanisms of action for DOX, without going into which mechanism 
is the most effective, or which gives rise to toxicity.

DNA alterations: DOX enters the cell via passive diffusion and 
once in the cytoplasm it forms a complex with the 20S subunit of 
the proteasome (Figure 2) [8,19]. This complex can enter the nucleus 
via nuclear pores, were it interacts with RNA and DNA found in the 
nucleus. Such interactions occur due to the aglyconic and daunosamine 
moieties present in the DOX structure (Figure 1), which enable the 
molecule to intercalate itself into the DNA (Figure 2), resulting in 
the disruption of DNA repair [20]. Even though the details of this 
molecular mechanism are still unknown, several in silico studies have 
been performed and models have been proposed [3,11,13,21,22], with 
researchers making use of new techniques to study such interactions 
such as investigating the binding free energy or affinity of DOX 
once intercalated into the DNA using computational theories and 
models [15,23-27]. However, the following are some of the current 
hypotheses suggested for how such DNA alterations occur.

As show in Figure 1, the three functional domains present in the 
DOX structure can help it interact within the DNA. Intercalation takes 
place via the anthraquinone rings present, which enable the molecule 
to intercalate itself into the DNA [15,24,28-30]. Furthermore, the 
daunosamine present is responsible for the formation of a covalent 
aminal bond (N-C-N) via the 3’NH2 group and the N2 of the guanine 
base in the DNA minor groove [31-33]. A cellular formaldehyde 
arising via free radical reactions from lipids offers the carbon in 
the aminal bond [13,31]. Hydrogen bonding between the hydroxyl 
group of the anchor region and the complementary DNA strand 
helps stabilize the DOX-DNA mono-adduct created [31,32]. It is 
proposed that eventually the DNA strands separate, giving rise to 
condensed chromatin, which triggers apoptosis [4]. However, the 
exact mechanism of how DOX intercalates itself between the DNA 
strands is still not clear and remains a debatable subject.

One of the most supported hypotheses for DNA alterations 
by DOX is through its action on topoisomerase II. DOX traps the 
topoisomerase II at the cleavage site, resulting in the cleavage 
complex stabilizing itself, preventing the DNA from resealing, 
and thus blocking DNA replication and resulting in cell death by 
apoptosis (Figure 2) [34,35]. Type IIA topoisomerases (TOPO IIα 
and TOPO IIβ) in particular are the ones targeted by DOX [34]. 
The increased effectiveness of the drug in DOX-sensitive tumors has 
been reported to be due to DOX-DNA adducts which form because 
of DOX intercalating itself in the DNA GC base pairs via covalent 
hydrogen bonds [21,36-38]. This intercalation can destabilize the 
nucleosomes present due to the torsional stress generated as shown 
from experiments carried out on mouse squamous carcinoma 
cells before and after DOX treatment [39,40]. Besides torsional 
stress, topoisomerase II inhibition also leads to the enhancement 
of nucleosome turnover downstream of promoters. However, 

there is still no evidence which confirms the intercalation of DOX 
into promoters and genes, which results in interference with the 
nucleosomes during transcription [41].

Free radicals and reactive oxygen species (ROS) production: 
Free radicals and ROS can be produced by DOX through several 
mechanisms (Figure 2). ROS overproduction and reduction of 
antioxidants gives rise to oxidative stress, which leads to damage of the 
nuclear material, proteins, and lipids, all of which cause cell damage 
and death [14,42]. Enzymes required for cell protection can also be 
damaged and such oxidative damage could be the cause of chromatin 
and DNA damage [14]. In fact, DOX has been shown to trigger the 
Liver Kinase B1 (LKB1) enzyme, which is needed for AMP-Activated 
Protein Kinase (AMPK) activation via upstream signaling. Apoptosis 
due to p53 phosphorylation is initiated by such signaling [14,43]. The 
following are some of the hypothesized ways by which free radicals 
and ROS are generated due to DOX.

The quinone in the DOX structure (Figure 1) is oxidized by the 
mitochondrial complex NAD(P)H-oxidoreductases (Complex I) 
and NADPH-Oxidases (NOXs). This results in the formation of a 
semiquinone radical due to the addition of an electron by these two 
complexes [3,44]. An oxygen molecule reacts with the semiquinone 
radical generated, forming a Superoxide Anion (O2

-) which helps in 
the production of other ROS such as Hydrogen Peroxide (H2O2

-), 
peroxynitrite and hydroxyl radicals. Research shows that the 
semiquinone is converted back to its original quinone form by 
glutathione [4], which enables the DOX molecule to generate larger 
amounts of superoxide anions in a quinone-semiquinone cycle 
(Figure 2) [45,46]. NOXs can be activated by DOX too, which initiates 
the apoptotic pathways in cardiac cells due to the free radicals formed 
such as peroxynitrite (formed from the reaction of nitric oxide with a 
superoxide anion) [47,48].

Iron metabolism is also affected due to DOX treatment, as 
research has shown that DOX interacts with the Iron Regulatory 
Proteins (IRPs) and ferritin, affecting iron homeostasis which can 
lead to ROS-dependent or independent damage, as well as cell death 
by apoptosis [49]. A number of pathways have been proposed with 
regards to the DOX interaction with the IRPs. Research carried out 
on cell-free systems showed that after interaction with Doxorubicinol 
(DOXol - reduced DOX), IRP1 first loses the [4Fe–4S] cluster and 
then ROS change it to a ‘null’ protein, missing both RNA-binding 
and enzymatic activities [50,51]. However, other research showed 
that the ‘null’ protein is formed due to a DOX-iron complex [52]. 

Figure 1: Chemical structure of Doxorubicin in its neutral form. Ring A is 
bound via a glycosidic bond to Ring D known as daunosamine, ring B is the 
hydroquinone and ring C is the quinone. Retrieved from Micallef, 2020 [18].
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Iron atoms can also be released from the Fe–S cluster of IRP1, which 
could facilitate iron-mediated free radical formation and apoptosis 
[49]. Iron metabolism is altered because of an increase in Iron (Fe2+) 
concentration, released from ferritin and cytoplasmic aconitase due 
to being promoted by DOX semiquinone and the ROS (H2O2 and O2

-) 
and due to the release of iron from cytoplasmic aconitase promoted 
by DOXol (Figure 2) [14].

The Topoisomerase II (TOP II) enzyme involved in DNA 
replication can also contribute to the production of ROS. In fact, the 
Topoisomerase 2β (TOPO IIβ) subunit can give rise to the formation 
of ROS upon DOX administration [53].

Lastly, calcium homeostasis is also hindered by DOX, which can 
result in a higher permeability of the Mitochondrial Permeability 
Transition Pore (MPTP) and thus its opening (Figure 2). DOX 
interferes with calcium homeostasis by inhibiting the calcium-
conducting enzyme Adenosine Nucleotide Translocase (ANT). 
This damages the mitochondria’s ability to obtain calcium from the 
cytoplasm and also increasing susceptibility to mitochondrial calcium-
induced depolarization and increased MPTP permeability [54]. 
Furthermore, DOX can alter calcium conducting ANT by inhibiting 
calcium homeostasis [4]. Alteration in intracellular calcium levels 
by DOX treatment also results in the alteration of muscle function, 
such that due to changes in the response of myotubules, contraction 
is restricted, and skeletal muscle relaxation is disrupted [55]. DOXol 
interferes with the cardiac calcium release channel (RYR2) found 
in the Sarcoplasmic Reticulum (SR), which results in cardiotoxicity 
(Figure 2) [56]. In addition, Ca2+ increases due to an increase in 
the opening of the Ryanodine Receptor (RYR) in the SR because of 
DOX-mediated ROS. The higher Ca2+ concentration results in further 
generation of ROS [57]. Lastly, if the intracellular Ca2+ level rises, ROS 
generation is promoted, together with mitochondrial permeability 
(also regulated due to a transition in the opening of MPTPs), which 
releases cytochrome c needed for apoptosis (Figure 2) [58-60]. 

Cell membrane alterations: DOX can decrease the fluidity and 
lipid organization of reconstituted biological membranes [61]. It does 

so due to its high affinity for the negatively charged membranes, which 
enables it to bind to the inner mitochondrial membrane giving rise to 
lipid peroxidation [62,63]. DOX is converted to lipophilic aglycone 
(DOX aglycone), which is capable of diffusing through the outer 
mitochondrial membrane where it then accumulates. Furthermore, 
the aglycone activates a number of reactions, which release electrons, 
generating a number of ROS that interfere with the respiratory chain 
(Figure 2) [46]. Mitochondrial dysfunction due to DOX treatment 
results in ATP deficiency, especially in cardiomyocytes [61,64]. In 
addition, cardiac injury also results due to an increase in proteotoxic 
load, which results due to protein degradation overwhelming the 
endoplasmic reticulum and mitochondria [14,65]. Lastly, the MPTPs 
generated due to DOX-induced peroxidation of mitochondria give 
rise to intrinsic apoptosis and necrotic cell death [66].

Ceramide overproduction: Ceramides are a class of lipids 
synthesized in the endoplasmic reticulum via the condensation of L‐
serine and palmitoyl CoA by serine palmitoyltransferase producing 
3‐ketosphinganine, which is then reduced to dihydrosphingosine 
[67-69]. The dihydrosphingosine undergoes N-acylation followed 
by desaturation to generate ceramide [69-71]. This class of lipids is 
involved in apoptosis, growth arrest and senescence of cells and has 
been shown to increase the cellular uptake of DOX via its short chain 
sphingolipid [72-73]. The level of ceramide has also been shown to 
increase in patients treated with DOX [74,75] and has been related to 
DOX resistance [76]. Unfortunately, it is still a poorly explored area 
and requires further research in order to determine the mechanism 
by which DOX modulates the formation of ceramide.

Cell death mechanisms due to DOX
Any DOX-induced damage or DNA fragmentation that results by 

any of the previously mentioned mechanisms or any other mechanism 
which is still to be understood, may induce a number of cellular events, 
which lead to growth arrest or cell death [4,77]. Research shows that 
apoptosis, autophagy, senescence, and necrosis are the cellular events 
triggered during DOX treatment [78]. However, recently other forms 
of regulated cell death have been shown to also be initiated by DOX, 

Figure 2: Molecular mechanisms initiated by DOX.
Abbreviations: ATP: Adenosine Triphosphate; Ca2+: Calcium; Fe2+: Iron; NOX: NAD(P)H Oxidase; O2: Oxygen; O2-: Superoxide Anion; MPTP: Mitochondrial 
Permeability Transition Pore; ROS: Reactive Oxygen Species; RYR2: Cardiac Calcium Release Channel. Adapted from Varela-Lopez et al. [14].
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in particular necroptosis, pyroptosis and ferroptosis, but how DOX 
contributes to these pathways is not yet understood [79].

Apoptosis: This pathway is initiated when the cell attempts to 
repair the damage cause by DOX. However, this is inhibited due to 
DOX, thus cellular growth is hindered by arrest at the G1 and G2 
phases. Most of the time, apoptosis is initiated via caspase‐dependent 
pathways that can be extrinsic or intrinsic, but apoptosis can also be 
achieved through a caspase- independent pathway [4].

DOX initiates the extrinsic pathway by regulating the Fas receptor 
protein which is a type I transmembrane glycoprotein. This receptor 
present on the surface of several cells can trigger signal transduction 
pathways which lead to apoptosis [80]. It does so by interacting with 
the Fas Ligand (FasL), which is a type II transmembrane protein [81]. 
Both proteins are part of the Tumour Necrosis Factor (TNF) receptor 
family [81]. The extrinsic apoptotic pathway is triggered by DOX due 
to this drug down regulating the Fas proteins, which is an inhibitor of 
FasL [82,83]. However, the FasL protein can also be up regulated due 
to DOX activating the calcium/calcineurin signaling pathway, which 
activates the Nuclear Factor-Activated T cell 4 (NFAT-4) [82,84]. 
DOX can also activate NF-κB (Nuclear Factor Kappa B) via ROS 
which increases the activity of a number of pro-apoptotic genes such 
as p53 and FasL [4,82,85,86].

DOX initiates the intrinsic pathway by inducing AMPK [43,63], 
which initiates p53 and c‐Jun N‐terminal Kinase (JNK) and inactivates 
the mammalian target for Rapamycin Complex 1 (mTORC1) [4]. The 
B-cell lymphoma 2/Bcl-2-associated X (Bcl-2/Bax) ratio is altered 
due to DOX activating AMPK, as this ratio determines whether the 
cell survives or dies via apoptosis [43]. This alteration results in the 
release of the cytochrome c complex from the mitochondria, which 
forms a complex with apoptotic protease-activating factor 1 (Apaf-1) 
and procaspase-9. This leads to the activation of a number of other 
caspases (-3, -6 and -7) which gives rise to cell death by apoptosis 
[63,82,87].

Although the extrinsic and intrinsic pathways function differently, 
the two pathways interlink together, since p53 protein can increase 
the stimulation of pro-apoptotic receptors present in the extrinsic 
pathway while caspase 8 can increase the intrinsic function of BAX 
found in the intrinsic pathway [4,87].

Autophagy: With this pathway the cell protects itself via a 
degradation process, through which it recycles its cellular materials, 
macromolecules and organelles using lysosomal hydrolytic enzymes 
[88]. DOX brings about autophagy due to the oxidative stress 
generated by the ROS which forms in complex 1 (NADH ubiquinone 
oxidoreductase) of the electron transport chain present in the 
mitochondria. Autophagy occurs due to AMPK and calmodulin 
dependent kinase, which are triggered by the ROS damage affecting 
the calcium-handling proteins and also brings about an increase in 
the concentration of calcium. Due to the mitochondrial function and 
energy production disruption, AMPK is up regulated, which leads to 
the inhibition of mTOR and the up regulation of JNK [89]. JNK up 
regulation and mTOR inhibition leads to the activation of Unc-51-like 
kinase 1 (Ulk‐1) and dephosphorylation of Autophagy related protein 
13 (Atg13) and Family Interacting Protein of 200 kD (FIP200), which 
are needed for the formation of a pre-autophagosome membrane. In 
addition, Bcl-2 is dissociated from beclin-1 due to the up regulated 
JNK, thus a complex made up of Vacuolar protein sorting 34 (Vps34), 
beclin‐1 and Vacuolar protein sorting 15 (Vps15) is formed which is 

needed for the maturation of the autophagosome [4]. This shows that 
JNK regulates the maturation of the autophagosome for autophagy 
to occur [90].

DOX can cause autophagy by triggering poly (ADP-ribose) 
Polymerase-1 (PARP-1), which then inhibits mTOR when the cell 
is under stress or lacks the required nutrients in order to survive 
[63,91,92]. It has been shown that dysregulation in the autophagy 
pathway leads to DOX-induced cardiac injury and cardiotoxicity 
[14,93-95]. However, in vitro experiments on tumour-bearing mouse 
models showed that if co-treated with rapamycin, the cardio toxic 
effects of DOX, autophagy initiation and autophagosome formation 
were attenuated [96]. Lastly, it has been hypothesized that low levels 
of autophagy encourage cell survival by preventing apoptosis from 
occurring, while if autophagy is up regulated, programmed cell death 
is promoted, as excessive degradation of proteins and organelles 
disrupts energy homeostasis [97,98].

Necrosis: Necrosis is commonly stimulated when ATP levels 
are depleted, which make it less likely for the cell to survive. The 
cytotoxic actions caused by DOX, damage to DNA and oxidative 
stress, can stimulate this cell death pathway. This is because the ROS 
generated due to DOX give rise to higher mitochondrial calcium 
concentrations, resulting in decreased ATP due to the cyclophilin 
D‐dependent MPTP opening and mitochondrial swelling [99]. Most 
tumors have mutations that hinder apoptosis from taking place, 
thus allowing cells to continue growing past normal growth cycle 
checkpoints. Necrosis could explain how chemotherapeutic drugs 
such as DOX still induce cell death when other pathways are blocked 
[100]. Thus, if apoptosis cannot be triggered, programmed necrosis 
gives DNA‐damaged proliferating cells another means of death, 
which is triggered by PARP‐1 and H2A histone family member X 
(H2AX) [99]. Programmed necrosis is also triggered via the TNF and 
TNF-Related Apoptosis-Inducing Ligand (TRAIL) death receptor 
proteins, which stimulate the Receptor-Interacting Protein (RIP) 
by inhibiting caspase 8 [99,101]. However, the way in which DOX 
contributes to this pathway is yet to be understood.

Senescence: DOX can also trigger the cells to stop dividing and 
proliferating but remaining active, giving rise to the phenomenon 
of senescence. The pathways involved in inhibiting cell growth are 
similar to those involved in triggering other cell death pathways. The 
p53 protein is induced by DOX, which results in the upregulation of 
the cyclin-dependent kinase (cdk) p21 protein and downregulation of 
cdc2/cdk1 [78]. Despite DOX upregulating p53, which can result in 
senescence taking place, this phenomenon may not always contribute 
to DOX activity [102,103]. Under DOX treatment, senescence 
showed to be an alternative pathway used by the cells when apoptosis 
is inhibited [104,105]. However, others showed that autophagy is 
triggered when the cells cannot undergo apoptosis, with senescence 
being a secondary downstream response when both are inhibited 
[78].

DOX chemoresistance
Despite DOX being a suitable therapeutic agent for patients 

suffering from different cancers, the patient can become resistant to 
the DOX being administered. Most of the studies carried out on DOX 
resistance focus on signaling pathways and the ATP-Binding Cassette 
(ABC) drug efflux transporters [106-108]. However, different non-
metabolic pathways and recently, post-translational modifications, 
have also been shown to be involved in DOX resistance.
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Signaling pathways: Signaling pathways stimulate DOX 
resistance by inducing cell cycle progression, activating replication, 
and preventing apoptosis and autophagic cell death from taking place 
[109,110]. Apoptosis and autophagic cell death are not triggered due 
to down regulation of certain molecules (caspase-3/7/8/9, Bcl-2, p62, 
microtubule associated protein Light Chain 3 (LC3)-I/−II) responsible 
for initiating said pathways. Christowitz et al. [110] showed that DOX 
failed to induce cell death via apoptosis or autophagy, which hinted 
to drug resistance when treating breast cancer cells with different 
DOX doses. The signaling pathways involving phosphoinositide 
3 kinase (PI3K) and Mitogen-Activated Protein Kinase (MAPK)/
Extracellular-signal-Regulated Kinase (ERK) contribute to DOX 
resistance [109,110]. Both pathways tend to work in conjugation, 
but which pathway has a greater effect on DOX chemoresistance 
is inconclusive and controversial [111]. Jin et al. [112] showed that 
PI3K/Akt pathway had a greater effect on chemoresistance than 
the MAPK pathway in breast cancer, while Christowitz et al. [110] 
showed that the MAPK pathway has a greater effect.

The MAPK/ERK pathway promotes DOX resistance due to its 
importance in safeguarding cancer cells from oxidative stress, with 
elevated phosphorylated ERK levels in DOX resistant breast and 
hematopoietic cells [110,113,114]. ROS production following DOX 
treatment can trigger Platelet-Derived Growth Factor Receptor α 
(PDGFRα), which increases the initiation of the MAPK/ERK pathway 
together with other MAPK pathways, including the p38 and JNK 
pathways [110,113,115]. The ERK pathway regulates the initiation of 
apoptosis due to stress created by the cells, such as the DNA-damage 
arising due to DOX [115].

The PI3K pathway can encourage both tumorigenesis and DOX 
chemoresistance by upregulating Akt phosphorylation [109,110,116]. 
Three AKT isoforms (AKT-1,2,3) exist, with all three phosphorylated 
and un-phosphorylated forms contributing to DOX-resistance in 
endometrial cancer [117], while AKT1 contributes to DOX resistance 
in breast cancer [114,118-120].

Multidrug resistance transporters: Over expression and up 
regulation of ATP membrane transporters are one of the most 
understood mechanisms of DOX resistance (107,121,122). These 
transporters are a super family of membrane proteins which make 
use of ATP hydrolysis to transport exogenous and endogenous 
substances across membranes against a concentration gradient 
[123]. Several ABC transmembrane pumps have been discovered, 
but the ones which contribute to DOX resistance include: multidrug 
resistance 1 or P-glycoprotein (MDR1 or P-gp), multidrug resistance 
3 or 5 (MDR3 or MDR5), multidrug resistance-associated protein 
1 or 2 or 3 or 5 or 6 (MRP1/2/3/5/6) and Breast Cancer Resistance 
Protein (BCRP) [107,123,124]. MDR1 and MRP1 are the transporters 
mostly implicated in drug resistance [122,125].

The MDR1 (P-gp or ABCB1) pump present at the apical 
membrane of a number of different cells has a broad range of substrate 
specificity, with DOX being one of them [124]. It has been proven 
to cause DOX resistance when unregulated in chronic lymphocytic 
leukemia, epidermoid carcinoma cells, bladder, endometrial, ovarian, 
breast, and colorectal cancer [122,124,126-131]. This is due to the 
P-gp recognizing and removing DOX from the lipid bi layer of the 
cell membrane using energy obtained from ATP hydrolysis [132]. 
Furthermore, different leukemia, ovarian, breast and colon cancer 
cell lines have been shown to become DOX resistance due to up 
regulation of the MDR3 (or ABCB4) transporter [128,133-135]. 

The efflux transporter, MDR5 (or ABCB5), specifically expressed in 
melanoma cells has been shown to confer DOX resistance due to 
being significantly up regulated under DOX treatment [136,137]. 
In addition, another study reported DOX resistance due to this 
transporter when using liver cancer as a cell model [138].

The BCRP (ABCG2 or MXR or ABCP) transport pump, which 
commonly functions as a defense mechanism against toxins and 
xenobiotics can control the excretion and absorption of potentially 
toxic substances, including chemotherapeutic drugs [139]. When up 
regulated, it gives rise to DOX resistance in breast, osteosarcoma, and 
prostate cancer [128,130,139-142].

The MRP1 (gene symbol ABCC1) drug transporter was the 
first cloned ABCC protein to contribute to DOX resistance due to 
being overexpressed when treating human lung carcinoma cells 
[123,143]. In addition, other reports have shown that this drug 
transporter also causes DOX resistance in breast, bladder, colorectal 
and prostate cancer and acute lymphoblastic leukemia [122,126,144-
147]. MRP2 (ABCC2 or cMOAT) has also been shown to contribute 
to DOX resistance by mediating its efflux when under treatment, 
such as in oesophageal squamous cell carcinoma, bladder and breast 
cancer [126,130,148,149]. Upregulation of the MRP3 (ABCC3 or 
MOAT-D) in lung and bladder cancer gives rise to DOX resistance 
[126,128,150,151]. Furthermore, Sodani et al. [152] stated that DOX 
is not a substrate for the MRP5 (ABCC5 or MOAT-C) transporter 
protein. However, different reports have shown that MRP5 does 
indeed contribute to DOX resistance in different cancer cells 
including lung cancer and also in MRP5-transfected embryonic 
kidney cells [153,154]. Lastly, DOX resistance can also develop when 
MRP6 (ABCC6 or MOAT-E) is up regulated in ovarian and breast 
cancer [130,151,152,155].

In the past several years, the scientific community has 
increased its understanding of the role of most drug transporters 
in chemoresistance. However, the mechanism by which these 
transporters act to transport drugs and their inhibition is still poorly 
understood at a molecular level.

Epithelial-mesenchymal transition (EMT): Throughout the 
process of EMT, cell-to-cell adhesion in epithelial cells decreases, 
causing the cell cytoskeleton to alter itself making cells more motile, 
showing changes towards a mesenchymal phenotype [156,157]. The 
changes that cells undergo through this process, mainly the reduction 
in expression of E-cadherin and up regulation of Vimentin and 
N-cadherin, together with other markers, can contribute to DOX 
chemoresistance [157]. The EMT process can be induced by anti-
cancer drugs and it can give rise to the formation of chemo resistant 
metastases [158]. DOX resistance due to EMT changes has been 
shown to arise in a number of cancers, particularly colorectal, gastric, 
breast and liver cancer [121,158-162].

DNA repair: As previously discussed, DOX forms covalent DNA 
adducts and alters the function of TOP II. Both these modes of action 
can eventually give rise to resistance. Thus, DNA damage repair 
becomes an important contributor to drug resistance. However, 
if cells lack the proteins involved in the DNA repair pathways, the 
cells cannot repair the damage present. In fact, Spencer et al. [163] 
showed that Nucleotide Excision Repair (NER) and Homologous 
Recombination (HR) play an important role in the repair of 
anthracycline–DNA adducts. This study showed that cancer cells in 
which these two DNA damage repair systems work efficiently can 
overcome the cellular damage induced by DOX.
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Specific proteins: Together with AKT, XIAP (X-linked inhibitor 
of apoptosis protein) is another anti-apoptotic protein which can give 
rise to DOX chemoresistance, in certain cancers [164]. Inhibitors 
of Apoptosis Proteins (IAPs) block apoptosis either by binding 
and inhibiting specific caspases, or through caspase-independent 
mechanisms [165]. XIAP engages in the PI3K/AKT pathway to 
safeguard the cells by acting as an AKT promoter through its 
interaction with Phosphatase and Tensin Homolog (PTEN), as an 
E3 ubiquitin ligase. Thus, it negatively regulates the PTEN protein 
and its cytosolic/nuclear localization, preventing the completion of 
apoptosis in resistant cells [116,166]. In fact, XIAP was up regulated 
in epidermoid carcinoma cells, breast, and endometrium cancer, 
with results showing that XIAP contributed to DOX resistance 
[116,129,164].

The Estrogen Receptor (ER) together with ERα/β, responsible 
for promoting cell proliferation and tumorigenesis [167] can also 
give rise to DOX chemoresistance in certain cancers [168]. High 
concentrations of ERα in breast cancer have been shown to contribute 
not only to DOX resistance but also to other chemotherapy treatments 
[168,169].

DOX-mediated DNA damage can also trigger cell cycle arrest 
[170] due to the p53 tumour suppressor being activated. However, 
p53 can also regulate the transcription of the p16 and p21 genes, 
which are needed for DNA repair, cell cycle control and apoptosis 
[170,171]. DOX can fail to induce cell cycle arrest, causing DOX 
resistance, either due to the p53 or p21 protein being mutated or due 
to failure of upstream pathways that stabilize and post-translationally 
initiate wild-type p53 [110,172,173].

Mutations or abnormal expression of the TOPO IIα subunit, 
cytoplasmic rather than nuclear localization of TOPO IIα and 
suppression of TOPO IIα-mediated apoptotic signaling can all 
contribute to DOX resistance [174]. How DOX resistance is linked to 
increase TOPO IIα in relation to tumour growth is still not understood. 
One hypothesis is that for the cells to survive high expression of 
this enzyme, they down regulate the apoptotic program commonly 
triggered by DNA strand breaks [175]. Another proposed hypothesis 
is that the high expression levels are linked to the development of 
mutations in this enzyme, which result in decreased DOX sensitivity 
[176]. An additional mechanism of DOX resistance could be through 
the reduction in TOPO IIα expression and increase in the β-isoform 
of TOPO II that is less sensitive to DOX [35,175]. Certain DOX 
resistant hepatocellular carcinoma cell lines have shown an increased 
TOPO IIa expression as opposed to the proposed down regulated 
expression [177]. However, breast cancers with depleted TOPO IIα 
have an increased resistance to DOX [178].

Post-translational modifications: By examining post-
translational modifications of proteins, one can determine 
whether a patient is benefiting from the chemotherapy regimen 
being administered. In addition, it is possible to study if certain 
modifications are dominant upon resistance. Certain post-
translational modifications have been shown to potentially contribute 
to DOX chemoresistance.

The p21 protein has been shown to be methylated by Protein 
Arginine N-Methyltransferase 6 (PRMT6) at arginine 156 under both 
in vitro and in vivo conditions, which helps increase the cytoplasmic 
localization of p21. When treating Hela and 293T cell lines, DOX 
chemo sensitivity was reported to have decreased due to PRMT6-
mediated methylation, which increased the cytoplasmic localization 

of p21 through enhanced phosphorylation [179]. This result showed 
that the methylation-mediated p21 translocation appears to affect the 
regulation of cell cycle progression and apoptosis in response to DNA 
damage. Thus, p21 translocation promoted by PRMT6-mediated 
methylation appears to reduce DOX chemo sensitivity [179].

In certain tumour types, the protein chaperone Hsp60 is pro-
carcinogenic by interfering with apoptosis and tumour cell death 
[180]. When treating NCI-H292 lung cancer cell lines with DOX, 
Gammazza et al. [181] reported a significant increase in HSP60 
lysine acetylation. This post-translational modification hinders the 
formation of the HSP60/p53 complex and promotes its dissociation, 
which resulted in an increased level of free p53. They proposed that 
this free p53 activated the p53-dependent pathway, inducing the cell 
senescence detected by the Senescence-Associated beta-galactosidase 
(SA-β-gal) activity assay. In this state, the cells cannot divide and 
become unresponsive to growth signaling and resistant to apoptosis.

Liu et al. [182] showed that post-translational modifications on 
histones H3 and H4 can contribute to DOX resistance in the acute 
and chronic leukemia cell lines HL60 and K562 respectively. An 
increased level of H3K9 methylation, H3K14, H3K18 and H3K23 
acetylation, and potentially H4K20 methylation, are associated with 
drug resistance in both cell lines. They proposed that despite H4K20 
and H3K9 losing their methylation marks during tumorigenesis; 
they may re-gain some of this methylation pattern, together with the 
deactivation of certain genes to give rise to DOX-resistance. Despite 
Liu et al. [182] observed increased levels for the respective epigenetic 
modifications; Vasyl et al. [183] reported a loss of histone H4K20 
methylation and a loss of histone H3K9 acetylation when studying 
DOX resistance using the MCF-7 breast cancer cell line. In addition, 
Vasyl et al. [183] also detected an increase in phosphorylation of 
histone H3S10, in DOX resistant MCF-7 when compared to the 
parent cell line. While both studies provide insights on epigenetic 
changes taking place as the cells gain DOX resistance, the mechanisms 
and genes underlying such histone modifications remains unknown.

Conclusion
DOX can effectively treat a number of cancers through its different 

modes of actions. However, it has been limited in its use due to the 
severe toxicity arising during and after treatment. Toxicity arises due 
to the different modes of actions DOX utilizes in order to inhibit the 
growth of the tumour. In addition to this, different cellular events 
can be triggered by DOX, all of which are responsible for cell cycle 
arrest or cell death. Furthermore, just like any other cytotoxic agent, 
different mechanisms triggered by the cells throughout treatment can 
give rise to chemoresistance. Numerous studies have been carried 
out on all these factors, but despite the current knowledge, further 
research is still required. This will help in better understanding 
this chemotherapeutic drug, together with potentially uncovering 
mechanisms that are still unclear and unknown. Apart from the areas 
tackled in this review, various other work not discussed here has also 
been carried out, particularly the genes involved in controlling the 
response of DOX [11,130,184], DOX cardiotoxicity [185,186,187] 
and other mechanisms of DOX resistances such as due to the proteins 
Jagged-2 (JAG2) [188], NF-κB [175] and FOXO3 [175,189,190], 
due to microRNA’s [175] and due to certain metabolic pathways 
[132]. Most of the research currently taking place focuses on further 
understanding all these areas. In addition, importance is also being 
given to decrease DOX toxicity, developing inhibitors which prevent 
DOX resistance from arising and also developing efficient ways to 
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improve DOX efficacy throughout treatment.
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