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Abstract 

The advent of smart meters has opened new possibilities for utilities.  Billing is no 

longer the sole function of the meter.  The load profile data, registered by the smart 

meters, can be analysed in order to obtain knowledge about various aspects.  It can be 

used to indicate stress points in the network, calculate technical losses and explore 

methods for their reduction.  In reality, though, it is inevitable that a certain amount of 

data will get lost.  While doing every effort to keep this loss of data to the minimum 

possible, the missing portions of data must be imputed before any further analytical 

activity can be performed. 

This thesis explores techniques for imputing such missing data in smart meter load 

profiles.  The proposed method implements a k-nearest neighbors approach where the 

imputed part is calculated by searching the past consumption of the consumer for 

patterns that best resemble the portion around the missing part and taking an average 

of the parts which corresponds to the missing portion.  The length of each segment and 

the number of segments to be considered are arbitrary and therefore suitable values 

had to be determined through a tuning process.  Using the developed algorithm on a 

sample of 335 consumer load profiles, the average RMSE was 7.47% of the actual 

values. 

An area of great concern for utilities is non-technical losses which can be made up of 

billing inaccuracies, faulty meters and fraudulent consumers.  This thesis develops a 

method of anomaly detection for finding consumers with irregular behaviour which 

are likely to contribute to non-technical losses.  The consumers are grouped into 

clusters having similar weekly consumption behaviour by using hierarchical 

clustering. For each consumer two novel coefficients are computed: the Anomaly 

Coefficient, which is a measure of how different the consumption behaviour of the 

consumer is from the other consumers in the same cluster, and the Cluster Change 

Coefficient, which is a measure of how irregular in consumption behaviour the 

consumer is, compared to all the other consumers.  Consumers having high values for 

any, or both, of these coefficients are more likely to exhibit non-technical losses.   
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1 Introduction 

 

Presently Malta’s local fossil fuel generating capacity amounts to a total of 588.6MW 

[1].  All this generation capacity is located at the Delimara Power Station site, with the 

exception of a 37MW open-cycle gas turbine which is located in the Marsa Power 

Station site.  Electrical energy is also imported over the Malta – Sicily interconnector 

which has a maximum capacity of 200MW.  Additionally, a number of renewable 

energy sources are spread across the Maltese islands which, at the end of 2019, had a 

maximum generating capacity of 157.7MWp.  These renewable sources are made up 

of 154.6MWp solar photovoltaic systems (of which 22.4MWp were installed during 

2019), 3.037MWe biogas plants and 0.0698MWp micro wind generators [1].  The peak 

demand for the Maltese islands was 504MW and occurred in July 2019 [2].   

Distribution of electricity to consumers is achieved through a four-level network, using 

four voltage levels, 132kV, 33kV, 11kV and 400/230V [3].  Voltages of 33kV and 

higher are termed High Voltage (HV), 11KV is termed Medium Voltage (MV) while 

400/230V is referred to as Low Voltage (LV).  Figure 1.1 shows the layout of the 

Enemalta plc HV distribution network.  Electricity from the Delimara Power Station 

and the Maghtab Terminal Station, where the Malta – Sicily interconnector lands, is 

distributed to four 132kV distribution centres (primary substations), two at Marsa, one 

at Kappara and another at Mosta, through 87 kilometres of underground 132kV cables. 

At these centres voltage is stepped down to 33kV so that electricity can be fed to 

another 20 33kV distribution centres (primary substations), 17 situated in Malta, two 

in Gozo and one in Comino. This part of the network includes 260 kilometres of 33kV 

underground cables and 13 kilometres of 33kV submarine cables.  As can be seen from 

Figure 1.1 the cables connecting the primary substations are always laid in pairs (or 

more) to achieve N + 1 redundancy as a minimum.  

Each 33kV distribution centre feeds a number of 11kV circuits supplying over 1,400 

11kV substations (secondary substations) utilising 1,134 kilometres of underground 

11kV cables and a few kilometres of overhead lines, mostly in rural areas.  In the 11kV 

secondary substations, electricity is stepped down to 400/230 V to supply the 
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consumers’ premises through a low voltage, three-phase, four-wire network comprised 

of underground cables and overhead lines. An electricity meter is installed at each 

delivery point so that consumption is measured and can be billed.  At the end of 2019 

Enemalta plc supplied a total of 328,308 consumers, which consisted of 173,744 

residential, 100,296 domestic (second properties which may be garages) and 54,268 

non-residential (commercial) properties [4]. 

 

Figure 1.1.  National grid diagram for the Maltese islands [3]. 

 

Having replaced almost all electricity meters with smart meters, Enemalta plc. is now 

capable of reading most of the meters remotely.  This is of great benefit since the 

readings are now available without having to physically visit individual premises to 

read the meter in order to be in a position to bill the consumer.  But apart from the 

billing there are other advantages which come with having a smart meter network.  The 

smart meters register the consumption and communicate readings to the central 

system.  This data consists of spot readings and load profiles which are read every day.  
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Having this data enables the utility to employ analytical methods to gain knowledge 

about various aspects.   Used in conjunction with a Geographic Information System 

(GIS), the smart meter data can be utilised to quantify the consumption at various 

points in the network, exposing areas where the cables and aerial lines are heavily 

loaded and where reinforcement is needed.  It can also be used to calculate the 

technical losses and explore methods for their reduction.  This thesis develops a 

method for detecting anomalies in consumption behaviours which might indicate 

faulty meters or possibly fraud.  However, due to the complex nature of the low voltage 

network and the vulnerability of the power line communication system adopted, it is 

inevitable that there will be a certain amount of data which occasionally gets lost.  For 

statistical and analytical method to be used reliably on the data it is imperative that the 

data is complete without any missing data points or portions.  For this reason, this 

thesis develops a method by which the missing data is imputed prior to identifying any 

anomalies in the consumer consumption. 

 

1.1 Scope and Aims of the Study 

The Enel Distribuzione Spa. smart meters installed by Enemalta plc. use Power Line 

Communication (PLC) [5, 6, 7] for communication with the central system.  In Europe 

CENELEC A band, spanning from 3kHz to 95kHz, is reserved for use by utilities and 

smart grids. The Enel Distribuzione Spa. smart meters use Frequency Shift Keying 

(FSK) on a carrier of 72 kHz ± 1.2kHz (0 is 73.2kHz, 1 is 70.8kHz) at a baud rate of 

2400b/s.  Maximum output voltage is approximately 1.2 Vrms while maximum output 

current is about 500 mArms [8].  

The advantage of using PLC is that the connecting medium is already laid and only 

the modems are needed for communication.  However, the power distribution network 

was originally intended, designed and constructed, for transmission of AC power at 

50Hz and so the power carrying conductors are not ideal for carrying the 

communication higher frequencies along considerable distances.  To overcome the 

propagation problem, which is a limiting factor in all PLC, the system utilised by 

Enemalta employs a number of repeaters.  Any smart meter may be automatically 
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designated to act as a repeater at commissioning time, so that other downstream smart 

meters can be reached.  Furthermore, the PLC signal is hampered by a number of other 

factors such as noise, interference caused by conducted emissions from other devices 

connected to the system and channel variability both in time and in frequency [8].   

So, considering the complexity of the electricity distribution network on the low 

voltage side, and the susceptibility of the PLC method, it is understandable that there 

would be occasional failures in capturing the smart meter data.  These failures will 

inevitably result in gaps in the data for a number of meters.  In order to be able to 

perform reliable analytic activity on the collected smart meter data, the data should be 

complete without any interruptions and so any accumulated gaps in the data must be 

imputed.  Having a complete load profiles allows for anomaly detection methods to be 

performed in order to detect irregular behaviors which may be caused by faulty or 

tampered metering setups. Thus, the aim of this work is to develop, first a method 

which imputes the missing load profile data, and then another method which detects 

anomalies in the consumption behaviours.  

 

1.2 Thesis Methodology 

The imputation of data is considered to be the process which prepares the data for 

anomaly detection. Literature reviews were carried out to identify the methodologies 

which have already been explored for similar work as outlined in Chapter 3. 

In order to establish an effective technique for imputation of the data, an understanding 

of the size of the data set, the proportion of missing data, the shape of the load profiles 

and variability between consumers, is first obtained. With this information a thorough 

literature review was conducted in order to assess the various imputation techniques 

adopted by other researchers for similar datasets and situations.  This allows the setup 

of the preferred imputation technique, which was then implemented and tested on the 

available dataset. The dataset used in this thesis is reviewed in Chapter 2. 

For developing a suitable anomaly detection method, the information about the load 

profile dataset already obtained for the imputation part will be used. Having this 

knowledge, another detailed literature review was conducted to explore the anomaly 

detection techniques in general and especially those techniques used for smart meter 
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datasets.  Techniques which are most suitable were identified and used as basis for the 

development of an anomaly detection method for the Enemalta dataset.  

 

1.3 Thesis Overview 

This first Chapter has briefly outlined the scope and aims of this research.  The rest 

of this thesis is structured as follows.  Chapter 2 presents the datasets which are used 

in this work and also applies temporal and spectral analysis to load profiles.  A 

literature review of the techniques used for data imputation and anomaly detection is 

presented in Chapter 3.  This Chapter starts by exploring the relevant techniques in 

general and then goes on to focus on methods which are adopted for smart meter data 

applications.  In Chapter 4 an algorithm for the imputation of missing load profiles is 

developed and the most appropriate parameters are determined.  Chapter 5 uses an 

unsupervised machine learning method to compute two novel coefficients which 

quantify the probability of a consumer in contributing to NTL.  Both Chapters 5 and 

6 outline suggested enhancements for future work.  Chapter 6 summarises the results 

achieved and draws some concluding remarks. 
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2 Smart Meter Data 

 

In 2009 Enemalta Corporation (now Enemalta Plc.) had, in conjunction with Water 

Services Corporation (WSC), launched the Integrated Utilities Business Systems 

(IUBS) project.  The main part of this project consisted of replacing all existing 

conventional meters by smart meters.  Smart meters are capable of recording the 

consumption of electrical energy and communicating the information to a central 

system for monitoring and billing.  Additionally, the smart meters used by Enemalta 

are equipped with a circuit breaker which trips if consumption exceeds a settable limit.  

Smart meter data consist mainly of two types: spot readings and load profiles.  The 

spot reading registers are counters registering the number of units of energy (KWh) 

consumed since the time when the meter was installed.  Consumption billing is based 

on spot readings where the consumption between two dates is simply the difference 

between the readings of the counter on the two occasions.  The load profile is the 

amount of energy in Watt Hours (Wh) consumed during periods of equal duration.  

The majority of meters installed by Enemata have 15-minute periods (96 readings per 

day), with some other meters having a 30-minute periods (48 readings per day).  For 

this thesis data has been aggregated into 30-minute periods for all meters.   

Commercial consumers have the heavier consumption and thus generate the higher 

revenue.  Consequently, it is more effective for Enemalta to concentrate on this type 

of consumers rather than domestic and residential in any study that may be effective 

in detecting energy loss and/or fraud.  This thesis has therefore considered commercial 

consumers for anomaly detection. 

Communication to the meter is achieved through Power Line Communication (PLC).  

This method of communication uses the powerlines as the medium to convey the 

information between the devices.  In the Enemalta implementation, PLC is only used 

on the LV part of the network.  At every substation, where the voltage transformation 

between LV and MV takes place, a Low Voltage Concentrator (LVC) is installed.  The 

LVC serves as an edge server (a server between two independent networks) between 

the central application domain, Automated Meter Management (AMM), and the 

distributed electricity meters.  The LVC has a daily agenda to read the data (spot 
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readings and load profiles) accumulated on all meters which are connected to the 

substation.  The data collected from all meters is then conveyed to AMM via a 

GPRS/3G modem over TCP/IP using the GSM network. Figure 2.1  shows the 

communication setup between AMM and meters. 

The TCP/IP connection is reasonably robust, and it can be assumed that all data 

collected by the LVC will be conveyed without error to the AMM.  However, PLC has 

proved to be quite vulnerable, for the reasons mentioned in Section 1.1, and 

occasionally communication cannot be established between the LVC and the smart 

meter. In that eventuality all the data for that day for that particular meter is lost, 

causing a gap of one day in the data for that meter. 

 

Figure 2.1. Communication between AMM server and smart meters. 

Figure 2.2 shows a typical practical substation setup on the Enemalta Geographic 

Information System (EneGIS) and thus also on the PLC system.  The red lines show 

underground cables which connect the aerial lines to the transformer.  The consumers’ 

meters (shown by violet and brown dots, with the red stars indicating PV meters) are 

connected to the aerial lines (shown as green and brown lines).  Heavy consumers, 

with rated current exceeding 60 Amperes per phase, are supplied through dedicated 

underground cable passing to their premises.  
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Figure 2.2. EneGIS sample layout.  Red lines are underground cables, green and 

brown lines are overhead lines, violet and brown dots are consumer meters while the 

red stars are PV meters. 

 

2.1 Introducing the Dataset 

Collection of smart meter data started as early as 2009, when the first smart meters 

were installed.  During the first months of installations the number of meters collecting 

data was relatively low.  This number increased gradually until, at present, an average 

of almost 200,000 meters are being read daily. 

Table 2.1 and Figure 2.3 show the number of installed meters at the end of each year 

since the beginning of the rollout, together with the average and maximum of daily 

spot readings read during each year.  The spot readings here are being used as a 

measure of reachability since a request for spot reading is attempted every day to all 

installed smart meters.  Average here signifies the average number of daily spot 

readings collected throughout the year.  The maximum is the largest number of spot 

readings collected from the meters on a single day during that year.  From these figures 

it is clear that a substantial amount of data is missing and thus there exists the 
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requirement for a good imputation algorithm to be developed, so that the missing 

readings can be estimated and imputed. 

Table 2.1. Average and maximum daily readings per year 

 

 

 

 

 

 

 

 

  

Figure 2.3. Number of smart meters installed and daily spot readings for each year. 

 

For imputation and anomaly detection, the load profile data is considered.  A 

preliminary study was performed on commercial consumers data from January 2013 

onwards, in order to understand how many such meters have complete load profiles 

over how many days.  This analysis showed that during the period 1st January 2016 to 

31st May 2019 the average gap was of 4.51 days with a standard deviation of 21.22 
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days.  For this period, as shown in the histogram of Figure 2.4 (Gap Max for 2016), 

there are 639 meters which have only 2 days of missing load profile.  There are 3 

meters which have only one day of missing load profile.   For 335 of these meters the 

consumption for the missing days can be calculated from the spot readings and so these 

meters were selected for testing of the imputation algorithm.  The importance of 

considering only users with a fully complete load profile is due to the fact that the 

missing data in this study will be simulated so that the error of the estimated values 

can be exactly calculated.   

 

Figure 2.4. Histograms for data between 1st January 2016 to 31st May 2019. 

 

For detecting anomalies, the approach taken in this thesis was to analyse the 

consumption patterns of consumers to detect those with irregular behaviour.  However, 

consumers do normally change consumption behaviour according to the seasonal 

period.  So, the period of observation should not span over multiple seasons so that the 

behaviour of most consumers will be as regular as possible.  In view of this it was 

decided to consider 17 consecutive weeks starting 1st June 2018.  For this period 3,500 

commercial consumer meters were found to have a full load profile with no missing 

data.  From the 3,500 consumers with complete load profiles, those consumers whose 

maximum half hourly consumption did not exceed 3KWh where excluded.  For these 

consumers the consumption was found to be very irregular and would disrupt the 

analysis process.  These consumers may be premises, like garages, which are still 
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considered as commercial but are used very inconsistently and for very short times.  

The installations which have a renewable energy generating system have also been 

eliminated.  Such installations have two meters each, one being the main meter, which 

records the imported and exported energy, and the other being the generator meter, 

which records the generated energy.  In order to calculate the consumption for these 

installations the load profiles for both meters should be available for the whole 17 

weeks.  Then the consumption profile would be calculated as the sum of the imported 

and generated energy and subtracting the exported energy.  However, quite a number 

of installations would have some days for which the data is not available for both 

meters.  Considering the fact that in such cases tampering with any of the meters would 

be of financial detriment to the consumer, it is highly improbable that the consumer 

will tamper with the meters.  Furthermore, in case of a faulty meter, the consumer will 

be much more reactive and would report any doubt that the meter is not recording 

correctly.  Based on this argumentation it is considered reasonable to eliminate 

consumers with renewable energy sources from the dataset.  Thus, the remaining 1174 

meters with complete load profiles will be used for testing of the anomaly detection 

methods considered.   

 

2.2 Temporal and Spectral Analysis of Load Profiles 

The consumer load profiles consist of univariate observations at equally spaced time 

intervals and may thus be treated as a stochastic time series.  Important characteristics 

of a time series are seasonality and trend [9].  Seasonality is a cyclic behavior that 

repeats over a period of time, such as weekly, monthly or yearly.  Trend may be defined 

as the change in the mean over a substantially long period.  The substantially long here 

is very subjective and depends on the time series being observed.  In the case of 

consumer load profiles, a change in the monthly mean consumption over a year or 

more may be considered as exhibiting a trend.  A time series which does not have a 

trend is also termed as stationary.  The more repeatable the behavior of the consumer, 

the better missing observations may be estimated. 
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Figure 2.5 shows the load profile for a consumer, which extends over 3 years,   

normalised using Equation 2.1. 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑  𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑛 =
𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑛

𝑚𝑎𝑥𝑖𝑚𝑢𝑚  𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
   Equation 2.1  

where n corresponds to the relative period. 

The yearly seasonality is very evident, with consumption increasing considerably in 

the summer months and again increasing slightly for the winter months.  There might 

also be a weekly periodic behavior, which is very common with most consumers, but 

this is not clearly evident from this plot.  This load profile can be considered to be 

stationary since there is no significant change in the mean over the 3-year period. 

 

Figure 2.5.  Load profile for a consumer. 

 

Treating the load profiles as a time series allows the use of several tools which are 

available for time series analysis.  The autocorrelation of a time series is the correlation 

of the time series with a lagged copy of itself and is defined as: 

𝜌𝑘 =
∑(𝑥𝑡 −𝜇)(𝑥𝑡−𝑘−𝜇)

𝜎𝑥
2     Equation 2.2 

where ρk is the autocorrelation at lag k, µ is the mean and σx is the standard deviation 

of the time series. 
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The correlogram in Figure 2.6 shows the plot for the autocorrelation, obtained by the 

acf() function in R, for the load profile in Figure 2.5.  The lag, in days, is iterated from 

0 to the selected maximum lag, which in this case was set equal to the whole length of 

the series.  When lag is zero the autocorrelation is actually the correlation of the signal 

with itself, i.e. 1.  As the lag increases the autocorrelation decreases to a minimum and 

then starts increasing again to a localised maximum.  In Figure 2.6 it can be clearly 

seen that the main periodicity of the oscillations is the around the 360 days lag, that is 

the yearly seasonality.  The smaller oscillations indicate the weekly behaviour of the 

consumer.  The two horizontal blue dotted lines indicated the 95% confidence interval 

and so when the correlation value lies between these two lines the two signals are not 

significantly correlated.  When the correlation value is negative the two signals are 

negatively correlated i.e. an increase in one is matched with a decrease in the other, 

and vice versa.  The correlogram gives a good visual information about the seasonality 

of the signal and its repeatability based on seasonal patterns. 

The value of the position where the dotted blue lines are plotted is the z-value of the 

confidence interval divided by the square-root of the number of observations in the 

time series.  In R the positive significant level is calculated as: 

𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒𝐿𝑒𝑣𝑒𝑙 =
𝑞𝑛𝑜𝑟𝑚(

(1+𝑐𝑖)
2⁄ )

√𝑁
  Equation 2.3 

where ci is the confidence interval, 0.95 in this case, and N is the number of 

observations in days.  qnorm()  calculates the quantile function for the normal 

distribution with mean equal to zero and standard deviation set at one. 
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Figure 2.6.  Correlogram for consumer’s load profile. 

 

The seasonality in load profile may be better analysed by transforming it into the 

frequency domain using the Fourier transformations [10]. The Discrete Fourier 

Transform (DFT) transforms a finite discrete sequence of observations in the time 

domain to a discrete sequence of the same size in the frequency domain.  The DFT 

assumes that the signal is periodic with the samples in the sequence representing 

exactly one period.   

In [10] the DFT is defined as: 

𝐻 (
𝑛

𝑁𝑇
) = ∑ ℎ(𝑘𝑇)𝑒−

𝑗2𝜋𝑛𝑘

𝑁𝑁−1
𝑘 =0   n = 0,1, . . . , N-1 Equation 2.4 

The expression in Equation 2.4 relates N samples in the time domain and N samples in 

the frequency domain by means of the Fourier transform. If it is assumed that the N 

samples of the original function h(t) are exactly one period of a periodic waveform, 

the Fourier transform of this periodic function is given by the N samples of  𝐻 (
𝑛

𝑁𝑇
), T 

being the sampling interval. 

If the time interval for the sequence is not exactly one period, then spectral leakage 

will result.  Spectral leakage is the situation when a single frequency is split up into a 

number of neighboring frequencies.  To reduce spectral leakage the sequence should 

be multiplied by a windowing function, such as the hamming window, so that the 
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extremes would be smoothed.  In the case of load profiles, since the load profiles are 

unidirectional and not zero-centered, multiplying by similar windows would interfere 

considerably on the shape of the signal. A windowing function will also result in 

reduction of frequency resolution. Instead of using a windowing function, the sequence 

was truncated to a size of 3 multiplied by 365, knowing, also from the autocorrelation 

plot, that the signal has yearly periodicity.   

The Fast Fourier Transform (FFT) is a method of computing the DFT in a time-

efficient manner and in R the function fft() is available.  Figure 2.7 shows the 

magnitude (red)  and phase (blue) of the of the FFT for the normalized consumer’s 

load profile of Figure 2.5, truncated to 1095 (3 multiplied by 365, three years) 

observations and with the DC component (frequency zero) removed.  The DC 

component is substantial since the waveform is unidirectional (all positive) and so 

removing it makes the other peaks, which correspond to frequencies of repeatability 

in behavior, more distinguishable.  The frequency, on the horizontal axis, is in days-1 

and represents the reciprocal of the period.  The resolution in the frequency domain is 

1/N where N is the number of observations, so here the frequency resolution is 1/1095 

days-1.  These peaks occur at 313 (1095 divided by 313 ≈ 3.5 days), 157 (1095/157 ≈ 

7 days), 3 (1095/3 ≈ 365 days) and 6 (1095/6 ≈ 182 days). Therefore, it is evident that 

this consumer has a behavior which shows periodicity about these number of days. 

 

Figure 2.7.  Magnitude (red) and phase (blue) of the FFT for consumer’s load profile. 
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Another method to study the periodicity in the behaviour of a consumer is by observing 

the Power Spectral Density (PSD) through a periodogram.  In R the periodogram() 

function, from package TSA, produces a periodogram as shown in Figure 2.8 for the 

above load profile of Figure 2.5.  From [11] the periodogram of a time series {x1, . . . 

xn} is the function: 

𝐼𝑛(𝜆) =
1

𝑛
|∑ 𝑥𝑡𝑒−𝑖𝑡𝜆𝑛

𝑡=1 |
2
   Equation 2.5 

where λ is one of the Fourier frequencies ωk, e is Euler's number and i = √-1. 

The horizontal axis in Figure 2.8 represents the frequency which is the reciprocal of 

the period in days i.e.  a frequency of one represents a period of one day and a 

frequency of half represents a period of two days and so on. 

 

Figure 2.8.  Power Spectral Density (Periodogram) for consumer's load profile. 

 

Unlike the Fourier transform the periodogram singles out the frequency components 

very distinctively and thus PSD values were sorted in descending order of magnitude, 

as shown in Table 2.2, to highlight the most pronounced periodic behavior. As can be 

seen in Table 2.2, the maximum PSD is at 7 days, which is the weekly pattern.  Then 

comes the yearly and half weekly cycles.  The yearly period is given as 375 days, 

instead of 365, because the periodogram() function does not use exactly the number 

of observations in the sample, but a number which is convenient for computing the 

FFT.  The effective number of observations used may be found in the n.used element 
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of the returned periodogram object.  In this case n.used was 1125 instead of the size 

of the whole sample which is 1095.  So, using N=1125, the period is 1125/3 = 375. 

Table 2.2.  Most pronounced PSDs with the frequency and periods 

PSD Frequency Period/days 

13.315 0.143 6.988 

8.376 0.003 375.000 

4.084 0.285 3.505 

4.040 0.005 187.500 

2.569 0.286 3.494 

2.333 0.142 7.031 

0.925 0.140 7.120 

0.804 0.428 2.334 

0.553 0.141 7.075 

0.525 0.144 6.944 

0.481 0.146 6.860 

0.468 0.284 3.516 

0.349 0.287 3.483 

0.312 0.288 3.472 

0.307 0.004 281.250 

 

In determining the frequency content, the DFT and PSD assume stationarity i.e. that 

the signal does not show a significant trend, otherwise the trend may be interpreted as 

an inherent frequency.  The Wavelet Transform (WT) may be used to analyze time 

series which contain nonstationary components at different frequencies.  The WT 

makes use of a prototype wavelet, as shown in Figure 2.9, and stretches and shifts it 

along the signal’s waveform, using short windows at high frequencies and long 

windows at low frequencies.  Assuming a time series, xn, with equal time spacing δt 

and n = 0…N − 1. Also, assuming a wavelet function, ψ0(η), that depends on a 

nondimensional time parameter η. To qualify as a wavelet, a function must have zero 

mean and be localized in both time and frequency space. An example is the Morlet 

wavelet consisting of a plane wave modulated by a Gaussian [12]: 

𝜓0 (𝜂) = 𝜇−1/4𝑒𝑖𝜔0𝜂𝑒−𝜂2/2   Equation 2.6 

where ω0 is the nondimensional frequency.   
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Figure 2.9 shows a plot of the Morlet wavelet with the green line being the real part 

while the red line is the imaginary part. 

 

Figure 2.9.  The Morlet wavelet with real in green and imaginary in red. 

 

The continuous wavelet transform of a discrete sequence, xn, is defined as the 

convolution of xn with a scaled and translated version of ψ0(η) [12]: 

𝑊𝑛(𝑠) = ∑ 𝑥𝑛′𝜓∗ [
(𝑛′−𝑛)𝛿

𝑠
]𝑁−1

𝑛′ =0   Equation 2.7 

where the (*) indicates the complex conjugate and ψ is the normalized value of ψ0. By 

varying the wavelet scale, s, and translating along the localized time index n, a 

scalogram is constructed showing both the amplitude of any features versus the scale 

together with the amplitude variations with time. 

Hence, the WT represents the signal in three dimensions i.e. time, frequency and power 

level, in a scalogram [13].  The scalogram in Figure 2.10 shows the wavelet power 

spectrum for the same load profile of Figure 2.5.  Time is spread along the horizontal 

axis, while the period is along the vertical axis.  The wavelet power levels are color 

coded as indicated in the legend, blue representing the lower values and red 

representing the higher value.  The scalogram was obtained by using the R function 

analyze.wavelet() from the package  WaveletComp and plotted using function 

wt.image(). 
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The region which is lighter at the top left and right denotes the outside of the Cone Of 

Influence (COI).  Within the COI the wavelet coefficient estimates are reliable, while 

outside the COI the coefficient estimates are unreliable due to edge effects.   From 

observing the scalogram, it can be seen that there is a continuous band of high intensity 

at around the period of 7 days, one week, which is predominant throughout the whole 

span of 1246 days.  Another band of high intensity is around the 365-days, 1 year, 

period.  Some periodicity also exists at about 3.5 days, but with less consistency.  There 

is still some periodicity at around 2.5 days, but this might be some cyclic function 

within the week.    The thin black lines are termed wavelet ridges which are the maxima 

points of the normalized scalogram. The white lines contour the areas where the power 

is considered significant i.e. which exceeds the 95% confidence interval. 

 

Figure 2.10.  Wavelet representation of load profile. 

 

The temporal autocorrelation, and spectral FFT, PSD and WT, analysis have shown 

that there is a strong periodic and cyclic element in the behavior of a typical consumer. 

Such cyclic and repetitive behavior indicate that both the imputation and anomaly 

detection tasks being considered in this thesis may be performed to a good level of 

accuracy. Common methods, as reported in literature to perform these tasks will be 

reviewed in the next Chapter. 
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3 Literature Review 

 

As discussed in Chapter 2, it is inevitable for a number of consumers to have a certain 

amount of missing load profile data, instigating the need of an imputation method 

which estimates the missing values so that further analytical tools can be utilised.  In 

Section 3.1  a thorough literature review is performed in order to determine which 

imputation techniques are considered for similar datasets in similar situations to be in 

a position to form an opinion to select an appropriate method.   

In Section 3.2 literature is reviewed for anomaly detection methods as a general 

concept, and then delves deeper into NTL anomalies in particular, to establish an 

approach which would be applicable to Enemalta’s consumer load profiles. 

 

3.1 Imputation 

Missing values is a common problem in real-world applications where data is 

measured and recorded (politics and political behaviour [14], financial stock market 

data [15], weather data [16]).   What may determine the effectiveness of a dataset is 

the percentage of missing data.  Any statistical or analytical process, to be performed 

on the recorded data, relies heavily on the completeness of the data.  Hence, before 

any statistical or analytical tool can be used, the missing portions in the dataset have 

to be imputed (imputation being the process of filling of the missing values). After 

imputation the dataset should be considered as a complete dataset. 

3.1.1 Terminology  

Various works [14 , 15, 17 - 19] use the terminology Missing Completely At Random 

(MCAR), Missing At Random (MAR) and Missing Not At Random (MNAR) in 

discussion and analysis of missing data.  The earliest reference found of this 

terminology is given by D. B. Rubin [20] who used these terms to classify missing 

data in his general discussion on the subject.  R. J. A. Little in the book with D. B. 
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Rubin [21] continued using the same terminology.  The three terms are also explained 

with examples in [17]. 

These explanations and examples are summarized below:  

• Missing Completely At Random (MCAR) 

Data are missing completely at random (MCAR) if all data points have the same 

probability of going missing. In this case, the missing data is unrelated to the model.   

• Missing At Random (MAR) 

Data are missing at random (MAR) if the missingness of a data point is random but 

dependent on some other observed variable in the dataset. As an example [17] gives: 

“a response for annual household income on a survey may be missing for several 

reasons. One reason is that a respondent may not know his or her household income. 

The missing-data mechanism may be a function of a respondent’s age (e.g., very young 

respondents often do not know their families’ incomes) but not a function of the 

respondent’s household  income.”  

• Missing Not At Random (MNAR) 

Data are missing not at random (MNAR) when the missingness of a data point depends 

on the value of the variable which is itself being measured, i.e. values with some range, 

or ranges, are more prone to go missing.  As an example [17] gives: “In time series, 

this might mean that the missing data occur in patterns or are related to the numeric 

values of the series (i.e., when the number of drinks consumed is very high, a subject 

may not record the amount).” 

3.1.2 Imputation in Time Series 

A time series is a sequence of signal observations typically measured at uniform time 

intervals.  A univariate time series measures one signal while multivariate time series 

measures more than one signal for every time interval.  Like any dataset, a time series 

is also prone to have missing values which need to be imputed. 
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S. Oh [15] used multiple imputation methods on missing values for a financial stock 

market dataset.   The concept of multiple imputation is also used, and is explained, by 

Honaker and King [14] where they use multiple imputation when analysing American 

politics and political behaviour data.  The idea is to extract relevant information from 

the observed portions of a data set via a statistical model, to impute multiple (around 

five) values for each missing cell, and to use these to construct multiple completed 

data sets. In each of these data sets, the observed values are the same, and the 

imputations vary depending on the estimated uncertainty in predicting each missing 

value. Honaker and King argue that the great attraction of their procedure was that 

after imputation, analysts can apply on each of the completed data sets any statistical 

method they would have used if the data contained no missing values and then use a 

simple procedure to combine the results. 

Velicer and Colby [17] compared methods for imputation of AutoRegressive 

Integrated Moving Average (ARIMA) time series.  The authors compared four 

methods of handling missing data: deletion, mean of series, mean of adjacent 

observations and maximum likelihood, with maximum likelihood yielding the best 

results.  The four techniques were tested on computer simulated data. The authors 

argue that with simulated data the factors that may affect the outcome could be 

systematically manipulated. Furthermore, the use of simulated data provided 

population parameter values (criterion values) against which estimates could be 

compared.  The accuracy of the estimation was also tested against the proportion of 

missing data.  It was concluded that the higher the percentage of missing data, the 

poorer the model’s overall fit, with poor fit beginning to occur when the percentage is 

more than 20%.  

Caparino et al. [22] explored the effect of missing data on well-known classifiers: 

Naïve Bayes, One-R, K-Nearest Neighbours (KNN), C4.5 and Support Vector 

Machine (SVM). Results show that classification performance improves when the 

Modified Imputation Method (MIM) is applied to the data sets which had missing 

values during pre-processing.  MIM is only suitable for multivariate datasets and uses 

Spearman correlation to find the attribute which best correlates to the missing data.  

The missing values are then calculated from the values of the correlated attribute. 
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Makaba et al. [23] also compare a number of strategies for imputing missing values 

and their effect on machine learning algorithms.  The methods considered are Listwise 

Deletion (LD), mean, mode, KNN, Expectation-Maximization Single Imputation 

(EMSI) and Multiple Imputations by Chained Equation (MICE).  These imputation 

methods are used on two real-life datasets, one numeric and one categorical, which are 

then used for six machine learning algorithms: Logistic Regression (LR), KNN, SVM, 

Random Forest (RF), Naïve Bayes (NB) and Artificial Neural Network (ANN). The 

results were evaluated based on the following performance metrics: accuracy, Root 

Mean Squared Error (RMSE), Receiver Operator Characteristics (ROC) and the F1-

score.  For the categorical dataset the classifiers showed slightly improved 

performance when the missing data was imputed using mode as compared to using the 

LD method.  As for the numeric dataset there was very marginal performance 

difference, with EMSI and KNN performing slightly less overall.   

The language R, being a widely accepted and versatile language for statistical analysis, 

is quite often used in imputation research.  Different methods for univariate time series 

imputation were performed by Moritz et al. [18] to compare the usage of some 

functions available in R packages.  Although several R packages (Amelia, mtsdi, VIM, 

mice and imputeR) declare that they can process univariate time series, the authors 

found out that practically only packages forecast and zoo do actually accept a 

univariate time series.  The other packages only accept a multivariate time series input. 

The functions tested and compared were:  na.aggregate, na.locf, na.StructTS, 

na.interp, na.approx, ar.irmi. The experiments were performed with four different 

missing data rates (10%, 30%, 50%, 70%).  A self-developed algorithm was used 

which simulates data MCAR.  The performance of each function was measured using 

Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) for 

the imputed values. The results obtained in this work show that the accuracy of the 

data imputed by each function depends hugely on the trend and seasonality of the 

dataset being imputed.  Neither function performed well with all datasets which were 

used for testing.  

Moritz & Bartz-Beielstein [24] review the imputeTS package in R.  ImputeTS has a 

number of functions which perform imputation on univariate time series datasets.  
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However, they also concluded that the imputing function has to be chosen depending 

on the type of dataset. 

Kim et al.[16] use and compare four methods of imputation for estimating the missing 

instances in meteorological data used for PV generation forecasting.  The methods 

used are Linear Interpolation (LI), Mode Imputation (MI), KNN, and MICE. For LI a 

simple linear interpolation was done.  This method performed well when the number 

of consecutive missing values was small but when the missing data interval lengths 

increase, the imputation accuracy degrades severely.  MI is a method where missing 

data is replaced by the most frequently observed data.  The authors state that the MI 

method is not suitable for the dataset being analysed, nonetheless the method  was 

selected in order to show that when the missing data are processed in an undesired 

way, the prediction deviates drastically. Hence it is evident that the method of imputing 

missing data is very much dependent of the type of data itself. 

Rahman el al. [19] develop a method for imputing missing values in multivariate time 

series.  The method is a combination of two methods, an extension of KNN imputation 

with lagged correlations and the Fourier transform.  The KNN approach calculates the 

time lagged correlations, using cross-correlation, also for the other variables in the 

multivariate time series, and selects the k nearest neighbours.  These k values are then 

averaged, weighted by the strength of their correlation.  The Fourier transform method 

computes the DFT for all the non-missing values (which should be complete, even if 

some of the values have been previously imputed) then the inverse DFT is performed 

on the frequency components to obtain the series in the time domain, comprising also 

the missing part.  The imputed value is the average of the values obtained from the two 

methods.    

Anava et al. [25] developed an online forecasting method, using an autoregressive 

model, in the presence of missing values.  Autoregressive prediction is not well defined 

when some of the data is missing and so, to overcome this issue, the authors define a 

new family of autoregressive predictors. Each predictor makes use of its own past 

predictions to fill in the missing data, and then provides an autoregressive prediction 

using the completed data. 
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Murti et al. [26] use a k-nearest neighbour based method to impute data for missing 

values in 8 journal statistics datasets.  Different quantities of missing values were 

simulated for each dataset and the estimated values where compared to the original 

ones.  The KNN method used consists of calculating the Euclidian distance of the 

missing data instances from the complete data and then choosing the k instances with 

least distance.  The imputation value is then calculated by finding the weighted average 

of the k-nearest neighbour values.  The weighting used is the reciprocal of the squared 

Euclidian distance for each of the k instances. 

Yodah et al. [27] examine the imputation of incomplete non-stationary seasonal time 

series data.  The authors explore the appropriateness of Box-Jenkins approaches, 

Seasonal AutoRegressive Integrated Moving Average (SARIMA) and AutoRegressive 

Integrated Moving Average (ARIMA) models, in handling non-stationary seasonal 

time series with missing observations. They also discuss direct Linear Regression 

approaches in imputing missing observation when seasonality has been relaxed by 

rearranging the series in periods and then treating each period as a single series.  The 

3 methods are compared on 5 datasets having 5% and 7% missing data.  Linear 

regression was found to be more efficient and effective than ARIMA and SARIMA 

models however it may not be applicable to all types of series. 

3.1.3 Imputation in Smart Meter Data 

During the last decade and a half, smart grids have been gaining in popularity and 

smart meters are an essential element of these systems.  The data collected from smart 

meters can be stored and analysed. Wang et al. [28] and Liu et al. [29] provide a 

collection of review and benchmark analytical methods used on smart meter data. 

These analytical methods can be utilised for several objectives, such as for consumer 

characterisation [30 - 33].    These works explore methods which study consumer load 

profiles to establish consumer categories in order to tailor tariff packets which might 

be attractive to  certain segments.  Such methods could also be used by the utility to 

implement time-of-use packages which would be beneficial to both the utility as well 

as the consumer.  However, for these analytical methods to be effective the load profile 

datasets should be free of any missing intervals.  Hence the need for imputation. 
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In recent years considerable work on imputation of smart meter data has been done 

and published.  Al-Wakeel et al. [34] suggest a clustering approach.  In this work the 

available load profiles are first separated into a predefined number of clusters by using 

a k-means algorithm.  Then the missing data is estimated, based on the average 

behaviour of the cluster to which it belongs.  Yu et al. [35] use a similar approach to 

[33] first clustering by using k-means then uses KNNs to impute the missing data 

within groups.  Here the authors term their method as Cluster-based Best Match 

Scanning (CBMS). These methods may not be as effective on occasions when the 

communication is lost to a large number of meters at the same time.  In these instances, 

it would be difficult to estimate the missing data for a meter from adjacent meters in 

the same cluster because the data for these meters would most probably be missing 

too. 

For long periods of missing data Peppanen et al. [36] present an Optimally Weighted 

Average (OWA) load power data imputation method. This method only requires the 

historical load power measurements from the smart meter itself. The proposed load 

data imputation scheme leverages two typical load data characteristics. First, the data 

tends to be rather continuous over a short time interval, meaning that short time 

intervals of missing/bad measurement samples have likely similar characteristics as 

the adjacent available data. Second, since the load profile data is strongly driven by 

human consumption patterns, the data tends to have similar characteristics over time 

periods with similar human activity. For example, the data characteristics of weekdays 

tend to be different to weekend days, mornings different to evenings, etc. 

Ryu et al. [37] use a Denoising Convolutional Autoencoder (DAE).  An autoencoder 

is a type of artificial neural network which can be summarised by two nonlinear 

encoding and decoding functions.  For a given input vector, the network encodes the 

input into a latent feature, then decodes it back to the original vector. Therefore, the 

autoencoder learns to extract a feature vector that contains crucial information of input 

data. DAE is an autoencoder having denoising property, able to reconstruct the input 

vector from a partially corrupted version.  The authors use the load profile data with 

missing values as the corrupted input vector and use DAE to construct the complete 

load profile. 
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Mateos and Giannakis [38, 39] use Principal Components Pursuit (PCP) to do load 

profile cleansing and imputation.  PCP can recover the low-rank matrix (the principal 

components) when the data matrix is corrupted by gross sparse errors.  The load profile 

cleansing and imputation involves identification and removal of outliers, or erroneous 

data, in addition to completion of the missing values from the nominal load profile 

matrix, and denoising of the observed ones. 

Kim et al. [40] use the historical load profile data collected for the same consumer.  

The sequence around the missing portion, is compared to sequences of the same length 

in the past.  KNN is employed to find the best k matches which are then used to 

estimate the values of the missing portion.  A learning phase is conducted to determine 

the optimal values for k, the length of the surrounding sequence, and the historical 

length to search.    

 

3.2 Anomaly detection 

Smart meters generate considerable data which, apart from the conventional billing 

purposes, can be used much more vastly.  The information that lies in the data is 

extensive and can be utilised in a variety of ways.  Wang et al.  [28] review the research 

being conducted on smart meter data for load forecasting, abnormal usage detection, 

consumer segmentation, and demand response. Liu et al. in [29] examine smart meter 

analytics from a software performance perspective designing a performance 

benchmark for typical smart meter analysis tasks which include off-line feature 

extraction and on-line anomaly detection. Hidayatullah et al. [41] perform an analysis 

of smart grids and the challenges for the future including climate change, escalating 

energy prices, energy security and energy efficiency.  Liang et al. [42] use analytical 

methods for load forecasting. 

In recent times, with the liberalisation of electricity markets, Distribution System 

Operators (DSO) are getting more interested in the individual electricity usage patterns 

of their consumers.  Having this knowledge, they are able to classify consumers into 

categories based on their different behaviours. This might help the DSO to design new 

tariff packages, which might be beneficial to both parties, and also to channel 
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investment to the most rewarding segments.  Such consumer behaviour is studied by 

taking their load profiles and using clustering techniques to group them into categories 

[30 - 33 , 43, 44]. 

3.2.1 Clustering Techniques  

Clustering is an unsupervised technique which groups together observations which are 

close to one another in some multidimensional space. The data produced by smart 

meters is massive, and before clustering can be performed, some kind of dimension 

reduction is required. Feature extraction is performed with the aim to retain only the 

relevant information and discard what is redundant [45]. 

Beckel et al. [46]  establish a list of 22 features based on consumption values of 

individual days as well as aggregated over the entire week or over workdays and 

weekends separately.  These features are grouped into four categories : consumption 

figures, ratios, temporal properties and statistical properties.  Kopf el al. [47] continue 

to build on the features presented in [46]  to establish 88 features grouped in the same 

categories.   

Palacio-Nino and Berzal [48] discuss evaluation metrics for unsupervised learning 

algorithms.  Kupta and Panda [49] do a validation of clustering methods Clustering 

Large Applications (CLARA) and k-Means using Silhouette and Dunn indexes.  The 

Silhouette and Dunn indexes are metrics for evaluating the effectiveness of a clustering 

algorithm.  Halkidi et al. [50] discuss the clustering process: feature selection, 

clustering algorithm, validation of results and interpretation of results.  They discuss 

the main clustering and validation techniques. 

Brock et al. [51] give the documentation for the clValid package in R.  clValid contains 

functions for validating the results of a clustering analysis. The user can choose from 

nine clustering functions which are available in R.  Three cluster validation measures 

are available and are termed: internal, stability and biological.  The metrics used are 

dependent on the validation measure selected. 
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3.2.2 Anomaly detection 

Anomalies are patterns in data which do not conform to a well-defined normal 

behaviour.  Chandola et al. [52] present an extensive survey of anomaly detection 

techniques available in literature.  The applications covered in this work are Cyber-

Intrusion Detection, Fraud Detection, Medical Anomaly Detection, Industrial Damage 

Detection, Image Processing, Textual Anomaly Detection and Sensor Networks.  For 

these applications the techniques used are: Classification Based, Clustering Based, 

Nearest-Neighbour Based, Statistical, Information Theoretic and Spectral. 

Hodge and Austin [53] also conduct a survey of contemporary literature which deals 

with outlier detection methodologies. The methodologies mentioned are Statistical 

Models (Proximity-based, Parametric, Non-parametric and Semi-parametric), Neural 

Networks (Supervised and Unsupervised), Machine Learning and Hybrid Systems 

(which use at least two of the other techniques.)  T. Penvy [54] uses a collection of 

weak classifiers which result in a strong classifier. 

Aligholian et al. [55] evaluate the performance of four unsupervised machine learning 

methods for abnormality detection on real-world smart meter data, namely prediction-

based regression, prediction-based neural network, clustered-based and projection-

based methods.  Different types of features, such as load-based, contextual, and 

environmental, are investigated to construct the data-driven models. 

3.2.3 Non-Technical Losses as Anomalies and their Detection 

Non-Technical Losses (NTL) have been researched quite vastly since it presents a loss 

of revenue for DSOs.  A good part of NTL is made up of faulty meters and fraud  but 

it also consists of errors in billing.  Fraud may be accomplished by tampering with the 

metering setup.  Consumers with faulty or a tampered metering setup would most 

probably have consumptions which are anomalous when compared to others which are 

healthy and not tampered.  Hence anomaly detection methods may be used in order to 

single out the NTL from the benign consumption. 
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The main methods used for NTL detection namely Support Vector Machine (SVM), 

Artificial Neural Networks (ANN) and other less wide spread methods are discussed 

in [56 - 61] and are reviewed below.  

  

3.2.3.1 Support Vector Machines  

Support Vector Machines (SVM) are widely utilised in the literature [62 - 70] to 

classify the load profiles of customers for detection of energy-theft suspects.  SVM is 

a supervised machine learning method meaning that the training has to be done on 

labelled data. As cited by Hearst et al. [62] and Ghori et al. [60],   Vapnik has proposed 

the SVM classifier that creates a margin between the two classes and tries to maximise 

that margin.   SVM is a set of machine learning methods which offers support for 

outlier detection, regression and classification.  Toma et al. [63] use Principal 

Component Analysis (PCA) for dimension reduction before using the data to train the 

SVM.  

Nagi et al. [64] extend the work done by themselves in [65] by integrating human 

intelligence and knowledge into the SVM-based fraud detection module with the 

introduction of a Fuzzy Inference System (FIS), in the form of fuzzy IF-THEN rules, 

as a postprocessing scheme. The FIS acts as an intelligent decision-making system 

together with the SVM-based detection model in [65] to shortlist customers suspected 

with high probabilities of fraud activities and abnormalities.  The authors claim that 

the introduction of the FIS has increased the hit rate from 60% to 72%. 

Glauner et al. [66] use monthly consumption readings for the SVM classifier.  The 

geographical area is split into differently sized neighbourhoods.  The authors claim 

that certain areas are more prone to cause NTLs than others, so features based on the 

neighbourhood area are interesting in order to improve predictions.  The 

neighbourhood information is added as a features to the SVM classifier.  

A significant concern when using supervised machine learning tools in dealing with 

NTL, is excessive class imbalance.  Normally the percentage of consumers with NTL 

is very small compared to the whole population of consumers and so only a few 
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examples of the positive class (NTL present) are seen as compared to the negative 

class (NTL not present). This underrepresentation of the positive class heavily affects 

classification. 

Figueroa et al. [67] deal with the imbalance issue by over-sampling the minority class 

and under-sampling the majority class.  Dealing with over-sampling and under-

sampling involves adding and removing NTL records, so as to obtain the desired 

percentages in the training set.  Glauner et al. [68]  evaluate the performance of 

Boolean, fuzzy and SVM for varying NTL proportions on imbalanced real world 

consumption data.  An optimised fuzzy model and SVM were found to significantly 

outperform the Boolean and unoptimized fuzzy model. 

Messinis et al. [69] use meter topology data, together with SVM, to extract theoretical 

voltage values.  As a dataset they use the Irish Commission for Energy Regulation 

(CER) data set [71] and modelling of NTL is simulated. Jindal et al. [70] use Decision 

Tree (DT) to predict the electricity consumption from the consumer features (number 

of heavy appliances, number of persons, season, time slot, and temperature) in real 

time.  Then the predicted consumption, together with the consumer features are fed to 

the SVM classifier, which flags the consumer as good or bad.  The authors claim to 

have reduced the occurrence of false positives and increased the detection rate. 

 

3.2.3.2 Artificial Neural networks 

Artificial Neural Networks (ANN) like SVM are supervised machine learning 

classifiers.  Nizar et al. [72, 73] use Extreme Learning Machine (ELM).  The ELM is 

a general learning algorithm for neural networks, which works for function 

approximations, classifications, and online prediction problems.  The authors compare 

the results obtained by using the ELM to those obtained by using the more popular 

SVM, and claim that  ELM proved to be better, both in speed and accuracy.   

Yuan and Jia [74] incorporate an Internet Of Things (IOT) module so as to cater for 

smart meters from different manufacturers.  A basic autoencoder neural network 

structure acts as a classifier.  Hu et al. [75] use a semi-supervised deep-learning-based  
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model with powerful feature extraction ability where labelled and unlabelled data can 

be utilised for training.  

Huang et al. [76] use a two-layer feed-forward ANN whose inputs are the consumption 

of each consumer together with the entire consumption measured at the substation, and 

whose output is an honest coefficient for each consumer.  The training of the ANN is 

done by simulating 2N (N being the number of consumers on the substation) 

combinations of energy theft situations and randomly assigning the level of NTL to 

each combination.  

 

3.2.3.3 Use of Master Meter for Anomaly Detection 

A number of research studies [77 - 80] make used of a master meter installed at the 

low voltage side of the transformer feeding a number of smart meters to perform 

energy balance analysis.  The addition of all the consumptions recorded by smart 

meters connected to the transformer, together with any technical losses, should be the 

same as the consumption recorded by the master meter at any time.  Anything less 

would be NTL.  Yip et al. [77, 78] devise a method to find what they term as the 

‘anomaly coefficient’ for each meter. 

Jokar et al. [79] compare the difference in consumption between the smart meter and 

all the smart metres on the transformer and when a difference is registered, all the 

smart meters which are fed from the transformer are selected and processed by a SVM 

classifier to determine which consumer is causing the NTL.  Liu et al. [80] use the 

same principle of [79] but use a deep-learning method based on Long Short-Term 

Memory (LSTM) and a modified Convolutional Neural Network (CNN) to identify 

the malfunctioning smart meter. 

 

3.2.3.4 Dedicated Hardware Solutions 

Some researcher opted to use some hardware device connected to the smart meter in 

order to detect NTL.  Dineshkumar et al. [81] developed an electronic module which 
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sends an SMS on the GSM network when fraud is detected.  Khoo et al. [82] proposed 

an RFID communication from the meter and performs a cost benefit analysis to justify 

the use of the module. 

 

3.2.3.5 Additional Methods of NTL detection 

Messinis and Hatziargyriou [83]  use an unsupervised Bayesian detection rate (BDR) 

method.  In this work the authors make use of the BreakoutDetection R package [84] 

for detecting sudden changes (breakouts) in the consumers load profile.  For clustering 

this work uses PCA with four features: normalised change in mean (the difference 

between the mean consumption before and after the breakout, divided by the yearly 

mean), change in standard deviation (the difference in standard deviation before and 

after the break, divided by the standard deviation before the break), Im (Imaginary part 

of the normalised time series Fourier transformation) and Cos (Second component of 

the normalized yearly time series discrete cosine transformation). k-means, fuzzy c-

means (FCM) and DBSCAN are used for clustering.  Anomalies are simulated on two 

datasets: the CER dataset [71] and another dataset from Greek DSO. 

Punmiya and Choe [85] use a Gradient Boosting Classifier (GBC) which is claimed to 

have better detection rate and improved false positive rate over other machine learning 

classifiers.  Theft records used for testing the classifiers are simulated on the dataset. 

Saad and Sisworahardjo [86] use a dissimilarity matrix which is calculated for all pairs 

of instances which are in the same temporal instance.  Then clustering is performed on 

the dissimilarity metric using Partitioning Around Medoid (PAM).  An initial anomaly 

score is obtained by calculating the Euclidean distance of each instance to the medoid.  

Finally, the initial anomaly score is normalised to get the anomaly score in the range 

of 0 to 1.   

Buzau et al. [87] use supervised machine learning algorithm Extreme Gradient 

Boosted Trees (XGBoost) for detecting NTL.  Cabral et al. [88] use two methods: Self 

Organising Maps (SOM) and the other is a hybrid of data mining techniques.  This 

work clusters the weekly behaviour of a single user and detects weeks with abnormal 

behaviour for the user. 
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Kee et al. [89] designed and developed a GUI-based NTL detection platform 

consisting of energy balance fuzzy logic and SVM.  Avila et al. [90] use a maximal 

overlap discrete wavelet-packet transform for feature extraction and random under- 

sampling boosting for NTL deduction. 

To overcome the imbalance problem Zhang et al. [91] propose an anomaly detection 

framework called semi-supervised generative Gaussian mixture model, which can be 

controlled using human detection indicator thresholds to adjust the intensity of 

detection. 

Massaferro et al. [92] propose an NTL detection solution that prioritises on the 

potentially larger economic return.  The list of potential fraudsters flagged for 

inspection is sorted according to the expected economic gain, factoring in also the cost 

of the inspection. 

Being an extension of the IP network, the smart grid may be prone to cyber tampering.  

Consumers might be able to tamper with the data which is exchanged between their 

smart meter and the main server.  Researchers also explored the cybersecurity of the 

smart grid [93 - 97]. 

 

3.3 Conclusion 

This literature review was conducted to gather information on the methods which are 

available, and which are mostly used in the fields of data imputation and anomaly 

detection, to determine which are most appropriate for the Enemalta load profile 

dataset presented in Chapter 2.   

Data imputation is used extensively in a variety of applications since missing data is a 

common problem in various areas.  Initially the general methods of imputation were 

reviewed and then those specifically used for smart meter missing data.  In most of the 

literature about smart meter data imputation the missing data was only spanning a 

number of hours, while in the Enemalta implementation missing data is always in 

multiple of days.  The KNN method used by Kim et al. in [40] was chosen due to its 
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adaptability to the problem at hand, the reported accuracy and its computational 

efficiency.  

For anomaly detection the review was conducted to explore techniques which are 

adopted for detecting non-technical losses in smart meters.  The most utilised methods 

use supervised classification, such as SVM and ANN, which have to be trained on 

labelled data.   Due to the fact that Enemalta does not currently have such labelled 

information an unsupervised clustering method was preferred,  literature, such as [46] 

and [47], establish a number of features, but these are still extensive and so a means of 

dimension reduction is needed.  PCA, as used in [63], was chosen as a means for 

dimensional reduction mainly due to the fact that it maximises the variance between 

the selected features. 
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4 Data Imputation 

 

Imputation of the missing data is essential for any analytical activity to be performed 

on the data efficiently.  It is also beneficial to have a complete load profile so that the 

consumer can be presented with a complete consumption pattern, if he demands it, 

having the imputed part selectively marked accordingly.  The imputation should be 

calculated based only on actual data collected from the meters, so any imputed section 

of the load profile is flagged so that it will not be used for imputation of future missing 

data.   

This Chapter first presents the approach taken in developing the algorithm capable of 

imputing the missing load profiles.  Then it covers the methods used to determine the 

most appropriate parameters for the algorithm.  Two sample consumer load profiles 

are then presented to illustrate the implementation of the algorithm and the results 

obtained. 

 

4.1 Approach 

The method used for imputation in this thesis is based on the method used by Kim et 

al. in [40] where the imputed values are calculated on the historical behavior of the 

same consumer.  The method implements a KNN approach where the imputed part is 

calculated by searching the past consumption of the consumer for patterns that best 

resemble the portion around the missing values (nearest neighbors) and taking an 

average of the parts which correspond to the missing portion.  The method of  least 

squares is used for selecting the patterns of closest resemblance which are then 

averaged. 

Considering the fact that, as explained in section 1.1, the missing data, or gaps, in load 

profiles is always in multiple of days, it was decided that the imputation will be carried 

out in two steps.  As a first step the daily load profiles are considered i.e. the imputation 

is calculated on the consumption of the whole day.  After a suitable imputation daily 



 

37 

 

pattern is determined, then the half-hourly profile is calculated by averaging the half-

hourly consumption from the selected days.  Consequently, the imputed values are 

blended with the available spot reading values.  

Figure 4.1 illustrates a hypothetical load profile for a consumer having a missing 

portion of length m, in days.  Here it should be noted that in Figure 4.1, and other 

figures that follow in the rest of this section, the horizontal axis represents the number 

of days in the past, so samples on the right precede those on the left.  The plot shows 

the daily consumption which is the sum of all the 48 half-hour consumptions of each 

day.      

 

Figure 4.1. Load profile with a missing portion. 

 

For estimating the values of the missing load profile, the present surrounding window 

needs to be considered.  The present surrounding window is made up of one sample 

succeeding the missing portion, together with a present preceding window of p days, 

as shown in Figure 4.2.  For every consumer, when a valid daily load profile entry is 

received, after a period of missing data of length m days, the imputation procedure is 

initiated. Past data is searched for patterns which resemble the present surrounding 

window.  This is done by moving one sample and forming a surrounding window 
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which is of the same outline as the present surrounding window i.e. one sample and p 

samples separated by m samples.  This is termed as a past surrounding window, as in 

Figure 4.3.   

 

Figure 4.2. Graphical representation of the present surrounding window. 

 

Figure 4.3.  Graphical representation of a past surrounding window. 

 

Figure 4.4 shows the flowchart for the imputation process which is to run every day.  

The process waits for one valid entry after a series of missing days of load profile and 

when this occurs constructs the present surrounding window, by adjoining the present 

succeeding observation to the p observations preceding the missing portion.  The 

pointer, n, is then moved to just before the first value in the present surrounding 

window at n = 1+ m + p.   
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Start

Is today’s data available?

Is yesterday’s data available?

Count the missing days m

No

Yes

Memorise the present surrounding window

Assign pointer n=1+m+p

Calculate sum of squares between the present 

surrounding window and the past surrounding window, 

storing the answer in SS array at position n

n = t ?

Order the SS array in ascending order

Yes

Calculate the average of the first a elements 

of SS array

Blend the average with spot readings

No

Yes

Increment n

No

End

 

Figure 4.4. Flowchart for the imputation process. 
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The first past surrounding window starts at n = 1+ m + p + 1.  The resemblance 

between the present surrounding window and the past surrounding window is 

computed by finding the sum squares of the difference between each element of the 

two arrays, which have the same length (1 + p).  The smaller the sum of the squares 

the closer the resemblance of the two arrays i.e. profiles. The sum of squares is 

obtained using  Equation 4.1. 

𝑑 = ∑ (𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑙 − 𝑝𝑎𝑠𝑡𝑙)
21+𝑝

𝑙=1   Equation 4.1 

where: d is the distance, or measure of dissimilarity 

presentl is the value of element l in the present surrounding window 

pastl is the value of element l in the past surrounding window 

The past surrounding window is moved one day at a time, by incrementing the index 

n, and the sum of squares, d, is calculated for each iteration.  Each time the new value 

of d is inserted into an array SS at index n : SS[n].  After a maximum number of 

repetitions, t, are performed, the sum of squares array, SS, is sorted in ascending order.  

The indexes of the top elements in the array point to the past surrounding windows 

which best match the present surrounding window, these are the nearest neighbours.  

The first k indexes (n) are used to obtain the related portions, all of length m (Figure 

4.3), and an average is taken to obtain the estimated daily load profile for the missing 

portion.  Three types of averaging were considered: no weighting, time weighting and 

least-squares weighting (refer to section 4.2).  To obtain the half hourly load profile 

for the missing portion, the half hourly load profiles for the same days which were 

used to obtain the daily load profile are averaged in the same manner.  

After the averaging phase, the imputed portion is adjusted by blending in the values of 

any spot readings which are available.  The matching process was performed on 

normalised values to match the behaviour, so now this blending is important to give 

the correct magnitude to the imputed values.  Since the spot readings are taken at a 

time which is very close to midnight, the difference between two spot readings can be 

considered equal to the addition of the load profile values in between, as shown in 

Equation 4.2.  
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𝑆𝑃𝑖 − 𝑆𝑃𝑗 =  ∑ 𝐿𝑃[𝑛]𝑖
𝑛=𝑗    Equation 4.2 

where SP = spot reading and LP = load profile. 

Hence the values for the individual load profile values are multiplied by a factor so 

that their sum is equal to the difference of the spot readings.  This factor is calculated 

by dividing the difference between two available spot readings by the sum of the 

imputed load profiles values between them, as shown in Equation 4.3. 

𝑏𝑙𝑒𝑛𝑑𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 =  
𝑆𝑃𝑖 −𝑆𝑃𝑗

∑ 𝐿𝑃[𝑛]𝑖
𝑛=𝑗

   Equation 4.3 

This blending process is also important so that the relationship in Equation 4.2 between 

load profiles and spot readings is conserved even for imputed sections. 

 

4.2 Identifying Algorithm Parameters 

The parameters p (length of preceding window), k (number of preceding windows 

considered for averaging) and t (number of samples scanned), introduced in section 

4.1, are arbitrary.  In order to determine appropriate values for these parameters to be 

used with the load profile dataset, a tuning process was conducted on a number of 

consumers which have full load profiles for the whole timespan under test. 

As mentioned in section 2.1, the timespan of the dataset used for testing of the 

imputation method was selected as 1st January 2016 to 31st May 2019. During this 

period there were 335 consumers with very few days of missing load profiles and 

whose missing daily consumption could be unambiguously calculated from the spot 

readings.  As a practical example the scenario illustrated in Table 4.1 is noted, where 

the load profile for 09/01/2018 was missing for a particular consumer.  This was 

calculated from the available spot readings by using Equation 4.2.  The spot reading 

for 06/01/2018 and 14/01/2018 are available and the consumption between these two 

dates is 191205417 - 190473365 = 732052.  This should be equal to the sum of the 

load profiles between the two days.  So, the consumption on 09/01/2018 is 732052 less 

the sum of the consumptions on all the other days from 06/01/2018 to 13/01/2018, 

which is 651314.  So, consumption on 09/01/2016 is calculated as 732052 – 651314 = 
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80738Wh.  Hence, the value of 80738 was inserted for date 09/01/2018 so that the load 

profile was completed. 

Table 4.1.  Calculation of missing daily consumption from spot readings. 

Date  Spot Reading Daily load profile 

01/01/2018 190010311 108096 

02/01/2018 190118434 95251 

03/01/2018 190213546 86188 

04/01/2018 190299616 92290 

05/01/2018 190392056 80152 

06/01/2018 190473365 87548 

07/01/2018   114467 

08/01/2018   83225 

09/01/2018   80738 

10/01/2018   92788 

11/01/2018   87761 

12/01/2018   90955 

13/01/2018   94570 

14/01/2018 191205417 101826 

15/01/2018 191307188 83335 

16/01/2018 191390928 88767 

17/01/2018 191479465 79758 

18/01/2018 191559798 81153 

19/01/2018 191640454 101905 

 

Load profiles which are sparse or do not show any sign of autocorrelation would not 

have their missing values reliably estimated by the algorithm and so methods were 

investigated to find a test which can filter out such load profiles. Ljung-Box and Box-

Pierce are two such methods which are available in R through the function Box.test().  

The Ljung-Box test is defined in [98] as: 

𝑄 = 𝑢(𝑢 + 2) ∑
𝜌𝑣

2

𝑢−𝑣

ℎ
𝑣=1   Equation 4.4 

where u is the sample size, ρv is the sample correlation at lag v, and h is the number of 

lags being considered. Please note that the variable names u and v have been reassigned 

compared to those used in the reference to avoid conflict with other variable names 

which are used in this dissertation. 
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The Box-Pierce test [99] is defined as: 

𝑄𝐵𝑃 = 𝑢 ∑ 𝜌𝑣
2ℎ

𝑣=1   Equation 4.5 

The load profiles dataset was tested for autocorrelation by using both Ljung-Box and 

Box-Pierce tests.  Both these tests produce a p-value (significance value) which if less 

than 0.05 will reject the null hypothesis which states that the series is independently 

distributed, without any autocorrelation.  The Box-Pierce test performed slightly better 

than the Ljung-Box test in filtering out the sparse and uncorrelated load profiles but 

did not give the desired performance since there were sparse and uncorrelated load 

profiles which still produces p-values of less than 0.05. 

The Durbin-Watson (DW) statistic is a test for autocorrelation and is defined in [100] 

as: 

𝐷𝑊 =
∑ (𝑒𝑢−𝑒𝑢−1)2ℎ

𝑢=2

∑ 𝑒𝑢
2ℎ

𝑢=1
   Equation 4.6 

where eu is the residual at time = u, eu-1 is the residual at time = u-1 and h is the number 

of observations. 

The Durbin-Watson test, like the Box-Pierce and Ljung-Box tests, are usually utilised 

to detect the presence of autocorrelation in the residuals from a regression process.  

However, in this work these functions were used to quantify the amount of 

autocorrelation in the load profile, since the more autocorrelation found in the load 

profile the better the performance of the imputation algorithm.  The DW statistic lies 

between zero and four.  A value of zero suggests the presence of perfect positive 

autocorrelation and a value of four suggests the presence of perfect negative 

autocorrelation.  A value of two suggests the absence of any autocorrelation.  In R the 

Durbin-Watson test is performed using the durbinWatsonTest() function available in 

the car package. 

In order to quantify the performance of the model for different values of the 

parameters, the Root Mean Square Error (RMSE) between the estimated imputed 

values and the consumer’s actual data must be measured.  RMSE is defined as: 
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𝑅𝑀𝑆𝐸 = √∑ (𝑦𝑖 − 𝑓𝑖)
2

𝑖     Equation 4.7 

where yi is the actual (missing) sequence and fi is the fitted (imputed) sequence. 

To calculate the average RMSE, the missing data had to be simulated by intentionally 

removing a portion of length m which would later be compared to the imputed portion.  

So, for each of the load profiles, the algorithm was iterated for all the 335 load profiles 

using various values of m, p and k, while t was kept constant at 1246 days – the whole 

dataset available.     

Three types of averaging methods were considered, which are:  

• No weighting – ordinary averaging. 

• Time weighting - more recent portions are weighted more. 

• Least Squares (LS) weighting - portions with lower LS values are weighted 

more.  

The averaging was performed using: 

[𝑏1 𝑏2 ⋯ 𝑏𝑚] =
1

∑ 𝑤𝑢
𝑘
𝑢=1

[𝑤1 𝑤2 ⋯ 𝑤𝑘] [

𝑥11 𝑥12 ⋯ 𝑥1𝑚

𝑥21 𝑥22 ⋯ 𝑥2𝑚

⋮ ⋮ ⋱ ⋮
𝑥𝑘1 𝑥𝑘2 ⋯ 𝑥𝑘𝑚

] Equation 4.8 

where: 

[b1, b2, … bm] is a vector of the imputation values, 

[w1, w2, … wk] is a vector of the weightings. 

and xij are the observations selected using minimum least squares distance, 

with i identifying to the selected related window, placed in ascending order based on 

their least square distance value and j giving the relative position of the observation 

inside the related window (Figure 4.3). 

The weighting vector [w1, w2, … wk] is calculated depending on the type of averaging 

performed.  When the averaging is unweighted, then all elements of w are equal to 1.  

When the averaging is time weighted the values of w are calculated as t – n, n being 

the index of the particular related window selected, so that the bigger the value of n 
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the smaller the weighting and vice versa.  When the weighting is based on LS then the 

values of w are calculated as max(SS) – SS[n], n being the index of the particular 

selected related window, so that the bigger the value of the sum of squares the smaller 

the weighting and vice versa. 

The algorithm was iterated using the three averaging methods for different values of 

m and p.  Figure 4.5 compares the resulting average RMSE when using the three 

averaging methods with m=5 and p=10.  As can be seen the ORDINARY averaging 

method does not perform much worse than the other two, actually it fared better for k 

less than nine.  For k greater than eight the TIME averaging method performs better 

than the other two. 

 

Figure 4.5. Comparison of averaging methods. 

 

For each iteration the average error, defined as the average difference between the 

estimated output of the algorithm and the values of the actual load profile for all the 

335 load profiles, were recorded.  The normalised Root Mean Square of the Error 

(RMSE) was used as a metric of the goodness of fit for different values of the 

parameters.  For normalisation the RMSE was divided by the maximum value of the 

missing part.  To prevent division by zero conditions, when the maximum of the 

missing part is zero then the maximum of the imputed part is used.  When the 

maximum of the imputed part is also zero, then the RMSE is set to zero, since it is then 

implied that both the missing and imputed parts are all zero and hence equal.  Figure 
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4.6 shows how the average normalised RMSE varies with m, p and k.  t was kept 

constant at 1246, to utilise all the available values in the dataset.  Load profiles with a 

DW statistic less than 0.6 are included.  These amount to 262 out of the total 335 

consumers, or 78.2%. It can be seen how the RMSE increases as m increases and 

decreases as k increases.  

 

Figure 4.6. Average normalised RMS error for various m, p and k. 

 

To distinguish better between the plots, Figure 4.7 shows only the average normalised 

RMSE for m = 5 and m = 30.  For m = 5 it is clear that the RMSE is significantly 

improved between p = 5 and p = 10.  Then the RMSE does not improve much for p = 

15.  When m = 30, the improvement on RMSE between p = 30, p = 60 and p = 90 is 

minimal.  Same trend can be noted, from Figure 4.6, for the other values of m which 

were tested, i.e. 10, 15, 20 and 25.  Although when m = 30 there is not much 

improvement in RMSE between p = 30 and p = 60, knowing from Section 2.1 that the 

average number of days with missing load profiles, i.e. m, is 4.51 days, and noticing 

the considerable improvement in RMSE when m = 5, indicates that choosing p as 2 × 

m is appropriate.  Thus, it can be concluded that the value of p should be twice the 

value of m.  Increasing the value of p further than that would have minimal effect on 

the value of the RMSE and will have a significant effect on the processing time needed 

for imputation.  
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Figure 4.7. Average normalised RMSE for m = 5 and m = 30. 

 

Another metric which was considered for quantifying the performance of the 

imputation model was the Coefficient of Determination (CoD) or R2.  Several 

definitions for the CoD are encountered in literature and not all of them are equivalent.  

One definition of CoD is [101]: 

 𝑅2 = 1 −
∑ (𝑦𝑖 −𝑓𝑖 )2

𝑖

∑ (𝑦𝑖 −𝑦)2
𝑖

   Equation 4.9 

where yi is the actual sequence and fi is the fitted sequence. 

In Equation 4.9 the numerator in the fractional part is the mean squared error, while 

the denominator is the variance multiplied by the number of samples minus one.  For 

a perfect fit the numerator becomes zero and so R2 is one, which is optimal.  In the 

case of a model with a fit which is always equal to the mean of the actual value will 

result in an R2 of zero.  Models with worse fits will have a negative R2.  In the condition 

when the all the values in the sequence y are equal to a constant, the denominator of 

the fractional part becomes zero and so R2 becomes undefined.  This condition, of 

having a sequence with all values equal to a constant, is not uncommon in load profiles, 

especially when there is a period of zero consumption.  This is one reason why RMSE 

was preferred as a metric for the goodness of fit over CoD.  
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Figure 4.8 shows the relation between the Durbin-Watson statistic and the average 

normalised RMSE obtained for m=20, p=40, k=10. There is a concentration of points 

in the bottom left area where both the RMSE and DW are close to zero.  This means 

that the method manages to impute values with small errors when DW indicates a high 

level of positive autocorrelation.  The RMSE starts getting larger as the value of DW 

starts approaching two, which indicates no autocorrelation.  There are still some 

consumers with zero error when DW is close to two, these are mainly consumers with 

erratic behaviour where the missing portion was all zeroes and where the estimated 

values were recovered by the process of blending with the spot readings.  There are 

also some points at the top left area where the DW shows good positive autocorrelation 

but the RMSE is high.  These load profiles had a period of seasonal behaviour in the 

past but eventually became erratic. 

 

Figure 4.8.  The relation between RMSE and Durbin-Watson statistic. 

 

An analysis was conducted to establish the processing time consumed for the various 

values of m, p, and k.  The value of k does not have significant effect on the processing 

time since all the samples t are searched, irrespective of the value of k, and then the 

nearest k are selected.  Only the averaging process processing time is directly 

proportional to k, but that is relatively negligible when compared to the searching 

process. In Figure 4.9 the red horizontal line shows the average processing time 

aggregated for k and it is clear that it is constant and independent of k.  The green line 
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shows the average processing time aggregated for m and indicates that the average 

processing time is linearly dependent on the value of m.  Similarly, the blue line shows 

the average processing time aggregated for p. The average processing times for both 

m and p have an intercept of 12.3 ms which is the overhead processing time which is 

independent of the values of m and p.  From this analysis, and from what was already 

discussed before, it is clear that choosing the value of p to be twice m would give a 

good compromise between time performance and RMSE.  The value of k, having no 

impact on the processing time, should be chosen purely on the value of RMSE.  

Observing Figure 4.6 and Figure 4.7 the value of the RMSE starts converging after the 

value of k = 9.  So, it was decided that a value of k = 10 would be a reasonable value.  

Note that these processing times were taken when running the imputation method on 

a CORE i7-4610M 3.00 GHz machine with 16.0 GB RAM. 

 

Figure 4.9. Processing time for values of m, p, and k. 

 

Based on the above it was decided to set the parameters p = 2 × m and k =10 and so a 

run was conducted on the daily load profiles of all the 335 consumers, varying m from 

1 to 30, while keeping t constant at 1246.  The obtained average normalised RMSE is 

shown in Figure 4.10 by the black dots.  As expected, the RMSE is very small for m = 

1, but it rises quite rapidly till m = 4 and then continues to rise with a gentler slope.  

The fitted non-linear regression line was obtained by using the R function nls(), 
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(Nearest Least Squares) from package stats.  The formula used as the argument for 

nls() was  : 

𝑦 ~ 𝑎 ∗ 𝑥/(𝑏 + 𝑥)  − 0.8   Equation 4.10 

Missing load profiles values can be considered to be MCAR since the occurrence of 

the missing data is completely unrelated to the consumption or consumption patterns 

but to other causes as mentioned in Chapters 1 and 2.  So, the sample of 335 load 

profiles can be considered to be a random sample of the whole population of 

commercial consumers.  As was mentioned in Section 2.1, the average number of days 

with missing load profiles is 4.51 days.  The R function predict(), also from package 

stats, was used to get the average normalised RMSE value for m = 4.51, based on the 

output of nls().  The value for the average normalised RMSE obtained was 0.0747 or 

7.47% of the actual values. 

 

Figure 4.10. Mean of the normalised RMSE (p=2×m and k=10) for daily load 

profiles with non-linear regression line. 

 

4.3 Application of the Algorithm  

Two sample consumer load profiles, with a simulated missing portion of 20 days, are 

considered to illustrate the implementation of the algorithm and the results.  The 

consumer load profiles in the two cases are presented mainly as a visual representation 

of what the imputed values look like.  The load profile in case 1 has a Durbin-Watson 

statistic of 0.1996 and its normalised RMSE for daily load profiles was 0.0769 and 
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that for half hourly load profiles was 0.0946.  For the load profile in case 2 the Durbin-

Watson statistic was 0.0810 while the normalised RMSE for the imputed daily load 

profile was 0.0610 and that for the half hourly load profile was 0.0644.  So, for these 

two cases the fact that the Durbin-Watson statistic was lower for case 2, indicating a 

more positive autocorrelation, resulted in a better RMSE.  As explained for Figure 4.8 

the relationship between RMSE and autocorrelation is predominant but is not definite 

because there are instances of low or erratic behaviour when this relation does not 

hold. 

 

4.3.1 Case 1 

Figure 4.11 shows the load profile of a consumer which is used as an example for 

demonstrating the imputation technique adopted in this work.  As already mentioned 

for Figure 4.1 the horizontal axis for Figure 4.11 shows the number of days in the past 

with day 1 being May 31st 2018.  The profile shows the seasonality very clearly and 

does not exhibit any noticeable trend.  The consumption is seen to increase in summer 

and decrease in winter.  The value of the Durbin-Watson statistic for this load profile 

is 0.1996 which indicates that is has a good amount of positive autocorrelation and so 

the missing values are expected to be imputed with low RMSE. 

 

Figure 4.11.  Daily load profile for consumer. 
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Figure 4.12 shows the same load profile of Figure 4.11 with a removed portion, shown 

in red with m = 20, and the corresponding best matching patterns, shown in green, with 

parameter p = 40. The number of green sections is not necessarily equal to k, as might 

be expected, because some of the resembling windows overlap each other.   The best 

10 best matching windows are found starting at n = {890, 1177, 1121, 57, 771, 533, 

407, 414, 1163, 764}.   

 

Figure 4.12.  Removed portion in red and best match windows in green. 

 

Figure 4.13(a) shows the present surrounding window with the simulated missing 

portion in red.  Figure 4.13(b) through (l) shows the past surrounding windows which 

best resemble the present surrounding window, sorted ascending order by their sum of 

squares.  The value of n and the sum squares is shown on top of each figure. 
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Figure 4.13.  Present surrounding window (a) and best matched past surrounding 

windows (b – l). 

 

Figure 4.14 shows the imputed portion for the daily load profile, in green, 

superimposed on the simulated missing portion.  It is evident from the plot that the 

consumption during the weekends is reduced and the imputed values follow the pattern 

closely.  The RMSE of the imputed values is 0.0768, or 7.68% of the actual values. 
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Figure 4.14.  Imputed daily portion superimposed on missing portion. 

 

Figure 4.15 shows the imputed half hourly values which were obtained for same the 

days of Figure 4.14, superimposed on the actual values.  As was noted for Figure 4.14 

this consumer has low consumption on weekends and the imputed half hour values 

also follow the same pattern.  For most of the days the peaks of the estimated values 

are close to those of the actual values and the half hourly profiles are similar with some 

differing slightly.  The higher errors are seen to occur for Saturdays.  Here the RMSE 

for the imputed half hourly load profiles is 0.0946 or 9.46% of the actual values. 

 

Figure 4.15.  Imputed half-hourly load profile superimposed on the values. 
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4.3.2 Case 2 

Figure 4.16 shows the load profile for another consumer.  Again, the yearly seasonality 

is very pronounced and with a consumption pattern that is stationary over the three 

years.  The value of the Durbin-Watson statistic for this load profile is 0.0810 which 

indicates more positive autocorrelation than the consumer of case 1 and so is expected 

to have a lower RMSE. 

 

Figure 4.16.  Daily load profile for a consumer over 1246 days. 

 

Figure 4.17 shows the same load profile of Figure 4.16 with a removed portion, shown 

in red with m = 20, and the corresponding best matching patterns, shown in green, with 

some overlapping each other. It can be noticed, by observing the plot, that the 

resembling portions are found during the same time of the year. These 10 best 

matching resembling windows where found starting at n = {435, 1114, 1107, 162, 771, 

1142, 1170, 743, 29, and 799}.  
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Figure 4.17. Load profile with simulated missing portion in red and best fits in green. 

 

Figure 4.18 (a) shows the present surrounding window with the simulated missing 

portion in red.  Figure 4.18 (b) through (l) show the past surrounding windows which 

best resemble the present surrounding window, ordered by their sum of squares in 

ascending order.   
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Figure 4.18. The simulated missing part in (a) and the best matches found (b – l). 

Figure 4.19 shows the estimated daily load profiles for the removed portion after 

averaging and blending with the spot readings.  As can be seen the calculated daily 

consumption values are close to the actual consumption for this consumer, with a 

normalised RMSE of 0.0610 or 6.10% of the actual values. 
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Figure 4.19.  Imputed daily load profile. 

 

Figure 4.20 shows the estimated half hour load profile obtained from the same days 

used for the estimated daily load profile.  As can be noticed this consumer has minimal 

consumption on Sundays and the imputed values do follow the same pattern of 

behaviour.  The spikes are not followed because the averaging tends to smooth them 

out.  The imputed half hourly load profile values have an RMSE of 0.0644, or 6.44% 

of the actual values. 

 

Figure 4.20.  Imputed half-hourly load profile. 
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4.4 Minor Modifications and Future Enhancements 

The imputation method developed uses the historical load profile data of the individual 

consumer.  A suggested enhancement would be to utilise the present consumption of 

other consumers with similar past behaviour and give it some weighting when 

calculating the values to impute.  This will help to better estimate the consumption 

when irregular events happen, like a public holiday or days with adverse weather.  

In this work the amount of historical data used, t, was kept constant at 1246 so as to 

use all the available information.  In future work it would be useful to experiment to 

find smaller values of t which would reduce the processing time without compromising 

the RMSE.  

 

4.5 Conclusion 

Having a complete dataset, without any missing observations, is essential for any 

statistical or analytical process.  In Enemalta’s smart meter set-up, occasionally, some 

load profiles are not successfully read for a number of days, which gives rise to missing 

data.  Imputing this data allows the organisation to be able to offer the consumer a 

complete load profile, with the imputed parts indicated, instead of a partial one.  A 

complete load profile also enables the utility to perform a number of activities like 

calculating the maximum current in certain nodes and hence locating points of 

potential failure.  It can also be used for load balancing which leads to a reduction in 

the technical losses. 

In this work an imputation method was developed so that these, and other, objectives 

can be achieved.  The developed imputation method is based on a KNN technique 

which searches in the past consumption history of the consumer for behaviours similar 

to that during the period right before the data went missing (nearest neighbors) and 

taking an average of the parts which correspond to the missing portion.  The method 

makes use also of the available spot readings so that the relationship between spot 

readings and load profiles is conserved.  The important parameters for this method are 

the number of nearest neighbours to consider k, the size of the surrounding windows, 

p, and the amount of historical data to look into the past, t.  Simulated runs were 
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performed on a sample of 335 load profiles for various missing days of data, m, to find 

suitable values for these parameters.  Based on the average RMSE achieved and 

processing time consumed, the values for the parameters were chosen to be k = 10, p 

= 2 × m and t = 1246.  For the sample of 335 load profiles, the average RMSE of the 

imputed values was calculated to be 7.47% of the actual values.  The completed dataset 

is also a building block for the achievement of the second objective in this work, 

anomaly detection.    
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5 Anomaly Detection Method 

 

Losses are always detrimental for any utility company.  Inevitably losses raise the price 

that consumers pay for the service.  Losses are classified as Technical Losses and Non-

Technical Losses (NTL).   Technical losses are inherent to the delivery of electrical 

energy over the distribution network.  There are a number of measures that electricity 

companies use to reduce technical losses such as, for instance, increasing the voltage 

to reduce power losses in transmission.  Technical losses, however, will always be 

present in cables, overhead lines and transformers.  Distributed Generating Sources 

(DGS), like photovoltaic generators, wind turbines and Combined Heat and Power 

(CHP) systems, all of which are increasingly gaining popularity, help to lower the 

technical losses since the lengths of the transmission lines (or cables) carrying the 

energy from source to sink, are reduced.  Although not straightforward, technical 

losses can be estimated [102]. 

Non-technical loses (NTL) may also be considered as financial losses.  They can be 

made up of billing inaccuracies, faulty (or stopped) metering setups, and fraudulent 

consumers.  NTL are a concern for utilities since they directly impact the revenue.  

Fraudulent consumers tend to consume more than they would if they were being 

charged properly for their consumption.  This work develops a method which identifies 

consumers which are most likely to have faulty or tampered metering setups. 

This Chapter first outlines the approach adopted in this work for anomaly detection.  

Then, in the following sections, each step is explained in dept, leading to the methods 

used to obtain the two coefficients which quantify the probability of a consumer 

contributing to NTL. 

 

5.1 Approach 

Most of the approaches found in literature, which deals with NTL detection, uses 

supervised machine learning methods, mainly SVM and ANN.  In supervised 
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classification the machine is trained using a set of labelled values.  In the case of 

supervised NTL detection, the training values consist of a number of inspection 

outcomes which have to be available before training the machine learning classifier.  

Normally it is expected that the number of inspections with a genuine outcome 

excessively outnumber those with a fraudulent one.  This creates a huge imbalance in 

the training set which has to be dealt with [67, 68].  Moreover Enemalta plc. does not 

have a vast record of inspections and outcomes for genuine and fraudulent cases.  It 

was therefore determined that an unsupervised method should be used.   

The approach adopted in this work is summarized in Figure 5.1. The load profiles are 

collected from consumers and any missing data is imputed as already discussed in 

Chapter 4.  The first step of dimension reduction is performed by feature extraction 

(Section 5.2).  Feature extraction reduces the dimensionality of each data points while 

emphasis is given to the salient characteristics to be considered.  Outliers are then 

detected and removed (Section 5.3) since they are prone to bias any statistical analysis 

to follow. Principal component analysis then follows serving as a second step of 

dimension reduction.  The data-points are then grouped into different clusters (Section 

5.5) according to their consumption behaviour which allows for the calculations of the 

anomaly coefficient (Section 5.9.1) and the cluster-change coefficient (Section 5.9.2).  

Based on these two coefficients an anomaly score is obtained to draw up a sorted list 

of consumers which are more likely to exhibit non-technical losses. 
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Figure 5.1. Process flow for anomaly detection. 

 

5.2 Feature Extraction 

The data used for this analysis is the consumption load profile.  The load profile is the 

consumption by individual consumers measured at half hour intervals.  Hence, there 

are 48 observation for every consumer every day or 336 observations for every 

consumer every week.  Each consumer dataset for a week is therefore fairly large and 

thus some form of dimensional reduction has to be applied before any further 

processing can take place.   

Feature extraction is a dimensional reduction method by which an initial set of raw 

variables is reduced to more manageable groups of features.  The resulting features 

should be selected in such a way that they express the characteristics in the original 

data which need to be analysed and at the same time reduce redundancy.  Feature 

extraction reduces the risk of overfitting, where the model would be too well designed 

for the training dataset but is not able to generalise for successive datasets.    

Beckel et al. [46] established a list of 22 features for electricity consumption load 

profiles, which are grouped into four categories: consumption figures, ratios, temporal 

properties and statistical properties.  Kopf el al. [47] continue to build on the features 
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presented in [46]  to establish 88 features grouped in the same categories.  In this work, 

a set of 32 features, based on those used in  [46] and [47], were derived. For some of 

these features, the day is divided into 5 segments as shown in Table 5.1.   

Table 5.1. Time of day segments. 

Time Segment Abbreviation 

6am – 11am Morning M 

11am- 2pm Noon N 

2pm-7pm Afternoon A 

7pm-11pm Evening E 

11pm-6am Night G 

 

Before starting the computation of the features, the load profile for all consumers were 

offset by 100Wh.  This was done to avoid divisions by zero for some of the features 

adopted.  It is not uncommon that consumers have periods of zero consumption, and 

in such cases, when computing ratio features, a divide by zero may occur.  The 32 

features established are shown in Table 5.2. 

Throughout this work the analysis is done on a weekly basis, that is comparing the 

weekly behaviour of the consumers.  So, the features were designed in a way so as to 

extract as much information about the weekly behaviour as possible.  The days were 

grouped in two, weekdays and weekend days.  The Xcorrelation sum is achieved by 

finding the cross-correlation for every two consecutive days and adding up each 

correlation value.  This is a measure of the consistency of daily behaviour throughout 

the week. Other temporal features are used, such as first time above mean which is the 

time of day at which the consumers consumption exceeds the mean of that day for the 

first time.  The feature morning sum ratio is the ratio of the consumption during the 

morning segment to the consumption of the whole day. 

Here it is worth noting that no averages were selected as features since when, as 

explained later in Section 5.4, the features are normalised, the sums and averages yield 

the same values.  
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Table 5.2. List of features used. 

Feature name Description 

WDSum Week day sum 

WDMax Week day max 

WESum Week end sum 

WEMax Week end max 

WDXcorrSum Week day Xcorrelation sum 

WEXcorrSum Week end Xcorrelation sum 

WDsDSum Week day standard deviation sum 

WEsDSum Week end standard deviation sum 

WDfTAQPSum Week day first time above one fourth peak sum 

WEfTAQPSum Week end first time above one fourth peak sum 

WDfTAHPSum Week day first time above half peak sum 

WEfTAHPSum Week end first time above half peak sum 

WDfTA3QPSum Week day first time above three fourths peak sum 

WEfTA3QPSum Week end first time above three fourths peak sum 

WDfTRMaxSum Week day first time reach max sum 

WEfTRMaxSum Week end first time reach max sum 

WDfTAMeanSum Week day first time above mean sum 

WEfTAMeanSum Week end first time above mean sum 

WDnPeaksSum Week day number of Peaks sum 

WEnPeaksSum Week end number of Peaks sum 

WDWESumRatio Week day end sum ratio 

WDWEMaxRatio Week day end max ratio 

WDMSumRatio Week day morning sum ratio 

WDNSumRatio Week day noon sum ratio 

WDASumRatio Week day afternoon sum ratio 

WDESumRatio Week day evening sum ratio 

WDGSumRatio Week day night sum ratio 

WEMSumRatio Week end morning sum ratio 

WENSumRatio Week end noon sum ratio 

WEASumRatio Week end afternoon sum ratio 

WEESumRatio Week end evening sum ratio 

WEGSumRatio Week end night sum ratio 

 

5.3 Removing the Outliers 

An outlier is described as an observation which is dissimilar from the other 

observations present in the data set [103].  Outliers must be individualised and 

segregated before the clustering takes place because the outliers can affect the 
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clustering process by abnormally shifting the cluster centres. [104, 105] list a number 

of outlier detection methods which are available and review their application.   

In this work the detection of the outliers was done based on the z-score [104, 105].  

The z-score is the number of standard deviations that an observation is above or below 

the mean of the distribution.  For every consumer the z-score was calculated for all 

features.  Any consumer, having a z-score with absolute value of more than 5, for any 

feature, is considered as an outlier.  [104, 105] identify as outliers those observations 

which have a z-score of more than 3, however in this work it was seen as more 

appropriate to use a z-score of 5 to define a consumer as an outlier. This is because the 

consumers which are segregated as outliers at this stage, are themselves already 

anomalies because they have a behaviour which is very different from the normal, and 

so each one of the outliers shall already be a candidate for fraud analysis. 

Another method for labelling outliers is the Interquartile Range (IQR) method [105].  

The interquartile range is the range between the first and the third quartiles. The first 

quartile is defined as the middle number between the smallest value and the median of 

the data set.  The third quartile is the middle value between the median and the highest 

value of the data set.  For the IQR method, any data point that falls outside of either 

1.5 times the IQR below the first quartile or 1.5 times the IQR above the third quartile 

is considered as outlier.  For this work the IQR method was tested but it resulted in 

reducing the dataset quite heavily, from 1174 to 171 data consumers, while by the z-

score method the dataset size was reduced to 1041. Note that, preference was also 

given to the z-score method on account of its faster computation. 

 

5.4 Principal Component Analysis 

Principal Component Analysis (PCA) is a technique used in modern data analysis to 

reduce the dimensionality of complex datasets, increasing interpretability and at the 

same time minimising any loss of information [106].  PCA transforms the input set of 

variables into a new set of uncorrelated variables that successively maximise variance.  
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The data processed through PCA should have a similar order of magnitude, otherwise 

variables of lower magnitudes lose significance in comparison to the larger values. 

Therefore, it is advisable to scale the variables (the features in this case) being used.  

Struc and Pavesic [107] list several ways in which this scaling may be achieved.  One 

popular method is to subtract the mean and divide by the standard deviation to get the 

standard score: 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥𝑖 −𝜇

𝜎
    Equation 5.1 

where xi is the observation that is being scaled, µ is the mean and σ is the standard 

deviation of the unscaled variable.  The resulting dataset will have a mean of zero and 

a standard deviation of one.   

In this work the scaling is done by the normalisation: 

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 −𝑥𝑚𝑖𝑛
  Equation 5.2 

thus xnormalised obtains a value which ranges from zero to one and  is unit-less. 

The prcomp()function in  R was used to find the Principal Components (PCs).   

The [M x N] vector containing the normalised features is passed to prcomp() which 

produces a prcomp object consisting of : 

Sdev [N] :   the standard deviation of the principal components. 

Rotation[N x N] :  the loadings, or eigenvectors, of the variables (features). 

X[M x N]:  values of the rotated data. 

where N is the number of features and M is the number of consumers.  

Figure 5.2 shows the biplot of the first two principal components, PC1 on the 

horizontal axis and PC2 on the vertical axis.  The arrow lines, depicting the loadings 

of the features, are superimposed on the scatter plot of the consumers.  A longer arrow 

for the feature indicates that the feature’s influence on the first two principal 

components is stronger than other features with shorter arrows.  The relative direction 

of the arrows relates to the correlation between the features.  Features that point in the 
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same direction are positively correlated (for PC1 and PC2), while others that point in 

opposite directions are negatively correlated.  Features which point at right angles to 

each other are not correlated to each other in relation to their first two principal 

components.  This plot therefore relates significant information about the features.  

From this plot it may be decided that some features can be dropped, either because 

their loading is very small, and so they are irrelevant, or because they point exactly in 

the same direction as another feature and so they are redundant. This is a method by 

which PCA might further aid in dimension reduction and thus computational speed -

up. 

 

Figure 5.2.  Biplot - features loadings superimposed on consumer points for PC1 and 

PC2. 

 

Although PCA will return as many principal components as there are variables (32 in 

this case), further dimension reduction is achieved by determining how many principal 

components should be considered further. This decision is based on the percent 

variance of each principal component.  Table 5.3 shows the variance, percentage 

variance and the cumulative percent variance for the first 14 principal components.  As 

can be seen PC1 and PC2 contribute to 51% of the total variance, while the first 14 

PCs contribute to 94.2% of the total variance   
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Table 5.3. Variance for the first 14 principal components. 

PC Variance 
Percent 

Variance  

Cumulative 

Percent 
Variance 

1 0.214 28.5 28.5 

2 0.169 22.5 51.0 

3 0.084 11.2 62.2 

4 0.053 7.1 69.3 

5 0.039 5.2 74.5 

6 0.033 4.4 78.9 

7 0.024 3.2 82.1 

8 0.022 2.9 84.9 

9 0.018 2.5 87.4 

10 0.014 1.9 89.3 

11 0.010 1.4 90.7 

12 0.009 1.2 91.9 

13 0.009 1.2 93.1 

14 0.008 1.1 94.2 

 

  

The percentage variance of each PC is also plotted in  Figure 5.3.  Inspecting the plot 

of Figure 5.3, a marked drop is noted in the percent variance from PC2 to PC3.  

Principal components that contribute to relatively small variation may ignored. Here, 

principal components 1 and 2, as already seen from Table 5.3, contribute to 51% of 

the total variance, and subsequent principal components contribute much less. This 

would suggest that the focus should primarily be on principal components 1 and 2. 

A second criteria that should be considered is to find which principal components 

contribute to more than one variable’s worth of information. Had each of the 32 

variables contributed equally, they would each contribute 3.125% (1/32)  of the total 

variance, as indicated by the red line in Figure 5.3.  From Table 5.3 it can be seen that 

the percentage variance of PC7 is 3.2% while that of PC8 is 2.9%.  So, this criterion 

suggests that, since PC8 contributes to less than 3.2% of the total variance, it can be 

excluded and principal components PC3 to PC7 should be included.   
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So, principal components PC1 to PC7 were selected to be used for clustering since 

they account for most of the features in the original dataset (84.9% of the total 

variance).  PC8 to PC32 carry much less information and were therefore removed from 

further analysis.  Having a more concise dataset makes the clustering process simpler 

and less time consuming.   

 

Figure 5.3.  Plot for percentage variance of each principal component. 

 

The numerical values of the PCA loadings of the first 7 components are listed in Table 

5.4.  The description of the feature names used is listed in Table 5.2. The loadings are 

the eigenvectors for each feature, which may be interpreted to express the amount of 

correlation between each feature and each principal component.  In Figure 5.2, the 

loadings for PC1 and PC2 were plotted to show the correlation graphically in terms of 

the first two principal component directions, which account for most of the 

information.   
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Table 5.4. PCA loadings for all features. 

  PC1 PC2 PC3 PC4 PC5 PC6 PC7 

WDSum 0.0423 -0.0022 -0.1271 0.0556 -0.0173 0.0693 -0.3053 

WDMax 0.0456 0.0034 -0.1556 0.0649 -0.0239 0.1126 -0.3705 

WESum 0.0394 -0.0095 -0.1173 0.0523 -0.0195 0.0578 -0.2827 

WEMax 0.0419 -0.0120 -0.1440 0.0728 -0.0262 0.0885 -0.3395 

WDXcorrSum -0.0813 -0.0033 -0.4041 -0.1679 -0.0688 0.3095 0.3578 

WEXcorrSum 0.0318 -0.2113 -0.3071 0.0028 -0.0804 0.3254 0.3202 

WDsDSum -0.2197 0.1366 0.1366 -0.0111 0.2046 0.1148 0.1392 

WEsDSum -0.2291 -0.1097 0.1563 0.3376 0.2938 0.0952 0.2152 

WDfTAQPSum -0.3852 0.1997 0.0503 -0.0569 0.1887 -0.1892 0.1338 

WEfTAQPSum -0.2354 -0.0509 0.0120 0.2455 0.1357 -0.1289 0.1353 

WDfTAHPSum -0.3667 -0.0004 0.0810 -0.3010 0.1745 -0.0077 -0.1784 

WEfTAHPSum -0.2890 -0.2251 0.0675 0.1624 0.1421 0.1104 -0.0761 

WDfTA3QPSum -0.2391 -0.1473 0.1217 -0.3385 0.0234 0.0428 -0.2465 

WEfTA3QPSum -0.2237 -0.3691 0.0899 0.0652 -0.0116 0.2997 -0.1856 

WDfTRMaxSum -0.0376 -0.2316 0.0169 -0.2114 -0.0188 -0.1084 0.0579 

WEfTRMaxSum 0.0009 -0.2680 -0.0482 -0.1952 -0.1246 0.0478 0.1565 

WDfTAMeanSum -0.2277 -0.0036 -0.2255 -0.2389 0.0237 -0.0300 -0.1363 

WEfTAMeanSum -0.1868 -0.2074 -0.2625 0.1587 -0.0239 0.1599 -0.1027 

WDnPeaksSum -0.0429 -0.1075 0.4512 -0.0004 -0.4018 0.1134 0.0292 

WEnPeaksSum -0.0293 -0.0665 0.4243 -0.0485 -0.4010 0.1647 0.0522 

WDWESumRatio 0.1090 -0.3484 0.0103 0.1925 0.0020 -0.1157 -0.0083 

WDWEMaxRatio 0.0240 -0.2287 -0.0317 0.2927 0.0166 -0.1169 0.0326 

WDMSumRatio -0.0816 0.2612 0.0264 0.0662 -0.0596 0.2991 -0.1030 

WDNSumRatio -0.2107 0.1902 -0.0988 -0.0577 -0.2542 0.0669 0.1180 

WDASumRatio -0.1631 -0.1295 -0.1365 0.0113 -0.1751 -0.5538 -0.0262 

WDESumRatio 0.1449 -0.3156 0.0786 -0.1492 0.2442 -0.0404 -0.0005 

WDGSumRatio 0.2458 -0.1118 0.0796 0.0741 0.1955 0.0172 0.0300 

WEMSumRatio -0.1163 0.1521 0.0233 0.2902 -0.0464 0.0930 -0.1126 

WENSumRatio -0.1583 -0.0395 -0.1112 0.1372 -0.2484 -0.1308 0.0800 

WEASumRatio -0.0608 -0.1547 -0.1211 -0.1048 -0.2365 -0.2084 0.0018 

WEESumRatio 0.1039 -0.1647 0.0622 -0.2913 0.2248 0.0870 0.0412 

WEGSumRatio 0.2002 0.0781 0.0879 -0.1363 0.2168 0.0660 0.0224 

 

The principal components can be interpreted based on which features they are most 

correlated with, in either positive or negative direction. Table 5.5 assembles the 6 most 

correlated features for each of the first 7 principal components so that they can be 

interpreted accordingly.   
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Observing Table 5.5 it can be seen that PC1 is negatively correlated to WDfTAQPSum 

(week-day first time above quarter-peak), WDfTAHPSum, WEfTAHPSum, (week-day 

and weekend-day first time above half-peak), WDfTA3QPSum (week-day first time 

above three-fourths peak) and WEfTAQPSum (weekend-day first time above one-

fourth peak).  This correlation suggests these five features, which are all temporal 

variables based on the time at which the consumption reaches certain levels during the 

day, vary together and when one goes down, the others decrease as well.  PC1 is 

positively correlated to WDGSumRatio (the ratio of night consumption to all-day 

consumption on week days), meaning that when the other five features decrease 

WDGSumRatio increases.  This component is most predominantly correlated to 

WDfTAQPSum (week-day first time above quarter-peak) with a value of -0.3852 and 

then to WDfTAHPSum and WEfTAHPSum (week-day and weekend-day first time 

above half-peak) with values of -0.3667 and -0.2890 respectively. 

PC2 is predominantly negatively correlated to WEfTA3QPSum (Weekend-day first 

time above three-fourths peak), WDWESumRatio (the ratio of weekend-days 

consumption  to week-days consumption), WDESumRatio (the ratio of evening 

consumption to all-day consumption on week days), WEfTRMaxSum, WDfTRMaxSum 

(weekend-day and week-day first time reached max) while it is positively correlated 

to WDMSumRatio (the ratio of morning consumption to all-day consumption on week 

days).  This correlation implies that when the former five features increase, the latter 

feature (WDMSumRatio) decreases and vice versa. 

PC3 is mostly positively correlated to the features WDnPeaksSum and WEnPeaksSum 

(the week-day and weekend-day sum of number of peaks) while it is negatively 

correlated to WDXcorrSum and WEXcorrSum (the week-day and weekend-day cross-

correlation sums).  PC3 is also negatively correlated to WEfTAMeanSum and 

WDfTAMeanSum (the weekend-day and week-day sums of first time above mean).  So 

PC3 is quite interesting since it groups the weekly features for number of peaks, cross-

correlation and first time above mean. 
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Table 5.5. The 6 most correlated features for each of the first 7 PCs. 

 

5.5 Hierarchical Clustering 

Clustering is a technique which gathers data points into groups such that the members 

of one group are similar to the other members of the same group and different from 

members of other groups [108, 109].  The effectiveness of the clustering is superior 

when there is great similarity between members of the same group and great 

dissimilarity between members of different groups. 

Clustering differs from classification in the sense that, for classification the data is 

labelled, and the classifier places the observations into classes based on the label of 

each observation – it is thus a supervised learning method.  In clustering there is no 

foreign information about the data apart from the data itself – and is thus an 

unsupervised method. 

There are several methods for clustering, with the most widely used being K-means 

and hierarchical clustering [110].  The K-means algorithm is popular because it is easy 

to implement, and its time complexity is linearly proportional to the number of 

PC1 
WDfTAQPSum WDfTAHPSum WEfTAHPSum WDGSumRatio WDfTA3QPSum WEfTAQPSum 

-0.3852 -0.3667 -0.2890 0.2458 -0.2391 -0.2354 

PC2 
WEfTA3QPSum WDWESumRatio WDESumRatio WEfTRMaxSum WDMSumRatio WDfTRMaxSum 

-0.3691 -0.3484 -0.3156 -0.2680 0.2612 -0.2316 

PC3 
WDnPeaksSum WEnPeaksSum WDXcorrSum WEXcorrSum WEfTAMeanSum WDfTAMeanSum 

0.4512 0.4243 -0.4041 -0.3071 -0.2625 -0.2255 

PC4 
WDfTA3QPSum WEsDSum WDfTAHPSum WDWEMaxRatio WEESumRatio WEMSumRatio 

-0.3385 0.3376 -0.3010 0.2927 -0.2913 0.2902 

PC5 
WDnPeaksSum WEnPeaksSum WEsDSum WDNSumRatio WENSumRatio WDESumRatio 

-0.4018 -0.4010 0.2938 -0.2542 -0.2484 0.2442 

PC6 
WDASumRatio WEXcorrSum WDXcorrSum WEfTA3QPSum WDMSumRatio WEASumRatio 

-0.5538 0.3254 0.3095 0.2997 0.2991 -0.2084 

PC7 
WDMax WDXcorrSum WEMax WEXcorrSum WDSum WESum 

-0.3705 0.3578 -0.3395 0.3202 -0.3053 -0.2827 
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observations in the dataset being clustered [110]. However, a major problem with K-

means is that it is sensitive to the selection of the initial partitions and may converge 

to a local minimum of the criterion function value if the initial partition is not properly 

chosen [110], hence the computation has to be repeated for a number of times until the 

outcomes converge.  Also, the K-means algorithm works well only on data sets having 

isotropic clusters [110].  Hierarchical clustering builds the clusters based on the data 

points themselves and does not depend on initial partition and works well with non-

isotropic clusters. Based on the above arguments hierarchical clustering was used in 

this work.  The time complexity for hierarchical clustering is proportional to the square 

of the number of observations. 

The clustering pattern may be visualised on a dendrogram as shown in Figure 5.4.  The 

horizontal axis of Figure 5.4 represents the distance or dissimilarity between clusters. 

The vertical axis represents the consumers and clusters. Each joining of two clusters 

is represented on the dendrogram by the splitting of a horizontal line into two 

horizontal lines. The horizontal position of the split, shown by the short vertical bar, 

gives the distance (dissimilarity) between the two clusters.  Observing the lengths of 

the horizontal lines joining the clusters on the dendrogram gives an indication of  where 

the cut can be made, thereby determining the number of clusters which are suitable for 

the dataset.   
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Figure 5.4. Dendrogram for the load profile dataset. 

Determining the most suitable number of clusters by observing the dendrogram is a 

visual method and can be subjective. A classic method to determine the most 

appropriate number of clusters is by calculating the total Within-Cluster Sum of 

Squares (WCSS) [111] i.e. the total of the sums of all the squared distances between 

all observations within each cluster – TWCSS [111].  

𝑇𝑊𝐶𝑆𝑆𝑘 = ∑ ∑ ∑ ||𝑥𝑖 − 𝑥𝑗||
2

𝑛𝑟
𝑗=𝑖+1

𝑛𝑟−1
𝑖=1

𝑘
𝑟=1    Equation 5.3 

where x is the data series, k is the number of clusters, nr is the number of points in 

cluster r and Dr is the sum of the squares of distances between all points in cluster r. 

The TWCSS gives a measure of the compactness of all the clusters since the closer the 

observations lie in each cluster the smaller the sum of squares. The number of clusters 

is iterated between 1 and a reasonable value, while each time the sum of WCSSs is 

calculated and plotted as in Figure 5.5.  Figure 5.5 is referred to as the ‘elbow plot’ 

and the point where a noticeable kink is observed indicates an appropriate number of 

clusters.   Package factoextra in R includes a function for generating the elbow plots, 

namely fviz_nbclust().  For hierarchical clustering fviz_nbclust() is called with 

parameters FUN = hcut and method = “wss”.   However, this method, being also a 

visual one, may sometimes be hard to interpret. 
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Figure 5.5. Plot of the Sum of Squares. 

Another, more direct, technique used to determine the validity of a clustering scheme 

and the number of clusters is the method referred to as silhouette [49].  Silhouette is 

an algorithm which gives a value from -1 to 1 to all observations in a dataset based on 

their clustering.  The silhouette value is a measure of how similar an object is to its 

own cluster (cohesion) compared to the dissimilarity to other clusters (separation).   

The silhouette score is calculated as follows 

𝑠𝑖 =
𝑏𝑖−𝑎𝑖

𝑚𝑎𝑥 {𝑎𝑖,𝑏𝑖}
 , 𝑖𝑓 𝑛𝑟 > 1    Equation 5.4 

and  

𝑠𝑖 = 0 𝑖𝑓 𝑛𝑟 = 1     Equation 5.5 

where si is the silhouette score for observation xi, r is the cluster containing xi, nr is the 

number of observations in cluster r and 

𝑎𝑖 =
1

𝑛𝑟−1
∑ 𝑑𝑖𝑠𝑡(𝑥𝑖 ,𝑥𝑗)𝑛𝑟

𝑗=1,𝑗≠𝑖    Equation 5.6 

𝑏𝑖 = 𝑚𝑖𝑛
1

𝑛𝑘

∑ 𝑑𝑖𝑠𝑡(𝑥𝑖 , 𝑥𝑗)𝑛𝑘
𝑗=1  , 𝑘 ≠ 𝑖   Equation 5.7 

where dist(xi , xj) is the distance between observations xi and xj. 
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To determine the most suitable number of clusters for this dataset the clustering was 

cut at different sections, obtaining different number of clusters ranging from 2 to 19.  

Each time the silhouette was calculated for each observation and then the mean for all 

observations recorded.  In R, fviz_nbclust() can also be used to generated silhouette 

plots for an increasing number of clusters.  In this case the parameters passed should 

be FUNC = hcut and method = “silhouette”. 

Figure 5.6 shows the plot of the silhouette coefficient against the number of clusters.  

For a small number of clusters (2 and 3) the silhouette coefficient is relatively high, 

then it starts falling and eventually rises until it reaches a maximum at 8 clusters.  

Finally, it continues to drop as the number of clusters increases.  So, based on the 

silhouette score, it was decided to use 8 clusters. 

 

 

Figure 5.6.  Plot of the Silhouette Coefficient. 

 

Figure 5.7 shows the clustering scatter plot on the PC1-PC2 plane.  The dots show the 

consumers coloured according to their cluster.  Clusters 2 (green), 3 (grey), 7 (pink) 

and 8 (orange) are well separated from the other clusters while clusters 1 (brown) and 

5 (cyan) overlap on each other quite heavily for these two components.  Similarly, 

cluster 6 (blue) overlaps on cluster 4 (violet). 
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Figure 5.7. Clustering positions with respect to PC1, PC2 plane. 

 

Figure 5.8 shows the scatter plot of the consumers’ PCA scores on the PC1-PC3 

plane.  On this plane the points for clusters 1 and 5 (which overlap on PC1, PC2 

plane) are well separated from each other.  This means that the difference in clusters 

1 and cluster 5 lies in features which are mostly represented by PC3.  In this plane 

cluster 3 overlaps cluster 4 while cluster 6 overlaps clusters 2 and 4, meaning that 

consumers belonging to these clusters share similarities in features represented by 

PC3. 

 

Figure 5.8.  Clustering positions with respect to PC1, PC3 plane. 
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The scatter plot for consumers’ PCA scores relative to PC2 and PC3 is shown in Figure 

5.9.  On this plane the points for cluster 2 (green) and cluster 3 (grey) which were fairly 

separated on the PC1-PC2 and PC-PC3 planes, are overlaid.  Hence consumers in 

clusters 2 and 3 share features which are mostly represented by PC3. 

 

Figure 5.9.  Clustering positions with respect to PC2, PC3 plane. 

The scatter plot of PCA scores on the PC2-PC4 plane, Figure 5.10, shows the points 

for consumers in cluster 6 (blue) are well separated from the other clusters, meaning 

that consumers in cluster 6 differ in features which are mostly represented by PC4.  

Clusters 4 (pink) and 8 (orange) are also well distinguished but clusters 1 (brown), 2 

(cyan) and 3 (grey) are quite superimposed, implying that the consumers in these 

clusters have similarities in the features which are mostly represented by PC4. In 

general, all other clusters are merged into each other as the variance diminishes for 

subsequent principal components. 
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Figure 5.10.  Clustering positions with respect to PC2, PC4 plane. 

 

Figure 5.11 shows the biplot of the PC1 and PC2 loadings (eigenvectors) 

superimposed over the clustered PCA score positions.  This figure is similar to Figure 

5.2 but here the PCA scores are coloured according to the cluster to which they have 

been assigned.  The direction and magnitude of the arrows also give an indication of 

the behaviour of the consumers in the clusters.  The PCA loadings for WDGSumRatio 

(Week Day niGht Sum Ratio) and WEGSumRatio (Week End niGht Sum Ratio) point 

in directions which covers most of the consumers of clusters 5 and 7, suggesting that 

these consumers have substantial consumption during the night. 

 

Figure 5.11. Biplot - PC1 and PC2 loadings superimposed on clustered positions. 
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Having been assigned on the principal components rather than directly on the 

consumption features, each cluster cannot be directly associated with a unique 

behavioural practice.  An insight of the common behaviour of consumers pertaining to 

a cluster may be obtained by looking at the means for each consumption feature for 

each cluster.  Table 5.6 displays such means against the feature abbreviation.  The 

values are the means of the normalised quantities and so it is not trivial to give an 

interpretation.  But an indication can be obtained such as for cluster 7, WDGSumRatio 

(Week Day niGht Sum Ratio) 0.7807 and WEGSumRatio (Week End niGht Sum 

Ratio) 0.7897, suggests that consumers in this clusters exhibit more night consumption 

than day consumption.  For cluster 3 the values for WDASumRatio (Week Day 

Afternoon Sum Ratio), WENSumRatio (Week End Noon Sum Ratio) and 

WDNSumRatio (Week Day Noon Sum Ratio) all have values above 0.6 which 

indicates that the maximum consumption is concentrated around noon.    
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Table 5.6. Means for features in each cluster. 

 Feature 
Cluster 

1 

Cluster 

2 

Cluster 

3 

Cluster 

4 

Cluster 

5 

Cluster 

6 

Cluster 

7 

Cluster 

8 

WDSum 0.0066 0.0099 0.0048 0.0074 0.0932 0.0164 0.0025 0.0038 

WDMax 0.0119 0.0177 0.0113 0.0185 0.1146 0.0332 0.0065 0.0110 

WESum 0.0062 0.0104 0.0038 0.0041 0.0851 0.0081 0.0032 0.0042 

WEMax 0.0107 0.0181 0.0104 0.0126 0.1062 0.0131 0.0074 0.0115 

WDXcorrSum 0.3344 0.5659 0.6106 0.5289 0.5592 0.5623 0.5517 0.6131 

WEXcorrSum 0.4538 0.6595 0.5466 0.4249 0.5985 0.4396 0.6669 0.5982 

WDsDSum 0.1815 0.2221 0.4017 0.3840 0.0954 0.3190 0.3971 0.3204 

WEsDSum 0.2345 0.3182 0.4923 0.3722 0.1191 0.1120 0.5711 0.4641 

WDfTAQPSum 0.0420 0.1089 0.5105 0.3808 0.0115 0.2837 0.0209 0.4470 

WEfTAQPSum 0.0287 0.0869 0.3693 0.1735 0.0068 0.0144 0.0207 0.3589 

WDfTAHPSum 0.1731 0.4085 0.5011 0.4295 0.0784 0.4027 0.0350 0.7791 

WEfTAHPSum 0.1388 0.3558 0.4155 0.2659 0.0483 0.0529 0.0410 0.6449 

WDfTA3QPSum 0.3628 0.5599 0.4872 0.4406 0.2301 0.4225 0.1482 0.8026 

WEfTA3QPSum 0.3379 0.5640 0.4646 0.3276 0.1927 0.1351 0.1706 0.7533 

WDfTRMaxSum 0.6033 0.7371 0.6040 0.5348 0.5654 0.5169 0.5948 0.8552 

WEfTRMaxSum 0.5649 0.7085 0.5605 0.4614 0.5419 0.4777 0.5405 0.7548 

WDfTAMeanSum 0.2142 0.4502 0.5281 0.4500 0.3469 0.4442 0.0665 0.7255 

WEfTAMeanSum 0.1926 0.4188 0.4812 0.3144 0.2998 0.1725 0.0572 0.5991 

WDnPeaksSum 0.5464 0.3954 0.3102 0.3274 0.1491 0.2754 0.1766 0.3306 

WEnPeaksSum 0.4173 0.3008 0.2271 0.2453 0.1074 0.2220 0.1446 0.2591 

WDWESumRatio 0.5133 0.5805 0.4060 0.2844 0.4843 0.2231 0.5675 0.6111 

WDWEMaxRatio 0.3551 0.4115 0.3706 0.2730 0.3657 0.1243 0.4188 0.4162 

WDMSumRatio 0.3345 0.2835 0.3822 0.5137 0.3433 0.5077 0.1022 0.1876 

WDNSumRatio 0.3354 0.3909 0.6324 0.5465 0.3671 0.5485 0.0822 0.2959 

WDASumRatio 0.4141 0.4875 0.6672 0.4415 0.4285 0.3657 0.1408 0.5970 

WDESumRatio 0.3799 0.4703 0.1575 0.1620 0.3419 0.1881 0.6894 0.6854 

WDGSumRatio 0.3953 0.2957 0.1151 0.1851 0.3794 0.2187 0.7807 0.2487 

WEMSumRatio 0.3334 0.2799 0.4070 0.5257 0.3413 0.3357 0.1048 0.2064 

WENSumRatio 0.3413 0.4149 0.6339 0.4083 0.3571 0.3365 0.0810 0.3438 

WEASumRatio 0.4398 0.5344 0.5918 0.3487 0.4437 0.4199 0.1497 0.6159 

WEESumRatio 0.3865 0.4799 0.2004 0.2575 0.3610 0.3691 0.6998 0.6623 

WEGSumRatio 0.4121 0.2923 0.1563 0.3087 0.4072 0.4365 0.7897 0.2496 
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Figure 5.12 is a plot of two consumers, m1 (red) from cluster 3 and m2 (blue) from 

cluster 7, for six weeks. As can be observed the consumer from cluster 3 shows most 

consumption around noon while the consumer from cluster 7 shows the consumption 

during the night.  The load profiles are also normalised so that comparison is made on 

the pattern of the behaviour rather than on the magnitude of the consumption. 

 

Figure 5.12. A comparison of clusters 3 and 7. 

 

In cluster 6 the mean values for WDWESumRatio (WeekEnd / WeekDay Sum Ratio) 

and WDWEMaxRatio (WeekDay / WeekEnd Max Ratio) indicate that consumers in 

this cluster are more likely not to have consumption on weekends than consumers in 

cluster 3.  Figure 5.13 shows the load profile of a consumer, m2  (in blue), from cluster 

6 and the same consumer m1 (in red) shown in Figure 5.12.  As can be seen m2 does 

not have consumption on weekends. 

Note: In these plots the same consumer from cluster 3 (m1 in red) is shown so that 

comparison can be made with the load profile of the consumer from the cluster being 

considered.   
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Figure 5.13.  A comparison of clusters 3 and 6. 

 

For cluster 8 the means of the temporal features all have a high value which indicate 

that the consumption is concentrated in the late hours of the day.  Also, both 

WDESumRatio (Week Day Evening Sum Ratio) and WEESumRatio (WeekEnd 

Evening Sum Ratio) have a value above 0.6 which further confirms that the 

consumption for consumers in this cluster is mostly in the evenings.  Figure 5.14 shows 

the load profile for a consumer (m2 in blue) from cluster 8 together with the same 

consumer m1 from cluster 3.  From the plot it can be noticed that the peak of the 

consumption for m2 is concentrated in the evenings.  

 

Figure 5.14.  A comparison of clusters 3 and 8. 
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Observing the means for cluster 5 it is noted that the ratios of the sums for the morning, 

noon, afternoon, evening and night do not differ by much which indicated that the 

consumption does not differ much between different segments of the day.  Moreover, 

the fact that the means for the cross-correlation features (WEXcorrSum and 

WDXcorrSum) are both above 0.55 indicates that the consumers in this cluster show 

quite similar behaviour on successive days.  Figure 5.15  shows the load profile for a 

consumer m2 (blue) from cluster 5, where it can be seen that the consumption is lower 

during the night but not by much.   

 

Figure 5.15.  A comparison of clusters 3 and 5. 

 

For cluster 1 the means for features WDnPeaksSum (WeekDay number of Peaks Sum) 

and WEnPeaksSum (WeekEnd number of Peaks Sum) are 0.5464 and 0.4173 

respectively, which is quite high when compared to the means of the other features.  

This indicates that the consumption exhibits a number of spikes during the day.  Figure 

5.16  shows the load profile for a consumer m2 (in blue) from cluster 1.  The 

consumption can be seen to have a number of peaks during each day. 
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Figure 5.16.  A comparison of clusters 3 and 1. 

 

For cluster 2 the mean for WDWESumRatio (WeekEnd/WeekDay Sum Ratio) is quite 

high when compared with other clusters.  This indicates that consumers in this cluster 

have more consumption on weekends than weekdays.  Figure 5.17 shows the load 

profile for a consumer m2 ( in blue) from cluster 2.  As expected, the average 

consumption is higher on the weekends than on weekdays.  

 

Figure 5.17.  A comparison of clusters 3 and 2. 

 

Figure 5.18 shows the load profile for a consumer (m2 in blue) from cluster 4 together 

with the same consumer (m1 in red) from cluster 3.  It can be observed that there is no 
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consumption on Sundays for consumer m2.  All the means of the features in cluster 4 

are very similar to the means of the features in cluster 6 (which has no consumption 

on weekends).  The only means that differ are the ratios of the sums for the weekends, 

the means for cluster 4 are twice those for cluster 6.  This indicated that the weekend 

consumption for consumers in cluster 4 is twice that for consumers of cluster 6.   The 

most probable situation would be that their only consumption is on Saturdays. 

 

Figure 5.18.  A comparison of clusters 3 and 4. 

 

5.6 ANOVA Testing 

In order to gauge the statistical quality of the clustering obtained for each principal 

component, an ANOVA test was performed on each of the considered principal 

components.  Actually, for clustering the first seven principal components were 

considered but the ANOVA test was performed on the first eight principal components 

so that the quality of the clustering can be compared to that of the other seven principal 

components.  A prerequisite for using ANOVA is that each group sample is drawn 

from a normally distributed population and hence a test for normality is appropriate.  

Here three tests for normality were used: histogram plot, Q-Q plot and Kolmogorov-

Smirnov (K-S) test.   

The most straight forward method for determining if a population is normally 

distributed is to plot the values on a histogram and judge how closely it resembles a 
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normal distribution.  The values (scores) of each PC were clustered and so the scored 

of each PC were considered as eight separate populations. Figure 5.19 shows the 

histograms for the first eight principal component scores with a horizontal bin width 

of 0.05.  As can be noted, by observing the plots, it is not trivial to decide if the 

distributions are normal or how different they are from normal. PC3 and PC6 look 

very close to a normal distribution curve while PC4 looks a bit skewed.  The other do 

not seem very far off from normal. 

 

Figure 5.19.  The histograms for the first eight principal components 

 

Another method to graphically observe the normality of a distribution is the Quantile-

Quantile (Q-Q) plot which is a plot of probability.  A Q-Q plot is a scatterplot which 
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plots two sets of quantiles against each other.  If both sets of quantiles have the same 

distribution the points would lie on a straight line.  Figure 5.20 shows the Q-Q plots 

where the horizontal axis represent the normal distribution quantiles while the vertical 

axis represents the quantiles for the respective PC score values.  The red reference line 

is where the point would be if the distribution was perfectly normal and the grey areas 

are the confidence bands.  From these Q-Q plots it can be seen that apart from PC5, 

PC7 and PC8, the points for the other PCs are mostly within the confidence bands.  

 

Figure 5.20.  The Q-Q plots for the first eight principal components. 

 

The Kolmogorov-Smirnov test [112] is used to check the underlying distribution of a 

variable by matching it to standard distributions such as the Normal, Poisson, 
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Exponential or Uniform distribution.  In R the Kolmogorov-Smirnov test may be 

performed by calling function ks.test() from stats package.  The template distribution 

is passed as an argument to the function together with the mean and standard deviation.  

Table 5.7 lists the Kolmogorov-Smirnov significance values obtained for each PC.  If 

the significance value is greater than 0.05 then the null hypothesis is accepted i.e. the 

distribution is normal.  So PC1, PC2, PC3 and PC6 do have a normal distribution while 

that of PC4, PC5, PC7 and PC8 are not exactly normal. 

Table 5.7. Significance value of the Kolmogorov-Smirnov statistic for each PC. 

 Significance value 

PC1 0.0891005 

PC2 0.3721033 

PC3 0.6561228 

PC4 0.01312868 

PC5 2.15E-07 

PC6 0.5549213 

PC7 5.81E-09 

PC8 0.00179899 

 

The three tests for normality that were conducted do complement each other for all 

PCs except for PC4 which looks close to normal on the Q-Q plot and also on the 

histogram.  

For ANOVA, as for most statistical tests, the null hypothesis must be stated 

beforehand.  In this case the null hypothesis is that there is no difference between the 

clusters and consumers could have been placed in any cluster randomly.  The 

alternative hypothesis is that there is a difference between the clusters and consumers 

were placed in the relative cluster based on their behaviour.  

In R to function aov() calculates the ANOVA parameters and returns an aov object 

which can be viewed by using the summary() function.  Table 5.8 lists the summary 

of output from aov() function for each principal component from PC1 to PC8.  The 

function summary() first lists the independent variables being tested in the model (in 

this case we have only one, Cluster) and then the Residuals. All of the variation that is 

not explained by the independent variables is called residual variance.  The Df column 
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displays the degrees of freedom for the independent variable (the number of levels in 

the variable minus 1), and the degrees of freedom for the residuals (the total number 

of observations minus one and minus the number of levels in the independent 

variables).  The Sum Sq column displays the sum of squares (i.e. the total variation 

between the specific group mean and the overall mean).  The Mean Sq column is the 

mean of the sum of squares, calculated by dividing the sum of squares by the degrees 

of freedom for each parameter.  The F-value column is the test statistic from the F test. 

The F-value is obtained by dividing the mean square of the specific independent 

variable by the mean square of the residuals. The larger the F value, the more likely it 

is that the variation caused by the independent variable is real and not due to chance.  

The Pr(>F) column is the p-value of the F-statistic. The p-value shows how likely it 

is that the F-value calculated from the test would have occurred if the null hypothesis, 

of no difference among group means, were true. 

As can be noted from Table 5.8, the p-value for all PCs are much lower than 0.05 (or 

even 0.01 for a confidence level of 99%) which is the level of significance above which 

the null hypothesis would be accepted.  Hence for all PCs the null hypothesis is 

rejected, and the alternative hypothesis accepted.  That is, there is a significant 

statistical difference between the consumers in each cluster.  Analysing further the F 

value, it is deduced that for PC1 the clusters are more separated than for the rest of the 

PCs.  The level of separation, indicated by the F value, continues to diminish for the 

other PCs with the lowest being PC8.  This decreasing trend in F value further 

collaborated the decision to consider only the first 7 PCs.  
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Table 5.8.  Summary of aov() output for each PC. 

    Df Sum Sq Mean sq F value Pr(>F) 

PC1 
Cluster 7 172.5 24.64 511.1 <2e-16 

Residuals 1033 49.8 0.048     

PC2 
Cluster 7 122.85 17.55 345.4 <2e-16 

Residuals 1033 52.49 0.051     

PC3 
Cluster 7 40.58 5.797 128.3 <2e-16 

Residuals 1033 46.65 0.045     

PC4 
Cluster 7 25.77 3.681 127.8 <2e-16 

Residuals 1033 29.75 0.029     

PC5 
Cluster 7 17.3 2.4715 110.3 <2e-16 

Residuals 1033 23.14 0.0224     

PC6 
Cluster 7 4.04 0.5772 19.81 <2e-16 

Residuals 1033 30.09 0.0291     

PC7 
Cluster 7 4.051 0.5787 28.55 <2e-16 

Residuals 1033 20.937 0.0203     

PC8 
Cluster 7 1.517 0.21676 10.71 4.46e-13 

Residuals 1033 20.9 0.02023     

 

The ANOVA test determined that not all cluster means are equal, but it does not 

specify that all cluster means are different. To determine which clusters are different 

from others a post hoc test has to be conducted such as the Tukey test.  The R function 

TukeyHSD() (Tukey Honest Significant Differences) performs multiple pairwise-

comparison between the means of groups. 

The function TukeyHD() takes the fitted ANOVA object as an argument and produces 

an output such as Table 5.9 (for PC1) and Table 5.10 (for PC8).  

The rows-names are the groups (clusters in this case) which are being compared.  Thus 

row 1 shows the comparison of cluster 2 and cluster 1.  Row 2 shows the comparison 

of cluster 3 and cluster 1, and so on. 

The columns headings of Table 5.9 and Table 5.10 are : 

• diff: difference between means of the two groups. 

• lwr, upr: the lower and the upper end point of the confidence interval at  a 

default of 95%. 

• p adj: p-value after adjustment for the multiple comparisons.  
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Observing the diff and p adj values, the clusters which have significant difference in 

means can be determined.  For PC1, Table 5.9, p adj is small for all cluster 

comparisons except for the comparison of cluster 8 to cluster 3 where it is 0.998.  This 

means that the means of these two clusters are close.  diff for these two clusters is 

small, 0.0318, further indicating the closeness of their means.  For the other 

combinations of clusters diff indicates the dissimilarities between the cluster 

combinations. 

In Table 5.10, which shows the output of TukeyHSD() for PC8, it can be noted that 

most p adj are greater than 0.05 and diff are small.  This indicates that the means for 

most cluster combinations are very close in PC8. 
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Table 5.9.  Tukey comparisons for PC1. 

  diff lwr upr p adj 

2-1 -0.46439464 -0.54264083 -0.3861485 0.0000000 

3-1 -1.11068338 -1.19922257 -1.0221442 0.0000000 

4-1 -0.69894244 -0.76855217 -0.6293327 0.0000000 

5-1 0.13703954 0.06659409 0.2074850 0.0000001 

6-1 -0.32045415 -0.39006389 -0.2508444 0.0000000 

7-1 0.58211491 0.41215872 0.7520711 0.0000000 

8-1 -1.07880474 -1.22459898 -0.9330105 0.0000000 

3-2 -0.64628874 -0.73851444 -0.5540630 0.0000000 

4-2 -0.23454780 -0.30879001 -0.1603056 0.0000000 

5-2 0.60143418 0.52640784 0.6764605 0.0000000 

6-2 0.14394049 0.06969828 0.2181827 0.0000001 

7-2 1.04650955 0.87460406 1.2184150 0.0000000 

8-2 -0.61441010 -0.76247208 -0.4663481 0.0000000 

4-3 0.41174094 0.32671960 0.4967623 0.0000000 

5-3 1.24772292 1.16201601 1.3334298 0.0000000 

6-3 0.79022923 0.70520789 0.8752506 0.0000000 

7-3 1.69279829 1.51597007 1.8696265 0.0000000 

8-3 0.03187864 -0.12187140 0.1856287 0.9984707 

5-4 0.83598198 0.77001229 0.9019517 0.0000000 

6-4 0.37848829 0.31341177 0.4435648 0.0000000 

7-4 1.28105735 1.11290699 1.4492077 0.0000000 

8-4 -0.37986230 -0.52354737 -0.2361772 0.0000000 

6-5 -0.45749369 -0.52346339 -0.3915240 0.0000000 

7-5 0.44507537 0.27657732 0.6135734 0.0000000 

8-5 -1.21584428 -1.35993608 -1.0717525 0.0000000 

7-6 0.90256906 0.73441870 1.0707194 0.0000000 

8-6 -0.75835059 -0.90203566 -0.6146655 0.0000000 

8-7 -1.66091965 -1.87230790 -1.4495314 0.0000000 
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Table 5.10.  Tukey comparisons for PC8. 

  diff lwr upr p adj 

2-1 -0.0344699448 -0.0851610928 0.016221203 0.4383783 

3-1 0.0254469061 -0.0319124790 0.082806291 0.8803378 

4-1 0.0077119089 -0.0373841800 0.052807998 0.9995651 

5-1 -0.0008178061 -0.0464553072 0.044819695 1.0000000 

6-1 -0.0278482695 -0.0729443583 0.017247819 0.5681551 

7-1 0.2576522025 0.1475474916 0.367756913 0.0000000 

8-1 -0.0190427560 -0.1134943500 0.075408838 0.9987234 

3-2 0.0599168509 0.0001691932 0.119664509 0.0487623 

4-2 0.0421818537 -0.0059153475 0.090279055 0.1350850 

5-2 0.0336521387 -0.0149530569 0.082257334 0.4137089 

6-2 0.0066216754 -0.0414755259 0.054718877 0.9998979 

7-2 0.2921221473 0.1807545986 0.403489696 0.0000000 

8-2 0.0154271889 -0.0804935448 0.111347923 0.9997105 

4-3 -0.0177349972 -0.0728153689 0.037345375 0.9774990 

5-3 -0.0262647122 -0.0817892259 0.029259801 0.8400796 

6-3 -0.0532951756 -0.1083755473 0.001785196 0.0661586 

7-3 0.2322052964 0.1176485965 0.346761996 0.0000000 

8-3 -0.0444896621 -0.1440953533 0.055116029 0.8765123 

5-4 -0.0085297150 -0.0512676348 0.034208205 0.9988044 

6-4 -0.0355601784 -0.0777194658 0.006599109 0.1713315 

7-4 0.2499402936 0.1410054706 0.358875117 0.0000000 

8-4 -0.0267546649 -0.1198398511 0.066330521 0.9883758 

6-5 -0.0270304633 -0.0697683831 0.015707456 0.5367152 

7-5 0.2584700086 0.1493099430 0.367630074 0.0000000 

8-5 -0.0182249498 -0.1115736304 0.075123731 0.9989635 

7-6 0.2855004720 0.1765656490 0.394435295 0.0000000 

8-6 0.0088055135 -0.0842796727 0.101890700 0.9999921 

8-7 -0.2766949585 -0.4136410867 -0.139748830 0.0000000 

 

The clustering for each of the first PCs is also shown in boxplot format in Figure 5.2.  

Here it can be further observed that PC1 exhibits the most separation between the 

clusters, with clusters 1 and 8 differing quite significantly and cluster 3 and cluster 8 

are close as was already deduced by the TukeyHSD() comparison.  The separation can 

here also be noticed to decrease until PC8 where the separation is minimal.  These 

arguments collaborate the observations already brought forward in Section 5.5, when 

the separation of the clusters was examined by observing the scatter plots for the PCA 

scores relative to the principal components.  
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Figure 5.21.  Box plots for each PC.  Horizontal axis shows cluster number. 

 

5.7 K-Nearest Neighbour Classification 

K-Nearest neighbour (KNN) is a machine learning method which can be used for 

classification and regression.  KNN is the most basic instance-based learning method 

[113].  Instance-based learning methods compare new problem instances with 

instances seen in training, which have been stored in memory, instead of performing 

explicit generalisation.  In this work KNN is used as a classifier to complement the 

clustering performed by the hierarchical clustering.  The clustering obtained by 

hierarchical clustering is passed as the training dataset to KNN, using the cluster 

numbers as labels and obtaining the classification for each instance in the test dataset.  
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This technique is used, although for a different purpose, by Mylonas et al. in [114].  

Both hierarchical clustering and KNN are based on the distances between 

observations, not the centroids of the clusters, and thus it is reasonable to use them in 

conjunction with each other.  In fact, the accuracy obtained for the validations 

performed on the customer data was good. 

In R the function knn3Train(), from the package caret, may be used for running the 

KNN algorithm.  The knn3Train() function requires the following parameters:  

• train: matrix of training data – data which was processed by hierarchical 

clustering. 

• test: matrix of test data – the test data to be classified. 

• cl:  factor of true classifications of training set – the cluster numbers 

obtained from hierarchical clustering. 

• k: number of neighbours considered – set to 1 for this work. 

knn3Train() returns an object of type factor with the classification of the test data – 

the predicted classes. 

Note that, k is the number of neighbours to be considered. If k is set to one the class of 

the closest observation is taken.  In the case where k is set to 2 the class of the closest 

two observation is recorded.  However, if the two observations are in different clusters 

a tie is encountered.  It is not well defined in academic literature how such ties should 

be resolved.  In knn3Train(), a close inspection of the source code [115]  reveals that 

it chooses the class randomly, via the sample() method.  The sample() function returns 

a sample of the specified size from the elements of a list, which in this case will be 

made up of the tied observations.  Hence, it might be a possibility to have different 

results in repeated tests.  Another method of dealing with such ties is to continue to 

find the next nearest neighbour until the tie is broken and one class contains more 

nearest neighbours than any other class. 

For this work the value of k was set to one since it was noted that only one nearest 

neighbour is needed to achieve the highest accuracy, thus also minimizing the 

computational cost.  This was verified by iterating the value of k from 1 to 29, each 

time calculating the accuracy.  The accuracy is the number of instances where the test 
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assigned class matched the training cluster, divided by the number of observations and 

is thus given by: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙  𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
       Equation 5.8 

The plot of the accuracy against k is shown in Figure 5.22.  The plot shows that the 

accuracy drops rapidly from k=1 to k=2 and then continues to diminish as k increases.  

Hence it is evident that k=1 gives the best value of accuracy.  In the current context 

correct predictions are the instances when, for a given consumer, the cluster assigned 

(predicted) by KNN is the same as that assigned by hierarchical clustering (actual).  

 

Figure 5.22.  Plot of accuracy vs value of k. 

 

5.8 3-Fold Cross Validation 

When a machine learning mechanism is set up it is very important that the result is 

validated [116].  Validation is done by splitting the dataset into two parts: training and 

testing.  The model is then trained on the training dataset and tested with the test 

dataset.  However, if the characteristics of the data in the training portion are different 

from those of the data used for testing, then the model will be over-trained or under-

trained and the accuracy of the model will be wrongly evaluated.  K-fold cross 

validation tackles this issue by splitting the available dataset into k segments, or folds, 

of equal size.  The training and testing are performed k times, each time using one fold 
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for training and the remaining folds for testing or vice versa. In such a way it is ensured 

that each observation in the dataset is used for both training and testing at some point.  

Then an average of the accuracy is taken over the total number of folds. 

In this work 3-fold cross validation was used, whereby the 15-week dataset was split 

into 3 folds of five weeks each fold.  Three runs were carried out each time using 1 

fold (5 weeks) for training and 2 folds (10 weeks) for testing.  In the first run the first 

fold was used for training and the second and third folds were used for testing. This 

was repeated for the other two folds each time using one fold for training and two folds 

for testing.  Thus the data was used in three runs as follows: 

Run 1: Train with weeks 1,2,3,4,5 - test with weeks 6,7,8,9,10,11,12,13,14,15. 

Run 2: Train with weeks 6,7,8,9,10 - test with weeks 11,12,13,14,15,1,2,3,4,5. 

Run 3: Train with weeks 11,12,13,14,15 - test with weeks1,2,3,4,5,6,7,8,9,10. 

Hence, all weeks are used once for training and twice for testing.  For each run the 

accuracy metric was calculated by finding the sum of the occurrences where the 

outcome of testing was the same as that of training and dividing by the total number 

of samples.  Then the overall accuracy was determined by taking the average for the 

three runs.    The overall clustering accuracy tested through KNN with k=1, and three-

fold validation was 79.22%. 

Note that, the load profile dataset being analysed is a time series which may be subject 

to seasonality.  Consumers tend to change behaviour depending on the time of year.  

The interval was intentionally chosen to be during the summer weeks such that the 

behaviour of consumers would be as unrelated as possible to seasonality.  However, 

during 15 weeks the behaviour inevitably tends to change and so another method for 

assigning the folds was adopted.  In this approach the folds are made up by grouping 

together alternate weeks as follows: 

Run 1: Train with weeks 1,4,7,10,13- test with weeks 2,3,5,6,8,9,11,12,14,15. 

Run 2: Train with weeks 2,5,8,11,14 - test with weeks 1,3,4,6,7,9,10,12,13,15. 

Run 3: Train with weeks 3,6,9,12,15 - test with weeks 1,2,4,5,7,8,10,11,13,14. 
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By using this method, the training and the testing is spread along the whole timespan 

of the dataset and therefore represents a better averaged behaviour for the consumers.  

The weekly features were averaged over the 5 training weeks and normalised.  PCA 

was conducted on the normalised means and the resulting, first 7, principal 

components were clustered using hierarchical clustering.  The overall accuracy 

obtained by this method was 91.99%, which is a significant improvement on the 

79.22% accuracy obtained in the former fold grouping. 

Figure 5.23 shows the histogram for the number of consumers assigned to each cluster 

in run 1.  Four clusters (2,4,5 and 6) share the majority of consumers quite evenly, 

while clusters 1, 3 and 7 have a lower but similar number of consumers.  Cluster 8 has 

quite a relatively small number of consumers. 

 

Figure 5.23. Histogram for run 1. 

 

A confusion matrix may be used to measure the performance of a classification method 

and highlight possible improvements in the methodology.  Table 5.11 shows the 

confusion table for run 1.  The column names (highlighted in blue) are the clusters 

which were assigned to the consumers by the hierarchical clustering while the last row 

contains the number of consumers in that cluster.  The row names (highlighted in 

green) are the cluster number in which KNN classified the consumers.  The cluster 1 

column shows the number of consumers from cluster 1 which were classified to each 

cluster by KNN.  The values in the diagonal cells (highlighted in orange) show the 

numbers of consumers which were correctly classified by KNN, all others were 

incorrectly classified.  So, adding all numbers in the diagonal cells and dividing by the 
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total number of consumers determines the accuracy, which is 93.76%.  The values in 

brackets are the number of consumers in that cell expressed as a percentage of the 

number of consumers in that cluster. 

Table 5.11. Confusion matrix for run 1.  Accuracy 93.76%. 

 1 2 3 4 5 6 7 8 

1 
85 

(94.4%) 
6 

(3.1%) 
0 

(0%) 
0 

(0%) 
2 

(1%) 
1 

(0.4%) 
0 

(0%) 
0 

(0%) 

2 
4 

(4.4%) 
171 

(89.5%) 
1 

(1.1%) 
5 

(3.1%) 
1 

(0.5%) 
1 

(0.4%) 
1 

(1.4%) 
0 

(0%) 

3 
0 

(0%) 
4 

(2.1%) 
86 

(98.9%) 
1 

(0.6%) 
0 

(0%) 
0 

(0%) 
0 

(0%) 
0 

(0%) 

4 
0 

(0%) 
0 

(0%) 
0 

(0%) 
153 

(95%) 
0 

(0%) 
7 

(3.1%) 
5 

(7%) 
0 

(0%) 

5 
1 

(1.1%) 
7 

(3.7%) 
0 

(0%) 
0 

(0%) 
192 

(97.5%) 
3 

(1.3%) 
0 

(0%) 
0 

(0%) 

6 
0 

(0%) 
3 

(1.6%) 
0 

(0%) 
1 

(0.6%) 
2 

(1%) 
211 

(92.5%) 
3 

(4.2%) 
0 

(0%) 

7 
0 

(0%) 
0 

(0%) 
0 

(0%) 
1 

(0.6%) 
0 

(0%) 
5 

(2.2%) 
62 

(87.3%) 
0 

(0%) 

8 
0 

(0%) 
0 

(0%) 
0 

(0%) 
0 

(0%) 
0 

(0%) 
0 

(0%) 
0 

(0%) 
16 

(100%) 

Total 90 191 87 161 197 228 71 16 

 

Figure 5.24 shows the histogram with the number of consumers assigned to each 

cluster in run 2.  Here cluster 3, is assigned with a small number of consumers.  Three 

clusters, 2, 5 and 7, have similar numbers while the remaining four clusters, 1, 4 and 

6, have higher number of consumers. 

 

Figure 5.24. Histogram for run 2. 
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Table 5.12 shows the confusion matrix for run 2 where the overall accuracy was 

92.7%.  It can be noted that for cluster 3 the classification was 100% as all 24 

consumers in this cluster were classified correctly to cluster 3.  For cluster 8, from a 

total of 254 consumers 237 (93.3%) were classified correctly while 17 (6.7%) were 

classified in cluster 4.  This fact may indicate that there is some resemblance between 

the features of consumers that form part of clusters 4 and 8.  Furthermore, 7 consumers 

from cluster 4 (3.8%) were classified in cluster 8. 

Table 5.12. Confusion matrix for run 2.  Accuracy 92.70%. 

 1 2 3 4 5 6 7 8 

1 

127 

(88.2%) 

10 

(11.8%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

1 

(0.6%) 

0 

(0%) 

0 

(0%) 

2 
7 

(4.9%) 
72 

(84.7%) 
0 

(0%) 
1 

(0.5%) 
4 

(4%) 
0 

(0%) 
1 

(1.1%) 
0 

(0%) 

3 
0 

(0%) 
0 

(0%) 
24 

(100%) 
0 

(0%) 
0 

(0%) 
0 

(0%) 
0 

(0%) 
0 

(0%) 

4 
1 

(0.7%) 
0 

(0%) 
0 

(0%) 
169 

(92.9%) 
3 

(3%) 
1 

(0.6%) 
0 

(0%) 
17 

(6.7%) 

5 
0 

(0%) 
1 

(1.2%) 
0 

(0%) 
3 

(1.6%) 
92 

(92.9%) 
0 

(0%) 
0 

(0%) 
0 

(0%) 

6 

2 

(1.4%) 

1 

(1.2%) 

0 

(0%) 

1 

(0.5%) 

0 

(0%) 

161 

(97%) 

2 

(2.3%) 

0 

(0%) 

7 

5 

(3.5%) 

1 

(1.2%) 

0 

(0%) 

1 

(0.5%) 

0 

(0%) 

3 

(1.8%) 

83 

(95.4%) 

0 

(0%) 

8 
2 

(1.4%) 
0 

(0%) 
0 

(0%) 
7 

(3.8%) 
0 

(0%) 
0 

(0%) 
1 

(1.1%) 
237 

(93.3%) 

Total 144 85 24 182 99 166 87 254 

 

Figure 5.25 shows the histogram with the number of consumers assigned to each 

cluster in run 3.  Here two clusters, 7 and 8, were assigned a small number of 

consumers.  Three clusters, 4,5 and 6, have similarly high numbers while the remaining 

3 clusters, 1,2 and 3, have a mid-range number of consumers. 
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Figure 5.25. Histogram for run 3. 

 

Table 5.13 shows the confusion matrix for run 3 where the overall accuracy was 

89.53%.  Here all 17 consumers in cluster 7 are correctly classified , while in cluster 3, 

out of 87 consumers 72 (82.8%) were correctly classified while 15 (17.2%) were 

classified in cluster 4.  This fact might indicate some resemblance between consumers 

in clusters 3 and 4, but only 2 consumers (1%) from Cluster 4 were classified to cluster 

3.  Hence the resemblance is not so evident. 

Table 5.13. Confusion matrix for run 3.  Accuracy 89.53%. 

 1 2 3 4 5 6 7 8 

1 
144 

(88.3%) 
5 

(3.8%) 
0 

(0%) 
3 

(1.4%) 
6 

(3%) 
1 

(0.5%) 
0 

(0%) 
0 

(0%) 

2 
12 

(7.4%) 
114 

(87%) 
0 

(0%) 
1 

(0.5%) 
6 

(3%) 
0 

(0%) 
0 

(0%) 
1 

(4.2%) 

3 

0 

(0%) 

4 

(3.1%) 

72 

(82.8%) 

2 

(1%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

4 

5 

(3.1%) 

3 

(2.3%) 

15 

(17.2%) 

180 

(85.7%) 

1 

(0.5%) 

6 

(2.9%) 

0 

(0%) 

0 

(0%) 

5 

2 

(1.2%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

185 

(93%) 

6 

(2.9%) 

0 

(0%) 

0 

(0%) 

6 
0 

(0%) 
1 

(0.8%) 
0 

(0%) 
24 

(11.4%) 
1 

(0.5%) 
197 

(93.8%) 
0 

(0%) 
0 

(0%) 

7 
0 

(0%) 
0 

(0%) 
0 

(0%) 
0 

(0%) 
0 

(0%) 
0 

(0%) 
17 

(100%) 
0 

(0%) 

8 
0 

(0%) 
4 

(3.1%) 
0 

(0%) 
0 

(0%) 
0 

(0%) 
0 

(0%) 
0 

(0%) 
23 

(95.8%) 

Total 163 131 87 210 199 210 17 24 
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5.8.1 Summary of metrics for the 3 runs 

Table 5.14 shows the accuracy obtained for each run which is calculated as in Equation 

5.8.  The overall accuracy for the method is obtained by taking the mean for the 3 runs, 

i.e. 0.9199 or 91.99%. 

Table 5.14.  Accuracy for the 3 runs. 

  Accuracy 

Run 1 0.9376 

Run 2 0.9270 

Run 3 0.8953 

 

Table 5.15 shows other performance metrics for the classification obtained in the three 

runs.  Sensitivity, which is also referred to as recall, may be defined as the number of 

correctly predicted observations divided by the actual number of observations in the 

cluster, that is: 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠

𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑎𝑐𝑡𝑢𝑎𝑙  𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠  𝑖𝑛 𝑡ℎ𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟
  Equation 5.9 

Precision may be defined as the number of correctly predicted observations divided by 

the total predicted in the class, given by: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠

𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑙𝑎𝑠𝑠
  Equation 5.10 

In the above equations of sensitivity and precision, cluster and class are used in the 

sense that for the classification, done by KNN, the cluster is the actual label for the 

training observation while the class is the prediction obtained from KNN.  

F1 score is defined as twice the multiplication of sensitivity and precision divided by 

the sum of sensitivity and precision, that is: 

𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
  Equation 5.11 
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Table 5.15.  Metrics for individual clusters 

    

Cluster 

1 

Cluster 

2 

Cluster 

3 

Cluster 

4 

Cluster 

5 

Cluster 

6 

Cluster 

7 

Cluster 

8 

Run 
1 

Sensitivity 0.9444 0.8953 0.9885 0.9503 0.9746 0.9254 0.8732 1.0000 

Precision 0.9043 0.9293 0.9451 0.9273 0.9458 0.9591 0.9118 1.0000 

F1 score 0.9239 0.9120 0.9663 0.9387 0.9600 0.9420 0.8921 1.0000 

Run 
2 

Sensitivity 0.8819 0.8471 1.0000 0.9286 0.9293 0.9699 0.9540 0.9331 

Precision 0.9203 0.8471 1.0000 0.8848 0.9583 0.9641 0.8925 0.9595 

F1 score 0.9007 0.8471 1.0000 0.9062 0.9436 0.9670 0.9222 0.9461 

Run 
3 

Sensitivity 0.8834 0.8702 0.8276 0.8571 0.9296 0.9381 1.0000 0.9583 

Precision 0.9057 0.8507 0.9231 0.8571 0.9585 0.8834 1.0000 0.8519 

F1 score 0.8944 0.8604 0.8727 0.8571 0.9439 0.9099 1.0000 0.9020 

 

Observing the metrics in Table 5.14 and Table 5.15 it can be noted that level of 

classification obtained is good, even if the dataset is rather complicated and may 

experience some seasonality effects.  The good results obtained also verifies that KNN 

may be used in conjunction with hierarchical clustering since they are both based on 

distances between observations, rather than distances to centroids.   

 

5.9 Anomaly Detection Methods 

In this work two novel methods for anomaly detection are being proposed: the 

Anomaly Coefficient (AC) and the Cluster-Change Coefficient (CCC).  For the 

anomaly coefficient method, each consumer is given a score based on its position 

inside its cluster.  The greater the distance from all the other consumers in the cluster 

the more dissimilar he is from the majority of consumers in the cluster and so the 

higher the anomaly coefficient.  For the cluster-change coefficient method, for every 

week each change between two clusters is given a score according to how many 

changes were performed between the two clusters on that particular week.  Consumers 

who change to a cluster not common for other consumers receive a higher anomaly 

score.  For every consumer the scores for all the weeks are then added and  normalised 

to obtain the overall cluster-change coefficient.  In Section 5.8 the clustering method 

was validated on 15 weeks of data, but for anomaly detection all the available 17 weeks 

of data were utilised. 
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5.9.1 Distance from Neighbours – Anomaly Coefficient 

This method is based on the argument that the smaller the sum of the distances of a 

consumer from all the other consumers that form part of the same cluster, then the 

higher the similarity of his behaviour to the other consumers in the same cluster.  

Conversely, the greater the sum of the distances of the consumer from all other 

consumers in the same cluster, the more likely that his behaviour is somewhat different 

from that of the other consumers, although not enough to be assigned to another 

cluster.   

The first step was to find a way to cluster the consumers into their typical cluster.  For 

each consumer the typical cluster is the cluster where he would be classified based on 

the behaviour of the 17 weeks in consideration.  The typical cluster can be determined 

by finding the mean for the features over the 17 weeks, perform PCA on these means 

and cluster on the PCs.  However, it was opted that it would be better to do the 

clustering based on a typical week.  The typical week can be thought of as the week in 

which the behaviour of the consumer was closest to the average behaviour that he had 

throughout the 17 weeks being considered.  The argumentation in favour of finding 

the typical week, rather than using the average for the 17 weeks, is that the consumer 

might have never assumed the behaviour described by the mean.  If the consumer’s 

behaviour fluctuated between two extremes, the mean will be in the middle, but the 

consumer never exhibited that behaviour.  The typical week was determined by finding 

the mean for all features for the full 17 weeks and then finding the week which has the 

smallest Euclidian distance from this mean. The features for the typical week are then 

used to cluster the consumers into 8 clusters.  The actual clustering was performed by 

first using PCA to extract the PCs for the features of the typical week, then using 

hierarchical clustering on the first 7 PCs. 

For finding the distance between the observations in a dataset the R function dist() is 

used.  The argument passed to dist() is an [n x p] matrix containing n observations of 

p variables (PC scores in this case).  The dist() function returns an [n x n] matrix where 

each row contains the distances of one observation to all other observations in the 

dataset, including itself.  The diagonal elements of this matrix are zero since they are 
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the distance of the observation from itself.  So, the sum of each row corresponds to the 

sum of the distances of the observation from all other observations in the dataset .  

For this application the dist() function was called 8 times, once for each cluster,  each 

time passing a matrix with the considered PC scores of the consumers in the cluster as 

an argument.  The distance measuring method can also be passed as an argument, with 

Euclidian being the default and the method selected in this case.  The sum of the 

distances was then normalised for each cluster to obtain an anomaly coefficient.  

Consumers with an anomaly coefficient closer to one have a behaviour which is 

different from consumers in their respective cluster.  Consumers with an anomaly 

coefficient close to zero have a behaviour which is similar to the other users in their 

cluster.  Consumers with high anomaly coefficient are more likely to exhibit NTL. 

This method of finding the similarity of consumers to the other consumers in the same 

cluster by finding the sum of their distances from each other was further verified by 

finding the distance of each consumer from the centroid of the cluster.  The centroids 

of all clusters were calculated by finding the mean for all the features in each cluster.  

Then the Euclidian distance for each consumer from the centroid of its cluster was 

calculated.  This distance was then normalised for every cluster and compared with the 

anomaly coefficient already obtained from the dist() method. In fact, the two methods 

were found to complement each other in the sense that consumers which are close to 

the centroid have an anomaly coefficient close to zero, while those consumers which 

are furthest from the centroid have an anomaly coefficient close to one.  

Figure 5.26 shows the plots for the distribution of the anomaly coefficient in all 8 

clusters.  The horizontal axis shows the anomaly coefficient with the percentage 

distribution on the vertical axis.  As expected, the majority of observations are 

concentrated at the low values of anomaly coefficient with few observations having 

high values.   For example, in cluster 6 there are only 3 observations with anomaly 

coefficient exceeding 0.7 and in cluster 3 only two observations exceed 0.7. 
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Figure 5.26. Distribution of anomaly coefficient, horizontal axis, for all 8 clusters. 

 

The load profiles for the consumers with the lower and highest anomaly coefficients 

in each cluster were plotted to examine the contrast in behaviours.  Figure 5.27 shows 

five weeks of load profiles for four consumers in cluster 1, two consumers, m1 (red) 

and m2 (blue), which have very low anomaly coefficients, and another two load 

profiles for another two consumers, m3 (green) and m4 (black), with anomaly 

coefficients close to 1.  It should here be reminded that the clustering is based on the 

typical week for each consumer, which is not necessarily the same for all the 

consumers in the plots.  The minor breaks on the horizontal axis correspond to 

midnight of each day.  It can be seen that the behaviour of m1 and m2 are fairly similar 

with less consumption during weekends.  m3 has almost similar behaviour as m1 and 
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m2 but consumption at night and on weekends is more fluctuating.  The night and 

weekend consumption for m4 is less than that for the other 3 consumers and the general 

behaviour is irregular.  m4 might be a candidate as an NTL suspect.   

 

Figure 5.27.  Comparing four meters from cluster 1. 

 

Figure 5.28 shows load profiles for consumers in cluster 2,  for m1 (red) and m2 (blue)  

the anomaly coefficient is close to zero , while for m3 (green) and m4 (black) it is close 

to one.  In this case the behaviour of m1 is similar to m2 while m3 and m4 differ 

slightly.  However, this difference does not amount to suspicion of NTL, since the 

differences are only in the time of usage and the magnitude during the nights and on 

weekends.  

 

Figure 5.28.  Comparing four meters from cluster 2. 
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 Figure 5.29 shows the load profiles for four weeks of four consumers in cluster 3.  

Consumers m1 and m2 (red and blue) are those with a low anomaly coefficient while 

m3 and m4 (green and black) have a high value.  Here the difference is only in the 

magnitude contour of the consumption, m1 and m2 exhibit a consumption with a 

number of peaks while for m3 and m4 the consumption is smoother and mostly at 

night.  But m3 and m4 are not fraud suspects. 

 

Figure 5.29.  Comparing four meters from cluster 3. 

 

The load profiles in Figure 5.30 are for four consumers from cluster 4, where m1 and 

m2 (red and blue) have exhibited low anomaly coefficients, while for m3 and m4 

(green and black) the anomaly coefficient is high.  Here four weeks are shown and 

there is not a considerable difference which is noted for the four consumers’ behaviour.  
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Figure 5.30.  Comparing four meters from cluster 4. 

 

Figure 5.31 shows the load profiles for four consumers form cluster 5, m1 (red) and 

m2 (blue) with low anomaly coefficient and m3 (green) and m4 (black) with high 

anomaly coefficient.  From the plot it can be determined that the differences lie in 

magnitude of consumption during the night hours and in the fact that m3 and m4 

generally do not have consumptions on Sundays, while m1 and m2 have sustained 

consumption all through the week.  So, it is understood that the majority consumers in 

cluster 5 have regular consumption on all days of the week with a minority of 

consumers which have marginally less consumption on weekends.  But neither m3 nor 

m4 seem to have any irregular behaviour. 

 

Figure 5.31.  Comparing four meters from cluster 5. 
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Four weeks of load profile for four consumers from cluster 6 are shown in Figure 5.32.  

m1 (red) and m2 (blue) have low anomaly coefficient while m3 (green) and m4 (black) 

have high anomaly coefficient.  m3 and m4 have a lower consumption during the night 

than m1 and m2.   For two weeks, around 09/07/2018, m4 has a behaviour which might 

look suspicions and might be a candidate for inspection. 

 

Figure 5.32.  Comparing four meters from cluster 6. 

 

Figure 5.33 shows the load profiles of four consumers during four weeks.  m1 (red) 

and m2 (blue) have low anomaly coefficient while m3 (green) and m4 (black) have 

high anomaly coefficient.  It can be observed that all these consumers have a low 

consumption on weekends.  On the second week there was a public holiday, on 

29/06/2018, which is distinguishable by the low consumption from all the four 

consumers.  But m3 and m4 do not seem to have any irregular behaviour. 
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Figure 5.33.  Comparing four meters from cluster 7. 

   

The load profiles shown in Figure 5.34 are for four weeks of four consumers in cluster 

8.  m1 (red) and m2 (blue) have low anomaly coefficient while m3 (green) and m4 

(black) have high anomaly coefficient.  The profiles for m3 and m4 are very similar 

with the minimum consumption being very much lower than that for m1 and m2.  

Another dissimilarity is that m1 and m2 have their consumption concentrated during 

the day while for m3 and especially for m4 the consumption is almost entirely during 

the night.  But, from looking that their load profiles, neither m3 nor m4 show any 

suspicious behaviour. 

 

Figure 5.34.  Comparing four meters from cluster 8. 
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By visually analysing the load profiles for consumers with high and low anomaly 

coefficients, consumers with suspicious irregular behaviour can be identified.  

However, it cannot be taken for granted that meters with high anomaly coefficients are 

suspects of NTL.  As was observed in the above plots the behaviour of consumers with 

high anomaly coefficients is always different from those consumers with low anomaly 

coefficients, but it is not necessarily fraudulent.      

 

5.9.2 Cluster-Change Coefficient 

The objective behind this method is to use all 17 weeks of data available in the dataset 

and classify the consumers for each week, without doing any averaging, in order to 

identify which consumers change clusters most often.  It is expected that consumers 

that stay in the same cluster for a considerable number of weeks are more regular in 

their consumption profile than those who change cluster often.  Moreover, the cluster 

changes which were performed by very few consumers are more suspicious than others 

which are performed by a substantial number of consumers. For example, if on a 

particular week there was a public holiday, it is reasonable that quite a number of 

consumers will move to another cluster for that week, and back again the following 

week. This may also be the case for other external occurrences which impact on the 

whole, or large part, of the population like, for example, weather conditions.   

The typical cluster for each consumer was first determined as already mentioned in 

section 5.9.1.  Then, for each of the 17 weeks PCA was used to extract the PCs from 

the features and the first 7 PCs were used for classifying the consumers by using KNN 

– using the same procedure as in sections 5.8  and 5.9.1.  The cluster numbers obtained 

for the typical week were used as labels for the KNN classification. 

For each week, each cluster change was given a score based on the number of such 

cluster change that were done during that week divided by the number of consumers 

in the original (or source) cluster.  So, if the change from cluster 1 to cluster 2 is being 

considered for week 3, the score will be the number of consumers who change cluster 

from cluster 1 to cluster 2 between week 3 and week 4, divided by the number of 

consumers in cluster 1 in week 3. 
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𝑠𝑐𝑜𝑟𝑒12 =  
𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟𝑠  𝑤ℎ𝑖𝑐ℎ 𝑐ℎ𝑎𝑛𝑔𝑒𝑑 𝑓𝑟𝑜𝑚 1 𝑡𝑜 2

𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟𝑠  𝑖𝑛 𝑐𝑙𝑢𝑠𝑡𝑒𝑟  1
   Equation 5.12  

Hence the score will be closer to 0 if few consumers changed clusters from cluster 1 

to cluster 2, and closer to 1 if many consumers changed from cluster 1 to cluster 2. 

The methodology is demonstrated for week 11 and week 12 in Table 5.16 and Table 

5.17.  Table 5.16 shows the number of consumers in each cluster for week 11 and week 

12. 

Table 5.16.  Count of consumers in each cluster for weeks 11 and 12 

Cluster Week 11 Week 12 

1 297 369 

2 116 121 

3 83 106 

4 267 254 

5 37 48 

6 211 130 

7 111 78 

8 22 38 

 

Table 5.17 shows the scores for the cluster changes for week 11 and week 12.  For 

example between week 11 and week 12 there was only one consumer who moved from 

cluster 2 to cluster 3 ( 2 → 3 ) and he will get a low score for that. The number of 

consumers who changed cluster from 2 to 3 was one. The number of consumers in 

cluster 2 for week 11 is 116.  So, the score for a consumer changing cluster from 2 to 

3 between weeks 11 and 12 is 1/116 = 0.0086.  

As another example, between week 12 and week 13 there were 131 consumers which 

moved from cluster 1 to cluster 6 ( 1 → 6 ).  Calculating the score, the number of 

consumers who changed cluster from 1 to 6 was 131. The number of consumers in 

cluster 1 for week 12 was 369.  So, the score for a consumer changing cluster from 1 

to 6 between weeks 12 and 13 is 131/369 = 0.355.  
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Table 5.17.  Scores for cluster changes weeks 11 and 12 

Week 11 Week 12 

Change Count Score Change Count Score Change Count Score Change Count Score 

1 -> 1 150 0.5051 5 -> 1 11 0.2973 1 -> 1 125 0.3388 5 -> 1 2 0.0417 

1 -> 2 20 0.0673 5 -> 2 0 0.0000 1 -> 2 7 0.0190 5 -> 2 0 0.0000 

1 -> 3 19 0.0640 5 -> 3 12 0.3243 1 -> 3 37 0.1003 5 -> 3 5 0.1042 

1 -> 4 21 0.0707 5 -> 4 7 0.1892 1 -> 4 24 0.0650 5 -> 4 15 0.3125 

1 -> 5 6 0.0202 5 -> 5 7 0.1892 1 -> 5 6 0.0163 5 -> 5 21 0.4375 

1 -> 6 46 0.1549 5 -> 6 0 0.0000 1 -> 6 131 0.3550 5 -> 6 2 0.0417 

1 -> 7 23 0.0774 5 -> 7 0 0.0000 1 -> 7 30 0.0813 5 -> 7 1 0.0208 

1 -> 8 12 0.0404 5 -> 8 0 0.0000 1 -> 8 9 0.0244 5 -> 8 2 0.0417 

2 -> 1 14 0.1207 6 -> 1 118 0.5592 2 -> 1 4 0.0331 6 -> 1 38 0.2923 

2 -> 2 38 0.3276 6 -> 2 9 0.0427 2 -> 2 33 0.2727 6 -> 2 3 0.0231 

2 -> 3 1 0.0086 6 -> 3 3 0.0142 2 -> 3 0 0.0000 6 -> 3 6 0.0462 

2 -> 4 45 0.3879 6 -> 4 8 0.0379 2 -> 4 34 0.2810 6 -> 4 13 0.1000 

2 -> 5 1 0.0086 6 -> 5 2 0.0095 2 -> 5 0 0.0000 6 -> 5 0 0.0000 

2 -> 6 7 0.0603 6 -> 6 46 0.2180 2 -> 6 2 0.0165 6 -> 6 44 0.3385 

2 -> 7 10 0.0862 6 -> 7 3 0.0142 2 -> 7 45 0.3719 6 -> 7 5 0.0385 

2 -> 8 0 0.0000 6 -> 8 22 0.1043 2 -> 8 3 0.0248 6 -> 8 21 0.1615 

3 -> 1 22 0.2651 7 -> 1 22 0.1982 3 -> 1 24 0.2264 7 -> 1 14 0.1795 

3 -> 2 0 0.0000 7 -> 2 35 0.3153 3 -> 2 0 0.0000 7 -> 2 12 0.1538 

3 -> 3 46 0.5542 7 -> 3 1 0.0090 3 -> 3 57 0.5377 7 -> 3 2 0.0256 

3 -> 4 7 0.0843 7 -> 4 24 0.2162 3 -> 4 5 0.0472 7 -> 4 11 0.1410 

3 -> 5 4 0.0482 7 -> 5 0 0.0000 3 -> 5 11 0.1038 7 -> 5 0 0.0000 

3 -> 6 2 0.0241 7 -> 6 2 0.0180 3 -> 6 9 0.0849 7 -> 6 0 0.0000 

3 -> 7 1 0.0120 7 -> 7 27 0.2432 3 -> 7 0 0.0000 7 -> 7 38 0.4872 

3 -> 8 1 0.0120 7 -> 8 0 0.0000 3 -> 8 0 0.0000 7 -> 8 1 0.0128 

4 -> 1 31 0.1161 8 -> 1 1 0.0455 4 -> 1 8 0.0315 8 -> 1 10 0.2632 

4 -> 2 18 0.0674 8 -> 2 1 0.0455 4 -> 2 37 0.1457 8 -> 2 0 0.0000 

4 -> 3 24 0.0899 8 -> 3 0 0.0000 4 -> 3 6 0.0236 8 -> 3 0 0.0000 

4 -> 4 139 0.5206 8 -> 4 3 0.1364 4 -> 4 169 0.6654 8 -> 4 0 0.0000 

4 -> 5 28 0.1049 8 -> 5 0 0.0000 4 -> 5 14 0.0551 8 -> 5 0 0.0000 

4 -> 6 18 0.0674 8 -> 6 9 0.4091 4 -> 6 7 0.0276 8 -> 6 20 0.5263 

4 -> 7 9 0.0337 8 -> 7 5 0.2273 4 -> 7 12 0.0472 8 -> 7 0 0.0000 

4 -> 8 0 0.0000 8 -> 8 3 0.1364 4 -> 8 1 0.0039 8 -> 8 8 0.2105 

 

A high score indicates normal behaviour while a low score indicates anomalous 

behaviour.  Every consumer for every week, except the last week, was given this score 

based on the cluster changes they performed.  So, each consumer ended up with 16 

scores.  To combine the 16 scores into one for each consumer the scores were added.  
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Adding was preferred over multiplication where if there is even one score close to 

zero, the overall score will also be close to zero, even if all the other 15 scores are close 

to 1.  Then the overall score for all users was normalised so that the users can be 

compared in a range from zero to one.  In order to allow its use in conjunction with the 

anomaly coefficient derived in section 5.9.1, the overall score was subtracted from one 

to obtain the cluster-change coefficient: 

𝑐𝑙𝑢𝑠𝑡𝑒 𝑟𝑐ℎ𝑎𝑛𝑔𝑒𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 1 − 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑠𝑐𝑜𝑟𝑒   Equation 5.13 

So, consumers with cluster-change coefficient which is close to one are more likely to 

exhibit NTL. 

Figure 5.35 shows eight weeks of load profiles of four consumers which have different 

cluster change coefficients for comparison.  m1 (red) and m2 (blue) have very low 

cluster change coefficients which means that they are very consistent throughout the 

17 weeks.  On the contrary, m3 (green) and m4 (black) have cluster change coefficients 

which are close to one, hence showing erratic, or at least inconsistent, behaviour.  m3 

has a very unsteady consumption with spikes once or twice a week having very 

different peaks.  The consumption behaviour of m4 is also very irregular, there are two 

weeks in June and one week in July with very low consumption relative to rest.  While 

it is not a certainty that these two consumers have suspicious behaviours, it is surely 

advisable that their meters are checked. 

 

Figure 5.35.  Load profiles for consumers with different cluster-change coefficients. 
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5.10 Minor Modifications and Future Enhancements 

An enhancement to this work would be the selection of the features.  The selected 

features can make considerable difference in the results and so have to be chosen very 

carefully.  So, it would be an improvement if the feature selection can be fine-tuned 

depending on the results. 

In future work the use of sequential hierarchical clustering [117] can be explored for 

the determination of the cluster change coefficient, whereby the clustering for each 

week will continue on the clusters obtained for the previous week.  The intention is 

that conventional hierarchical clustering will be done for the first week and then 

sequential hierarchical clustering will be performed for the second and successive 

weeks.  Consumers can then be allocated in the same, other or even new clusters.  New 

consumers should also be processed and placed in their appropriate cluster.  Using this 

approach there will not be the need to find the typical week for each consumer since 

the grouping will be done entirely by hierarchical clustering without any need for the 

KNN classification. 

The results that will be obtained from inspections suggested by the coefficients 

determined in this work should be recorded in detail so that in future a supervised 

approach can be explored.  The two methods, supervised and unsupervised, can be 

combined together to make the NTL detection more efficient.  

 

5.11 Conclusion 

Anomaly detection is nontrivial, and detection of non-technical losses is quite a 

challenge, mainly because of the unbalance in the numbers between genuine and 

fraudulent consumers and, in the case of local data, the lack of labelled information.  

In this work a set of features were derived to describe the weekly behaviour of the 

consumers while serving as a means of dimension reduction.  PCA was used as a 

method for further dimension reduction. Both unsupervised and supervised learning 

machines were utilised to classify behaviours by using hierarchical clustering for 



 

119 

 

training and KNN for testing.  The model was validated by using 3-fold cross 

validation which gave an overall accuracy of 91.99%.  Finally, two coefficients were 

derived which indicate the possibility that a consumer is liable to contribute to non-

technical losses.  The anomaly coefficient gives a measure of how much the behaviour 

of the consumer is similar to others which generally have similar features.  The cluster-

change coefficient gives a measure of how well behaved the consumer is over a 

number of weeks by keeping track of the cluster changes done with respect to the 

cluster changes of the majority of consumers.  The anomaly coefficient is more 

conservative than the cluster change coefficient since it is based on the behaviour of a 

typical week, while the cluster-change coefficient is based on the behaviour of each 

week.   It is recommended to combine these two coefficients to give an Anomaly Score 

which can be used to list the consumers which are more likely to exhibit NTL. 
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6 Conclusion 

 

Due to the fact that not all the data generated by smart meters is read successfully every 

day and thus a portion of the data gets lost, it is important for Enemalta to have a data 

imputation strategy in place.  In the presence of missing data, statistical and analytical 

processes cannot be conducted effectively and reliably.  Hence the first objective of 

this work was to develop a method which fills in the missing load profiles for 

commercial consumers.  First a study was conducted to determine the extent of missing 

data and from this study, it was decided to use data from 2016 to 2019 as a test dataset 

for imputation.  The developed imputation method uses a KNN based algorithm which 

searches in the past daily consumption of the consumer for behaviour similar to that 

during the period right before the data went missing.  The k best matching profiles are 

averaged to get the estimated daily consumption for the missing portion.  Then the half 

hourly load profiles for the same days which were in the best matching profiles are 

averaged to get the values for the imputed half hourly load  profiles.  Finally, the 

imputed load profiles are scaled for their sum to equal the difference between any 

available spot readings.  This factoring restores the correct magnitude to the imputed 

load profiles since the matching is done on normalised values to match the behaviour. 

The factoring is also important so that the relationship between spot readings and load 

profiles is conserved.  The average RMSE obtained for a sample of 335 load profiles 

was 7.47%. 

Having a complete load profile, where any missing data has been imputed, paves the 

way for the second objective of this thesis, that is developing a method for detecting 

anomalous consumption behaviour.  Anomalies might be caused by faulty or tampered 

metering setups which both contribute to non-technical, i.e. financial losses for 

Enemalta.  Commercial consumers have much higher consumption than residential 

and domestic consumers and so it makes more economical sense to concentrate on 

them.  A number of consumers with full load profiles for a period between 1st June 

2018 and 30th September 2018 (17 weeks) were selected.  The period was selected to 

span over the summer season so that the behaviour of the consumers is as regular as 

possible.  These consumers were split into 8 clusters, by using hierarchical clustering, 

based on their behaviour.  A two-step dimension reduction process was performed 
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before clustering to reduce the amount of data processed by the clustering algorithm.  

Feature extraction was the first step in dimension reduction where 32 features were 

selected which well explain the weekly consumption behaviour of clients while 

reducing the redundancy in the data.  The second step of dimension reduction was 

performed through Principal Component Analysis.  The clustering process was 

performed on the first 7 principal components which were shown to be the major 

contributors for the total variance. 

The clustering model was tested by using 3-fold validation.  The load profile data for 

15 weeks was split into 3 5-week folds which were then used for training and testing.  

The data in one fold was used for training while the data in the other two folds was 

used for testing.  This was repeated 3 times so that each week of data was utilised both 

for training and for testing.  In order to reduce the effect of seasonality between training 

and testing, the weeks making up each fold were selected to be alternate rather than 

adjacent so that the training data was spread over the whole 15 weeks, as was the 

testing data.  For testing, classification was performed using KNN based on the clusters 

obtain through hierarchical clustering. The overall accuracy based the 3-fold 

verification process was 91.99%. 

For each consumer an anomaly coefficient was then derived by calculating the sum of 

the distances from all the other consumers in the same cluster.  The larger the sum of 

the distances, the more dissimilarity a particular consumer is from the general 

behaviour of that cluster.  These distances where then normalised to obtain the 

anomaly coefficient by which all users in all clusters can be compared.  Consumers 

with high anomaly coefficient are more likely to exhibit NTL. 

Another method to assess the regularity of a consumer is to monitor the cluster changes 

during the observation period of 17 weeks.  The number of times a consumer changes 

from one cluster to the other is directly related to the regularity of his behaviour.  A 

consumer who changes clusters every week is more likely to exhibit NTL than a 

consumer who stayed in the same cluster for a considerable number of weeks.   

Moreover, the cluster changes which were performed by very few consumers are more 

suspicious than others which were performed by a substantial number of consumers.  

Based on these changes an algorithm was developed which calculates the cluster-
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change coefficient for each consumer.  Consumers with cluster-change coefficient 

closer to 1 have unstable consumption which might indicate NTL. 

The two coefficients can be combined by addition to give an Anomaly Score which 

can be used to list the consumers which are most likely to have their metering setup 

faulty or tampered. 

In conclusion this research presented an algorithm capable of imputing missing values 

with an average RMSE of 7.47% of the actual values.  It also presented two novel 

coefficients which can be used on their own or combined to indicated consumers who 

are most likely to contribute to non-technical losses.   
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