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ABSTRACT The increasing dominance of Android smartphones for everyday communication and data
processing makes long-term stealthy malware an even more dangerous threat. Recent malware campaigns
like Flubot demonstrate that by employing stealthy malware techniques even at minimal capacity, malware
is highly effective in making its way to millions of devices with little resistance from existing detection
mechanisms. Consequential late detection demands comprehensive forensic timelines to reconstruct all
malicious activities. However, the reduced forensic footprint of stealthy attacks with minimal malware
involvement leaves investigators little evidence to work with even when utilising state-of-the-art digital
forensics tools. Volatile memory forensics can be effective in such scenarios since app execution of any form
is always bound to leave a trail of evidence in memory, even if it is short-lived. In this work, we motivate
the need for JIT-MF (Just-in-time Memory Forensics), a technique that aims to address the challenges that
arise with timely collection of short-lived evidence in volatile memory to solve the stealthiest of Android
attacks. By taking an incident-response-centric approach, focused on protecting stock Android device users
rather than treating them as potential adversaries, we show that JIT-MF tools can collect elusive attack steps
in volatile memory without requiring device rooting. Furthermore, we build MobFor, a JIT-MF based tool
focusing on capturing evidence related to messaging hijack attacks. This tool provides a context to explore
solutions for JIT-MF implementation challenges, aiming to render JIT-MF tools practical for real-world
requirements. Finally, we demonstrate that when compared to state-of-the-art digital forensic tools Belkasoft
and XRY in a realistic attack scenario involving an enhanced version of the WhatsApp Pink malware and
stock Android devices, only MobFor can recover the contents of messages sent by the malware, hence
decisively contributing to an enriched forensic timeline.

INDEX TERMS Memory forensics, android security, digital forensics, incident response, forensic timelines.

I. INTRODUCTION
Android has established itself as a leader in the mobile OS
market [1], making devices both a rich source of evidence as
well as their users a primary target for cyberattacks. Whereas
several detectionmechanisms exist in theGoogle Play Protect
suite [2], both to hinder the availability of malicious apps as
well as to provide on-device detection, evasion techniques
like obfuscation and stealthy execution enable malware to
evade this protection layer [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was Diana Gratiela Berbecaru .

A. INCIDENT RESPONSE SCOPE
Our primary concern is Android malware that exhibits
long-term stealth by evading early detection mechanisms,
which eventually is only detected much later through its
consequences (if ever). Established stealthy attack vectors,
such as accessibility [4] or app-level virtualisationmisuse [5],
and several others [6]–[8], have become increasingly popular
among malware authors, with many recent incidents gaining
worldwide reach, leaving devastating effects [9]–[12]. More
seriously for incident response, the resulting reduced forensic
footprint for any attack employing such attack vectors has
also been demonstrated [13], [14]. Specifically, in this work,
we focus on stealthy attacks which hijack the messaging
functionality of benign apps on stock Android devices to hide
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compromising communication of a criminal nature behind
victim devices or spy on target victims through unlawful
interception of messages.

The FluBot malware campaign [12], for example, falls in
this category, tricking users into installing it via malicious
URL links inside SMS text messages, subsequently delegat-
ing its core attack steps of fetching contacts and forwarding
the URL links through legitimate messaging apps. It then
proceeds to steal the credentials belonging to other apps
found on the same device. In doing so, the FluBot malware
conceals its presence and can remain undetected for a long
time. Moreover, any messaging activity disclosed during an
eventual investigation could be misattributed to the victim
messaging app rather than to FluBot, quickly derailing the
incident response process as well. It becomes paramount to
recreate the intrusion scenario in such cases by identifying
the main attack steps to establish a rich forensic timeline.
Moreover, it becomes critical that all evidence related to the
attack gets collected since that elusive evidence that goes
uncollected could prove to be the missing piece of the puzzle
that leaves the incident unsolved.

This work concerns explicitly Android device users that
pose a target to resourceful attackers due to their social
or organisation status. Whether government officials, suc-
cessful business people, or truth-seeking journalists, these
high-profile targets share a common characteristic: their per-
petrators are willing to invest in the most sophisticated cyber-
attack tools to target their victims. These are sophisticated
attack tools that evade early detection and go to lengths not to
leave trails of evidence behind them.When investigating such
advanced stealthy incidents, forensic artefacts constituting
attack evidence would have been erased from storage or
never even created in the first place. This is the reality that
incident responders face amidst the limitations and barriers
of the more forensically sound, but alas limited, state-of-
the-art mobile forensics. Regardless of the stealthiness of an
attack, its execution must occur in memory [15], [16]. There-
fore, volatile memory forensics becomes crucial to recover
key artefacts in memory related to possible stealthy attack
steps. Recent efforts [17]–[20] focus on reconstructing criti-
cal data objects from memory to build a more comprehensive
timeline. However, these works rely on obtaining a memory
image of a running Android process. This means that the
device needs to be somewhat customised (rooted, having an
unlocked bootloader, or customised firmware). Furthermore,
in the case of long-term stealthy attacks, ill-timed memory
images may not always contain evidence of an attack that has
occurred at some point in the past.

B. RESEARCH PROBLEM
To bridge these gaps, we present a thorough study of JIT-MF
(Just-in-time Memory Forensics), a framework introduced
and preliminarily explored in previous works [21], [22],
to determine its effectiveness in generating more comprehen-
sive forensic timelines to uncover elusive attack steps that are
key in solving incident scenarios involving long-term stealthy

message hijack attacks targeting high-profile Android users.
We refer to these incident scenarios as high-profile target
scenarios.

In contrast to other digital forensics tools, a JIT-MF tool
comes into play at the forensic readiness stage [23] to foren-
sically enhanceAndroid devices before an incident is flagged.
In this setting, it makes sense to assume that the targeted
device owners are willing to collaborate with investigators
since they present the potential cyber attack targets. Impor-
tantly, it is this same context that can give any JIT-MF
forensics tool the potential to collect evidence missed by
state-of-the-art mobile forensics tools [24]. These tools target
the more classical context of delving through layers of pro-
tection to extract evidence that could compromise its owner’s
position with the law. JIT-MF tools, in contrast, aim to protect
the device owners from cybercriminals; therefore, investiga-
tors using JIT-MF tools can rely on device owners’ collabo-
ration. This is not to say that existing tools become useless
for our context. Rather, we argue –- and later demonstrate in
a real-world setting –- that by complementing state-of-the-art
tools with JIT-MF tools, it becomes possible to first get to that
evidence missed by existing tools and subsequently produce
rich forensic timelines contributed by the entire toolkit to
have attack steps stand out from normal device usage, thus
raising suspicion. While forensic readiness can be supported
at an operating system (OS) level or even at the app-vendor
level, both of these avenues require prior agreements to be
reached either with the OS manufacturers or with the original
app authors. Furthermore, the high-profile target scenario
that JIT-MF aims to contribute to, calls for limited forensic
readiness; that is, high-profile targets are assumed to already
own stock (original) Android devices and make use of their
messaging apps of choice. This is the setting within which the
JIT-MF framework is expected to function. Therefore, while
minimizing the amount of forensic readiness needed (in terms
of device choice and prior vendor agreements), further imple-
mentation challenges are expected when applying JIT-MF to
specific incident scenario involving different apps.

JIT-MF leverages static and dynamic app instrumentation
to enable live process memory forensics by timely dumping
key artefacts from memory. Figure 1 shows the complete
JIT-MF workflow. At the forensic readiness stage, targeted
users along with their devices and apps are identified during
an asset management exercise (step 1). These users can be
high-profile employees of government agencies or even pri-
vate citizens whose devices may be the target of resourceful
attackers for various reasons. After this stage, those apps that
pose a particular risk, say messaging apps, are instrumented
with JIT-MF drivers (step 2) -- custom specification respon-
sible for establishing the points in time when memory dumps
should be triggered (trigger points) and the heap/native mem-
ory areas/objects to be included. The forensic collection of
memory dumps is triggered by specific app events defined
in the JIT-MF drivers (step 3). These memory dumps con-
tain either raw binaries from memory segments or readily
carved and parsed objects along with tagged metadata, e.g.
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FIGURE 1. The JIT-MF workflow.

in JSON (JavaScript Object Notation) format. These two col-
lection methods are offline and online, respectively, depend-
ing on when object carving is carried out. Once suspicious
activity is noticed, with alerts possibly raised by the device
owners themselves or by incident responders during routine
checks, JIT-MF dumps can be merged with other forensic
sources to produce a more comprehensive forensic timeline
(steps 4 and 5). A JIT-MF tool partially automates this work-
flow, mainly in assisting with JIT-MF driver instrumentation,
app re-installation, evidence gathering, and maintaining a
chain-of-custody throughout a case.

Since specific attack scenarios may require the involve-
ment of legal entities, any evidence generated must be pro-
cessed and gathered in a format so that it is acceptable in
court. Therefore, throughout the entire process, a chain of
custody for digital evidence is kept as shown in Figure 1,
outlining the steps that were carried out throughout each stage
of the workflow, as is required for any evidence produced to
be accepted by courts as valid [25].

C. CONTRIBUTIONS
While shown to be effective in its efforts [22], JIT-MF still
faces several challenges, primarily in terms of its practi-
cality in a real-world setting. To address these challenges,
we motivate the need for JIT-MF, explore it further through
a sequence of experiments, as well as present MobFor, a JIT-
MF incident response tool addressing high-profile target sce-
narios, demonstrating the level of maturity of the proposed
framework and enabling direct comparison with the state-
of-the-art tools. Specifically, we make the following contri-
butions in the context of high-profile target scenarios, each
addressing a specific research question (RQ):
• Does evidence of attack steps recovered through
JIT-MF’s real-time triggering of memory dumps enrich
the corresponding timelines generated? (RQ1)

• How do we build a JIT-MF tool, MobFor, that is both
practical and effective? (RQ2)

• In what ways canMobFor complement existing forensic
tools, in a realistic setting? (RQ3)

Given the high-profile target scenario, four popular mes-
saging apps are chosen and used throughout our experimen-
tation, spanning SMS (Pushbullet1) and Instant Messaging
(Telegram,2 Signal,3 WhatsApp4).
The first research question (RQ1) is fully answerable by

previous work [22]. In this paper, we build on that existing
work to create MobFor, which addresses the challenges pre-
sented by RQ2, some of which have already been presented
and partially answered in a preliminary study of JIT-MF [21].
Finally, through RQ3, we assess the value that the additional
forensic sources produced by MobFor contribute to existing
standard digital forensics tools towards creating a more com-
prehensive forensic timeline in a realistic setting. We demon-
strate this by recreating a criminal investigation with real
malware targeting WhatsApp, across multiple commercially
available non-rooted stock Android devices. Through the
initial motivation for pursuing JIT-MF as a framework (RQ1),
the creation of MobFor (RQ2) and the application of MobFor
in a realistic setting (RQ3), we show that the JIT-MF frame-
work has matured from a high-level technique to a practical
tool that can be applied in real-world Android investigation
scenarios.

The remainder of this paper is structured as follows.
In the next section, we give an overview of the threat posed
by stealthy Android malware, along with an overview of
available digital forensics techniques to respond to them,
as well as key techniques underpinning JIT-MF. Then,

1https://www.pushbullet.com/
2https://telegram.org/
3https://signal.org/
4https://www.whatsapp.com/
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FIGURE 2. Misusing accessibility in different ways to carry out an SMS hijack attack.

in Section III, we provide an overview of the related work,
while in Section IV, we present and explain the fundamen-
tals of the JIT-MF framework. In each of sections V, VI
and VII, we address RQ1, RQ2 and RQ3, respectively, and
for each, describe the experiment setup, methodology and
results obtained. Key takeaways from the results obtained
and limitations and possible future work are discussed in
Section VIII, and the conclusion is presented in the final
section.

II. BACKGROUND
A. ANDROID ATTACK VECTORS FOR STEALTH
In recent years, several techniques have emerged which
make for stealthier Android attack vectors by misusing legit-
imate actions with malicious intent to carry out attack-related
events. This level of stealth makes it more difficult for mal-
ware detectors to do their job and detect such malware at run-
time, leading to late detection and requiring incident response
at a later stage.

Android accessibility trojans are a case in point [10], [11].
Early instances [26] demonstrated how through phishing and
the misuse of accessibility features, a malicious app could
steal a victim’s credentials and attack other benign apps and
services by interacting with them without the user’s consent.
This misuse has since shifted from being leveraged to per-
form the actual attack to being used to maintain stealth. For
instance, Eventbot [27] and BlackRock [28] malware only
request the accessibility permission requested upon installa-
tion; the rest of the permissions required to perform the attack
are obtained through the accessibility permission previously
granted by the user. To increase the level of stealth even
further, malware developers can also exploit accessibility to
leverage critical benign app functionality that coincides with
the features they need, as seen in Figure 2. In the case of
message hijack attacks, attackers are interested in reading
incoming messages (spying) or sending messages behind the
victim’s back (sending and deleting messages immediately).
This functionality is no different from that typically offered
by today’s messaging (Figure 2a) or SMSonPC apps that
enable sending text messages directly from the convenience
of one’s PC (Figure 2b), other than the fact that the initiator

of these actions is a malicious actor and the device owner is
unaware of these events. This attack vector has been shown
to enable stealthy Living-Off-the-Land (LOtL) tactics [29],
where key attack steps are delegated to benign apps, possibly
only requiring the use of malware during an initial setup
phase to attain maximum stealth [14]. Delegating an attack’s
core steps to benign apps has the consequence of bypassing
malware detection mechanisms and making any follow-up
response more challenging as reconstructing the attack steps
distributed among trusted apps is non-straightforward.

Overall, any form of inter-app communication, whether
for app functionality or testing purposes, can be misused
similarly to avoid detection and complicate incident response.
Cross-App WebView Infections (XAWI) [30], for instance,
exploit legitimate Cross-App WebView navigation, exposing
the security risks of navigating an app’s WebView through
a URL. While a legitimate need for displaying the app’s UI
exists to enable cross-app interactions, its abuse can lead to
cross-app remote infection when misused. In the case of mes-
saging, malicious apps can misuse this functionality to send
messages via another benign app. Another example vector is
SMASHeD [31], which exploits the Android debug bridge.
It enables malicious apps, requesting only the INTERNET
permission, to read and write to multiple sensor data files at
will, thus circumventing the Android sensor security model to
stealthily sniff as well as manipulate many of the Android’s
restricted sensors (even touch input). Zygote and binder infec-
tion combined with a rooting exploit [6], as well as app-level
virtualization frameworks [7] and third-party library infec-
tions [8] provide further attack vectors, potentially result-
ing in similarly stealthy attacks which render any efforts
by classifier-based malware detectors futile and for which
JIT-MF could be a solution in terms of incident response,
provided a forensic readiness stage.

B. ANDROID FORENSICS
1) FORENSIC SOURCES
Android on-chip and removable flash memory constitute pri-
mary forensic sources, both device-wide and app-specific.
System-wide sources can provide supplementary information
about the underlying Linux kernel activities (via dmesg),
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system and device-wide app event logging (via logcat),
user account audits, running services, device chipset info,
cellular and Wi-Fi network activities (via dumpsys) [24].
The /data/data sub-tree of the Android filesystem (refer-
ring to internal storage where app persistent files and cache
are stored) inside the userdata partition, along with the
sdcard partition (referred to external storage where media
is stored), is where it starts to get interesting, with app data
typically stored in XML or SQLite files. Another forensic
source typically associated with mobile devices is cloud stor-
age. Given the large multimedia files handled by Android
apps, combined with on-device storage constraints, cloud
storage has become a popular medium for long-term stor-
age, even used seamlessly by apps for regular operation and
backups.

App data is increasingly being stored in encrypted form
for security and privacy purposes (e.g. practically all main-
stream messaging apps [32]). Beyond the app level, device-
wide disk encryption has evolved across Android versions.
Full disk encryption (FDE) has been replaced by file-based
encryption (FBE) as of Android 10 [33], rendering it more
practical and more stable. For instance, the alarm clock works
even if the screen is locked and a full factory reset is no longer
necessary, even if the device runs out of power before it shuts
down properly.While providing users with an additional layer
of privacy, FBE makes it more difficult for investigators to
analyse forensic sources available on the device without the
collaboration of users or the use of exploits to decrypt the
sources.

2) COLLECTION METHODS, CHALLENGES, AND ANALYSIS
Collection of forensic sources from Android devices can be
carried out using logical or physical imaging [34]. Simply
put, logical collection relies on the OS to parse the device
file system from raw (non-volatile) flash memory content.
There are multiple ways to acquire forensic sources from
a device logically. Generic approaches include traversing
Android’s filesystem and collecting the necessary files (using
adb pull) or using Android backups (available to devices
as from Android 4.0+) via adb backup. This backup
includes shared preferences files, as well as files saved to an
app’s internal storage, external storage, and in the database
directory [35]. On the other hand, physical imaging provides
exact bit-for-bit copies of flash memory partitions and can be
conducted purely at the hardware level (e.g. through JTAG).
All collection methods have to deal with Android’s security
barriers. For software-based collection, the barriers range
from locked screens, password-protected cloud storage to
custom backup formats and rooting the device or downgrad-
ing the app to gain access to files stored in the app’s internal
storage [36]. While hardware-based/physical collections can
bypass the above barriers, any form of physical imaging has
to deal with FDE and FBE.

Rooting relies on exploiting some kernel or firmware flash-
ing protocol vulnerability [34], [37], or else flashing a custom
recovery partition through which to add some root-privileged

utility. The latter may get further complicated by locked boot-
loaders. Restoring backups for forensic analysis is dependent
on the type of backup taken [35]. Default automatic backups
cover apps that run on Android 6.0 or later. Android preserves
app data by uploading it to the user’s Google Drive and pro-
tected by the user’s Google account credentials. Further still,
apps can implement their custom BackupAgent, which
excludes all of the app’s data files from a typical Android
backup, and backups are handled directly by the app itself.
Backups are typically stored encrypted in the cloud or the
device’s external storage. While some apps give users the
option to encrypt backups, store them on external storage and
restore them using a key, other apps make use of the Google
drive backup method, which means that backups can only
be accessed and restored via the implementation of custom
handlers for the onRestore() API.
The starting point for forensic analysis depends on what

kind of collection is performed [24]. In the case of physical
collection, it is necessary first to identify the file system con-
cerned, typically EXT and YAFFS, to extract the individual
files with possible decryption efforts. This first pass brings
the evidence to a state equivalent to a logically acquired one.
A typical analysis pass for Android constitutes SQLite file
parsing, given its inherent Android support. From this point
onward, the decoding of app evidence is highly app-specific.

3) MOBILE FORENSICS TOOLS
Mobile forensics tools, e.g. Belkasoft [38] andMSAB’s XRY
[39], can target both the collection and the analysis of forensic
sources from mobile devices. Each tool provides a set of
collection options, equipped with rooting exploits and hard-
ware interfacing cables, passcode brute-forcing methods as
well as, in some cases, app downgrading options that are
used to circumvent custom BackupAgent configurations
that either encrypt or omit app data from backups. They
also come equipped with parsing/analysis modules for file
systems, databases, and app data formats. Ancillary analysis
features, including timeline generation, provide a final pro-
fessional touch to the product. Finally, evidence of interest
can be exported in a format as required by the investigator,
typically CSV (Comma Separated Value) or JSON format.

C. FORENSIC TIMELINES
Forensic timeline generation is widely considered to be the
forensic analysis exercise that brings together all the collected
evidence. It supports an investigator in reconstructing the
hypothesised incident/crime scenario [40]. The richer the
timelines, the greater the support for an investigator to recon-
struct an intrusion/crime scene, thereby answering critical
questions about an incident. For instance, in the case of a
messaging hijack, see Figure 6 (top), the generated timeline
can uncover a pattern matching a cyber threat intelligence
feed for mobile botnet activity that could be leveraged for a
crime messaging proxy. Else, see Figure 6 (bottom), timeline
events can be compared to a baseline to identify unusual/sus-
picious activity. Both approaches can indicate the presence
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FIGURE 3. Forensic timelines supporting cyber-attack investigations.

of an ongoing cyberattack, with a comprehensive timeline
providing crucial support.

Many tools exist that target the generation and visualisation
of super timelines to enable forensic analysis. Plaso [41] is a
Python-based engine equipped with a range of tools that can
be used for the automatic creation of super timelines. Times-
tamped data collected from several sources can be parsed and
chronologically ordered in one super timeline using different
Plaso parsers that are available for different application data.
Furthermore, having publicly available source code, Plaso
and its parsers can be further extended to cater to addi-
tional forensic sources as needed. Timesketch [42] is another
open-source tool that enables forensic analysis. It takes as
input preprocessed timeline data (e.g. generated by Plaso
tools) in JSON or CSV format and outputs a visual timeline
(called a sketch) that can be analysed. Furthermore, similar
to Plaso, it can produce a single sketch using multiple inputs
of preprocessed timeline data, containing parsed forensic
evidence generated by various forensic analysis tools.

D. EVIDENCE COLLECTION FROM MEMORY
Android Runtime (ART) has been the main managed runtime
used by applications on Android [43] since it was released
with Android KitKat in 2013 [44]. Similar to how JVM
operates, ART uses two separate memory spaces to store
application data; the stack and the heap [45]. In a forensic
investigation of an attack involving a benign target app, the
data objects created during the runtime of that app, critical
to attack steps, would constitute relevant forensic artefacts
that need to be collected for further analysis. These critical
data objects may only be found in volatile memory within
the application’s heap, managed by the Android Runtime.
To collect these app objects from memory, one can either:
i) Leverage ART functionality to solely dump the app’s heap
data, which requires making modifications to the app’s code-
base, or ii) Take an entire snapshot of the device’s memory
(i.e. a memory image), which requires making modifications
to the device’s underlying Android system.

Out of the box, ART provides functionality through which
developers can dump their app’s heap data in the standard
format of an hprof file, mainly intended for debugging
purposes but which can double as an important volatile
memory forensics tool. Debug.dumpHprofData5 is the
Java API used to obtain a heap dump. A typical heap dump
is semantically rich, containing information about an app’s
memory contents at the time when the dump was taken. Most
importantly, in our case, it includes information on the objects
used and created by the app [43]. Another ART feature of
relevance to memory forensics is that of garbage collec-
tion [43]. Figure 4 shows howARTprovides amanagedmem-
ory environment which enables the Garbage Collector (GC)
to keep track of objects in memory to reclaim heap space
once those are no longer in use [43]. To do so, the GC uses
a function exported by ART’s binary module (libart.so),
Heap::GetInstances,6 which has an object type filter,
allowing theGC to filter on specific objects inmemory.While
convenient for selective evidence collection, the downside is
that this function is not part of the public API andmay change
unexpectedly between versions.

The acquisition of systemmemory images has been around
for a while, enabled by tools like Volatility [46]. However,
this still poses several challenges on Android devices, pri-
marily due to the sheer amount of different Android devices
and manufacturers running different variants of the Android
operating system. Existing Androidmemory acquisition tools
can acquire an entire snapshot of volatile memory; however,
these typically require at a minimum the use of specific kernel
versions and root privilege on the device. That is, the device
needs to be rooted, forgoing essential security measures that
are by default in place [47]. If the device’s Android kernel
does not allow inserting kernel modules (as is the case by
default), creating a custom kernel may also be necessary.

5https://developer.android.com/reference/android/os/Debug#
dumpHprofData()

6https://android.googlesource.com/platform/art/+/6f4ffe4/runtime/gc/
heap.cc#1086
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FIGURE 4. Instrumenting code via ArtMethod entry point.

Other options involve hacking the device’s firmware upgrade
protocol, which requires the reverse engineering and avail-
ability of bootloaders [37], [48].

In this research, we focus on an incident scenario in which
the victim is the device owner and will continue using the
device beyond the scope of the investigation. Therefore, col-
lection methods requiring irreversible modifications to the
system are not viable. To this end, we instead aim to leverage
the functionality provided by ART, which requires making
customisations to the apps that can potentially be misused in
an attack.While it is well within the remit of app developers to
make apps forensically sound by dumping critical objects in
memory in real-time, it is not always possible to know before-
hand the objects required in a particular investigation, and
taking a general approach to dumping objects that might be
necessary may harm the performance of the app both in terms
of storage and usability. JIT-MF takes a post-deployment app
customisation approach by instrumenting apps to forensically
enhance them so that they may timely dump the data objects
that are critical to attack steps in a specific scenario. While
this approach still faces several challenges, including code
integrity checks that hinder app-repackaging, solutions exist
[49] that make it possible to instrument an app withoutmodi-
fying its bytecode, bypassing standard code integrity checks.

E. ANDROID APP INSTRUMENTATION
Android apps are compiled and packaged as a single file
known as an APK (Android Package Kit) with .apk as
the file extension. The typical makeup of an APK consists
of: an Android Manifest file providing essential information
about the app, a lib directory, and additional directories for
resources such as images/files required by the app. An app
canmake use of bothDalvik bytecode andNative code, which
resides in the lib directory of the app, both of which can be
decompiled to enable reverse engineering and modification
of the code.

Customising apps post-deployment requires binary instru-
mentation techniques that modify the apps’ behaviour dur-
ing runtime. Binary instrumentation can be both static and
dynamic. However, features in programming languages like

reflection, challenges in comprehending compiled obfus-
cated bytecode, and dynamic code loading make a dynamic
approach necessary in our case. While static binary instru-
mentationmainly requires modification of the compiled byte-
code, dynamic binary instrumentation (DBI) involves two
main components: i) Library injection and ii) Execution
interception.

Library injection allows the insertion of instrumentation
code (the code that will modify the app’s behaviour) into
the intercepted code’s process address space. This can be
done in one of two ways: statically, by patching either the
app’s Executable and Linkable Format (ELF) or it’s Dalvik
bytecode (classes.dex), or dynamically using system
calls provided by the kernel such asptrace.7 Since the latter
requires root privileges on the device, which is not granted
by default and presents additional challenges, static library
injection becomes the only choice. Static library injection
involves decompiling the app and patching its contents to
include instructions that load the library containing instru-
mentation code. The library itself is added to the app’s lib
directory. The app would then need to be repackaged and re-
signed. While several tools exist to facilitate the process (e.g.
apktool, jarsigner), anti-repackaging techniques may
be employed to verify the integrity of the original app’s code-
base. Such anti-repackaging techniques involve code integrity
checks that operate both at the device level and at the app level
that check for the presence of app repackaging techniques.

Execution interception, the second component to DBI,
allows control to re-direct towards instrumentation code
and eventually back to the original execution. This can be
achieved through hooking. Inline hooking is a form of hook-
ing that requires inserting jump instructions in a code segment
to direct the program execution process to the functional code
required by the user. Most importantly, inline hooking allows
any function/method (including internal functions) within
the app to be hooked/intercepted. In the context of Android
app instrumentation, since an app can run both native code
and Dalvik bytecode, the means by which inline hooking is

7https://man7.org/linux/man-pages/man2/ptrace.2.html
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achieved must cater for both. Native code in the app runs
directly on the CPU and has access to the Android framework
using Java Native Interface, enabling the switching between
native code and Dalvik bytecode. Therefore, by employing an
inline hooking approach that leverages the Android frame-
work, all functions/methods in both native code and Dalvik
bytecode can be intercepted.

Xposed-style method hooking [50], is an inline hooking
approach used in Android, which makes it possible to replace
the entire method body or introduce new code before and after
the original Java method invocation within an app. When a
method is invoked, the execution goes through the injected
code and then to the original code. This is done leveraging
the runtime provided by the Android framework, ART. ART
uses specific C++ classes to mirror Java classes, their meth-
ods and associated instances within a process, specifically
using Class, Object and ArtMethod data structures.
Figure 4 shows the ArtMethod data structure which con-
tains information about a particular Java method (method
descriptors), such as the modifier (access_flags), the class
in which it is declared (declaring_Class) and most impor-
tantly the entry address of the method’s code (entry_point_*).
An ArtMethod instance can have either of four entry
points EntryPoint from Interpreter, EntryPoint from Quick-
CompiledCode, EntryPoint from JNI and EntryPoint from
PortableCompiledCode [51], depending on its modifier.
When a method is executed, the instructions at the address
of the entry point are executed. Instrumentation frameworks
utilising Xposed-style method hooking, keep a copy of the
values of themethodmodifier and entry point, and patch them
to so that the new method modifier is native8 (Step 1 in
Figure 4) and the new entry point value (Step 2) of methods
defined in the ArtMethod contains the address of methods
containing instrumentation code. Once the instrumented code
is executed, the original method modifier and entry point
values are reset, and program execution continues. Native
functions executed during the app’s runtime can be hooked
using well-known techniques established on ARM archi-
tectures. These involve modifying a trampoline-based hook
whereby the first few bytes of the function assembly code
are replaced with a jmp <hooking_function> to the
hooked function containing instrumentation code [52].

Frida [53] is a dynamic instrumentation toolkit that can
be used on Android devices and adopts inline hooking. Its
embedded mode, known as Frida Gadget,9 implements both
Xposed-style method hooking as well as native inline hook-
ing to enable the instrumentation of an app’s methods in
a setting that does not require device rooting. Therefore,
any function invoked from native or bytecode by the app
at runtime can be intercepted by making customisations to
the app without requiring irreversible changes to the device.
Library injection is done statically by decompiling the app

8https://android.googlesource.com/platform/art/+/master/runtime/art_
method.h#118

9https://frida.re/docs/gadget/

and placing the Frida Gadget shared library (frida-gadget.so)
in the lib directory. The Frida Gadget library needs to be
loaded inside the process memory at runtime as a second step.
While bytecode is not easily read or manipulated, an inter-
mediate language Smali, can be used to patch the code. The
Frida Gadget library needs to be loaded at an early stage in
the app’s lifecycle to ensure that all functions executed during
the app’s runtime can be instrumented. Therefore, the class
within the app implementing the MainActivity, which
executes when the app is launched and is listed in the app’s
Manifest file, is patched. Its Smali code, found in the decom-
piled files of the app, contains a static constructor, which
is modified to include the Smali equivalent of the function
call: ‘System.loadLibrary(‘‘frida-gadget’’)’. This allows the
Frida Gadget library and instrumentation code to be loaded
in the process’s memory as soon as the app is launched.
Since patching Smali code involves making modifications
to the app’s codebase, any code integrity checks within the
app that leverage the app’s codebase, e.g. hash value of the
bytecode (classes.dex), will be unsuccessful, resulting
in the app not launching. Another approach to static library
injection involves using LIEF [49], an ELF-centric method
that patches the app’s ELF to add the Frida Gadget as a
dependency of native libraries embedded in the APK. This
approach bypasses code integrity checks leveraging the con-
tents of the classes.dex since the bytecode is not mod-
ified and the Frida Gadget library is loaded as soon as other
native libraries are loaded in the app. This method, however,
operates under the assumption that the app itself requires
other native libraries to be loaded and that these libraries
are loaded early on in the app’s lifecycle. Following library
injection, the app contents are then repackaged and re-signed
to form an instrumented version of the same app that can be
reinstalled. Finally, the Frida API includes the Java.choose()
function, which enumerates live instances of the Java classes
in memory, through the exported Heap::GetInstances
function in libart.so, enabling the online collection and
carving of evidence objects from memory.

III. RELATED WORK
In this work, we aim to provide a practical solution for
rendering the collection of incident-related forensic artefacts
as comprehensive as possible. Otherwise, no manual or auto-
mated process would be able to reconstruct the incident.
We focus on stealthy Android attack vectors since these
present an ongoing threat, with multiple recent incidents
gaining a worldwide reach [9]–[11]. Crucially for incident
response, the resulting reduced forensic footprint for recent
stealthy attacks has also been demonstrated [13]. Zygote and
binder infection combined with a rooting exploit [6], as well
as app-level virtualisation frameworks [7] and third-party
library infections [8] provide further attack vectors, resulting
in similarly stealthy attacks which require a solution in terms
of incident response, due to likely late detection and minimal
(if at all) forensic footprint stored on the device.
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The topic of Android messaging timelining has already
received attention from various works [32], [54]–[59]. These
works, however, mainly utilise disk images to retrieve valu-
able evidence. While stored data can be helpful, it is at the
discretion of app developers which metadata is stored, and
this is generally dependent on app functionality rather than
the forensic hardening of the app. This is especially true
in the case of stealthy attacks, whereby attackers purpose-
fully cover all possible tracks, leaving no forensic footprint
behind. Therefore, metadata critical to an investigative sce-
nario may not be available at all from disk, and in cases
where it is, this may not be true across different versions.
Furthermore, with the increase in popularity of cloud-based
messaging apps, less data becomes available locally to
retrieve [60].

With stored data falling short of providing crucial forensic
artefacts, especially in the case of stealthy attacks, recent
works turn to memory as an additional forensic source of evi-
dence [15]. Popular memory forensics tools and frameworks,
like Volatility [46], [61] focus primarily on analysing content
in kernel space, which require an entire memory image of
the device. While tools like LiME [47] make it possible to
retrieve such a memory image, the process of using such tools
on Android devices is not straightforward. Root privileges are
required on the device, and whereas this is typically easily
achieved on systems via password access, mobile devices are
by default unrooted. This means that rightful owners do not
have root access as part of the safeguards in place. Rooting
a mobile device is an irreversible action that removes these
safeguards. In the context where the device owner is a victim
of a cyberattack who will continue using the device after
a possible incident, rather than a perpetrator whose device
was confiscated, rooting the device is not a viable option.
In the case of devices that have already been rooted, LiME
still requires an additional kernel module for collection to be
inserted in the kernel, which typically involves recompiling a
custom kernel.

Tools that focus on kernel analysis, like those in the Volatil-
ity framework, have been effective in recovering essential
artefacts such as running processes, network sockets etc.
However, these fall short when the objective is to recover
process-specific objects from memory that are critical to
an investigation. In this case, such analysis is restricted to
retrieving character strings, with no further context being
available regarding the nature of the object withinwhich these
strings exist. Thus more recent memory forensics research
has explicitly targeted process memory forensics, aiming to
recover ephemeral data objects in memory crucial to forensic
investigations [18]–[20], [62]–[64].

Saltaformaggio et al. [62]–[64] created several tools
whose aim is to reconstruct different object types from
residual artefacts in an Android memory image. VCR (Visual
Content Recognition) [63] leverages static memory images
of Android device cameras to recover photographic images.
GUITAR [62] is a tool that rebuilds and redraws apps’
UI screens from smartphone memory images based on the

low-level definition of the Android GUI framework. The
authors further extend this work with a more advanced
memory forensic technique that performs spatio-temporal
recreation of screens of Android apps from memory images
[64]. While also targeting process memory to carve and
parse objects of interest in memory, these tools are after
app-agnostic objects from memory, as opposed to JIT-MF
tools which aim to recover specific app objects frommemory.
Furthermore, the aforementioned tools focus on the collection
of objects from a given memory dump. In contrast, within the
JIT-MF framework, JIT-MF drivers are also responsible for
the actual timely dumping of memory sections/objects that
are of interest.

Droidscraper [20] is an Android runtime-based recovery
technique designed for Android ART, that given an app’s
memory image, can reconstruct objects of types: Primitives,
Arrays, Strings, and Complex classes. In this case, the recov-
ery and reconstruction effort is designed based on a specific
Android memory allocation scheme, as implemented by the
Android Garbage Collector. Specifically, Droidscraper uses
low-level data structure definitions as well as generic class
and references constructs provided by the Android runtime
library (libart.so) to provide investigators and malware
analysts access to well-structured and forensically interesting
objects found in an app’s process memory. Similar to the
works of Saltaformaggio et al. [62]–[64], Droidscraper takes
a post-incident approach to recovering interesting objects
from memory, and therefore its workflow starts with the
acquisition of a process memory dump. In contrast, JIT-MF
tools are intended for scenarios involving stealthy attacks
and consequential late detection. Therefore timely memory
dumps are required to ensure that the evidence critical to
an attack scenario is present. While JIT-MF enables timely
dumping of forensic artefacts from memory, unlike Droid-
scraper, the objects it is able to recover and reconstruct are
app-specific and requires efforts in terms of reverse engi-
neering, per app, as well as mitigating anti-repackaging tech-
niques that might be in place.

DroidKex [19], much like JIT-MF, takes a dynamic
approach towards collecting objects of interest frommemory.
It uses Frida (as is the case with MobFor) to timely col-
lect memory dumps, specifically when send and receive
functions are invoked during the app’s runtime. Similar to the
concept of trigger points in the JIT-MF framework, DroidKex
uses the invocation of these native system calls as an indicator
of an event. Whereas within the JIT-MF framework suspi-
cious events can be defined in JIT-MF drivers, enabling the
framework to cater for multiple attack scenarios, DroidKex
focuses solely on initialisation of TLS connections and the
collection of TLS objects, which enables DroidKex to decrypt
ongoing TLS traffic.

Similar to security monitors like REAPER [8] and
MOSES [65], JIT-MF uses trigger points which, rather than
being indicators for malicious events, such as permission
misuse, are indicators of benign events that may be misused
by an attacker. In contrast to typical monitors, JIT-MF dumps
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necessary memory contents for post-analysis at runtime,
which is less costly than online analysis.

Having a custom specification (JIT-MF driver) underpin-
ning a generic framework is common in digital forensics
tools. Frameworks such as Autopsy and Volatility allow the
addition of modules and plugins, which enable them to cater
to a broad range of investigation scenarios. The concept can
be even applied to reconstructing timelines from specific log
files using custom analysers [40].

IV. JUST-IN-TIME MEMORY FORENSICS (JIT-MF)
The JIT-MF framework leverages static and dynamic app
instrumentation to enable live process memory forensics on
stock Android devices by timely dumping key forensic arte-
facts (evidence/data objects) from memory that could con-
stitute attack steps. JIT-MF’s underpinning principles that
distinguish it from state-of-the-art memory forensics tools are
i) Real-time collection of critical evidence objects in volatile
memory related to the key attack steps from target victim
apps; and, ii) The timely dumping of specific fragments
of process memory as specified by trigger points. Notably,
in contrast to malware detection and forensics tools, JIT-MF
tools focus on collecting evidence frommisused benign target
apps (rather than malware). Evidence data objects and trigger
points are specific to incident scenario and target app pairs,
as defined within JIT-MF drivers. While we present JIT-MF
in a messaging hijack setting, the proposed concept extends
to the general case of attacks heavily leveraging benign apps.

A. TRIGGER POINTS
A typical memory dump contains those objects created and
used by an app (both specific to the app and those belonging
to the Android API) at the point in time when this is per-
formed. Not all of these objects are relevant to the critical
attack steps. For instance, in the case of a messaging hijack
attack, we are only after the in-memory objects supporting
the execution of messaging functionality and which may be
hijacked during eventual attacks, e.g. the objects describing
message contents and any additional ones that provide further
context.

1) TRIGGER POINT SELECTION HEURISTIC
The selection of trigger points is specific to two aspects:
i) The attack scenario for which we want evidence to be
collected, and ii) The set of operations the app executes in
such scenarios. Optimal trigger point selection requires full
knowledge of the specific app being analysed (and its version
at the time). Given that most of the apps being analysed are
expected to be third-party, assuming comprehensive knowl-
edge of the app’s codebase is not practical. Instead, trigger
points are selected based on the following heuristic: Each
app may handle operations related to key steps differently,
however, the critical data objects involved in the operation
must be handled in either of the following ways:
(i) Stored and loaded from storage;
(ii) Transferred over the network (e.g. Wi-Fi, 4G etc.); or

(iii) Transformed in some way (e.g. display on screen
etc.).

In the case of a messaging hijack, key evidence
objects comprise precisely those that contain the messages
themselves (as defined by an app-specific class). In contrast,
the operations related to these objects involve storing/loading
messages from local content repositories and sending/receiv-
ing messages over communication networks. The heuristic
provides the basis for trigger point selection.

2) TRIGGER POINT CATEGORIES
The selection of trigger points is not prescriptive. Any oper-
ation handling key data objects in the ways mentioned above
may constitute a valid trigger point. However, the selected
trigger points may adversely affect the runtime performance
and stability of the concerned app, depending on their speci-
ficity. For instance, when receiving a new instant message,
one can safely assume that the source code in the app han-
dling the data object of interest (the evidence) must have
made use of underlying network functionality at some point.
Otherwise, the message would not have been received. In this
case, generic network-related operations - such as the recv
system calls - are considered viable, generic trigger points
requiring minimal app reverse engineering effort since they
can be derived without detailed knowledge of the app’s code-
base. However, such trigger points may not be as accurate
as those selected with a more in-depth understanding of app
functionality. The latter kind of trigger points encompasses
app-specific methods, reflecting the particular invocation of
the sought-after functionality, e.g. displaying the message in
an app-specific GUI grid on the device screen. Such trigger
points are expected to be more accurate, both in terms of pro-
ducing timely memory dumps and in not being triggered too
frequently (over-execution). That said, theremay be instances
in which generic trigger points can have trigger predicates or
filters associated with them that decrease their invocation.

Overall, the varying degree of specificity of a trigger point
reflects the amount of effort put into comprehending the
codebase of an app. Therefore we categorise trigger points as
follows, starting from the least specific (and requiring least
reverse engineering effort) to the most specific, as described
in Table 1. The first three categories are considered black-
box, meaning they require the least knowledge of an app’s
codebase. The final category is considered white-box due to
the need of having to peek inside an app’s codebase for their
identification.

B. OFFLINE VS ONLINE EVIDENCE COLLECTION
METHODS
Once triggered, memory dumps can comprise entire ART
heap sections as in hprof dumps, with subsequent evi-
dence collection happening offline using an hprof parser,
e.g. Eclipse MAT. A more frugal approach leverages ART’s
Garbage Collector (GC) to dump solely the key evidence
objects in memory at runtime. In this setting, evidence objects
are collected during the dumping process itself in an online
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TABLE 1. Trigger point categories.

FIGURE 5. JIT-MF drivers.

fashion. Both approaches are compatible with non-rooted
devices. We also distinguish between the object collection
carving and parsing stages. By object carving, we refer to
the process of identifying and extracting in-memory objects
either from live memory (in the online case) or from a partial
memory image (in the offline case). On the other hand, object
parsing deals with extracting meaningful information out of
the carved raw object bytes, e.g. the timestamp of amessaging
event, its contents, etc. This operation is based on a class
definition obtained through code comprehension or reverse
engineering. In the case of offline evidence collection, the
object carving and parsing stages are carried out offline; that
is, at a later stage on a partial memory image that was dumped.
In the case of online collection, object carving is carried out
online as specific objects are carved out from live process
memory and then dumped; however, object parsing can still
be carried out either online or offline. That is, objects may
be parsed either in real-time or at a later stage (offline),
depending on the computational effort required to parse the
object and retrieve the meaningful information.

C. JIT-MF DRIVERS
While JIT-MF defines those common steps followed by every
JIT-MF tool, those aspects specific to the incident scenario

and target app pair at hand are described and eventually
implemented by JIT-MF drivers.

Figure 5 illustrates the involvement of these drivers in
the JIT-MF framework. The generation of a JIT-MF driver
requires, as input, knowledge of both Android System Ser-
vices and the incident scenario and target app pair at hand.
These equip JIT-MF driver developers with the necessary
insight to select the appropriate trigger points and evidence
objects for an incident scenario and target app pair. Con-
ceptually, JIT-MF driver definition starts with identifying
the in-memory evidence data objects of interest, which may
correspond in some way to attack steps. Next comes trigger
point selection, which corresponds to function hooks being
placed in native or managed code at the implementation
level. Hooks placed in native code are done through native
inline hooking, whereas those placed in managed code are
done through inline hooking of the ArtMethod. Trigger
points can be rendered more specific through complementary
conditions defined over function arguments (trigger predi-
cates). The collectionmethodmust be defined as either online
or offline, specifying whether object carving is carried out
before memory dumping or else afterward. In the online case,
an associated flag indicates whether the corresponding object
parsing is carried out on live memory or later on the dumped
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Listing 1. JIT-MF driver template.

Listing 2. JIT-MF driver runtime.

raw object bytes. Finally, a sampling method is defined to
maintain a manageable amount of dumps, especially when a
generic trigger point is selected that is invoked many times.
Listing 1 presents a template generically describing JIT-MF
drivers.

Lines 1-3 identify the driver (Driver_ID) and link it with
its intended app/incident Scope as well as the Processes
that are of interest in the case of apps having multiple
processes; that is, those classes in the app that fire the

selected trigger points but are run as a separate process.
If the Processes attribute is not set, the app is assumed
to have only one main process, initiated by the class con-
taining the main activity.10 Lines 6-12 enlist a driver’s
attributes and their types (attribute : type), with tuples
denoted by <>, sets by {x, y, z . . .}, ordered lists by [],

10https://developer.android.com/guide/components/activities/intro-
activities

VOLUME 10, 2022 35183



J. Bellizzi et al.: Responding to Targeted Stealthy Attacks on Android Using Timely-Captured Memory Dumps

key-value pairs by < key, value > and enumerations with
{val1|val2| . . .}. Function parameters are identified by the
final parenthesis (), and these correspond to internal functions
in the drivers (lines 21-54). carve_object_typej_offline and
parse_object_typej_offline (lines 34-35 and 44-45 respec-
tively), annotated with @OFFLINE, are the offline counter-
parts of carve_object_typej and parse_object_typej respec-
tively, executed after a memory dump is taken. Globals is a
key-value meant for miscellaneous usage; for instance in the
case of Listing 11 (see Appendix A), a variable timestamp
is set by one function and used by another, and is made
accessible via the Globals variable.
init() presents the only interfaces exposed to the JIT-

MF tool’s main environment. It is called during tool
initialisation and sets up the event Triggers by calling
place_native|rt_hook(). This function returns a boolean
(bool) indicating success or otherwise. Trigger_predicate()
and Trigger_callback() must be defined per entry in Triggers.
Triggers may concern either native or rt function hook,
with the latter implying the device’s runtime environment,
e.g. ART in the case for Android. The same applies for
carve_object_type() and parse_object_type(), which have
to be defined per entry in Evidence_objects, at least for
online Collection. In scenarios where online collection is
opted for and additional supporting objects need to be carved
and parsed to obtain the necessary metadata (e.g. recipient
object containing the recipient’s metadata), supplementary
carve_object_type() and parse_object_type() need to be cre-
ated for the said object, whereas the Evidence_object remains
the same (see Listing 5 in Appendix A). carve_object_type()
returns the list of addresses (in case of online collec-
tion) or offsets (in case of offline collection) in mem-
ory containing an Evidence_objects. These values are then
passed to the parse_object_type() function as parameters,
so that the function may parse and return the list of mean-
ingful field values (object metadata) that are of interest.
Their offline counterparts carve_object_typej_offline and
parse_object_typej_offline offer the same functionality, but
their execution is deferred to after a memory dump is taken.

All these functions require a JIT-MF runtime for their
implementation. Listing 2 presents a specification for the
runtime which can be assumed by JIT-MF drivers and which
needs to be catered for by the JIT-MF tool’s main envi-
ronment. Lines 1-2 are native/rt function-hooking functions
called from init() and any other driver internal functions as
needed. Lines 3-11 are process memory interacting func-
tions, starting off list_memory_segments() to make sure
the driver does not attempt to access un-mapped mem-
ory, or segments for which it has insufficient permissions.
Memory dumping may therefore require adjusting permis-
sions through set_memory_permissions(), as well as check-
ing memory content through read_memory(). While for
offline Collection, calling dump_memory_segment suffices,
for online collection the driver is also required to carve
objects and parse their fields. dump_native_object() and
dump_rt_object are utility functions that do this by first

locating the Evidence_object in memory, then executing
the appropriate carve_object_type() and parse_object_type()
callback functions that are passed as parameters. Sepa-
rate rt and native versions are needed since the rt ver-
sion may leverage calling runtime functions to locate the
required objects. Similarly, the native version may leverage
any memory allocators being used to manage native objects.
call_native_function() and call_rt_function() functions are
utility functions that may be needed by both driver and run-
time functions. Finally, append_log() (line 11) is responsible
to produce the actual JIT-MF dump to the location specified
by the driver’s Log_location.

V. DEMONSTRATING THE VALUE OF JIT-MF
To answer RQ1 and further motivate RQ2 and RQ3, we first
demonstrate the value JIT-MF adds to incident response by
dumping in-memory forensic artefacts of otherwise elusive
evidence, resulting in the generation of more comprehen-
sive forensic timelines. Specifically, we answer the ques-
tion: ‘‘Does evidence of attack steps recovered through
JIT-MF’s real-time triggering of memory dumps enrich
the corresponding timelines generated?’’ in the context
of stealthy messaging hijack attacks carried out on stock
Android devices.

A. JIT-MF DRIVER DEFINITION
To answer RQ1, we create JIT-MF drivers for the case studies
considered, as follows. A minimal effort approach is taken
when generating JIT-MF drivers since RQ1 aims to validate
JIT-MF as a technique by demonstrating how it can enrich
forensic timelines generated using existing mobile forensics
tools. Given the trigger point categories defined in Table 1,
of which the black-box categories require the least code com-
prehension effort, the Triggers selected for the drivers should
fall in this category. On the other hand, Evidence_objects
identification and any corresponding object parsing required
should follow fromwhite-box analysis of the apps concerned,
meaning that some form of minimal app code comprehension
is still needed. The finalized methodology adopted for gener-
ating JIT-MF drivers follows:

• Evidence_objects: These objects are identified as those
whose presence in memory, in the context of a specific
trigger point, implies the execution of some specific app
functionality, possibly a delegated attack step. Not all
objects are associated with the same level of granularity
concerning app events; some objects may be highly
indicative of a detailed app event, e.g. a message object
with an attribute sent=true|false, others may only reflect
vague app usage across a time period. Therefore when
selecting evidence objects, one has to keep in mind how
tightly coupled the presence of the objects is with the
app functionality that needs to be uncovered.

• Triggers: Taking into account an attack scenario, cor-
responding target app functionality, and the associ-
ated evidence objects, trigger points are selected based
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FIGURE 6. The forensic timeline generation processes.

on the code that processes the said objects, specifi-
cally concerning data object processing as defined in
Section IV-A.

B. FORENSIC TIMELINE ANALYSIS
Forensic timeline generation considers all those sources that
can shed light on app usage. These range from the device-
wide logcat to app-specific sources inside /data/data,
as well as inside removable storage which can be found
in the sdcard partition and whose mount point is device-
specific. We opt for local device collection, rather than
cloud or backups, to facilitate experimentation whenever the
same data could be obtained from multiple sources. These
forensic sources, as explained in Section II-B, are represen-
tative of those targeted by state-of-the-art mobile forensics
tools, typically also requiring device rooting or a combination
of hardware-based physical collection and content decryp-
tion. These baseline sources are complemented by those
obtained through the use of JIT-MF drivers.

Figure 6 shows the processes that transform the evi-
dence obtained from the aforementioned forensic sources
to finished forensic timelines. This pipeline is based on
Chabot et al.’s [66] methodology. It revolves around the cre-
ation of a knowledge representation model as derived from
multiple forensic sources and presents a canonical semantic
view of the combined sources upon which forensic timeline
(or other) analysis can be conducted. This model is populated
with scenario events derived from forensic footprints, which
are the raw forensic artefacts collected from the different
forensic sources. These events are associated with subjects
that participate or are affected by the events and the objects
acted upon by subjects. Events can subsequently be correlated

based on common subjects, objects, as well as temporal rela-
tions, or expert rule-sets. Event correlation starts with a seed
event, which is deemed suspicious by investigators due to its
unusual nature, or else pinpointed by the user as not being
the result of intended device usage. Relations established by
this process correspond either to a relation of composition or
causation.

The first three steps in Figure 6 consist of forensic footprint
extraction. For JIT-MF, we refer to a combined dump contain-
ing unique, readily carved and parsed memory objects. All
sources are decoded andmerged as a Plaso [41] super timeline
using the psteal utility, and for which we developed a
JIT-MF Plaso parser that processes readily-parsed JIT-MF
dumps into a single JSON file. A loader utility was developed
for Step 4 that traverses the super timeline and populates the
knowledge model, which we store in an SQLite database
table. The events in this table correspond to messaging events
of some form depending on the forensic source. For example,
JIT-MF drivers and messaging backups can pinpoint events
at the finest possible level of granularity, indicating whether
a specific messaging app event is of type send or receive,
the recipient/sender. Other sources, such as the file system
source (file stat), can only provide a coarser level of
events related to the reading/writing of app-specific messag-
ing database files on the device. We stick to a flat model
for this experiment, with events considered atomic and their
associated subjects and objects corresponding to message
recipients and content, respectively. Step 5 takes alerts of
suspicious activity as input. Alert information associated with
some seed event is converted into SQL queries that encode
the required subject/object/temporal/event type correlations.
The query then outputs those events associated with the
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TABLE 2. Forensic sources and parsers.

initial alert. This event sequence provides the timeline for
the incident in question, and for which, in step 6, we used
Timesketch [42] for visualization.

C. DEMONSTRATING THE VALUE OF JIT-MF:
EXPERIMENTATION
To demonstrate the added value JIT-MF tools provide during
incident response by enriching resulting forensic timelines
produced with other mobile forensic sources; we consider
a suite of case studies inspired by real-life accessibil-
ity attack scenarios that target messaging apps. Each case
study assumes a high-profile target victim (‘‘John’’), whose
Android mobile device stores confidential data. John makes
use of multiple messaging apps which have been forensi-
cally enhanced with JIT-MF due to the potentially heightened
threats that his device may face. John receives an email to
download a free version of an app that he currently pays for
on his mobile device. He downloads it and becomes a victim
of a long-term stealthy attack.
Setup: Pushbullet (v18.4.0), Telegram (v5.12.0), and Sig-

nal (v5.4.12) are popular SMS and Instant Messaging apps,
respectively, used in our case studies. The messaging hijack
scenarios considered involve spying and crime-proxying. For
the case studies involving Telegram and Signal, these attacks
are carried out using the Android Metasploit attack suite,
whereas, for Pushbullet, these attacks are executed through
Selenium. Since most state-of-art forensic sources require a
rooted device, and rooting a device is a non-reversible action,
we opt for a rooted emulator in our experiment, which also
enabled ease of automation. The emulator used was Google
Pixel 3XL developer phone running Android 10.

The JIT-MF driver runtime was provided by a subset
of the Frida11 runtime, and JIT-MF drivers were imple-
mented as Javascript code for Frida’s Gadget shared library.

11https://frida.re/docs/android/

Listings 5 - 10 in Appendix A outline the specific JIT-MF
drivers created for each of the case studies, based on the
JIT-MF driver template in Listing 1, and used in the case stud-
ies considered in this experiment. Specifically, all the drivers
have the following attributes: Collection_method = online,
Sampling = 1 in 5 (active for a second every 5 seconds) and
Log_location = /< external_storage >/jitmflogs.Parsing_
method = online except in the case of Pushbullet drivers
where the object requires the use of regular expressions and
hence more computational effort, therefore is left for post-
processing (offline). TheEvidence_objects in each of the case
studies is the Message object, unique to each app, since the
case studies involve messaging hijack attacks. Triggers for
each case study were selected from the Native RT black-box
category (requiring least reverse engineering effort). From
preliminary usage of the apps considered, we noticed that
the apps either store/load messages from a local database on
the phone or read/send messages over the network. Therefore
related system calls (e.g. send, write, etc.) were used as
trigger points and are listed in each of the case studies below.

Table 2 lists the properties of the state-of-the-art forensic
sources considered, their method of collection and required
parsers for populating the Plaso super timeline. Apart
from the JIT-MF Plaso parser,12 additional parsers for the
app-specific databases (including write-ahead-log database)
and logcat were developed.
Case Study Setup: In each of the case studies: the emu-

lator is started, the target app is instrumented, legitimate
traffic (noise) and malicious events are simulated within a
controlled setup, forensic sources of evidence are collected
(both baseline and JIT-MF sources), and timelines are pro-
duced based on a knowledge model. The output of these steps
are the following generated timelines:

12https://gitlab.com/mobfor/jitmf_experiments_resources/-/blob/main/
Determining_JIT-MF_Value_Experiment/git_repos/plaso/plaso/parsers/
jitmf.py
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• A Ground Truth Timeline generated by logging the indi-
vidual attack steps of the executed accessibility attack.

• Baseline Timelines generated by querying a knowledge
model made up of state-of-the-art forensic sources, and

• JIT-MF Timelines generated by querying a knowledge
model made up of both baseline sources and JIT-MF
dumps.

While there is only one ground truth timeline, multiple
JIT-MF and baseline timelines can be created per case study
depending on the different seed event correlations. These
timelines are populated with events outputted from a query,
run on the knowledge model that starts from a seed event.
In each case study, attacks comprise three malicious events.
Noise is generated with respect to this value. Some of the
attacks used in these case studies target victim apps that use
rate-limited API calls to a server backend, which only allows
150 consecutive calls to be made from the same device. Since
each attack comprises three such events per case study, and
the API call limit is 150, each case study is simulated fifty
times –- each time obtaining the timelines above.
Timeline Comparison: The JIT-MF Timeline and Baseline

Timeline are compared to the Ground Truth Timeline based
on: i) completeness of timeline, i.e. lack of missing events;
ii) accuracy of the timelines with respect to the sequence in
which the events happened and the difference between the
recorded time of an event in the ground truth timeline and
the JIT-MF timeline. Preliminary runs showed that baseline
forensic sources could provide different metadata depend-
ing on the app in use. Therefore, the matching criteria for
a matched event between the generated timelines and the
ground truth timeline are adjusted in the case studies to
benefit from the evidence typically found in baseline forensic
sources.

1) A: TELEGRAM CRIME-PROXY
a: ACCESSIBILITY ATTACK
An accessibility attack targets John’s Telegram app and is
used by an attacker to send messages to a co-conspirator
going by the username ‘‘Alice’’ on Telegram. The attacker
misuses the victim’s Telegram app to send messages to
‘‘Alice’’ and instantly deletes them.

b: SETUP
John makes use of his Telegram app regularly to commu-
nicate with his family and friends. He sends six Telegram
messages to his relatives before entering a meeting, then
goes silent. The attacker notices the decrease in Telegram
activity and decides to use this time to communicate with
‘‘Alice’’ three times. He waits ten to twenty seconds (ran-
domly generated using rand) every time before messaging
‘‘Alice’’. The attacker tries to execute the attack as quickly
as possible to retain stealth but gives an allowance of ten
seconds within the attack to allow for any delays within
the app. John continues using Telegram thereafter and sends
six messages to his friend. John’s messages take this form:

Noise_ < Random10− 100− letters > whereas those sent
by the attacker are similar to Sending_Attack_#Iteration.

c: INVESTIGATION
John notices a new chat on his phone with the username
‘‘Alice’’ with no messages. He brushes it off but is contacted
later that week by investigators who told him that his phone
was used to send messages containing the specific keywords.
He takes his phone to be examined. His phone is already
equipped with a JIT-MF driver as shown in Listing 5.

This attack step involves the sending of a message over
the network. Therefore the selected trigger point is the send
system call, and the evidence object is the Telegram message
itself.

The seed event is generated based on the alert flagged,
which gives the investigators three possible starting points
to use when formulating the queries to be executed on the
different knowledge models.
Seed Event: Subject: Alice, Object: *specific keywords*,

Event type: Message Sent, Time: last 7 days
Matching criteria: The criteria for an event in the baseline

or enhanced timelines to match the ground truth timeline is
the presence of the specific message content that was sent
within the event.

2) B: SIGNAL CRIME-PROXY
a: ACCESSIBILITY ATTACK
An accessibility attack targets John’s Signal app and is used
by an attacker to send messages to a co-conspirator going by
the username ‘‘Alice’’ on Signal. The attacker misuses the
victim’s Signal app to sendmessages to ‘‘Alice’’ and instantly
deletes them.

b: SETUP
This case study is identical to the one described in the previ-
ous section.

c: INVESTIGATION
John’s phone is already equipped with a JIT-MF driver as
shown in Listing 6.

Similar to the previous case study, the evidence object is the
Signal message itself. Signal does not make use of the send
system call however when sending a message. The write
system call is used as a trigger point, which writes to the local
database and over the network.
Seed Event: Subject: Alice, Object: *specific keywords*,

Event type: Message Sent, Time: last 7 days
Matching Criteria: An event stating that a message was

sent to Alice’s number.

3) C: PUSHBULLET CRIME-PROXY
a: ACCESSIBILITY ATTACK
John’s Facebook credentials are stolen by an attacker using
a phishing accessibility attack akin to Eventbot [9]. The
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attacker uses the stolen credentials to proxy SMSs, through
John’s Pushbullet app, from his web browser.

b: SETUP
John does not use SMS functionality on his phone but
is aware that he receives many advertisement messages.
John receives six ad messages prior to entering a meeting.
The attacker notices the decrease in activity and decides
to use this time to communicate with ‘‘Alice’’ three times.
He waits ten to twenty seconds (randomly generated using
rand), then opens his browser and sends three messages
to ‘‘Alice’’. Messages received by John take this form:
Noise_ < Random10− 100− letters > whereas those sent
by the attacker are similar to this: Sending_Attack_#Iteration.

c: INVESTIGATION
John receives a hefty bill at the end of the month from his
telephony provider, attributing most of the cost to message
sending. He notices a new number that is not on his contact
list and takes his phone to be examined. His phone is already
equipped with a JIT-MF driver as shown in Listing 7.

Pushbullet stores message objects in JSON structures.
A write system call trigger point occurs when a message is
sent, at which point the process memory contains themessage
sent, stored in JSON.
Matching Criteria: A message sent to the suspicious num-

ber.

4) D: TELEGRAM SPYING
a: ACCESSIBILITY ATTACK
An accessibility attack targets John’s Telegram app and is
used by an attacker to intercept messages sent to the user-
name ‘‘CEO’’ (John’s boss - with whom confidential data is
shared). The attacker misuses John’s Telegram app to grab
messages exchanged with ‘‘CEO’’ and Telegram.

b: SETUP
John makes use of his Telegram app regularly to communi-
cate with his CEO. John sends messages to his CEO multiple
times during the day but goes silent during three meetings.
The attacker notices the decrease in Telegram activity and
decides to use this time to spy on John’s correspondence with
his CEO. Hewaits ten to twenty seconds (randomly generated
using rand), then opens Telegram, loads the ‘‘CEO’’ chat,
intercepts the messages loaded on the screen then closes
the app quickly. Messages sent by John take this form:
Confidential_ < Random10− 100− letters >.

c: INVESTIGATION
John’s phone is already equipped with a JIT-MF driver as
shown in Listing 8.

In the case of spying, one of the attack steps involves the
reading of a message, therefore the evidence object is the
message itself. Since Telegram is a cloud-based app, some
messages are stored on the device, and others are loaded and

received from cloud storage over the network. Therefore the
selected trigger point is the recv system call.
Seed Event: Subject: CEO, Object: *confidential mes-

sage*, Event type: Message Read/Loaded/Chat activity,
Time: date of message sent/received
Matching Criteria: An event type indicating chat activity,

loading, or reading of ‘‘CEO’’ messages. The message object
itself does not correspond directly to an attack step. That is,
the message object in memory does not contain metadata
about whether it was read but rather that it was either sent
or received at some point. JIT-MF forensic sources identify
a chat interception event instead as multiple message objects
exchanged with the same contact, all having been dumped
at the same timestamp. Furthermore, the timestamp of these
events must occur in the database any time after the sending
time to avoid including data related to when the message was
initially sent or received.

5) E: SIGNAL SPYING
a: ACCESSIBILITY ATTACK
An accessibility attack targets John’s Signal app and is used
by an attacker to intercept messages sent to the username
‘‘CEO’’. The attacker misuses John’s Signal app to open a
confidential chat with the username ‘‘CEO’’ and grabs the
messages that appear on the screen. Finally, the attacker
closes Signal.

b: SETUP
This case study is identical to the previous one.

c: INVESTIGATION
John’s phone is already equipped with a JIT-MF driver as
shown in Listing 9.

Similar to the previous case study, the evidence object
is the Signal message that was intercepted. Signal is not a
cloud-based app and uses solely on-device storage. Therefore
we select the open system call which is used to open the
database file from which messages are loaded to be read.
Seed Event: Subject: CEO, Object: *confidential mes-

sage*, Event type: Message Read/Loaded/Chat activity,
Time: date of message sent/received
Matching Criteria: As previous case study.

6) F: PUSHBULLET SPYING
a: ACCESSIBILITY ATTACK
John’s Facebook credentials are stolen by an attacker using
a phishing accessibility attack. The attacker now has access
to any messages sent or received by John through a syncing
event on John’s phone.

b: SETUP
John makes use of his SMS app regularly to communicate
with his CEO. John sends messages to his CEO multiple
times during the day but goes silent during three meetings.

35188 VOLUME 10, 2022



J. Bellizzi et al.: Responding to Targeted Stealthy Attacks on Android Using Timely-Captured Memory Dumps

TABLE 3. Forensic timeline comparisons.

Unbeknownst to him, the attacker is immediately intercepting
all of John’s ongoing SMS activity.

c: INVESTIGATION
John’s phone is already equipped with a JIT-MF driver as
shown in Listing 10.

Unlike Telegram and Signal, Pushbullet spawns several
sub-processes to sync activity generated on the device with
that stored in the cloud. While in Case Study C the attack
involves a level of interaction with the device (since the SMS
has to be sent from the device after receiving an instruction
from the browser), in this case, any message sent or received
is assumed to automatically have been intercepted. The trig-
ger point selected is one of the Android API calls used by the
Pushbullet to sync sent/received messages via Firebase. The
only evidence object, related to an attack step, that can be
retrieved from memory for this case study, is a JSON object
containing ‘‘push’’ event metadata which indicates message
content has been synced and can be remotely read.
Seed Event: Subject: CEO, Object: *confidential mes-

sage*, Event type: Message Read/Loaded/Chat activity,
Time: date of message sent/received
Matching Criteria: As previous case study.

D. DEMONSTRATING THE VALUE OF JIT-MF: RESULTS
Table 3 shows a comparison between the generated JIT-MF
timelines and Baseline timelines, per seed event correlation,
to the ground truth timeline. The generated timelines included
events unrelated to the attack steps (noise); therefore, pre-
cision and recall were used. Precision is a value between
0 and 1, which denotes the average relevant captured events.
The higher the value, the larger the portion that attack steps
make up the timeline, i.e. little noise was present. Where the
value is ‘−’, no events were captured. Recall denotes how
many of the executed attack steps were uncovered. Similarly,
the higher the value between 0 and 1, the more attack steps

in the ground truth timeline were captured. Timeline differ-
ence from the ground truth timeline was calculated using
Jaccard dissimilarity on the set of attack events uncovered
by the generated timelines. In this case, the higher the value
between 0 and 1, the more dissimilar (undesirable) the gen-
erated timeline is to the ground truth.

1) PRIMARY CONTRIBUTORS TO TIMELINE SIMILARITY
The timeline difference values in the table show that over-
all JIT-MF timelines are at least as similar to the ground
truth as baseline timelines. While the dissimilarity for the
baseline timelines varies substantially within a single case
study, depending on the seed event - correlation, this is not the
case for JIT-MF timelines whose distance from ground truth
remains roughly the same. Since JIT-MF forensic sources
include finer-grained evidence (message content, recipient,
date. . . ), the chosen seed event correlation has little to no
effect on the output timeline. In contrast, evidence from
baseline sources is not as rich, with correlation becoming
a critical factor affecting the resulting timelines. Due to the
finer-grained metadata available in JIT-MF forensic sources,
we can say that even in the scenarios where JIT-MF timelines
are equivalent to the baseline in event sequences, these can
provide the investigator with richer timelines through more
informative events.

The table also shows that JIT-MF timelines are more simi-
lar to the ground truth in the case of spying (case studies D-F)
in comparisonwith the baseline sources, which do not include
enough evidence pointing to message reading or browsing
chat activity.

2) PRIMARY CONTRIBUTORS TO TIMELINE DISSIMILARITY
JIT-MF timelines were most dissimilar from the ground truth
in the last case study. The main differences from the other
case studies here were: i) Many of the app’s functionality
was delegated to a sub-process that was not instrumented,
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and ii) The evidence object defined in the JIT-MF driver was
coarser-grained (a JSON object containing ‘‘push’’ event that
synced changes). These limitations in the JIT-MF’s driver
implementation contributed to a JIT-MF timeline whose gain
on the baseline timeline was minimal regarding ground truth
timeline similarity.

To mitigate this, modifications needed to be made to the
JIT-MF driver template to cater to apps and incident scenario
pairs, whose trigger point is executed in another subprocess
of the app (not the main process). Listing 1 line 3 shows
how JIT-MF drivers may be fine-tuned, so that specific app
processes are instrumented rather than automatically instru-
menting the main app process. This allows JIT-MF to bemore
effective across the different case studies considered.

Furthermore, while JIT-MF timelines are more similar to
the ground truth timeline than baseline timelines in cases
involving spying (D-F), they are less similar to the ground
truth timelines when compared to JIT-MF timelines obtained
for the crime proxy case studies (A-C). The difference
between these sets of case studies is that in crime proxy
scenarios, the evidence object defined in the JIT-MF driver
is the fine-grained message object that contains metadata
tightly linked to the event itself. In spying scenarios, we are
after coarser-grained events (an indication of a chat being
intercepted/synced) since key objects in memory are either
absent or do not contain indicative metadata of the ongoing
event. In such scenarios, evidence from other sources, e.g.
logcat or dumpsys could shed more light on possible
attack steps being carried out.

3) JIT-MF TIMELINE SEQUENCE ACCURACY
When performing order-sensitive comparisons using Kendall
Tau coefficient, we were able to conclude that the sequence of
captured events in JIT-MF timelines (containing only ground
truth events) is always identical to that in the ground truth
timeline, i.e. a coefficient of 1 is observed in all cases.
Additionally, the standard deviation between the time of the
events logged in the ground truth timelines and that logged in
JIT-MF timelines is at most 62s. While any additional cost to
complete a typical app function diminishes the performance
of the app, the delay occurs during message sending and
receiving without affecting the user interface; therefore, the
lag is not noticeable.

4) PERFORMANCE OVERHEADS
Since Pushbullet offers remote SMS-on-PC functionality,
performance overhead was calculated based on the increase
in turnaround time. With Telegram and Signal, these apps
are generally used through the phone’s UI; therefore, per-
formance overhead was measured in Janky frames,13 an
indicator of non-smooth user interactions with GUI apps.
With JIT-MF drivers enabled, only an average increase of
0.5s was registered in Pushbullet turnaround times for SMS
operations, as observed from the web browser’s Javascript

13https://developer.android.com/topic/performance/vitals/render

console. Telegram and Signal had an average increase of
1.59% and 3.53% of Janky frames, respectively, with JIT-MF
drivers enabled; the performance penalty overall was less
than 3.53%.

While Janky frames are an indicator for how smooth the
UI of the app is while it is running, this does not factor in
performance issues such as the app crashing, a few instances
of which we observed during experimentation. Furthermore,
while the experiment ran for a relatively short period of time,
logs generated by JIT-MF and stored on the device, continue
to accumulate over time until they are collected and removed
from the device by a potential investigator. Therefore, if the
magnitude of these logs increases exponentially over time,
the device would be rendered unusable. Both of these issues
influence the feasibility of JIT-MF in a realistic setting and
require further experimentation.

The results obtained address RQ1, as we demonstrate
that in an emulated setting, JIT-MF is successful in timely
dumping critical data objects in memory as evidence related
to elusive attack steps. Furthermore, the evidence collected
through the use of JIT-MF is not available in any other foren-
sic source and is crucial to constructing a comprehensive,
enriched forensic timeline.

VI. MobFor: A TOOL BASED ON JIT-MF
While shown to be of potential value in an emulated set-
ting, by enriching forensic timelines with evidence recovered
solely by JIT-MF sources (Section V), bridging the gap to
real-world deployment requires further experimentation.

The results shown in the previous section outline some of
the practical challenges that JIT-MF faces in terms of app
stability. Furthermore, given that JIT-MF is intended to work
in an incident response setting, enriching forensic timelines
by complementing existing forensic sources, we enlist the
following objectives that should be met by any JIT-MF tool:

1) A JIT-MF driver is needed for each pair of app and
incident, therefore code comprehension and/or reverse
engineering efforts must be kept at a minimum.

2) Effective sampling is required to minimize both the
burden on storage requirements as well as the degra-
dation of user experience (app stabilisation) due to
additional processing.

3) The output should be in such a format that is easily
ingested by analysis tools.

4) A chain of custody must be kept to ensure that all the
operations carried out on the device are well docu-
mented and any recovered evidence may be admissible
in court [25].

5) Address app-specific implementation challenges that
may arise with app instrumentation, namely: i) Multi-
process apps, ii) Obfuscation resistant apps, and
iii) Code integrity checks.

With the above objectives in mind, we set out to answer the
second research question: ‘‘How do we build a JIT-MF tool,
MobFor, that is both practical and effective?’’ (RQ2). To this
end, we implement MobFor; a JIT-MF tool that meets these
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objectives in the context of stealthy messaging attacks tar-
geting Signal, Telegram and Pushbullet, enabling JIT-MF to
function in real-world high-profile target scenarios.We repro-
duce prior experimentation that provides guidelines regarding
trigger point selection [21], addressing the first objective, and
conduct novel experimentation to observe the effects of sam-
pling, addressing the second objective.We discuss the outputs
produced by MobFor, addressing the third and fourth objec-
tives in Section VI-C1. Finally, in Section VI-C2, we describe
the approaches taken to address app-specific implementation
challenges presented by the app-attack scenarios considered
to address the final objective.

A. TRIGGER POINT SELECTION
While based on the JIT-MF driver template in Listing 1,
the conceptualised implementation of the drivers created
(Listings 5 - 10 in Appendix A) shows that developers of
JIT-MF drivers still have to perform the arduous task of
finding valid trigger points and selecting evidence objects
that can be considered critical evidence in a specific stealthy
attack scenario. While the selection of evidence objects may
be obvious (especially in the case of open-source apps),
since this constitutes the object in memory that needs to
be dumped, the selection of trigger points may not be as
straightforward and requires more effort in comprehending
the codebase (reverse engineering) of an app to understand its
functions. To this end, we perform a comparative analysis of
the different trigger point categories defined in Table 1, based
on their ability to timely dump critical evidence objects from
memory and observe their associated storage overhead costs.

1) TRIGGER POINT SELECTION: EXPERIMENTATION
Four messaging hijack case studies were set up for
experimentation purposes, encompassing SMS (via the
closed-source Pushbullet app) and IM (via the open-source
Telegram app): 1) SMS Crime-proxy, 2) SMS Spying, 3) IM
Crime-proxy and 4) IM Spying.

All four attack scenarios were implemented as extensions
to Metasploit’s Meterpreter for Android.14 For SMS-related
attacks, the accessibility malware typically first sets up a
Pushbullet installation and signs in using phished creden-
tials. The full setup comprises: Pushbullet v17.7.19 and Tele-
gram v6.1.1 Android apps instrumented with JIT-MF drivers
through MobFor, both installed on an Android 10 emulator.
The JIT-MF drivers used implemented both online and offline
evidence collection methods as described in Section IV-B,
leveraging Frida’s Java.choose() and Android’s API
Debug.dumpHprofData() respectively. In the case of
Pushbullet, we assume a legitimate user did the initial instal-
lation. To measure effectiveness, we search for the proxied/s-
tolenmessages in the resulting JIT-MFmemory dumps output
and note whether or not they were found. All attacks were

14https://github.com/rapid7/metasploit-framework/tree/master/
documentation/modules/payload/android

repeated ten times since it sufficed to reach convergence for
all measurements taken.

Eight JIT-MF drivers were created, each having a differ-
ent trigger point (TP) per incident scenario and target app.
Two trigger points were selected for each category defined
in Table 1, attempting to leverage all available candidate
trigger points in terms of disk input/output, network send/re-
ceive, and miscellaneous object transformations, following
the heuristic described in Section IV-A, while keeping an
eye on comparing black-box and white-box trigger point
categories. The chosen TPs are listed in Table 4, where TP1
is either file/disk or object transformation-related, and TP2
is network-related. Trigger_predicate() were used for better
specificity and device event trigger point checks are triggered
based on their native category counterpart, so the instrumen-
tation checks for increased directory size, after a write()
call is made.

2) TRIGGER POINT SELECTION: RESULTS
Table 5 compares the trigger points based on accurately
dumping evidence objects related to the proxied or inter-
cepted SMS/IM messages over ten runs per attack. The first
six rows are the results obtained for the black-box trigger
points, while the next two are for the white-box. The results
column-wise, i.e. across trigger point categories, show that
the hypothesis that white-box trigger points are more accurate
than their black-box counterparts does not hold. For each of
the case studies, the collected evidence contains the following
metadata: i) The contents of the message sent/read; ii) The
sender/recipient (for crime proxy and spying, respectively);
and iii) The time at which the message was received/inter-
cepted.

At first glance, it seems that selecting accurate trigger
points could be possible solely within the black-box cat-
egories, which are those requiring minimal app-specific
knowledge. Furthermore, the results presented in Table 5 also
show that the effectiveness obtained by using offline and
online collection methods have very similar results.

a: BLACK-BOX TRIGGER POINT CATEGORIES SHOW
PROMISE
The fact that black-box trigger points can be as effective and
efficient as white-box ones bodes well for the first objective
set out for MobFor, i.e. requiring less code comprehension/
reverse engineering efforts to implement JIT-MF drivers.
While both effectiveness and runtime overheads so far do not
overwhelmingly favour any of the three black-box categories
across the board, it seems that certain trigger point categories
might be less resource-intensive for some apps and more for
others. This, however, merits further field observation once
MobFor is deployed.

Considering only the best-performing trigger points within
each black-box category, per investigation scenario (high-
lighted in grey), we notice that across the four scenarios
Device Event trigger points were the least effective, with
the other two categories at a tie. Furthermore, in the cases
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TABLE 4. Trigger points selected.

TABLE 5. Trigger point effectiveness: % accuracy over ten runs. Values highlighted in grey represent the trigger points that performed best within each
black-box category, per investigation scenario.

where the trigger points in this category underperformed, the
discrepancy was substantial, e.g. in the Spying - SMS case,
60% fewer events were caught, when compared to the results
obtained by the best performing trigger points in the other
two black-box categories. These results, therefore, suggest

that in the case of Device Event trigger points, several trigger
points may have to be evaluated before deployment. While
for certain app functionality we can assume underlying app
events (e.g. send syscall in case of an outgoing message
over the network), the effects that this functionality may have
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on the devices may differ depending on app usage as well
as on the device itself. For instance, if an app stores data
in a cache store until a limit is reached and then empties
the cache, selecting a Device Event trigger point that mon-
itors an increase in app directory size may not be entirely
sufficient since the frequency with which the device owner
is sending messages hinders the effectiveness of said trigger
point. Therefore gaining access to a typical app usage profile
becomes valuable in assisting the driver developer to generate
better Device Event trigger points targeted to a scope.
Furthermore, considering the two most successful cat-

egories within each black-box category (Native RT and
Android & 3rd Party APIs trigger points), results show that
the distinction in effectiveness between file/disk-related trig-
ger points (TP1) and network-related trigger points (TP2),
remains unclear, as results vary substantially between the
two types of trigger points even in the same category and
scenario. That said, network-related fared consistently in the
scenarios involving the instant messaging (IM) app, Tele-
gram. The scenarios involving SMS, show mixed results,
however, demonstrating that even within the context of mes-
sage hijack attacks, different types of trigger points leverag-
ing both file/disk and network might be required depending
on the type of messaging app involved in the scenario.

b: OVERHEAD STORAGE COSTS
Whilst results show that black-box trigger points do not
necessarily incur higher storage costs, with online collected
dumps requiring as little as 0.1kB to be effective, these results
must also be analysed in the context of practical JIT-MF tool
deployment in a realistic setting. When one considers that
dumps are triggered per critical app functionality, which in
our case studies corresponds to SMS/IM sending/viewing,
dumps are expected to be very frequent. While perhaps SMS
is of less concern nowadays, IM is an entirely different story
that could result in daily triggers on the order of hundreds to
thousands, even in the case of online collected dumps.

When opting for offline evidence collection, we note that
while the average dump size required by online collection is
around 143kB, that required by the offline method is 203MB
(an order of magnitudemore on average), per attack scenarios
and trigger points chosen.

B. TRIGGER POINT SAMPLING
Any app which is forensically enhanced with JIT-MF
drivers using some JIT-MF tool must remain usable by
the device owner. The motivation for introducing sampling
(second MobFor objective) arises from the need to minimise
on-device storage cost, which is already present even in the
initial representative study presented in the previous section.
Furthermore, by addressing storage costs, we simultaneously
aim to address any resulting app performance degradation
due to saturation in resource usage that may cause the app
to crash.

In the case of JIT-MF tools, storage costs can be attributed
to two factors: i) The size of memory fragments dumped

(either specific data object in the case of online collection or
the entire memory dump size in the case of offline collection);
and ii) The number of times a trigger point is invoked causing
the trigger point callback to be executed and a memory dump
to be taken (TP Frequency), which can be limited to an extent
by declaring a Trigger_predicate().

While JIT-MF drivers can cater to both offline and online
collection (see line 7 in Listing 1), depending on the need
of a particular scenario, we choose to equip MobFor with
JIT-MF drivers using online evidence collection. This deci-
sion follows the results obtained in Section VI-A2, which
show online collection to be the least costly of the two in
terms of storage and just as effective as its offline counter-
part (see Table 5). By taking an online approach, the size
of the memory dumped upon each trigger point invocation
is reduced significantly; however, the burden on the device
storage resources can still accumulate to large quantities
depending on the TP frequency.

To this end, we propose two sampling methods shown in
Table 6, both of which aim to minimise the number of times
a trigger point is invoked, thus reducing TP frequency and
overall storage costs over time. We define sampling window
as the range of possible values from which a sampling value
is randomly chosen that determines whether or not the trigger
point callback is executed. Periodic sampling refers to a
generic sampling approach, using the current time to deter-
mine whether or not a memory dump should be taken. A ran-
dom value in seconds (sampling value) is selected from an
acceptable range of minutes (sampling window), and depend-
ing on whether or not the current time in seconds is exactly
divisible by the randomly selected sampling value; the trig-
ger point callback is executed. Systematic sampling is more
specific to the JIT-MF framework, as it uses a counter storing
the number of times the chosen trigger point was executed/hit
at runtime (TP Hit) to determine whether or not a memory
dump should be taken. A random counter value (sampling
value) is selected, from an acceptable range of numbers
representing TP hits (sampling window), and depending on
whether or not the current counter value matches the ran-
domly selected sampling value, the trigger point callback is
executed. When implementing either approach, selecting the
size of the sampling window requires insight into the device
owner’s app usage pattern; however, systematic sampling
requires more app code comprehension effort. Specifically,
the JIT-MF driver developer needs to gauge how many times
a trigger point is invoked in an acceptable range of time
(assuming typical app usage involving message sending and
loading - see Section VI-B3). For instance, if a chosen trigger
point is hit very frequently during the app’s runtime upon
a single messaging event, then a small sampling window;
e.g. a range of possible values between zero to five TP hits,
would have little to no effect in reducing the burden JIT-MF
drivers have on running apps. In each method, once trigger
point callback is executed, a new random value is selected,
and in the case of systematic sampling, the counter is reset to
zero.
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TABLE 6. Sampling methods.

While the primarymotivation behind introducing sampling
is eliminating app crashes and reducing the amount of stor-
age required on the device to render JIT-MF forensically-
enhanced apps as usable as their original counterparts, this
is expected to come at a cost. When sampling is adopted,
trigger point callback functions are only executed when the
sampling_predicate() function in a JIT-MF driver returns
true, based on a random sampling value selected from a
sampling window. This means that with an increasing sam-
pling window, the number of trigger point callbacks executed
decreases, resulting in fewer calls to dump critical objects
from memory. This allows for JIT-MF drivers to fall prey
to adversarial tactics. Since the random value generated for
periodic sampling may not be a true random value, depending
on the number of sources for randomness that the phone has,
this creates a possibility whereby attackers carefully time
messaging hijack attacks so that they occur outside the sam-
pling value selected. Furthermore, a large sampling window
(e.g. a range between zero and thirty minutes) may lend
itself useful to an attacker; since a large sampling window
means that an attack step has larger periods of time during
which no trigger point callbacks are executed. In the case of
systematic sampling, if the sampling window is set to a high
value because the typical usage behaviour of the user on the
app calls for such a value, an adversarial actor may monitor
the app usage to schedule the attack in a period of time when
the app has been comparatively quiet. Therefore, even if TP
hit count is relatively low, the attack step can still be missed.

Nevertheless, results from recent studies [18], [20] show
that garbage collection algorithms available on Android
devices, allow for the complete reconstruction of even com-
plex objects from userland memory, in some cases much
after the creation of said objects. Therefore, when adopt-
ing sampling, while objects from memory are collected less

frequently (or fewer memory dumps are taken - in the case
of offline collection), this does not necessarily mean that
fewer critical data objects are captured. Garbage collection
algorithms running on the device should work in JIT-MF’s
favor, such that critical objects that were not immediately
retrieved due to sampling may still be in memory when the
sampling_predicate() function returns true and the trigger
point callback function is eventually executed. Hence, while
a decrease in the number of messaging objects collected is
expected, we are optimistic that this decrease will beminimal.

1) TRIGGER POINT SAMPLING: EXPERIMENTATION
a: SETUP
The results obtained show that the JIT-MF drivers created
(see Listings 5 - 10 in Appendix A) were effective. There-
fore the same JIT-MF drivers are used, having black-box
(Native RT) trigger points and the app-specific Message
object identified, as the evidence objects consist of. App-
scenario specific drivers are combined into one robust JIT-MF
driver that caters for message hijack attacks (both spying
and crime-proxy). We equip MobFor, a JIT-MF tool, with
these three JIT-MF drivers targetingmessaging hijack attacks,
misusing Pushbullet (v18.4.0), Telegram (v5.12.0), and Sig-
nal (v5.18.5). The experiment is carried out on an Android
10 emulator for ease of automating message sending.

This experiment aims to observe how random sampling
values selected from increasing sampling windows, for each
sampling method proposed in Table 6, affect the app’s per-
formance at runtime (in terms of stabilisation; i.e. number
of crashes and device storage resources) under typical app
usage. For the scope of this experiment, we consider typical
messaging functionality as chat loading and message send-
ing carried out via adb input keystrokes in the case of

35194 VOLUME 10, 2022



J. Bellizzi et al.: Responding to Targeted Stealthy Attacks on Android Using Timely-Captured Memory Dumps

Telegram and Signal and through Selenium for Pushbullet.
A sampling window range is set per sampling method. This
range defines the maximum and minimum values of the sam-
pling windows considered per sampling method. In the case
of periodic sampling, the sampling window ranges between
zero to five minutes. This value is based on the time taken
for the experiment outlined above to be carried out. For
systematic sampling, we conduct preliminary observations to
understand how many times the specific trigger point chosen
for an app is hit in five minutes. The sampling window ranges
were between one TP Hit to 5000, 400 and 32000 TP hits for
Pushbullet, Telegram, and Signal, respectively.

The logcat crash buffer is used to determine whether
or not the app in question crashed during either of the
runs. Statistics related to Janky frames were also gathered to
determine any slow interactions with the app’s GUI. Janky
frame statistics can only be generated while the app is run-
ning; therefore, if Janky frame statistics were not outputted,
we assume that the app has crashed. Finally, we determine the
volume of the evidence produced by MobFor.

We carried out our experiment in the following manner;
for each app, preliminary runs were used to determine the
interval between the different sampling windows used, up to
the maximum value in the sampling window range, per
sampling method. For each sampling window, the JIT-MF
driver is created with the relevant implementation of the
sampling_predicate() function. Any residue logs are deleted,
and Janky frame statistics are reset. The updated driver is
pushed on the device. A chat is loaded and a pseudo-random
message with the same prefix is sent at random five times,
every ten seconds. This process is repeated five times for
each to reach convergence. It was noted that if an app
hangs/crashes during the process described above, it never
‘‘recovers’’ unless it is closed and reopened. Therefore, the
number of messages sent was kept was kept at par with
manual app usage.

2) TRIGGER POINT SAMPLING: RESULTS
Figures 7a, 7c, 7e present the results obtained when using
periodic sampling, while figures 7b, 7d, 7f present those
obtained when using systematic sampling, for Pushbullet,
Telegram and Signal, respectively. In each of the figures, the
number of crashes (blue) and total storage taken up on the
device by JIT-MF dumps (red), are plotted against varying
sampling values (up until the maximum sampling window
value set in the experiment).

As expected, overall across both sampling methods,
we notice that with the increase in sampling window, the
number of crashes and storage required, reduce significantly
until a plateau is reached. Furthermore, while the number of
crashes becomes negligible, the size of the output JIT-MF
dumps is higher than 0MB, meaning that even with an
increase in sampling window, the output is still produced
and, JIT-MF is still effective in dumping evidence objects in
memory. Table 7 shows the percentage of events that were
retrieved, for the sampling window where it is evident from

the graphs presented in Figure 7, that a plateau has been
reached. Results from this table show that, even in the cases
where a large sampling window is adopted, the majority of
ground truth events are still collected byMobFor, demonstrat-
ing that the Garbage Collector is working in MobFor’s favor.
This bodes well for the applicability of MobFor in a realistic
scenario, especially when considering the improvement to the
app’s performance in terms of the number of crashes.

The amount of storage on the SD Card is 512MB, there-
fore at worst, JIT-MF logs took ∼4% of the storage avail-
able. While there is a correlation between crashes and the
total percentage of storage taken (0.28 and 0.44 when using
systematic and periodic sampling, respectively), this is not
strong. Therefore the crashes are most likely resulting from
IO operations rather than the increase in usage of storage
resources.

Results from Figure 7 show that both sampling methods
were equally successful in significantly reducing overhead
costs. That is, a specific sampling window size is identifiable
in each of the graphs, for which the number of crashes and
storage required on the device is the same for both sampling
methods per app. However, a distinction between the two
methods can be made in terms of the implementation effort
required for each method, as well as the likelihood of each
sampling method to fall prey to adversarial tactics.

a: IMPLEMENTATION EFFORT
Periodic sampling requires a few more computational steps,
as it is required to obtain current time, translate it to seconds
and then check if it is exactly divisible by the random value of
seconds selected, as opposed to systematic sampling, where
only the trigger point hit counter is needed and checked
against a random value. Nevertheless, while periodic sam-
pling can be implemented even with no prior knowledge of
the app’s usage pattern or understanding as to how the app
functions, the same cannot be said for systematic sampling.
The latter method of sampling is based on the number of times
a trigger point is hit. While the measure of time is constant
across apps and different scenarios, the number of times a
trigger point is hit varies depending on how the user uses an
app and how the app itself functions. Therefore a preliminary
exercise has to be done before applying this samplingmethod,
whereby the average number of trigger point hits in a range
of time is determined, per app, scenario, and usage pattern.

b: RISK OF ADVERSARIAL TACTICS
While both samplingmethods rely on randomness to generate
a value within a sampling window, the sources of randomness
for a specific device differ on each device and are independent
of our implementation. In the case that the random value
can be determined by an attacker, an attacker can perform
a messaging hijack attack during the portion of the sampling
window where the sampling_predicate() criterion is not met
and a memory dump is not taken; i.e. at the wrong time or not
the right amount of TP hit count. From the attacker’s point
of view, the periodic sampling method would be easiest to
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FIGURE 7. Sampling results obtained for Signal, Telegram and Pushbullet.
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TABLE 7. % Ground truth timeline events captured per performance-optimal sampling window size.

evade since it requires no additional knowledge except for
a measure of time itself. The systematic sampling method
would require more effort for the same reason that it requires
more implementation effort. It may be more difficult for the
attacker to determine the current value of the trigger point
hit counter, especially without knowing how the app is being
used. However, this may be circumvented by an attacker by
monitoring periods of inactivity and carrying out an attack
at those specific instances, which in the case of stealthy
attacks, is typically the case. Even in such scenarios, when
trigger point callbacks are purposefully evaded to prevent
memory dumps, eventually trigger points will be hit even
if this occurs while the device owner is making use of the
app. As previously discussed, when this occurs, the garbage
collection functionality can still work in the investigator’s
favour and potentially dump missed objects.

The methods adopted in this experiment can give JIT-MF
driver developers an indication of the storage requirements
for a particular sampling window size, as well as the risks and
implementation effort involved. This allows driver developers
to make an informed decision as to which parameters suit
their particular scenario.

3) THREATS TO VALIDITY
Enabling sampling allows MobFor to reduce the amount of
storage occupied. However, if the device is already running
low on storage, then a JIT-MF tool would run into the same
issues of evidence availability as the baseline sources. Fur-
thermore, the results obtained are concerning specific app
usage patterns that we defined. Namely, in our experiments,
the usage pattern involved the sending and loading of text
messages, within the apps considered. Other possible usage
scenarios include the transfer of complex media types as well
as different usage patterns e.g. long time of inactivity or influx
of incoming messages. While we envisage that the respective
object of such media is located in memory as well and may
be dumped just the same, further code comprehension may be
required to fully understand how these objects can be carved
and parsed.

The experiment was enabled through the use of Android
emulators, to facilitate automation. However, the emulated
devices used were unrooted, to ensure that no additional
privileges given in the emulated setting contribute towards
results that cannot be obtained in a realistic setting given stock
Android devices.

The app and incident scenarios considered in this experi-
ment are only related to messaging hijacks. Other apps may
still be subject to issues that require further experimentation.

C. MobFor IMPLEMENTATION
The results obtained in the previous subsections demon-
strated that the first two objectives of MobFor can be met
by: i) Using black-box trigger points (see Table 1 to lessen
reverse-engineering efforts required while still accurately
dumping evidence objects from memory and ii) Using sam-
pling methods with sampling windows suited to the scenario
and device in question to lessen performance burdens while
the app is running. This has been demonstrated in the context
of JIT-MF drivers tailored for messaging hijack scenarios,
targeting Pushbullet, Telegram and Signal.

1) MobFor OUTPUTS
MobFor is implemented using a subset of the Frida runtime.
JIT-MF drivers are implemented as Javascript code for Frida’s
Gadget shared library, allowingMobFor to function on a non-
rooted device. The JIT-MF drivers targeting specific apps are
modular, and additional drivers can be added to MobFor as
needed. The output produced by MobFor is in JSON for-
mat, a popular format among many forensic analysis helper
tools, including Timesketch [42], and is stored to external
storage sdcard. Further processing is required on the files
outputted by MobFor to remove possible redundant duplicate
data and to carry out parsing and carving of objects dumped
if either of these is set to offline in the JIT-MF driver. The
resulting output contains data as shown in Listing 3, where
the metadata of a critical object retrieved from memory can
be seen in the nested JSON object key. The time, event and
trigger_point values refer to the time the trigger point that
dumped the object was hit, the type of event (depending on
the JIT-MF driver used) and the trigger point type (native | rt),
respectively. Figure 8 shows how Listing 3 is displayed when
using the forensic analysis timeline tool Timesketch.

A chain of custody is maintained through a JSON log file
as shown in Listing 4, which is updated with every command
sent to the device, mirroring the steps in Figure 1.

2) APP-SPECIFIC CHALLENGES PRESENTED WITH APP
INSTRUMENTATION
Obfuscated app codebase presents implementation chal-
lenges to JIT-MF tools regarding trigger point selection
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Listing 3. Sample of MobFor output from a Signal messaging hijack scenario after deduplication process.

Listing 4. Snippet of chain of custody log.

FIGURE 8. Sample of MobFor output from a Signal messaging hijack scenario as displayed in Timesketch.

and evidence object identification. Telegram and Signal
are popular open-source messaging apps and therefore
did not present any challenges concerning code obfusca-
tion. Pushbullet, however, is closed-source and required a
decompilation process to reveal obfuscated bytecode. Code
obfuscation had minimal impact in identifying effective
trigger points as black-box trigger points were used, that

required minimal reverse engineering efforts (see Table 1
and results in Section VI-A). Furthermore, in the case of
Pushbullet, the Message object in memory is visible in
the logs produced in its browser counterpart as a Java
org.json.simple.JSONObject; an object available
in a library external to Pushbullet’s source code, which there-
fore cannot be included in the obfuscation process.
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Telegram and Signal have one main process, Pushbullet
however, runs multiple processes, each of which could be
instrumented. In the context of the messaging hijack sce-
narios used, the trigger points executed within the main
process were sufficient to capture critical evidence objects
for Pushbullet. However, the Process parameter inside the
JIT-MF driver template can be modified, depending on the
incident scenario and target app pair, to ensure that the Frida
gadget library is loaded inside the subprocess which handles
the critical evidence object operations (stored, transferred or
transformed).

Pushbullet, Telegram and Signal presented no obstacles in
the form of code integrity checks and therefore could be suc-
cessfully instrumented with JIT-MF drivers. This, however,
may not be the case for other apps (see Section VII-A) or
future versions of these same apps. JIT-MF driver developers
may need to find app-specific workarounds to avoid such
checks in such scenarios.

D. INSTALLING AND USING MobFor
MobFor is open-source and publicly available.15 A full instal-
lation guide16 as well as the supporting resources are also pro-
vided. As explained in Figure 1, the JIT-MF workflow starts
by first identifying target users and apps, then proceeds to
instrument the identified apps. This is reflected in the imple-
mentation of MobFor, whereby as shown in Figure 9 and 10,
investigators can choose to initialise a workflow that allows
them to instrument an attached device with one of the avail-
able JIT-MF drivers. MobFor also caters for the collection
of the evidence gathered on the device (Step 3 in Figure 1)
and provides the output in a way that can be used for further
timeline analysis, e.g. via Timesketch as shown in Figure 8.

By meeting all the objectives set out for a JIT-MF tool at
the beginning of this section, we addressed the challenges
presented by RQ2 and build MobFor, a JIT-MF tool equipped
with corresponding drivers that cater to messaging hijack
attacks in high-profile target scenarios. We show this in an
emulated setting involving Pushbullet, Telegram, and Signal
and demonstrate that: i) Through the selection of black-box
trigger points we can significantly reduce the required reverse
engineering efforts, and ii) By using sampling, a JIT-MF tool
can function successfully while being of minimal burden to
the running app.

VII. USING MobFor IN A REAL-WORLD INVESTIGATIVE
SCENARIO
With MobFor implemented, we now aim to demonstrate
howMobFor can complement existing state-of-the-art digital
forensics tools in a real-world incident response setting to
address the question ‘‘In what ways can MobFor comple-
ment existing forensic tools, in a realistic setting?’’ (RQ3).
To this end, we conduct an experiment involving a recently
discovered stealthy Android worm called WhatsApp Pink

15https://gitlab.com/mobfor/mobfor-project
16https://mobfor.gitlab.io/mobfor-pages/

FIGURE 9. MobFor main menu.

FIGURE 10. MobFor JIT-MF driver selection screen.

[67] (a messaging attack involving WhatsApp) and make use
of two digital forensics tools: Belkasoft Evidence Centre X17

and MSAB XRY,18 along with MobFor. While WhatsApp
Pink is considered to be a form of mass malware, high-
profile targets can still fall prey to suchmalware and therefore
this falls within the scope of the high-profile target scenario.
Since the context involves an app that was not previously
considered, we also create a new JIT-MF driver for Mob-
For, targeting messaging hijack attacks involving WhatsApp,
thereby allowing the opportunity to study the entire JIT-MF
process.

A. WhatsApp JIT-MF DRIVER DEFINITION
The implementation of the JIT-MF driver for WhatsApp fol-
lowed a similar approach to that used to generate drivers
for Pushbullet, Telegram and Signal, with minor modifica-
tions that are specific to WhatsApp as shown in Listing 11
(see Appendix A).

1) TRIGGER POINT SELECTION
As with previously created JIT-MF drivers, we aim to
choose a black-box trigger point, based on the known
basic functionality of WhatsApp. In the case of What-
sApp, we know that messages are stored and loaded from
a local SQLite database. Even though WhatsApp is closed-
source, it still makes use of Android’s SQLiteDatabase

17https://belkasoft.com/x
18https://www.msab.com/products/platforms/#office
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API (see Table 1), providing a convenient avenue for
trigger points while avoiding further app reversing. The
android.database.sqlite.SQLiteDatabase
.insert()method was chosen as trigger point for this pur-
pose. This trigger point falls under the black-box set of trigger
points, as part of the Android & 3rd Party APIs category.

2) EVIDENCE OBJECT SELECTION
The evidence object indicating a possible attack step is
a WhatsApp message. Given the publicly available doc-
umentation related to the chosen trigger point,19 we are
able to conclude that the final parameter of this function
(android.content.ContentValues) contains a reference to the
object of interest. Therefore, no additional code comprehen-
sion/reverse engineering effort was required in determining
the message object of interest from obfuscated WhatsApp
bytecode. In this case, the actual evidence object is added
to the list of Evidence_objects when the trigger is hit and
the callback is executed (see lines 30-31 in Listing 11) and
is passed onto the dump_rt_object method to be carved and
parsed. Upon further inspection of the object, we notice that
the object is Base64 encoded and once decoded, the message
content, recipient and sender phone numbers can be parsed.
Since this requires a fair amount of processing, parsing of the
relevant metadata is done offline (see lines 67-103 in Listing
11). A crucial parameter is missing: the timestamp associated
with a message. We notice from preliminary runs that prior
to an insert() an SQLite table update() is executed,
updating the timestamps of messages sent/received. There-
fore, a secondary trigger point (line 7) is added to determine
the timestamp of a message being insert()-ed. Finally,
the contents of the object retrieved also provide information
on the type of event that the object is related to (lines 85, 94),
which we append to the event type previously defined, related
to the scope of the driver.

3) SAMPLING METHOD
Preliminary observations were made to determine the sam-
pling window range for WhatsApp. Specifically, we carried
out an exercise to determine the TP hit count over a period of
time, where activity was generated by simulating the sending
and receiving of messages. This is a precursor to setting a
value for the systematic samplingmethod (see Section VI-B).

The selected trigger point was only invoked once per mes-
sage sent; that is, whereas with other tested apps, the sending
of five messages invoked, at worst, 32,000 TP hits, with
WhatsApp only five TP hits were incurred. This is likely
because the trigger point selected in WhatsApp’s case falls
under the Android & 3rd Party APIs category rather than the
Native RT category, which, as explained in Section VI-A2,
may be less resource-intensive. To this end, no sampling was
deemed necessary.

19https://developer.android.com/reference/android/database/sqlite/
SQLiteDatabase

4) CODE INTEGRITY CHECKS
While no issues were encountered when instrumenting Push-
bullet, Telegram, and Signal with JIT-MF drivers, What-
sApp presented an additional challenge. Along with having
obfuscated code, WhatsApp also adopts anti-repackaging
techniques in the form of app signature checks using
getpackageinfo() as well as MD5 checks of the
classes.dex file, which aim to prevent users from using
a modified version of WhatsApp. In this case, these were
standard checks that were easily bypassed by: i) hooking into
the relevant functions performing the app signature checks
and returning the appropriate value and, ii) using an alter-
native static library injection method that avoids modifying
classes.dex. However, more advanced checks adopted
by different apps could present a tougher challenge.

B. INCIDENT SCENARIO
The assumed scenario involves a target victim who is a
high-profile employee at their workplace and has had their
WhatsApp app on their Android device forensically enhanced
through MobFor. They have been at the receiving end of
a social engineering phishing campaign and have unknow-
ingly installed the WhatsApp Pink malware on their Android
device. The malware propagates by automatically replying to
incomingmessageswith a download link to themalware itself
akin to a message proxying attack.

1) WhatsApp PINK
Once this malware is installed, it requests a number of per-
missions. Namely, it requests for the Notification Access per-
mission, which in conjunction with Android’s Direct Reply
action available in Android, is used by the malware to achieve
wormability by responding to incomingWhatsApp messages
with a custom message. The app also requests permissions
to draw over other apps and to ignore battery optimization,
which allows it to run in the background and prevents the
system from killing it off for any reason.

Figure 11 illustrates how WhatsApp Pink operates. The
malware runs in the background and waits for a WhatsApp
notification. When this happens, the malware auto-replies to
the victim’s contacts using the custom URL scheme provided
by the official WhatsApp app, with a message containing
a malicious link. The malware propagates via WhatsApp
messages to contacts that send a message to the victim. Upon
the receipt of a message, the malware automatically replies to
the sender with a link that installs the malicious app, provided
that the last message received by the device owner (victim of
malware) was sent more than an hour before, to avoid raising
suspicion among the victim’s contacts and maintain stealth.

The aim of this particular malware seems mainly to be
used in an adware or subscription scam campaign; however,
it could be used for much worse. It could distribute more
dangerous threats (banking trojans, ransomware, or spyware)
since the message text and link to the malicious app are
received from the attacker’s server [67].
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FIGURE 11. WhatsApp pink attack steps.

2) FURTHER MALWARE HARDENING FOR STEALTH
While WhatsApp Pink already does its best to conceal its
actions, even going a step further to hide the app’s icon from
the home screen, the propagated message by the malware
is still visible in the chat. To further increase the level of
stealth, we enhance the malware so that the message sent by
WhatsApp Pink is deleted from the owner’s phone, leaving
no visible trace of the malware’s actions, as is shown in
Figure 12. This can be done by misusing the adb attack

vector via the AndroidViewClient.20 As a final step,
we misuse the adb attack vector to uninstall WhatsApp Pink,
and attain maximum stealth by leaving no trace of the mali-
cious app and hence reducing further its forensic footprint.

C. STATE-OF-THE-ART MOBILE FORENSICS TOOLS
Responding to an incident relies on three main steps: i) Col-
lection, ii) Parsing, and iii) Analysis of evidence to produce
a timeline of events. Existing forensic tools are typically
equippedwith the collection and parsing features, enabling an
incident responder to analyse the forensic timeline produced
through the available tools. To demonstrate how MobFor
can contribute to existing digital forensics tools in a realistic
setting, such as the incident scenario described, we make use
of two such tools: Belkasoft Evidence Centre X and MSAB’s
XRY (see Table 8). For each of the tools (including MobFor),
we define the configuration used for incident response in
Table 9. The table describes the sources gathered during the
collection phase, the parsing tool used, and the tool used to
generate a forensic timeline for analysis.

1) LIMITATIONS OF THE FORENSICALLY ENHANCED
WhatsApp
Although not publicly disclosed, one way how Belkasoft and
XRY (as well as other tools) can collect private data, typically
containing decrypted database files on disk, is through the use
of adb backup after an app downgrade. Although recent
versions of WhatsApp have their custom BackupAgent,
older versions did not. Through the inspection of open-source

20https://github.com/dtmilano/AndroidViewClient

FIGURE 12. Enhanced WhatsApp pink attack steps executed on Pixel 4 devices. The device on the left is the target device D running the
malware and the device on the right is the contact device C from which a message was sent to the target.
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TABLE 8. Forensic tools used.

TABLE 9. Forensic analysis configurations.

tools like WhatsApp DB Extractor21 [68], [69], we noticed
that one can uninstall a version of WhatsApp on their phone
without deleting private app data containing texts using:
adb uninstall -k com.whatsapp. A specific older
version of the app can then be installed, whose Manifest file
does not include a mention of the custom BackupAgent
and much less have an implementation for it. Therefore,
after the app downgrade, an adb backup can be executed,
collecting all the data that was previously unattainable due to
an update in the app’s BackupAgent. While this solution
has been shown to work, it is less stable on newer versions
of Android and may require the complete uninstallation of
the app in some cases, causing the loss of data and potential
evidence.

This evidence extraction method, however, cannot be used
simultaneously with MobFor since the forensically enhanced
version of the app carries a different signature than the orig-
inal one, as shown in Figure 13. The partial uninstallation
of the enhanced app and the mismatch of the older app’s
signature cause Android to produce an error, preventing
the older app from being installed. However, since MobFor
already statically instruments the app to include the invoca-
tion of Frida Gadget, we further modify the Manifest with
debuggable=true, allowing private WhatsApp files to
be collected. The result is equivalent to the adb backup
method.

2) FORENSIC TOOL SETUP
While the version of tools used were trials, this did not,
to our knowledge, impact the results of our experimentation
in any way. Most of the functionality withheld from trial
versions is related to the availability of rooting exploits and
iOS features. Since our scenario involves Android OS and the
device belongs to a victim who intends to continue using it,
rooting is a non-viable option. Therefore these features were
not required anyhow. There are also some limitations with
regards to the amount of data that could be exported from the

21https://github.com/EliteAndroidApps/WhatsApp-Key-DB-Extractor

findings when using Belkasoft. That said, all of the findings
are still made available, at least through the user interface.

Both XRY and Belkasoft were configured in a similar
fashion. An agent-based collection was used by each respec-
tive tool, targeting logical collection (see Figures 14 and 15.
Whenever a collection step required rooting, it was skipped.
Furthermore, each tool also accepts additional data sources
that the analyst has in their possession to support the findings
gathered by the tool. Once the sources are gathered, each tool
parses them and presents them in a way that they can be of use
to the investigator, as shown in Figure 16. Figure 17 shows the
parsed forensic artefacts gathered to be used for analysis. The
first entry in the image comprises the findings collected by the
tool’s agent. The next one consists of private data collected
from the app’s /data/data folder, obtained through it’s
debuggable=true property set in the Manifest. A third
entry consists of data gathered from anadb backup output,
and finally, the last additional source consists of additional
logs of use, in this case, logcat and dumpsys.

D. MobFor EVALUATION IN A REAL-WORLD SCENARIO
The incident scenario outlined in Section VII-B is assumed.
MobFor is evaluated across three commercially available
stock Android physical devices listed in Table 10, reflecting
a range of device capabilities and limitations. Each of the
devices has a forensically enhanced version ofWhatsApp ver-
sion 2.21.14.25 installed through MobFor and the additional
JIT-MF driver defined in Listing 11 (in Appendix A). Finally,
XRY and Belkasoft are used as explained in Section VII-C
and Table 9.

We conduct this experiment three times, once for each
device available. Each time, the enhanced WhatsApp Pink
malware is installed and set up on the target device (D).
Another phone (C) is set up emulating a contact that
device D has. Figure 12 shows how a conversation initi-
ated by device C, is then simulated by both devices using
AndroidViewClient to send 100, fifteen character-long,
pseudo-random messages back and forth across devices D
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TABLE 10. Mobile device specifications.

FIGURE 13. XRY log output showing WhatsApp downgrade failure.

and C. Since device C initiates the conversation, the What-
sApp Pink malware installed on target device D immediately
propagates the malicious link and subsequently deletes the
message on device D. The malware is then uninstalled.

Late detection is simulated by a thirty-minute wait, at the
end of which all JIT-MF logs containing memory dumps are
collected from the device, along with the additional sources
highlighted in Section VII-C. The available forensic tools
(including MobFor) are used as described in Table 9. Finally,
the parsed forensic artefacts are then used to populate a
forensic timeline using Timesketch.

E. MobFor REAL-WORLD SCENARIO: RESULTS
While Belkasoft and XRY gathered several artefacts,
we focus on those related toWhatsApp messaging, given that
the incident scenario in question concerns thismessaging app.

Table 11 describes the findings of each forensic analysis
configuration and device, with regards to the known attack
steps executed (the ground truth). Overall, while none of the

forensic tools’ outputs individually explicitly indicated that a
WhatsApp message was stealthily deleted, critical key attack
steps were still recovered. Crucially, MobFor was the only
forensic tool out of the three that was able to recover the con-
tents of the deleted message as shown in Figures 18 and 19.
Belkasoft was able to retrieve the event of a message being
sent. However, the message content was missing. While this
event in itself is suspicious, without the message content, it is
not clear whether or not this was: a simple message deleted by
the target victim, a message with no content, or a malicious
message propagated by the malicious app. XRY’s output does
not show the message sending event at all. We assume that
since the content wasmissing in theWhatsApp databases, due
to deletion, the event is not even displayed to the investigator
to start with.

1) ADDITIONAL CHALLENGES
The Frida Gadget library is built on top of Android API;
therefore, any changes to the API may require updates to the
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FIGURE 14. XRY collection Method - 1 of 2.

FIGURE 15. XRY collection Method - 2 of 2.

Frida Gadget itself. Such is the case with Android 11. To this
end, the instrumented WhatsApp installed on the Samsung
S21 device was instrumented with the latest Frida Gadget
library.

Due to the awareness and publicity that WhatsApp Pink
garnered in the last few months, the app has been flagged
as malicious. The Pixel 4 device, in particular, required an
extra step to accept the installation of the malicious app. That
said, techniques like accessibility or overlay could have been

used to conceal this step from the user further and maintain
stealth.

2) FORENSIC ANALYSIS
The results in Table 11 are given with respect to the known
message object that we are after, given that we are aware
of the attack steps involved in WhatsApp Pink. However,
in typical investigation scenarios, investigators do not have
the luxury of knowing which specific forensic artefact might

35204 VOLUME 10, 2022



J. Bellizzi et al.: Responding to Targeted Stealthy Attacks on Android Using Timely-Captured Memory Dumps

FIGURE 16. XRY output containing sample WhatsApp messaging events.

FIGURE 17. XRY additional forensic sources.

be helpful in an investigation. Our aim is that using Mob-
For; investigators can obtain all the possible artefacts needed
to construct a more complete timeline. While this does

not ensure that a case/incident is solved, as that is mainly
dependent on the incident responder’s manual analysis skills,
this cannot be done without at first having all the evidence
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FIGURE 18. Identification of a suspicious event due to differences between forensic sources outputs related to the same event.

FIGURE 19. Additional metadata produced by MobFor in the case of a suspicious messaging event.

TABLE 11. Recovered events.

related to an attack at hand. Furthermore, while MobFor
(through the use of the JIT-MF technique) can retrieve critical
metadata in attack steps, other sources of evidence are still
required to understand better the context involving an attack
step.

We assume the role of an incident responder and use
Timesketch to create a unified version timeline includ-
ing all WhatsApp evidence produced by the three forensic
tools used. Since neither of the forensic tools used parses
dumpsys logs, another parser was created for this pur-
pose. Unlike the output generated by the three forensic tools
described in Table 9, dumpsys provides information about

system services rather than that related to a single app and
therefore produces more events that tend to be noisier and
may not be directly related to the incident that is under inves-
tigation. In this case, the critical attack steps involve a single
message sent once to a single contact. Due to the minimal
activity produced by the malware, as is typical with stealthy
malware campaigns, it is difficult to highlight which events in
a timeline should be considered suspicious, especially amidst
a substantial amount of evidence that is gathered. In this case,
on average, 1,598 events were generated for the duration
of the experiment (∼ thirty minutes), of which only three
events were related to the malware’s activities. To this end,

35206 VOLUME 10, 2022



J. Bellizzi et al.: Responding to Targeted Stealthy Attacks on Android Using Timely-Captured Memory Dumps

FIGURE 20. Cuced by Belkasoft, XRY and MobFor, in Timesketch.

we initially start our investigation by focusing solely on the
events produced by forensic tools in Table 9.

Figure 20 shows the evidence produced by the three
sources when a typicalWhatsApp message is sent. All three
sources can produce the following: i) The event itself and
ii) The metadata of the event, including the message content.
In the timelines produced for the scenarios in this experiment,
we notice this pattern with all the messages that are sent
between devices D and C, except for one event. When focus-
ing on this event, we notice that it is missing in the evidence
generated by XRY. Even more suspiciously, its contents are
empty in the evidence generated by Belkasoft. In contrast,
MobFor output shows that the message content contains a
link as shown in Figure 18. The discrepancy between the tools
outputs’ regarding the same event already suggests that this
event is suspicious. We confirm that the message is not on the
target’s device, as can be seen in Figure 12, which allows us
as investigators to conclude that the message has been deleted
from the target’s device.

To get a better understanding of whether or not the target
or a stealthy malware carried out these actions, we widen our
investigation to include evidence from dumpsys. Due to the
large number of events produced by this source, we narrow
our scope by creating a query to look for artefacts containing
whatsapp data orpackage-related events. The set of steps
executed by the malware is retrieved as shown in Figure 21.
The steps show the malware being installed, the presence
of a message that has since been deleted, and the stealthy
self-removal of amalicious app. This sequence of footprints is
enough for the investigator to conclude that these steps were
indeed carried out by malware on the victim’s device.

Crucially, we conclude that while all forensic sources
obtained were required to derive the exact and complete steps
executed by the malware on the device, MobFor uniquely
contributed to the forensic timeline, providing key elements
whose presence steer the investigation in the right direction.

VIII. DISCUSSION AND FUTURE WORK
This research focused on exploring JIT-MF as a memory
forensics technique and creating MobFor as a showcase
JIT-MF tool that can be used in a realistic setting in
conjunction with other tools to aid in digital forensic investi-
gations involving Android devices. Results from the experi-
ments carried out demonstrate the following.

A. STEALTHY ATTACKS TARGETING ANDROID LEAVE A
SEVERELY REDUCED FORENSIC FOOTPRINT WHEN
UTILISING STATE-OF-THE-ART MOBILE FORENSICS TOOLS
Results from both XRY and Belkasoft (two state-of-the-art
forensic tools) show that, even after collecting all the possible
app data from the target device, stealthily deleted messaging
events could either not be retrieved at all or were missing
critical metadata (e.g. message content). The main limitation
of such tools stems from their assumed context, in which
the device owner is a potential perpetrator rather than the
targeted victim of cybercrime and does his best to conceal
any compromising evidence from investigators. Furthermore,
such tools rely on the data generated and stored by the app
itself. The scenarios presented in this study show that in the
case of stealthy messaging attacks, none of the apps consid-
ered generate and store data related to the attack steps carried
out through the misuse of benign apps. Therefore, in the case
of stealthy attacks, the forensic sources collected by state-of-
the-art tools are missing critical events related to the attack
steps carried out.

B. ANDROID MEMORY FORENSICS AS AN ADDITIONAL
FORENSIC SOURCE
The memory forensics approach taken by JIT-MF tools has
been shown to complement existing state-of-the-art tools by
providing additional forensic sources that contain missing
evidence collected from memory. Results from the experi-
ments conducted in this research demonstrate that JIT-MF
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FIGURE 21. Recovered sequence of attack steps from Timesketch timeline.

timely recovers critical evidence objects in memory that
would otherwise be missed in an investigation. Furthermore,
the evidence objects captured also contain critical metadata
missing from other state-of-the-art forensic sources that can
fill in gaps in existing forensic timelines and help generate
a more complete forensic timeline for investigators to work
with. Depending on the app-attack scenario at hand, the meta-
data in the objects themselves may not be enough to qualify
the nature of specific attack-related events that could have
occurred. Supplementary evidence e.g. events from logcat
and dumpsys, as well as outlier events as a result of com-
parisons between baseline timelines and JIT-MF-enhanced
timelines, can be used to give investigators more context
during their analysis. For instance, events produced solely by
JIT-MF should be regarded as more suspicious, even more
so if falling within the time frame of a short-lived app. If the
same app requested accessibility-related permissions, the sus-
picion level should be raised even further.

C. A FORENSIC READINESS STAGE IS NEEDED
The scenario that we target is onewhereby theAndroid device
owner can be a potential target of a cybercrime rather than a
perpetrator. In such cases, JIT-MF tools can be used to foren-
sically enhance Android devices by instrumenting benign
apps that could be leveraged in the case of an attack, with
JIT-MF drivers that collect objects from their processmemory
while the app is running. This requires collaboration with the
device owner, as the apps to be instrumented would first need
to be uninstalled, then their instrumented counterparts would
be reinstalled and logged into. This completes the device
forensic readiness stage that JIT-MF requires and enables
JIT-MF to function on stock Android devices without rooting.

While the collaboration of the device owner is a
pre-requisite for JIT-MF to work, their trust is not. Privacy

concerns related to the public disclosure of the device owner’s
private data found in the dumped parsed evidence frommem-
ory, e.g. message contents, remain an important issue that
needs to be addressed. Non-technical solutions that could
alleviate such privacy concerns include the investigative party
(e.g. investigators) signing non-disclosure agreements (NDA)
that would prohibit them from publicly disclosing the con-
tents of the evidence. There are also possible technical solu-
tions from JIT-MF’s end that can be considered in the future
to ascertain the device owner further that the privacy of the
evidence collected from their phones is respected. Search-
able Symmetric Encryption (SSE) [70] can be adopted to
allow the privacy-preserving forensic analysis of evidence by
encrypting the dumped forensic evidence collected in such
a way that it is concealed yet still searchable by investiga-
tors through pre-generated indices. In the case of messaging
hijack attacks, indices can be generated based on the key-
words or call data records (CDR) that identify texts to be
suspicious, for instance, text format of URL addresses that
are known to be propagated by specificmalware or suspicious
phone numbers found in CDR. Investigators can then flag
suspicious events that may have been caused by a malicious
actor without having had access to the private data belonging
o the device owner.

D. MINIMAL CODE COMPREHENSION EFFORT IS
REQUIRED
Results show that while the timely dumping of evidence from
memory is target app and incident scenario-specific, this does
not require extensive reverse engineering or code compre-
hension. The results show that effective trigger points can
be established using black-box analysis, with the most effort
required to identify critical data object types for decoding raw
evidence objects.
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E. EXISTING LIMITATIONS WITH IMPLEMENTING JIT-MF
IN PRACTICE
While several implementation challenges were addressed in
this study, allowing for the creation of MobFor –- a tool
shown to be functional and provided additional value in a
real-world setting –- several challenges remain.

App developers use anti-repackaging measures involving
code integrity checks to hinder the customisation of apps.
Given that JIT-MF operates by customising apps in a post-
deployment manner, anti-repackaging measures affect the
amount of reverse engineering required to develop JIT-MF
drivers that can bypass the anti-repackaging measures that
are in place. Out of the four apps used in our case studies,
spanning both closed and open-source Instant Messaging and
SMS apps, one app was found to be using anti-repackaging
measures. While many of these measures are well docu-
mented and easily bypassable, as was the case in this work’s
final case study, others may require app-specific knowl-
edge and demand further reverse engineering efforts. Fur-
ther experimentation is required to assess how popular these
measures are across top apps in app stores, and if so, what
percentage require app-specific knowledge. In the case that
these measures are widely adopted and a majority require
app-specific knowledge, selective symbolic execution (S2E)
[71] may be adopted to determine the app execution path
values that result in success; i.e. what parameter values within
the app codebase result in code integrity checks being passed.
A selective approach would be required to avoid path explo-
sion and would focus on the initial portion of the app code
that is in charge of launching and setting up the app, given
that these checks are typically made once upon installation.

All the case studies considered in this research required
manual effort to determine successful trigger points and the
evidence data objects of interest needed to develop JIT-MF
drivers per incident and target app pair. The effort needed is
lessened through black-box trigger points. However, a man-
ual approach is still required uniquely per incident and target
app pair. This does not scale with the ever-growing attack
vectors, the sheer number of potential target apps, and the
frequent changes in an app’s codebase with each new version
of an app. A possible solution could be creating more robust
JIT-MF drivers that can cater to multiple app-attack scenar-
ios, using a category of black-box trigger points related to
infrastructure that is common to several apps, e.g. Firebase
app messaging and SQLite functions. In this case, several
incident and target app pairs can use the same trigger point,
provided they share common underlying infrastructure func-
tions. Manual effort is then only required to determine the
evidence data object of interest (unless this is also obtained as
a by-product of the chosen trigger points), object carving and
parsing. Since data objects are specific to each app, parsing
efforts are unique to each app-attack scenario, similar to other
forensic tools like Plaso parsers.

Simultaneous dynamic instrumentation of multiple pro-
cesses running within an app is another challenge that
JIT-MF tools face. From all the case studies considered, those

involving the Pushbullet app required a particular subprocess
that was spawning to be instrumented. While in this case,
selecting and instrumenting the class spawning a specific
background subprocess was sufficient, other apps not con-
sidered in this study may require multiple processes to be
instrumented simultaneously. The current implementation of
MobFor relies on Frida Gadget, a DBI tool that leverages
static library injection to avoid rooting the device. In Mob-
For’s case, a Frida Gadget shared library containing instru-
mentation code is loaded inside the process memory. The
setup required for Frida Gadget to hook into functions occurs
when the library is loaded. If the Frida gadget library is
loaded in the main app process, in that case, any subprocesses
spawned from the main app process have a copy in memory
of the libraries loaded by the main process and cannot reload
the library. Therefore, when the library is already loaded in
the main process of an app, hooking of function calls that
occur in the subprocess cannot be performed. At the same
time, if a function call occurs in the subprocess, any instru-
mentation targeting functions within the subprocess will not
execute due to them being called from a different process
than where the library was loaded. Therefore, MobFor can
only instrument one of the processes spawned by an app at
a time. That said, possible approaches that could be taken in
the future include making contributions to the existing Frida
implementation that enable the initialisation of the setup
required for hooking through another method that does not
require loading the Frida gadget library. Furthermore, the
efforts made towards finding a solution need to be justified
following a study on the popularity of apps spawningmultiple
background processes and the requirement of having them all
instrumented simultaneously since the latter was not the case
among the Pushbullet case studies considered.

Finally, while the JIT-MF framework is designed to work
with any incident scenario and target app pair, this does
not currently include system apps. Unlike user-installed apps
downloaded from app stores, system apps are typically spe-
cific to the device manufacturer. They come pre-installed in
the system partition and cannot be uninstalled. Therefore,
the initial forensic readiness stage required by JIT-MF tools
cannot be carried out. While the number of system apps
installed on a device is small, compared to user-installed apps,
essential system apps may comprise default SMS apps that
can be misused in messaging hijack attacks. In the case of
investigative scenarios that include system app functional-
ity, app-virtualisation frameworks may be used to allow an
instrumented version of the system app, modified by Mob-
For, to run in parallel to the original version. The device
owner would then need to ensure that the instrumented app
is changed to the default.

IX. CONCLUSION
Android malware employing stealthy attacks retain a longer
lifespan on the victim’s device, often causing late detection
and requiring incident response. Being stealthy in nature,
such attacks leave a severely reduced set of forensic footprints
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in stored data. Evidence of such malware is only available
as ephemeral data objects in volatile memory. Consequently,
state-of-the-art forensic tools focusing on collecting evidence
from stored sources on the device cannot construct com-
prehensive forensic timelines to aid investigators during an
investigation.

In this work, we address this problem in scenarios where
the device owner is a potential victim of a cybercrime attack
related to messaging hijack attacks and motivate the need
for a memory forensics approach, as adopted by JIT-MF.
Specifically, in this work, we sought to answer three research
questions, whose aim was to: i) motivate the need for JIT-MF
tools ii) address implementation challenges involved in cre-
ating such tools, and iii) demonstrate the values of such tools
in a realistic setting.

Results show that JIT-MF does improve on timelines gen-
erated by baseline sources without compromising the secu-
rity of the device, hence further motivating the need for
JIT-MF tools. The challenges presented by JIT-MF tools are
addressed by creating MobFor, a JIT-MF tool. Specifically,
results show that trigger point selection can be successfully
carried out through the adoption of black-box trigger points,
which require minimal reverse engineering effort, and sam-
pling can be used to considerably reduce any additional
performance overheads incurred while still effectively pro-
ducing forensic artefacts critical to an investigation. Finally,
we demonstrate the unique way in which MobFor contributes
to state-of-the-art forensic tools (XRY and Belkasoft) by
providing critical missing forensic artefacts in a realistic
setting involving the WhatsApp Pink malware and stock
Android devices; the presence of which aids in generating
a comprehensive forensic timeline including all the attack
steps carried out. While successfully demonstrating how the
JIT-MF framework can contribute in practice, this work raised
several new research questions, mainly regarding privacy and
automation of JIT-MF driver development in other attack
scenarios, that call for further experimentation.

APPENDIX A
APP SPECIFIC JIT-MF DRIVERS

Listing 5. JIT-MF driver for Case Study A: Telegram Crime-Proxy.

1 Driver_ID: TG_CP
2 Scope: <telegram, crime-proxy>
3
4 / ∗ Attributes ∗ /

5 Evidence_objects: {<"Telegram Message Sent","org.
telegram.messenger.MessageObject",
carve_message_object(),parse_message_object(),
{"1"}>}

6 Collection_method: online
7 Parsing_method: online
8 Triggers: {<"1",<"send",native, trigger_predicate(),

trigger_callback()>>}
9 Sampling_method: sampling_predicate()

10 Log_location: "/sdcard/jitmflogs"
11
12 / ∗ Exposed interface ∗ /

13 bool init (config) {
14 for entry in Triggers:

15 if entry[1] == native:
16 place_native_hook("libc.so", entry[0], entry[3])

;
17 else:
18 place_rt_hook(entry[0], entry[3]);
19 }
20
21 / ∗ Internal functions ∗ /

22 bool trigger_predicate(params) {
23 file_descriptor = params[1];
24 if file_descriptor type is tcp:
25 return true;
26 else:
27 return false;
28 }
29 void trigger_callback(thread_context) {
30 / ∗ the native function < send > takes a file
31 descriptor as its only parameter ∗ /

32 if trigger_predicate(thread_context.args) &&
sampling_predicate(thread_context):

33 if Collection_method == online:
34 object = Evidence_objects[0];
35 object_name = object[1];
36 object_carve_callback_fn = object[2];
37 object_parse_callback_fn = object[3];
38 dump_rt_object(object_name,

object_carve_callback_fn,
object_parse_callback_fn);

39 else:
40 call_rt_function("android.os.Debug.dumpHprofData

",[Log_location]);
41 }
42
43 [object,...] carve_message_object(from: address, to:

address) {
44 carve MessageObject in the given memory range using

metadata provided by the Garbage Collector;
45 }
46
47 @OFFLINE
48 [object,...] carve_message_object_offline(from: address, to:

address) {
49 // use an hprof parser to carve objectj in the given

memory range;
50 }
51
52 [<field,value>,...] parse_message_object(at) {
53 if Parsing_method == online:
54 current_time = get_time();
55 MessageObject = object starting from at;
56
57 message_content = MessageObject.messageText.value;
58 message_date = MessageObject.messageOwner.date;
59 message_id = MessageObject.messageOwner.id;
60
61 append_log(Log_location,"{’time’: current_time, ’

event’: Evidence_objects[0][0], ’
trigger_point’:Triggers[0][0], ’object’:{’
date’:message_date, ’message_id’:message_id,
’text’:message_content,");

62
63 dump_rt_object(["org.telegram.messenger.

MessageControllerObject",
carve_message_controller_object(),
parse_message_controller_object()]);

64
65 return [<’time’, current_time>, <’event’,

Evidence_objects[0][0]>, <’trigger_point’,
Triggers[0][0]>, <’object’,<’date’,
message_date>, <’message_id’,message_id>, <’
text’,message_content>>];

66 else:
67 parse_message_object_offline(at);
68 }
69
70 @OFFLINE
71 [<field,value>,...] parse_message_object_offline(at) {
72 // if Collection_method == online:
73 // use custom parser to parse objectj at the given

offset
74 // else
75 // use an hprof parser to parse objectj at the

given offset from memory dump;
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76 }
77
78 [object,...] carve_message_controller_object(from: address,

to: address) {
79 carve MessageControllerObject in the given memory

range using metadata provided by the Garbage
Collector;

80 }
81
82 @OFFLINE
83 [object,...] carve_message_object_controller_offline(from:

address, to: address) {
84 // use an hprof parser to carve objectj in the given

memory range;
85 }
86
87 [<field,value>,...] parse_message_controller_object(at) {
88 if Parsing_method == online:
89 MessageControllerObject = object starting from at;
90 recipient_id = MessageControllerObject.getUser();
91 recipient_name = to_user.username.value;
92 recipient_phone = to_user.phone.value;
93
94 sender_id = device_owner;
95 sender_name = device_owner;
96 sender_phone_number = device_owner;
97
98 append_log(Log_location, "’to_id’:recipient_id, ’

to_name’:recipient_name, ’to_phone’:
recipient_phone_number, ’from_id’:sender_id,
’from_name’:sender_name, ’from_phone’:
sender_phone_number}}")

99
100 return [<’to_id’,recipient_id>, <’to_name’,

recipient_name>, <’to_phone’,
recipient_phone_number>, <’from_id’,sender_id
>, <’from_name’,sender_name>, <’from_phone’,
sender_phone_number>];

101 else:
102 parse_message_controller_object_offline(at);
103 }
104
105 @OFFLINE
106 [<field,value>,...] parse_message_controller_object_offline(at)

{
107 // if Collection_method == online:
108 // use custom parser to parse objectj at the given

offset
109 // else
110 // use an hprof parser to parse objectj at the

given offset from memory dump;
111 }
112
113 bool sampling_predicate(thread_context) {
114 current_time = get_time();
115 get current_second from current_time;
116
117 if (current_second \% 5 == 0):
118 return true;
119 else:
120 return false;
121 }
122
123 / ∗ Helper function ∗ /

124 datetime get_time(){
125 return current time;
126 }

Listing 6. JIT-MF driver for Case Study B: Signal Crime-Proxy.

1 Driver_ID: SIGNAL_CP
2 Scope: <signal, crime-proxy>
3
4 / ∗ Attributes ∗ /

5 Evidence_objects: {<"Signal Message Sent","org.
thoughtcrime.securesms.conversation.
ConversationMessage", carve_conversation_message
(),parse_conversation_message(), {"1"}>}

6 Collection_method: online
7 Parsing_method: online

8 Triggers: {<"1",<"write",native, trigger_predicate(),
trigger_callback()>>}

9 Sampling_method: sampling_predicate()
10 Log_location: "/sdcard/jitmflogs"
11
12 / ∗ Exposed interface ∗ /

13 bool init (config) {
14 for entry in Triggers:
15 if entry[1] == native:
16 place_native_hook("libc.so", entry[0], entry[3])

;
17 else:
18 place_rt_hook(entry[0], entry[3]);
19 }
20
21 / ∗ Internal functions ∗ /

22 bool trigger_predicate(params) {
23 return true;
24 }
25 void trigger_callback(thread_context) {
26 if trigger_predicate(thread_context) &&

sampling_predicate(thread_context):
27 if Collection_method == online:
28 object = Evidence_objects[0];
29 object_name = object[1];
30 object_carve_callback_fn = object[2];
31 object_parse_callback_fn = object[3];
32 dump_rt_object(object_name,

object_carve_callback_fn,
object_parse_callback_fn);

33 else:
34 call_rt_function("android.os.Debug.dumpHprofData

",[Log_location]);
35 }
36
37 [object,...] carve_conversation_message(from: address, to:

address) {
38 carve ConversationMessage in the given memory range

using metadata provided by the Garbage
Collector;

39 }
40
41 @OFFLINE
42 [object,...] carve_conversation_message_offline(from: address,

to: address) {
43 // use an hprof parser to carve objectj in the given

memory range;
44 }
45
46 [<field,value>,...] parse_conversation_message(at) {
47 if Parsing_method == online:
48 current_time = get_time();
49 ConversationMessage = object starting from at;
50
51 MessageRecord = ConversationMessage.messageRecord;
52
53 message_date = MessageRecord.dateSent.value;
54 message_id = MessageRecord.id.value;
55 message_content = MessageRecord.body.value;
56
57 if MessageRecord.isOutgoing():
58 recipient_id = messageRecord.individualRecipient

.id.value;
59 recipient_name = messageRecord.

individualRecipient.username.value;
60 recipient_phone = messageRecord.

individualRecipient.e164.value;
61
62 sender_id = owner Signal ID;
63 sender_name = owner Signal username;
64 sender_phone_number = owner phone number;
65 else
66 recipient_id = owner Signal ID;
67 recipient_name = owner Signal username;
68 recipient_phone = owner phone number;
69
70 sender_id = messageRecord.individualRecipient.id

.value;
71 sender_name = messageRecord.individualRecipient.

username.value;
72 sender_phone_number = messageRecord.

individualRecipient.e164.value;
73
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74
75 return [<’time’, current_time>, <’event’,

Evidence_objects[0][0]>, <’trigger_point’,
Triggers[0][0]>, <’object’,<’date’,
message_date>, <’message_id’,message_id>, <’
text’,message_content>,<’to_id’,recipient_id
>, <’to_name’,recipient_name>, <’to_phone’,
recipient_phone_number>, <’from_id’,sender_id
>, <’from_name’,sender_name>, <’from_phone’,
sender_phone_number>>];

76 else:
77 parse_conversation_message_offline(at);
78 }
79
80 @OFFLINE
81 [<field,value>,...] parse_conversation_message_offline(at) {
82 // if Collection_method == online:
83 // use custom parser to parse objectj at the given

offset
84 // else
85 // use an hprof parser to parse objectj at the

given offset from memory dump;
86 }
87
88 bool sampling_predicate(thread_context) {
89 current_time = get_time();
90 get current_second from current_time;
91
92 if (current_second \% 5 == 0):
93 return true;
94 else:
95 return false;
96 }
97
98 / ∗ Helper function ∗ /

99 datetime get_time(){
100 return current time;
101 }

Listing 7. JIT-MF driver for Case Study C: Pushbullet Crime-Proxy.

1 Driver_ID: PUSHBULLET_CP
2 Scope: <pushbullet, crime-proxy>
3
4 / ∗ Attributes ∗ /

5 Evidence_objects: {<"Pushbullet Message Sent","org.
json.JSONObject", carve_json_object(),
parse_json_object(), {"1"}>}

6 Collection_method: online
7 Parsing_method: offline
8 Triggers: {<"1",<"write",native, trigger_predicate(),

trigger_callback()>>}
9 Sampling_method: sampling_predicate()

10 Log_location: "/sdcard/jitmflogs"
11
12 / ∗ Exposed interface ∗ /

13 bool init (config) {
14 for entry in Triggers:
15 if entry[1] == native:
16 place_native_hook("libc.so", entry[0], entry[3],

Processes);
17 else:
18 place_rt_hook(entry[0], entry[3]);
19 }
20
21 / ∗ Internal functions ∗ /

22 bool trigger_predicate(params) {
23 return true;
24 }
25 void trigger_callback(thread_context) {
26 if trigger_predicate(thread_context) &&

sampling_predicate(thread_context):
27 if Collection_method == online:
28 object = Evidence_objects[0];
29 object_name = object[1];
30 object_carve_callback_fn = object[2];
31 object_parse_callback_fn = object[3];
32 dump_rt_object(object_name,

object_carve_callback_fn,
object_parse_callback_fn);

33 else:

34 call_rt_function("android.os.Debug.dumpHprofData
",[Log_location]);

35 }
36
37 [object,...] carve_json_object(from: address, to: address)

{
38 carve JSONObject in the given memory range using

metadata provided by the Garbage Collector;
39 }
40
41 @OFFLINE
42 [object,...] carve_json_object_offline(from: address, to:

address) {
43 // use an hprof parser to carve objectj in the given

memory range;
44 }
45
46 [<field,value>,...] parse_json_object(at) {
47 if Parsing_method == online:
48 // parse object fields starting at the given

address;
49 else:
50 parse\_json\_object\_offline(at);
51
52 }
53
54 @OFFLINE
55 [<field,value>,...] parse_json_object_offline(at) {
56 if Collection_method == online:
57 current_time = get_time();
58 JSONObject = object starting from at;
59
60 str1=’{"active":.*"message":.*}}’;
61
62 res1 = regex match for str1 in JSONObject.toString

();
63
64 if(res1!==null){
65
66 obj = JSON.parse(res1);
67 message_date = obj.data.timestamp;
68 message_id = obj.iden;
69 message_content = obj.data.message;
70
71 recipient_phone_number = obj.data.addresses[0] ;
72 recipient_id = "";
73 recipient_name = "";
74
75 if (obj.data.status == "sent") {
76 sender_phone_number = owner phone number;
77 sender_id = "";
78 sender_name = owner name;
79 }
80 object = ’{"date": "’ + date + ’", "message_id":

"’ + msg_id + ’", "text": "’ + text + ’",
"to_id": "", "to_name": "", "to_phone": "’
+ to_phone + ’", "from_id": "", "from_name
": "", "from_phone": "’ + from_phone +
’"}’;

81
82 append_log(Log_location,"{’time’: current_time,

’event’: Evidence_objects[0][0], ’
trigger_point’:Triggers[0][0], ’object’:{’
date’:message_date, ’message_id’:message_id
, ’text’:message_content,’to_id’:
recipient_id, ’to_name’:recipient_name, ’
to_phone’:recipient_phone_number, ’from_id
’:sender_id, ’from_name’:sender_name, ’
from_phone’:sender_phone_number}}");

83
84 return [<’time’, current_time>, <’event’,

Evidence_objects[0][0]>, <’trigger_point’,
Triggers[0][0]>, <’object’,<’date’,
message_date>, <’message_id’,message_id>,
<’text’,message_content>,<’to_id’,
recipient_id>, <’to_name’,recipient_name>,
<’to_phone’,recipient_phone_number>, <’
from_id’,sender_id>, <’from_name’,
sender_name>, <’from_phone’,
sender_phone_number>>];

85 else:
86 // use an hprof parser to parse objectj at the

given offset from memory dump;
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87 }
88 }
89
90 bool sampling_predicate(thread_context) {
91 current_time = get_time();
92 get current_second from current_time;
93
94 if (current_second \% 5 == 0):
95 return true;
96 else:
97 return false;
98 }
99
100 / ∗ Helper function ∗ /

101 datetime get_time(){
102 return current time;
103 }

Listing 8. JIT-MF driver for Case Study D: Telegram Spying.

1 Driver_ID: TG_SP
2 Scope: <telegram, spying>
3
4 / ∗ Attributes ∗ /

5 Evidence_objects: {<"Telegram Message Intercepted","
org.telegram.messenger.MessageObject",
carve_message_object(),parse_message_object(),
{"1"}>}

6 Collection_method: online
7 Parsing_method: online
8 Triggers: {<"1",<"recv",native, trigger_predicate(),

trigger_callback()>>}
9 Sampling_method: sampling_predicate()

10 Log_location: "/sdcard/jitmflogs"
11
12 / ∗ Exposed interface ∗ /

13 bool init (config) {
14 for entry in Triggers:
15 if entry[1] == native:
16 place_native_hook("libc.so", entry[0], entry[3])

;
17 else:
18 place_rt_hook(entry[0], entry[3]);
19 }
20
21 / ∗ Internal functions ∗ /

22 bool trigger_predicate(params) {
23 file_descriptor = params[1];
24 if file_descriptor type is tcp:
25 return true;
26 else:
27 return false;
28 }
29 void trigger_callback(thread_context) {
30 if trigger_predicate(thread_context.args) &&

sampling_predicate(thread_context):
31 if Collection_method == online:
32 object = Evidence_objects[0];
33 object_name = object[1];
34 object_carve_callback_fn = object[2];
35 object_parse_callback_fn = object[3];
36 dump_rt_object(object_name,

object_carve_callback_fn,
object_parse_callback_fn);

37 else:
38 call_rt_function("android.os.Debug.dumpHprofData

",[Log_location]);
39 }
40
41 [object,...] carve_message_object(from: address, to:

address) {
42 carve MessageObject in the given memory range using

metadata provided by the Garbage Collector;
43 }
44
45 @OFFLINE
46 [object,...] carve_message_object_offline(from: address, to:

address) {
47 // use an hprof parser to carve objectj in the given

memory range;
48 }

49
50 [<field,value>,...] parse_message_object(at) {
51 if Parsing_method == online:
52 current_time = get_time();
53 MessageObject = object starting from at;
54
55 message_content = MessageObject.messageText.value;
56 message_date = MessageObject.messageOwner.date;
57 message_id = MessageObject.messageOwner.id;
58
59 append_log(Log_location,"{’time’: current_time, ’

event’: Evidence_objects[0][0], ’
trigger_point’:Triggers[0][0], ’object’:{’
date’:message_date, ’message_id’:message_id,
’text’:message_content,");

60
61 dump_rt_object(["org.telegram.messenger.

MessageControllerObject",
carve_message_controller_object(),
parse_message_controller_object()]);

62
63 return [<’time’, current_time>, <’event’,

Evidence_objects[0][0]>, <’trigger_point’,
Triggers[0][0]>, <’object’,<’date’,
message_date>, <’message_id’,message_id>, <’
text’,message_content>>];

64 else:
65 parse_message_object_offline(at);
66 }
67
68 @OFFLINE
69 [<field,value>,...] parse_message_object_offline(at) {
70 // if Collection_method == online:
71 // use custom parser to parse objectj at the given

offset
72 // else
73 // use an hprof parser to parse objectj at the

given offset from memory dump;
74 }
75
76
77 [object,...] carve_message_controller_object(from: address,

to: address) {
78 carve MessageControllerObject in the given memory

range using metadata provided by the Garbage
Collector;

79 }
80
81 @OFFLINE
82 [object,...] carve_message_object_controller_offline(from:

address, to: address) {
83 // use an hprof parser to carve objectj in the given

memory range;
84 }
85
86 [<field,value>,...] parse_message_controller_object(at) {
87 if Parsing_method == online:
88 MessageControllerObject = object starting from at;
89 sender_id = MessageControllerObject.getUser();
90 sender_name = to_user.username.value;
91 sender_phone_number = to_user.phone.value;
92
93 recipient_id = device_owner;
94 recipient_name = device_owner;
95 recipient_phone = device_owner;
96
97 append_log(Log_location, "’to_id’:recipient_id, ’

to_name’:recipient_name, ’to_phone’:
recipient_phone_number, ’from_id’:sender_id,
’from_name’:sender_name, ’from_phone’:
sender_phone_number}}")

98
99 return [<’to_id’,recipient_id>, <’to_name’,

recipient_name>, <’to_phone’,
recipient_phone_number>, <’from_id’,sender_id
>, <’from_name’,sender_name>, <’from_phone’,
sender_phone_number>];

100 else:
101 parse_message_controller_object_offline(at);
102
103 }
104
105 @OFFLINE
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106 [<field,value>,...] parse_message_controller_object_offline(at)
{

107 // if Collection_method == online:
108 // use custom parser to parse objectj at the given

offset
109 // else
110 // use an hprof parser to parse objectj at the

given offset from memory dump;
111 }
112
113 bool sampling_predicate() {
114 current_time = get_time();
115 get current_second from current_time;
116
117 if (current_second \% 5 == 0):
118 return true;
119 else:
120 return false;
121 }
122
123 / ∗ Helper function ∗ /

124 datetime get_time(thread_context){
125 return current time;
126 }

Listing 9. JIT-MF driver for Case Study E: Signal Spying.

1 Driver_ID: SIGNAL_SP
2 Scope: <signal, spying>
3
4 / ∗ Attributes ∗ /

5 Evidence_objects: {<"Signal Message Intercepted","org.
thoughtcrime.securesms.conversation.
ConversationMessage", carve_conversation_message
(),parse_conversation_message(), {"1"}>}

6 Collection_method: online
7 Parsing_method: online
8 Triggers: {<"1",<"open",native, trigger_predicate(),

trigger_callback()>>}
9 Sampling_method: sampling_predicate()

10 Log_location: "/sdcard/jitmflogs"
11
12 / ∗ Exposed interface ∗ /

13 bool init (config) {
14 for entry in Triggers:
15 if entry[1] == native:
16 place_native_hook("libc.so", entry[0], entry[3])

;
17 else:
18 place_rt_hook(entry[0], entry[3]);
19 }
20
21 / ∗ Internal functions ∗ /

22 bool trigger_predicate(params) {
23 return true;
24 }
25 void trigger_callback(thread_context) {
26 if trigger_predicate(thread_context) &&

sampling_predicate(thread_context):
27 if Collection_method == online:
28 object = Evidence_objects[0];
29 object_name = object[1];
30 object_carve_callback_fn = object[2];
31 object_parse_callback_fn = object[3];
32 dump_rt_object(object_name,

object_carve_callback_fn,
object_parse_callback_fn);

33 else:
34 call_rt_function("android.os.Debug.dumpHprofData

",[Log_location]);
35 }
36
37 [object,...] carve_conversation_message(from: address, to:

address) {
38 carve ConversationMessage in the given memory range

using metadata provided by the Garbage
Collector;

39 }
40
41 @OFFLINE

42 [object,...] carve_conversation_message_offline(from: address,
to: address) {

43 // use an hprof parser to carve objectj in the given
memory range;

44 }
45
46 [<field,value>,...] parse_conversation_message(at) {
47 if Parsing_method == online:
48 current_time = get_time();
49 ConversationMessage = object starting from at;
50
51 MessageRecord = ConversationMessage.messageRecord;
52
53 message_date = MessageRecord.dateSent.value;
54 message_id = MessageRecord.id.value;
55 message_content = MessageRecord.body.value;
56
57 if MessageRecord.isOutgoing():
58 recipient_id = messageRecord.individualRecipient

.id.value;
59 recipient_name = messageRecord.

individualRecipient.username.value;
60 recipient_phone = messageRecord.

individualRecipient.e164.value;
61
62 sender_id = owner Signal ID;
63 sender_name = owner Signal username;
64 sender_phone_number = owner phone number;
65 else
66 recipient_id = owner Signal ID;
67 recipient_name = owner Signal username;
68 recipient_phone = owner phone number;
69
70 sender_id = messageRecord.individualRecipient.id

.value;
71 sender_name = messageRecord.individualRecipient.

username.value;
72 sender_phone_number = messageRecord.

individualRecipient.e164.value;
73
74 append_log(Log_location,"{’time’: current_time, ’

event’: Evidence_objects[0][0], ’
trigger_point’:Triggers[0][0], ’object’:{’
date’:message_date, ’message_id’:message_id,
’text’:message_content,’to_id’:recipient_id,
’to_name’:recipient_name, ’to_phone’:
recipient_phone_number, ’from_id’:sender_id,
’from_name’:sender_name, ’from_phone’:
sender_phone_number}}");

75
76 return [<’time’, current_time>, <’event’,

Evidence_objects[0][0]>, <’trigger_point’,
Triggers[0][0]>, <’object’,<’date’,
message_date>, <’message_id’,message_id>, <’
text’,message_content>,<’to_id’,recipient_id
>, <’to_name’,recipient_name>, <’to_phone’,
recipient_phone_number>, <’from_id’,sender_id
>, <’from_name’,sender_name>, <’from_phone’,
sender_phone_number>>];

77 else:
78 parse_conversation_message_offline(at);
79 }
80
81 @OFFLINE
82 [<field,value>,...] parse_conversation_message_offline(at) {
83 // if Collection_method == online:
84 // use custom parser to parse objectj at the given

offset
85 // else
86 // use an hprof parser to parse objectj at the

given offset from memory dump;
87 }
88
89 bool sampling_predicate(thread_context) {
90 current_time = get_time();
91 get current_second from current_time;
92
93 if (current_second \% 5 == 0):
94 return true;
95 else:
96 return false;
97 }
98
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99 / ∗ Helper function ∗ /

100 datetime get_time(){
101 return current time;
102 }

Listing 10. JIT-MF driver for Case Study F: Pushbullet Spying.

1 Driver_ID: PUSHBULLET_SP
2 Scope: <pushbullet, spying>
3
4 / ∗ Attributes ∗ /

5 Evidence_objects: {<"Pushbullet Message Synced","org.
json.JSONObject", carve_json_object(),
parse_json_object(), {"1"}>}

6 Collection_method: online
7 Parsing_method: offline
8 Triggers: {<"1",<"read",native, trigger_predicate(),

trigger_callback()>>}
9 Sampling_method: sampling_predicate()

10 Log_location: "/sdcard/jitmflogs"
11
12 / ∗ Exposed interface ∗ /

13 bool init (config) {
14 for entry in Triggers:
15 if entry[1] == native:
16 place_native_hook("libc.so", entry[0], entry[3],

Processes);
17 else:
18 place_rt_hook(entry[0], entry[3]);
19 }
20
21 / ∗ Internal functions ∗ /

22 bool trigger_predicate(params) {
23 return true;
24 }
25 void trigger_callback(thread_context) {
26 if trigger_predicate(thread_context) &&

sampling_predicate(thread_context):
27 if Collection_method == online:
28 object = Evidence_objects[0];
29 object_name = object[1];
30 object_carve_callback_fn = object[2];
31 object_parse_callback_fn = object[3];
32 dump_rt_object(object_name,

object_carve_callback_fn,
object_parse_callback_fn);

33 else:
34 call_rt_function("android.os.Debug.dumpHprofData

",[Log_location]);
35 }
36
37 [object,...] carve_json_object(from: address, to: address)

{
38 carve JSONObject in the given memory range using

metadata provided by the Garbage Collector;
39 }
40
41 @OFFLINE
42 [object,...] carve_json_object_offline(from: address, to:

address) {
43 // use an hprof parser to carve objectj in the given

memory range;
44 }
45
46 [<field,value>,...] parse_json_object(at) {
47 if Parsing_method == online:
48 // parse object fields starting at the given

address;
49 else:
50 parse\_json\_object\_offline(at);
51 }
52
53 @OFFLINE
54 [<field,value>,...] parse_json_object_offline(at) {
55 if Collection_method == online:
56 current_time = get_time();
57 JSONObject = object starting from at;
58
59 str1=’{"type":"push",.*"push":{"type":"sms_changed

","source_device_iden":.*]}}’;
60

61 res1 = regex match for str1 in JSONObject.toString
();

62
63 if(res1!==null){
64
65 obj = JSON.parse(res1);
66 message_date = "";
67 message_id = "";
68 message_content = "";
69
70 recipient_phone_number = "";
71 recipient_id = "";
72 recipient_name = "";
73
74 if (obj.data.status == "sent") {
75 sender_phone_number = owner phone number;
76 sender_id = "";
77 sender_name = owner name;
78 }
79
80 append_log(Log_location,"{’time’: current_time,

’event’: Evidence_objects[0][0], ’
trigger_point’:Triggers[0][0], ’object’:{’
date’:message_date, ’message_id’:message_id
, ’text’:message_content,’to_id’:
recipient_id, ’to_name’:recipient_name, ’
to_phone’:recipient_phone_number, ’from_id
’:sender_id, ’from_name’:sender_name, ’
from_phone’:sender_phone_number}}");

81
82 return [<’time’, current_time>, <’event’,

Evidence_objects[0][0]>, <’trigger_point’,
Triggers[0][0]>, <’object’,<’date’,
message_date>, <’message_id’,message_id>,
<’text’,message_content>,<’to_id’,
recipient_id>, <’to_name’,recipient_name>,
<’to_phone’,recipient_phone_number>, <’
from_id’,sender_id>, <’from_name’,
sender_name>, <’from_phone’,
sender_phone_number>>];

83 else:
84 // use an hprof parser to parse objectj at the

given offset from memory dump;
85 }
86 }
87
88 bool sampling_predicate(thread_context) {
89 current_time = get_time();
90 get current_second from current_time;
91
92 if (current_second \% 5 == 0):
93 return true;
94 else:
95 return false;
96 }
97
98 / ∗ Helper function ∗ /

99 datetime get_time(){
100 return current time;
101 }

Listing 11. JIT-MF driver for WhatsApp.

1 Driver_ID: WHATSAPP_MSG_HIJACK
2 Scope: <whatsapp, msg-hijack>
3
4 / ∗ Attributes ∗ /

5 Collection_method: online
6 Parsing_method: offline
7 Triggers: {<"1",<"android.database.sqlite.

SQLiteDatabase.insert",rt,
trigger_predicate_insert(),
trigger_callback_insert()>,<"2",<"android.
database.sqlite.SQLiteDatabase.update",rt,
trigger_predicate_update(),
trigger_callback_update()>>}

8 Sampling_method: sampling_predicate()
9 Log_location: "/sdcard/jitmflogs"

10 Globals:{<timestamp,>}
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11 Evidence_objects: {} // the evidence object is added
at runtime, since it is an argument to the
trigger point

12
13 / ∗ Exposed interface ∗ /

14 bool init (config) {
15 for entry in Triggers:
16 if entry[1] == native:
17 place_native_hook("libc.so", entry[0], entry[3])

;
18 else:
19 place_rt_hook(entry[0], entry[3]);
20 }
21
22 / ∗ Internal functions ∗ /

23 bool trigger_predicate_insert(params) {
24 return true;
25 }
26 void trigger_callback_insert(thread_context) {
27 if trigger_predicate(thread_context) &&

sampling_predicate(thread_context):
28 if Collection_method == online:
29 evidence_object = thread_context.args[2]
30 Evidence_objects.add(<"Whatsapp Messaging Event

", evidence_object, carve_object_type(),
parse_object_type(), {1}>})

31 dump_rt_object(evidence_object,
carve_content_values,parse_content_values);

32 else:
33 call_rt_function("android.os.Debug.dumpHprofData

",[Log_location]);
34 }
35
36 bool trigger_predicate_update(params) {
37 return true;
38 }
39 void trigger_callback_update(thread_context) {
40 if trigger_predicate(thread_context) &&

sampling_predicate(thread_context):
41 if Collection_method == online:
42 object = thread_context.args[1]
43 carved_content_value_object =

carve_content_values(evidence_object start
address, object end address);

44 parse_content_values_for_timestamp(
carved_content_value_object start address);

45 else:
46 call_rt_function("android.os.Debug.dumpHprofData

",[Log_location]);
47 }
48
49
50 [object,...] carve_content_values(from: address, to:

address) {
51 carve ContentValues in the given memory range using

metadata provided by the Garbage Collector;
52 }
53
54 @OFFLINE
55 [object,...] carve_content_values_offline(from: address, to:

address) {
56 // use an hprof parser to carve objectj in the given

memory range;
57 }
58
59 [<field,value>,...] parse_content_values(at) {
60 if Parsing_method == online:
61 // parse object fields starting at the given

address;
62 else:
63 parse\_json\_object\_offline(at);
64 }
65
66 @OFFLINE
67 [<field,value>,...] parse_content_values_offline(at) {
68 if Collection_method == online:
69 current_time = get_time();
70 ContentValuesObject = object starting from at;
71 ContentValuesObject_strings = base64 decode

strings in ContentValuesObject;
72
73 message_content = last string in

ContentValuesObject_strings;

74 message_id = "";
75 message_date = Globals["timestamp"];
76
77 if ’SendE2EMessageJob’ in

ContentValuesObject_strings:
78 recipient_phone_number = match for regex search

"@s.whatsapp.netsr[0-9]+\\n" in
ContentValuesObject_strings;

79 recipient_id = "";
80 recipient_name = "";
81
82 sender_phone_number = owner phone number;
83 sender_id = "";
84 sender_name = owner name;
85 event_additional_info = "sent";
86 else if ’SendReadReceiptJob’ in

ContentValuesObject_strings:
87 sender_phone_number = match for regex search "@s

.whatsapp.netsr[0-9]+\\n" in
ContentValuesObject_strings;

88 sender_id = "";
89 sender_name = "";
90
91 recipient_phone_number = owner phone number;
92 recipient_id = "";
93 recipient_name = owner name;
94 event_additional_info = "read";
95 }
96
97 append_log(Log_location,"{’time’: current_time,

’event’: Evidence_objects[0][0]+’-’
event_additional_info, ’trigger_point’:
Triggers[0][0], ’object’:{’date’:
message_date, ’message_id’:message_id, ’
text’:message_content,’to_id’:recipient_id,
’to_name’:recipient_name, ’to_phone’:
recipient_phone_number, ’from_id’:sender_id
, ’from_name’:sender_name, ’from_phone’:
sender_phone_number}}");

98
99 return [<’time’, current_time>, <’event’,

Evidence_objects[0][0]>, <’trigger_point’,
Triggers[0][0]>, <’object’,<’date’,
message_date>, <’message_id’,message_id>,
<’text’,message_content>,<’to_id’,
recipient_id>, <’to_name’,recipient_name>,
<’to_phone’,recipient_phone_number>, <’
from_id’,sender_id>, <’from_name’,
sender_name>, <’from_phone’,
sender_phone_number>>];

100 else:
101 // use an hprof parser to parse objectj at the

given offset from memory dump;
102 }
103 }
104
105 [<field,value>,...] parse_content_values_for_timestamp(at) {
106 ContentValuesObject = object starting from at;
107 Globals["timestamp"] = ContentValuesObject["

sort_timestamp"];
108 return [<>];
109 }
110
111 bool sampling_predicate(thread_context) {
112 return true;
113 }
114
115 / ∗ Helper function ∗ /

116 datetime get_time(){
117 return current time;
118 }
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