Please use this identifier to cite or link to this item: https://www.um.edu.mt/library/oar/handle/123456789/100433
Title: Transfer of arbitrary two-qubit states via a spin chain
Authors: Lorenzo, Salvatore
Apollaro, Tony John George
Paganelli, Simone
Palma, G. Massimo
Plastina, Francesco
Keywords: Quantum systems
Hamiltonian operator
Spintronics
Quantum computing
Issue Date: 2015
Publisher: American Physical Society
Citation: Lorenzo, S., Apollaro, T. J. G., Paganelli, S., Palma, G. M., & Plastina, F. (2015). Transfer of arbitrary two-qubit states via a spin chain. Physical Review A, 91(4), 042321.
Abstract: We investigate the fidelity of the quantum state transfer (QST) of two qubits by means of an arbitrary spin- 1 2 network, on a lattice of any dimensionality. Under the assumptions that the network Hamiltonian preserves the magnetization and that a fully polarized initial state is taken for the lattice, we obtain a general formula for the average fidelity of the two qubits QST, linking it to the one- and two-particle transfer amplitudes of the spin excitations among the sites of the lattice. We then apply this formalism to a 1D spin chain with XX-Heisenberg type nearest-neighbour interactions adopting a protocol that is a generalization of the single qubit one proposed in Paganelli et al. [Phys. Rev. A 87, 062309 (2013)]. We find that a high-quality two qubit QST can be achieved provided one can control the local fields at sites near the sender and receiver. Under such conditions, we obtain an almost perfect transfer in a time that scales either linearly or, depending on the spin number, quadratically with the length of the chain.
URI: https://www.um.edu.mt/library/oar/handle/123456789/100433
Appears in Collections:Scholarly Works - FacSciPhy

Files in This Item:
File Description SizeFormat 
Transfer_of_arbitrary_two-qubit_states_via_a_spin_chain.pdf
  Restricted Access
664.99 kBAdobe PDFView/Open Request a copy


Items in OAR@UM are protected by copyright, with all rights reserved, unless otherwise indicated.