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Abstract: Malta, as a member of the European Union (EU), has pledged to become carbon neutral by
the year 2050. Concurrently, the need for thermal comfort for people within places of worship has
expanded tremendously in recent years. As a result, prioritizing passive methods over mechanical
air-conditioning systems in such buildings is an essential step toward protecting the macroclimate
while achieving a sustainable and comfortable indoor environment. Using DesignBuilder-EnergyPlus
software, this paper examines the effectiveness of selective passive measures in two free-running
church buildings. Results show that certain passive measures alleviate severe high and low indoor
temperatures, resulting in a more comfortable environment. Environmental control, on the other
hand, present difficult conservation challenges. Historic church buildings were initially built to
make use of passive design features for internal comfort, and this study shows that they outperform
expectations and, in general, outperform more contemporary church structures.

Keywords: thermal comfort; passive measures; Mediterranean climate; natural ventilation;
DesignBuilder; modelling

1. Introduction

In a world where climate-related temperature fluctuations are increasing building
cooling and heating demand, reducing the usage of heating, ventilation, and air condition-
ing (HVAC) systems in a culture that now demands higher levels of comfort is becoming
increasingly difficult. According to the NASA Global Land-Ocean Temperature Index,
the year 2020 tied with 2016 for the warmest year on record since record keeping began
in 1880, illustrating an exponential growth in global surface temperatures to date [1].
In addition, the June 2021 global surface temperature in Europe was the second warmest
June on record with a temperature departure of +2.36 °C (4.25 °F) [2]. Moreover, as the
COVID-19 restrictions were lifted, and economies recover, the International Energy Agency
(IEA) 2021 report highlights that the global energy demand is set to increase by 4.6%
in 2021.

At the European level, there is a clear push towards carbon neutrality by 2050; nev-
ertheless, more ambitious contributions from all sectors are necessary to accomplish this
aim. While the world’s attention was focused on the rollout of the Coronavirus vaccine and
global markets at the end of 2020, the EU agreed on the greatest ever economic stimulus
plan for all member states. Malta’s National Energy and Climate Plan (NECP) [3-5] cur-
rently follows that of the European Union and, given that this is a time when energy and
climate issues are at the forefront of political and public debate, any implications of climate
change are very much more noticeable. Concerns regarding the energy performance of
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heritage buildings have developed in the recent decade, mostly because current energy-
efficiency measures in such structures remain relatively low and dispersed. Prioritizing
passive measures (PM) over active air-conditioning systems to increase indoor thermal
comfort in such buildings is, therefore, an essential step towards a more sustainable living.

Malta, the southernmost European country located in the Mediterranean Sea, occupies
a church density of slightly more than one church per square kilometre. As a result,
considering Malta’s relatively large number of churches, prioritizing PM within such
structures will alleviate the high demand for energy needed should active systems be
considered as opposed to passive measures. Thus, this study aims to assess the potential of
applying passive measures to enhance indoor thermal comfort levels measured according
to the EN 16798-1 standard in two church buildings: one representing the typical Baroque
churches in Malta, and the other representing a distinct contemporary style of architecture.
Moreover, this study also aims to identify why a trend to install ACs in Baroque churches
is emerging. (Refer to Figure 1.)

Figure 1. Emerging trend to install air conditioners in Baroque churches. Photograph by author
RCV (2018).

Accordingly, the following research questions were asked:

e  Why revert to air conditioning for cooling during short-duration religious service
functions, rather than optimising the use of passive measures?

e How can these emerging cooling challenges especially due to climate change be
effectively addressed?

To address these questions, the following was carried out.

L Modelling in DesignBuilder-EnergyPlus to determine the sources of overheating, as
well as evaluate the impact of applying several passive energy-efficiency measures.

II. Validation of software simulation results with actual data monitoring of tempera-
ture and humidity within a Baroque church and a modern church building.

IIL Evaluation of the best energy-efficiency measures that can be applied to achieve an

improved level of indoor comfort in renovated /retrofitted places of worship.

Nowadays, most of the population living in such warm climates has grown accus-
tomed to conditioned spaces, from their homes to their modes of transportation, to their
workplaces, and to other areas of leisure and entertainment, thus spending a significant
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portion of the day within controlled environments. Attending a 30—45-min religious service
function, many times on a weekly basis, is not necessarily acceptable in this circumstance.
Improving ambient conditions in free-running places of worship with passive measures
(PM) may provide an effective remedy. The added value of this work is not only to con-
tribute to upgrading heritage retrofitting policies, guidelines, and building codes in the
local context, which lacks such initiatives, but also to extend the results to other regions of a
similarly warm Mediterranean climate and provide guidance for policymakers to upgrade
standards of these historical church buildings.

2. Passive Techniques

There are numerous PM that can be used in buildings today to increase their energy
efficiency. These are divided into two categories: those related with heating performance
and those associated with cooling performance. In Malta, although throughout the year
there exist four seasonal changes, the most dominating changes are particularly the cold
and warm temperatures during winter and summer, respectively. However, given that
Malta lies within a Mediterranean climate and is particularly dominated by hot summers
and mild winters, cooling performance PM are more appropriate. The main criteria of
passive cooling measures are to prevent buildings from overheating by blocking solar gains
and removing internal heat gains from within the building. These include reflective and
radiative paint, thermal mass, low window-to-wall area ratio (S/W), passive ventilation
(operable windows), and nocturnal cooling [6]. Natural ventilation and passive cooling
techniques have been two important features in typical architectures, with domed and
vaulted roofs extensively used in hot dry regions [7]. Therefore, huge potential exists to ex-
ploit the benefits of energy-efficient retrofitting. The Energy Efficiency Directive [8] obliges
Malta to adopt national building-renovation strategies, including the eco-refurbishment
of public buildings, many of which have heritage value. Although the regeneration of
heritage buildings is gaining popularity in Malta, the role of energy-efficient refurbishment
remains generally unexplored.

2.1. Reflective and Radiative Paint

Al-Obaidi et al. (2014) established that implementing reflective and radiative ap-
proaches in roofing systems as a passive measure would help decrease the effect of heat
penetration. However, this strategy is not without limitations. It is worth emphasizing
that, in accordance with such constraints, the physical properties of the building should be
properly understood in order to reflect solar radiation from structures by natural means [7].
For instance, the application of high-reflective (cool) exteriors, particularly for roofs, could
provide low-cost and efficient solutions to decrease heat flux through the building envelope
during warm periods [9]. This provides a high coefficient of solar reflectance with a Solar
Reflective Index (SRI) of over 82 [10]. Zhang Yin et al. (2017) studied the application of
a retro-reflective coating material on the external building envelope and concluded an
average indoor temperature decrease by 2.4 °C, when compared to the reference building
without the retro-reflective material [11]. The finding established in [12] further explains
the fluctuations in indoor temperatures due to the installation of reflective materials which,
in turn, resulted in a temperature change by as much as 7 °C. This could be carried out by
utilising a process simply known as ‘cool roofing,” designated to reduce the absorbed radia-
tion, hence having less heat transferred inside the building [13]. Other studies reported an
average decrease in the indoor air temperature by 2 °C through the application of a cool
roof-coating membrane [14]. Ibrahim, H.S.S. et al. (2021) also assessed the effectiveness
of cool roofing techniques on a heritage building located in Cairo. The application was
in the form of a white acrylic roof paint (solar reflective material) with a thickness of
0.002 m, which gave a result of up to 15.8% in comfort improvement [15]. Becherini F. et al.
(2018) also recommended the use of an infrared reflective (IR) coating to reduce indoor
temperatures [16].
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This coating has been demonstrated to be more appropriate for cities with hot summer
temperatures, making it a viable alternative for structures in Malta. As churches in Malta
are designated Grade 1 structures and are registered on the National Inventory of Cultural
Property of the Maltese Islands (NICPMI), such intervention is not applicable to the building
fagades, and out-of-sight roof treatments would be more suitable and less damaging to the
historical value of these churches. (Refer to Figure 2.)

P

TR NN . 3-

Figure 2. Initiatives and examples of cool roofs. (Left): The Collegiate Archmatrix Parish Church of
Saint George, Qormi (Malta). (Mid): The Basilica of Christ the King, Paola Parish Church (Malta).
(Right): The Saint Publius Parish Church, Floriana (Malta). Photographs by author RCV (2018-2020).

2.2. Thermal Mass

Thermal mass can be used as a means for passive cooling. Thermal mass is linked to
the material within the building envelope that can help minimise temperature fluctuations
throughout the day. This is brought about by the effect of heat absorption during periods
of high solar radiation and the dissipation of heat as the surrounding atmosphere begins to
cool. This phenomenon is most efficient in climates where there are significant fluctuations
between the day and night-time ambient temperatures, but this is not the case for the
Central Mediterranean Region. Thus, within the local climate, high night-time temperatures
result in limited fluctuations between day and night (5.9 °C difference), thus limiting the
dissipation of heat gained throughout the day through the building envelope. Hence,
although thermal mass is beneficial during the day, the building must be ventilated during
the night to enhance dissipation of the stored heat energy [17]. F. Sharaf (2020) evaluated
the thermal mass efficiency of construction materials in improving the thermal performance
of buildings so that human thermal comfort is achieved through less energy consumption.
This case study was carried out on a building with two parts—an old part made of clay
brick walls (40 cm thick) and an added part made of concrete brick walls (10 cm thick)—
within the same climatic condition in the city of Al Mafraq, in Northern Jordan. Internal
and external temperature measurements were recorded in both parts of the building and
were then compared to evaluate the effect of different thermal mass performances. Results
indicated that, for the old part of building with a higher thermal mass, reductions in
energy use would be more efficient [18]. This concurs with another study carried out by T.
Kuczynski et al. (2020), where two buildings, located in the Science and Technology Park
in the University of Zielona Gora in central-western Poland, built with different building
materials with different thermal masses, were compared to determine which one would be
more feasible in terms of energy performance. Results indicated that the building with the
higher thermal mass was more efficient with regards to reduction in energy use [19].

2.3. Natural Ventilation

In order to be more effective, thermal mass must be paired with proper night venti-
lation to disperse the heat emitted from within the thermal mass and, therefore, achieve
lower mechanical cooling loads for the following day. [20,21]. Throughout the day, the
indoor temperature is kept relatively low compared to the external temperature, because
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the thermal mass introduces a delay in heat transfer to the indoor space. Conversely,
throughout the night, when the outdoor temperature is relatively cooler, the thermal mass
of the building will release its stored heat to both the external and internal parts of the
building, hence raising its indoor temperature. Thus, to counteract this released heat
and decrease the overall indoor temperature, ventilation must be introduced to allow the
infiltration of cooler external temperature. Ventilation can be classified into two categories:
“natural” or “mechanical”, with passive actions encouraged over active systems.

Natural ventilation, in other words passive ventilation, is generally categorised into:
cross ventilation—which occurs due to a pressure difference between one side of the
building and the other by drawing air in on the high pressure side and drawing it out on
the low pressure side—and stack ventilation—where the cooler air enters the building at
low levels, is heated by the occupants/radiant surfaces and as it becomes less dense and
more buoyant, rises through the building to be ventilated to the outside through high level
windows/vents [20].

M. Palme et al. (2017) investigated the potential use of natural ventilation as a mit-
igation strategy to reduce overheating in buildings under an urban heat-island effect
(UHI—generated by intensive urbanization) in South America. Results showed that natural
ventilation is a very beneficial approach to extract heat, accounting for a percentage of a
circa 80% reduction [22]. T. Kuczynski et al. (2020) also established that, when night venti-
lation is introduced in a quick and effective manner within a building with a high thermal
mass, temperatures during the night hours no longer reached the absolute maximum tem-
peratures, thus improving the indoor ambient environment [23]. M. Darmanis et al. (2020)
also highlighted the use of night ventilation as a beneficial cooling strategy in regions where
the diurnal temperatures are very high (30-35 °C). The efficiency of the night-ventilation
strategy was investigated by incorporating the use of an extractor fan in conjunction with a
mechanical cooling system (AC). Results showed that night ventilation via the extractor
fan decreased the average daily energy consumption of the mechanical cooling system by
an average of 15-27%. Moreover, M. Darmanis et al. (2020) stressed that integrating both
passive and mechanical cooling systems within buildings, referred to as “mixing mode”
cooling systems, can decrease the overall carbon footprint of such buildings [24].

2.4. Nocturnal Cooling

Nocturnal cooling, also referred to as nocturnal radiative cooling, is a natural process
that has to do with the cooling of a body through radiation to the night sky. Radiative
cooling helps to cool down a building mass to create a heat sink for the following days’
thermal gains. Throughout the day, this cooling ability is lost due to the presence of solar
radiation—however, at night, the heat loss from the radiative cooling system can cool the
indoor air, as the material experiences a temperature drop by 2-12 °C below ambient.

B. Bokor et al. (2017) assessed this concept through two plates consisting of a backplate
(bottom) and a corrugated, perforated metal plate on top (used as a radiator). The perforated
plate cooled down below the night ambient temperature via long-wave radiation, forming
a cold boundary on the external side of the plate. A fan creates a negative pressure
in the air gap; thus, the cold boundary layer is dragged through the perforations and
subsequently into the building. The assessment was carried out on buildings in European
cities (Stockholm, Helsinki, Vienna, Lisbon) with results showing that the most optimal
potential of nocturnal radiant air cooling can be obtained especially in dry climates with
high diurnal temperature variations. The annual mechanical cooling energy saved through
this system was in the range of 17-35% [25]. Similarly, P. Mulik et al. (2019) also documented
successful outcomes through this concept, with results showing that the cooling energy
demand of the building can be reduced by 28%. However, the design varied slightly from
that of B. Bokor et al. (2017). In this case, the system was repeatedly circulating the same
air within the room via the exhaust fan rather than dragging fresh air from the outside.
As the air passes between the two metal plates, the heat is transferred to the surrounding
metal plates; hence, their temperature increases whilst the temperature of the air decreases.
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This cooled air is then fed back into the room [26]. H.S.S et al. (2021) also reported a total
of 10.7% comfort improvement using nocturnal cooling on a heritage building located in
Cairo [15].

2.5. Low Window-to-Wall Ratio

The optimal window-to-wall ratio is a window area that can reduce the entire yearly
energy consumption for heating, cooling, and lighting [27]. A study conducted in the humid
climate of Libya by S. Alghoul et al. (2017) revealed that an increase in the window-to-wall
ratio on a south facade resulted in an increase in energy consumption during summer and
approximately zero demand for heating during the winter [28]. When the worst possible
window-to-wall ratio configuration is adopted, energy consumption can increase by up to
5-25% compared to when it is adopted in a more optimal manner [27].

T. Kaasalainen et al. (2020) investigated the influence of window-to-wall ratio and
window orientation on cooling, heating and total energy consumption in a case study
located in the city of Tripoli, Libya. According to the results, increasing the window-to-
wall ratio increases cooling energy consumption in a hot environment, particularly on
the southern facade, due to an increase in passive solar heating [29]. In conjunction with
this, M. Alwetaishi (2019) investigated the influence of glazing-to-wall ratio in different
microclimate regions in Saudi Arabia with hot/dry, hot/humid, and moderate climates.
The results revealed that the East and South directions are the worst for gaining the most
solar heat; hence, glazing systems in these directions should be minimized. According to
this study, the best percentage of glazing-to-wall ratio in hot/humid and hot/dry climates
is 10%, whereas it is 20% in mild climates [30].

3. Case Studies

Analysis of the physical and environmental factors of churches in Malta is based on
studies of a number of churches, termed “reference buildings” (RBs). These RBs charac-
terise the different types of churches in Malta and portray “real examples” with typical,
physical, and statistical characteristics [31,32]. Out of the 359 churches on the Maltese
islands, one of the churches chosen for this work represents the 17th to mid-18th century
Baroque period, which accounts for the vast majority of churches in Malta in terms of
building stock categories such as location, construction period, building size, and shape
classification, as proposed by Ballarini et al. [33]. The other is a late-twentieth century
(post-Vatican Council II) modern style. The Stella Maris Parish Church in Sliema (Baroque)
and Our Lady of Mount Carmel Parish Church in Fgura (Contemporary) are both Grade
1 monuments on the Maltese Islands’ National Inventory of Cultural Property (NICPMI) [34].

3.1. Stella Maris (Our Lady Star of the Sea) Parish Church, Sliema (Malta)

The Parish of Stella Maris (Refer to Figure 3) is the oldest amongst the four parishes of
Sliema town. In April 1853, the construction of the church, dedicated to Stella Maris, was
undertaken and it was completed in 1855. Between 1876 and 1878, extensions were made,
and the church was enlarged to its present size. The church suffered severe damage during
World War II whereby, besides structural damages, various works of art were lost [35-37].

The building approach is characteristic of Maltese baroque churches, with loadbearing
masonry walls supporting a vaulted ceiling and dome structure made of globigerina
limestone blocks, which is a Global Heritage Stone Resource (GHSR) [38]. The main
cupola, which has arched windows and an upper cornice supported by corbels, stands
on an octagonal drum that serves as a foundation. The dome is supported by circular
masonry rings. The dome, the main nave, and the rest of the church’s roofs are all covered
in “deffun.” The “deffun” technique consists of various graded gravels (from rough and
big grains to smaller thin grains), followed by a lime layer with beaten crushed pottery
(clay) powder over it, laid to falls, which results in a relatively low thermal transmissivity
(U-value) for the roof.
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Figure 3. External and internal photographs of Stella Maris Parish Church, Sliema (Malta)—Baroque
church; photographs by author RCV (2020).

3.2. Our Lady of Mount Carmel Parish Church, Fqura (Malta)

The Parish Church of Fgura (Refer to Figure 4) was constructed in the late twentieth
century (1988) and consecrated to Our Lady of Mount Carmel on 1 February 1990. This
church is designed in a modern, post-Vatican Council II style and is one of the most unique
and daring reinforced concrete constructions on the island. It is built on a square layout
with a reinforced concrete shell construction that is symmetric around both axes. The
primary structural material is concrete, and the structure’s strength is derived from its
shape rather than its sheer bulk. The layout from the exterior is pyramidal, with a triangular
opening on each four sides, which gives the impression of a floating building.

Figure 4. Internal and external photographs of Our Lady of Mount Carmel Parish Church, Fgura
(Malta)—contemporary church; photographs by author RCV (2020).

4. Methodology

In this paper, the impact of PM was analysed using software modelling for two church
buildings, one representing the typical characteristics found in most churches in Malta,
and the other representing a distinct contemporary style of architecture through its use
of construction materials and form. The results obtained through the interpretation of
experimental data and software simulations are intended to identify the effect of PM on
indoor thermal comfort, establish the most effective PM, and determine whether or not
these measures have the same hierarchy of importance for historical and contemporary



Sustainability 2022, 14, 8261

8 of 23

churches alike. This was accomplished by creating DesignBuilder-Energy Plus models with
specified PM for both church structures to optimize their performance.

4.1. On-Site Measurements

The churches were monitored using HOBO MX1101 data recorders for three consec-
utive years, in 2018, 2019, and 2020. Data loggers were used to continually measure the
two parameters of air temperature (°C) and percentage relative humidity (percent) for
both the indoor and outdoor settings [39]. These simultaneous measurements were taken
at several areas, including the narthex (also known as the western end), the nave, and
the altar. To collect representative climatic data, the data loggers were installed between
1.7 m and 3.5 m above the finished floor level (FFL), eliminating the impact of radiating
sources and air movement. Data recorded at the congregation’s seating area was used due
to stratification in large, indoor areas and variations in temperature and humidity levels at
different levels. The outdoor data was collected using external stations installed within the
churches’ grounds. Bluetooth low energy (BLE) technology was used to wirelessly retrieve
data to mobile devices.

4.2. Adaptive Comfort Model

The EN 16798-1 Adaptive Comfort Model, which offers acceptable indoor temperature
limitations as a function of the exponential weighted running mean of the outdoor temper-
ature, is the model of interest in this work [40]. It should be noted that, for the purposes
of this study, the difference between the operative temperature used in the EN 16798-1
Adaptive Comfort Model standard and the air temperature measured directly from the
data loggers and that simulated using the DesignBuilder software, was determined to be
negligible [41].

The approximate Formula (1) representing the outdoor running mean temperature
follows [40].

O = (®ed-l +0.8 ®ed-2 + 0.6 ®ed-3 +0.5 ®ed-4 +04 ®ed-5 +0.3 ®ed-6 +0.2 ®ed-7)/3'8 (1)

On = outdoor running mean temperature for the considered day (°C).

®cq4-1 = daily mean outdoor air temperature for previous day (°C).

@41 = daily mean outdoor air temperature for the i-th previous day (°C).

Category III comfort level was selected for the church buildings (free running) under
study, as this reflects an acceptable, moderate level of expectation for short-term occupancy.
The equations representing the upper (2) and lower (3) limits for the indoor operative
temperature as a function of the exponentially weighted running mean of the outdoor
temperature follow here below [40]. These limits apply when 15 < @, < 30 °C for upper
limit and 10 < @y, < 30 °C for lower limit [40].

Upper limit: ®, =0.33 O + 18.8 + 4 (2)

Lower limit: ®, = 0.33 Oy, + 18.8 — 5 3)

®, = indoor operative temperature, °C.

Orm = running mean outdoor temperature, °C.

The thermal comfort within the churches was derived from the simulated indoor air
temperature and the established comfort limits in accordance with EN16798-1 standard.
Although thermal comfort does not depend solely on temperature, from the data collected in
this study it can be deduced that, in spaces with low air velocity and where air temperature
and mean radiant temperature are similar, air temperature alone can be a reasonable
indicator of thermal comfort [41].

It is pertinent to point out that, throughout the period under review (2018, 2019
and 2020) in mid-2018, AC units were installed in Stella Maris Parish Church (without
due consideration to artefacts and any damage to the structure AC units may portray).
However, their use was limited to a short-term period, and Coronavirus disease (COVID-19)
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caused a disruption in church attendance in 2020 and, therefore, the data collected mostly
reflected that of a free-running building. Moreover, concerns have been raised about the
likelihood of the spread of the disease through the operation of air-conditioning, and with
respect to internal air-circulation, clean and natural ventilation as opposed to recirculated
air-conditioning was advocated for [42].

4.3. DesignBuilder Model

For the purpose of this study, DesignBuilder Software version 7.0.0.088 [43] was used
for computer simulations. This software, an advanced user interface to Energy Plus, is a
standard building simulation tool, providing access to all of the most commonly required
simulation capabilities covering building fabric, thermal mass, glazing, shading, and
renewables amongst others.

The full geometry of the two churches under review were created in AutoCAD (refer
to Figure 5) and later transposed to DesignBuilder version 7.0.0.088 software to generate
an accurate and precise 3D model (refer to Figure 6). The respective building envelope
characterisation, occupancy schedules, and lighting fixtures were modelled to resemble the
true building and the respective indoor environments. (Refer to Table 1.)
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Figure 5. Church building models—plans and sections. (Above): Our Lady Star of the Sea, Stella
Maris Parish Church, Sliema (Malta). (Below): Our Lady of Mount Carmel Fgura Parish Church,
Fgura (Malta).
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(a)

Figure 6. Church buildings modelled on the DesignBuilder V6 platform. (a) Our Lady Star of the Sea,
Stella Maris Parish Church, Sliema (Malta) and (b) Our Lady of Mount Carmel Fgura Parish Church,
Fgura (Malta).

4.4. DesignBuilder Software Validation

A comparison of the simulated temperature containing PM with the simulated temper-
ature excluding PM was performed to assess the efficiency of the applied passive measures
within the church structures. Prior to this stage, the program was evaluated to ensure
that the margin of error between the simulated indoor temperature output, excluding
PM, and the monitored data is acceptable. This was accomplished by installing the “2018
Weather File” acquired from the Malta International Airport (MIA) within the Design-
Builder program and running a simulation for a full year. The indoor hourly average
measured temperature for 2018 was compared to the simulated hourly data of the indoor
mean air temperature. Subsequently, the hourly simulated data and the measured hourly
values were compared. This process was repeated for all years (2018, 2019 and 2020) using
the respective Weather File for each year and for both churches under study (refer to
Figures 7 and 8). From the graphs portrayed in Figures 7 and 8, it was established that
the lowest margin of discrepancy deemed acceptable was that for the year of 2019 with
an average percentage difference of 2.57% for the Sliema parish church and 6.73% for the
Fgura parish church. Thus, the PM were integrated within the respective DesignBuilder
models utilizing the 2019 Weather File.
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Table 1. Physical characteristics of the church buildings under study.
. . U-Value Internal Heat Capacity Thermal Diffusivity =~ Window-to-Wall Surface Area (m?) Glazing Area
Church Location Opening Hours Envelope (W/m?K) [44,45] (KJ/m?K) [46] (m2/s) [44-46] Ratio Floor Area and Air Volume (m?) System Open (%)
External wall 0.49 180 11.44 x 1077 N =2.6%
Mon-Fri: 6:00-9:00 Glazing 6 3.4 x 1077 S=2.6%
Stella Maris a.m., 18:00-20:00 p.m.; 125 Natu;lally alritd
Parish Sat 6:00-9:00 a.m., » . 2. ) mechanically i
Church Inland 17:00-20:00 p.m.; Floor 2.55 200 242 x 10 E=24% 375 m (Sur. area 2490 m ventilated 20%
Sliema. Sun 6:00-13:00 p m and vol. 5415 m3) (ACs installed
o: 3: .m., on 19/05/2018
17:00-20:00 p.m. Roof 233 180 9.69 x 1077 W =24% )
Roof 1.03 120 9.69 x 1077 NE =11%
External wall 2.52 227 7.6 x 1077 N =18%
Our Lady of Mon-Fri: 6:00-9:00 a.m.,
é’fountl Slfii(zoggoéogop-m-; Glazing 6 34 %107 S=18% 13 Naturall
arme at 6:00-9:00 a.m., 5 2 aturally o
Parish Inland 17:00-20:00 p.m.; 6614 m (Ei? é 35?7%&18655;) ventilated 23.5%
Church, Sun 6:00-13:00 p.m., Floor 224 200 242 x 10°° E=18% }
Fgura 17:00-20:00 p.m.
Roof 2.52 227 7.6 x 1077 W =18%
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Figure 7. Stella Maris Parish Church actual vs. simulated indoor temperature.
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4.5. Passive Measures (PM)

A diagnostic investigation of the building fabric through DesignBuilder software
simulations established that the main source of heat gain (kW) affecting both Sliema and
Fgura parish churches is through the roof, reaching a value of 8 and 28 kW during the
summer typical week, respectively. Section 2 “Passive Techniques”, addressed the most
common passive measures particularly oriented towards passive cooling. Though not
all passive measures discussed are feasible given the architectural importance of these
churches and their aesthetic significance, the following measures gave favourable results.

The first passive measure of interest is a layer of white acrylic polymer paint in the
form of a liquid membrane on the roof. The idea behind this type of passive measure is
attributed to the findings described in Section 2.1. In addition, all roofs require a type of
water-tight material laid over the surface, either in the form of a torch weld sheet membrane
or liquid membrane. In this case, a liquid membrane was the preferred choice given that it
aids in preventing water penetration through the building fabric as its basic function, it can
be easily applied over the existing surface conditions and, more importantly, it comes in
light shade colours such as white which supports the notion of ‘cool roofs,” as described
in Section 2.1. The applied thickness considered was that of 3 mm. This thickness varies
between 2 mm to 4 mm [47].

The second passive measure to yield positive results was the application of “EPS—
extruded polystyrene (standard)” with a thickness of 5 cm and 10 cm. The aim behind
this passive measure is to introduce an insulating material to reduce the U-value and,
hence, decrease the rate of heat transfer through the building envelope. The material was
implemented on building surfaces that are more exposed towards direct solar radiation, ex-
cluding areas that defer architectural importance, such as facades. The adopted thicknesses
of 5 cm and 10 cm are standard thicknesses readily available on the open market, although
custom orders can also be considered [48].

4.6. DesignBuilder Simulations

The simulations were carried out for four periods throughout the year 2019, being
summer design week, summer typical week, winter design week and winter typical week.
These typical simulation periods were derived from the “Statistics data” generated by the
EnergyPlus weather data translation utility, based on the selected “Hourly weather data”
(Malta—weather file) that was uploaded to the DesignBuilder software. The simulations
and their results are based on the integrated “2019 Weather File” obtained from the Malta
International Airport (MIA) and particularly focus on the main seating area of each re-
spective church where the highest number of occupancy/m? is situated. Moreover, the
simulations were set to run during occupancy hours only.

5. Results and Discussion

The analysis of each passive measure was performed independently to enable the
evaluation and comparison of their respective performance and efficacy. The 3 mm thick
white acrylic polymer paint sprayed on the roofing surface of both parish churches was the
first examined passive measure to yield satisfying results, followed by the installation of
the EPS—expanded polystyrene (5 cm and 10 cm). The relationship between the simulated
indoor air temperature, excluding PM and that including PM, with respect to the EN16798-1
category III comfort limits, was derived in all cases using the adaptive comfort model,
establishing their level of comfort (comfortable or uncomfortable) while also assessing the
degree of comfort.

In its existing state, the Sliema parish church is termed as thermally comfortable during
its summer design/typical weeks and winter design week, as its simulated indoor temper-
ature lies within the category IIIl EN16798-1 comfort limits (refer to Figure 9). Conversely,
during its winter typical week, most of the days are termed as thermally uncomfortable as
its indoor temperature lies slightly below the lower comfort limit. More importantly, results
portrayed in Figure 9 show that the integrated passive measure has an overall positive
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effect on the indoor thermal performance, as temperatures decreased by an average of
0.76 °C during the summer design week and 0.42 °C during the summer typical week. As
the optimum thermal comfort lies equidistant from the upper and lower limits and the
decrease in the indoor temperature results in a further approach towards the lower limit,
the result from such PM help further reduce the indoor temperature.
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Figure 9. 2019—Stella Maris Church simulated indoor temperature when 3 mm white acrylic polymer
paint is applied to the roof (occupied hours).
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On the other hand, the decrease in temperature during the winter design/typical
weeks averaging to a temperature decrease by 0.19 °C and 0.15 °C, respectively, is less
positive. This is attributed to the decrease in the solar absorbance at the roof surface due to
the “cool roof” phenomena explained in Section 2.1. However, given that such a climate is
predominantly affected by high temperatures and that occupants can adapt to the colder
temperatures with additional clothing, such a result is deemed to be less of a concern for
the Maltese islands.

The same analysis and application were carried out on the Fgura parish church. In
general, its overall existing indoor temperature performance with respect to the category III
EN 16798-1 comfort limits is less comfortable when compared to that of the Sliema parish
church. This result is shown in Figure 10, whereby a total of 15 and 14 occupied hours out
of 47 are termed as thermally uncomfortable during the summer design/typical weeks,
respectively. The same applies to its performance through the winter design/typical weeks,
with most of the days termed as thermally uncomfortable, particularly during the winter
typical week.

Through the application of the 3 mm white acrylic polymer paint, it can be identified
that the Fgura parish church can be termed as more comfortable than in its existing state.
This is evidenced through its decrease in indoor temperatures, hence decreasing the hours
of discomfort. The indoor temperatures were decreased by 0.59 °C and 0.53 °C within the
summer design/typical weeks, respectively. Thus, discomfort hours were decreased to
9 and 11 h out of a total of 47 occupied hours within the summer design/typical weeks,
respectively.

The application of the 5 cm EPS—extruded polystyrene layer on the roof of the
Sliema parish church proved to be more effective than the 3 mm White acrylic polymer
paint application (Refer to Figure 10). This result is portrayed in Figure 10, with an
average decrease in the indoor temperature of 1.00 °C and 0.59 °C within the summer
design/typical weeks, respectively. Thus, with the indoor temperature further approaching
the lower comfort limit and hence attaining a much cooler temperature during a hot
summer, reaching maximum outdoor temperatures of 37.85 °C. In addition, the EPS layer
also positively effects the indoor temperature during the winter design/typical weeks,
attaining an increase in temperature. Indoor temperatures increased by an average of 0.22
and 0.51 during the winter design/typical weeks, respectively, resulting in a decrease in
discomfort hours (39 to 33) during the typical week. In terms of effectiveness, the EPS gave
superior results to those of the acrylic polymer paint, given its positive effect over both the
summer and winter periods.

A 10 cm EPS—extruded polystyrene layer was also applied and analysed to test the
inversely proportional relationship of thickness to indoor temperature performance. Results
in Figure 11 show that the relationship is indeed correct as the increase in thickness resulted
in a further decrease in temperature. However, the degree by which the thickness increases
to the decrease in the indoor temperature is not directly proportional, as a 50% increase
in its thickness did not result in a 50% further decrease in the indoor temperature. Indoor
temperatures further decreased from 1.0 °C to 1.12 °C and from 0.59 °C to 0.68 °C during
the summer design/typical weeks, respectively. This implies that the 5 cm EPS—extruded
polystyrene layer is more cost-effective.

The indoor temperature performance outcomes for the Fgura parish church (refer
to Figure 12) after the application of the 5 cm /10 cm EPS—extruded polystyrene are less
noticeable in the summer design/typical weeks as compared to those during the winter
period. The drop in indoor temperature during the summer design week was 0.20 °C and
0.21 °C for the 5 cm /10 cm EPS, respectively, but it was just 0.05 °C for both the 5 cm /10 cm
EPS for the typical week. During the winter design week, however, the drop in interior
temperature was 0.69 °C and 0.64 °C for the 5 cm /10 cm, respectively, and 0.70 °C and
0.60 °C for the 5 cm /10 cm, respectively.
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Figure 10. 2019—Our Lady of Mount Carmel simulated indoor temperature when 3mm white acrylic
polymer paint is applied to the roof (occupied hours).
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Figure 11. 2019—Stella Maris Church simulated indoor temperature including 5 cm/10 cm EPS—
extruded polystyrene roof insulation (occupied hours).
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Figure 12. 2019—Our Lady of Mount Carmel Church simulated indoor temperature including
5 cm /10 cm EPS—extruded polystyrene roof insulation (occupied hours).

6. Conclusions

Historic church buildings were originally designed to exploit passive design measures
for internal comfort, and this study indicates that historic church buildings outperform
expectations and generally they also outperform more recent church buildings. The local
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architectural typology was developed over centuries of experience with the purpose of
providing a comfortable internal environment for building occupants. The heritage building
typology, therefore, offers huge potential in reducing energy demand, retaining balanced
environmental conditions for artefacts, and achieving comfort requirements for occupants.
Notwithstanding this, a new trend is emerging whereby the criteria to improve thermal
comfort has been limited to a paper exercise to calculate what air conditioner size is required
to address cooling capacity. It is evident that, when faced with the choice of adopting
energy-efficient passive measures, nature is considered of secondary importance while
installation of ACs is perceived as crucial. This discernment led to unnecessary retrofit
measures that may cause irreparable damage to the historic building fabric. To summarise
the outcome of this study:

e  Heat discomfort can be significantly decreased by implementing solar control strate-
gies, more specifically by painting roof surfaces with white solar-reflective paint.

e The use of thermal insulation materials for roofs as part of a thermal control plan
improves the building envelope’s thermal performance.

e  The limitations imposed by heritage buildings’ architectural aesthetical values con-
strain the application of certain PM.

e  Through PM, the heritage building typology has the ability to maintain balanced envi-
ronmental conditions for artifacts and meeting indoor occupants comfort standards.

e  Preventing temperature and humidity fluctuations is not always a solution to indoor
comfort since any changes to the indoor environment within the church may introduce
additional problems.

e  Only with a thorough grasp of local building construction techniques and building
block characteristics can one analyse the influence of the phased exclusion of external
climates and the appropriate humidity and temperature values necessary to address
human comfort.

e It is not appropriate to emphasize human thermal comfort within historic church
buildings by employing unjustified mechanical systems at the cost of jeopardizing the
integrity of the artifacts” historical value.

e Though it is becoming the norm that low-cost, low-energy, passive solutions for
naturally ventilated historical buildings become side-lined in the quest for a single
engineering solution, this is not sustainable.

When considering the limited duration parishioners utilise these buildings, within a
brief timeframe of their choice, one must push for passive control systems and make the
required modifications to increase indoor thermal comfort on a case-by-case basis. The
findings of this study conclude that the air-conditioning units installed in Baroque churches
are not justified. PM are more appropriate for use in churches, even though each church in
Malta poses distinct and unique challenges. The presented results and recommendations
give policymakers, architects, and engineers better knowledge of practical implementations
of passive measures that may be effective for their preventative conservation without
sacrificing human comfort. Without profound and imminent changes in our lifestyles, the
objectives to becoming carbon neutral by the year 2050 will not be achieved.
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Abbreviations

PM Passive measures

MOD Meteorological office data

AC Air conditioners

HVAC Heating, ventilation, and air conditioning
IEA International Energy Agency

EU European Union

NECP National Energy and Climate Plan

SRI Solar reflective index

IR Infrared reflective

NICPMI  National Inventory of Cultural Property of the Maltese Islands
UHI Urban heat-island effect

GHSR Global Heritage Stone Resource

FFL Finished floor level

BLE Bluetooth low energy

COVID  Coronavirus disease

MIA Malta International Airport

EPS Extruded polystyrene (standard)

RBs Reference buildings

Nomenclature

°C degrees Celsius

°C degrees Fahrenheit

ON indoor operative temperature, °C

Orm running mean outdoor temperature, °C

Om outdoor running mean temperature for the considered day (°C)

®cg.1  daily mean outdoor air temperature for previous day (°C)

Ocg1  daily mean outdoor air temperature for the i-th previous day (°C)
m meters

cm centimetres

mm  millimetres

kW kilowatt
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