
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:10563  | https://doi.org/10.1038/s41598-021-90077-x

www.nature.com/scientificreports

ITGA2, LAMB3, and LAMC2 may 
be the potential therapeutic 
targets in pancreatic ductal 
adenocarcinoma: an integrated 
bioinformatics analysis
Shajedul Islam  1, Takao Kitagawa1, Byron Baron2, Yoshihiro Abiko3, Itsuo Chiba4 & 
Yasuhiro Kuramitsu1*

Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic cancer with an 
abysmal prognosis rate over the last few decades. Early diagnosis and prevention could effectively 
combat this malignancy. Therefore, it is crucial to discover potential biomarkers to identify 
asymptomatic premalignant or early malignant tumors of PDAC. Gene expression analysis is a 
powerful technique to identify candidate biomarkers involved in disease progression. In the present 
study, five independent gene expression datasets, including 321 PDAC tissues and 208 adjacent 
non-cancerous tissue samples, were subjected to statistical and bioinformatics analysis. A total of 
20 differentially expressed genes (DEGs) were identified in PDAC tissues compared to non-cancerous 
tissue samples. Gene ontology and pathway enrichment analysis showed that DEGs were mainly 
enriched in extracellular matrix (ECM), cell adhesion, ECM–receptor interaction, and focal adhesion 
signaling. The protein–protein interaction network was constructed, and the hub genes were 
evaluated. Collagen type XII alpha 1 chain (COL12A1), fibronectin 1 (FN1), integrin subunit alpha 
2 (ITGA2), laminin subunit beta 3 (LAMB3), laminin subunit gamma 2 (LAMC2), thrombospondin 2 
(THBS2), and versican (VCAN) were identified as hub genes. The correlation analysis revealed that 
identified hub genes were significantly interconnected. Wherein COL12A1, FN1, ITGA2, LAMB3, 
LAMC2, and THBS2 were significantly associated with PDAC pathological stages. The Kaplan–Meier 
survival plots revealed that ITGA2, LAMB3, and LAMC2 expression were inversely correlated with 
a prolonged patient survival period. Furthermore, the Human Protein Atlas database was used to 
validate the expression and cellular origins of hub genes encoded proteins. The protein expression of 
hub genes was higher in pancreatic cancer tissue than in normal pancreatic tissue samples, wherein 
ITGA2, LAMB3, and LAMC2 were exclusively expressed in pancreatic cancer cells. Pancreatic cancer 
cell-specific expression of these three proteins may play pleiotropic roles in cancer progression. 
Our results collectively suggest that ITGA2, LAMB3, and LAMC2 could provide deep insights into 
pancreatic carcinogenesis molecular mechanisms and provide attractive therapeutic targets.

Pancreatic ductal adenocarcinoma (PDAC) is the most aggressive and common form of pancreatic cancer, 
accounting for 95% of all pancreatic malignant neoplasms1. The 5-year overall survival rate for patients with 
PDAC is less than 8% despite advances in medical oncology2. The poor prognosis of PDAC may be due to the 
lack of precise molecular biomarkers for early diagnosis and prognosis3. Therefore, there is an urgent need for 
more effective targeted therapies to improve the survival rate of patients with PDAC4.
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Gene expression microarrays and gene chips are extensively applied to reveal genetic aspects of diseases. These 
techniques are routinely used to monitor genome-wide expression levels of genes and are particularly suitable for 
screening differentially expressed genes (DEGs) between two samples5. The identification of DEGs may elucidate 
cancer pathogenesis, provide early diagnosis, and improve treatment. Hence, gene expression microarray analysis 
could be a promising approach to identify candidate biomarkers involved in disease progression.

The gene expression profiles from diverse microarray platforms are submitted to several public databases, 
including Gene Expression Omnibus (GEO: https://​www.​ncbi.​nlm.​nih.​gov/​gds/). Several previous studies used 
gene expression microarray technology to underpinning the DEGs of PDAC in recent years6–8. However, the 
results were inconsistent, and various aspects remain unclear due to sample heterogeneity. Moreover, those stud-
ies have not considered ethnic differences, and many studies have proven that ethnic differences may have rel-
evance for disease gene expression profiles9,10. The present study aimed to improve DEGs accuracy and reliability 
in PDAC compared to adjacent non-cancerous tissue samples using several datasets from different ethnicities.

In the current study, gene expression datasets from PDAC were analyzed to identify DEGs. Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were performed using an 
online toolset. Then, the protein interaction networks were constructed and the hub genes were identified and 
further verified. The identified hub genes may serve as potential diagnostic and prognostic biomarkers and could 
be a promising approach for the treatment of PDAC. To the best of our knowledge, this analysis is the first to 
examine the gene expression microarray database in PDAC tissues and adjacent non-cancerous tissue samples, 
considering different ethnic groups.

Materials and methods
Microarray datasets information.  PDAC datasets were obtained from the Gene Expression Omnibus, a 
public functional genomic database containing high-throughput gene expression data, chips, and microarrays. 
The GEO database was searched using the following criteria: “human-derived pancreatic ductal adenocarcinoma 
tissues and adjacent non-cancerous tissue samples” (study keyword), “Homo sapiens” (organism), “expression 
profiling by array” (study type), “tissue” (attribute name), and “sample count” > 50. After a systematic review, 
five independent PDAC microarray datasets were selected, including GSE6245211, GSE2873512, GSE1547113, 
GSE6216514, GSE10223815, with 321 primary tumor samples and 208 adjacent non-cancerous samples. The data-
set GSE62452 was based on the GPL6244 platform (HuGene-1_0-st] Affymetrix Human Gene 1.0 ST Array) 
and included 69 tumor and 61 adjacent non-cancerous tissue samples. The dataset GSE28735 was based on the 
GPL6244 platform (HuGene-1_0-st] Affymetrix Human Gene 1.0 ST Array) and had 45 matched tumor and 
adjacent non-cancerous samples.

The GSE15471 dataset was produced using the GPL570 Platform [(HG‐U133_Plus_2) Affymetrix Human 
Genome U133 Plus 2.0 Array], including 39 matched tumors and adjacent non-cancerous samples. The GSE62165 
dataset was based on the GPL13667 Platform [(HG‐U219) Affymetrix Human Genome U219 Array], which con-
tained 118 tumors and 13 adjacent non-cancerous samples. The GSE102238 dataset was based on the GPL19072 
Platform [Agilent-052909 CBC_lncRNAmRNA_V3], which included 50 matched tumor and adjacent non-
cancerous samples. These five gene expression profiles were respectively from different regions, including North 
America, Europe, and Asia, thus averting the differences caused by sample heterogeneity of single profiles and 
revealing universal DEGs that apply to different ethnic groups, as it has been reported that ethnic difference may 
affect disease-associated gene expression profiles9,10. The clinical datasets included 321 tumors and 208 adjacent 
non-cancerous tissues diagnosed as PDAC (Table 1). Of note, pancreatic tissue samples in microarray datasets 
were obtained from the patients who underwent surgical resection for PDAC. Subsequently, tissue samples were 
stored in liquid nitrogen and/or at − 80 °C until further use. Total RNA was extracted from the snap-frozen tissue 
samples, and further analysis was carried out. The clinicopathological characteristics of the microarray datasets 
are briefly shown in Supplementary Table 1.

Identification of DEGs.  DEGs between PDAC and adjacent non-cancerous tissue samples were screened 
by GEO2R (http://​www.​ncbi.​nlm.​nih.​gov/​geo/​geo2r)16, an online tool that can be used to compare two or more 
datasets in a GEO series to identify DEGs according to the experimental conditions. Adjusted p values (adj. p) 
and Benjamini and Hochberg false discovery rates were employed as criteria for statistically significant genes 
and to limit false positives. The data normalization was applied for the five datasets (Supplementary Fig. 1). 
Probe sets with no corresponding gene symbols were removed, while genes with multiple gene probe sets were 

Table 1.   Characteristics of datasets used in meta-analysis of PDAC tissues vs. adjacent non-cancerous tissues. 
PDAC pancreatic ductal adenocarcinoma.

Author, year GEO accession Region Platform

Tissue types and sample 
numbers

PDAC Adjacent Count

Yang et al. (2016)11 GSE62452 USA GPL6244 69 61 130

Zhang et al. (2012)12 GSE28735 USA GPL6244 45 45 90

Badea et al. (2008)13 GSE15471 Romania GPL570 39 39 78

Janky et al. (2016)14 GSE62165 Belgium GPL13667 118 13 131

Yang et al. (2020)8 GSE102238 China GPL19072 50 50 100

https://www.ncbi.nlm.nih.gov/gds/
http://www.ncbi.nlm.nih.gov/geo/geo2r
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averaged. Log2 FC (fold change) ≥ 1.5 or ≥ − 1.5 and adj. p < 0.01 was considered statistically significant. An 
online tool (http://​www.​inter​activ​enn.​net) was applied to draw Venn diagrams of the DEGs17. Further, heatmap 
analysis was visualized with the Heatmapper web application18. A total of 20 DEGs were identified, which con-
sisted of 19 upregulated genes and 1 downregulated gene.

External validation of the identified DEGs mRNA expression level.  The external validation was 
done using the Gene Expression Profiling Interactive Analysis tool19 (http://​gepia2.​cancer-​pku.​cn/#​index; last 
access: 14th February 2021) by comparing transcriptomic data from The Cancer Genome Atlas (TCGA) (pan-
creatic adenocarcinoma), the TCGA normal and the Genotype-Tissue Expression (GTEx) database. p < 0.05 was 
considered a statistically significant difference.

GO and KEGG pathway analysis of DEGs.  To uncover the functional roles of DEGs, the GO was used to 
perform enrichment analysis, which covers the cellular component (CC), biological process (BP), and molecular 
function (MF) of the selected genes20. The KEGG is a database that illustrates the selected gene functions and 
pathways21. The Database for Annotation, Visualization, and Integrated Discovery (DAVID: https://​david.​ncifc​
rf.​gov; last access: 14th February 2021) is a public online bioinformatics database that contains information on 
functional biological annotations for genes and proteins20. The cut-off criteria were selected based on p < 0.01. 
Enrichment of the GO terms and KEGG pathways were performed for the candidate DEGs using DAVID.

Establishment of the PPI network and hub gene identification.  To further explore the potential 
interplay among those DEGs, these were mapped to the STRING (https://​string-​db.​org; version 11.0) database22 
and only interactions that enjoyed a minimum required combined score > 0.4 were set as significant. Subse-
quently, the protein–protein interaction (PPI) networks were visualized using Cytoscape 3.8.2 (https://​cytos​
cape.​org/), an open-source bioinformatics software platform23. A combined score of 0.5 and a tissue-specific 
(pancreas) filter score of 1 was considered for the construction of the PPI network. Subsequently, the MCODE 
(Molecular Complex Detection) plugin was used to identify hub genes in the constructed network. The standard 
for selection was set as follows: MCODE scores ≥ 10, degree cut-off = 2, node score cut-off = 0.2, max depth = 100 
and k-score = 224.

Oncomine analysis of hub genes in pancreatic cancer.  An independent database, namely Oncomine 
(https://​www.​oncom​ine.​org/​resou​rce/​login.​html; last access: 14th February 2021), was used to validate hub 
gene expression. In the Oncomine database, the gene name “COL12A1”, “FN1”, “ITGA2”, “LAMB3”, “LAMC2”, 
“THBS2” or “VCAN” was entered. The differential gene analysis module (cancer vs. normal analysis) was selected 
to retrieve the results. This analysis presented a series of pancreatic cancer studies and related COL12A1, FN1, 
ITGA2, LAMB3, LAMC2, THBS2, and VCAN mRNA expression in cancer and normal tissues. The filters were 
set as follows: (1) Gene: COL12A1 or FN1 or ITGA2 or LAMB3 or LAMC2 or THBS2 or VCAN. (2) Analysis 
type: cancer vs. normal analysis. (3) Cancer type: pancreatic carcinoma. (4) Sample type: clinical specimen. (5) 
Data type: mRNA. (6) Threshold settings: p < 0.01; FC > 2; gene rank, top 10%.

Finding prognostic genes for PDAC.  To explore the expression correlation of hub genes in PDAC, the 
Spearman coefficient correlation was analyzed using the GEPIA2 tool19. The interaction efficiency was repre-
sented as an R score. An R score of > 0.8 was considered a significant correlation. Next, the expression levels of 
hub genes and pathological stages in PDAC tissues were assessed using the GEPIA2 platform. The GEPIA2 was 
also utilized for overall survival and disease-free survival analyses of the hub genes using the TCGA and GTEx 
databases. The plots were considered significant when showed in both overall and disease-free survival states. 
Beta-actin was used to normalize the expression of genes, and the median was selected for group cut-off crite-
ria. p < 0.05 was considered to indicate a statistically significant difference. Further, the expression of proteins 
encoded by hub genes in pancreatic cancer was validated using the Human Protein Atlas (HPA: https://​www.​
prote​inatl​as.​org) website based on spatial proteomics data and quantitative transcriptomics data (RNA-Seq) 
obtained from the immunohistochemical analysis of tissue microarrays25.

Literature review of bioinformatics studies associated with pancreatic cancer.  PubMed and 
Scopus databases were searched to explore existing bioinformatics studies in pancreatic cancer (last access: 15th 
April 2021). The following criteria were set for PubMed: (pancreatic ductal carcinoma [MeSH Terms]) OR (pan-
creatic cancer [MeSH Terms]) OR (pancreatic neoplasm [MeSH Terms]) AND (bioinformatics [MeSH Terms]) 
AND (microarray analysis [MeSH Terms]). For Scopus the following criteria were used: TITLE-ABS-KEY (pan-
creatic AND ductal AND adenocarcinoma OR pancreatic AND cancer OR pancreatic AND neoplasm AND 
bioinformatics AND microarray AND analysis). Peer-reviewed studies were considered for the last 10-years, 
and after a comprehensive analysis, nine studies were selected6–8,26–31.

Results
Identification of DEGs in PDAC.  The five gene expression microarray datasets for PDAC, GSE62452, 
GSE28735, GSE15471, GSE62165, and GSE102238, were obtained from GEO. By screening the data with the 
GEO2R using p < 0.01 and log2FC ≥ 1.5 or ≥ − 1.5 as cut-off criteria, 2636 upregulated and 1103 downregulated 
genes were obtained. In brief, 90 DEGs, including 45 upregulated and 45 downregulated genes, were obtained in 
the GSE62452 expression profile data (Fig. 1a). GSE28735, 127 DEGs, including 66 upregulated and 61 down-
regulated genes, were identified (Fig. 1b). In GSE15471, 706 DEGs, including 622 upregulated and 84 down-

http://www.interactivenn.net
http://gepia2.cancer-pku.cn/#index
https://david.ncifcrf.gov
https://david.ncifcrf.gov
https://string-db.org
https://cytoscape.org/
https://cytoscape.org/
https://www.oncomine.org/resource/login.html
https://www.proteinatlas.org
https://www.proteinatlas.org
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regulated genes, were identified (Fig. 1c). 1984 DEGs, including 1380 upregulated and 604 downregulated genes, 
were identified from GSE62165 (Fig. 1d). In addition, 832 DEGs, including 523 upregulated and 309 downregu-
lated genes, were identified from GSE102238 (Fig. 1e). The overview of the DEGs results was briefly presented 
in Fig. 1f. After a comprehensive analysis of the five datasets, 20 DEGs were identified that were differentially 
expressed in all of them, with 19 genes up-regulated and 1 down-regulated in PDAC tissues compared to adja-
cent non-cancerous tissues (Fig. 2a). Figure 2b,c provides a heatmap of the 20 DEGs based on Log2FC. The 
functions and the involvement of identified DEGs on PDAC tissues are shown in Table 2.

The mRNA expression level of DEGs in PDAC.  To confirm the mRNA expression levels of identi-
fied DEGs in PDAC tissues, TCGA datasets were analyzed using the GEPIA2 platform. Boxplots of the DEGs 
associated with PDAC were downloaded from the GEPIA2. The results demonstrated that upregulated DEGs 
were significantly overexpressed in PDAC tissues in comparison to normal pancreatic tissues, while the down-
regulated DEG, PDK4 was significantly reduced in PDAC tissues in comparison to normal pancreatic tissues 
(p < 0.05) (Fig. 3).

Figure 1.   Differential expression of genes between PDAC tissue and adjacent non-cancerous tissue samples in 
the datasets. (a) GSE62452; (b) GSE28735; (c) GSE15471; (d) GSE62165; (e) GSE102238. The x-axis indicates 
the fold-change (log-scaled); the y-axis indicates the p-values (log-scaled). The red data-points represent 
upregulated genes, while blue data-points represent downregulated genes. The black data-points represent genes 
with no significant difference in expression. (f) The differential genes screened based on |Log2FC|≥ 1.5/− 1.5 and 
a corrected p value of < 0.01. FC fold change.
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Figure 2.   Identification of DEGs. (a) Venn diagram of the DEGs in the five datasets. A total of 20 DEGs were 
included in all five datasets. (b) LogFC heatmap image of the 20 commonly changed DEGs of the five datasets. 
The 5 GEO datasets are denoted on the abscissa, and the gene names are displayed on the ordinate. (c) The 
average LogFC expression values of 20 DEGs. DEG differentially expressed gene, FC fold change.

Table 2.   Description of differentially expressed genes and functions in pancreatic cancer. EMT epithelial–
mesenchymal transition, CSC cancer stem-cell, ECM extracellular matrix.

Gene Full name Function

A. Upregulated differentially expressed genes

AHNAK2 AHNAK nucleoprotein 2 Promotes malignant progression by inducing EMT

ANTXR1 Anthrax toxin receptor 1 Enhanced CSC renewal and molecular properties

CEACAM6 Carcinoembryonic antigen-related cell 
adhesion molecule 6

Promotes malignant progression by inducing EMT; Induction of 
immune suppression

COL12A1 Collagen type XII alpha 1 chain Promotes cell migration by remodeling of the ECM

FN1 Fibronectin Enhanced invasion and metastasis by degrading ECM

ITGA2 Integrin subunit alpha 2 Promotes progression and immune suppression

KRT19 Keratin 19 Promotes malignant progression and associated with poor 
prognosis

LAMB3 Laminin subunit beta 3 Promotes cell proliferation, invasion, and migration by activating 
oncogenic pathways

LAMC2 Laminin subunit gamma 2 Degrades ECM and promotes invasion

PLAC8 Placenta associated 8 Promotes cell growth and progression

POSTN Periostin Promotes invasion and metastasis

SERPINB5 Serpin family B member 5 Promotes invasion and metastasis

SLC6A14 Solute carrier family 6 member 14 Promotes growth, proliferation, and chemoresistance

SLPI Secretory leukocyte peptidase inhibitor Promotes growth, proliferation, and inhibition of apoptosis

SULF1 Sulfatase 1 Promotes invasion and metastasis of tumor

THBS2 Thrombospondin 2 Enhances glycolytic enzymes activity in CSC

TMC5 Transmembrane channel-like 5 Contributes to tumor growth, invasion, and metastasis

TSPAN1 Transmembrane serine protease 4 Promotes invasion and metastasis of tumor

VCAN Versican Promotes immune suppression and stromal deposition

B. Downregulated differentially expressed gene

PDK4 Pyruvate Dehydrogenase Kinase 4 Inhibition of EMT
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Figure 3.   The mRNA expression level analysis of 20 DEGs in PDAC tissues. The boxplots were downloaded 
from the GEPIA2. The red boxes represent the expression levels in PDAC tissues. In contrast, the blue boxes 
represent the expression levels in normal tissues. p < 0.05 was regarded as statistically significant. DEGs 
differentially expressed genes, PDAC pancreatic ductal adenocarcinoma.
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GO analysis and signaling pathway enrichment of DEGs in PDAC.  To elucidate the functions of 
common DEGs, GO and KEGG pathway enrichment analysis was employed. In the CC category, the upregu-
lated DEGs were mainly enriched in the ECM and extracellular space. In the BP category, the upregulated DEGs 
were mainly enriched in ECM organization and cell adhesion. While in MF category, upregulated DEGs were 
enriched with heparin and collagen binding functions. There was no enrichment showed for downregulated 
DEGs. The ECM–receptor interaction, focal-adhesion, and phosphoinositide-3-kinase-protein kinase B/Akt 
(PI3K-Akt) signaling were the most enriched pathways for upregulated DEGs. The results of the functional 
enrichment and KEGG pathway analyses for DEGs are exhibited in Table 3.

PPI network construction and identification of hub nodes.  The PPI network of the DEGs was con-
structed using Cytoscape software and the STRING database. The PPI network of DEGs consisted of 58 nodes 
and 811 edges (Fig. 4a). The Cytoscape tool MCODE was used to screen hub genes in the network, with a cluster 
score of ≥ 10 as the inclusion criterion. The MCODE modules included 46 nodes and 432 edges with two clus-
ters. Cluster-1 included 24 nodes and 260 edges with a combined score of 22.6. Wherein cluster-2 included 22 
nodes and 172 edges with a cluster score of 16.4. After a comprehensive analysis, hub genes were identified from 
two clusters highlighted in red color (Fig. 4b,c). COL12A1, FN1, ITGA2, LAMB3, LAMC2, THBS2, and VCAN 
were finally selected as hub genes. The MCODE plugin scores are briefly shown in Table 4.

Oncomine analysis of hub genes in pancreatic cancer databases.  As COL12A1, FN1, ITGA2, 
LAMB3, LAMC2, THBS2, and VCAN were selected from the other DEGs, further confirmation of the altered 
expressions was necessary. Oncomine analysis of cancer vs. normal tissue confirmed that COL12A1, FN1, 
ITGA2, LAMB3, LAMC2, THBS2, and VCAN were significantly overexpressed in pancreatic cancer from differ-
ent datasets. A brief overview of those key genes expression in pancreatic cancer was shown by using a heatmap. 
The color intensity reflects the fold changes between different datasets. Moreover, in the Pei pancreas dataset, 
COL12A1, FN1, ITGA2, LAMB3, LAMC2, THBS2, and VCAN mRNA expression levels were higher in pancre-
atic cancer tissue than in normal pancreatic tissue samples (Fig. 5).

Expression correlation of hub genes in PDAC.  To explore the correlation among the hub genes in 
PDAC, TCGA datasets were analyzed using the GEPIA2 platform. COL12A1, FN1, ITGA2, LAMB3, LAMC2, 
THBS2, and VCAN were observed to be significantly correlated (Fig. 6).

Association of hub genes in PDAC pathological stages.  Further analysis of the TCGA PDAC data in 
GEPIA2 showed that the hub genes were significantly correlated with the pathological disease stages, underlying 
their prognostic value for PDAC. COL12A1, FN1, ITGA2, LAMB3, LAMC2, and THBS2 were observed to be 
significantly associated with PDAC stages (Fig. 7), wherein no significant association on PDAC tumor stages and 
VCAN was observed (data not shown).

Table 3.   Gene ontology and KEGG pathway analysis of differentially expressed genes. ECM extracellular 
matrix, PI3K-Akt phosphatidylinositol 3-kinase/protein kinase B.

A. Gene ontology analysis

Category GO ID ~ function Gene count (%) p-value

GOTERM_BP GO:0030198 ~ extracellular matrix organization 7 (36.8) 3.87E − 08

GOTERM_BP GO:0007155 ~ cell adhesion 8 (42.1) 2.67E − 07

GOTERM_BP GO:0035987 ~ endodermal cell differentiation 3 (15.8) 3.75E − 04

GOTERM_BP GO:0022617 ~ extracellular matrix disassembly 3 (15.8) 0.002951142

GOTERM_BP GO:0001501 ~ skeletal system development 3 (15.8) 0.009281157

GOTERM_CC GO:0031012 ~ extracellular matrix 6 (31.6) 1.16E − 05

GOTERM_CC GO:0005615 ~ extracellular space 9 (47.4) 0.00207988

GOTERM_CC GO:0070062 ~ extracellular exosome 9 (47.4) 0.00207988

GOTERM_MF GO:0008201 ~ heparin binding 4 (21.1) 5.15E − 04

GOTERM_MF GO:0005518 ~ collagen binding 3 (15.8) 0.001632513

B. KEGG pathway analysis

Pathway ID Pathway Gene count (%) p-value

hsa04512 ECM–receptor interaction 5 (26.3) 8.1175E − 07

hsa04510 Focal adhesion 5 (26.3) 2.5476E − 05

hsa05222 Small cell lung cancer 4 (21.1) 6.1498E − 5

hsa04151 PI3K-Akt signaling pathway 4 (21.1) 0.00019292

hsa05146 Amoebiasis 3 (15.8) 0.00469651

hsa05200 Pathways in cancer 4 (21.1) 0.00544945
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Survival analysis of hub genes in PDAC.  The Kaplan–Meier survival plots were used to observe the 
overall survival and disease free-survival status of the hub genes in PDAC. Elevated expression levels of ITGA2, 
LAMB3, and LAMC2 were found to be inversely correlated with prolonged patient survival (Fig. 8), whereas no 
significant relationship was observed for other genes (data not shown).

Validation of expression of hub genes‑encoded proteins.  The expression levels of proteins encoded 
by the COL12A1, FN1, ITGA2, LAMB3, LAMC2, THBS2, and VCAN were obtained. The protein expression 
profiles in pancreatic cancer clinical specimens are shown in Fig. 9. The antibody intensity for FN1, ITGA2, 
LAMB3, LAMC2, and VCAN was higher in PDAC tissues, while no staining was observed in corresponding 
normal tissues. COL12A1 had medium staining intensity with low intensity observed in normal pancreatic 
tissues. THBS2 had medium staining intensity in both pancreatic cancer and normal pancreatic tissues. Fur-
ther observations revealed that COL12A1 and FN1 were predominantly expressed by stromal cells. THBS2 and 
VCAN were expressed in both stromal and pancreatic cancer cells, whereas ITGA2, LAMB3, and LAMC2 were 
solely expressed by pancreatic cancer cells.

Figure 4.   PPI network construction of DEGs and identification of hub genes. (a) PPI network was constructed 
using Cytoscape. Red nodes represent upregulated genes, whereas green nodes represent downregulated 
genes. The line represents the interaction relationship between nodes. (b) Significant modules of cluster-1 
were identified from the PPI network via the MCODE plug-in. This module consisted of 5 upregulated genes, 
which are represented by red color. (c) Significant modules of cluster-2 were identified from the PPI network 
via the MCODE plug-in. This module consisted of 2 upregulated genes, and red nodes represent key genes. PPI 
protein–protein interaction, DEGs differentially expressed genes.

Table 4.   MCODE cluster scores on PPI network of differentially expressed genes. MCODE molecular complex 
detection, PPI protein–protein interaction.

Query term MCODE score

A. Cluster-1, combined score: 22.6

LAMC2 18.3

LAMB3 18.0

ITGA2 17.4

FN1 17.1

THBS2 16.9

B. Cluster-2, combined score: 16.4

VCAN 14.1

COL12A1 13.8
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Identification of hub genes in previous bioinformatics studies associated with pancreatic can-
cer.  The literature review was done to investigate hub genes from previous bioinformatics studies in pancre-
atic cancer. Nine bioinformatics studies were chosen after a comprehensive analysis based on the criteria which 
we set. The hub genes, their associated pathways, and potential clinical relevance were explored, which is shown 
in Table 5. In brief, collagens (COL1A1, COL1A2, COL3A1, COL3A2, and COL5A2), integrins (ITGA2 and 
ITGB2), laminins (LAMA3, LAMB3, and LAMC2), and fibronectin were the most common hub genes found in 
those studies. Further, the cell cycle regulation, tissue remodeling, ribosomal protein, and nuclear pore complex-
related genes were found to be altered in those studies. The pathways analysis has shown that ECM–receptor 
interaction, focal adhesion, pathways in cancer, and altered metabolic pathways have been the most commonly 
involved with those hub genes.

Discussion
In the present study, 20 DEGs were identified (19 upregulated and 1 downregulated), which were differentially 
expressed in PDAC tissue compared to the adjacent non-cancerous pancreatic tissue samples. By using an online 
tool, the mRNA expression levels of DEGs in PDAC tissue samples were validated. The GO and KEGG pathway 
analysis revealed that DEGs were primarily enriched with ECM-organization, cell adhesion, ECM–receptor 
interaction, and focal adhesion, especially for the upregulated genes. The PPI network was constructed, and 
hub genes were selected. COL12A1, FN1, ITGA2, LAMB3, LAMC2, THBS2, and VCAN were identified as hub 
genes. To verify the expression level of hub genes, an independent database was then used. This confirmed that, 
compared to normal pancreatic tissues, identified hub genes were highly expressed in pancreatic cancer samples. 
The correlation analysis revealed that the hub genes in PDAC tissue samples are significantly interconnected. The 

Figure 5.   Oncomine analysis of key candidate genes in pancreatic cancer vs. normal tissue. Heat maps of 
key candidate gene expression in clinical pancreatic cancer samples vs. normal pancreatic tissue samples. [1. 
Pancreatic ductal adenocarcinoma epithelia vs. normal Badea pancreas; 2. Pancreatic ductal adenocarcinoma 
epithelia vs. normal Lacobuzio-Donahue pancreas; 3. Pancreatic carcinoma vs. normal Pei pancreas). The color 
depth represents the intensity of fold changes. Box plots represent the mRNA expression level in pancreatic 
cancer and normal pancreatic tissues in the Pei pancreas dataset. p < 0.01 was considered statistically significant.
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interaction of hub genes with pathological stages in patients with PDAC showed that the expression of COL12A1, 
FN1, ITGA2, LAMB3, LAMC2, and THBS2 is negatively associated with disease progression. The survival plots 
of Kaplan–Meier showed that ITGA2, LAMB3, and LAMC2 expression are inversely correlated with prolonged 
patient survival. Using histopathological images from the Human Protein Atlas platform, the protein expression 
profiles of hub genes were validated. It was found that proteins encoded by hub genes are highly expressed in 
pancreatic cancer tissue compared to normal pancreatic tissue samples. It was also observed that ITGA2, LAMB3, 
and LAMC2 were the only proteins expressed in pancreatic cancer cells but not in stromal cells. The cancer cells 
specific expression of these three proteins might be crucial for PDAC pathogenesis and progression. Together, 
this data suggested that ITGA2, LAMB3, and LAMC2 individually might have high prognostic and diagnostic 
values, as well as the potential to be therapeutic targets for PDAC.

ITGA2 is a collagen receptor expressed on cell membranes and forms a heterodimer α2β1 with a β subu-
nit, which mediates cell-to-ECM attachment32. The increased ITGA2 level was reported in pancreatic cancer 
and others, including gastric, liver, prostate, and breast cancer33. The increased ITGA2 expression promotes 

Figure 6.   Expression correlation analysis of hub genes in PDAC tissues. The GEPIA2 platform analyzed 
the expression correlation levels. The Spearman correlation coefficient was used, and an R score of > 0.8 was 
considered statistically significant. The light blue box represents the correlation coefficient based on R scores.
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pancreatic cancer cell migration, invasion, metastasis, and chemoresistance34,35. In contrast, inhibition of ITGA2 
abrogated these functions33. Although the exact mechanism by which ITGA2 is involved in pancreatic carcino-
genesis remains unclear, it has been suggested that ITGA2 promotes pancreatic cancer progression through ECM 
remodeling36,37. The reconstituted ECM triggers pancreatic cancer progression by directly promoting cellular 
transformation and enhancing tumorigenic microenvironment formation by affecting stromal-cell behavior38. 
In this process, ITGA2 activates fibroblasts to cancer-associated fibroblasts (CAFs), resulting in extensive des-
moplasia with ECM deposition39, wherein desmoplasia is a characteristic feature of PDAC and constitutes up 
to 90% of the tumor volume. Mainly ECM and CAF, immune cells, and vascular components form the desmo-
plastic microenvironment40,41. ECM is a three-dimensional structural complex consisting of structural and non-
structural proteins42,43. ECM-proteins can affect PDAC progression and patient survival by promoting cancer cell 
proliferation and metastatic spread44. Even though stromal cells produce over 90% of the ECM mass in PDAC, 
cancer cells produce elevated ECM-proteins, and cancer cell-derived ECM-proteins play important roles in 
PDAC carcinogenesis45,46. A previous report suggested that ECM proteins originating from cancer cells were the 
most strongly connected to poor patient survival. In contrast, ECM-proteins derived from stromal cells, include 
both proteins linked to good and poor patient outcomes47. Hence, using the Human Protein Atlas database, the 
protein expression profiles and cellular origins of hub genes encoded proteins in pancreatic cancer tissues were 
observed. ITGA2 is the transmembrane receptor for collagens and related proteins, as mentioned above32, while 
COL12A1, FN1, LAMB3, LAMC2, THBS2, and VCAN are ECM-related proteins47.

Our histopathological evidence has shown that COL12A1 and FN1 are expressed from stromal cells, THBS2, 
and VCAN from stromal and cancer cells, while ITGA2, LAMB3, and LAMC2 are expressed solely from the 
cancer cells. The Kaplan–Meier survival plots showed that ITGA2, among the ECM-proteins LAMB3 and LAMC2 
expression, is inversely correlated with the overall and disease-free survival status in PDAC. Interestingly, a pre-
vious report confirmed that LAMB3 and LAMC2 were exclusively derived from pancreatic cancer cells47. This 
study reached a similar conclusion that increased levels of ECM-proteins originated from cancer cells, rather than 
being solely produced by stromal cells, correlate with poor patient outcomes. However, further studies are needed 
to clarify this phenomenon. Meanwhile, these results may explain why previous non-selective ECM depletion 
strategies led to poor patient outcomes and suggest more accurate ECM manipulations as PDAC treatments48. 
Together, the present data and the previous report suggested that cancer-cell-derived ECM-proteins may be 
potential therapeutic targets47. Therefore, sorting out the composition and changes of the ECM during PDAC 
progression would guide the development and application of more effective PDAC therapies.

Figure 7.   Pathological stages of hub genes in PDAC tissues. Association of mRNA expression and pathological 
tumor stages in patients with PDAC. Violin plots were created using the GEPIA2 platform based on the TCGA 
PDAC dataset. F-value indicates the statistical value of the F test; Pr (> F) indicates p value. A p value of < 0.05 
was considered statistically significant.
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It is worth noting that DEGs in PDAC have already been demonstrated in several studies6–8,26–31. However, 
the results were not consistent, which could be due to the differences in the selection of datasets and statistical 
procedures. Then, using effective search engines, we performed a literature review of existing pancreatic cancer 
bioinformatics studies and explored hub genes. In brief, the hub genes were mainly involved with ECM remod-
eling and organization. The predominant expression of collagen, integrin, and laminin family genes was observed 
in those studies, clarifying their role in ECM remodeling. The reconstituted ECM was reported to promote 
pancreatic fibrosis and epithelial-mesenchymal transition (EMT) in early stages of PDAC pathogenesis38. Thus, 
ECM manipulation is an appealing therapeutic strategy for PDAC patients.

While the occurrence of PDAC has been observed to differ between racial/ethnic subpopulations, this dispar-
ity may be partially explained by the prevalence of risk factors (smoking and drinking alcohol, obesity, diabetes, 
and family history) among ethnic groups49,50. These racial/ethnic variations might result in tumor biology dif-
ferences in PDAC50. Biomarkers that could be useful regardless of racial differences are thus urgently needed. 
In this study, we selected the datasets from different regions, thus averting the differences caused by the samples 
heterogeneity and revealing universal DEGs that apply to different ethnic groups. The identified DEGs in this 
analysis might be applicable irrespective of the ethnicities and may allow the development of more targeted 
prevention strategies. However, a lack of adequate validation in vitro or in vivo is a limitation of this study. 
Moreover, due to GEO limitations, the clinicopathological data and demographic variables within this study 
datasets were not detailed enough. Thus, we failed to consider factors such as the presence of different ethnicities 
within datasets. Our future research will include experimental verification of this meta-analysis results using 
different laboratory approaches.

In conclusion, the present meta-analysis identified 20 DEGs. The hub genes are COL12A1, FN1, ITGA2, 
LAMB3, LAMC2, THBS2, and VCAN. The Kaplan–Meier survival plots indicate that ITGA2, LAMB3, and 
LAMC2 are inversely correlated with prolonged patient survival. Histopathological evidence shows that ITGA2, 
LAMB3, and LAMC2 are expressed exclusively from pancreatic cancer cells. The specific expression of these 
three proteins by cancer cells could make them promising potential targets for diagnosing and treating pancre-
atic cancer.

Figure 8.   Kaplan–Meier survival plots of hub genes in PDAC tissues. The Kaplan–Meier plots were generated 
by using the GEPIA2 platform. The overall survival and disease-free survival plots compared a high-risk group 
(in red) and a low-risk group (in blue) in PDAC tissues. p < 0.05 were regarded as statistically significant.
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Figure 9.   Immunohistochemical expression of hub genes in human pancreatic cancer specimens. The 
immunohistochemical data were obtained from the Human Protein Atlas. Staining demonstrated that the 
protein expression of hub genes was higher in pancreatic cancer tissue than in normal pancreatic tissue samples. 
The light blue box represents antibodies information. Image courtesy: Human Protein Atlas (http://​www.​prote​
inatl​as.​org).

http://www.proteinatlas.org
http://www.proteinatlas.org
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The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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