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Abstract

Brain-computer interface (BCI) systems allow a direct communication be-

tween a user and a computer using only brain activity. BCIs convert electrical

neurosignals, recorded through electroencephalography (EEG), into actual com-

mands to operate a software application or a device. Among the various neu-

rophysiological phenomena that can be used to drive BCI systems, steady state

visual evoked potentials (SSVEPs) have demonstrated the highest performance

for BCI systems. The flickering stimuli required by these systems tend to be an-

noying for the user and the accuracy of SSVEP-based BCIs tends to also decrease

as the number of flickering stimuli increases. To address these issues, the project

aims to extract EEG potentials related to eye movements to estimate the point

of gaze of the user when looking at the stimuli and hence obtain a broad idea

of the stimulus the user is focusing on. This information will be used such that

stimuli which are far from the user’s point of gaze can be switched off prior to

the flickering of the stimuli. This reduces the number of simultaneously flickering

stimuli which should improve both the annoyance factor and the classification

accuracy.

To test out this hypothesis, an offline study is conducted to investigate what

type of eye-movement can be reliably detected from EEG and how the number

of frontal channels considered and size of the training set influences the detection

of eye-movements. Results have shown that a 99% accuracy is achieved when

discriminating between horizontal and vertical eye-movements with three frontal

channels and with 16 training trials. Subsequently a real-time hybrid BCI (hBCI)

which fuses SSVEPs with EEG-based eye-movement potentials is developed. A

smart home system is designed and integrated with an SSVEP-based BCI and also

with the developed hBCI. A comparative analysis is conducted to evaluate the

differences between the two systems and significant differences in accuracy and

efficiency were found between the two. A 72.8% accuracy, an 82.4% efficiency and

an ITR of 28.6bpm are achieved by the proposed hBCI whereas a 61.5% accuracy,

a 74% efficiency and an ITR of 27.6bpm are achieved by the SSVEP-based BCI.
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1 Introduction

1.1 Background

Smart homes offer its occupants an alternative way of living. This is because,

in contrast with traditional homes, they typically include a home automation

system that encompasses a centralised environment where devices are connected

to a central component, referred to as the hub. Generally a microcomputer or

a mini network server acts as the central hub within such a system. Personal

computers, tablets or even smartphones act as access points on the smart home

network.

These electronic devices do not handle the back-end operations ongoing be-

hind the screen of a smart home network. They merely act as front-end devices

presenting the user with an interface to control the smart home environment.

Hence this enables the occupants of the smart home to control every device con-

nected to the home network from a single point, making every device operable

from the grasp of their hands. Despite offering comfort to its users, home au-

tomation systems can offer more independence to patients with severe mobility

impairment. However, even with a home automation system, users might still

encounter issues to operate the system, should they lack fine motor skills as a

consequence of their medical condition. This interface might not be suitable for

everyone so an alternative means of control is necessary.

Brain Computer Interfaces (BCIs), also referred to as Brain Machine Inter-

faces (BMIs), is a growing research area which offers an alternative way to op-

erate an electronic device. BCIs enhance the interaction with the computer as

they allow human neural activity to act as a control signal and directly control

electronic devices such as personal computers and tablets. Several studies over

the past years have shown that non-invasive neural activity can actually replace

traditional and conventional means of computer interaction, allowing users to re-
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frain from using any muscular activity.

The main purpose behind BCI research is to provide an alternative means of

communication for patients with severe mobility impairment. Such an interface

can help in improving the quality of life of such patients. Moreover it can ease the

emotional pain and frustration, caused by the inability to interact with others

through conventional means. BCIs rely on the continuous monitoring of one’s

brain activity typically using electroencephalography.

Since they are both advantageous to patients with severe neuromuscular dis-

ability, smart homes and BCIs can be integrated with each other, offering the

opportunity of a partially independent lifestyle for these individuals. A smart

home caters for a direct link between a single computer and the rest of the home

network environment, while a BCI provides a direct link between the computer

and the human brain. Hence, a smart home BCI allows the direct control of the

smart devices in a home using brain signals

Among the various neurophysiological phenomena that can be used to drive

BCI systems, the most reliable type of BCI is that based on steady-state visually

evoked potentials (SSVEPs). SSVEPs are a reaction within one’s neural activ-

ity, caused by exposure of one’s visual system to stimuli flickering at a specific

frequency. This reaction exhibits an oscillatory activity, mainly in the occipital

region, matching the frequency of the flickering stimuli and its harmonics. In an

SSVEP-based BCI, various stimuli flickering at specific frequencies, are presented

to the user, with each stimulus corresponding to a particular command. The user

selects a command by focusing on the corresponding stimulus. Further stimuli

within a BCI interface provides the user with more control options, however this

also increases the annoyance factor of the system. To address this problem, it is

hypothesized that EEG potentials related to eye-movements can be extracted to

estimate the user’s point of gaze, which information can then be used to simplify

the BCI menu by flickering only those stimuli in the area enclosing the user’s

2



point of gaze.

1.2 Objectives of the Dissertation

The aim of this dissertation is to design and implement a smart home BCI.

The BCI will be of a hybrid architecture and will employ a system based on

Steady State Visual Evoked Potentials (SSVEPs) fused with EEG-based eye-

movement potentials. Thus signal processing algorithms that can reliably clas-

sify eye-movement EEG potentials must be identified. The complete smart home

hybrid BCI should be practical, efficient and provide a reliable performance. On

completion of the development of the smart home hybrid BCI system, experi-

mental sessions are to be conducted on several subjects. These will be used to

compare between a smart home SSVEP-based BCI and a smart home hybrid BCI.

In view of these aims, the specific objectives of this work can be summarised as

follows:

1. Investigate the extent to which eye-movements may be classified reliably

using EEG electrodes. As part of this investigation, the following particular

questions are addressed:

� How many directional eye-movements can be reliably classified?

� To what extent can eye-movements be detected from the occipital re-

gion and from the frontal brain region?

� To what extent can eye-movements in the same direction but different

visual angles, be distinguished?

� How does the classification accuracy vary with the number of EEG

frontal channels used?

� How does the classification accuracy vary with the size of the training

set?

3



2. Design and implement a real-time smart home BCI application based on two

different architectures: a standard SSVEP-based architecture and a hybrid

one which fuses SSVEPs with EEG-based eye-movement potentials. These

two architectures are to be tested with several subjects to assess whether

the hybrid BCI approach provides any benefits over and above the standard

SSVEP approach typically found in the literature [90] [27].

1.3 Layout of the Dissertation

Chapter 2 presents an overview on home automation systems and on the

neuroimaging technologies used for brain signal acquisition. It also gives an in-

troduction to various EEG-based BCI systems.

Chapter 3 presents a comprehensive literature review which was carried out

to explore the various signal processing techniques used to extract eye-movement

information from EEG data. Furthermore it gives a thorough review on smart

home BCIs which have been implemented so far.

Chapter 4 describes the methodology used for the EEG-based eye-gaze offline

analysis. It also gives a detailed explanation of the signal processing algorithms

used. The experimental protocols for the data acquisition session are also pre-

sented. Furthermore, the chapter presents the results which were obtained from

the analysis and discusses them while highlighting the conclusions drawn.

Chapter 5 describes the design and implementation of a real-time smart home

BCI for an SSVEP-based and hybrid architectures. The experimental procedures

by which the comparative analysis between the different systems was carried out,

are also described. Furthermore, the chapter presents the results of the compar-

ative analysis which compared the the smart home hybrid BCI with the smart

home SSVEP-based BCI. A discussion of the results then follows highlighting the

conclusions drawn from the results.
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Chapter 6 summarizes the work done and the main results obtained during

this project. It concludes the dissertation and gives suggestions for future work.
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2 A General Overview of Home Automation Sys-

tems and BCIs

This chapter gives an overview on home automation systems. It describes the

main components which make up a typical system and the various communication

protocols used. It also discusses the interfaces employed within home automation

systems to engage with the user and how BCIs can aid motor-impaired smart

home users. This is followed by an overview on BCIs describing the various

neuroimaging techniques which can be used to record brain activity. The chapter

subsequently focuses on EEG-based systems describing the various modalities for

brain signal acquisition.

2.1 Home Automation Systems

Many may think that the concept of a smart home is quite recent. However

early forms of home automation were conceived in the early 20th century. Home

automation began with labour-saving machines consisting of gas or electrically

powered home appliances. These were introduced to the market as soon as homes

started to be connected to the electrical power distribution network [31]. Home

automatons were then incorporated into a system by the development of the first

home automation network communication protocol in 1975 [81]. Since then, home

automation systems, or domotic systems, have been developed into various forms

and can be categorised into three generations in accordance with Li et al.[61]:

� 1st Generation: Devices communicating with a network server acting as a

central hub

� 2nd Generation: Artificial intelligence integrated with the smart home tech-

nology

� 3rd Generation: ‘Personification’ of domotic artificial intelligence through

the integration of service robots
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Despite the numerous forms that a domotic system can take today, a home

automation system makes use of various sensors and actuators to automatically

monitor and operate home appliances. Such a system facilitates the operation of

such appliances, making life comfortable for the occupants in the smart home.

Sensors and actuators are vital components in a domotic system [39]. Sensors

receive information about the current status of devices or climate conditions and

send this information to the central hub. This hub acts as the processing unit

of the smart home, catering for all the decision-making and instruction handling.

Such a hub may take the form of a network server or a computer. Acting ac-

cordingly on the information received from the sensors, the hubs sends relevant

instructions to the actuators which in turn execute them [100].

Communication between the smart home devices may take place on different

media. Early domotic systems made use of wiring systems in order to convey the

message from a device to the hub [49]. Although a small portion of current smart

homes still make use of wires to carry information, most domotic systems today

utilise wireless communication protocols to transmit information from one place

to another [7]. Information may be transmitted along infrared signals, radio-

frequency bands and also WiFi communication links.

Another important aspect of communication within a home automation sys-

tem is the interaction between the user and the system. The user interface is

the central feature of any home automation system allowing the user to control

numerous different devices from a centralised location. User interfaces vary in

complexity according to the variety of devices or appliances controllable by the

system. [91]. In some environments, a more complicated interface is required to

provide a wide range of commands to the user, possibly including BCI technology

to provide the motor-impaired user with a suitable means of communication.

7



2.2 Brain Computer Interfaces

As the name implies, a Brain-Computer-Interface (BCI) is a system in which

a user can communicate with a computer using only his brain signals. A BCI

can be implemented in various ways but in general it always involves three steps.

First, brain signals are acquired from the subject. They are then processed and

interpreted by the processing unit of the BCI. Lastly, commands are executed

according to the interpretation of the brain signals.

BCIs can either be non-invasive or invasive [69]. Invasive BCIs require a neu-

rosurgery, during which electrodes are implanted directly into the brain. This

ensures a high signal quality at the expense of a complex procedure with possible

contingencies, like for instance, the formation of scar tissues. As the body reacts

to the alien objects within, it forms a scar around the electrodes reducing the

signal quality [83]. On the other hand, non-invasive BCIs detect neural activity

without the need of any surgical intervention. The next sections will discuss the

different modalities for brain signal acquisition, electroencephalography (EEG)

and its standard electrode placement, and EEG-based BCI systems.

2.2.1 Neuroimaging Technologies for Brain Signal Acquisition

Neural activity may be detected from its electric, magnetic or metabolic na-

ture. The magnetic effect of neural activity can be detected with magnetoen-

cephalography (MEG) by recording the magnetic fields induced by the electric

currents occurring in the brain [67] [19]. The magnetic fields are recorded with

highly sensitive magnetometers [84].

The metabolic effect of neural activity is captured by positron emission tomog-

raphy (PET), a nuclear imaging technique. A radio-tracer, that is, a minuscule

amount of radioactive material, is injected into the bloodstream [15]. As the

radio-tracer reaches the brain, it attaches itself to the glucose. As the glucose is
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consumed by the brain, different glucose levels within the cerebral region, may

be captured by a PET scan.

Another neuroimaging technique is functional magnetic resonance imaging

(fMRI). It has been shown that neural activity affects the cerebral blood flow.

Neurons require oxygen which is delivered by haemoglobin in red blood cells [8].

As neural activity within an area increases, a greater demand for oxygen is cre-

ated, hence increasing the blood flow to that area. The magnetic characteristics

of the haemoglobin is changed according to the oxygen levels within it. This

change is detected by an MRI machine [32]. Similar to fMRI, oxygen levels are

also detected with functional Near-Infrared Spectroscopy (fNIRS) which detects

how much oxygen is present within the area through the use of infra-red light [43].

Electrical neural activity is recorded with electroencephalography (EEG).

Electrodes are placed on the scalp to measure the electric potential induced by

the neurons. A neuron consists of an axon and dendrites, which can be consid-

ered as the sending and receiving parts of a neuron respectively [11]. Neurons

transmit information by means of electrical charges. An axon induces a charge

and transmits it to the nearest dendrite. Potential differences are induced be-

tween the synapses and the axon due to ions distribution in the membrane of the

neuron[94]. The synapse is the gap between the axon and the dendrite. Only

when a group of neurons fire together can the effect be detected by EEG equip-

ment [50].

2.2.2 EEG Electrode Layout

EEG electrodes are positioned on the scalp according to the International

10/20 system [1], which is an internationally recognised standard to illustrate

the position of scalp electrodes used within an EEG context. The 10/20 system,

shown in Figure 1, provides a uniform framework by which EEG scientists can

document their studies.
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Scalp positions within this system are designated according to their locations

with respect to the four lobes which make up the cerebral cortex [88]. The

electrodes on the frontal lobe, which is responsible for reasoning, motor action,

cognitive skills and speech, all start with the letter ‘F’. The parietal lobe, which

processes all sensory information, is located in the central to posterior section of

the brain. Electrode positions that are located centrally within this region are

designated with the letter ‘C’ whereas those electrode positions that are located

posteriorly within this region are designated with the letter ‘P’. The two temporal

lobes, associated with the interpretation of sounds, is found at the bottom and

to the sides of the brain. Due to its location, the accessibility to the temporal

lobe through the International 10/20 system is quite limited, and in fact there

are only few electrode positions on the temporal lobes, which are designated with

the letter ‘T’. Lastly, the occipital lobe, which processes all the visual information

[70], is at the back of the head. Electrodes on the occipital lobe are designated

with the letter ’O’. Some positions which lie between two lobes are designated

with the two corresponding letters.

(a) International 10/20 System [1]

(b) Frontal View of the International 10/20

System [71]

Figure 1: Frontal and Top View of the International 10/20 System
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2.2.3 Various EEG-based BCI systems

A large majority of the BCIs use EEG since it is the most portable and

most cost-effective neuroimaging technique, relative to the other brain record-

ing modalities mentioned in Section 2.2.1. EEG also has an excellent temporal

resolution though a relatively poor, spatial resolution. Various types of EEG-

based BCI systems exist, all of which use different techniques and different EEG

channels for acquisition. However all EEG-based BCIs can be divided into two

categories: evoked and spontaneous, or as sometimes also referred to, exogenous

and endogenous, respectively [98].

Evoked-type BCIs heavily depend on external stimulation which can be of

auditory, visual or sensory nature. The stimuli evoke certain potentials within

the brain, which are recognised by the BCI and interpreted as commands [3].

Spontaneous systems require no external stimuli as the mental activity within a

specified region is interpreted as a control input.

The P300 system is an evoked BCI. In such a system, event-related potentials

(ERPs) are utilised. ERPs are computed by averaging epochs of data related to a

specific event. Users are exposed to an oddball paradigm where presentations of

sequences of repetitive stimuli are infrequently interrupted by a deviant stimulus.

The infrequent event evokes the P300 component. The name of the component

refers to a peak within the ERP that occurs around 300ms after the infrequent

stimulus is presented [28].

Another evoked-type BCI is one based on steady-state visually evoked po-

tentials (SSVEPs). SSVEP-based BCIs make use of visually evoked potentials

which are electrical potentials, most prominent within the visual cortex, occur-

ring in response to a visual flickering stimulus. It is known that a visual stimulus

flickering at a constant frequency will generate a corresponding visually evoked

potential with a frequency equal to that stimulus frequency [80]. Since a stimulus

flickering at a specific frequency evokes an SSVEP signal that includes the flick-

11



ering frequency, signals may be analysed in the frequency domain, facilitating

the recognition of SSVEPs. SSVEP spectra exhibit a peak at their respective

fundamental frequency and subsequent harmonics.

Motor-Imagery based BCIs are of the spontaneous type. Motor Imagery (MI)

refers to an imagined movement or an action that is mentally executed. Promi-

nent changes within the brain rhythms are observed within the motor cortex when

the user is planning or executing a voluntary movement [101]. This allows for the

detection of imagined body movements as motor imagery produces quasi-identical

effects on the brain rhythm as the real movement performed. Upon this basis,

several BCIs have been developed to control the movement of a mouse cursor for

instance by imagining left or right hand movement [56].

Another spontaneous BCI is the Conceptual Imagery (CI)-based BCIs. Such

BCIs are a recent development. Research has shown that the link between the

EEG patterns of a user and the conceptual objects that a subject thinks about

is quite consistent [59]. Such BCIs can lead to more natural interactions with

the system. With an adequate and personally-customised training, users can for

instance imagine a lamp in order to switch it on or off.

Hybrid systems have also been developed by researchers in order to improve

BCI systems in three aspects: (i) improve BCI classification accuracy, (ii) increase

number of user options within the application, and (iii) reduce brain-command

detection time. A hybrid BCI (hBCI) can either: (i) integrate a neural data

acquisition device with another biosignal acquisition method like electroculogra-

phy (EOG), or (ii) combine two or more brain activities within a singular unit.

A typical example of the first type of hBCIs would be a combination of video-

oculography (VOG) and EEG to extract the ocular artifact and remove it from

the EEG signal [85]. As for the second type of hBCIs, a typical example would

be utilising both P300 and SSVEP components, to gain from the advantages of

both techniques [44].
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2.3 Chapter Summary

This chapter provided an introduction to home automation systems and brain

computer interfaces. It started out with an overview of the components which

make up a home automation system, discussing the typical hardware devices

used and the communication technologies generally utilised. The overview was

concluded with a discussion on the user interfaces of such systems and how BCIs

can aid motor-impaired users. The second part of the chapter focused on BCIs

starting with an overview on the various neuroimaging devices available, followed

by a generic description of EEG-based systems and the EEG electrode layout.
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3 Review of Smart Home BCIs and EEG-based

Eye-Movement Extraction

This chapter starts with a focus on the smart home BCIs reported in liter-

ature. It discusses the smart home BCIs from different perspectives. As the

goal of the project is to design a smart home hBCI which fuses SSVEPs with

EEG-based eye-movement potentials, the second part of the chapter focuses on

the most commonly used techniques for processing EEG-based eye-movement

signals. It explains briefly the algorithms used for each technique and concludes

with a performance comparison between the different techniques used.

3.1 A Review of the BCI Systems Implemented within a

Smart Home Environment

The independence of persons with mobility impairment has always been an

important concern. One critical factor for such individuals is their dependency

on their families or carers to carry out basic tasks within their own home. This

inspired a lot of effort in the last couple of years to incorporate the use of BCI

systems within a smart home environment. In this section, literature related to

BCIs in smart homes will be reviewed and analysed, to help understand the state

of the art and identify any gaps in this field.

3.1.1 Nature of BCI Systems Used

Several ways exist to establish a communication link between the human brain

and the computer. This can be done through visually evoked potentials [37],

motor [16] or conceptual imagery [93], facial expressions and cognitive state as-

sessment [65]. P300-based smart home BCIs [37], [45], [24] were implemented in

various ways, each having different menu layouts as described in Section 3.1.2.

An SSVEP-based system was implemented by Saboor et al. [82]. All stimuli
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were presented on Epson Moverio BT-200 augmented reality glasses. QR codes

were included within the system to identify the controllable devices within the

smart home environment. Once a device is detected, a maximum of four flickering

stimuli were presented according to the device selected. Another SSVEP-based

system was implemented by Adams et al. [2], where the flickering stimuli were

distributed across three different screens dispersed around the home environment.

Corralejo et al. and Cho et al. implemented MI-based smart home BCIs. In

the system implemented by Corralejo et al. [45], users were instructed to imagine

the movement of either their left or their right hand to move the cursor in one-

dimension; either left or right. The cursor was then used to operate the home

automation system. In the other system implemented by Cho et al. [16], a VR

BCI system was presented. Apart from being implemented in a real environ-

ment, the home automation system was also emulated in a virtual environment.

MI brain signals were acquired with an EEG headset to allow the user to navi-

gate to the left or right within the virtual space and to control devices within the

virtual environment. Objects controlled within the virtual environment, trigger

the corresponding events in the real home automation system.

CI-based smart home BCIs were developed by Kosmyna et al. [58] and Suleri

[93]. Kosmyna et al. [58] suggested a BCI operating on conceptual imagery, in

which mental imagery was used to execute mental commands. Subjects were

instructed to imagine an image or concept in connection with the device to be

controlled. Template matching algorithms were used to train and classify the

EEG data. Suleri [93] implemented a BCI system which functions on a com-

bination of motor and conceptual imagery. Black curtains and noise-cancelling

headphones were included in the setup in order to enhance the effectiveness of

the conceptual imagery.

Various smart home BCIs depending on cognitive state assessment were im-

plemented and utilised facial muscles as switches [65], [51], [63], [33]. Double or
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triple blinks, detected from frontal channels, were interpreted either to select a

particular device or to prompt the BCI into active mode. Algorithms were used

to observe the activity within the EEG frequency bands. The attention and med-

itation levels of the users were computed, monitored and assessed to operate the

selected device.

Each BCI system discussed above has its own advantages and disadvantages.

Some systems may be easy to set up at the expense of performance whereas

others may be more robust but lack practicality. A thorough discussion of the

techniques mentioned above is presented later in Section 3.1.4.

3.1.2 Menu Layouts

The layout of the menus differed according to the nature of the BCI systems

used and the number of options available to the user. For instance, Guger et

al. [37] and Corralejo et al. [45], both opted for cascaded menus within their

respective smart home P300-based BCI systems. With regards to the system

implemented by Guger et al. [37], seven menus were drawn to include all the

options available to the user. Six of these menus allowed the user to control

devices directly while the other menu allowed the user to access a specific device

or a position within the house, as shown in Figure 2. Corralejo et al. [45] opted

for a principal menu which consisted of a 3×4 matrix where most of the tiles

represented a controllable device. Three of the tiles were assigned the function

to either pause, stop or resume the application. The secondary menu was formed

according to whatever the user chose in the principal menu. For instance, should

the user choose to control the TV, a 5×5 matrix would appear as a secondary

menu. On the other hand, DeVenuto et al. [24] designed a P300-based BCI which

utilised a single menu since only four options were available to the user. The icons

in the menu are flashed one after the other to evoke the P300 component within

the user’s brain signals.
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Figure 2: User Interface of the P300-Based BCI System implemented by Guger

et al. [37]

For the MI-based smart home BCI [21] implemented by Corralejo et al., a

different menu layout was applied. As shown in Figure 3, the screen was divided

into two menus one of which was consistent and present, throughout the opera-

tion of the BCI. The other menu was of a hierarchical structure. The green cursor

was operated through motor imagery. Scrolling through the menu was permitted

by moving the cursor to the right, while in order to select an option, one had to

move the cursor to the left. Secondary menus were designed for each device.

Figure 3: User Interface of the MI-Based BCI System implemented by Corralejo

et al. [21]
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In general, icons were preferred over textual descriptions, where this was pos-

sible [63] [45]. This attributes to the fact that an image conveys a message much

more efficiently than text [23]. Moreover, with regards to visuals, icons take less

space than text and give the menu a more organised and aesthetically-pleasing

look. Except for P300-based systems, BCIs have between four to eight icons

on the menu. P300-based systems on the other hand could easily include more

options, and hence more icons, within one menu, as can be seen in Figure 2.

3.1.3 Hardware Used in Smart Home BCIs

All the hardware used in smart home BCIs can be categorised in two: (i) the

EEG data acquisition device and (ii) the components used to control or compose

the home automation system itself. EEG headsets can either be laboratory grade

or consumer EEG systems [79]. Low-end EEG headsets are cheaper and more

portable than laboratory grade EEG equipment, however the use of such equip-

ment comes at the expense of accuracy.

With regards to the hardware of the home automation system itself, from the

review conducted in this study, it was observed that the systems implemented

can be roughly categorised into three so-called generations. In first generation

systems, a virtual home was created and no physical devices were required as

was the case in several studies [37], [25], [93]. This allowed the designers to focus

more on the BCI part of the smart home and hence refrained themselves from

actually implementing the smart home and dealing with its problematics.

Second generation systems utilised relays to control and operate actual, physi-

cal devices. However such operation is limited to solely a toggle operation, that is

an on-off switch operation, as was the case in various studies [65], [51], [63], [33].

Devices included computers, monitors, routers, kettles, medical devices, lights,

fans and locks.
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Third generation systems went a step further and offered more flexibility

within their menus, as users were given much further options than simply switch-

ing a device on and off. Corralejo et al. implemented such a system [45], [21]

where the user could modify the volume or temperature of the TV or AC unit

respectively, instead of just switching them on and off. Such systems made use

of IR blasters in order to provide this flexibility.

Second and third generation systems included a microcontroller within their

architecture which acted as the central hub within the home automation system.

Various microcontrollers were used. Some studies included an Arduino [63] or a

Raspberry Pi board while others opted for an ESP32 [82] or ARM7 [33] develop-

ment board. Communication between the devices and the central hub was done

on wireless technology like Bluetooth [65] or WiFi [4].

3.1.4 Discussion

A comparative analysis of different smart home BCI systems was carried out.

BCI systems that rely on the observation of activity within the EEG bands and

compute the user’s attention and meditation levels accordingly, are the most easy

to implement as two or three electrodes may suffice to develop such a system.

This enables researchers to use a commercial grade EEG system. However, a

BCI based on a commercial grade EEG acquistion device, will be time-consuming

should the user interface be complex with a menu that includes several options.

As a result, the operation of several devices was limited to just a toggle operation.

Imagery-based BCIs are endogenous and hence require no external stimuli.

However it is difficult to navigate a complex smart home menu with motor im-

agery . Specifically, users must first control a cursor with motor imagery which

in turn operates the menu of the home automation system. A VR system as

implemented by Cho et al. [16], would imply more direct results, but still motor

imagery requires a high level of focus in order to function smoothly. On the other

hand, conceptual imagery seems to have the most direct approach when control-
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ling devices. The subject is first trained to think of an image or imagined action

in relation to the action that the subject wishes to execute. Then during the

real-time running of the BCI, the subject must rethink the same exact thing that

the subject thought during the training stage in order to execute the required

action. However, such a technique requires an even higher level of focus from the

user. CI-based BCI systems need to be implemented in an environment which

is free of distractions, which is not always possible, especially for people with

mobility impairment [59].

A lower level of focus is needed for the P300 and SSVEP based BCIs, which are

the most reliable of all the mentioned BCI techniques. Since P300 and SSVEP-

based BCI are exogenous, the subject just needs to attend to the target and the

evoked potential is generated. A P300-based system tends to be slower than an

SSVEP-based system, since one has to wait until the desired target is flashed.

This can take some time especially when there are lot of options available, as in

the case of home automation systems. On the other hand, SSVEP-based BCIs

tend to be limited with the number of options, as increasing the number of options

would increase the number of flickering stimuli, increasing the distractions and

the annoyance factor of the system. However, SSVEP-based BCIs have a more

direct approach than the P300-based systems as one does not have to wait for

the target to flash or appear. The limitation on the number of unique flickering

frequencies may be overcome by including different phase differences for different

stimuli and by re-structuring the user-interface into hierarchical menus. Accord-

ing to Amiri et al. [5], SSVEP-based BCI system have more accuracy and better

information transfer rates (ITR) than the P300-based BCI systems. This makes

the SSVEPs a suitable choice for designing a BCI to control a home automation

system.

From the review on smart home BCIs, one can notice that there is a lack in

development of third generation BCIs. Third generation smart homes are more

complex to implement but offer much more flexibility in return. To the best of

20



our knowledge, two such systems [45] [22] have been developed, one of which was

based on motor imagery while the other utilised the P300 component. Since it

was concluded that SSVEP is most suitable choice for a smart home BCI, this

project will address this gap by designing and implementing a third generation

smart home SSVEP-based BCI.

3.2 A Review on the Extraction of Eye-Movement Infor-

mation from EEG data

Despite being the most suitable choice for a smart home BCI, the limitations

of SSVEP-based BCIs still need to be addressed. Since smart home BCIs may

require several user options within the menu, this will lead to several flickering

stimuli within a smart home SSVEP-based BCI. Although the user may focus

on a single stimulus, all the stimuli within the visual field are processed by the

brain. Studies has shown that multiple stimuli presented at the same instant will

compete for neural representation in the visual cortex [57]. Should the stimuli be

located spatially close to each other, this would attribute to a far more intense

competing effect, as in accordance with the Stiles-Crawford effect, which states

that light entering the pupil through the centre is perceived to be stronger and

brighter than that light entering at the boundaries of the pupil [92].

The recognition of SSVEPs is hindered by such a competing effect, as the

fundamental frequencies of the SSVEPs start to interfere with each other and

spatial resolution is lost. Besides frequency encoding the stimuli, phase encod-

ing [52] and dual frequency coding [104] have been used as alternative encoding

methods to address the issue of the competing effect.

Other studies tried to include other technologies and form a hybrid BCI in

order to improve the BCI performance, some of which acquiring biological signals

from another source apart from neural activity. EEG signals have been combined

mostly with electrooculographic (EOG) signals [72]. EOG signals are utilised to

predict the eye-gaze direction and estimate the focus of foveal attention (FoA).
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However such hybrid systems require the user to have EOG electrodes attached

to the face in addition to the EEG headset. Studies have also combined EEG

with video-oculography (VOG), employing an eye tracker to determine the FoA

[86], however such hybrid systems require the use of multiple instruments, namely

the VOG device and the EEG device, working in synchrony. Hence, the question

of whether the eye-movement data can be obtained from just EEG electrodes, is

relevant to such hybrid BCIs. This allows BCI designers to predict eye movement

using just an EEG cap, rendering a hybrid BCI system which is of less discomfort

to the user and simpler.

3.2.1 Types of Eye-Movements Identified

There are various studies that have shown that eye-gaze movement may be ex-

tracted from EEG. Although most of the works are concerned only with horizontal

eye-movements, other works [10], [41] also discriminate vertical eye movements.

3.2.2 Electrodes Position

Belkacem et al. [9] applied electrodes mostly on the frontal lobe but few

of them were even placed on the temporal lobe. Data was acquired from the

following scalp positions: AF7, AF8, F7, F8, FT7, FT8, T7 and T8. From Figures 1a

and 1b it can be seen that these electrodes cover the region just above and beside

the eyes, making them ideal to gather eye-movement data. Other researchers

used a smaller combination of the aforementioned locations along with additional

adjacent scalp positions. For instance, Gupta et al. [38] acquired data from F7

and F8 and from AF3 and AF4, while Hai et al. [40] also used FP1 along with F7

and F8. On the other hand, Belkacem et al. [10] acquired eye-movement-related

EEG data from just two scalp position T9 and T10 from the temporal lobe.

3.2.3 Signal Pre-Processing

Once acquired, EEG data is pre-processed in order to prepare it for feature ex-

traction. Data is initially filtered to remove any unwanted noise, which typically

includes the powerline frequency and any activity outside the frequency band of
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interest. A notch filter is applied at the power line frequency to remove associated

components. An additional filter is applied to filter out frequency components

larger than 10Hz. Belkacem et al. [10] and Hsieh et al. [46] both implemented a

lowpass filter Butterworth filter with a cut-off at 10Hz and 7Hz, respectively, as

frequency components larger than this are not associated with eye movements.

Gupta et al. [38] on the other hand used a 5th order Butterworth filter operating

between 0.5Hz and 3Hz.

Removal of the baseline and normalisation may also be carried out. Belkacem

et al. [9], also applied a least-squared polynomial of the 10th degree to smoothen

the signals. Others implemented a Hamming filter followed by an Extended

Moving Difference (EMD) filter to reject voltage drift noise [40].

3.2.4 Eye Movement Feature Extraction

After the pre-processing stage, feature extraction algorithms are applied to

the data to extract features that characterise the data and also reduce its dimen-

sion. These are fed to the classifier. The outcome of the studies mentioned in

this section will be discussed in Section 3.2.6.

One typical feature extraction method is the Independent Component Anal-

ysis (ICA) technique used by Samadi [41] and Hsieh et al. [46]. ICA allows the

multichannel EEG data to be decomposed into independent signal sources. This

allows the artifacts to be distinguished from true EEG data. The ICA algorithm

works on the general assumption that all the observed signals are a combination

of linearly mixed signal sources. Figure 4 illustrates the concept behind the ICA

technique.
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Figure 4: Graphical Illustration of ICA [76]

The ICA can be represented mathematically by the following equations:

x1(t) = a11s1(t) + a12s2(t)

x2(t) = a21s1(t) + a22s2(t)

x = As

(1)

where x denotes the observed EEG data acquired from different channels

while s represents two sources within the brain. The matrix A denotes the mix-

ing matrix which is responsible for modifying the original signal sources into the

observations. The ICA solves for s and A by maximising the statistical indepen-

dence between the components of the signal sources themselves.

After the ICA was implemented, Samadi segmented the ICA-derived source

signals into epochs. Epochs were composed of 400ms temporal windows with 50%

overlap. Features were extracted from each windows by computing the mean,

variance, maximum and minimum amplitude. These features were then fed to a

Support Vector Machine (SVM) classifier, which will be explained in Section 3.2.5.

A different approach for feature extraction used by Gupta et al. [38], is the

Common Spatial Pattern (CSP) filter. CSP maximises the variance within one

class while minimising the variance within the other classes. Once the spatial fil-
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ters are obtained, the common logarithm is applied on the variance of the product

of the spatial filter with the data. These were taken as features and fed to the

classifier.

All of the above can be explained mathematically by the pair of equations

below:

Fa = log(var(SFXa))

FRa = log(var(SFXRa))
(2)

where Fa represents the features for class a. Class a represents a particular

class such as a leftwards glance. SF and Xa represent the spatial filter and signal

data. On the other hand FRa and XRa denote the features and signal data for all

other classes other than class a. These features are then used to train an SVM

classifier.

Belkacem et al. [9] carried out basic arithmetic operations to determine the

features. Utilising eight electrodes, they subtracted the summation of four chan-

nels belonging to the right hemisphere from the corresponding sum of the left

hemisphere. This can be expressed mathematically through the equation below:

Xnew(n) =
∑
i∈L

Xi(n)−
∑
j∈R

Xj(n) (3)

where n represents the sample data at a specific timing, i denotes the chan-

nel while L and R represent the set of channels used within the left and right

hemisphere respectively. The channels used were AF7, F7, FT7, T7, AF8, F8, FT8

and T8. This expression was used to distinguish between the left and right and

vertical glances. A further expression was used to distinguish between upward

and downward glances, which sums all eight channels.

Y =
8∑

m=1

Xm(n) (4)

where m denotes the channel number. It was observed that these two signals

include a peak occurring at a specific time. The area of these peaks was deter-
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mined using a simple trapezoidal integral method and used as a feature.

In an additional study [10], the Continuous Wavelet Transform (CWT) was

applied to the signals Xnew and Y . The corresponding scalogram, a quantifiable

representation of the energy of the coefficients, was generated and the peak-to-

peak amplitude of the signals as well as the gradient of the peaks were calculated.

These four quantities (amplitude, gradient, energy and area of the peak) were

used as features for the classification process. Data was segmented within one

second temporal windows. The amplitude was measured by calculating the dif-

ference between the minimum and the maximum values of the samples within the

window. The gradient was computed by dividing the amplitude by the window

length, which in this case was one second. The area was measured with the same

procedure as described in the paragraph above.

In contrast to other studies, Hai et al. [40] implemented a univariate Autore-

gressive (AR) model to extract the features from their data. They opted for a

second order AR model as shown in the equation below.

y(n) = a1y(n− 1) + a2y(n− 2) (5)

where y(n) is the filtered EEG signal. EEG data was acquired from three

electrodes positioned at FP1, F7 and F8 resulting in a total of 6 AR coefficients

for all three channels. During the experiment, data was acquired for blinking,

fixation and bi-directional horizontal glances. Hence four sets of feature vectors,

each consisting of six AR coefficients, were created, one for each class. The AR

coefficients were inputted into a neural network for classification. The neural

network will be discussed in the next section.

3.2.5 Classification of Eye Movements

After features are extracted from the data, they are fed to a classifier so that

the eye movement may be predicted. Support Vector Machines (SVM) are the

most commonly used classification method for EEG-based eye-movement predic-
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tion.

SVM classifiers aim to find the ideal hyperplane that separates two classes of

data, maximising the margin between them. For non-linear separable data, this

requires a non-linear transformation such that it would be possible to linearly

separate the data in the transformed space [73] [66]. Figure 5 illustrates the

concept behind non-linear SVMs.

Figure 5: Graphical Illustration of the Non-Linear SVM Concept [13]

Alternatively, Hsieh et al. [46] use a Hidden Markov Model (HMM) for eye

movement classification. An HMM is a way to model sequential data where the

processes that are generating the data are hidden but represented in the model

using latent variables.. The model is defined by the number of states and by

three matrices and vectors: (i) the transition probability matrix which consists of

all the probabilities of all the transitions between the states, (ii) the initial state

distribution vector which consists of the probabilities of an observation initially

occurring in any of the defined states, and (iii) the observation probability matrix

which includes the probability of a particular observation occurring.

Hsieh et al. [46] defined three states within their model: left, right and centre.

The model was based on the assumption that the user would start gazing at the

centre. Another assumption was that the user could not glance directly from left

to right, but rather glances to the centre prior to glancing to the left. A similar

assumption was taken when glancing from left to right. The probability of a
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state continuation was assigned to be 0.5, while glancing to the left or right was

assigned to be 0.25. Glancing back to the centre had to be given a probability of

0.5 since glancing from left to right and vice-versa was defined to be impossible.

Figure 6 illustrates the three-state machine implemented by Hsieh et al.

Figure 6: 3-State Machine implemented by Hsieh et al. [46]

Multi-layer perceptrons have also been used for eye movement classification

[40]. Multi-layer perceptrons are made up of multiple layers of perceptrons where

each perceptron uses the weighted sum of its inputs to provide an activation.

Multi-layer perceptrons are trained in a supervised manner to classify an input

vector into one of a number of classes at its output. As mentioned in Section 3.2.4,

Hai et al. used the AR coefficients as eye movement features; these features were

used in a multi-layer perceptron with two hidden layers to output four Boolean

values, each of which representing a class, namely blinks, fixations, rightwards

and leftwards glances.
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3.2.6 Performance Comparison

A comparison between all papers was carried out in order to assess the accu-

racy results. Table 1 describes the feature extraction algorithms and classification

methods implemented by the various authors and the results they achieved for

horizontal glances and vertical glances. Table 1 also includes the various elec-

trodes positions utilised.

Reference Electrode

Positions

Feature

Extraction

Method

Classifier Horizontal

Glances

Percentage

Accuracy

Vertical

Glances

Percentage

Accuracy

Belkacem et

al., 2013 [9]

AF7, AF8,

F7, F8,

FT7, FT8,

T7 and T8

Arithmetic

Combinations

of Channel

Signal

Values

Thresholds 69.73% 55.0%

Gupta et al.,

2012 [38]

AF3, AF4,

F7 and F8

CSP Filter SVM 95% /

Hsieh et al.,

2014 [46]

AF3, AF4,

F7 and F8

ICA HMM 88.6% /

Hai et al.,

2013 [40]

Fp1, F7, F8 AR Model NN 94% /

Belkacem et

al., 2015 [10]

T9 and T10 CWT Thresholds 98% 46%

Table 1: Performance Comparison Table

As can be observed, the studies carried out by Gupta et al. and Hai et al.

achieved a highly accurate result despite making use of only four and three elec-

trodes respectively. Both studies were limited to distinguishing between left and

right glances. Belkacem et al. [10] achieved a high accuracy rate despite having

gathered EEG data from only two temporal scalp positions. Specifically, an ac-

29



curacy rate of 98% was obtained for detecting horizontal glances, while vertical

glances were detected with only 46% accuracy.

These results suggest that a mere electrode signal comparison, as done by

Belkacem et al. [9], is not sufficient, and that some spectral signal decomposition

helps to provide better features.

3.2.7 Conclusion

Nearly all algorithms discussed can be or have been implemented in a real-time

scenario. Applications varied from playing a simple game [46] [10] to controlling

a mouse cursor on the screen [20]. It is noteworthy that, to the best of our knowl-

edge, there are no studies which investigated whether eye-movement information

can be obtained from electrodes placed on the occipital region alone. This would

be beneficial should the detection of eye-movements be combined with an SSVEP-

based BCI which utilises occipital channels for acquisition. Also, to the best of

our knowldege, there are no studies that investigate whether one can recognise

glances at different visual angles but in the same direction. Finally, there also

appears to be no study that seeks to combine the EEG-based eye-movement de-

tection with a BCI. This project will address these issues by conducting a study

to determine to what extent can eye-movement information be extracted from

the occipital lobe and whether one can classify a glance at specific visual angles.

Finally, the EEG-based eye-movement detection will be incorporated within an

SSVEP-based BCI and two fusion methods will be compared to study whether

and which hybrid BCI performed better than the non-hybrid SSVEP-based BCI.
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4 EEG-based Eye Movement Detection

In the previous chapter, a general overview of the techniques used to extract

ocular information from EEG was presented. This chapter is divided into two

sections where the first covers the methods used to carry out the EEG-based

eye-gaze analysis and the methodology by which this analysis is carried out. In

the second section of the chapter, the results of the EEG-based eye-gaze analysis

are presented and discussed.

4.1 Methods and Methodology

Following the overview of the EEG-based eye-movement-potential extraction

techniques presented in the previous chapter, the feature extraction and classi-

fication algorithms which were most appropriate for the purpose of this project

were investigated. The mathematical theory behind these signal processing tech-

niques is discussed in detail in the first part of this section. Subsequently, the

experimental paradigms and the methodologies used for the EEG-based eye-gaze

analysis are also explained in this section.

4.1.1 System Architecture

A computer system with a 22 inch monitor, a resolution of 1920×1080 pixels

and a refresh rate of 60Hz, was used for this project. The g.USBamp from g.tec

[36] and the RED500 eye-tracker from SensoMotoric Instruments [47] were used

for EEG and eye-movement data acquisition respectively. SIMULINK was used

to acquire the data from the g.USBamp while all the processing was carried out

in Python. The visual stimuli were designed using PsychoPy [74], an open-source

Python toolbox, which permits control of the timing of the stimuli with very high

precision.

4.1.1.1 Hardware Description

The equipment used for EEG data acquisition was composed of an EEG cap,

EEG active electrodes, two 16-channel bio-signal amplifiers along with their re-
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spective driver interface boxes and power supplies.

A g.GAMMA cap [36] was used for an EEG cap. The g.GAMMA cap allows

the researcher to acquire EEG data from several different positions distributed

on the scalp according to the extended international 10-20 electrode placement

system. g.SCARABEO electrodes were used. These are active EEG electrodes

with a small physical form (10 × 16 mm) which are inserted into the holder rings

of the g.GAMMA cap. Highly conductive electrode gel was applied to the scalp

through the opening within the electrode itself, to ensure optimal electrode-skin

contact. The g.USBAMP bio-signal amplifier was used to amplify the EEG signal

acquired from the scalp with a high precision and accuracy. Each amplifier allows

a maximum of 16 input sources with a 256Hz sampling rate.

In parallel with the EEG data acquisition system, an eye-gaze tracker was

used to record the eye-gaze of the subject in order to provide a ground truth for

analytic purposes. A RED500 eye-gaze tracker was used. With a sampling rate

of 500Hz, it uses infrared (IR) technology to track the pupil of the user as he/she

looks at the computer screen. The output of the eye-tracker is given in screen

pixel coordinates which reflects upon the user’s point of gaze on the computer

screen.

4.1.1.2 Software Description

The EEG acquisition process was developed within SIMULINK, interfac-

ing the physical EEG equipment with the Python processing algorithms. A

SIMULINK API was provided by g.tec as part of their firmware suite. The

API was then integrated within the SIMULINK model.

Similarly, a Python API for the eye-gaze tracker was provided by SMI. This

was integrated directly with the Python processing program as they were in the

same programming language. To counter for the different languages of the APIs,
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a UDP protocol was implemented to integrate the two APIs together.

The visual stimuli, which are described in Section 4.1.3, were designed using

PsychoPy, which inherently provides an access to a vast library of stimuli having

different shapes and sizes. Apart from that, PsychoPy allows the timings of the

stimuli to be controlled with a frame-by-frame precision.

With a double-buffered system, stimuli are initially placed on the ‘back buffer’

while the ‘front buffer’ is presented on the screen. On each cycle, the ‘back buffer’

is initially blank and stimuli are rendered, that is, gradually added to the back

buffer. At a point in time, when all stimuli have been rendered on the ‘back

buffer’, the buffers are flipped such that the stimuli drawn at the back are now

presented at the front, that is, on the screen. The flipping of these buffers is

synchronised with the refresh rate of the monitor. It is this fact which exactly

gives the software designer precise control over the stimuli timings.

4.1.2 Participating Subjects and Experimental Setup

Five healthy subjects participated in this study. The research study was ap-

proved by the University Research Ethics Committee (UREC) of the University

of Malta (UREC Code:1905). Every participant was seated in front of an LCD

monitor which was placed approximately at eye-level with the subject. Partici-

pants were also advised to limit their physical movement to avoid the coupling of

EMG artifacts with the recorded data. A chin rest was provided to restrict head

movement.

EEG data was recorded at a sampling frequency of 256 Hz from a total of

19 channels. Eight of these channels were in the occipital region while the rest

were in the frontal area and temporal areas. The EEG channels selected were O1,

Oz, O2, PO7, PO3, POz, PO4, PO8, T7, FT7, F7, AF7, Fp1, Fpz, Fp2, AF8, F8,

FT8 and T8. This set of electrodes was chosen in order to carry out a thorough

analysis of which combination of frontal channels is best to extract eye-movement
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related EEG and to determine to what extent is the occipital region capable of

providing such information. In parallel with the EEG data, video-oculography

was recorded at a sampling frequency of 500Hz to provide a ground truth for

analysis, specifically to determine the exact point of gaze of the subject on the

computer screen.

4.1.3 Data Acquisition Session: Experimental Paradigm

The purpose of the data acquisition session was to gather EEG-based eye-gaze

data for offline-analysis. The session consisted of 5 sessions, with 80 trials each.

In a trial, the subject was instructed to glance from the center to one of eight

directions as shown in Figure 7, and back to the center.

Throughout the sessions, participants were instructed to follow a target pre-

sented on screen, with their eyes, as per the protocol illustrated in Figure 8.

Subjects were instructed not to blink during the session except during rest pe-

riods which were indicated by a red stimulus. In each session, 10 trials were

allocated for each position hence amounting to the total of 80 trials. Each session

started with the stimulus fixated at the center of the screen for 5 seconds. Trials

followed immediately after. In each trial the stimulus was presented at the center

for 1 second and was then shifted to one of the designated 8 positions for another

second. The trial concludes by re-centering the stimulus for the next second. A

rest period of 1.5 seconds was allocated after each trial. Figure 8 illustrates the

timings of the experiment. In this work a cross shape was selected for targets as

it helps the subject to focus the gaze at a singular point, which is the centre of

the cross itself.
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Figure 7: Possible Positions taken by Stimuli during EEG-Based Eye-Gaze Data

Acquisition Session

Figure 8: Timing Protocol of a Single Trial for EEG-Based Eye-Gaze Data Ac-

quisition Session

4.1.4 Signal Pre-Processing, Feature Extraction and Classification

This section describes the algorithms used to filter the data in the pre-processing

stage. It also elaborates upon the feature extraction techniques used and the clas-

sification methods.

4.1.4.1 Pre-Processing

EEG data gathered from the data acquisition sessions were organised into

epochs as per the structures required by the code implemented in the MNE

Python library [35] [34]. The MNE library is an open source package which fa-
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cilitates the processing, analysis and visualisation of both MEG and EEG data.

Epochs were then filtered with a 4th order Infinite Impulse Response (IIR) band-

pass filter having cut-off frequencies at 0.5 and 7Hz [62]. The EEG data was also

organised into custom-made files, which was used to integrate the EEG data with

the VOG data, allowing us to visualise both data types simultaneously as shown

in Figure 9.

As per the data collection protocol described in Section 4.1.3, each trial lasted

three seconds. In each trial the stimulus was presented at the center for 1 second

and was then shifted to one of the designated eight positions for another second.

The stimulus was then re-centered for the last second of the trial. Hence the data

within the trial which was relevant to this study was found in that one second

when the stimulus was off-centre. A frame of 0.5s after the target is shifted off-

centre, was sufficient to capture the eye-gaze signal. The frame also catered for

the visual reaction time which on average amounts to 0.25 seconds [54] [97] .

Figure 9: Simultaneous Visualisation of Eye-Gaze Data Captured Through VOG

and EEG Data
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4.1.4.2 Feature Extraction

As part of the machine-learning process, features need to be extracted from

the EEG data in order to be fed into the classifiers in the following stage. The

technique of common spatial patterns (CSP) [77] was utilised in order to decom-

pose two multi-variate signals pertaining to two different classes into two sets of

components. Significant differences lies in the variances between the two sets of

components facilitating discrimination between the two classes.

The data of each epoch, Ec, was shaped into an N×T matrix, where N repre-

sents the number of EEG channels making up the data and T denotes the number

of samples within the epoch. An N×N covariance matrix, S, was calculated for

each epoch pertaining to a specific class. Covariance matrices were normalised

by their trace as shown in Equation 6. The covariance matrix indicates a degree

of how the EEG channels are linearly associated with each other. cls1 and cls2

represent the two different classes [38].

Sc =
EcE

T
c

trace(EcET
c )
, c ∈ [cls1, cls2] (6)

Covariance matrices pertaining to a specific class were averaged in order to obtain

a single and averaged covariance matrix for each class, as can be seen in Equation

7:

Sc =

∑n
i=1 Sci

n
, c ∈ [cls1, cls2] (7)

The averaged covariance matrices of the two classes were summed up to obtain

the Composite Covariance Matrix, Scmp as observed in Equation 8 [38]:

Scmp = Scls1 + Scls2 (8)

Eigenvalue decomposition follows next, as the composite covariance matrix

was factored as in Equation 9. The largest eigenvector of the composite covariance

37



matrix points in the direction of the largest spread in variance within the matrix.

The magnitude of such vectors are numerically represented by their respective

eigenvalues. Eigenvectors were sorted in descending order according to their

eigenvalues.

Scmp = V λV T (9)

The whitening transformation matrix, W , was then found as in Equation

10, and this was applied to the average covariance matrix of each class as seen

in Equation 11. This linearly transforms the data into a form where the new

covariance matrix is identical to the identity matrix. Hence SWcls1
and SWcls2

share the same common eigenvectors U [77].

W = λ−
1
2V T (10)

SWc = WScW
T , c ∈ [cls1, cls2] (11)

The whitened covariance matrix, SWc is once again factored into its eigenvec-

tors as shown in Equation 12 [77]:

SWc = UγcU
T , c ∈ [cls1, cls2] (12)

∑
c

γc = I, c ∈ [cls1, cls2] (13)

Since as shown in Equation 13, two corresponding eigenvalues within γcls1 and

γcls2 sum up to one, the eigenvector with the largest magnitude for SW1 is the

same eigenvector but with smallest magnitude for SW2 . This property makes the

eigenvectors U useful for discriminating between the two classes. A projection

matrix was calculated as shown in Equation 14. One may consider only the first

and last eigenvectors within U as they carry the most information, however other

eigenvectors can also be taken into consideration. Hence U can be reduced to Uk

where k denotes the sets of eigenvectors used. Applying the projection matrix to
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the epoch E, as per Equation 15, maps the epoch into the CSP space, denoted

by Z.

P = UT
k W (14)

Z = PE (15)

The natural logarithm was applied on the variance of the resulting epoch Z

and considered as a feature for classification.

4.1.4.3 Classification

Classification is the final part of the machine-learning process. Feature vec-

tors are fed into the classifier to assign them a label. A Support Vector Machine

(SVM) was opted for in this work [18]. The theory behind such a classifier is

described in this section. It is explained for feature vectors which are in a two-

dimensional space. However the mathematics can easily be extrapolated to higher

dimensional data.

As per Figure 10, the objective of the SVM is to find lines to discriminate

between two classes. Furthermore, the SVM tends to find the optimal line to max-

imise the margin between the support vectors pertaining to each class. Support

vectors are the data points which are closest to the discriminating plane.

Figure 10: Illustration of SVM Division Line and Support Vectors [6]
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The analysis of SVM starts from the classical binary classification problem

given by the linear model in Equation 16:

y(x) = wTΦ(x) + b (16)

Φ(x) denotes the feature-space transformation which in this research study

was the CSP algorithm. wT and b represent the gradient and intercept of the line

respectively. The training data set consists of N input feature vector x1, x2, .....xN

with corresponding labels or target values t1, t2, .....tN where tn ∈ −1, 1. Testing

data is classified according to the sign of y(x). Assuming that the training data

set is linearly separable, such that there exists a value of w and b which guar-

antees that y(xn) is greater than 0 for data points having a positive label and

otherwise, for data points having a negative label, then tny(xn) is greater than 0

for all training data points.

The margin, which needs to be maximised, can be computed by finding the

distance from a data point xn to the line. This is given by Equation 17 [18]:

margin =
tny(xn)

||w||
=
tn(wTΦ(xn) + b)

||w||
(17)

It is desired to maximise the margin by solving Equation 18:

max(margin) = arg max
w,b

1

||w||
min
n

[tn(wTΦ(xn) + b)] (18)

To bypass the minimisation problem, we can assume that w and b are rescaled

such that tny(xn) >= 1 for all training data points. This simplifies Equation 18,

requiring only the maximisation of 1
||w|| . This is equivalent to minimising ||w2||.
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Hence the optimisation function is shown in Equation 19 while the constraint

function is shown in Equation 20 [18].

arg min
w,b

1

2
||w2|| (19)

tn(wTΦ(xn) + b) >= 1 (20)

Lagrange multipliers are used to solve the constrained optimisation problem

introducing the Lagrange multipliers an such that an >= 0. The Lagrangian

function is given by Equation 21 [18]:

L(w, b, a) =
1

2
||w2|| −

N∑
n=1

antn(wTΦ(xn) + b)− 1 (21)

As part of the Lagrangian solution, equating the derivatives of L(w, b, a) to

zero, Equations 22 is obtained:

w =
N∑

n=1

antnΦ(xn) (22)

Plugging this into Equation 16 we obtain Equation 23 which is used to classify

new data points.

y(x) = Φ(x)
N∑

n=1

antnΦ(xn) + b (23)

4.1.5 Methodology for the Offline Analysis of EEG-based Eye-Gaze

Data

As stated in Section 3.2.7, one of the objectives of this study on eye-movement-

related EEG, was to analyse and determine the extent of utilising EEG channels

recorded from the occipital region for eye-movement detection. Another objective

was to explore the classification between two saccades in the same direction hav-

ing different visual angles. Five analytical approaches, which will be described

later on in this section, were taken to extract as much information as possible

from the offline analysis.
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As both the CSP and SVM algorithm require training, the gathered data was

divided in three batches. One batch was used to train the CSP algorithm, another

batch to train the SVM classifier while the last batch was used as testing data. A

three-fold cross-validation method was employed to facilitate the implementation.

The use of two training batches of data to estimate parameters for CSP and SVM

respectively, improves the generalisation of the system.

4.1.5.1 Classifying Eye-Movements

This section describes the process taken to classify an eye movement into

one of eight possible classes. Specifically, a hierarchical system was carried out

within the classification process. The hierarchy consists of three tiers as shown

in Figure 11. At the first tier, epochs are classified as either horizontal or vertical

saccadic eye movements. Once labeled, epochs are passed down to the second

tier of the hierarchical classifier which consists of the ‘L vs R vs O’ and the ‘U

vs D vs O’ classifiers. Epochs labeled as ‘Horizontal’ are passed to the ‘L vs R

vs O’ classifier while epochs labeled as ‘Vertical’ are passed to the ‘U vs D vs O’

classifier. Epochs labeled as ‘Others’ by the ‘L vs R vs O’ classifier are handed

to its sibling class within the tier, which in this case is a ‘U vs D’ classifier.

Similarly, epochs labeled as ‘Others’ by the ‘U vs D vs O’ classifier are handed to

an ‘L vs R’ classifier for classification. Epochs labeled at the second tier are then

handed down to the third and final tier. At the final tier, epochs are classified

according to the visual angle extent of the horizontal or vertical eye movement

performed. Epochs were categorised either into trials with a 23.9 ◦ visual angle,

which will be referred to as ’normal’ within this text, or into trials with a 12.5 ◦

visual angle, which will be referred to as ’small’ within this text. Epochs labeled

as ‘Left’ from the second tier of the hierachical classifier are passed to an ‘NL vs

SL vs O’ classifier. Similarly, epochs labeled as ‘Right’, ‘Up’ or ‘Down’ from the

second tier are passed to their respective classifiers at the third tier. Similar to

classifiers at the second tier of the hierarchy, epochs classified as ‘Others’ by a

classifier are passed to its sibling classifier within that branch. Epochs labeled as

‘Others’ by the ‘NL vs SL vs O’ classifier are passed to an ‘NR vs SR’ classifier

42



and conversely, epochs labeled as ‘Others’ by the ‘NR vs SR vs O’ classifier are

passed to a ‘NL vs SL’ classifier . Similarly, epochs labeled as ‘Others’ by the ‘NU

vs SU vs O’ classifier are passed to an ‘ND vs SD’ classifier and conversely, epochs

labeled as ‘Others’ by the ‘ND vs SD vs O’ classifier are passed to an ‘NU vs SU’

classifier. The ‘Others’ class was introduced from the second tier downwards for

each classifier to compensate for misclassification. The ‘Others’ class consisted of

epochs pertaining to the other classifier within the same tier. For instance, the

‘Others’ class of the ‘Up vs Down vs Others’ classifier was assumed to consist of

epochs pertaining to the ‘Left’ or ‘Right’ class and hence these epochs are passed

to a ‘Left vs Right’ classifier. Although three classes were present at the second

tier downwards, both the CSP algorithm and SVM classifier were executed with

a ‘One vs One’ approach. Taking the ‘Up vs Down vs Others‘ classifier again

as an example, first the ‘Up’ class and the ‘Down’ class were considered; then

the ‘Up’ class and the ‘Others’ were considered and lastly, the ‘Down’ class and

the ‘Others’ class were considered. Since, due to the ’Others’ class, each binary

classifier produced three results, majority voting was then applied to declare the

winner of the three outcomes. In the case of a tie, arbitrarily, the outcome from

the first pair was chosen. The CSP and SVM algorithms were executed in a

binary mode as they were actually designed for binary feature extraction and

classification.

4.1.5.2 Determining the Optimal Number of Components for CSP

As stated in Section 4.1.4.2, the CSP algorithm offers the possibility of using

a different number of components to build up the feature set. This number of

components is limited by the number of EEG channels used in the recording. To

find the optimal number of components to use for highest possible classification,

the offline classification process was carried out several times, each time increas-

ing the number of components used in the CSP algorithm. Components were

were added by two taking the next eigenvector from the top and bottom of the

eigenvector matrix.
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Figure 11: 3-Tiered Hierarchical Classifier used to classify EEG-based Eye Move-

ment Potentials into one of Eight Classes

4.1.5.3 Analysis of Different Scalp Regions

As the purpose of the project, at a later stage, is to fuse EEG-based eye-

movement potentials with an SSVEP-based BCI, a system dependent on elec-

trodes placed at the occipital region, then, naturally, the question of whether

eye-movement information can be derived from signals recorded from this brain

region, arises. To address this question, the offline data analysis was carried out

three times: i) using only the frontal channels, ii) using only occipital channels

and finally using all the channels in the frontal and occipital regions. This was

done to investigate whether channels from the occipital region can aid or replace

channels from the frontal region in extracting eye-movement related information.

It was noted that the maximum number of CSP components varied from one test

to the other as different regions had a different number of EEG channels.
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4.1.5.4 Analysis of Frontal Channels

During acquisition, eleven channels were recorded from the frontal region. An

analysis was then carried out to identify how classification performance varies

with the number of frontal channels used. In this case, 11, 7, 5 and 3 electrodes

were considered as listed in Table 2.

Number of Frontal

Channels

Frontal Channels

11 T7, FT7, F7, AF7, Fp1, Fpz, Fp2,

AF8, F8, FT8 T8

7 F7, AF7, Fp1, Fpz, Fp2, AF8 F8

5 AF7, Fp1, Fpz, Fp2 AF8

3 AF7, Fpz, AF8

Table 2: Frontal Channels Considered for Each Case

4.1.5.5 Training Data Requirements

The goal of this analysis was to identify how classification performance varies

as the number of trials used for training the CSP and the SVM algorithms is

reduced. This analysis was carried out three times, starting with 64 training

epochs and halving the amount for each test down to 16 epochs. Since each

epoch takes 4.5 seconds, this analysis seeks to reduce the training time from

288 seconds to 72 seconds while determining how this reduction in training time

affects the classifcation performance.
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4.2 Results and Discussion

This section presents the results of the EEG-based eye-gaze analysis carried

out on the data acquired as described earlier in Section 4.1.3. Numerical val-

ues corresponding to the bar graphs presented in this section are tabulated and

presented for completeness in Appendix A. Except for when indicated otherwise,

all tables portray the results averaged over the five subjects from which data

was acquired. As described earlier, this analysis is composed of five analyses.

Subsequently a discussion of the results follows.

4.2.1 Analysis of Determining the Optimal Number of Components

for CSP

As stated in Section 4.1.5.2, an analysis of components was carried out to

determine the optimal number of components for transforming the EEG data to

CSP space. Table 3 shows the accuracy results obtained using different number

of CSP components across the various individual classifiers. For Table 3, all the

EEG channels were considered. As can be seen, the optimal number of CSP

components varies between 2 and 8 for the different individual classifiers.

CSP Components

2 4 6 8 10 12 14 16 18

H vs V 99.61% 98.82% 98.61% 98.19% 98.13% 97.99% 97.92% 97.78% 97.50%

L vs R vs O 88.96% 89.93% 88.33% 89.31% 88.96% 88.54% 88.40% 86.88% 87.43%

U vs D vs O 74.44% 76.81% 77.36% 78.26% 77.50% 77.85% 77.85% 77.57% 77.29%

NL vs SL vs O 64.17% 67.64% 67.99% 67.78% 67.78% 65.42% 64.44% 64.65% 63.26%

NR vs SR vs O 65.42% 70.42% 71.74% 70.07% 69.10% 68.47% 67.92% 67.85% 66.60%

NU vs SU vs O 49.24% 55.42% 52.71% 53.40% 54.24% 53.68% 51.60% 53.61% 52.43%

ND vs SD vs O 47.78% 50.97% 51.25% 51.04% 50.14% 49.17% 48.96% 50.90% 49.93%

Table 3: Results of the Analysis of Determining the Optimal Number of Compo-

nents for CSP

As seen from Table 3, the accuracy is not substantially affected by the number

of CSP components used. For this reason it would be sufficient to use just two

CSP components for each classifier. This results in a feature set made up of only
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two elements, allowing the SVM to operate within a two-dimensional space.

4.2.2 Classification of Eye Movements Results

In this analysis, two approaches were taken. One approach analysed the

individual classifiers making up each tier of the hierarchical system. The other

approach analysed the results when the classifiers of the whole hierarchical system

were taken into consideration. The results of the two approaches are shown in

the tables presented in Appendix A, all of which are two-dimensional. Classifiers

lie on the rows, while the different scalp regions used are distributed across the

columns.

4.2.2.1 Individual Classifiers

In this section, the individual classifiers were compared. Figure 12 illustrates

the performance of the classifiers and contrasts them with each other. It also

shows how the performance changes when different scalp regions are used. As

can be seen from Figure 12, the ‘H vs V’ classifier produces the best results,

achieving approximately 98% score. There is however a substantial drop in the

accuracy from the ‘H vs V’ to the ‘L vs R vs O’ classifier.

Figure 12: Classification Accuracies of the Individual Classifiers
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As shown by the scatter plots in Figures 13, and 14, the CSP features for the

‘H vs V’ classifier are more linearly separable than the features for the ‘L vs R vs

O’ classifier, especially that of the ‘L vs R’ classifier. The different levels of linear

separability of the CSP features for the ‘H vs V’ and ‘L vs R vs O’ classifiers

contribute to the difference in the accuracy of these two classifiers.

Figure 13: Scatter Plot of CSP Features for ‘H vs V’ Classifier
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(a) Scatter Plot of CSP Features for ‘L vs R’ Classifier

(b) Scatter Plot of CSP Features for ‘L vs O’ Classifier

(c) Scatter Plot of CSP Features for ‘R vs O’ Classifier

Figure 14: Scatter Plots of CSP Features for ‘L vs R vs O’ Classifier49



From the bar graph it is also evident that there is a substantial drop in the

accuracy from the ‘L vs R vs O’ to the ‘U vs D vs O’ classifier considering the

combined and frontal scalp regions. This can be explained by Figures 15a and

15b. One can observe that the signals at the channels FT8, F8, AF8, AF7, F7,

FT7 are inverted when comparing the Left glance to the Right glance. This

spatial difference across the channels contributes towards a more effective CSP

transformation and more discriminable features. On the other hand, for vertical

glances the case is different. Figures 16a and 16b illustrate the EEG plots of an

upward and downward eye movement respectively where it can be seen that only

the central channels above the forehead are mostly affected. In relation to hori-

zontal eye movements, vertical eye movements do not constitute much of spatial

difference across the ‘Up’ and ‘Down’ classes, contributing to the drop with the

classifiers accuracy mentioned above.

(a) EEG and Eye-Gaze Plot of a Leftward

Glance

(b) EEG and Eye-Gaze Plot of a Right-

ward Glance

Figure 15: EEG and Eye-Gaze Plots for Horizontal Glances
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(a) EEG and Eye-Gaze Plot of an Upward

Eye Movement

(b) EEG and Eye-Gaze Plot of a Down-

ward Eye Movement

Figure 16: EEG and Eye-Gaze Plots for Vertical Eye Movements

Such a spatial difference is not clearly visible within the occipital channels,

leading to the low classification rate shown in Figure 12. As can be seen from

Figures 17a and 17b, which show the EEG plots of horizontal glances obtained

from occipital channels, there is only a weak indication of spatial contrast between

the two classes. This contributes to the significant drop in the accuracy of the

classifiers from when frontal channels are considered to when occipital channels

are considered.

(a) EEG and Eye-Gaze Plot of a Leftward

Eye Movement

(b) EEG and Eye-Gaze Plot of a Right-

ward Eye Movement

Figure 17: EEG and Eye-Gaze Plots for Horizontal Eye Movements Acquired

from Occipital Channels
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A similar argument can be applied for the low classification rates within the

3rd Tier classifiers (‘L vs SL vs O’, ‘R vs SR vs O’, ‘U vs SU vs O’ and ‘D vs SD

vs O’). Figures 18a and 18b portray the EEG plots of leftward glances. One can

observe that there is no evident spatial contrast between the two plots.

(a) EEG and Eye-Gaze Plot of a Leftward

Eye Movement with Large Visual Angle

(b) EEG and Eye-Gaze Plot of a Leftward

Eye Movement with Small Visual Angle

Figure 18: EEG and Eye-Gaze Plots for Leftward Eye Movements

4.2.2.2 Hierarchical Classifier

The hierarchical classifier system was tested as a whole unit. As tabulated in

Table 9 found in Appendix A, accuracy scores were computed at each tier, deter-

mining how many trials were classified correctly in: i) one of either two classes

(’Horizontal’ or ‘Vertical’) at the first tier, ii) one of either four classes (‘Up’,

‘Down’, ‘Left’ or ‘Right’) at the second tier, and iii) one of either eight classes

(‘Normal Up’, ‘Small Up’, ‘Normal Down’, ‘Small Down’, ‘Normal Left’, ‘Small

Left’, ‘Normal Right’ and ‘Small Right’) at the third tier. Figure 19 shows the

accuracy scores of the hierarchical system at various tiers for the various scalp

regions while Table 8 shows the accuracy scores obtained by the individual classi-

fiers which make up the hierarchical classifier. Both frontal and combined regions

achieve close to 100% accuracy at the 1st tier, whereas this drops to 73% for the

occipital region. At the second tier, the classification accuracy drops to 75% for

both the combined and frontal regions, whereas the occipital region barely reaches

44%. At the third tier, the classification accuracy drops to 55% for the combined
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and frontal regions while the occipital region only reached 26% accuracy rating.

Figure 19: Hierarchical System Analysis Bar Graph Compared with Chance Lev-

els

Scalp Region Used

Combined Frontal Occipital

H vs V 98.9% 99.1% 76.3%

L vs R vs O 91.2% 89.0% 51.5%

U vs D vs O 75.5% 68.5% 49.6%

NL vs SL vs O 64.4% 72.8% 41.6%

NR vs SR vs O 65.4% 69.8% 34.0%

NU vs SU vs O 53.2% 53.3% 34.03%

ND vs SD vs O 46.9% 45.8% 33.5%

Table 4: Table of Results for Individual Classifiers making up the Hierarchical

Classifier
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Although the classification rates seem low at the lowest tier, they are still

above chance level. Trials are first passed through the first tier of the hierar-

chical classifier which only consists of the ‘H vs V’ classifier. Since the output

classes of the first tier consists of only the ‘Horizontal’ and the ‘Vertical’ class

the probability by chance at this level would be 50%. Trials are then passed to

the second tier of the hierarchical classifier which consists of the ‘L vs R vs O’

and the ‘U vs D vs O’ classifiers. Trials labeled as ‘Others’ by the ‘L vs R vs O’

classifier are handed to its sibling class within the tier, which in this case is a ‘U

vs D’ classifier. Similarly, trials labeled as ‘Others’ by the ‘U vs D vs O’ classifier

are handed to an ‘L vs R’ classifier for classification. Hence the output classes

of the second tier amount to four classes which are the ‘Up’, ‘Down’, ‘Left’ and

‘Right’ classes, resulting in a probability by chance of 25% at the second tier. Tri-

als are then passed to the third and final tier of the hierarchical classifier which

consists of the ‘NL vs SL vs O’, the ‘NR vs SR vs O’, ‘the ’NU vs SU vs O’

and the ‘ND vs SD vs O’ classifiers. Similar to classifiers at the second tier of

the hierarchy, trials classified as ‘Others’ by a classifier are passed to its sibling

classifier within that branch. Trials labeled as ‘Others’ by the ‘NL vs SL vs O’

classifier are passed to a ‘NR vs SR’ classifier and conversely, trials labeled as

‘Others’ by the ‘NR vs SR vs O’ classifier are passed to a ‘NL vs SL’ classifier .

Similarly, the same principle applies for trials labeled as ‘Others’ by the ‘NU vs

SU vs O’ and ‘ND vs SD vs O’ classifiers. Hence the output classes of the third

tier amount to eight classes which are ‘Normal Up’, ‘Small Up’, ‘Normal Down’,

‘Small Down’, ‘Normal Left’, ‘Small Left’, ‘Normal Right’ and ‘Small Right’, re-

sulting in a probability by chance of 12.5% at the third tier. Even the occipital

region, which seems to contribute towards the low classification rates, can at least

double the chance for a correct prediction at the third tier. Meanwhile the frontal

and combined regions managed to quadruple the chance for a correct prediction

at the lowest tier.

Figure 20 portrays the confusion matrix at the 3rd tier for the combined region

case. The confusion matrix shows that the trials with large visual angles were
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classified better than their counterparts with a small visual angle. The confusion

matrix also shows that most misclassifications occur within the third tier. In the

case of the ‘Small Down’ class (7th row), 38.1% of the ‘Small Down’ trials were

classified correctly as ‘ Small Down’ but a significant 30.8% were misclassified

as ‘Normal Down’. The rest of the trials were misclassified as upward glances.

Very few trials were misclassified as horizontal glances, attributing to the high

classification rate of the ‘H vs V’ classifier which is shown in Figure 21a.

Figure 21a to Figure 21g show the confusion matrices of the individual clas-

sifiers making up the hierarchical classifier. Figures 21b and 21c show that for

the ‘L vs R vs O’ and ‘ U vs D vs O’ classifiers, few trials were misclassified as

‘Others’ in comparison with the classifiers in the third tier of the hierarchy, whose

confusion matrices are shown in Figures 21d, 21e, 21f and 21g.

Figure 20: Confusion Matrix of Hierarchical Classifier at the 3rd Tier when jointly

considering Frontal and Occipital Regions
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(a) Confusion Matrix of ‘H vs V’ Classifier

(b) Confusion Matrix of ‘L vs R vs O’ Clas-

sifier

(c) Confusion Matrix of ‘U vs D vs O’ Clas-

sifier

(d) Confusion Matrix of ‘NL vs SL vs O’

Classifier

(e) Confusion Matrix of ‘NR vs SR vs O’

Classifier
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(f) Confusion Matrix of ‘NU vs SU vs O’

Classifier

(g) Confusion Matrix of ‘ND vs SD vs O’

Classifier

Figure 21: Confusion Matrices of Individual Classifiers making up the Hierarchi-

cal Classifier when jointly considering Frontal and Occipital Regions

4.2.2.3 Individual Classifier and Hierarchical Classifier Analysis using

only Trials with a Large Visual Angle

A similar analysis as the above was carried out considering only those trials

with a large visual angle. This was done to assess whether the trials with a small

visual angle, have any effect on the classification accuracy. As in this analysis we

are only considering one type of visual angle, then automatically the classifiers

within the third tier were excluded as the role of the third tier is only to classify

between the extent of visual angle. To determine whether the trials with a small

visual angle are affecting the classification accuracy in any manner, the trials with

a small visual angle were omitted out of the training set. Hence the results shown

in Figure 22 were obtained with only half the number of training trials used for

the above analysis. The accuracy results obtained at the second tier of the hier-

archical classifier are labeled under an ‘L vs R vs U vs D’ classifier. These results

are then compared with the results portrayed in Figure 12 and Figure 19 to deter-

mine the effect of the trials with a small visual angle on the classification accuracy.
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Figure 22: Classification Accuracies of Four Different Classifiers using only Trials

with a Large Visual Angle

Figure 23 compares the performances of the respective classifiers shown in

Figure 22 with those shown in Figures 12 and 19. It can be seen that the same

performance was approximately obtained for the classifiers when considering the

‘Combined’ and the ‘Frontal’ case, despite that the results of Figure 22 were ob-

tained with only half the number of training trials used for the other figures.

However for the ‘Occipital’ case, a substantial difference was found between

the two methods. The method which considered only the ‘Large Visual Angle’

trials produced better results than the method which used trials with both small

and large visual angles. Hence the subsequent analyses were carried out with

trials of a large visual angle, as it either achieves the same or better performance

than the other method, with just half the size of the training set.
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Figure 23: Comparison of the Classification Accuracies for Four Different Classi-

fiers when using Trials with Both Small and Large Visual Angle (‘Both’) against

using only Trials with a Large Visual Angle (‘Large’) for the Combined ‘C’,

Frontal ‘F’ and Occipital ‘O’ case.

4.2.3 Results of Analysis of Frontal Channels

An analysis was carried out to investigate how the number of frontal elec-

trodes affects the accuracy. For the purpose of this analysis, the frontal channels

were omitted out, two at a time, as shown in Table 2 in Section 4.1.5.4. Figure

24 shows the results obtained for the different number of frontal channels taken

into consideration.

Although this analysis concerns the frontal channels, this analysis is also ex-

tended to when the frontal and occipital are jointly considered. In this case, the

electrodes within the occipital region are all kept and the frontal electrodes are

reduced two at a time. Figure 25 shows the effect of the reduction in frontal

channels on the accuracy.
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Figure 24: Classification Accuracies of Four Different Classifiers when considering

3, 5, 7, or 11 Frontal Electrodes and considering Frontal Region only

Figure 25: Classification Accuracies of Four Different Classifiers when considering

3, 5, 7, or 11 Frontal Electrodes and jointly considering Frontal and Occipital

Regions

60



When considering only the frontal channels, a substantial difference was found

in the performance of the ‘U vs D vs O’ classifier when the number of frontal

electrodes was reduced from 11 to 5, suggesting that channels T7, FT7, F7, F8,

FT8 and T8, being the six channels omitted, hinder the classification of vertical

saccadic eye-movements. A substantial difference in the performance of the ‘U vs

D vs O’ classifier was also noted when using both frontal and occipital regions,

with a change in performance occurring when the number of frontal electrodes

was reduced from 11 to 3. Except for the ‘U vs D vs O’ classifier, the performances

of the classifiers remain effectively the same as the number of frontal electrodes

is reduced. Differences in performance of these three classifiers were not found to

be significant. Therefore, a sufficiently good performance may be expected to be

achieved with just three frontal electrodes placed at AF7, Fpz and AF8.

4.2.4 Results of Training Data Requirements Analysis

The purpose of this analysis is to investigate how the training set size affects

accuracy. In this analysis, the performance of the classifiers was evaluated across

the number of training trials used. This analysis was carried out with 16, 8 and 4

training trials/class. Figures 26a, 26b 27a and 27b illustrate how the classification

accuracy of each classifier varies with the size of the training set.

(a) ‘H vs V’ Classifier (b) ‘L vs R vs O’ Classifier

Figure 26: Classification Accuracies of ‘H vs V’ and ‘L vs R vs O’ Classifiers

Against Training Set Size of 16, 8 and 4 Trials/Class
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(a) ‘U vs D vs O’ Classifier (b) ‘L vs R vs U vs D’ Classifier

Figure 27: Classification Accuracies of ‘U vs D vs O’ and ‘L vs R vs U vs D’

Classifiers Against Training Set Size of 16, 8 and 4 Trials/Class

When using the frontal channels, the performances of all the classifiers remain

effectively the same as the training set size is reduced, indicating that with the

frontal channels, the class features are well clustered, requiring only few samples

for training. Conversely, when using the occipital channels, the performances of

all the classifiers monotonically decrease as the training set size is reduced, thus

requiring more samples for better performance, although the best performance is

very much lower than that of the frontal channel classifiers. The same decreas-

ing trend in performance is also observed for the classifiers when using both the

frontal and occipital channels, with the largest decrease in performance occurring

when the number of training trials is reduced from 8 trials/class to 4 trials/class.

Therefore, best performance may be expected to be achieved with frontal

channels even if few training examples per class are used. However, if only oc-

cipital channels are to be used, in view that the hybrid BCI is based on SSVEP

which are optimally detected using occipital channels, then a training set of 16

trials/class would be recommended although it would typically result in a longer

training time.
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4.3 Conclusions drawn from the EEG-based Eye-Gaze Study

Several conclusions were drawn from the EEG-based eye-gaze offline analy-

sis. Specifically, eye movements can be classified into horizontal or vertical eye

movements with an accuracy of 98.47%. Eye movements can be further classified

into four classes; leftward, rightward, upward or downward eye movements with

an accuracy of 74.38%. It was also concluded that eye-movements can be clas-

sified into eight classes with an accuracy of 58.31%. The eight classes consisted

of eye-movements in the four directions where each direction involved two visual

angles, amounting to eight classes.

Eye movements in the same direction but having different visual angles were

also concluded to be reliably classified. Leftward eye movements with a large

visual angle were correctly classified from their small visual angle counterpart

with an accuracy of 74.79%. Similarly, rightward eye movements can be labelled

correctly with an accuracy of 73.68%. Upward and downward eye movements can

be classified into two types of visual angles but with a lower accuracy of 55.56%

and 50.97% respectively.

From this study it was also concluded that reliable eye-movement information

can also be extracted from the occipital region alone. Eye-movement-related oc-

cipital signals can be categorised into horizontal or vertical eye movements with

an accuracy of 76.67%. Furthermore, eye movements can be further labelled into

left, right, up or down with an accuracy of 47.6%.

A study was also conducted to observe how the classification accuracy varies

with the number of frontal channels considered and with the size of the training

set. When the number of frontal channels was reduced, differences within the

classification accuracies of most classifiers were found to be negligible. The size

of the training set also had negligible impact on the classification accuracy when

considering frontal channels only. On the other hand when considering only
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occipital channels, substantial differences were found when the size of training

set was varied.

4.4 Chapter Summary

This chapter detailed the signal processing methods for the EEG-based eye-

gaze analysis which was aimed to identify whether different eye movements could

be reliably classified using EEG signals recorded from the frontal and/or occipital

brain regions.It gave a thorough description of the CSP algorithm, which was used

to extract features from the EEG signals and the SVM algorithm, classifying

the EEG signals upon the said features retrieved from them. It described the

experimental protocols by which the EEG data was acquired and discussed the

methodology by which the analyses were carried out. This chapter also presented

the results of the analyses. A discussion of the results then followed, and the

conclusions drawn, which will be used to construct the hybrid BCI discussed in

the next chapter, were highlighted.
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5 Smart Home Hybrid BCI

Based on the conclusions drawn in the previous chapter, a smart home hybrid

BCI was designed and implemented. This chapter is divided in two sections;

the first covers the methods used to construct the smart home hybrid BCI and

the methodology by which the performance of the smart home hybrid BCI is

evaluated and the second presents and discusses the results of this evaluation.

5.1 Methods and Methodology

In this section, the design of the smart home BCI application is discussed in

detail. In the first part of the section, the frontend and backend of the application

are explained. Algorithms used in addition to those described within Section 4.1.4

are then discussed, followed by a description of the experimental paradigms used

for the comparative analysis which compared the performance of the proposed

smart home hybrid BCI against a standard SSVEP-based smart home BCI.

5.1.1 System Architecture

Similar to the EEG-based eye-gaze analysis, a computer system with a 22

inch monitor, a resolution of 1920×1080 pixels and a refresh rate of 60Hz, was

used. The g.USBamp from g.tec [36] was used again for EEG data acquisition.

EEG data was acquired within a model compiled in SIMULINK, which was then

transferred to a Python application for processing as explained in Section 5.1.1.2.

Various Internet-of-Things (IOT) devices were used to create a smart home net-

work operable from the computer system as described in the next section.

5.1.1.1 Hardware Description

The smart home system is designed as a network having a star topology.

Nodes are connected to a central device, known as a hub. The hub receives

requests from the nodes, processes them and relays the information and instruc-

tions accordingly to other nodes. Smart home networks can either be designed

65



from scratch by investing in smart home appliances, like smart TVs with inter-

net connectivity or installed for conventional home appliances through the use of

interface devices. Interface devices make conventional home appliances smart by

making them operable by an alternative method other than conventional means.

For this project the second method was opted for. Figure 28 illustrates the smart

home network implemented for this project.

Figure 28: Hardware Infrastructure of Smart Home Network

Etekcity remote outlets [26] were used to provide remote control for power

outlets within the smart home environment. Remote outlets mainly consist of a

single-pole relay which connects the household powerline to the power inlet of a

particular device. This relay is operated via a radiofrequency signal of 433MHz.

Despite their remote operability, these can still provide a substantial amount of

power to the connected load amounting to 2.4kW. For this project, two remote

outlets were used. One was to switch on and off a standing fan and the other one
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used to switch on and off a desk lamp.

A Universal Remote RM3 Pro from Broadlink [48] was used to operate IR

and RF devices. The Broadlink IR and RF blaster learns the IR and RF codes

from the remotes of the appliances and replicates the codes to control the same

appliances. RF technology offers a larger coverage and is not sensitive to sensor

directionality, however, it is prone to interference. On the other hand, IR tech-

nology is difficult to intercept, is much cheaper than its counterpart and offers

more flexibility with its codes. Generally, audiovisual equipment makes use of

IR technology while garage-door openers and motorised blinds utilise RF tech-

nology. For this project, the universal remote was used to operate the Etekcity

remote outlets. It was also used to control a TV set via IR. The universal remote

was programmed to execute: the power-on, volume-up, volume-down and mute

commands.

The Brunt Blind Engine from Brunt [14] was used to convert the existing

blinds into smart ones. This device mainly consists of a 12V DC motor with a

rated speed of 41rpm and a rated torque of 1.96Nm. A gear is attached directly

to the motor shaft in order to mesh with the beads of the blind, making the

blind motorised. The DC motor is controlled via WiFi and hence it is directly

connected to the webserver. In contrast with the Universal Remote RM3 Pro

IR/RF device, Wi-Fi allows a two-way communication between the hosts and the

hub. This interface device can rotate the vertical blinds to any particular angle.

However for this project, the system will allow the user to rotate the blinds to

either a 0◦ or a 90◦ angle.

A Raspberry Pi 3B+ was used to connect all the interface devices together,

acting as the central device within the star network portrayed in Figure 28. The

Raspberry Pi 3B+ can be thought of as a microcomputer as it houses a 1.4 GHz,

64-bit quad-core processor with a 2.4GHz IEEE 802.11.b/g/n/ac wireless LAN

and an embedded 1GB LPDDR2 SDRAM [78]. As a central hub it acts as a
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webserver for the Home Assistant platform which caters for the software side of

the smart home network as described in the next section.

5.1.1.2 Software Description

The software infrastructure of the smart home network was catered for by the

Home Assistant platform [64]. Home Assistant is an open-source home automa-

tion platform which runs on a Python 3 engine. The Home Assistant platform

allows designers to control their IOT devices via several entities. For the purpose

of this project only three such entities were used; ‘switch’, ‘cover’ and ‘script’.

The switch entity is used for those IOT devices whose operation is limited only

to a toggle operation, that is, a switch-on or a switch off operation. Therefore,

the Etekcity remote outlets, which can only toggle the power of the appliance

connected to them, were configured as switch entities. The cover entity is used

for those IOT devices which can either be fully open, fully closed or any position

between the two extreme states. The Brunt Blind Engine which is used to oper-

ate the blinds of a window, was configured as a cover entity. The script entity

provides the smart home designer with further flexibility. Script entities allow

one to combine multiple commands into one. For the purpose of this project, the

different TV commands available within the smart home BCI application were

configured as script entities.

Frontend

A menu for the smart home BCI application was designed using PsychoPy

[74] as illustrated in Figure 29. Menu options were depicted as black icons on

plain white squares. White squares were used as flickering targets to evoke the

SSVEP response within the user. The icons were designed with a transparent

background so as not to hinder the flickering of the squares underneath. The

menu options were presented in a cross configuration to utilise the eye-movement

classifiers mentioned in Section 4.1.5.1. The eye-movement classifiers allow the

user to halve the number of flickering stimuli by performing a horizontal or a

vertical eye movement.
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Figure 29: Menu Layout of Smart Home BCI Application

Commands associated with the TV were categorised within the vertical part

of the cross. Those related to muting or powering the TV were placed in the

lower part of the cross while those related to increasing or decreasing the volume

were placed in the upper part. The ‘Volume Increasing’ button was placed on

the right while the ‘Volume Decreasing’ was placed on the left as found within

typical TV remotes. Commands associated with the blinds were placed on the

right while those associated with powering the lamp and fan, were placed on the

left.

In total, eight options were included within the menu. As explained later in

Section 5.1.3 each option takes 4.75 or 5.5 seconds when using the SSVEP-based

or hybrid system respectively. The actions performed by the menu options are

explained below. For the sake of the explanation, small numbers were added to

each icon within the menu portrayed in Figure 29.
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1. Decrease the volume of the TV set by five bars

2. Increase the volume of the TV set by five bars

3. Mute the TV set

4. Switch on or off the TV set

5. Switch on or off a lamp

6. Switch on or off a standing fan

7. Close the window blinds

8. Open the window blinds

The fourth, fifth and sixth command execute a toggling operation of the de-

vice. Hence their corresponding icons were changed according to the status of

the device. Figures 30, 31 and 32 portray how the icons were changed according

to the power status of the device.

(a) TV in Off Mode (b) TV in On Mode

Figure 30: Icons for Different Statuses of the TV Set

(a) Lamp in Off Mode (b) Lamp in On Mode

Figure 31: Icons for Different Statuses of the Lamp
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(a) Fan in Off Mode (b) Fan in On Mode

Figure 32: Icons for Different Statuses of the Fan

Backend

As per the nature of BCIs, EEG data needs to be acquired from the user while

he or she is focusing on selecting a menu option. Therefore, through a multipro-

cessing environment, two simultaneous computational processes were created in

a Python script to manage the entire smart home BCI application. A parent pro-

cess handles the presentation of the stimuli, the processing of the EEG data and

the communication with the smart home network server, while a child process is

created with the sole purpose of handling the acquisition of EEG data from the

user. The EEG acquisition process was developed within a SIMULINK model,

interfacing the physical EEG equipment with the code scripted in Python. A

Transmission Control Protocol (TCP) socket is created to handle the transfer of

EEG data from the Simulink model to the child process in Python.

Communication between the two processes is carried out using two different

types of communication channels, namely, Pipe and Queue [99]. A pipe is used

to send instructions from the parent process to the child process to commence

the recording of the EEG data available within the TCP socket. Once the related

instructions were received by the child process, EEG data is recorded for a pre-

determined length of time. As the recording is finished, the EEG data block is

sent from the child process to the parent one via a queue. Once received by the

parent process the data block is processed as explained in Section 5.1.4, and the

user selection is computed. Its relevant command is communicated to the smart

home network server. The communication with the network hub is being carried
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out by means of an API provided by the Home Assistant platform [64]. Figure

33 illustrates the processes mentioned above in a flowchart format.

Start

Establish Communication with Smart
Home Network Server

Opens TCP Socket for
Communication with Simulink Model

Initiate Child Process

Initiate EEG Recording

Record EEG Data available 
within TCP socket

Sending Record 
Instruction as string 
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Pipe infrastructure

Send EEG Data block 
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Is Pipe 
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Quit
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'R' ?

N

Figure 33: Software Flowchart of Smart Home BCI Application
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5.1.2 Participating Subjects and Experimental Setup

Five (three male and two female) healthy subjects participated for this study.

The research study was approved by the University Research Ethics Committee

(UREC) of the University of Malta (UREC Code:1905). Every participant was

seated in front of an LCD monitor. This was placed at approximately eye-level

with the subject. Participants were also advised to limit their physical movement

to avoid the coupling of EMG artifacts with the recorded data.

EEG data was recorded at a sampling frequency of 256 Hz from a total of

11 channels. Eight of these channels were in the occipital region while the rest

were in the frontal region. In contrast with the eye-gaze analysis carried out in

the previous chapter, only three frontal channels were used for this analysis. As

explained earlier in Section 4.2.3, it was concluded that three frontal channels

suffice for this hybrid BCI. Hence the final set of EEG channels consisted of O1

, Oz , O2 , PO7 , PO3 , POz , PO4 , PO8, AF7, Fpz, and AF8.

5.1.3 Experimental Paradigm for the Comparative Analysis

A comparative analysis was carried out to compare a hybrid BCI which fuses

EEG-based eye-movement-potentials with SSVEPs and a conventional SSVEP-

based BCI. For the purpose of this project, two different types of hBCIs were

designed, namely, a sequential hybrid BCI and a mixed hybrid BCI. In the se-

quential hBCI, an eye-movement is first detected and classified as either hor-

izontal or vertical. Once the eye movement is determined, the options in the

application menu are halved as illustrated in Figure 34a and Figure 34b. The

stimulating period then commences, and the remaining icons start flickering so

that the attended icon is selected with the SSVEP detection algorithm explained

in Section 5.1.4.2. The mixed hBCI functions in a similar manner, however, the

attended icon is selected by a fusion of the SSVEP detection algorithm and the

eye-movement detection algorithm as explained in Section 5.1.4.3. A separate

HCI, which utilised only EEG-based eye-movement potentials, was also devel-

oped and compared with the SSVEP-based BCI and hybrid BCIs.
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(a) Resulting Menu after a Horizontal Eye-

Movement

(b) Resulting Menu after a Vertical Eye-

Movement

Figure 34: Different Menus According to the type of Eye Movement Detected

The comparative analysis was first carried out offline and then online. The

purpose of the offline analysis was to find an optimal stimulating window time

across all the five subjects. The purpose of the online analysis was to compare

and contrast the performances of the different HCIs. These include the SSVEP-

based BCI, the sequential hBCI and the mixed hBCI. Although the purposes of

the sessions were different, the paradigms and timings of the experiments were

common throughout the two sessions.

Prior to each session, a training session of 72 seconds long was carried out. The

purpose of the training session is to collect EEG-based eye-movement-potentials

pertaining to four classes (Up, Down, Left and Right). Similar to the protocol for

the EEG-based eye-gaze analysis described in Section 4.1.3, users were instructed

to follow a white cross with their eyes as it shifts to one of four positions on the

screen (Central Top, Central Bottom, Central Left or Central Right) as shown

in Figure 35. Four trials were carried out for each class. Figure 36 shows the

timings of one such trial. The data collected from the training session was then

used to construct CSP and SVM models to classify the user’s eye movements

within the hBCI system. Training sessions were only required for the EEG-

based eye-movement acquisition part, as the SSVEP-recognition part employed

unsupervised learning techniques and hence did not require any training sessions.
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Figure 35: Calibration Points Presented during the Eye-Gaze Training Session

Figure 36: Timing Protocol for One Training Trial in Training Session
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Following the training session, the actual experiment was conducted. For the

SSVEP-based BCI, the user was allocated 0.75 seconds to shift his gaze towards

the target. Another 3 seconds were allocated to the flickering of the stimuli,

required to evoke the SSVEPs within the user’s neurosignals. A feedback period

of 2s [30] then followed to provide visual biofeedback to the user. The timings

are portrayed in Figure 37 below.

Figure 37: Timings for Execution of One Trial for SSVEP BCI

For the hybrid BCI, an additional 0.75 seconds was allocated prior to the ‘gaze

shift’ or ‘cue’ period. In this short interval the user is instructed to focus on a

central cross. Recentering of the user’s gaze is essential for correctly classifying

the user’s eye movement. During the succeeding ‘gaze shift period’, the eye

movement is detected by the system. The system then classifies the glance as

either horizontal or vertical, and depending on the prediction outcome, removes

half of the options. Figure 38 and Figure 39 illustrate the timings of the second

experiment should the user make a horizontal selection or a vertical selection

respectively.
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Figure 38: Timings for Execution of One Task for hybrid BCI: Horizontal Selec-

tion

Figure 39: Timings for Execution of One Task for hybrid BCI: Vertical Selection
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For the offline session, an additional HCI was taken into consideration. The

additional HCI utilised only EEG-based eye-movement potentials. The perfor-

mance of such a system is optimal when the layout of the menu is in the form

of a cross as portrayed in Figure 40. For this HCI, the stimulation period was

removed. Users were instructed to center their gaze and then shift their gaze

according to the location of the target. The system then classifies the glance as

one of eight classes, selecting an icon. Figure 40 illustrates the timings of the

third experiment. A separate training session was conducted for this additional

HCI.

Figure 40: Timings for Execution of One Task for EEG-based Eye-Gaze HCI

The offline session consisted of three exercises, one for each different HCI

architecture. Hence an exercise was carried out for:

� SSVEP-based BCI

� Hybrid BCIs

� Eye-movement EEG-based HCI

Since both hybrid BCIs share the same menu layout and paradigm, a sin-

gle exercise was sufficient for both. Each exercise consisted of 24 trials. In a

trial the subject was instructed to select the icon indicated by the cue. The cue

was determined in such a way that each icon is selected three times in an exercise.
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The online session also consisted of three exercises, one for each different BCI

architecture. Hence an exercise was carried out for:

� SSVEP-based BCI

� Sequential Hybrid BCI

� Mixed Hybrid BCI

In the online session, subjects were asked to execute 3 different tasks consisting

of three consecutive commands each. The three tasks were designated as follows:

1. Task 1

(a) Switch on the TV set

(b) Close the window blinds

(c) Decrease the volume of the TV set

2. Task 2

(a) Open the window blinds

(b) Switch on the standing fan

(c) Increase the volume of the TV set

3. Task 3

(a) Switch on the lamp

(b) Mute the TV set

(c) Close the window blinds

For each command the subject was allowed three consecutive attempts to

correctly select the scheduled icon. If the user did not manage to generate the

necessary SSVEP and the system thus did not succeed in correctly detecting the

target after three attempts, the application executed the intended command and

progressed on to the following pre-defined cue.
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5.1.4 Algorithms used for the Comparative Analysis

Three algorithms were needed for the comparative analysis: (i) An eye-movement

classification algorithm which classifies the eye-movements detected; (ii) an SSVEP

classification algorithm which processes and classifies the SSVEP response of the

subject; and (iii) a fusion algorithm for the mixed hybrid BCI system which

fuses the output of the eye-movement classification algorithm with the SSVEP

classification algorithm.

5.1.4.1 Eye-Movement Classification Algorithm

The same algorithms used in the offline analysis described in Section 4.1.4

were used in the online experiment. The EEG trials obtained in the experiment

were filtered with a 4th order IIR bandpass filter having cut-off frequencies at

0.5Hz and 7Hz. The trials were then projected into CSP space. The natural

logarithm was applied to the variance of the resulting signals and these were used

as features to SVM classifiers. Seven pairs of CSP and SVM models, as listed

below, were compiled from the training data obtained from each user prior to the

experiment.

� Horizontal vs Vertical Model

� Left vs Right Model

� Left vs Other Model

� Right vs Other Model

� Up vs Down Model

� Up vs Other Model

� Down vs Other Model

The first pair classifies eye movements as either horizontal or vertical. This

is used to decrease the number of options within the BCI menu. As shown in

Figure 41, the other six pairs are used to either i) categorise the horizontal eye
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movements as leftward or rightward eye movements ii) categorise the vertical eye

movements as upward or downward eye movements or iii) through the use of the

‘Others’ class attempt to recover trials which are misclassified at the first tier.

As shown in Figure 41, eye-movements labelled as ‘Others’ are passed onto the

adjacent classifier within the second tier. The SVM models of these six pairs were

modified with a Platt Scaling [75] as explained in the following section. With such

a modification the SVM classifier is converted into a probabilistic classifier giving

a probabilistic estimate of how much the EEG trial pertains to a specific class.

This conversion is done to aid the SSVEP detection algorithm within the mixed

hBCI as described later in Section 5.1.4.3.

Figure 41: 2-Tiered Hierarchy for Eye-Movement Classification

Platt Scaling

From Section 4.1.4.3 the output of an SVM classifier for an ith trial, xi, is

given by Equation 24:

yi(xi) = wTΦ(xi) + b (24)

The output of the SVM classifier, yi is linearly transformed by A and B. The

linearly transformed output is then passed to a sigmoid function as shown in

Equation 25 [68]:

pi =
1

1 + eAyi+B
(25)

The parameters A and B are found by minimising the binary cross-entropy

cost function in Equation 26 [75].

81



(A,B) = min
A,B
{−

∑
i

t̂ilog(pi) + (1− t̂i)log(1− pi)} (26)

t̂i denotes the target variable of the ith training example. Whereas for training

the conventional SVM target variables had to be from the discrete set of {−1, 1},

for Platt’s modification this had to be readjusted to the set {0, 1}. The rescaling

is done as shown in Equation 27.

t̂i =
ti + 1

2
(27)

5.1.4.2 SSVEP Classification Algorithm

The filterbank canonical correlation analysis (FBCCA) [102] was used to pro-

cess and classify the SSVEP-related EEG obtained from the user in the online

experiments. The FBCCA algorithm consists of three major procedures: i) fil-

terbank analysis; ii) CCA between SSVEP sub-band components and sinusoidal

reference signals; and iii) target identification.

Filterbank Analysis

The EEG signal is decomposed into several sub-bands through the use of

multiple band-pass filters with different pass-bands. Zero-phase Chebyshev type

I infinite impulse response (IIR) filters were used as band-pass filters. Filtering

was implemented using the ‘filtfilt’ method in the scipy Python package [53]. The

design of the sub-bands in the filter bank was based upon a study by Chen et

al. [102] since the bandwidth of stimulation frequencies used within the online

experiments corresponded to that used within the study. The sub-bands covered

multiple harmonic frequency bands. Each sub-band had a different lower cut-off

frequency but they all shared the same upper cut-off frequency. The lower cut-off

frequency of the nth sub-band was set at n× 8Hz while the upper one was set at

88Hz. An additional bandwidth of 2Hz was added to both sides of the passband

for each sub-band [102]. Table 5 tabulates the passband for each sub-band.
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nth Sub-band Lower Cutoff Frequency, Hz Upper Cutoff Frequency, Hz

1 6 90

2 14 90

3 22 90

4 30 90

5 38 90

6 46 90

7 54 90

Table 5: Filterbank Parameters

Canonical Correlation Analysis

A CCA is a statistical method which assesses the underlying relationship

between two sets of variables [95]. The analysis seeks two sets of linear transfor-

mations, one for each set of variables, such that the correlation between the two

sets of transformed variables is maximised. The transformed variables are also

known as canonical variables.

Let the two sets of variables be represented as X and Y , their linear trans-

formations denoted respectively as aT and bT while their respective canonical

variables denoted as U and V . Their relation can be expressed mathematically

in Equations 28 and 29:

U = aTX (28)

V = bTY (29)

The objective of the CCA is to maximise the correlation between the two

canonical variables by finding the appropriate linear transformations as repre-

sented in Equation 30 [42].

max
a,b

ρ(U, V ) = max
a,b

ρ(aTX, bTY ) (30)

83



Using theorems related to covariance and correlation [87], this can be expressed

further as in Equation 31, where Σp,q represents the covariance between p and q.

max
a,b

ρ(U, V ) = max
a,b

aTΣXY b√
aTΣXXa

√
bTΣY Y b

(31)

For the purpose of this study, X was replaced by the EEG data obtained from a

subject during a single trial, after it has been filtered by the filterbank. X was in

the form of an Nc × T matrix where Nc represents the number of EEG channels

making up the data and T denotes the number of samples within the epoch.

Y was replaced by reference signals. Sinusoidal and cosinusoidal signals at

multiple harmonics of the target frequencies were considered as reference signals.

Y was in the form of an 2Nh×T matrix where Nh is the number of harmonic fre-

quencies considered and T is the number of samples within the reference signals.

Target Identification

The CCA was executed for each target frequency present within the BCI and

for each sub-band within the filterbank. The canonical correlations were stored

in R, a matrix containing all the canonical correlation values for all the different

target frequencies and sub-bands. R was of size Nsb × Nt, where Nsb represents

the number of sub-band components considered while Nt denotes the number of

target frequencies present in the BCI.

A weighed sum of squares of the correlation values corresponding to all sub-

band components was calculated as the feature for target identification as shown

in Equation 32:

ρ̃k =

Nsb∑
n=1

w(n) · (R[n,k])
2 (32)

where n is the index of the sub-band and k is the target. According to the

study carried out by Chen et al. [102], the weights for the sub-band components
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were defined as in Equation 33:

w(n) = n−1.25 + 0.25 n ∈ [1, Nsb] (33)

The predicted frequency of the SSVEPs, denoted by k̂, is the target frequency

with the maximal ρ̃k.

k̂ = arg max
k
ρ̃k (34)

5.1.4.3 Fusion Algorithm for the Mixed Hybrid BCI System

An algorithm was devised to fuse the predictions made by the eye-movement

classification algorithm within the SSVEP-target identification algorithm for the

mixed hybrid BCI. Specifically, Bayes’ Theorem [55], represented as in Equation

35, was used as a basis for the fusion algorithm.

P (ωk|X) =
P (X|ωk)P (ωk)

P (X)
(35)

X denotes the input, the EEG trial obtained from the user while ωk denotes the

class pertaining to target frequency k. By the law of total probability, P (X)

is further expressed as the total probability of all outcomes of X considering all

possible classes/options present within the BCI, as shown in Equation 36.

P (X) =
N∑
j=1

P (X|ωj)P (ωj) (36)

N denotes the total number of classes/options present within the BCI. Expressing

P (X) in the above form leads to the extended form of Bayes’s Rule [60] as shown

in Equation 37.

P (ωk|X) =
P (X|ωk)P (ωk)∑N
j=1 P (X|ωj)P (ωj)

(37)
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P (ωk|X) is the posterior probability, the probability of a specific class ωk given

the input/EEG trial X. P (X|ωk) is the class conditional distribution of X for

class ωk whereas P (ωk) is the prior probability of class ωk, the initial degree of

belief in the class ωk.

The prior probability is computed by the SVM classifier modified by Platt

scaling. This is calculated directly from the Eye-Gaze algorithm described in

Section 5.1.4.1. P (X|ωk) is computed from the FBCCA algorithm. As stated by

Equation 32 earlier, the FBCCA algorithm computes a correlation vector ~̃ρ of N

elements quantifying the correlation between an EEG trial and the different N

classes. The probability distribution of the correlation given the class is modeled

to obtain a value for P (X|ωk).

5.1.5 Performance Metrics used in Comparative Analysis

There are several measures that one may use to quantify the performance of

BCI systems. The performance metrics described below are among those most

commonly used [103] [12]. All of these methods have their limitations, but when

combined together, they present a more complete picture. Combined together,

performance metrics should be able to i) capture throughput, a combination of

speed and system accuracy and ii) offer practicality, that is, providing a metric

which is practicably communicable between various research groups [96].

5.1.5.1 Classification Accuracy Rate

The classification accuracy rate metric determines how often a correct se-

lection is made by a BCI. In other words it computes the percentage of total

selections that are correct. Although it is the most intuitive metric of BCI per-

formance, this evaluation criterion does not account for speed. The classification

accuracy can be computed as [89]:

P =
Nc

CN

(38)
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where Nc and CN denote the number of correct classifications and the total

number of classified commands.

5.1.5.2 Information Transfer Rate

Information transfer rate (ITR), also known as bit rate, is a quantitative

measure of the amount of information passing through a device or system per

unit time. In addition to accuracy it takes into consideration the speed of the

BCI system, giving a clearer picture of the system throughput. The ITR in

bits/minute is calculated as [89]:

B = log2N + P log2 P + (1− P ) log2

1− P
N − 1

(39)

ITR = B
CN

T
(40)

where B represents the number of bits per trial and T denotes the length of

the trial in minutes.

5.1.5.3 Efficiency

The efficiency metric is a measure of the efficiency of a BCI system. This

evaluation criterion includes calculations for the cost of errors. The efficiency in

terms of the actual time taken, t to complete a task, is calculated as [103]:

η =
tmax − t

tmax − tmin

(41)

The minimum tmin and tmax time that a user could take to complete a task

are computed by:

tmin/max = κ× to × α (42)

where κ denotes the number of commands required to complete a task, to

represents the fixed time between two consecutive commands taken by the system

to detect an SSVEP while α denotes the number of attempts taken by the user

to execute the correct command.
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5.2 Results and Discussion

This section presents the results of the comparative analysis of the three BCIs

which were obtained as per the experimental procedures explained earlier in Sec-

tion 5.1.3. Results pertaining to the offline analysis are first presented and dis-

cussed, followed by the results and discussion of the findings pertaining to the

online analysis.

5.2.1 Offline Analysis

The results of the offline analysis are quantified in terms of the classification

accuracy and ITR. Table 6 shows the performance across all subjects and the

averaged results across all subjects. In the tabulated results, the performance of

the SSVEP-based BCI, sequential hBCI and mixed hybrid BCI is compared and

contrasted with each other. In addition, even though the EEG-based Eye-Gaze

HCI does not utilise SSVEPs, its results are also considered within the offline

comparison.

The highest classification accuracy obtained within the SSVEP-based BCI

was that of 87.5% with a high ITR of 33.69 bpm. For the sequential hBCI, a

high classification accuracy of 100% was achieved with a corresponding ITR of

40bpm, while for the mixed hBCI, the highest classification accuracy achieved

was that of 75% with an ITR of 19.83 bpm. As for the EEG-based eye-gaze HCI,

the highest performance obtained was with a classification accuracy of 41.67%

and an ITR of 15.3bpm. On average, the best performance was achieved by the

sequential hBCI with an average accuracy of 82.5% and an ITR of 19.06 bpm.
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Method: SSVEP Sequential Hybrid Mixed Hybrid EEG-based Eye-Gaze HCI

Metrics: Accuracy (%) ITR (bpm) Accuracy (%) ITR (bpm) Accuracy (%) ITR (bpm) Accuracy (%) ITR (bpm)

S01 83.33 30.11 91.67 31.36 75 19.83 41.67 15.3

S02 41.67 6.12 62.5 13.24 75 19.83 41.67 15.3

S03 87.5 33.69 100 40 70.83 17.47 41.67 15.3

S04 87.5 33.69 95.83 35.11 62.5 13.24 20.83 1.57

S05 45.83 7.75 62.5 13.24 37.5 3.88 16.67 0.42

Mean 69.16 16.17 82.5 19.06 64.16 11.32 32.5 9.58

Table 6: Performance Results of Offline Analysis Across all Subjects
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With the exception of Subject 2, although differences in performance were

noted, in general, subjects achieved their best performance when using the se-

quential hBCI. Conversely, Subject 2 obtained poor results with an SSVEP-based

BCI and achieved their best performance when using the mixed hybrid BCI, thus

emphasising the strength of this hBCI configuration when the SSVEP response

of a subject is weak.

A considerable drop in performance was noted for the EEG-based Eye-Gaze

HCI, indicating that the classification of EEG-based eye-movements, according

to their visual angle extent, hinders the performance of an HCI system. In ad-

dition, the drop in performance attributes to the absence of SSVEP recognition

techniques within the HCI.

A study was then conducted to assess how the performance of the BCIs vary

with shorter stimulating periods. Figures 42, 43 and 44 portray how the classifi-

cation accuracy of each BCI varies with the size of the stimulating period across

subjects. As can be seen in Figure 42, in general, the classification accuracy of

the SSVEP-based BCI monotonically decreases with the size of the stimulating

period, reiterating that shorter stimulating periods typically result in a weaker

SSVEP detection. However for the hybrid BCIs, performance was more consis-

tent for some subjects across stimulating periods between 1.5 and 3s. Specifically,

as can be seen in Figure 43, Subject 1 and Subject 3 achieved the same accuracy

for the same stimulating periods when using the sequential hBCI. Similarly, as

shown in Figure 44, Subject 5 achieved the same accuracy across stimulating pe-

riods between 2 and 3s when using the mixed hBCI. These results suggest that,

relative to SSVEP-based BCIs, the classification accuracy of hybrid BCIs is less

affected by the length of the stimulating period.
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Figure 42: Classification Accuracy for Different Lengths of the Stimulating Period

in the SSVEP-based BCI

Figure 43: Classification Accuracy for Different Lengths of the Stimulating Period

in the Sequential Hybrid BCI
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Figure 44: Classification Accuracy for Different Lengths of the Stimulating Period

in the Mixed Hybrid BCI

Similarly, Figures 45, 46 and 47 illustrate how the ITR of each BCI varies

with the length of the stimulating period across subjects. As for the accuracy,

the ITR was also consistent for some subjects across stimulating periods, when

using mixed hybrid BCIs. Specifically, as seen in Figure 47, Subject 1 and Subject

2 obtained the same performance across stimulating periods between 2.5 and 3s.

As shown in Figure 46, the highest ITR was obtained by the sequential hBCI

with an ITR at around 50bpm for a stimulating period of 1.5s, highlighting the

advantages of this hBCI configuration at short stimulating periods.
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Figure 45: ITR for Different Lengths of the Stimulating Period in the SSVEP-

based BCI

Figure 46: ITR for Different Lengths of the Stimulating Period in the Sequential

Hybrid BCI
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Figure 47: ITR for Different Lengths of the Stimulating Period in the Mixed

Hybrid BCI

Figures 48 and 49 show the relation between the classification accuracy and

ITR, respectively, and the stimulating period. As the stimulus flickering time

is reduced from 3 seconds down to 1 second, the SSVEP-based BCI, the se-

quential hBCI and the mixed hBCI all display a reduction in accuracy, with the

SSVEP-based BCI and the mixed hBCI suffering the highest and lowest reduction,

respectively. It may also be noted that the sequential hBCI remains the best per-

forming BCI throughout. With a stimulus period of 0.5s, the SSVEP is normally

difficult to detect; therefore, it is not surprising that for this stimulus period,

the mixed hBCI has the highest performance, albeit at around 35%, indicating

that the strength of this hBCI configuration is mainly due to the separate eye-

movement detection. Similarly, for this lowest stimulus period, the EEG-based

Eye-Gaze HCI also outperformed the sequential hBCI and the SSVEP-based BCI.
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With regard to the ITR, as the stimulus flickering time is reduced from 3

seconds down to 1 second, the performance of the SSVEP-based BCI decreases

monotonically. Conversely, the ITR of the sequential hBCI and the mixed hBCI

tend to remain steady, even exhibiting a slight increase, down to a stimulus period

of 1.5 s, with a noticeable but small reduction at 1 s. As for the accuracy, the

sequential hBCI always has the best ITR throughout. Similarly as for the accu-

racy, at a stimulus period of 0.5 s, both the SSVEP-based BCI and the sequential

hBCI exhibit a large drop in ITR, and the mixed hBCI exhibits the highest ITR

at a mere 9 bpm. The EEG-based Eye-Gaze HCI exhibits an ITR of 6bpm and,

similar to the accuracy, for a stimulus period of 0.5s, the HCI outperforms the

sequential hBCI and the SSVEP-based BCI.

From the classification accuracy and ITR results of the offline comparative

analysis it was concluded that a stimulation period of 2s is optimal taking into

consideration the performance achieved by all subjects. Hence for the online

experiment, whose results are presented in the next section, the stimulating period

was set to 2s.

Figure 48: Classification Accuracies of Different BCI Architectures against Vary-

ing Stimulating Periods
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Figure 49: ITRs of Different BCI Architectures against Varying Stimulating Pe-

riods

5.2.2 Online Analysis

An online experiment was conducted to allow the subjects to operate the smart

home BCI using either an SSVEP-based BCI architecture, a sequential hBCI ar-

chitecture or a mixed hBCI architecture. In contrast with the offline analysis,

apart from classification accuracy and ITR, the performance of the three smart

home BCI systems is also quantified in terms of efficiency. As the online experi-

ment grants each subject a number of attempts to complete a task, the efficiency

evaluation criteria was introduced to take this number into consideration. Table

7 shows the performance results across all subjects and tasks and the averaged re-

sults across all subjects and tasks. A questionnaire was presented to the subjects

after the experiment was conducted to obtain user feedback on the practicality

of the smart home BCI.
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Subject Task SSVEP-Based BCI Sequential Hybrid BCI Mixed Hybrid BCI

Acc. (%) ITR (bpm) Eff. (%) Acc. (%) ITR (bpm) Eff. (%) Acc. (%) ITR (bpm) Eff. (%)

S01

1 71.67 35.14 85.00 71.67 27.61 84.57 64.33 23.49 76.00

2 60.00 19.77 75.00 91.67 42.78 95.67 45.00 9.06 54.33

3 65.00 23.99 79.33 56.00 14.84 71.67 70.00 25.73 78.33

S02

1 19.00 1.02 36.00 50.33 12.03 62.67 19.83 1.17 35.67

2 35.33 5.48 58.33 49.33 11.63 69.00 24.33 1.96 33.90

3 17.50 2.51 29.33 34.67 5.39 53.67 30.00 4.21 36.37

S03

1 83.33 43.45 92.00 86.67 39.46 91.33 56.00 14.84 71.67

2 83.33 43.45 92.00 91.67 42.78 95.67 42.00 7.51 50.00

3 41.00 8.33 61.33 64.33 19.36 74.00 54.67 14.46 67.33

S04

1 71.67 35.14 85.00 83.33 34.14 91.33 78.33 30.82 87.00

2 100.00 65.45 100.00 91.67 42.78 95.67 46.67 9.12 69.33

3 91.67 54.45 96.00 75.00 29.05 82.67 54.67 14.46 67.33

S05

1 54.67 18.41 68.33 80.00 36.26 89.00 47.00 10.83 65.00

2 65.00 23.99 79.33 86.67 39.46 91.33 27.67 2.77 47.00

3 63.00 32.64 73.67 78.33 30.82 87.00 54.67 14.46 67.33

Mean 61.48 27.55 74.04 72.76 28.56 82.35 47.68 12.32 60.04

Table 7: Performance Results of Online Analysis
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The highest classification accuracy obtained within the SSVEP-based smart

home BCI was that of 87.8% with an ITR of 51.7 bpm and an efficiency of 93.7%.

For the smart home sequential hBCI, the highest classification accuracy achieved

was 82.5% while an ITR of 35.32bpm and an efficiency rating of 89.9% were

obtained. For the smart home mixed hBCI, the highest classification accuracy

achieved was that of 59.89%. The highest ITR was that of 19.43bpm and the

highest efficiency rating was that of 74.6%. However, on average, the best per-

formance was obtained with the smart home sequential hBCI with an average

accuracy of 72.76%, an average ITR of 28.56 bpm and an efficiency rating of

82.35%.

Figure 50 portrays the results tabulated in Table 7 averaged across the tasks

to illustrate the performance achieved by each subject for each BCI architecture

on basis of classification accuracy, efficiency and ITR. With the exception of Sub-

ject 4, subjects achieved their best performance when using the sequential hybrid

BCI. Furthermore, relative to the mixed hybird BCI, subjects achieved better

results when using the SSVEP-based BCI. However, as can be seen in Figure

50a, Subject 2, who achieved poor results with an SSVEP-based BCI, achieved a

slightly higher classification accuracy when using a mixed hybrid BCI, reiterating

the advantages of hBCI configurations when the SSVEP response of a subject is

weak.
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(a) Classification Accuracy for the Three Different BCI Architectures across Subjects

(b) Efficiency for the Three Different BCI Architectures across Subjects

(c) ITR for the Three Different BCI Architectures across Subjects

Figure 50: Performance Metrics for the Three Different BCI Architectures across

Subjects
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Figures 51, 52 and 53 portray the classification accuracy, ITR and efficiency

averaged across the subjects for each smart home BCI architecture. On average,

the sequential hBCI outperformed the other two systems on the basis of accuracy,

ITR and efficiency. The smart home sequential hBCI is 11.3% more accurate and

8.3% more efficient than the smart home SSVEP-based BCI. Pairwise t-tests were

conducted and it was found that the differences between the two systems were

significant (p-value < 0.01 for both metrics). In terms of ITR, a slight difference

of 1bpm was found between the two, in favour of the smart home sequential hBCI.

However, this was not found to be statistically significant. The smart home se-

quential hBCI exceeded the accuracy, efficiency and ITR of the mixed hBCI by

25.1%, 21.9% and 16.21 bpm respectively and the differences between these two

smart home hybrid BCIs were also found to be statistically significant at the p

< 0.01 level.

Figure 51: Averaged Classification Accuracies for the Three Different BCI Ar-

chitectures. Error bars represent a 95% confidence interval. Asterisks indicate

significant difference between BCI architectures at the p < 0.01 level
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Figure 52: Averaged ITRs for the Three Different BCI Architectures. Error

bars represent a 95% confidence interval. Asterisks indicate significant difference

between BCI architectures at the p < 0.01 level

Figure 53: Averaged Efficiency Ratings for the Three Different BCI Architectures.

Error bars represent a 95% confidence interval. Asterisks indicate significant

difference between BCI architectures at the p < 0.01 level
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5.2.2.1 User Feedback

After the online experiment, subjects were handed a brief questionnaire. These

were examined to gain feedback from the experience of the subjects when using

the smart home BCI application, providing a measure to compare and contrast

the three systems in terms of user comfort and practicality. The first part of the

questionnaire sought to find out how much the user felt in control when using the

smart home BCI and whether the system was responding well to their intentions.

The second part of the questionnaire investigated the user’s perception of the

system with regards to its annoyance factor, seeking to find to what extent, if

any, did they find the system annoying, tiring or slow. The final part of the ques-

tionnaire sought to find out the user’s opinion on the interface of the system and

whether they found it adequate and easy to get accustomed to. The questions

asked in the questionnaire were as follows:

Part 1

1. I could control the system with ease

2. I needed to concentrate significantly to control the system

3. False selections were often made by the system

Part 2

4. Flickering of the stimuli were annoying

5. Using the system is tiring

6. Time taken to make a selection is adequate

Part 3

7. The layout of the menu was adequate for easy operation of a smart home

system

8. The layout of the menu was adequately organised for a smart home system

9. The Graphical User Interface (GUI) of the smart home system was easy to

get used to
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The first six questions were asked to the subjects three times, once for each

BCI system. The last three questions were asked to the subjects once as they

revolved around the design of the smart home system. A copy of the questionnaire

can be found in Appendix C. For each question, the response of the subjects was

measured on a Likert scale. A response of ‘5’ indicated a strong agreement with

the presented statement whereas a response of ‘1’ indicated strong disagreement.

A summary of the results observed for this questionnaire is shown in Figures 54,

55 and 56.

Figure 54: Summary of Questionnaire Results (Part 1)
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Figure 55: Summary of Questionnaire Results (Part 2)

Figure 56: Summary of Questionnaire Results (Part 3)
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Overall, users found the systems easy to control. The smart home sequential

hBCI was reported as being the easiest to control. One user found it difficult to

control the SSVEP-based BCI system and as shown within the first bar graph,

disagreed with the first statement. In terms of concentration requirements, sub-

jects found no difference between the three systems in general. Users perceived

the sequential hBCI system as the least erroneous and the mixed hBCI as the

most erroneous. This correlates with the quantitative results discussed earlier.

Users perceived the flickering stimuli of the hybrid systems to be less than that

of the SSVEP-based BCI. This may be attributed to the fact that the hybrid sys-

tems makes use of four flickering stimuli instead of eight. In fact, users found

the hybrid systems to be less tiring than the SSVEP-based BCI. Overall users

agreed that the time taken to make a selection was appropriate for all systems.

With regards to smart home system features, all subjects stated that the menu in-

terface was easy to get used to and that it was adequate for a smart home system.

5.3 Chapter Summary

This chapter described the implementation of a smart home BCI specifying

in detail both the hardware and software architecture of this system. The exper-

imental protocols to test the smart home in both an SSVEP-based BCI topology

and hybrid BCI topology were also described.

A comparative analysis of both the offline and online systems was presented

taking into consideration the SSVEP based BCI, the sequential and mixed hybrid

BCI and the EEG-based Eye-Gaze HCI. In the offline comparative analysis, per-

formance results were obtained for varying stimulation periods and different HCI

architectures. In the online analysis the performances of the different BCI archi-

tectures were compared on basis of accuracy, ITR and efficiency. Furthermore,

it was concluded that a sequential hybrid BCI performs better than a conven-

tional SSVEP-based BCI. Differences between the two systems were found to be
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significant on basis of accuracy and efficiency. The results of a questionnaire also

showed that the sequential hybrid BCI is better than an SSVEP-based BCI in

terms of practicality and user comfort.
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6 Conclusions and Future Work

The goal of this project was to design and implement a real-time smart home

BCI which utilises EEG-extracted eye-movement potentials, in which the user

can operate a system using neurosignals recorded non-invasively with an elec-

troencephalogram (EEG). This chapter discusses the achievements related to this

project, summarising the findings within this work. Some recommendations for

future work are subsequently presented and discussed.

6.1 Achievements and Comparison with other SSVEP-

based Smart Home BCI Applications

The first objective of this project was to study eye-movement detection from

EEG. A thorough literature review was carried out on the extraction of eye-

movement information for EEG data to explore the various electrode positions

and signal processing techniques used in other studies. The literature review also

focused on the processing techniques at each stage of the process including pre-

processing, feature extraction and classification, where it was found out that a

combination of CSP feature-extraction algorithms and SVM classifiers obtain the

highest accuracy in eye-movement detection. Eye-movement-related EEG data

was then acquired from five subjects in a data acquisition session. Features were

extracted from the acquired data through the CSP algorithm, and fed to SVM

classifiers to carry out an offline study. The study investigated into how many

classes the EEG-extracted eye-movement potentials can be reliably classified. It

was concluded that considering only frontal electrodes, eye movements can be

classified into horizontal or vertical eye movements with an accuracy of 98.47%

and also be classified into leftward, rightward, upward or downward eye move-

ments with an accuracy of 74.38%. Furthermore, with an accuracy of 58.31%

eye movements can be further classified into eight classes where the eight classes

consists of leftward, rightward, upward and downward eye movements, with each

direction having two visual angles. The study also determined to what extent can

eye-movement information be extracted from the occipital lobe and it was shown
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that eye-movement-related occipital signals can be categorised into horizontal or

vertical eye movements with an accuracy of 76.67%. The study also sought to

assess to what extent can eye movements in the same direction but different vi-

sual angles be classified, and it was concluded that leftward eye movements were

categorised into a small or large visual angle with an accuracy of 70.83%. Simi-

larly, rightward, upward and downward eye movements, were categorised by their

visual angle with an accuracy of 68.06%, 52.5% and 50.97% respectively. The of-

fline study also analysed how the classification accuracy varies with the number

of frontal channels considered and how it varies with the size of the training set

and it was concluded that three frontal channels and four training trials/class

were sufficient to achieve a considerably high accuracy and hence be used within

a hybrid architecture

The second objective of this project was to fuse the EEG-based eye-movement

detection with an SSVEP-based BCI with the purpose of controlling a smart home

environment, thus forming a real-time smart home hybrid BCI. Users of the smart

home hybrid BCI could control four devices: a TV set, window blinds, a lamp

and a fan. Users could toggle the power of a TV set and increase, decrease or

mute the volume of the TV set. Users could also toggle the power of a fan or

a lamp and could also open or close window blinds. The smart home system

was based on the Home Assistant platform, an open-source home automation

software, while the interface of the smart home BCI was programmed in Python.

As the real-time smart home hybrid BCI was implemented from scratch, both

Python and Home Assistant had to be learnt for the purpose of this project.

Two hybrid architectures were designed for this project; a sequential hBCI and a

mixed hBCI. User interaction with the hybrid systems was divided in two stages.

In the first stage, users were first instructed to recentre their gaze and then look

at the option they would like to choose. The options available to the user are

then halved according to the type of eye-movement performed. In the second

stage, as the remaining options/stimuli flicker, the user is instructed to focus on

the icon which they had chosen previously in the first stage. The hybrid BCIs de-
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veloped required a training session prior to the use of the smart home application

which served to gather data to train the CSP and SVM models used to classify

eye-movements. The two hybrid systems were compared with an SSVEP-based

smart home BCI and the three architectures were compared on the basis of ac-

curacy, ITR and efficiency. Best performance was obtained with the sequential

hybrid BCI with an average classification accuracy of 72.76%, an average ITR of

28.56 bpm and an average efficiency of 82.35%, where the accuracy and efficiency

of the SSVEP-based BCI and the sequential hBCI were found to be statistically

significantly different. With regards to the other two architectures, an average

classifcation accuracy of 47.68%, an average ITR of 12.32bpm and an average

efficiency of 60.04% were obtained with the mixed hybrid BCI while an average

classification accuracy of 61.48%, an average ITR of 27.55bpm and an efficiency

of 74.04% were obtained with the SSVEP-based BCI.

In conclusion, an offline analysis was carried out to study eye-movement detec-

tion from EEG. On basis of this study, an innovative smart home brain controlled

application based on SSVEPs and EEG-extracted eye-movement potentials has

been developed in which the user has total control of the smart home. The con-

ducted experimental tests showed a good and reliable performance of the smart

home BCI system operating in real-time. The results also demonstrated the sig-

nificant advantage of the sequential hybrid BCI over a conventional SSVEP-based

BCI.

6.1.1 Comparison with Other SSVEP-based smart home BCIs

To the best of our knowledge, two other SSVEP-based smart home BCIs were

found in the literature [82], [2]. The smart home BCI implemented by Saboor et

al. [82] allows the user to control three different devices using a maximum of four

simultaneously flickering stimuli. The other SSVEP-based smart home BCI im-

plemented by Adams et al. [2] includes a smart home environment which is set up

in a particular, fixed location and is specifically designed for a limited amount of
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specific smart devices. Such a smart home environment is rigid leading to com-

plications when installing new devices or replacing current ones. Additionally,

adapting the smart home environment to a different home will also be challeng-

ing as it requires specific smart devices, resulting in a stringent number of homes

eligible for such a smart home environment. Furthermore, the flickering stimuli

of the system are distributed across three different screens.

The smart home BCI developed in this project has a maximum of eight si-

multaneously flickering stimuli all presented on one screen, allowing the user to

control the smart home environment from a centralised point. Furthermore, in

contrast with system implemented by Adams et al. [2], the smart home envi-

ronment implemented in this system is designed around interface devices and

not specific smart devices. Interface devices make conventional home appliances

smart by making them operable by an alternative method other than conventional

means. With the use of interface devices, the smart home environment facilitates

the installation of new devices to the system. Furthermore, as interface devices

are portable, lightweight and compatible with a wide range of conventional home

appliances, the smart home environment can easily be adapted to any home.

6.2 Recommendations for Future Work

The proposed hBCI system currently entails two stages of user interaction

when the system is run. First, users are expected to center their gaze and look at

the option they would like to choose. The options are then halved according to

the type of eye-movement performed. Then, while the remaining options/stimuli

are flickering, users are expected to focus on the icon that they had previously

chosen. In the first stage of user interaction, users are expected to center their

gaze and look at the desired icon within a short time window of 1.5 seconds.

If an eye-movement is not performed within that period, currently, the system

would not recognise that no eye-movement was performed. Hence it would still

attempt to process and classify the EEG recorded within the 1.5s period, produc-

ing an erroneous and invalid eye-movement classification result, and proceeding
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to the second stage of user interaction where the flickering stimuli are presented

unnecessarily. One future work would be to include a mechanism that checks

whether an eye-movement is performed within the 1.5s period allocated for the

user’s eye-movement. Eye movements raise or lower the EEG potentials observed

from the frontal region, and thus eye-movement-related activity can be detected

by observing any spikes within the derivative of EEG signals acquired from this

region. Observed spikes could then be compared against a pre-defined threshold

to distinguish those induced by eye movements from those induced by other EEG

artifacts. Should no eye-movement be detected, users are then instructed once

again to center their gaze and perform an eye movement until an eye-movement

is detected by the implemented mechanism.

One of the main challenges encountered within the design and development

of BCI systems, especially when employed within a real-time scenario, is sig-

nal detection. Ideally the design and implementation of a practical BCI system

should involve non-invasive sensors that are portable, wireless, relatively cheap

while maintaining high signal quality, easy to set up and not susceptible to noisy

environments and surroundings. The proposed smart home BCI system uses

wet electrodes which requires electrolytic gel. To improve the practicality of the

smart home BCI, an EEG acquisition system which uses dry electrodes and wire-

less headsets would be preferable. As this may result in poorer signal-to-noise

ratio, the performance of the smart home BCI using such an EEG acquisition

platform should be studied.

To improve the portability of the BCI system, the general purpose desktop

PC or laptop would ideally be substituted by a small single-board computer. In

a BCI system, a desktop PC is typically used for communicating with the EEG

headset, acquiring the data from the same headset, processing it and perform-

ing a computational analysis to convert the processed neurosignals into a control

signal for the application. Nowadays, single-board computers have high perfor-

mance specifications given their relatively small size and can fulfill the role of the
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desktop PC within a BCI system. Although single-board computers are typically

not Windows-based systems, they can still communicate with EEG headsets, as

most EEG headsets support communication via the LabStreamingLayer (LSL).

LSL is a system used for synchronising streaming data for real-time analysis [29]

and hence can be used to provide a communication link between an EEG headset

like the OpenBCI system, and a single-board computer, like the Raspberry Pi.

The latest model within the Raspberry Pi series includes a 1.5 GHz, quad-core

64-bit CPU endorsed with 8GB of SDRAM, all lying within a 97mm × 70mm ×

25mm box. Although the performance specifications are slightly less than that

of a desktop PC, the computational software of the BCI system proposed in this

project can still be ported onto a single-board computer platform. A single trial

within the proposed BCI system requires a computational time of 68ms when

run on a 1.8GHz computer system. With a 1.5GHz computer system, it is esti-

mated that the computational time would rise to approximately 80ms which is

still an acceptable value for a real-time application [17]. This single-board com-

puter can also be connected to two monitors, a keyboard and a mouse which can

be used to program and even troubleshoot the BCI system when necessary. As

it requires a 5V DC supply, this single-board computer can be battery-powered,

making it more portable. In view that the proposed BCI system can be ported

onto a single-board computer platform, one technological future work would be

to embed the system on such a platform, as replacing the desktop PC with a

single-board computer will decrease the overall cost of the BCI system by at least

tenfold.
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Appendix A

Scalp Region

Combined Frontal Occipital

H vs V 98.61% 98.47% 71.11%

L vs R vs O 88.96% 89.17% 50.21%

U vs D vs O 74.40% 73.82% 53.40%

NL vs SL vs O 64.17% 70.83% 53.40%

NR vs SR vs O 65.42% 68.06% 46.25%

NU vs SU vs O 49.24% 52.50% 37.71%

ND vs SD vs O 47.78% 50.97% 37.08%

Table 8: Classification Accuracies of Seven Different Classifiers considering the

Frontal and Occipital Regions Individually, as well as Both Regions Together

Scalp Region

Combined Frontal Occipital

1st Tier 98.61% 98.47% 71.11%

2nd Tier 76.51% 74.38% 43.85%

3rd Tier 54.87% 58.31% 28.02%

Table 9: Accuracy Results at Each Tier of the Hierarhical Classifier considering

the Frontal and Occipital Regions Individually, as well as Both Regions Together
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Scalp Region

Combined Frontal Occipital

H vs V 99.58% 99.58% 76.67%

L vs R vs O 91.53% 92.92% 60.56%

U vs D vs O 76.53% 72.92% 58.33%

L vs R vs U vs D 75.52% 73.75% 47.60%

Table 10: Classification Accuracies of Four Different Classifiers using only Trials

with a Large Visual Angle while considering the Frontal and Occipital Regions

Individually, as well as Both Regions Together

Number of Frontal Channels Used

11 7 5 3

H vs V 99.58% 99.79% 99.58% 99.58%

L vs R vs O 92.92% 96.39% 93.19% 92.92%

U vs D vs O 72.92% 74.86% 79.03% 70.28%

L vs R vs U vs D 73.75% 76.77% 77.29% 80.21%

Table 11: Classification Accuracies of Four Different Classifiers when considering

3, 5, 7, or 11 Frontal Electrodes and considering Frontal Region only

Amount of Frontal Channels Used

11 7 5 3

H vs V 99.58% 99.79% 99.79% 99.58%

L vs R vs O 91.53% 94.72% 91.11% 90.69%

U vs D vs O 76.53% 76.94% 80.42% 82.08%

L vs R vs U vs D 75.52% 79.27% 77.81% 79.27%

Table 12: Classification Accuracies of Four Different Classifiers when considering

3, 5, 7, or 11 Frontal Electrodes and jointly considering Frontal and Occipital

Regions
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Training Trials/Class - Frontal

16 8 4

H vs V 99.58% 100.00% 100.00%

L vs R vs O 92.92% 89.44% 92.78%

U vs D vs O 70.28% 74.72% 68.33%

L vs R vs U vs D 80.21% 78.75% 79.17%

Table 13: Classification Accuracies of Four Different Classifiers Against Training

Set Size of 16, 8 and 4 Trials/Class considering Frontal Region only

Training Trials/Class - Combined

16 8 4

H vs V 99.58% 99.17% 97.50%

L vs R vs O 90.69% 87.78% 77.78%

U vs D vs O 82.08% 78.33% 72.22%

L vs R vs U vs D 79.27% 70.83% 64.58%

Table 14: Classification Accuracies of Four Different Classifiers Against Training

Set Size of 16, 8 and 4 Trials/Class jointly considering Frontal and Occipital

Regions

Training Trials/Class - Occipital

16 8 4

H vs V 76.67% 74.58% 68.33%

L vs R vs O 60.56% 51.39% 43.89%

U vs D vs O 58.33% 53.89% 41.11%

L vs R vs U vs D 47.60% 42.50% 42.92%

Table 15: Classification Accuracies of Four Different Classifiers Against Training

Set Size of 16, 8 and 4 Trials/Class considering Occipital Region only
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Participant Consent Form 

 

 

Research Study: Exploitation of EEG-Extracted Eye Movement for a Hybrid 

SSVEP Home Automation System  

 

I, _______________________________________, hereby certify that I am 
over eighteen (18) years of age.  

 

 
I give full consent to participate voluntarily in this research study entitled “Fusion 

of EEG-Extracted Eye Movement and SSVEP for a Home Automation System” and for 

the researcher, whose name and signature appear at the end of this form, to make 

the appropriate tests. 

 

I understand that: 

 

 
During this test session I will be asked to look at visual cues. During this time my 

eye movements will be recorded through electroencephalography (EEG) and an 

infra-red active eye gaze tracker. Electroencephalography will be acquired through 

EEG sensors which will either be placed around my forehead and at the back of my 

head using clinical gel and with an EEG cap.  

 

The eye movement data obtained during the test session using EEG and the active 

eye gaze tracker will be stored, analysed, reported and/or published in a 

completely anonymous manner. My personal data, specifically age, sex, and type of 

vision, will be included with the recording of the data but since this will be 

anonymised there is no direct link to me. I thus understand that I will not be able 

to ask the researcher to remove my data from this study as it will not be known 

which data belongs to me. 

 

Once this consent form is signed I will be given a copy. The original signed consent 

form will remain in possession of the researchers involved in this study. I can 

contact the researchers, whose contact details appear on this consent form, for  
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answers to pertinent questions about the research study and my rights as a 

research subject. 

 
 

Clinical relevance of the eye movement data obtained is not considered pertinent 

to the experimental research being carried out through these tests. However, 

should any abnormality be detected, I understand that I will be informed.  

 

The apparatus being used in these tests (conventional EEG setup, and eye gaze 

tracker) is entirely non-invasive and poses minimal risk of harm. Also, the tests that 

will be carried out as part of this research study are completely non-invasive and 

the probability and magnitude of harm or discomfort anticipated in the research 

are not greater than those ordinarily encountered in daily life or during the 

performance of routine physical or psychological examinations or tests. However, 

the researcher cannot be held liable for any accidental harm, physical or otherwise, 

that might result during the experiment.  

 

In the event of a research-related injury, I understand that treatment will be given 

within the Government Health Services.  

 
 

I confirm that all the details I have been instructed to provide and which will be 

stored with the eye gaze tracking data are, to the best of my knowledge, correct.  

 

Since I am under no obligation to participate in this research study and am doing so 

voluntarily, I am free to withdraw from this research study at any time, even after 

having signed this consent form, without having to give any reason to the 

researcher involved in this research study.  

 

Please fill in the following details in BLOCK letters where applicable:  
 
 

 

_________________________________ 

Name 

 
 
 

 

_________________________________ 

Surname 

 

 

_________________________________ 

Signature of Test Subject 

 
 

_________________________________ 

Date 

 

 

_________________________________ 

Signature of Researcher 

 

 

_________________________________ 
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Appendix C

Questionnaire

On a scale from 1 to 5 to what extent do you agree with the following state-

ments? 1 indicates a strong disagreement and 5 indicates a strong agreement.

Smart Home SSVEP BCI (Method 1)

1 2 3 4 5

I could control the system with ease # # # # #

I needed to concentrate significantly to control the sys-

tem

# # # # #

False selections were often made by the system # # # # #

Flickering of the stimuli were annoying # # # # #

Using the system is tiring # # # # #

Time taken to make a selection is adequate # # # # #

Smart Home Sequential Hybrid BCI (Method 2)

1 2 3 4 5

I could control the system with ease # # # # #

I needed to concentrate significantly to control the sys-

tem

# # # # #

False selections were often made by the system # # # # #

Flickering of the stimuli were annoying # # # # #

Using the system is tiring # # # # #

Time taken to make a selection is adequate # # # # #
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Smart Home Mixed Hybrid BCI (Method 3)

1 2 3 4 5

I could control the system with ease # # # # #

I needed to concentrate significantly to control the sys-

tem

# # # # #

False selections were often made by the system # # # # #

Flickering of the stimuli were annoying # # # # #

Using the system is tiring # # # # #

Time taken to make a selection is adequate # # # # #

Smart Home Features

1 2 3 4 5

The layout of the menu was adequate for easy operation

of the system

# # # # #

The layout of the menu was adequately organised for a

home automation system

# # # # #

The GUI for the home automation system was easy to

get used to

# # # # #
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Visually multimodal vs. classic unimodal feedback approach for smr-bcis:

a comparison study. Int. J. Bioelectromagn, 13:80–81, 2011.

[57] B. Kian, A.P. Bradley, and R. Cunnington. Effect of competing stimuli on

ssvep-based bci. 33rd Annual International Conference of the IEEE, 2011.

[58] N. Kosmyna, F. Tarpin-Bernard, N. Bonnefond, and B. Rivet. Feasibility

of bci control in a realistic smart home environment. Frontiers in Human

Neuroscience, 10, 2016.

125



[59] Nataliya Kosmyna, Franck Tarpin-Bernard, and Bertrand Rivet. Opera-

tionalization of conceptual imagery for bcis. In 2015 23rd European Signal

Processing Conference (EUSIPCO), pages 2726–2730. IEEE, 2015.

[60] E. Kriegler. Updating under unknown unknowns: An extension of bayes’

rule. International Journal of Approximate Reasoning, 50(4):583–596, 2009.

[61] R.Y.M Li, H.C.Y Li, C.K Mak, and T.B Tang. Sustainable smart home

and home automation: Big data analytics approach. International Journal

of Smart Home, 10(8):177–198, 2016.

[62] P. Manoilov. Eeg eye-blinking artifacts power spectrum analysis. Interna-

tional Conference on Computer Systems and Technologies (CompSysTech),

3A:1 – 4, 2–6.

[63] M.H. Masood, M. Ahmad, M.A. Kathia, R.Z. Zafar, and A.N. Zahid.

Brain computer interface based smart home control using eeg signal.

Sci.Int.(Lahore), 28:2219–2222, 2016.

[64] NabuCasa. https : //www.home− assistant.io. Accessed: 2020-04-09.

[65] M. Nafea, A.A.B. Hisham, N.A. Abdul-Kadir, and F.K.C. Harun.

Brainwave-controlled system for smart home applications. 2nd Interna-

tional Conference on BioSignal Analysis, Processing and Systems, 2018.

[66] A. Nedaie and A. A. Najafi. Polar support vector machine: Single and

multiple outputs. Neurocomputing, 171:118–126, 2016.

[67] Luis Fernando Nicolas-Alonso and Jaime Gomez-Gil. Brain computer in-

terfaces, a review. sensors, 12(2):1211–1279, 2012.

[68] A. Niculescu-Mizil and R. Caruana. Predicting good probabilities with

supervised learning. In Proceedings of the 22nd international conference on

Machine learning, pages 625–632, 2005.

[69] A. Nijholt, D. Tan, G. Pfurtscheller, C. Brunner, J. Millán, B. Allison,

B. Graimann, F. Popescu, B. Blankertz, and K. Müller. Brain-computer

126



interfacing for intelligent systems. IEEE intelligent systems, 23(3):72–79,

2008.

[70] J. Nolte. The Human Brain in Photographs and Diagrams E-book. Elsevier

Health Sciences, 2013.

[71] R. Oostenveld and P Praamstra. The five percent electrode system for high-

resolution eeg and erp measurements. Clinical Neurophysiology, 112:713–

719.

[72] N. Padfield. Development of a Hybrid Human Computer Interface System

using SSVEPs and Eye Gaze Tracking. PhD thesis, 09 2017.

[73] M. Pal and G. M. Foody. Feature selection for classification of hyperspec-

tral data by svm. IEEE Transactions on Geoscience and Remote Sensing,

48(5):2297–2307, 2010.

[74] J. Peirce, J. R. Gray, S. Simpson, M. MacAskill, R. Höchenberger, H. Sogo,
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